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SUMMARY 

Educational and psychological tests are often utilized to measure latent constructs, such 

as math achievement or self-esteem, in a sample of persons. Comparisons of subgroups within 

the sample are made with respect to test scores. An underlying assumption when such 

comparisons are made is that the item scores have the same meaning across the subgroups under 

comparison. That is, the person characteristics that distinguish the subgroups (e.g., gender and 

race) are not part of the response process. Unfortunately, this assumption does not always hold 

and should be tested. What makes testing this assumption more challenging when the items are 

of rating type (i.e., polytomously scored) is that the person characteristics could have differential 

effects on the response process across the scores. That is, for some subset of scores for an item, 

the response process could be free of such effect while for another subset of scores for the same 

item, such effect could be part of the response process. 

A differential step functioning (DSF) analysis can determine whether person 

characteristics are part of the response process in rating scale items, and if so, whether person 

characteristics have an equal or differential effect across all response categories. Item response 

theory (IRT) models are convenient tools for performing a DSF analysis. The traditional 

approach using multiple-group IRT includes the person characteristics of interest into the model. 

This approach, however, has its limitations. It requires some method of linking across the 

subgroups, with the choice having potential consequences on the effectiveness of the model 

detecting DSF. Additionally, it cannot account for when the subgroups are latent (i.e., latent 

classes). A finite-mixture IRT model can examine for whether DSF occurs across latent classes. 

Unfortunately, it also has its limitations. It assumes that the same number of mixture components 

describe the data for all items.  
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SUMMARY (continued) 

For this dissertation, I introduce a Bayesian nonparametric IRT model, based on 

covariate-dependent infinite-mixture modeling, to address these limitations of multiple-group 

and finite-mixture IRT models. The mixing distribution for this model is formed using the 

multiple Dirichlet Process (mDP), which is a type of dependent Dirichlet Process, and this 

distribution is allowed to flexibly vary across items. Two simulation studies and analyses of two 

real-life rating data sets indicated that DSF across latent classes is revealed in the shape of the 

posterior mean estimates of the mixing distributions produced with the mDP model. When an 

item is free of DSF, the posterior density corresponding to each category step is unimodal with 

small variance. When an item has DSF, the posterior density corresponding to the category step 

where the DSF resides is multimodal, with the number of modes indicating the number of latent 

classes contributing to the DSF. The simulation studies also indicated that sample size and the 

magnitude of the DSF influence the effectiveness of the mDP model’s ability to detect DSF. 

The results of the simulation studies show that, when an appropriate sample size and DSF 

magnitude are present, the mDP model provides a unique approach to identifying where the DSF 

resides in rating scale items. The DSF is displayed visually through the posterior densities of the 

mixing distributions, and the mDP model accomplishes this while addressing the limitations of 

the traditional IRT approaches to DSF analysis. 

 

	
  	
  



 

 
 

I. LITERATURE REVIEW 

Introduction to Item Response Modeling of Rating Category Usage 

A test is broadly considered to be an assessment instrument that contains a set of items. It 

is administered to a sample of persons to gather information about their achievement or attitude 

score on some latent construct. When a test functions differently across two or more groups of 

persons, it is difficult to compare scores across the groups based on a common frame of 

reference (Berk, 1982; Camilli & Shepard, 1994). This differential functioning is caused by the 

presence of construct-irrelevant variance, defined as the variance in the test scores due to factors 

(e.g., group membership) unassociated with the construct (i.e., the latent trait) that the scores are 

intended to represent. The presence of construct-irrelevant variance should be addressed, because 

it suggests that factors other than the construct of interest affect persons’ responses to items, 

which in turn, threaten construct validity (Kane, 2006; Messick, 1989, 1995). Specifically, 

construct-irrelevant variance threatens the internal structural aspect of construct validity; that is, 

the extent to which items contained in the rating instrument and the construct for which the items 

are indicators are related (American Educational Research Association [AERA], American 

Psychological Association [APA], & National Council on Measurement in Education [NCME], 

1999).  

 Such differential test functioning can negatively affect many different fields. For 

example, if an advanced placement (AP) test functions differently across groups of students, then 

one unqualified student could receive a score that qualifies her or him for placement into an AP 

course, whereas a qualified student could receive a score that denies her or him access to such 

higher-level course. In the setting of the health and social sciences, conclusions based on data 

gathered from noninvariant tests can be inaccurate and misleading, possibly resulting in 
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consequences such as misguided policy initiatives. In a clinical setting, incorrect diagnoses can 

result if noninvariant instruments are used to diagnose persons according to a single cutoff score. 

 An important source of construct-irrelevant variance is differential item functioning 

(DIF). An item is said to have DIF when the probability of an item response is not constant 

across all person subgroups after controlling for a latent trait (Angoff, 1993; Holland & Thayer, 

1988). For rating items, a necessary condition for lack of DIF is invariance of the rating category 

parameters across all subgroups of the person population. An item that lacks such invariance also 

contains differential step functioning (DSF). If all items are free of DIF and DSF, then support 

exists for the internal aspect of construct validity. 

Typically, there are two approaches to dealing with the presence of DIF or DSF. One is to 

first statistically test items for the presence of DIF or DSF, and then either remove any 

problematic items before calculating scores, or take into consideration the extent of DIF or DSF 

when interpreting the scores (e.g., AERA et al., 1999; Camilli & Shepard, 1994; Holland & 

Thayer, 1988; Penfield & Camilli, 2007). The second approach is to control for the presence of 

DIF or DSF in a statistical model when estimating a person’s score (i.e., the person’s latent trait 

that the test is designed to measure) (e.g., Chu & Kamata, 2007; De Jong & Steenkamp, 2010; 

De Jong, Steenkamp, & Fox, 2007; Sireci, 2005).  

The remainder of this chapter provides a review of the literature on item response theory 

(IRT) for rating scale data and its connection with generalized linear mixed models (GLMM), 

the formal definitions of DIF and DSF, the statistical models employed for DSF analysis on 

rating scale data that do or do not produce adjusted scores, and an existing model that can be 

used to investigate DSF. The review concludes with a short discussion of potential research 

directions with respect to the current problems in DSF research. 
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Review of Polytomous IRT and Generalized Linear Mixed Models 

An IRT model parameterizes both latent trait levels from the persons’ responses and the 

items to which the persons provide responses (Embretson & Reise, 2000). There are many 

different IRT models, each characterized by a set of assumptions. In general, any given IRT 

model assumes that the joint probability of a person’s responses to items on a test is expressed 

as:   

   
P Y1 = y1,...,Yj = y j ,…,YJ = yJ( ) = P Yj = y j |θ;β( )dG θ( )

j=1

J

∏∫ , 

where P denotes probability; θ is a real-valued (possibly multidimensional) parameter 

representing the latent trait for a respondent; β is the vector of item and response-category 

parameters; and G(θ) = P(Θ ≤ θ) is the population distribution of latent trait levels, where          

Θ = (–∞, θ] is a bin of subsets of values from the sample space that are less than or equal to θ 

(Holland & Rosenbaum, 1986).  

In general, IRT models make at least three assumptions: (a) the person latent trait, θ, is 

real-valued, (b) all item responses have local independence, meaning that they are conditionally 

independent given θ; that is:  

   
P Y1 = y1,...,Yj = y j ,…,YJ = yJ |θ;β( ) = P Yj = y j |θ;β( )

j=1

J

∏ , 

and (c) the item step response function (ISRF) is monotonically increasing, which means that the 

probability of Yj being greater than or equal to k, which is formally represented 

by
  
P Yj ≥ k |θ;β( ) , is nondecreasing in each coordinate of θ for all possible ordered categories 

for the item, given by k = 0, 1, … , mj, where mj represents the maximum score category for item 

j. This states that the probability of Yj being greater than or equal to k never decreases as the 

latent trait level increases. Rasch models (e.g., Rasch, 1960) and the double monotonicity model 
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(Mokken & Lewis, 1982) make a further assumption of invariant item ordering—that it is 

possible to assign indices i = 1, 2, … , J to all items of the test, such that: 

   
E Y1 |θ( ) ≤ E Y2 |θ( ) ≤…≤ E Yi |θ( ) ≤ E YJ |θ( ) , for all values of θ. 

Usually, an assumption about the form of the distribution of the population ability G(θ) is 

specified beforehand; for example, as a normal distribution (i.e., G[θ] = Normal[µθ,τθ]) with a 

mean of zero (i.e., µθ = 0) and variance either fixed at some value, such as 1 (i.e., τθ = 1), or an 

unknown variance (τθ) to be estimated from the data at hand. The distribution G(θ) can be more 

flexibly modeled with a finite number of mixtures. That is, 
  
G(θ ) = normal θ |µh ,σ h

2( )
h=1

H

∑ wh ,  with 

the H number of mixture weights following a multinomial distribution 

   
w1,…,wH ~ multinomial ψ ,1( ),  with 

   
ψ = ψ 1,…,ψ H( )  and 

  
ψ l = 1

l=1

L∑ . An even more flexible 

way to model the distribution G(θ) is to model it nonparametrically so that no prior assumption is 

made on the specific form of the distribution. Moreover, the population distribution of latent trait 

levels G(θ) is assumed to be either continuous or discrete, and an IRT model under a discrete 

distribution assumption for G(θ) is referred to as a latent class IRT model. An important example 

of a nonparametric model for G, which gives rise to a discrete infinite-mixture IRT model, is 

provided by the Dirichlet Process (DP) model, parameterized by (α, G0), the precision parameter 

and the mean (baseline) parameter of G(θ), respectively. Specifically, a random G(θ) from the 

DP is constructed by taking 
  
G(⋅) = whδθh

⋅( )
h=1

∞

∑ ,  with mixture weights 
  
wh =υh 1−υl( )

l<h
∏ , 

   
υ1,υ2 ,…~

iid
Beta 1,α( ) , and 

   
θ1,θ2 ,…~

iid
G0 , for h = 1,2,…, where 

 
δθh

⋅( )  denotes the degenerate 

distribution that assigns probability mass 1 on the value θh (Sethuraman, 1994). 
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Unidimensional rating data IRT models, in which the assumption of local item 

independence and monotonicity are also met, achieve a weaker form of stochastic ordering of the 

latent trait (SOL). That is, let  θ
*  represent an arbitrary point on the latent trait scale, then  

  
P θ ≥θ * | X+ ≥ X *( ) ≥ P θ ≥θ * | X+ < X *( )  

for all  θ
*  and all total test scores   X * . This states that stochastic ordering of the expected latent 

trait is achieved for high and low total test score, X+, and groups of persons (with a total test 

score   X *  distinguishing the two groups), which justifies ordering persons on the latent trait 

based on the total score (van der Ark & Bergsma, 2010). 

For rating scale data, there are two general classes of IRT models, which have had many 

applications. One class consists of cumulative probability models, which model the probability 

of endorsing category k (where k = 0, 1, …, mj, with mj > 1) on item j given latent trait level and 

item parameters by: 

   

P Yj = k |θ;β( ) =
H jk η( ),when k = mj

H jk η( )− H j k+1( ) η( ),when k ≠ 0or mj

1− P Yj = k |θ;β( ),when k = 0
k=1

mj∑

⎧

⎨
⎪
⎪

⎩

⎪
⎪

,

 

 (1.1) 

where 
 
H ⋅( )  is the cumulative distribution function (CDF), and 

 
H η( ) = P ϑ ≤η( ) , with 

 
ϑ = −∞,η( ⎤⎦  a bin of a subset of values from the sample space that are less than or equal to  η.  

The CDF,
 
H jk η( ) , represents an ISRF, which governs the probability of a Yj being greater than 

or equal to k based on the systematic component  η,  which is a linear combination of the 

parameters θ and β. That is, 
  
H jk η( ) = P Yj ≥ k |θ ,β( ) .  
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The other class of IRT models is defined by adjacent category probabilities, which model 

the probability of endorsing category k on item j given latent trait level and item parameters by 

 

  

P Yj = k |θ;β( ) =
H jx η( )

x=0

k

∏ 1− H jl η( )⎡⎣ ⎤⎦
l=k+1

mj

∏

H jx η( )
x=0

w

∏ 1− H jl η( )⎡⎣ ⎤⎦
l=w+1

mj

∏
⎛

⎝
⎜

⎞

⎠
⎟

w=0

mj

∑
, with 

  
H jx η( )

x=0

0

∏ ≡ 1 . (1.2) 

In this case, the CDF 
 
H jk η( )  represents the probability of a response of k given the person 

ability, the item category steps, and that the category options are limited to k and k – 1 for item j. 

That is, 
  
H jk η( ) = P Yj = k |θ ,β ,k −1,k( )  

Using the terminology of generalized linear models (e.g., McCullagh & Nelder, 1989), 

the cumulative distribution function 
   
H η( ) :!→ 0,1( )  is the inverse-link function with 

systematic component η having space ℜ, corresponding to link 
  
h ⋅( ) = H −1 ⋅( ) , with range ℜ. An 

assumption is usually made about the form of the cumulative distribution for 
 
H ⋅( ) , and two 

common types are the logistic and normal ogive. When the CDF is the logistic distribution with a 

mean of zero and scale of 1, then  

  
H ⋅( ) ≡ L ⋅ | 0,1( ) = exp ⋅( )

1+ exp ⋅( ) , 

and when the CDF is the normal ogive with a mean of 0 and scale of 1, then 

  
H ⋅( ) ≡ N ⋅ | 0,1( ) = Φ ⋅( ) . 

The inverse link, 
 
H ⋅( ) , can also be modeled nonparametrically; the only constraint is that the 

distribution is nondecreasing in each coordinate of θ for all k (e.g., Miyazaki & Hoshino, 2009; 

Newton, Czado, & Chappell, 1996; Sijtsma & Molenaar, 2002). For example, it is possible to 
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model 
 
H ⋅( )  with a DP model that supports the entire space of (measurable) cumulative 

distribution functions on ℜ (e.g., Newton et al., 1996), or with an isotonic regression model that 

assumes that the expected rating response is nondecreasing with some estimate of a 

unidimensional latent trait θ, such as a total test score (e.g., Karabatsos & Sheu, 2004). 

Examples of Common IRT Models for Rating Data 

In this section, I present the systematic components for cumulative and adjacent category 

probability IRT models commonly used to analyze rating data. For information about other types 

of common IRT models, refer to Table I. 

Cumulative probability models. One type of cumulative probability IRT model is the 

graded response model (Samejima, 1969), which has the systematic component 

 
η jk =α j θ −δ jk( ) , with the constraint 

   
δ j1 < δ j2 <…< δ jmj

, 

where αj > 0 represents the discrimination parameter for item j, and δjk is item j’s step parameter 

for category k, sometimes decomposed as δjk = βj + τjk , where βj is the overall item difficulty 

level for item j, and τjk is the item’s relative step parameter for category k. A special case of the 

GRM is the modified graded response model (Muraki, 1990), which assumes that all items share 

a common set of category steps; that is,  
δ jk = β j +τ k . The M-GRM and GRM, with the relative-

step parameterization, require an additional constraint to be placed on the   τ ks  for model 

identification. One such constraint is that the sum of the step estimates must be zero. Another 

way to place restrictions on the   τ ks  is to assign a prior distribution that supports the order 

constraint 
   
−∞ ≡ τ 0 < 0 ≡ τ1 < τ 2 <…< τmj+1 ≡ ∞ . 
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TABLE I  

SELECTED SYSTEMATIC COMPONENTS FOR Η TO REPRESENT DIFFERENT IRT 
MODELS 

Model Systematic Component (η) 
  
P Yj = k |θ;β( )  

Modified Graded 
Response Model (M-
GRM) (Muraki, 
1990) 
 

 
α j θ − β j −τ k( ) , with 

   τ1 < τ 2 <…< τm  
 

  
H η jk( )− H η j k+1( )( )  

Graded Response 
Model (GRM) 
(Samejima, 1969) 

 
α j θ −δ jk( ) , with 

   
δ j1 < δ j2 <…< δ jmj   

  
H η jk( )− H η j k+1( )( )  

Rasch Rating Scale 
Model (RSM) 
(Andrich, 1978) 
 

 
θ − β j +τ k( )  

 

Adjacent Categories  

Rasch Partial Credit 
Model (PCM) 
(Masters, 1982) 
 

 
θ −δ jk  

 

Adjacent Categories  

Generalized Partial 
Credit Model  
(Muraki, 1992) 

 
α j θ −δ jk( )

  
 

Adjacent Categories 

Mixed Rating Scale 
Model (von Davier & 
Rost, 1995) 

 
kθc − kδ jc −τ kc , with 

  
τ kc = τ sc

s=1

k

∑ , 

where τsc is the cumulated step parameter (one 
set of steps is assumed to apply to all items) 

 

Adjacent Categories 

Mixed Partial Credit 
Model) (Rost, 1991)  

kθc −δ jkc , with 
  
δ jkc = τ jsc

s=1

k

∑ , 

where τjsc is the cumulated step parameter for 
item j 

 

Adjacent Categories  

Equidistant Rasch 
Model (Andrich, 
1982) 
 

 
θ − β j + λ j m− k( ) , 

where  
λ j  is half the distance between two 

adjacent steps for item j 
 

Adjacent Categories 

 
(table continues) 
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TABLE I (CONTINUED) 
 
SELECTED SYSTEMATIC COMPONENTS FOR Η TO REPRESENT DIFFERENT IRT 
MODELS 

Model Systematic Component (η) 
  
P Yj = k |θ;β( )  

Successive Intervals 
Model (Rost, 1988) 
 

 
θ − β j +ς j m− k( ) +κ k( ) , 

where  
ς j is the degree to which the category 

step distance for item i deviates from the 
overall step distance across all items, and  κ k is 
the sum of all category steps assicuated with 

category 1 to k.  
 

Adjacent Categories 

Monotone 
Homogeneity Model 
(MHM) (Mokken & 
Lewis, 1982) 
 

θ, where 
 
H jk θ( )  is nondecreasing in each 

coordinate of θ ,  
for all items j=1,…,J 

  
H η jk( )− H η j k+1( )( )  

Double Monotonicity 
Model (Mokken & 
Lewis, 1982) 

θ, where 
 
H jk θ( )  is nondecreasing in each 

coordinate of θ , 
 
H jk θ( )  and 

  
H j k+1( ) θ( ) do not 

intersect, for all k=1,…,mj, for each item 
j=1,…,J. 

 

  
H η jk( )− H η j k+1( )( )  

Generalized Linear 
Mixed Models—IRT 
(e.g., De Boeck & 
Wilson, 2004) 

  X iβ + Ziυ i  Can be either 

Note. θ is latent trait level. For the M-RSM and M-PCM, the latent trait level is assumed to be 
discrete. All other models assume latent trait level is continuous. αj is the item discrimination 
parameter. For RSM and M-GRM, βj is the overall item difficulty, τk is the relative step location 
for category k, and all items share a common set of steps. For PCM and GRM, βjk represents the 
step location for item j’s category k, although βjk can be expanded to βj - τjk, where βj is the 
overall item difficulty, and τjk is the relative step location for item j’s category k. For cumulative 
probability models, it is assumed here that 

  
H η jk( ) = P Yj ≥ k |θ;β( ) . 
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Although the GRM and M-GRM are common parametric IRT models, one example of a 

nonparametric model, the monotone homogeneity model, falls within this class (Mokken & 

Lewis, 1982):  
η jk = θ , with the constraint that 

 
H jk θ( )  is nondecreasing in each coordinate of θ 

for all categories k = 0,1,…,mj, and test items j = 1,…,J, and, in the case of the double 

monotonicity model, there is also the assumption that 
 
H jk θ( )  and 

  
H j k+1( ) θ( )  

do not intersect for 

all values θ (i.e., satisfying invariant item ordering).  

 Adjacent category probability models. One type of adjacent category probability IRT 

model is the Rasch partial credit model (Masters, 1982): 

 
η jk = θ −δ jk , 

given person latent trait θ, and δjk, denotes item j’s step parameter for category k, which is 

sometimes decomposed in terms of overall item difficulty and relative category step               

(i.e., δjk = βj + τjk ).  

A special case of the PCM is the Rasch rating scale model (Andrich, 1978), which 

assumes all items share a common set of category steps, with  
δ jk = β j +τ k . Thus, similar to the 

M-GRM,  
δ jk  decomposes into an overall difficulty for item j and a relative step. The RSM and 

PCM with relative-step parameterization require a constraint to be placed on the   τ ks  for model 

identification. One such constraint is to require the step estimates to sum to zero. Another type of 

constraint is to assign a proper prior on the distribution of the step estimates, such as 

 τ k   
~
iid   

N 0,στ
2( ) .  
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GLMM perspective. Most, if not all, current IRT models can be considered members of 

the general class of mixed generalized linear models (e.g., McCullagh & Nelder, 1989); 

specifically, the subclass of mixed ordinal regression models, with inverse link  

   
H η( ) :!→ 0,1( ) , systematic component η, and link 

  
h ⋅( ) = H −1 ⋅( )  (e.g., De Boeck & Wilson, 

2004). Previously, we considered specific forms for the systematic component, but the class of 

generalized linear mixed ordinal models assumes the general systematic component:  

  ηt = Xtβ + Ztυt ,
 

where   ηt = (η1,η2 ,...,ηN ′) , for groups t = 1, … , N (where group can be a person),    
X = (xtj )N× p  is 

the fixed-effect design matrix corresponding to the column vector of p regression coefficients, β, 

   
Z = (ztj )N×q  is the random-effect design matrix corresponding to the column vector of q random 

effects, υ1,…,υt,…, υN 
  
~
iid

 G(υ) for some assumed distribution G, typically a multivariate normal 

distribution. Also, a nonparametric (e.g., DP) model can be assumed for G (Kleinman & Ibrahim, 

1998a, 1998b).
 

 
From the perspective of an IRT model, the fixed-effect design matrix X contains 

information pertaining to item covariates (e.g., item difficulty/easiness level and/or category step 

indicators); person covariates (e.g., gender, ethnicity, and/or socioeconomic status); and/or item-

by-person characteristic interactions. Z may also contain information about item, person, and 

item-by-person characteristic interactions. In a traditional IRT model within GLMM, X contains 

information pertaining to item (dummy) indicators and category indicators, and only one random 

effect is specified, which represents the latent trait, with Z a column vector of 1s. When item 

indicators are included in Z, item difficulty and/or step parameter estimates are considered to be 

random rather than fixed, constituting the random-item IRT model (De Boeck, 2008).  
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Parameter Estimation 

 For simplicity, but with no loss of generality, to estimate the population parameter of an 

IRT model based on available item-responses data, and to describe the different estimation 

methods, the data are notated as Y = (ytj)N×J, a matrix of responses to J items from a sample of N 

persons from a population. Across the various estimation methods discussed in the sections that 

follow, let θ = (θ1, …, θt,…,θN) represent a column vector or latent trait and β represent a column 

vector of all other parameters in the IRT model (e.g., item, category parameters, etc.). Note that β 

could contain parameters that describe the latent trait distribution (e.g., the mean and variance, µθ 

and τθ, respectively, to model 
  
G θ( ) ≡ N θ |µθ ,τθ( ) , or more generally, the infinite-dimensional 

parameter, G). In addition, (θ, β) represents all parameters in the model, and the set of all 

possible values of (θ, β) is denoted by Ω. 

(Joint) Maximum Likelihood Estimation 

 The maximum likelihood estimate of 
 
θ ,β( ) , denoted by 

  
θ ,β!( )  is: 

   
θ ,β!( ) = argmax

θ ,β( )∈Ω
Pj ytj |θt ,β( )

j

J

∏
t=1

N

∏ , 

and the inverse of the second derivative matrix of 
  
log Pj ytj |θt ,β( )j=1

J∏t=1

N∏  evaluated at 

  
θt ,β( ) = θ̂t ,β̂( )  gives the asymptotic sampling variances for 

  
θ ,β!( ) . 

Conditional Maximum Likelihood Estimation 

Conditional maximum likelihood estimation (CMLE) allows for the estimation of β after 

the latent trait parameters are conditioned out using sufficient statistics. Because sufficient 

statistics are required, this approach apparently is appropriate only for Rasch models, in which 
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the person’s total score (i.e., the sum of a person’s item-level scores), Y+, is a sufficient statistic 

for latent trait, provided the data fit the model. The CMLE of β is obtained via: 

   
β! = argmax

β∈Ω
P ytj | y+ t ,β( )

j=1

J

∏
t=1

N

∏ , 

where 
 
y+ t = ytj

j

J

∑ represents the total score for person t. Taking the inverse of the second 

derivative of 
   
log P ytj |Y+ t ,β

!( )
j=1

J

∏t=1

N∏  yields the asymptotic variances of  β
! . 

Marginal Maximum Likelihood Estimation 

 The marginal maximum likelihood estimate is: 

	
  
   
β! = argmax Pj ytj |θt ,β( )dG θt( )

j=1

J

∏∫
⎧
⎨
⎩

⎫
⎬
⎭t=1

N

∏ ,	
   (1.3)	
  

 

and the inverse of the second derivative of Equation 1.3 yields the asymptotic sampling 

variances of  β
! . The latent trait parameters  θ

!  are estimated in a second stage, given  β
! , through 

maximum likelihood, maximum a-posteriori, or expected a-posteriori scoring (see Embretson & 

Reise, 2000). 

Bayesian Inference 

 Parameter inferences from a Bayesian perspective proceed by finding a solution to 

Bayes’s theorem, which is given by: 

   

P θ ,β | Y( ) =
Pj ytj |θt ,β( )

j=1

J

∏
t=1

N

∏⎧⎨
⎩

⎫
⎬
⎭

P θ ,β( )

Pj ytj |θt ,β( )
j=1

J

∏
t=1

N

∏⎧⎨
⎩

⎫
⎬
⎭

P θ ,β( )d θ ,β( )∫
 , 
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where 
  
P θ ,β( )  is the prior probability density and represents a prior belief about the true values 

of 
 
θ ,β( )  underlying the data. Markov Chain Monte Carlo methods, such as Gibbs sampling, 

Metropolis-Hastings sampling, or slice sampling, are used to simulate from 
   
P θ ,β | Y( )  to 

perform inferences on 
 
θ ,β( )  (Robert & Casella, 2004). One key difference between Bayesian 

inference and the previously noted maximum likelihood estimation lies in the assumption about 

the parameters. That is, in Bayesian inference, the parameters are treated as random while within 

a frequentist approach, the parameters are treated as fixed. By treating the parameters as random, 

issues of model identification can be avoided with complex models, such as infinite mixture 

models, and the uncertainty in the parameters are taken into account in the probability model. 

These issues and Bayesian inference in general are explored in more detail in the following 

chapter.  

Formal Definition of DIF and DSF 

Recall that the response to item j is a random variable, Yj, with a sample space {k = 0, 

1,…, mj} where (mj ≥ 1), and is a manifestation of a latent variable, θ, often referred to as the 

latent trait or ability level. An item is said not to have DIF if the cumulative distribution for       

Yj = k, given the latent trait, θ, and other person characteristics that are represented by a discrete 

or continuous random variable W, is the same as the cumulative distribution for Yj = k, given 

only θ; that is: 

 
  
F Yj = k |θ ,W = w( ) = F Yj = k |θ( ) , for all k, θ, and w. (1.4) 

Otherwise, the item is said to have DIF (Penfield & Camilli, 2007).  
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To test for item invariance at the category level, a researcher can determine whether 

Equation 1.4 is true by examining the K – 1 category step parameters that govern the ISRF for 

invariance across W (Camilli & Shepard, 1994; Hambleton & Swaminathan, 1985; Lord, 1980), 

a process referred to as DSF analysis (Penfield, 2006, 2007) when K ≥ 3. For rating data, one or 

all K – 1 category step parameters may lack invariance, and the effect of W (i.e., magnitude and 

direction) on step parameters lacking invariance may or may not differ across them. Thus, I refer 

to an item as containing overall-level DIF when the effect of W is the same on all K – 1 step 

parameters for an item. Also, I refer to an item as containing DSF when only a subset of K – 1 

step parameters for an item lacks invariance across W or when all K – 1 step parameters lack 

invariance but the effect of W varies across them.  

Parameters Tested for Overall-Level DIF and DSF 

 As noted previously, in rating scale data, item j can be characterized by a discrimination, 

αj, and K – 1 step-difficulty parameters, δjk, or an overall item difficulty level and relative 

category step (i.e., δjk = βj + τjk). To examine an item for overall DIF, the overall item difficulty 

level parameter, βj, is examined for invariance across W. Put more simply, let W represent two 

subgroups. Item j is said to have overall-level DIF when the difference in the overall item 

difficulty level estimates for the two groups is statistically significant (i.e., βj(W = Group 1) ≠ βj(W = 

Group 2)), with βj(W = Group 1) > βj(W = Group 2), indicating that the item overall is more difficult for 

Group 1 compared with Group 2, and vice versa, when βj(W = Group 1) < βj(W = Group 2). For IRT 

models that allow items to vary in terms of discrimination (e.g., GRM and M-GRM), overall-

level DIF in item j can also result from a statistically significant difference in the discrimination 

parameter estimates, αj, between the two groups (i.e., αj(W = Group 1) ≠ αj(W = Group 2)), with a steeper 
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slope for the ISRFs for Group 1 when αj(W = Group 1) > αj(W = Group 2), and a less steep slope when  

αj(W = Group 1) < αj(W = Group 2).  

To detect DSF, each of the K – 1 category step parameter estimates are individually 

examined for invariance across W rather than tested as a set. Again, assuming that W represents 

two groups, the kth category step parameter is said to have DSF when the difference in the kth step 

estimates, δjk, for the two groups is statistically significant (i.e., δjk(W = Group 1) ≠ δjk(W = Group 2)), 

with δjk(W = Group 1) > δjk(W = Group 2), indicating that endorsing category k or higher is more difficult 

for Group 1 compared with Group 2, and vice versa when δjk(W = Group 1) < δjk(W = Group 2). When all 

items share a common set of category steps, the kth step parameter has DSF for all items when 

τk(W = Group 1) ≠ τk(W = Group 2).  

IRT Models that Can Detect DSF and Produce Adjusted Scores 

Many statistical methods have been employed to assess overall-level DIF for polytomous 

items (e.g., Chang, Mazzeo, & Roussos, 1996; Dorans & Schmitt, 1993; Flowers, Oshima, & 

Raju, 1999; Hedeker, Berbaum, & Mermelstein, 2006; Kim & Cohen, 1998; Liu & Agresti, 

1996; Rossi, Gilula, & Allenby, 2001; Somes, 1986; Wang, 2004; Williams & Beretvas, 2006). 

The drawback of overall-level DIF statistics is that they have a relatively low power to detect 

DIF items when the effect of W differs in direction and magnitude across categories 

(Ankenmann, Witt, & Dunbar, 1999; Chang, et al., 1996; Penfield & Algina, 2003; Wang & Su, 

2004). Moreover, when an overall-level DIF statistic does identifying an item as having DIF, it 

does not indicate which categories may be contributing to the DIF if all categories do not equally 

contribute to the DIF (Penfield, Alvarez, & Lee, 2009; Penfield, Gattamorta, & Childs, 2009). 

For these reasons, I focus on reviewing the literature that pertains to IRT models used in DSF 

analysis, because DSF analysis reveals which category or categories may be problematic, and 
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has been demonstrated through simulation studies to possess more power to detect problematic 

items (Penfield, 2007). For those interested in information on overall-level DIF statistical 

methods for rating data, the aforementioned works are recommended.  

When DSF analysis is conducted, one often relies on a statistical test or global model fit 

measure. Thus, in this section, I first review the statistical significance tests and global model fit 

measures used in DSF analysis. I then review traditional IRT models and GLMM-IRT models 

used to conduct DSF analysis. 

Statistical Tests of Parameters 

Mahalanobis distance statistic, D2. The Mahalanobis distance statistic (Cohen, Kim, & 

Baker, 1993), also referred to as the Wald test, simultaneously tests whether a set of step 

parameters lacks invariance across W at a statistically significant level. The D2 is based on the 

vector of the differences in the parameters estimated for two groups,  v̂ , and its corresponding 

variance-covariance matrix,  Σ̂  (i.e.,    D
2 = ˆ ′v Σ̂−1v̂ ). D2 tests the null hypothesis of

   
v= 0( )s×1

, 

where s is the number of parameters tested. D2 is distributed asymptotically as a chi-square with 

s degrees of freedom. If D2 is statistically significant at a specified significance level, it reveals 

only that at least one of the step estimates differs between two groups.  

 Standardized difference. The standardized difference (z) tests whether the difference in 

the kth step estimates for item j between two groups is statistically significant at a specified 

significance level. This is achieved by taking the difference between the estimates and dividing it 

by the pooled standard error; that is, 

   

z =
δ! jk w=group 1( ) −δ! jk w=group 2( )( )

var δ
jk w=group 1( )( )"

+ var δ
jk w=group 2( )( )"
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(Cohen, et al., 1993; Lord, 1980; Wright & Masters, 1982). The z test tests the null hypothesis of 

  
H0 :δ jk w=group 1( ) −δ jk w=group 2( ) = 0 . The test statistic is then compared with the standard normal 

distribution, and if z is statistically significant, then the kth step for item j is said to have DSF.   

Measures of Model-Fit Comparisons 

 The likelihood ratio test (LRT) makes it possible to compare the fit of two nested models 

and indirectly test the effect of W on a single category step or a set of step estimates for statistical 

significance (Thissen, Steinberg, & Gerrard, 1986; Thissen, Steinberg, & Wainer, 1988, 1993). 

When conducting an LRT, two models are fit to the data and then compared. Let 
 
θ ,β( )1  

represent a vector of p1 parameters in the augmented model, which allows step parameter(s) 

under examination for lack of invariance to vary as a function of W, and 
 
θ ,β( )2

 represent a 

vector of p2 parameters in the restricted model, which constrains some or all of the estimates for 

the parameters tested to be the same across all W, enabling 
 
θ ,β( )2

 to be contained in 
 
θ ,β( )1 . 

Based on the deviance,  

  
D θ ,β( ) = −2 log

j=1

J∑t=1

N∑ P ytj | θ ,β( )⎡⎣ ⎤⎦ , 

and the LRT statistic is 
   
LRT12 = D θ ,β( )!

2
− D θ ,β( )!

1
, where 

   
D θ ,β( )!

1
 and 

   
D θ ,β( )!

2
 represent 

the point-estimates for their respective parameters, and LRT12 ≥ 0. LRT12 tests the null hypothesis 

that the target items are free of DIF/DSF, with the test statistic asymptotically following a chi-

square distribution with degrees of freedom equal to the difference in the estimated number of 

parameters between the larger model and the nested smaller model.  

 If the null hypothesis is rejected, it can be concluded that the restricted model does not fit 

the data as well as the augmented model and that at least one step parameter has DSF if multiple-
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step parameters are tested. Otherwise, the restricted model fits the data as well as the augmented 

model and DSF is not present in the examined step parameters. It is important to note that, even 

for large samples, the LRT tends to be biased in favor of the model with more parameters 

(Gelfand & Dey, 1994). 

Step parameters can also be examined for invariance by comparing the model fit 

measures (MFM) between two models, such as an augmented model and a restricted model, 

although the measures I present in this section do not require 
 
θ ,β( )2

 to be contained in 
 
θ ,β( )1 .  

The Akaike information criteria (AIC) (Akaike, 1974) is calculated by: 

   
AIC = D θ ,β( )! + 2 p , 

where p is the number of parameters estimated in the model. The Bayesian information criteria 

(BIC) (Schwarz, 1978) is calculated by: 

   
BIC = −2B01 = D θ ,β( )! + log n( ) p , 

where B01 is the Bayes factor.  

Within a Bayesian inference approach, the deviance information criterion (Spiegelhalter, 

Best, Carlin, & van der Linde, 2002) is calculated by: 

  
DIC = D θ ,β( ) + 2 D θ ,β( )− D θ ,β( ){ } , 

where 
  
D θ ,β( )  is the deviance conditioned on the posterior mean estimate 

 
θ ,β( ) , and 

  
D θ ,β( )  

is the average of the deviance taken with respect to the posterior distribution, 
  
π θ ,β | Y( ) . 

 The leave-one-out cross validation (LOOCV) (Geisser & Eddy, 1979) approach in a 

Bayesian step is calculated through: 
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LOOCV = log P ytj |θ ,β⎡⎣ ⎤⎦∫

j=1

J

∑
t=1

T

∑ dΠ θ ,β | Y − tj( )( ) , 

where 
   
Π θ ,β | Y − tj( )( )  is a measure of the posterior distribution conditional on all data except the 

jth response for person t. The LOOCV under a Bayesian step is also referred to as the log 

predicted marginal likelihood (LPML). For a model under a non-Bayesian step, the leave-one-

out log predictive likelihood is calculated through:  

   
LOOCV = log P ytj |θ! − tj( ) ,β" − tj( )

⎡
⎣

⎤
⎦d ytj∫

j=1

J

∑
t=1

N

∑ , 

where 
   
θ! − tj( ) ,β" − tj( )  are the estimates for their respective parameters based on data with the jth 

response for person t removed from the analysis. LPML and LOOCV are on a common log-

likelihood scale, which makes it possible to directly compare the predictive utility between a 

model under point estimation and a model under full Bayesian estimation.  

 The D(m) criterion (Gelfand & Ghosh, 1998), which is a mean-squared predictive 

criterion, is another predictive performance index that allows for the comparison of models under 

point estimation and full Bayesian estimation. Given model m, where the parameters are from 

Bayesian estimation, the criterion is defined by: 

	
  

   

D m( ) = ypj − E Ypj | x,m( )⎡
⎣

⎤
⎦

2

j=1

J

∑
p=1

N

∑ + Var Ypj | x,m( )
j=1

J

∑
p=1

N

∑
         = GF m( ) + Pen m( ),

	
  

 where ypj is person p’s observed response for item j, E(Ypj|m) is the expected value ypj given 

model m, and Var(Ypj|m) is the variance for Ypj given m. The GF(m) indicates the goodness-of-fit 

to the sample data, Dn, at hand. The term, Pen(m), indicates the penalty and is large when the 
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model is over- or under-fitting the sample data. Lower D(m) values indicate better fitting models 

to the data. 

 For a non-Bayesian model having point estimate 
  
ϕ! n =ϕ
! Data( ) , such as a maximum-

likelihood estimate, the D(m) criterion is estimated via 
    
E! Ypj | x pj ,m( ) = E Ypj | x pj ,m,ϕ"( )  and 

    
Var! Ypj | x pj ,m( ) = Var Ypj | x pj ,m,ϕ"( )  (Gelfand & Ghosh, 1998).  

 Whenever MFM1 < MFM2 for two alternative models, wherein MFM is one of the 

aforementioned model-fit measures, the augmented model is preferred to the restricted model, 

which suggests that at least one of the examined step parameters has DSF; otherwise, the 

restricted model is preferred to the augmented, which suggests that none of the examined step 

parameters have DSF.  

The BIC is asymptotically consistent (Kuha, 2004; Schwarz, 1978); that is, the model-fit 

measure leads one to choose the true model as sample size increases to ∞; although for large 

sample sizes, the BIC tends to select the simpler model because the penalty takes the sample size 

into consideration (Kang, Cohen, & Sung, 2009; Kuha, 2004). The AIC, on the other hand, is not 

asymptotically consistent (Schwarz, 1978; Sclove, 1987), and tends to be biased in favor of the 

more complex model because the penalty does not take the sample size into consideration 

(Janssen & De Boeck, 1999; Kuha, 2004). The LOOCV has been shown to be asymptotically 

equivalent to the AIC (Stone, 1977). Thus, the limitations of AIC apply to LOOCV as well. In 

terms of asymptotic consistency and model selection, it is possible to adopt two viewpoints. One 

viewpoint is that the measure of model fit should be asymptotically consistent, a fact that would 

preclude the use of the AIC in model selection. The other viewpoint is that, for a finite sample, 
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the concern should be predictive validity. The concern for asymptotic consistency may not be as 

critical in the latter viewpoint as it is in the former. 

Traditional IRT for DSF Analysis 

Multiple-Group IRT  

In multiple-group IRT (Lord, 1980; Wright & Masters, 1982), W is assumed to be 

discrete (e.g., representing gender or ethnicity). This model makes it possible to simultaneously 

estimate category step parameters for each group of interest and place all parameter estimates on 

a common metric, an approach that allows for direct comparisons of step parameter estimates 

across groups (Embretson & Reise, 2000). Multiple-group IRT allows for the groups’ latent trait 

distribution in the population to vary, which makes possible a more accurate detection of any 

differences in item parameter estimates (Thissen, et al., 1986). That is,  
G θ( )  becomes  

Gw θ( ) , 

with a typical assumption about the form of the distributions in the population, that each group 

has a normal distribution with some mean and variance, with the means and variances allowed to 

vary across the groups. 

Multiple-group IRT requires the use of a group-linking procedure to establish a common 

metric for the parameter estimates across the groups. In the sections that follow, I present two 

common group-linking procedures.  

Equal-mean-difficulty procedure. In the equal-mean-difficulty (EMD) approach, the 

mean of the item-difficulty parameter estimates is constrained so that it is the same across the 

groups (Muraki, 1999; Wang, 2004, 2007). To conduct a DSF analysis with this procedure, for 

each group, one would estimate J sets of category steps if each item is assumed to possess its 

own set of steps, and estimate only one set of category steps if a single set is assumed to apply to 

all items, while simultaneously constraining the mean of the overall item difficulty estimates so 
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that it is equal across all groups. Then, with a statistical test, one can compare the step estimates 

between two groups or rely on a model-fit measure comparison to determine whether DSF is 

present.  

 In a simulation study (Wang, 2004), the EMD procedure led to an increased Type I error 

rate in detection of DSF when the rating data were generated without equality of mean item 

difficulty between the two groups. The Type I error rate increased as the true mean item 

difficulty difference between the two groups increased. Moreover, the magnitudes of the DSF 

effect were overestimated. The advantage of the EMD procedure is that it is not necessary to 

identify an item or a set of items that are invariant across the groups (constituting an approach 

described in the section that follows). The disadvantage of the EMD method is that it is 

appropriate under only three conditions: (a) when all items are invariant across the groups; (b) 

when one category step estimate favors one group, another category step estimate must favor the 

other group with the same magnitude; and (c) all groups must be presented with the same set of 

items (Wang, 2004, 2007). 

 Anchoring procedure. In the anchoring procedure, the item parameter estimates for a 

subset of items are constrained so that they are the same across all groups, whereas the parameter 

estimates for the remaining items are freely estimated for each group. The subset of items is 

considered to be the anchor items (Thissen, et al., 1988, 1993; Wang, 2004, 2007). The number 

of anchor items can range from 1 to J – 1. To test for DSF, one can either conduct a statistical 

significance test or perform model comparisons. 

 Simulation studies that analyzed data generated with multiple-group GRM and PCM 

(Wang, 2004; Wang & Yeh, 2003) showed that when J – 1 items served as anchors, the Type I 

error rate was higher when some of the DSF-containing items were included as anchor items, and 
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the error rate was lower when fewer than J – 1 items served as anchors but all were invariant 

across groups. In addition, the magnitudes of the DSF effects were overestimated when the items 

used as anchors lacked invariance across the groups. When a single invariant item served as the 

anchor, the Type I error rate remained near the nominal level of .05, and the number of items 

ranged from 25 to 30. As the number of anchor items increased to 10 with all anchor items 

invariant between the two groups, the Type I error rate remained the same while the power to 

identify problematic steps increased; however, with respect to power, a point of diminishing 

returns was observed after four items.  

 In another simulation study (Kim & Cohen, 1998), when J – 1 invariant items served as 

anchors, the Type I error rate in DSF detection remained near the nominal level of .05 across 

different conditions in which the sample size and latent trait distributions varied between two 

groups.  

Conclusions 

An advantage of the multiple-group IRT is that adjusted latent trait estimates can be 

produced when DSF is present. The disadvantages are that (a) the multiple-group approach 

assumes that the grouping variable explains all of the DSF if DSF is present, (b) group 

information must be available, (c) W cannot be a continuous person characteristic, (d) 

interactions among grouping variables cannot be explored, and (e) all items cannot be 

simultaneously tested when a subset of items serve as anchors.  

Mixture Item Response Models  

 Mixture IRT assumes that at least two unobserved subpopulations exist in the population 

from which the sample was selected, with the possibility that their latent trait levels have 



 

 
	
  

25 

different distributions. The overall item and/or step parameters might or might not differ across 

these latent subpopulations, and latent trait levels are discrete (von Davier & Yamamoto, 2004). 

Some models that fall under this category include Yamamoto’s HYBRID model (Yamamoto, 

1987), the mixed Rasch model (Rost, 1990; von Davier & Rost, 1995), and the discrete 

generalized partial credit model (von Davier & Yamamoto, 2004). To examine for DSF, a model 

in which a single latent class is assumed to exist (i.e., the restricted model) is compared with a 

model in which more than one latent class is assumed to exist (i.e. the augmented model), with 

the step parameter estimates allowed to vary across the latent classes. The measures of model fit 

between the two models are then compared.  

Rost, Cartensen, and von Davier (1997) analyzed rating data with the mixed PCM, 

revealing that DSF was present in every item across two latent classes. Wagner-Menghin (2007) 

analyzed a data set with the mixed RSM, and revealed that the step parameter estimates were 

disordered for one latent class, but were monotonically ordered as the rating categories increased 

for the other latent class.  

The advantages of mixture IRT are that (a) group information does not need to be known 

or may be known for only some of the persons (von Davier & Yamamoto, 2004), (b) if the 

number of possible latent groups is not known, the analysis can estimate the number of possible 

latent classes based on the data (von Davier & Yamamoto, 2004), and (c) latent trait estimates 

can be produced even when DSF is present.  

The disadvantages with the mixture IRT are that (a) when the step estimates differ, the 

latent classes are assumed to explain all of the DSF present in a step, (b) step estimate invariance 

cannot be explored across a continuous covariate, and (c) the same number of latent groups are 

assumed across all items.  
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Item Response Theory within Generalized Linear Mixed Models for DSF Analysis 

Fixed-Effect Approach 

 To determine whether category step parameters contain DSF, a model fit comparison can 

be made between an augmented model, in which person characteristics by item step interactions 

are included in X, and a restricted model, in which the interaction is not included in X.  

In a simulation study in which data were generated for 15 items, with one item assumed 

to contain DSF steps, the power to detect DSF with the GLMM-GRM ranged from .95 to 1.00 

regardless of sample size. The familywise Type I error ranged from .02 to .15 when N = 500 and 

from >.001 to .01 when N = 1,250 (Vaughn, 2006).  

Random-Step Parameter Approach 

GLMM-IRT allows the category step parameters to be treated as random (Johnson, 2003; 

Tutz & Hennevogl, 1996), and a DSF analysis can be conducted in this manner. In an augmented 

model, the category step indicators that correspond to the steps tested for DSF are included in Z. 

When the variance component associated with δjk is zero, the step estimates do not vary across 

the persons, a fact that suggests that DSF is not present in item j’s kth step. This is because when 

a step parameter is invariant across all persons, it will also be invariant across any W.  

In a simulation study, Johnson (2003) showed that the model that treated the step 

parameters as fixed effects (i.e., a fixed-step model) and the model that treated the step 

parameters as random (i.e., a random-step model) yielded similar estimates for the overall 

intercept and the variance for the random intercept when the data were generated under a 

condition in which the step estimates did not vary across the persons. However, when the data 

were generated under the condition in which the step parameter estimates varied across the 

persons, the fixed-step model underestimated the overall intercept estimate and the variance of 
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the random intercept component. In addition, the magnitude of the underestimation increased as 

heterogeneity in step estimates across persons increased. Moreover, the random-step model led 

to unbiased results and better global model fit measures than did the fixed-step model.  

When Tutz and Hennevogl (1996) analyzed two real data sets with the random step 

model, they found statistically significant variation in the step estimates, which suggested that 

not all persons were using the rating categories in a similar manner. In addition, the authors 

showed that the magnitudes for the fixed covariates increased when the step parameters were 

treated as random, a finding that is in line within the theoretical inferences of the field from 

which the data were obtained.  

Random-Group GLMM-IRT  

One way to establish a common metric across groups is to use either the EMD method or 

the anchoring method. The EMD method is appropriate only under very limited conditions. The 

anchoring method requires finding four items on which to anchor, which can be challenging, 

especially as the number of groups increases, because as noted previously, all step parameters for 

each item must be invariant across all groups (Stark, Chernyshenko, & Drasgow, 2006). By 

specifying a three-level IRT model in which the item responses are nested within persons, and 

the persons are nested within groups, which are treated as random, the need to anchor the groups 

on a set of items is circumvented (De Jong, et al., 2007). Instead, a prior assumption is placed on 

the distribution of the step and discrimination estimates. That is, the kth step and discrimination 

parameters for item j and group w are assumed to be distributed as: 

   

δ jwk ~ N δ jk ,σσ
2( ), δ jw1 ≤…δ jwk ≤…≤ δ jwmj

, forall j,

α jw ~ N α j ,σα
2( ) I α jw > 0( ),
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where  
δ jk  is the grand mean for item j’s kth step, and  

α jm  is the grand mean for item j’s 

discrimination parameter. Each group’s step estimate is allowed to deviate from this grand mean. 

When  σσ
2

 is not statistically significantly different from 0, then DSF is not present in the kth step 

for item j; otherwise the step is said to have DSF. In a simulation study involving 10 groups (De 

Jong et al., 2007), when rating data were generated under the condition in which all items were 

noninvariant across the 10 groups, the random group model recovered all item parameters, group 

latent means and variances, and correctly identified all DSF.  

Mixture MGLMM Multidimensional IRT 

Although the random group GLMM-IRT overcomes the need to anchor groups on a 

common set of items, it assumes that all groups belong to a single metagroup, which constitutes a 

restrictive prior, and if inappropriate, it might obscure any noninvariance in item parameters (De 

Jong & Steenkamp, 2010). To overcome this restriction, De Jong and Steenkamp (2010) 

presented a mixture GLMM-multidimensional IRT model for ordinal outcomes. Each group, w, 

is assumed to belong to one of L latent classes, and a group’s step parameters are assumed to be 

drawn from the heterogeneity distribution associated with the latent class to which the group 

belongs. If ew = l, then the distribution of the step and discrimination parameters are: 

   

δ jwk | ew = l ~ N δ jk
l( ) ,σσq k( )

2, l( )( ), δ jw1 ≤…δ jwk ≤…≤ δ jwmj
, forall j

α jwq | ew = l ~ N α jd
( l ) ,σαq k( )

2, l( )( ) I α jwq > 0( ),
 

where q(k) is the dimension for which item j is an indicator. The mixtures are indicated by l = 

1,…, L, and ew is assumed to be drawn from a multinomial distribution, 
  
ej ~ multinomial ψ ,1( ),  

where 
   
ψ = ψ 1,…,ψ L( )  and 

  
ψ l = 1

l=1

L∑ . 
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If a step-parameter estimate varies across groups within a latent class or across latent 

groups, then that step is said to have DSF. In this model, it is possible that, when multiple latent 

classes are assumed to be present, the kth step for item j may display DSF across groups within 

one latent class, but not for another. When only one latent class is present and no statistically 

significant variation in the estimate for the kth step for item j is observed across the groups, then 

that step is considered not to have DSF.  

In a simulation study, when data were generated under the condition in which two latent 

classes were present and the construct was assumed to be two-dimensional, the mixture GLMM-

multidimensional IRT was a better fit for the data than the random group GLMM-IRT. 

Moreover, the mixture GLMM-multidimensional IRT model perfectly recovered the latent class 

membership after a burn-in phase and accurately recovered the item parameters (De Jong & 

Steenkamp, 2010).  

Summary of GLMM-IRT 

In addition to the advantages of the traditional IRT models, there are several other 

potential advantages of the GLMM-IRT. For example, DSF can be examined as a function of 

known grouping variables, or by modeling latent classes when group association is not known 

but assumed to exist. After group association or latent classes are accounted for, the amount of 

variation that remains in step parameter estimates across the persons can be examined, and 

therefore it is not assumed that group covariates and/or latent class association accounts for all 

the DSF. The difficulty of finding items on which to anchor the groups is circumvented. W can 

be continuous, so the DSF investigation is not limited only to categorical variables. Finally, 

adjusted scores can be produced while controlling for DSF.  
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Even with the benefits derived from fitting IRT models within GLMM, limitations 

nevertheless exist. Many of the GLMM-IRT models assume that the true distribution (G) of the 

random effects follows a parametric distribution. That is, a finite number of parameters describe 

the true population distribution of the random effects. One problem with assuming a parametric 

distribution for the random effect is that an incorrect choice of a parametric distribution can lead 

to poor estimations of the random effects (Verbeke & Lesaffre, 1996) and can possibly lead to 

erroneous inferences about a person’s performance. In addition, if category step parameters are 

treated as random, inaccurate conclusions could be made about the extent of heterogeneity in 

step parameter estimates. Another problem with an incorrect parametric distributional choice for 

the random effects is that slight changes in the chosen parametric distribution for the random 

effects can lead to fairly large changes in other parameter estimates (Heckman & Singer, 1984). 

Choosing an incorrect parametric distribution for the random effects, then, can lead to imprecise 

estimates of the effects of W on step parameters and inaccurate conclusions about the extent of 

DSF present in an item.  

Although mixture GLMM-IRT addresses many of the disadvantages of traditional IRT, it 

is not without shortcomings. It assumes the same latent class structure for each dimension of a 

construct that a test is intended to measure, if the item responses for all dimensions are analyzed 

simultaneously. The problem with this assumption is that different latent structures could exist 

across dimensions of a latent construct. If true, then inferences about validity concerning scores 

based on results from a model in which the same latent class structure is presumed across 

dimensions may be misleading. Moreover, if the correct latent class structure cannot be captured 

across dimensions, the quality of the adjusted scores could be degraded, because the construct-

irrelevant variance present in the measurement process may not be controlled for appropriately. 



 

 
	
  

31 

Approaches That Detect Only DSF 

 In this section, I present the common odds ratio estimator (CORE) (Penfield, 2007) and 

the logistic regression approach (French & Miller, 1996) as alternatives when, for some reason, 

IRT or GLMM-IRT cannot be used to perform a DSF analysis. An example is when the data do 

not meet the assumptions or the sample size is insufficient for stable parameter estimation. 

Although these two statistical models fall outside of traditional IRT and GLMM-IRT, they apply 

dichotomization schemes to rating data so that the rescored data represent step functions 

analogous to those described in the IRT section. I first present the way in which the data must be 

rescored to reflect IRT step parameters, and then I review the statistical models.  

Rescoring the Data 

The responses to an item must be represented through K – 1 dummy indicators, and each 

dummy coding can be performed to be analogous to a cumulative or adjacent category step 

parameter. For the kth cumulative dummy coding for item j, rescoring to the item responses is 

performed as follows:  

  
Cumulativekj =

1 if y j ≥ k

0 otherwise

⎧
⎨
⎪

⎩⎪   
,  for k = 1, 2, … , mj when the response  

 option ranges from 0 to mj.  

The second rescoring scheme reflects adjacent category probabilities. For the kth adjacent 

category dummy coding for item j, rescoring to the item responses is performed as follows: 

  

Adjacentkj =

1 if y j = k

0 if y j = k −1

otherwiseset tomissing

⎧

⎨
⎪

⎩
⎪

,

 

for k = 1, 2, … , mj when the response  
option ranges from 0 to mj.  

A statistical analysis is then performed on each of the dummy coded indicators.  
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Common Odds Ratio Estimator 

The CORE tests the odds of 1 relative to 0 in Dummykj (where Dummykj may be either 

cumulativekj or adjacentkj) across groups. Thus, W must be discrete. To examine item j’s kth step 

parameter for DSF, one must first stratify the total score into R strata to control for performance 

level and then calculate a conditional odds ratio for two groups at a time, using Dummykj as the 

data. The CORE test statistic for the kth
 step for item j is calculated by: 

  

z λ̂ jk( ) = ln λ̂ jk( )
se λ̂ jk( )

= ln
Akr Dkr / Nkr

r=1

R

∑

BkrCkr / Nkr
r=1

R

∑

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

/
Nr

−2 Akr Dkr + α̂ k BkrCkr( ) Akr + Dkr + α̂ k Bkr + α̂ kCkr( )
r=1

R

∑

2
Akr Dkr

Nrr=1

R

∑⎛
⎝⎜

⎞
⎠⎟

2 ,
 

where Akr is the frequency of 1s in Dummykj, Bkr is the frequency of 0s in Dummykj for Group 1 

members in stratum r (where r = 1, … , R); Ckr is the frequency of 1s in Dummykj, and Dkr is the 

frequency of 0s in Dummykj for Group 2 members in stratum r. The test statistic is asymptotically 

distributed as a standard normal (Hauck, 1979) and tests the null hypothesis of   
H0 :λ jk = 0 , or 

DSF is not present in item j’s kth step. 

 In a simulation study (Penfield, 2007), the Type I error rate remained near the intended 

nominal level when the rating data were generated to conform to the GRM under the condition 

that the latent trait distributions for the two groups were the same. The power to detect DSF 

when only one of the three steps contained DSF (i.e.,   
λ jk = .6 ) ranged from .816 to .957 when 

the latent trait distributions for the two groups were the same, and .815 to .850 when the two 

groups’ mean of the latent trait distributions differed by one standard deviation. When the data 

were generated under the condition in which one step had a DSF effect of   
λ jk = .2  and the other 
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step had a DSF effect of   
λ jk = .4  (where higher values represent greater DSF), the power to 

detect the more problematic step ranged from .408 to .650 when the latent trait distributions for 

the two groups were the same and .351 to .531 when the latent trait distributions differed by one 

standard deviation. When the data were generated under the GPCM, similar trends in power and 

Type I error were observed.  

An advantage of CORE is that it requires a smaller sample size than IRT and GLMM-

IRT (Penfield, 2007; Penfield, Myers, & Wolfe, 2008). Its disadvantages are as follows. 

• It loses power when the group latent trait distributions differ with respect to their 

means. 

• The data for item j must be analyzed K – 1 times, and each analysis assumes 

independence. 

• The impact of missing data has not been addressed with this approach, a critical issue 

because total score is used to control for performance level. 

• The total scores used to represent the performance level are assumed to have been 

measured without error. 

• A DSF analysis can be conducted only across discrete variables. 

• This model cannot produce adjusted scores when a step or steps contain DSF.  

Logistic Regression Approach 

The logistic regression method for detecting DSF at the kth step for item j involves 

modeling the log odds of Yjk = 1 relative to Yjk = 0 as a function of total score, A, person 

covariate, W (where W may be a continuous or group dummy indicator), and total score by 

person covariate interaction, A × W: 

  

Log
Pr Yjk = 1( )

1− Pr Yjk = 1( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= β0 + β1A+ β2W + β3A*W , 
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where Yjk is Dummyjk.  β2 and β3 inform us whether the location and slope, respectively, for the 

kth step function varies across W after controlling for performance level.  

In a simulation study involving two groups (French & Miller, 1996), in which rating data 

were generated under the PCM and all steps had the same discrimination level for the two 

groups, the power to detect DSF in the n = 500 condition (with the Type I error rate set at .002) 

ranged from .77 to .99. When the cumulative and adjacent category rescoring (respectively) was 

performed on the data, the power ranged from .99 to 1.00, and when n = 2,000, it was 1.00, 

regardless of the rescoring scheme.  

 Although the disadvantages of this statistical approach are similar to those of the CORE, 

two advantages are that (a) more than two groups can be examined by including additional group 

dummy indicators, and (b) W may be continuous. 

Potential of the Mixture Latent Distribution Model for DSF Analysis 

 In this section, I review the mixture latent distribution model (Kottas, Müller, & 

Quintana, 2005), which has not been used specifically for DSF, but has potential for use in 

modeling and assessing differential category usage. The traditional IRT and GLMM-IRT models 

heretofore discussed examine whether the step location on the latent trait scale differs between at 

least two groups while the inverse link function remains fixed (e.g., logistic CDF). Kottas et al. 

(2005) assigned the category step parameters to fixed values that monotonically increase with the 

categories while allowing the latent distributions to vary across persons. The univariate version 

of their model can be represented as: 

yi ~ 
  A( yi ) N ( y*i | mi ,si )d y*i∫ ,   

(m1,s1),…, (mn,sn) | G ~ iid G, 
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G~ DP(α, G0), 

Where G is distributed as a Dirichlet Process (DP; Ferguson, 1973) with baseline distribution G0 

being a normal-inverse-gamma distribution, while the A(k) (k = 0,1,…,m) are pairwise disjoint 

subsets whose union is ℜ. This model accounts for and explains differences in rating category 

usage without placing any restrictive assumption on the distribution of the latent distribution in 

the population. Moreover, with respect to predictive accuracy of the ordinal latent dependent 

variable, this model outperformed an ordinal regression model that parameterized category steps 

but assumed a fixed inverse link function (Kottas et al., 2005).  

 Extending the work of Kottas et al. (2005), Karabatsos and Walker (2012) introduced an 

infinite-mixture Bayesian nonparametric regression model, having covariate dependent mixture 

weights. For ordinal dependent responses, each kernel of the mixture can be defined by a latent 

and highly flexible unimodal density, with fixed steps for the ordered categories. Specifically, 

each unimodal kernel density is assigned a general nonparametric, stick-breaking (e.g., DP) 

mixture prior (Ishwaran & James, 2002). Karabatsos and Walker showed that, for real and 

simulated data, their regression model outperformed all other well-known parametric, 

semiparametric, and nonparametric regression models, in terms of predictive accuracy of the 

dependent variable, as measured by cross-validated log-likelihood. 

Open Problems with Current IRT Models Used in DSF Analysis 

IRT models provide a means to examine items for DSF. Moreover, if items are detected 

to have DSF, those items can be retained and the IRT models can produce adjusted scores. 

However, the current IRT models used in DSF analyses have noticeable limitations.  

Some of the limitations of traditional IRT models include: the challenge of finding 

anchor items; the person characteristic, W, used to model a category step must be discrete and 
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known; and assuming W explains all of the DSF if W is a statistically significant predictor of a 

category step estimate. Although GLMM-IRT models are more flexible than traditional IRT 

models, they too have notable limitations. The person characteristics must be known when step 

parameters are treated as fixed effects. Moreover, GLMM-IRT models assume that the true 

distribution (G) of the random effects is of a known parametric form. That is, a finite number of 

parameters describe the true population distribution of the random effects. A notable limitation 

of mixture GLMM-IRT models is that they assume the same latent class structure across all 

items and for each dimension of a construct that a test is intended to measure.  

Hence, to address such issues, I devised a model that identifies clusters of items and 

persons, and if multiple clusters of persons are present, the items comprising a cluster of items do 

not have to be the same across all clusters of persons. This is accomplished without the need to 

find a set of items to serve as anchors. To accomplish this, I define a nonparametric model for 

the mixing distribution G, which also accounts for covariate-dependent step parameters. Doing 

so could lead to more accurate detection of noninvariant items at the category level and produce 

more appropriate adjusted scores.  

In Chapter II, I describe my methodology for addressing these issues and introduce a 

dependent Dirichlet process model for rating data. In Chapter III, I provide a simulation study 

that evaluates the obtained estimates of the proposed model. In Chapter IV, I describe 

applications of the proposed model to real rating data. In both Chapters III and IV, I compare the 

predictive performance of the proposed model against standard IRT models. In Chapter V, I 

provide additional follow-up analyses to explain the findings in Chapters III and IV. In Chapter 

VI, I conclude with a discussion of practical implications of the proposed model, as well as its 

limitations and possible future modeling extensions. 
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II. METHODS 

In Chapter 1, I noted the limitations of traditional item response theory (IRT) models, 

generalized linear mixed models (GLMM)-IRT, and finite-mixture IRT for use in differential 

step functioning (DSF) analysis. Specifically, these models traditionally assume that the true 

distribution of the random effects, G, follows a parametric form (i.e., a finite number of 

parameters describe the shape of the distribution), and when the mixture is discrete, the number 

of latent classes (clusters) is not covariate dependent. To address the limitations of the traditional 

mixture GLMM-IRT, in this chapter, I introduce a covariate-dependent infinite-mixture IRT 

model. The mixing distribution for this model is formed via the multiple Dirichlet process (mDP) 

(Basu, 2007), which is a type of dependent Dirichlet process (DDP) (MacEachern, 1999, 2001). 

This model falls within the general framework of the dependent Dirichlet process rating model 

(DDP-RM) (Fujimoto & Karabatsos, 2014).  

An overview of finite-mixture IRT models precedes a discussion of the traditional 

nonparametric Dirichlet process (DP) model. Then I present the model that is the focus of this 

thesis, the mDP version of the DDP-RM. I define the parameters and describe the prior 

distributions for all parameters. I then describe the Markov chain Monte Carlo (MCMC) 

algorithm that was used to sample the posterior distribution of the model. Lastly, I describe the 

data sets that I analyzed, as well as the traditional models to which I compared my model in 

terms of predictive performance, and the criteria I used to judge the performance of my model as 

it relates to the traditional IRT models. 

Finite-Mixture IRT 

	
   When performing a DSF analysis with a covariate-independent finite-mixture IRT, the 

random density function has the general form (e.g., McLachlan & Peel, 2000):  
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fG y |θ( ) = f y |θ ,τ( )dG τ( )∫ .  

Given that G is discrete, the random density could also be expressed as: 

	
  
  
fG y |θ( ) = f y |θ ,τ h( )ω h

h=1

H

∑ , 	
  	
   (2.1) 

where h = 1,… H is the finite number of mixture component indices, G the mixing distribution, 

kernel densities    f y |θ ,τ h( ) for h = 1,…, H( ) , with fixed parameter θ  and random parameter τ  

that is subject to the mixtures, and mixing weights 
  
ω h( )h=1

H
 that sum to 1. As previously noted, a 

limitation of the finite mixture model is that, for all item category steps (i.e., τ ) treated as 

random, the same number of mixture components (i.e., H) is specified. This assumption is 

appropriate when the data corresponding to all random items indeed reflect DSF across H latent 

classes. However, this assumption is easily violated when some subset of random items are free 

of DSF and another subset of random items displays DSF between genders. To overcome this 

limitation, a nonparametric IRT modeling approach based on a DDP is explored. To facilitate the 

transition to the presented DDP model, I provide an overview of a DP model. 

The Dirichlet Process Model 

For notational convenience, I denote  normal ⋅,⋅( ),  
  
normal p ⋅,⋅( ),   ig ⋅,⋅( ),   iw ⋅,⋅( ),   beta ⋅,⋅( )  

as the probability density functions for the univariate normal, p-variate normal, inverse gamma, 

inverse Wishart, and beta distributions. The inverse gamma distribution is parameterized by 

shape and rate, and the inverse Wishart distribution is parameterized by degrees of freedom and 

inverse of a scale matrix. The DP prior provides a means of nonparametrically modeling the 

form of the random distribution (Ferguson, 1973) G, which overcomes one of the limitations 

(described in Chapter I) of the traditional IRT and GLMM-IRT models. That is,   G ~ DP α ,G0( ) , 
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which states that G is distributed as a DP with a precision parameter, α > 0, and baseline 

distribution, G0, which defines the expectation (mean) of G. A priori, under  DP α ,G0( ) , the 

marginal distributions of G are Dirichlet distributed as  

   
G A1( ),…,G Ak( )( ) ~ Dirichlet αG0 A1( ),…,αG0 Ak( )( ) , 

for all finite measurable disjoint partitions of A1, …Ak of Ω; the mean of G is given 

by
  
E G ⋅( )⎡⎣ ⎤⎦ = G0 ⋅( ) ; and the variance is obtained through 

  
Var G ⋅( )⎡⎣ ⎤⎦ =

G0 ⋅( ) 1−G0 ⋅( )⎡⎣ ⎤⎦
α +1

.
 

Given a set of observed data     yn = y1,…, yn{ } , the DP prior distribution gets updated to a 

posterior distribution, which is also a DP. In the posterior, the marginal distributions of G are 

Dirichlet distributed as 

    
G A1( ),…,G Ak( )( ) yn

⎡
⎣

⎤
⎦ ~ Dirichlet αG0 A1( ) + nĜn A1( ),…,αG0 Ak( ) + nĜn Ak( )( ) ,  

for all finite measurable disjoint partitions of A1, …Ak of Ω , and where   Ĝn ⋅( )  is the empirical 

cumulative distribution function (CDF); the mean of G is given by 

   
E G ⋅( ) yn
⎡
⎣

⎤
⎦ =

αG0 ⋅( ) + nF̂n ⋅( )
α + n

= G ⋅( ) ; 

and the variance is given by 

   
Var G ⋅( ) yn

⎡
⎣

⎤
⎦ =

G ⋅( ) 1−G ⋅( )⎡⎣ ⎤⎦
α + n

. 

 

 



 

 
	
  

40 

Stick-breaking Process 

Sethuraman (1994) provided a convenient process with which to express the DP prior. 

This process is referred to as a stick-breaking construction. In the stick-breaking process, the 

mixture distribution G is constructed through 

  
G ⋅( ) = ω hδθh

⋅( )h=1

∞∑ , 

with stick-breaking weights  

  
ω h =υh 1−υl( )l=1

H−1∏ , 

for all h = 1, 2, …,  summing to 1 with probability 1, with    υ1,υ2 ,… ~i.i.d . Beta 1,α( )  and atoms 

   θ1,θ2 ,… ~i.i.d . G0  for h = 1, 2,…, while the degenerate distribution 
 
δθh

⋅( )  assigns a probability 

mass of 1 on the value θh. Based on the stick-breaking process representation, it is obvious that 

the DP supports discrete distributions with probability 1. It should also be noted that a 

generalized stick-breaking process is applied by drawing a random sequence of values 

underlying the mixture weights from a general beta distribution in which the shape and scale 

parameters are allowed to vary; that is,    υ1,υ2 ,… ~i.i.d . Beta ah ,bh( ) . Conceptually, a stick-

breaking process can be viewed as starting with a stick of unit length. A piece is broken off this 

stick and becomes the probability weight for the first mixture component. Of the remaining 

length of the stick, another piece is broken off and becomes the probability weight for the second 

mixture component. This process then continues. With each step, the remaining portion of the 

stick decreases in length, thus leading to a smaller probability of supporting the remaining 

mixture components. Based on this example, it is easy to see that the stick-breaking weights 

place lower support on later mixture components than earlier ones. 
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By assigning a DP prior to the mixing distribution,  G θ( ) , the DP process can be used to 

construct infinite mixture models. In general, the random density function for a DP mixture 

model is given by  

  

fG y( ) = f y |θ( )dG θ( )∫ ,

G ~ DP α ,G0( ).
 

Given the discrete nature of the mixing distribution, which is shown through the stick-breaking 

construction of the mixing distribution, the random density function can also be expressed as 

 
  
fG y( ) = f y |θh( )ω h

h=1

∞

∑ ,  (2.2) 

where   f y |θh( )  is the kernel, which is a probability density function (Ghosh & Ramamoorthi, 

2003), or probability mass function (PMF) for discrete data as is the case in this study. The 

discrete nature of the DP model leads to natural clustering of persons, which could be useful 

when exploring the number of clusters of persons present in the data (i.e., number of latent 

groups), though additional challenges arise given that there is an infinite number of mixture 

components to which a person could be assigned. The manner best suited to identify the distinct 

number of latent classes that contribute to DSF in an item is discussed in more detail below.  

Dependent Dirichlet Process Rating Model 

 By allowing  G ~ DP α ,G0( ) , the parametric assumption in the form of G is overcome. 

However, this specification is still quite limiting in that the mixture distribution is assumed to be 

the same for all levels, or across the range, of covariates, with the covariates consisting of 

person, item, and/or test instrument structure information. Allowing the mixture distribution to 

be dependent on covariates, that is,    Gx ~ DP α xG0x( ) , is generally referred to as a dependent 
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Dirichlet process. The model I present in this section assigns a multiple DP prior (mDP; Basu, 

2007) on the random distribution G. The conditional random density for the model I present is 

given by 

	
  
   
fGx

yi |θ( ) = f yi |θ ,τ( )dGx τ( )∫ 	
  	
  

with 

	
      Gx ~ mDP α x ,G0x( ) 	
  	
  

The random distribution is formed via a stick-breaking process (Sethuraman, 1994): 

   
Gx ⋅( ) = Gx ⋅ ;τ x( ),υ x( )( ) = ω h x( )δτ h x( ) ⋅( )h=1

∞∑  

where δ ⋅( )  is a point-mass distribution, and the covariate-dependent mixture weights are formed 

by 

   
ω h x( ) =υh x( ) 1−υz x( )( )z=1

h−1∏  

 which are based on the beta random variables 
   
υh x( )α x ~ind beta 1,α x( )  and atoms 

   
τ h x( ) µx ,Σx ~ind normalm µx ,Σx( )  for h = 1, 2, …. The stick-breaking process reveals the 

discrete nature of the random distribution, which allows the DDP-RM model presented in this 

section to be re-expressed as a covariate-dependent infinite-mixture model. That is,  

	
  
   
fGx

yi |θ( ) = f yi |θ ,τ h x( )( )ω h x( )
h=1

∞

∑ 	
   (2.3)	
  

with the kernel 
   
 f yi |θ ,τ h x( )( )  dependent on the ability, θ , and on ordered item category steps 

   τ x( ) = τ1,...,τ m( )′  for all   x ∈X , where the response categories range from 0 to m at each x. 
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When the abilities are unidimensional, 
 
θ = θt i( )  for the tth person. When the abilities are Q-

dimensional, 
 
θ = θt i( )q i( ) .  

 To approximate the covariate-dependent infinite-mixture model presented in Equation 

2.3, I specified a truncated DP version of the model: 

 
   
fGx

yi |θ( ) = f yi |θ ,τ h x( )( )ω h x( )
h=1

Nmax=50

∑   

where the number of mixture components was set to 50, Nmax = 50 for all analyses. A truncated 

version was selected for computational tractability. Moreover, a truncated DP has been shown to 

approximate the true DP (Ishwaran & James, 2001; Muliere & Tardella, 1998), given that a large 

enough value for Nmax is chosen. In a DSF analysis, a value of 50 should be more than large 

enough because DSF often occurs across a few groups. Thus, 50 mixture components should be 

sufficient to form the density describing how the respondents are using the rating categories. 

The following specifications for the prior distributions completed the model:  

     

υh x( ) ~ind beta 1,α = 2( ), h = 1,2,…,  and x ∈X ;

θ Σθ ~i.i.d . normalQ 0,Σθ( ) and Σθ ~ iw 4,.1IQ( )  when Q >1,  and 

θ σ 2 ~i.i.d . normal 0,σ 2( ) and σ 2 ~ ig .01,.01( )  when Q = 1;

τ h x( ) µx ~ind normalm µx ,.5Im( ),  x ∈X ;

µx ~ normalm 0,25Im( ),  x ∈X .

 

The prior distributions assigned for all parameters were proper (i.e., distributions that integrate to 

1). When x are item indicators (i.e., a dummy code for each item), the subscript x in the above 

expressions can be replaced with j (where j = 1,…,J). In this study, x represented the items. 

However, to keep the expressions general in this section, I retained the x subscript when 

discussing the model in its general form.  
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The above prior distributions were strategically chosen. Because IRT models are 

naturally over-parameterized, the location of the model is not set. That is, any constant could be 

added to θ  and τ , and the sample probability of an outcome would remains the same. Thus, a 

reference location is required. The location of the model can be set by fixing the mean of the 

prior distribution for the person abilities to zero (Patz & Junker, 1999), though this value could 

be any value. In order to remain consistent with the spirit of IRT modeling, I set the value to 0 

for the unidimensional case and a vector of 0s for the multidimensional case. The variance of the 

ability distribution was freely estimated, with a vague but proper prior assigned so as to allow the 

data to drive the prior variance-covariance matrix estimate (for two-dimensional ability 

parameter) or the variance (for unidimensional ability parameter). Because fixing the mean of the 

prior distribution of the abilities set the location, the vector of means for the category steps could 

be freely estimated, and a vague but proper prior was assigned to allow the data to determine the 

estimates of these means. The variance-covariance matrix was selected for the category steps 

based on the starting assumption of low support on the category steps having DSF, but not 

setting the variance so small that DSF could not emerge. Finally, the α  parameter was set to 2 

for all analyses. The smaller this value, the greater the support for fewer numbers of mixture 

components corresponding to lower component indices. Given that DSF often occurs across a 

few subgroups (e.g., gender and race), a low value was appropriate. Other values were 

investigated, but larger values did not lead to greater gains. 

Chapter 1 explained that cumulative probability models and adjacent-category probability 

models are just two of the general classes of possible IRT models for rating scale data. Each of 

these types of probability models, as well as others not mentioned in Chapter 1, can represent the 

kernel; that is, when the kernel is a PMF in the form of cumulative probabilities,  
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f yi |θ ,τ h x( )( ) =
Hk η( ), when k = m

Hk η( )− H k+1( ) η( ), when k ≠ 0 or m

1− P Yi = k |θ ,τ h x( )( ), when k = 0
k=1

m∑

⎧

⎨
⎪
⎪

⎩

⎪
⎪

, 

and when the kernel is a PMF representing adjacent category probabilities,  

   

f yi |θ ,τ h x( )( ) =
Hx η( )

x=0

k

∏ 1− Hz η( )⎡⎣ ⎤⎦
z=k+1

m

∏

Hx η( )
x=0

w

∏ 1− Hz η( )⎡⎣ ⎤⎦
z=w+1

m

∏⎛
⎝⎜

⎞
⎠⎟w=0

mj

∑
. 

In both cases, as noted in Chapter 1, 
 
H ⋅( )  is a CDF, and the systematic component (i.e., η) is 

η = θ −τ . For this study, the PMF representing adjacent category probabilities was assigned for 

the kernel, with 
  
H ⋅( ) ≡ L ⋅ | 0,1( ) .  

The parameters presented in the specification of the prior distributions represent the 

following: 

•   υh x( )  is the beta random variable underlying the mixture weights at x and is assumed to 

be distributed as a beta distribution with shape and scale parameters   ah x( )  and   bh x( ) , 

respectively. 

• θ  is the ability-level vector; that is, 
   
θ = θ1,…,θQ( )′  (where q = 1, … , Q). It is assumed 

to be distributed as a multivariate normal with a column vector mean containing 0s and 

variance-covariance matrix equal to Σθ . When the data are assumed to measure a 

unidimensional trait (i.e., q = 1), the ability estimates are assumed to be normally 

distributed with a mean of 0 and variance equal to  σθ
2 . 
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•   τ h x( )  is the category step vector for mixture component h and is drawn from G0x; that is, 

    τ h x( ) = τ h1,…,τ hm( )′  and is assumed to be distributed as a multivariate normal with a 

column vector mean  µx  and variance-covariance matrix being an m-dimensional identity 

matrix with .5 on the diagonal. In this model,  τ x( )  is treated as random and is assumed 

to be distributed as a DP, with    G0x = normalm µx ,.5Im( ) . 

Among the parameters described, the effects of item j are captured in  τ x( ) . The column 

vector  τ x( )  contains the values for the relative category steps 1 to m (given that the response 

options range from 0 to m) at each   x ∈X . The mean of the posterior distribution for  τ x( ) is 

analogous to item category step point estimates (within a frequentist framework) in traditional 

IRT models for rating-scale data in which the link functions are defined in terms of adjacent 

categories. 

What differentiates this model from the lDP version of the DDP-RM is that, with the lDP, 

dependency among the mixing distribution across the covariates can exist, that is, information 

can be shared across covariates. The mDP version of the DDP-RM assumes the mixing 

distribution at each x is independent, so that the mixing distributions do not share information 

across x.  

MCMC Algorithm 

As previously noted, I relied on the Gibbs sampling approach of the truncated DP 

(Ishwaran & James, 2001) rather than a slice sampling approach (e.g., Kalli, Griffin, and Walker, 

2011). For notational convenience, I represent the sample set of rating data by 
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Dn = yi ,x i( ){ }

i=1

n=NJ
, which are provided by N persons (t = 1,…,N) on J items, and  n = N × J  

represents the total number of item responses in the data. Based on the Gibbs sampling approach 

of the truncated DP and given the cluster membership latent variable   di ∈ 1,2,…, Nmax{ } , the data 

likelihood is obtained by 

	
  
   

f yi |θ t i( )q i( ) ,τ di
x i( )( )ω di

x i( )
i=1

NJ

∏ .	
  	
   (2.4) 

 Specifically, for each i = 1,…, n and t = 1,…, N, each parameter value is sampled from its 

corresponding conditional posterior distribution at each MCMC stage: 

1) 

    

π di = h |…( )∝
f yi |θ t i( ) ,τ di

x i( )( )ω h x i( )
f yi |θ t i( ) ,τ di

x i( )( )ω h x i( )
h=1

Nmax

∑
, h = 1,…, Nmax  

2) 
    
π τ h x( ) |…( )∝ normalm x( ) µx ,.5I( ) f yi |θ t i( ) ,τ di

x( )( )i∈h x( )∏ , h = 1,…, Nmax  

3) 

    

π µxk |…( ) = normal

µ0

σ 0
2 +

τ kdi
x i( )i=1

N∑
σ xk

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
σ 0

2 +
N
σ xk

2

,
1
σ 0

2 +
N
σ xk

2

⎛

⎝⎜
⎞

⎠⎟

−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

, where  µ0  and  σ 0
2  are the 

mean and variance hyper priors for the distribution of  τ k , and    σ xk
2 is the sample variance 

at x 

4) 
    
π υh x( )…( ) = beta ah x( ) + I di = h( ), bh x( ) + I di > h( )i=1

N∑i=1

N∑( ),  

      where h = 1, …, Nmax 

When the ability distribution is unidimensional:  
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5a) 
    
π θt |…( )∝ normal 0,σθ

2( ) f yi |θt i( ) ,τ di
x i( )( )i∈t∏  

6a) 

   

π σθ
2 |…( )= ig a + N

2
,b+

θt
2

t=1

N∑
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, where a and b are the prior shape and rate 

parameters 

When the ability distribution is Q-dimensional: 

5b) 
    
π θ t |…( )∝ normalQ 0,Σθ( ) f yi |θt i( )q i( ) ,τ di

x i( )( )i∈t∏  

6b) 

   

π Σθ |…( )= iw N + v, Λ + θ t ′θ t
t=1

N

∑⎛
⎝⎜

⎞
⎠⎟

−1⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,  where Λ is a prior scale matrix   

Standard Gibbs sampling methods can be used for steps 1, 3, 4, and 6, while the Metropolis-

Hastings algorithm can be used for the remaining steps. If all 6 steps are repeated a sufficiently 

large number of times (e.g., 100,000 times), samples of model parameters that converge to the 

posterior distribution of the high-dimensional model are obtained. The precision parameter 

α was fixed to 2 for this study, though it could easily be modeled by assigning a gamma 

distribution on  α .  Lower values of α  lead to fewer clusters (Ishwaran & James, 2000). When 

examining items for DIF/DSF, one does not need a large number of clusters because DIF/DSF 

usually occurs across a few groups. Thus, a low value for α  was reasonable. 

Bayesian Posterior Inference of the DDP-RM 

	
   I denote the parameters of the mDP version of the DDP-RM with  ξ = θ ,Σθ ,τ ,υ ,µ( ) , 

where   θ = (θ t )t=1
N , 

    
τ x( ) = τ h x( )( )

h=1,x∈X

Nmax , and 
    
υ x( ) = υh x( )( )

h=1,x∈X

Nmax . According to Bayes theorem, 

the posterior density of ξ  is given by  
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π ξ Dn( ) = fGx
yi |ξ( )π ξ( )i=1

n∏
fGx

yi |ξ( )dΠ ξ( )i=1

n∏Ωξ
∫

 

for data   Dn  with likelihood 
   

fGx
yi |ξ( )i=1

n∏  under a model with  ξ ,  and proper prior densities 

 π (ξ )  defined over the space Ωξ of ξ.  The posterior predictive density of Y for a chosen x is 

given by 

	
  
    
fn y x( ) = f y x;ξ( )π ξ Dn( )dξ∫ .	
  	
  

 

This density can be used to obtain the posterior predictive mean (expectation) 

   
En(Y | x) = yfn y | x( )d y∫  and variance 

   
Varn(Y | x) = y − E( y | x){ }2

fn y | x( )d y∫ .  

When examining items for DSF, of primary interest is to infer functionals of the posterior 

predictive mean 
   
En Gx ⋅( )⎡⎣ ⎤⎦  of the mixture step distribution   Gx τ( ) , such as its density. The 

posterior predictive mean of the mixture step distribution is defined by 

    
En Gx ⋅( )⎡⎣ ⎤⎦ = Gx ⋅ ;τ x( ),υ x( )( )∫∫ π τ x( ),υ x( ) |Dn( )dτ x( )dυ x( ), 	
  

given the marginal posterior density 

    
π τ x( ),υ x( ) |Dn( ) = π θ ,Σθ ,τ x( ),υ x( ),µx |Dn( )dθ dΣθd∫∫ µx∫ .   

The shape of 
   
En Gx ⋅( )⎡⎣ ⎤⎦  indicates whether an item has DSF. Standard MCMC sampling 

techniques, which were previously described, were used to perform inference of functionals of 

   π ξ |Dn( ) , marginal posterior densities, posterior predictive densities   
fn y x( ) , and the posterior 

mean mixing distribution 
   
En Gx ⋅( )⎡⎣ ⎤⎦ . 
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Identifiability of Mixture Models 

 As presented in Equation 2.4, the model likelihood is based on Nmax number of mixtures. 

It is well known that mixture models are unidentifiable because of the so-called label-switching 

problem (Diebolt & Robert, 1994; Richardson & Green, 1997), in which the likelihood function 

remains invariant under permutation of the density labels.  

 The label-switching problem, however, can be overcome in Bayesian mixture models by 

marginalizing out all model parameters with respect to the posterior distribution; that is, by 

focusing the inferences on the posterior predictive distribution of the model (Gelfand & Sahu, 

1999; Poirier, 1998). Notice that the posterior predictive density follows 

 
     
fn y x( ) = f y |τ x( )( )π τ x( )Dn( )dτ x( )∫ . 

If one is indeed interested in learning about a nonidentified parameter in the posterior (e.g., the 

category step parameter τ ), after MCMC sampling, the parameter of interest should be 

marginally informative. Specifically, the nonidentified parameter of interest is marginally 

informative when the marginal prior for the parameter is not equal to the posterior of the 

parameter; that is, 

 
   
π τ x( )( ) ≠ π τ x( )Dn( ) , (2.5) 

so that the data enable “Bayesian learning” of the model parameter. Equation 2.5 will be true 

when the prior distributions for the parameters are proper (Gelfand & Sahu, 1999; Poirier, 1998). 

Moreover, as presented in the section on MCMC sampling methods, for each model parameter, 

the full conditional posterior distribution depends on the data. Therefore, when posterior 

inference is undertaken for a model parameter of interest, by taking marginal MCMC posterior 

samples of the parameter, the marginal prior for the parameter is data-dependent and therefore 

different from the marginal prior of the parameter. 
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Resulting Information 

 Analysis of the data with the DDP-RM can provide information analogous to that 

provided with more common IRT models, such as ability estimates for each person and category 

step estimates, although these estimates are means of the posterior distributions. To obtain the 

95% Monte Carlo (MC) confidence intervals for each estimate of the posterior mean parameter, I 

relied on the batch mean analysis approach described by Flegal and Jones (2011). 

In addition to information similar to that of traditional IRT models, the DDP-RM 

provides the number of latent classes present in the data for a given item. The number of latent 

classes is ascertained through the number of modes in the posterior predictive density of the 

category thresholds for the item of interest, if no other information is contained in the x in   Gx  

other than item indicators.  

Unique Features of the Model 

 One approach to examining whether an item category step has DSF is to examine the 

posterior predictive mean density of the mixture step distribution, 
   
En Gx ⋅( )⎡⎣ ⎤⎦ . When a step is 

free of DSF, the density corresponding to that step should be unimodal with very small variance, 

which indicates that only one unique step value is needed to describe the data corresponding to 

that step. When a step has DSF between two groups, the density should be bimodal, with each 

mode corresponding to a value for a group. By subjecting the category steps to an infinite 

number of mixtures, which the DDP-RM does, all forms for the step densities are supported, 

including various bimodal densities.  

 With a parametric IRT model, when the category steps are treated as random across 

persons, the true form for the step distribution is assumed to follow a normal distribution, with 



 

 
	
  

52 

mean and variance estimated from the data. This prior would be appropriate for category steps 

that are free of DSF, but inappropriate when a step has DSF between two groups, which would 

require a bimodal form for the distribution.  

 The covariate-dependent mixing distribution, Gx, based on an infinite number of 

mixtures, allows the density to take on any form. The form could change across items when x are 

item indicators, which is the case for this study. Thus, the mixing distribution of the mDP model 

is applicable when some items have steps with DSF (requiring multimodal form for the mixing 

distribution) while other items’ steps are free of DSF (requiring unimodal form for the mixing 

distribution). 

Data Sets Analyzed 

Simulated Data 

 To evaluate the DDP-RM’s ability to recover the number of generating latent classes (i.e., 

latent clustering configuration) contributing to DSF in a subset of items, I conducted a simulation 

study in which the presented model was used to analyze generated data. Three-point rating scale 

data (k = 0, 1, 2) were generated for 20 items. The simulation study consisted of a 2 × 2 × 5 non-

nested design, which was as follows: number of persons (400 or 800) by number of dimensions 

(unidimensional or two dimensional) by clustering configuration. The levels for clustering 

configuration varied depending on the dimensionality of the data. Within each condition, a single 

data set was generated based on a set of generating values for that condition. For the conditions 

corresponding to N = 400,   n = N × J = 400× 20 = 8,000  total rating observations were 

generated, and for the conditions corresponding to N = 800, 16,000 total rating observations were 

generated. 
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For the unidimensional and two-dimensional conditions, when the clustering condition 

for persons called for two groups, each group had 200 or 400 persons, depending on whether the 

total number of persons was 400 or 800, respectively. When the data generating condition 

involved unidimensional examinee abilities (Conditions 1 through 5), the abilities were drawn 

from a normal distribution with a mean of 0 and a variance of 1. When the data generating 

condition involved two-dimensional person abilities (Conditions 6 through 10), the abilities were 

drawn from a multivariate normal with a vector of 0s and a variance-covariance matrix with 

variances of 1 and a correlation of .5. Moreover, within each ability dimensional condition, the 

first three levels represented non-DSF conditions (Conditions 1 through 3 and 6 through 8), and 

the last two levels represented DSF conditions (Conditions 4, 5, 9, and 10).  

Unidimensional ability condition. The five clustering configuration levels (i.e., 

conditions 1-5) for the unidimensional condition were as follows: 

1) A single cluster of items and group of persons, with a single category step structure 

applying to all items. This condition represents a rating scale model (RSM).  

2) Twenty clusters of items, with each item having its own category step structure, and only 

one cluster of persons. The relative category steps were randomly drawn from a uniform 

distribution with range (–.3, .3). This condition represents a PCM. 

3) Three clusters of items (the first and second clusters consisting of the first seven and next 

seven items, respectively, and the last cluster consisting of the remaining six items) and a 

single cluster of persons. This condition falls between the RSM and the PCM and is 

referred to as a blocked RSM. 

4) Two clusters of persons, with three clusters of items forming in each group. The first two 

clusters of items (7 items in each cluster) were the same between the two groups, but the 
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third cluster (6 items) differed and represented DSF in the second threshold of these 

items. For Group 1, the items within the third cluster were more difficult. That is, the first 

group’s generating values for these items was 1 logit larger for the second step than the 

second group’s values. This clustering configuration represents a DSF scenario because 

the two groups did not share the same generating second category step for the third 

cluster of items.  

5) Two clusters of persons. As for the item-cluster configuration, the first two clusters of 

items (i.e., the first and second clusters consisting of the first seven and next seven items, 

respectively) were common between the two groups. The third cluster of items 

(consisting of the remaining six items) was not common between the two groups. That is, 

for Group 1, the generating values were ordered (i.e., the step parameter values 

monotonically increased with the rating categories) for these item steps but were 

disordered for Group 2. Disordering occurs when the step estimate for the higher 

category is less than the step estimate for the lower category. The third cluster of items, 

then, represents a DSF condition, because the set of items did not share the same item 

category step parameters between the two groups.  

Two-dimensional ability condition. In a two-dimensional condition, the first 10 items 

were indicators for the first dimension, and the remaining 10 items were indicators for the second 

dimension. The following were the 5 levels of cluster configurations for the two-dimensional 

condition (Conditions 6-10): 

6) A single cluster of persons and items in each of the two dimensions. This condition 

represents a two-dimensional RSM. 
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7) A single cluster of persons and 10 clusters of items in each of the dimensions. The 

relative category steps were randomly drawn from a uniform distribution with range (–.3, 

.3). This condition represents a two-dimensional PCM. 

8) A single cluster of persons and two clusters of items in each of the two dimensions. For 

the item configuration, the first five and second five items in each dimension formed the 

first and second clusters, respectively. This condition represents a two-dimensional, four-

blocked RSM. 

9) Two clusters of persons and items in each dimension. In both dimensions, each cluster of 

items consisted of five items. For the first dimension, the first cluster of items was free of 

DSF and DIF; the second cluster of items had DSF in the second category step with       

1-logit difference in magnitude. For the second dimension, the first cluster of items was 

free of DSF and DIF; the second cluster of items had DSF in the first category step with 

1-logit difference in magnitude. For all DSF items, the generating step value for the DSF 

step was greater for the first group than the value for the second group. 

10) The first dimension consisted of one cluster of persons and items for both groups. Thus, 

the items in dimension 1 were free of DSF. In the second dimension, there were three 

clusters of items for each of the two clusters of persons, with the item-cluster 

configuration varying across the groups. Within this dimension, four items had .5-logit 

DSF effect in the first step and 1-logit DSF effect in the second step, and two items had 

.5-logit DIF between the two groups (i.e., the first and second steps were .5-logit greater 

for the first group). 

The cluster configuration for the unidimensional and two-dimensional conditions was 

repeated for each of the two sample size conditions. Table II provides a brief overview of the 
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cluster configurations by dimensions. The generating parameter values for Conditions 1 through 

3 are in Table III. The generating parameter values for Conditions 4 and 5 are in Table IV and V, 

respectively. The generating parameter values for Conditions 6 through 8 are in Table VI. The 

generating parameter values for Conditions 9 and 10 are in Table VII and VIII, respectively. The 

values for all but Conditions 2 and 7 were based on values selected to target the ability 

distribution(s). Conditions 2 and 7 had targeted overall item difficulties that were used in all 

other conditions, but the relative category steps were randomly generated from a uniform 

distribution with range (–.3, .3). For these two conditions, the randomly drawn values for the first 

and second category steps were subtracted and added, respectively, from the overall item 

difficulty value.  

For all conditions, the baseline IRT model was one of the Rasch models for rating-scale 

data (i.e., RSM, PCM, or blocked RSM), because the purpose of this study was to present and 

explore a model in which DSF could be identified through the marginal posterior mean density 

estimates for the category step mixing distributions. To prevent varying item discrimination 

levels from confounding the results of item clustering identification based on category steps, I set 

the data-generating model to one in which all items shared a common discrimination level.  

For conditions in which all items belonged to a single cluster and all persons belonged to 

a single group, the data were generated under the RSM. For conditions in which subsets of items 

belonged to different clusters, the data were generated under a blocked RSM (i.e., a model in 

which subsets of items share similar category step parameter structure but more than a single 

cluster of items exists). For conditions that had two groups of persons, the data were generated in 

a manner in which the item characteristics for each group conformed to one of the Rasch models  
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TABLE II 

CLUSTERING CONFIGURATION FOR EACH OF THE DIMENSIONAL CONDITIONS 
  Number of Dimensions 
  Unidimensional  Two-Dimensional 

Cluster 
Configuration 

No 
DSF 

Single cluster of items and 
group of persons (i.e., RSM) 

 Single cluster of items for each 
of the two dimensions; single 
cluster of persons (i.e., two-
dimensional RSM) 

Twenty clusters of items; 
single cluster of persons (i.e. 
PCM)   

 Twenty clusters of items; single 
cluster of persons (i.e. two-
dimensional PCM)   

Three clusters of items; single 
cluster of persons  

 Two clusters of items in the 
first dimension; two clusters of 
items in the second dimension; 
single cluster of persons 

DSF 

Three clusters of items for 
each of the two clusters of 
persons. The third cluster had 
DSF.  

 Two clusters of items and 
persons for each of the two 
dimensions. Within each 
dimension, one cluster of items 
had DSF. 

Three clusters of items for 
each of the two clusters of 
persons. The third cluster of 
items had DSF; that is, the 
generating values were 
disordered for Group 2. 

 Dimension 1: One cluster of 
items and persons (no DSF). 
Dimension 2: Three clusters of 
items for each of the two 
clusters of persons. Four items 
had DSF, and two items had 
DIF. 

Note. The cluster configurations by dimensionality were repeated for each of the sample size 
conditions (N = 400 or N = 800). 
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TABLE III 
 
GENERATING CATEGORY THRESHOLD VALUES FOR CONDITIONS 1 THROUGH 3 

   Condition 
  1  2  3 

 Item  Step 1 Step 2  Step 1 Step 2  Step 1 Step 2 
1  –2.00 –1.00  –1.81 –0.91  –1.75 –1.25 
2  –1.84 –0.84  –1.60 –1.12  –1.84 –0.84 
3  –1.68 –0.68  –1.91 –0.47  –1.93 –0.43 
4  –1.53 –0.53  –1.28 –0.27  –1.28 –0.78 
5  –1.37 –0.37  –1.29 –0.26  –1.37 –0.37 
6  –1.21 –0.21  –1.45 –0.06  –1.46 0.04 
7  –1.05 –0.05  –1.19   0.09  –0.80 –0.30 
8  –0.89   0.11  –0.87   0.04  –0.89   0.11 
9  –0.74   0.26  –0.46   0.36  –0.99   0.51 
10  –0.58   0.42  –0.30   0.22  –0.33   0.17 
11  –0.42   0.58  –0.63   0.70  –0.42   0.58 
12  –0.26   0.74    0.02   0.46  –0.51   0.99 
13  –0.11   0.89    0.17   0.76    0.14   0.64 
14    0.05   1.05    0.04   0.78    0.05   1.05 
15    0.21   1.21    0.39   0.97  –0.04   1.46 
16    0.37   1.37    0.15   1.56    0.62   1.12 
17    0.53   1.53    0.48   1.64    0.53   1.53 
18    0.68   1.68    0.93   1.57    0.43   1.93 
19    0.84   1.84    1.02   2.11    1.09   1.59 
20     1.00   2.00     1.28   1.72     1.00   2.00 

Note. In these conditions, all items were free of DSF. Thus, only one set of parameters was 
required for all persons. 
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TABLE IV 
 
GENERATING CATEGORY THRESHOLD VALUES FOR CONDITION 4 FOR EACH OF 
THE TWO GROUPS AND THE DSF EFFECT 

    Group     
  1  2  DSF Effect 

Item  Step 1 Step 2  Step 1 Step 2  Step 1 Step 2 
1  –2.00 –1.00  –2.00 –1.00    
2  –1.84 –1.09  –1.84 –1.09    
3  –1.68 –0.43  –1.68 –1.43  0.0 1.0 
4  –1.53 –0.53  –1.53 –0.53    
5  –1.37 –0.62  –1.37 –0.62    
6  –1.21 0.04  –1.21 –0.96  0.0 1.0 
7  –1.05 –0.05  –1.05 –0.05    
8  –0.89 –0.14  –0.89 –0.14    
9  –0.74 0.51  –0.74 –0.49  0.0 1.0 
10  –0.58 0.42  –0.58 0.42    
11  –0.42 0.33  –0.42 0.33    
12  –0.26 0.99  –0.26 –0.01  0.0 1.0 
13  –0.11 0.89  –0.11 0.89    
14  0.05 0.80  0.05 0.80    
15  0.21 1.46  0.21 0.46  0.0 1.0 
16  0.37 1.37  0.37 1.37    
17  0.53 1.28  0.53 1.28    
18  0.68 1.93  0.68 0.93  0.0 1.0 
19  0.84 1.84  0.84 1.84    
20   1.00 1.75   1.00 1.75       

Note. Items that do not contain values under the DSF Effect columns were free of DSF. 
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TABLE V 
 
GENERATING CATEGORY THRESHOLD VALUES FOR CONDITION 5 FOR EACH OF 
THE TWO GROUPS AND THE DSF EFFECT 

    Group     
  1  2  DSF Effect 

Item  Step 1 Step 2  Step 1 Step 2  Step 1 Step 2 
1  –1.75 –1.25  –1.75 –1.25    
2  –1.84 –0.84  –1.84 –0.84    
3  –1.68 –0.68  –0.68 –1.68  –1.00 1.00 
4  –1.28 –0.78  –1.28 –0.78    
5  –1.37 –0.37  –1.37 –0.37    
6  –1.21 –0.21  –0.21 –1.21  –1.00 1.00 
7  –0.80 –0.30  –0.80 –0.30    
8  –0.89   0.11  –0.89   0.11    
9  –0.74   0.26  0.26 –0.74  –1.00 1.00 
10  –0.33   0.17  –0.33   0.17    
11  –0.42   0.58  –0.42   0.58    
12  –0.26   0.74    0.74 –0.26  –1.00 1.00 
13    0.14   0.64    0.14   0.64    
14    0.05   1.05    0.05   1.05    
15    0.21   1.21    1.21   0.21  –1.00 1.00 
16    0.62   1.12    0.62   1.12    
17    0.53   1.53    0.53   1.53    
18    0.68   1.68    1.68   0.68  –1.00 1.00 
19    1.09   1.59    1.09   1.59    
20     1.00   2.00     1.00   2.00       

Note. Items that do not contain values under the DSF Effect columns were free of DSF. 
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TABLE VI 
	
  
GENERATING CATEGORY THRESHOLD VALUES FOR CONDITIONS 6 THROUGH 8 

    Condition 
  6  7  8 

Item  Step 1 Step 2  Step 1 Step 2  Step 1 Step 2 
1  –1.90 –0.90  –1.94 –0.75  –1.65 –1.15 
2  –1.57 –0.57  –1.64 –0.71  –1.57 –0.57 
3  –1.23 –0.23  –1.07 –0.23  –0.98 –0.48 
4  –0.90   0.10  –0.72 0.22  –0.90   0.10 
5  –0.57   0.43  –0.75   0.67  –0.32   0.18 
6  –0.23   0.77  –0.24   1.04  –0.23   0.77 
7    0.10   1.10    0.07   1.13    0.35   0.85 
8    0.43   1.43    0.52   1.22    0.43   1.43 
9    0.77   1.77    0.89   1.56    1.02   1.52 
10    1.10   2.10    1.25   1.95    1.10   2.10 
11  –2.20 –1.20  –2.33 –1.00  –1.95 –1.45 
12  –1.87 –0.87  –1.76 –1.01  –1.87 –0.87 
13  –1.53 –0.53  –1.44 –0.34  –1.28 –0.78 
14  –1.20 –0.20  –1.40 –0.35  –1.20 –0.20 
15  –0.87   0.13  –1.10   0.39  –0.62 –0.12 
16  –0.53   0.47  –0.53   0.38  –0.53   0.47 
17  –0.20   0.80    0.08   0.62    0.05   0.55 
18    0.13   1.13    0.04   0.98    0.13   1.13 
19    0.47   1.47    0.52 1.54  0.72   1.22 
20     0.80   1.80     0.63 1.78   0.80   1.80 
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TABLE VII 
 
GENERATING CATEGORY THRESHOLD VALUES FOR CONDITION 9 FOR EACH OF 
THE TWO GROUPS AND THE DSF EFFECT 

    Group     
  1  2  DSF effect 

Item  Step 1 Step 2  Step 1 Step 2  Step 1 Step 2 
1  –1.90 –0.90  –1.90 –0.90    
2  –1.57 –0.07  –1.57 –1.07   1.00 
3  –1.23 –0.23  –1.23 –0.23    
4  –0.90   0.60  –0.90 –0.40   1.00 
5  –0.57   0.43  –0.57   0.43    
6  –0.23   1.27  –0.23   0.27   1.00 
7    0.10   1.10    0.10   1.10    
8    0.43   1.93    0.43   0.93   1.00 
9    0.77   1.77    0.77   1.77    
10    1.10   2.60    1.10   1.60   1.00 
11  –2.20 –1.20  –2.20 –1.20    
12  –1.37 –0.87  –2.37 –0.87  1.00  
13  –1.53 –0.53  –1.53 –0.53    
14  –0.70 –0.20  –1.70 –0.20  1.00  
15  –0.87   0.13  –0.87   0.13    
16  –0.03   0.47  –1.03   0.47  1.00  
17  –0.20   0.80  –0.20   0.80    
18    0.63   1.13  –0.37   1.13  1.00  
19    0.47   1.47    0.47   1.47    
20     1.30   1.80     0.30   1.80   1.00  
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TABLE VIII 
 
GENERATING CATEGORY THRESHOLD VALUES FOR CONDITION 10 FOR EACH OF 
THE TWO GROUPS AND THE DSF EFFECT 

    Group     
  1  2  DSF effect 

Item  Step 1 Step 2  Step 1 Step 2  Step 1 Step 2 
1  –1.90 –0.90  –1.90 –0.90    
2  –1.57 –0.57  –1.57 –0.57    
3  –1.23 –0.23  –1.23 –0.23    
4  –0.90   0.10  –0.90   0.10    
5  –0.57   0.43  –0.57   0.43    
6  –0.23   0.77  –0.23   0.77    
7    0.10   1.10    0.10   1.10    
8    0.43   1.43    0.43   1.43    
9    0.77   1.77    0.77   1.77    
10    1.10   2.10    1.10   2.10    
11  –2.20 –0.95  –2.70 –1.95  0.50 1.00 
12  –1.87 –1.12  –1.87 –1.12    
13  –1.53 –0.28  –2.03 –1.28  0.50 1.00 
14  –1.20 –0.45  –1.70 –0.95  0.50 0.50 
15  –0.87 –0.12  –1.37 –0.62  0.50 0.50 
16  –0.53   0.22  –0.53   0.22    
17  –0.20   1.05  –0.70   0.05  0.50 1.00 
18    0.13   0.88    0.13   0.88    
19    0.47   1.72  –0.03   0.72  0.50 1.00 
20     0.80   1.55     0.80   1.55     

Note. Items that do not contain values under the DSF Effect columns were free of DSF. 
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 (referred to as a multiple-group RSM or blocked RSM). When DSF items were present, the DSF 

effect was .5- or 1-logit difference between the two groups, which represented either half or a 

full population standard deviation. The mean of the distribution from which the two groups were 

drawn was the same (i.e., the mean for each group was 0). For two-dimensional conditions, the 

data were generated under a two-dimensional Rasch model, and the ability estimates between the 

two dimensions had a correlation of .50. 

Real-life Data  

 I applied the DDP-RM to two real-life data sets: the verbal aggression data (De Boeck & 

Wilson, 2004) and the acculturative family distancing (AFD) data (Hwang, Wood, & Fujimoto, 

2010). 

 Verbal aggression data set. This data set contains item responses from 316 students 

(243 females and 73 males) from a Dutch-speaking Belgian university. The students rated 24 

items, which are indicators for levels of verbal aggression (e.g., “A bus fails to stop for me. I 

would want to curse.”), on a scale of 0 = no, 1 = perhaps, and 2 = yes. The items can be 

categorized into a 2 × 2 × 3 structure: Behavior Mode (Want or Do) by Situation Type (Other-to-

blame or Self-to-blame) by Behavior Type (Curse, Scold, or Shout). Table IX provides a 

breakdown on the number of items within each category. The Behavior Mode was used to 

distinguish two-dimensionality, similar to the approach used by De Boeck and Wilson (2004). 

Thus, all models applied to this data set were two-dimensional. 

AFD data set. The AFD questionnaire is composed of 46 items and measures two 

dimensions (i.e., Communication Barrier and Values Incongruence) of AFD. For this study, I 

analyzed the data corresponding to the 24 items that comprise the Communication Barrier 

dimension. Thus, all models applied to this data set were unidimensional. 
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TABLE IX 

NUMBER OF ITEMS BY BEHAVIOR MODE, SITUATION TYPE, AND BEHAVIOR TYPE 
Behavior Mode  Situation Type Behavior Column Total 

   Curse Scold Shout  

Want 
 Other-to-blame 2 2 2 6 

 Self-to-blame 2 2 2 6 

Do 
 Other-to-blame 2 2 2 6 

 Self-to-blame 2 2 2 6 

Row Total   8 8 8 24 

 

 

 

The data corresponding to 293 participants (102 mothers, 79 fathers, and 112 children of 

the mothers and/or fathers) who provided responses to all items were analyzed for this study. All 

participants were of Asian descent. Originally, on a rating scale ranging from 1 = strongly 

disagree to 7 = strongly agree, the participants rated their level of agreement with various 

statements about the level of communication between parent and child (e.g., “If my parent[s] 

communicated emotional distress through physical symptoms, I would understand what the 

physical symptoms meant” when the children completed the questionnaire, and the term 

“parent[s]” was replaced with “child” when the parents completed the questionnaire). A previous 

study suggested that the rating categories should be collapsed (Hwang, Wood, & Fujimoto, 

2010). Thus, for this study, the three levels of disagreement categories were rescored to a value 

of 0, the neutral category was rescored to 1, and the three levels of agreement categories were 

rescored to 2.  
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All children attended the same high school, which was located in the western United 

States. The subsample of children consisted of 55% females and 45% males and varied from 

freshmen to seniors in terms of grade levels. The mothers were born in a variety of countries, 

such as Taiwan, mainland China, Hong Kong, Vietnam, Burma, and Thailand. The fathers were 

also born in a variety of countries, such as Taiwan, mainland China, Hong Kong, Vietnam, and 

Burma.  

Evaluating the New Model 

In this study, I compared the performance of the new model to traditional IRT models 

(i.e., RSM, PCM, generalized partial credit [GPCM], graded response model [GRM], modified 

graded response model [MGRM], finite-mixture Rasch model, and nominal response model 

[NRM]) with respect to ability parameter recovery, item category parameter recovery, and 

predictive performance. The comparison in model performance in terms of ability and item 

category step parameter recovery were assessed for only the generated data sets. The predictive 

performance of all models was assessed based on the analysis of the generated and real-life data 

sets. I assessed the number of latent class recovery only for the DDP-RM, on only the generated 

data sets.  

The mDP model introduced in this section was coded and fit in C++, and all traditional 

IRT models except the mixed Rasch model were fit to the data using flexMIRT (Cai, 2012). The 

mixed Rasch model was fit to the data using WINMIRA (von Davier, 2001) and only for the 

unidimensional condition because of software limitations. 
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Recovery of Person Abilities and Item Category Steps 

Recovery of person ability. To determine how well the new model and the various 

comparison IRT models recovered the generating person abilities, I relied on the root mean 

squared deviation (RMSD), also referred to as root mean squared error: 

  
RMSDθ =

θtq −θ 'tq( )2

t=1

N

∑
q=1

Q

∑
N ×Q

, 

where  
θtq  is the tth person’s estimated ability level in dimension q, and   

θ 'tq is the generating 

ability level value for person t in dimension q (where t = 1, 2, … , N, with N representing the 

total sample size; and q = 1,…, Q, with Q representing the number of dimensions). Values closer 

to 0 suggest better recovery of the generating person ability values.  

For each of the generated data sets within each condition, an RMSDθ was calculated 

using the ability estimates yielded from the DDP-RM and the comparison IRT models. Within 

each condition, I compared the RMSDθ associated with each model. The model associated with 

the lowest RMSDθ value was deemed the best-performing model in terms of ability-parameter 

recovery. The mDP model was expected to have lower RMSDθ than the comparison models in 

conditions in which Items have DSF (Conditions 4, 5, 9, and 10) because the model was 

expected to control for the DSF when estimating the ability parameters. 

Recovery of item category steps. To determine how well the DDP-RM and the various 

comparison IRT models recovered the generating item category step values, I calculated the 

RMSD between the estimated and the generating category step values for all items within each 

simulation condition: 
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RMSDτ =

τ jkt −τ ' jkt( )2

t=1

N

∑
k=1

m

∑
j=1

J

∑
J × m× N

, 

where  
τ jkt  is the estimated kth category step (where k = 0, 1, 2) and   

τ ' jkt  is the generating value 

for the kth relative category step for item j and person t. For most of the comparison IRT models 

(with the exception of the finite-mixture Rasch model), all persons had the same value for the kth 

relative step for item j (i.e.,  
τ jkt = τ jk for all t = 1, …, N) because these IRT models treat the step 

parameters as fixed effects. As such, all persons shared the same estimated value for each kth step 

for item j. The finite-mixture Rasch model can estimate different  
τ jk for different latent classes 

of persons. Thus, the persons within each latent class had the same value for each of the kth 

relative step for item j, but persons belonging to separate clusters did not have the same value. 

The DDP-RM estimated a value for  
τ jk  for each person. That is, it was possible that   

τ jkt ≠ τ jkt '  

for all persons t = 1,…, N and t ≠ t’.  

 By summing across all persons the difference between the estimated and generating value 

for the kth step for item j, an RMSDτ was calculated, even though all models did not estimate the 

same number of values for each  
τ jk .  Lower values suggest better recovery of the generating 

relative category step values. The mDP model was expected to have lower RMSDτ values than 

the comparison models in conditions in which items have DSF (Conditions 4, 5, 9, and 10) 

because the model was expected to detect the DSF, thereby providing more accurate estimates of 

the category steps. 

 For each generated data set within each condition, an RMSDτ was calculated for each 

model, and the values across the models were compared. The model associated with the lowest 
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RMSDτ was considered to be the best at recovering the generating item category step parameters 

values.  

The RMSD involving the category steps was only calculated for models in which the link 

functions were defined in terms of adjacent categories, which included the mDP, finite-mixture 

PCM, GPCM, PCM, and the RSM. The step parameters within the NRM, which relies on 

baseline category probabilities, and the GRM, which defines the link functions in terms of 

cumulative probabilities, have different interpretation from step parameters when the link 

functions are defined in terms of adjacent category probabilities. Thus, comparing the step 

estimates from models with different types of link functions would not be beneficial. 

Predictive Performance of the Data 

I compared the predictive performance of the generated and real-life data of the mDP 

model against the comparison IRT models, using the mean-squared predictive criterion D(m) 

covered in Chapter I. As previously noted, the D(m) is given by the following when the 

parameters of model m are estimated under Bayesian inference: 

   

D m( ) = yi − En Yi | x i ,m( )⎡
⎣

⎤
⎦

2

i=1

n

∑ + Varn Yi | x i m( )
i=1

n

∑
         = GF m( ) + Pen m( ).

 

The D(m) can be calculated for a non-Bayesian model having point estimate 
   
ϕ! n =ϕ
! Dn( ) , such 

as a maximum-likelihood estimate. The D(m) criterion, in this case, is estimated via 

    
E! Yz | x z ,m( ) = E Yz | x z ,m,ϕ"( )  and 

    
Var! Yz | x z ,m( ) = Var Yz | x z ,m,ϕ"( ) (for z = 1, 2,…, n, where n is 

the total number of observations in data set Dn) (Gelfand & Ghosh, 1998). 
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Because the D(m) is based on the expected value of y and variance of Y given model m, 

this criterion can be used to compare models in which the parameters are estimated under a 

Bayesian inference and frequentist approach. This fact is critical because the comparison models 

estimate the parameters using a frequentist approach (i.e., MMLE for all comparison models 

except the mixed Rasch model, which uses CMLE), whereas the DDP-RM estimates the 

parameters under Bayesian inference. In this case, a predictive performance index that can 

compare the predictive fit to the data across all models in which the parameters were estimated 

under different approaches was required for this study, which the D(m) fulfills. 

 For each generated data set within each condition included in the simulation study and 

each real-life data set, the D(m) was calculated based on the set of parameter estimates from each 

comparison model and the DDP-RM. Within each condition in the simulation study and for each 

real-life data set, the D(m)s were compared to assess all models’ performance in terms of their 

predictive performance, with lower values suggesting better performance. The index associated 

with the model presented in this chapter was expected to have the lowest value in each of the 

conditions in the simulation study and for each of the real-life data sets. 

Proceeding Chapters 

 The motivation for developing the mDP model was to address the shortcomings of other 

IRT models currently employed in DSF analysis, which were discussed in Chapter I. Most 

notable of these limitations are that the true distribution of the random effects, G, follows a 

parametric form; the same latent class structures are assumed to apply across all items and 

dimensions (if multiple dimensions are specified); and some type of decision on establishing a 

common metric across the groups is required to examine the items for DSF, with finding a subset 

of items to serve as anchors as the optimal method.  
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 The DDP-RM overcomes these limitations. With this model, an mDP prior is assigned to 

G, which supports all discrete distributions. Moreover, this prior allows for the mixture 

distributions for the item category steps to vary across covariates. The mDP model also allows 

for the number of latent groups to vary across items and dimensions of a latent construct 

measured by the test items. Finally, the need to find items to serve as anchors is circumvented 

because all persons are assumed to come from a common distribution. 

In Chapter III, I present the results of the simulation study. In Chapter IV, I describe 

applications of the proposed model to real rating data. In both Chapters III and IV, I compare the 

predictive performance of the proposed model against standard IRT models. In Chapter V, I 

provide some additional follow-up analyses to explain the findings in Chapters III and IV. In 

Chapter VI, I conclude with a discussion of practical implications of the DDP-RM, as well as the 

model’s limitations and possible future modeling extensions. 

 



 

 
	
  

72 

III. SIMULATION STUDY 

Prior Distributions and MCMC Sampling Diagnostics 

For all the conditions of the simulation study, I specified covariates x as 0-1 dummy 

indicators to represent the 20 items. I assigned the following proper prior distributions on the 

model’s parameters: 
  
θt ~ normal 0,σθ

2( )   with  σθ
2 ~ ig .1,.1( )  when the generating condition 

consisted of a unidimensional ability parameter, and    θ t ~ normal2 0,Σθ( )  with   Σθ ~ iw 4,.1I2( )  

when the condition consisted of a two-dimensional ability parameter; 

   
τ h j( ) ~ind normal2 µ j ,.5I2( ) , where 

   
µ j ~ normal2 0,25I2( ) ; and    υh x( ) ~ind beta 1,α( ) , where α  

was set to 2. Nmax was set to 50. 

During the analysis of each data set, I ran the MCMC sampling algorithm for 200,000 

iterations in order to perform Bayesian posterior estimation. I discarded the first 100,000 samples 

(i.e., burn-in period) and saved every fifth sample thereafter for a total of 20,000 MCMC 

samples that were used for posterior inferences. According to standard convergence diagnostics 

(Geyer, 2011), the MCMC samples corresponding to model parameters displayed a good mixing 

of values to represent the posterior distribution for the parameters of interest.  

The trace plots revealed that the parameter estimates stabilized after the burn-in period 

and the chains mixed well (i.e., the chain explores the support of the posterior distribution). 

Figure 1 contains the trace plots for the set of random step estimates for two different cases and 

items for the sample size condition of N = 400. The top two panels correspond to the step 

estimates for case 1, sampled during an analysis of the data generated under Condition 4 (i.e., 

unidimensional ability). The lower two panels correspond to the step estimates for case 148, 

sampled during an analysis of the data generated under Condition 9 (i.e., two-dimensional 
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ability). Figure 2 contains the trace plots for the set of random step estimates for two different 

persons and items for the sample size condition of N = 800. The top two panels correspond to the 

step estimates for case 543, sampled during an analysis of the data generated under Condition 4 

(i.e., unidimensional ability). The bottom two panels correspond to the step estimates for case 

629, sampled during an analysis of the data generated under Condition 9 (i.e., two-dimensional 

ability). In both figures, the trace plots correspond to DSF items.  

Figure 3 and Figure 4 contain the trace plots of the saved samples of person ability 

estimate for two cases by two conditions (Condition 4 [unidimensional ability] and Condition 9 

[two-dimensional ability]). The trace plots for all other estimated parameters were similar to 

those presented in these four figures. 

I also examined the 95% Monte Carlo (MC) confidence intervals for the saved MCMC 

samples. They indicated that 20,000 saved MCMC samples led to sufficient precision of the 

posterior means of the person ability and random step estimates. Across the 10 generated data 

sets for the N = 400 condition, the 95% MC half-width confidence intervals for the person ability 

estimates had range (0.005, 0.016) and the random step estimates had range (0.007, 0.022). 

Across the 10 generated data sets for the N = 800 condition, the 95% MC half-width confidence 

intervals for the person ability estimates had range (0.005, 0.016) and the random step estimates 

had range (0.006, 0.023). 

Predictive Performance of the Data 

The predictive performance of the data provides a general overview of how the mDP 

version of the DDP-RM fared in relation to the comparison models. Table X contains the D(m) 

values for each model by condition. In all sample size by data generating conditions, the mDP 

model outperformed all comparison models with respect to predictive performance of the data.  
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Figure 1. Trace plots of the set of random step estimates for two items when the sample size 
condition was N = 400. The trace plots in the top two panels correspond to the step estimates 
sampled during an analysis of the data generated under Condition 4 and the trace plots in the 
bottom two panels correspond to the step estimates sampled during an analysis of the data 
generated under Condition 9.  
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Figure 2. Trace plots of the set of random step estimates for two items when the sample size 
condition was N = 800. The trace plots in the top two panels correspond to the step estimates 
sampled during an analysis of the data generated under Condition 4 and the trace plots in the 
bottom two panels correspond to the step estimates sampled during an analysis of the data 
generated under Condition 9.  
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Figure 3. Trace plots of the ability estimate(s) for two cases when the sample size condition was 
N = 400. The trace plots in the top two panels correspond to the person ability estimates sampled 
during an analysis of the data generated under Condition 4 and the trace plots in the bottom two 
panels correspond to the person ability estimates sampled during an analysis of the data 
generated under Condition 9. 
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Figure 4. Trace plots of the ability estimate(s) for two cases when the sample size condition was 
N = 800. The trace plots in the top two panels correspond to the person ability estimates sampled 
during an analysis of the data generated under Condition 4 and the trace plots in the bottom two 
panels correspond to the person ability estimates sampled during an analysis of the data 
generated under Condition 9. 
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TABLE X 
	
  
THE D(m) VALUES BY CONDITION AND MODEL 
  Condition mDP Mixture Rascha GPCM PCM RSM NRM GRM 
 1 5769 5877 (2) 6070 6090 6094 6057 6132 
 2 5723 5928 (1) 6023 6027 6034 6012 6094 
 3 5672 5702 (2) 5951 5955 5965 5944 6022 
 4 5753 5837 (1) 6036 6045 6047 6035 6093 
N = 400 5 5966 6165 (3) 6257 6268 6279 6250 6325 
 6 5626  5832 5850 5851 5830 5911 
 7 5558  5797 5803 5813 5780 5860 
 8 5748  5983 5997 6001 6106 6053 
 9 5632  5869 5872 5874 5868 5942 
 10 5655   5863 5884 5885 5822 5950 
         
 1 11317 11666 (1) 11841 11858 11862 11831 11971 
 2 11387 11748 (1) 11928 11942 11956 11917 12052 
 3 11214 11352 (2) 11805 11823 11842 11798 11930 
 4 11712 12083 (2) 12304 12318 12326 12283 12445 
N = 800 5 12070 12569 (5) 12734 12769 12784 12729 12873 
 6 11307  11705 11714 11715 12518 11850 
 7 11237  11639 11663 11678 11675 11783 
 8 11302  11714 11726 11736 11751 11877 
 9 11289  11670 11684 11687 11720 11788 
  10 11250   11648 11650 11652 11702 11792 
Note. mDP = multiple Dirichlet process model, GPCM = generalized partial credit model, PCM = partial credit model, 
RSM = rating scale model, NRM = nominal response model, and GRM = graded response model. Lower value 
indicates better predictive performance (i.e., better model fit to the data).  
aDue to limitations of the Winmira software, the finite-mixture Rasch model was used to analyze only the data in 
which the person ability was unidimensional (i.e., Conditions 1-5). The number of estimated latent classes is in the 
parentheses next to its D(m) value. For each condition, the optimal number of latent classes for the finite-mixture  
PCM was identified using the AIC.
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Under both sample size conditions, for the first five data generating conditions in which the 

finite-mixture Rasch model was one of the comparison models, it displayed far better predictive 

performance than the other comparison IRT models. Within the N = 400 condition, the finite-

mixture PCM indicated that two latent classes were present in the data set corresponding to 

Conditions 1 and 3 when these conditions consisted of only a single latent class. Moreover, the 

finite-mixture PCM indicated that one and three latent classes were present in the data 

corresponding to Conditions 4 and 5, respectively, but the data within these two conditions were 

generated to reflect two latent classes. Within the N = 800 condition, the finite-mixture PCM 

incorrectly identified 2 and 5 latent classes as being present in the data corresponding to 

Conditions 3 and 5, respectively. The data in Conditions 3 and 5 were generated to reflect one 

and two latent classes, respectively. Within this sample size condition, the finite-mixture PCM 

correctly identified that two latent classes were present in the data for Condition 4. 	
  

Even though the finite-mixture PCM outperformed the other comparison IRT models, for 

the N = 400 condition, the mDP outperformed the finite-mixture PCM by at least 30 D(m) units 

and bested the finite-mixture PCM by 84 and 199 D(m) units for the two different 

unidimensional DSF conditions (i.e., Conditions 4 and 5). For the N = 800 condition, the mDP 

model outperformed the finite-mixture PCM by at least 138 D(m) units and outperformed it by 

371 and 499 D(m) units for the two different unidimensional DSF conditions (i.e., Conditions 4 

and 5). The mDP model’s ability to detect the appropriate number of latent classes for the DSF 

conditions is discussed in the section in which the posterior mean estimates of the mixing 

distribution are presented. 
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Root Mean Squared Deviation 

 The root mean squared deviation (RMSD) provides a means to examine how well the 

mDP model and the comparison models recovered the generating values used for the person 

ability and item category step parameters. Recall that values closer to 0 indicate better recovery.  

RMSD for the Item Category Steps  

Table XI contains the RMSD values that indicate how well the models recovered the 

generating step values for each condition. Recall that the RMSD involving the category steps 

was only calculated for the models in which the link functions were defined in terms of adjacent 

categories, which were the mDP model, finite-mixture PCM, GPCM, PCM, and the RSM. 

Regardless of the sample size condition, the PCM or RSM displayed the best recovery of the 

generating values within each data generating condition. This finding is not surprising given that 

the generating conditions relied on the RMS, PCM, or a blocked RSM. The benefit of such a 

match between the generating model and the model used to estimate the category step parameters 

was apparent in Conditions 1 and 6. In Condition 1, the unidimensional RSM was the generating 

model, and in Condition 6, a two-dimensional RSM was the generating model. Indeed, the 

RMSD was the lowest for the RMS for these two conditions. When the sample size condition 

was N = 400, the RSM had values 0.081 and 0.095 for Conditions 1 and 6, respectively, and 

when the sample size condition was N = 800, the RSM had values 0.063 and 0.043 for 

Conditions 1 and 6, respectively. 

 Unfortunately, the infinite-mixture model (mDP model) and the finite-mixture PCM did 

not perform as well as the PCM and RSM, even for the conditions in which the data for a subset 

of items were generated to have DSF or DIF (i.e., Conditions 4, 5, 9, and 10). Overall, however, 

the mDP model outperformed the finite-mixture PCM. In fact, for Condition 5, the finite-mixture  
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TABLE XI 

THE ROOT MEAN SQUARED DEVIATION BETWEEN CATEGORY STEP ESTIMATES 
AND THE CATEGORY STEP GENERATING VALUES BY SAMPLE SIZE CONDITION 
AND MODEL 

  Condition mDP 
Mixture  

PCM GPCM PCM RSM 
 1 0.218 0.696 0.175 0.171 0.081 
 2 0.335 0.285 0.304 0.288 0.225 
 3 0.199 0.471 0.128 0.128 0.206 
 4 0.278 0.272 0.213 0.216 0.195 
N=400 5 0.290 1.052 0.250 0.240 0.280 
 6 0.196  0.172 0.131 0.095 
 7 0.362  0.302 0.305 0.226 
 8 0.195  0.151 0.115 0.158 
 9 0.314  0.286 0.276 0.244 
 10 0.238   0.215 0.197 0.183 
       
 1 0.185 0.081 0.091 0.088 0.063 
 2 0.304 0.252 0.248 0.250 0.214 
 3 0.198 0.428 0.137 0.099 0.194 
 4 0.240 0.638 0.190 0.175 0.172 
N=800 5 0.277 1.223 0.230 0.229 0.279 
 6 0.158  0.087 0.080 0.043 
 7 0.294  0.245 0.220 0.181 
 8 0.197  0.114 0.099 0.143 
 9 0.282  0.235 0.223 0.203 
  10 0.232   0.177 0.165 0.147 

Note. mDP = multiple Dirichlet process model, GPCM = generalized partial credit model,    
PCM = partial credit model, and RSM = rating scale model. Lower value indicates better 
recovery of generating values. Due to limitations of the Winmira software, the finite-mixture 
Rasch model was used to analyze only the data in which the person ability was unidimensional 
(i.e., Conditions 1-5). The number of estimated latent classes is in the parentheses next to its 
D(m) value. For each condition, the optimal number of latent classes for the finite-mixture  
PCM was identified using the AIC. 
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PCM displayed very poor recovery, with the RMSD for this condition being at least three times 

larger than the next largest RMSD when the sample size was N = 400 and at least four times 

larger than the next largest RMSD when the sample size was N = 800.  

RMSD for the Person Abilities (θ ) 

Table XII contains the RMSD values that indicate how well the models recovered the 

generating ability values for each condition. With respect to the recovery of the generating 

values, while overall the PCM and RMS had the lowest RMSD values, they did not display the 

same superior performance over the mDP model as observed in the recovery of the category step 

values. Among the models, the finite-mixture PCM performed slightly worse than the other 

models in terms of recovering the generating ability values. The mDP model and the finite-

mixture PCM did not display an advantage over the other models in terms of recovering the 

generating ability values, even for the conditions in which the data for a subset of items were 

generated to reflect DSF or DIF between two groups (i.e., Conditions 4, 5, 9, and 10).  

Posterior Mean Estimates of the Mixing Distribution 

 The posterior mean estimates of the mixing distributions,    Gx τ1( )  and    Gx τ 2( ) , have been 

shown to indicate whether an item has DSF (Fujimoto & Karabatsos, 2014). Thus, looking at 

posterior means and standard deviations (SD) of an item’s category steps could be the first 

indication of whether an item is problematic. Then examining the marginal posterior predictive 

densities of the mixing distribution could be beneficial. In this section, I review the posterior 

means and standard deviations for the analysis of the data generated under Conditions 3, 4, and 

10 for both sample size conditions. The analysis of the data generated under other conditions 

displayed similar patterns as those presented in this section.
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TABLE XII 

THE ROOT MEAN SQUARED DEVIATION BETWEEN THE ABILITY (THETA) 
ESTIMATES AND THE ABILITY GENERATING VALUES BY SAMPLE SIZE 
CONDITION AND MODEL 

  Condition mDP 
Mixture  

PCM GPCM PCM RSM NRM GRM 
 1 0.365 0.402 0.361 0.358 0.358 0.360 0.368 
 2 0.349 0.379 0.344 0.341 0.341 0.344 0.350 
 3 0.362 0.401 0.358 0.356 0.356 0.361 0.360 
 4 0.352 0.412 0.347 0.345 0.345 0.350 0.348 
N=400 5 0.355 0.465 0.350 0.351 0.351 0.350 0.355 
 6 0.460  0.457 0.455 0.455 0.459 0.461 
 7 0.451  0.454 0.454 0.453 0.455 0.459 
 8 0.451  0.455 0.451 0.451 0.459 0.456 
 9 0.496  0.494 0.490 0.490 0.496 0.496 
 10 0.454   0.455 0.452 0.452 0.455 0.460 
         
 1 0.355 0.378 0.349 0.346 0.346 0.350 0.354 
 2 0.345 0.369 0.335 0.335 0.335 0.337 0.339 
 3 0.370 0.435 0.357 0.354 0.354 0.355 0.360 
 4 0.348 0.474 0.344 0.344 0.344 0.346 0.346 
N=800 5 0.347 0.468 0.346 0.345 0.344 0.347 0.346 
 6 0.461  0.458 0.457 0.457 0.460 0.460 
 7 0.456  0.454 0.452 0.452 0.455 0.459 
 8 0.464  0.459 0.457 0.457 0.460 0.463 
 9 0.467  0.464 0.462 0.462 0.466 0.466 
  10 0.466   0.464 0.462 0.462 0.465 0.468 

Note. mDP = multiple Dirichlet process model, GPCM = generalized partial credit model,    
PCM = partial credit model, RSM = rating scale model, NRM = nominal response model, and 
GRM = graded response model. Lower value indicates better recovery of generating values. Due 
to limitations of the Winmira software, the finite-mixture Rasch model was used to analyze only 
the data in which the person ability was unidimensional (i.e., Conditions 1-5). The number of 
estimated latent classes is in the parentheses next to its D(m) value. For each condition, the 
optimal number of latent classes for the finite-mixture PCMs was identified using the AIC. 
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Condition 3 

Recall that in this condition, all items were free of DSF. Thus, the posterior SD estimates 

should be similar across all items and thresholds, regardless of the sample size condition. Table 

XIII contains the item category step posterior means and SD estimates for this data generating 

condition, presented for each sample size condition.	
  

Sample size condition of 400. For this sample size condition, the posterior SD estimates 

of the category steps had range (0.50, 0.66). The posterior SD estimates were fairly similar 

across all items and steps, as expected given that the data for all items were generated to be free 

of DSF. The posterior mean estimates follow the general pattern of difficulty as the generating 

item ordering for this condition. For the generating item values please see Table III. The easier 

items (i.e. items with lower category step posterior mean estimates) were the first few items, and 

the more difficult items (i.e., items with higher category step posterior mean estimates) were the 

last few items.  

 Figure 5 includes the marginal posterior density estimates of the category steps for Items 

5, 12, and 17. The densities for these three items had similar forms. That is, they were unimodal 

and the variability did not drastically differ across these three items, as expected given that in 

this condition, the data for all items were generated to lack DSF. Similar conclusions were drawn 

on the remaining items within this condition for which densities were not presented. 

Sample size condition of 800. For this sample size condition, the posterior SD estimates 

of the category steps had range (0.43, 1.04). The SD value of 1.04 corresponded to Item 5’s 

second step. Aside from this one value, the next largest posterior SD estimate was 0.70, which 

was for Item 13’s first step. Given that the data for all items within this condition were generated 

to be free of DSF, the large SD observed for Item 5 could be viewed as an anomaly because the  
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TABLE XIII 

POSTERIOR MEAN AND STANDARD DEVIATION (IN PARENTHESES) ESTIMATES OF 
THE ITEM CATEGORY STEPS BY SAMPLE SIZE FOR CONDITION 3 

    N = 400   N = 800 
Item  Step 1   Step 2   Step 1   Step 2 

1  –2.24  (0.60)  –1.33  (0.52)  –2.03  (0.62)  –1.14  (0.68) 
2  –1.81  (0.58)  –0.96  (0.51)  –1.96  (0.60)  –0.81  (0.59) 
3  –2.23  (0.61)  –0.51  (0.66)  –2.11  (0.63)  –0.28  (0.55) 
4  –1.71  (0.63)  –0.81  (0.61)  –1.33  (0.59)  –0.80  (0.56) 
5  –1.43  (0.66)  –0.58  (0.54)  –1.45  (0.60)  –0.41  (1.04) 
6  –1.83  (0.60)    0.05  (0.59)  –1.47  (0.63)    0.12  (0.62) 
7  –0.74  (0.57)  –0.42  (0.54)  –1.02  (0.56)  –0.24  (0.53) 
8  –1.02  (0.60)    0.17  (0.55)  –1.00  (0.52)    0.04  (0.63) 
9  –0.94  (0.57)    0.53  (0.54)  –0.84  (0.51)    0.57  (0.60) 
10  –0.45  (0.61)    0.08  (0.61)  –0.31  (0.50)    0.24  (0.54) 
11  –0.46  (0.66)    0.26  (0.60)  –0.44  (0.48)    0.66  (0.51) 
12  –0.64  (0.57)    1.17  (0.64)  –0.48  (0.57)    1.12  (0.62) 
13    0.00  (0.50)    0.95  (0.62)    0.21  (0.70)    0.71  (0.55) 
14    0.16  (0.55)    1.29  (0.57)    0.01  (0.51)    1.35  (0.60) 
15  –0.07  (0.58)    1.59  (0.60)  –0.15  (0.43)    1.97  (0.54) 
16    0.93  (0.65)    1.31  (0.62)    0.53  (0.58)    1.35  (0.56) 
17    0.47  (0.58)    1.64  (0.58)    0.59  (0.62)    1.87  (0.63) 
18    0.49  (0.56)    1.86  (0.57)    0.63  (0.65)    2.04  (0.58) 
19    1.24  (0.59)    1.66  (0.60)    1.23  (0.47)    1.95  (0.55) 
20     1.00  (0.58)     1.99  (0.59)     1.12  (0.46)     2.22  (0.60) 

 Note. All items in this condition were free of DSF. 
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Figure 5. Posterior predictive density estimates of the category steps for Items 5, 12, and 17 for 
Condition 3 (N = 400). 
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posterior SD estimates corresponding to all other items had fairly similar values, as expected 

under this generating condition.  

The posterior mean estimates followed the general pattern of difficulty in item ordering 

as the generating items. For the generating values, please refer to Table III. The easier items 

were the first few items and the items progressively became more difficult, as indicated by the 

increase in estimated values of the items’ step posterior means.  

Figure 6 includes the marginal posterior density estimates for the category steps 

corresponding to Items 5, 12, and 17. The density for Item 5’s second step had a bimodal form. 

This bimodal form was why the posterior SD estimate of this step was noticeably larger than the 

estimates of the category steps for all other items. The bimodality was most likely a result of the 

random data generating process because, under this condition, the data for all items were 

intended to be generated to be free of DSF.  The other densities in Figure 6 were unimodal and 

had similar variances. The posterior densities for the remaining items not displayed in this figure 

were also unimodal with small variability as the densities for Items 12 and 17. 

Condition 4 

In this condition, the data corresponding to Items 3, 6, 9, 12, 15, and 18 were generated to 

have a 1-logit DSF in the second category steps. Thus, the posterior SD estimates corresponding 

to the second steps for these items should be larger than the posterior SD estimates for the other 

items (i.e., DSF-free items). Table XIV contains the item category step posterior means and SD 

estimates for this data generating condition, presented for each sample size condition. 

Sample size condition of 400. For this sample size condition, the posterior SD estimates 

of the category steps had range (.51, .75). The items with larger estimates did not correspond to  



 

 
	
  

88 

 
Figure 6. Posterior predictive density estimates of the category steps for Items 5, 12, and 17 for 
Condition 3 (N = 800). 
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TABLE XIV 
	
  
POSTERIOR MEAN AND STANDARD DEVIATION (IN PARENTHESES) ESTIMATES OF 
THE ITEM CATEGORY STEPS BY SAMPLE SIZE FOR CONDITION 4 

    N = 400   N = 800 
Item  Step 1   Step 2  Step 1   Step 2 

1  –2.42  (0.62)  –1.10  (0.63)  –2.38  (0.59)  –0.98  (0.60) 
2  –2.16  (0.64)  –1.28  (0.58)  –2.14  (0.63)  –1.24  (0.64) 
3  –1.77  (0.67)  –0.92  (0.58)  –1.63  (0.57)  –0.98  (0.74) 
4  –1.30  (0.62)  –0.77  (0.53)  –1.60  (0.61)  –0.53  (0.49) 
5  –1.62  (0.61)  –0.87  (0.62)  –1.48  (0.55)  –0.51  (0.68) 
6  –1.47  (0.61)  –0.55  (0.51)  –1.22  (0.56)  –0.40  (0.50) 
7  –1.37  (0.66)  –0.25  (0.55)  –1.18  (0.59)  –0.04  (0.63) 
8  –1.04  (0.56)  –0.38  (0.52)  –0.95  (0.54)  –0.12  (0.64) 
9  –0.95  (0.56)    0.36  (0.56)  –0.63  (0.72)    0.03  (0.47) 
10  –0.47  (0.52)    0.53  (0.53)  –0.61  (0.48)    0.56  (0.61) 
11  –0.59  (0.61)    0.36  (0.59)  –0.64  (0.63)    0.57  (0.56) 
12  –0.47  (0.59)    0.45  (0.59)  –0.05  (0.56)    0.44  (0.47) 
13  –0.02  (0.54)    1.02  (0.75)  –0.13  (0.51)    1.19  (0.65) 
14  –0.30  (0.57)    0.94  (0.66)    0.18  (0.47)    0.96  (0.53) 
15    0.06  (0.64)    0.91  (0.59)    0.30  (0.58)    0.93  (0.55) 
16    0.25  (0.52)    1.49  (0.57)    0.47  (0.64)    1.24  (0.63) 
17    0.68  (0.54)    1.44  (0.60)    0.62  (0.62)    1.49  (0.52) 
18    0.79  (0.59)    1.54  (0.63)    0.59  (0.60)    1.53  (0.64) 
19    1.04  (0.53)    1.73  (0.57)    0.86  (0.44)    1.99  (0.60) 
20     1.00  (0.57)     2.05  (0.58)     0.97  (0.55)     1.82  (0.54) 

Note. For this condition, Items 3, 6, 9, 12, 15, and 18 had 1-logit DSF in the upper steps between 
two groups. 
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the DSF items. For instance, the estimate for Item 13’s second step was 0.75, but the data for this 

item was generated to be free of DSF. Item 6, which was a DSF item, had an estimate of 0.51 for 

the second step. Thus, the size of the posterior SD estimates did not provide insight into which 

items had DSF given the simulation study conditions within this chapter.  

The posterior mean estimates of the category steps followed the general pattern of 

difficulty in item ordering as the generating condition. For the generating values, please see 

Table IV. The easier items were the first few items and the items progressively become more 

difficult, as indicated by the increase in values of the posterior mean estimates for the steps. For 

the items that had DSF, the posterior mean estimates of the category steps were approximately 

the average of the generating step values for the two groups. For example, the generating values 

for Item 6’s second step were 0.04 and –0.96 for Groups 1 and 2, respectively. The posterior 

mean estimate of –0.55 for this step was close to the average of the generating value of –0.46 for  

this step. The DSF was only in the second category step. Thus, both groups had the same 

generating values for the first step for this item. 

Figure 7 contains the marginal posterior density estimates of the category steps for Items 

6, 12, and 13. The densities for Items 6 and 12 had similar forms, which were unimodal and had 

similar variability. The densities for Item 13 were also unimodal, but the variability in the 

density for the second step was greater, which reflects the larger posterior SD estimate for this 

step that was previously noted. The densities for the other items not presented in this figure were 

also unimodal and did not drastically differ in terms of variability in the densities.  

Sample size condition of 800. For this sample size condition, the posterior SD estimates 

of the category steps had range (0.44, 0.74). The largest estimate was for the second step for Item 

3. This item was a DSF item. However, the value of 0.74 was only slightly larger than the  
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Figure 7. Posterior predictive density estimates of the category steps for Items 6, 12, and 13 for 
Condition 4 (N = 400). 
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average posterior SD estimates of the steps for all other items, including DSF and DSF-free 

items. Item 9, which was another DSF item, had a posterior SD estimate of 0.72 and 0.47 for the 

first and second category steps, respectively. Unfortunately, the size of the estimates should be 

reversed for this item because the data for this item were generated only to have DSF in the 

second step. The posterior SD estimates of the remaining category steps fell between 0.44 and 

0.68. Thus, even with a sample size of 800, the posterior SD estimates did not clearly identify the 

DSF items given the simulation conditions. 

The posterior mean estimates for the category steps followed the general pattern of 

difficulty in item ordering as the generating items. For the generating step values for this 

condition, please see Table IV. The easier items were the first few items and the items 

progressively became more difficult, as indicated by the increase in values of the posterior mean 

estimates for the steps. For the items that had DSF, the posterior mean estimates of the category 

steps were roughly the average of the generating step values for the two groups. The posterior 

mean estimate of the second category step for Item 6 was –0.40, which was close to the average 

of the generating value of –0.46 for this step.         

Figure 8 includes the marginal posterior density estimates of the category step 

distributions for Items 3, 9, and 11. All of the densities had unimodal form, but the density for 

Item 3’s second step and Item 9’s first step were slightly wider and flatter, which reflects the 

larger posterior SD estimates previously noted for these item. The forms of the density for the 

second category steps for Item 9 and the densities for both steps for Item 11 were fairly similar 

even though the DSF in Item 9 should appear in the density of the second step and Item 11 was a 

DSF-free item. The posterior densities for the items not presented in this figure were also 

unimodal and had similar variability as the densities for Items 9 and 11. Even with a sample size  
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Figure 8. Posterior predictive density estimates of the category steps for Items 3, 9, and 11 for 
Condition 4 (N = 800). 
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of 800, the posterior densities did not provide clear indications of which items had DSF given the 

simulation conditions for this study.  

Condition 10 

For this condition, the generating ability distribution was two-dimensional, with the first 

10 items being indicators for the first dimension of the latent trait and the second 10 items being 

indictors for the second dimension of the latent trait. Additionally, the data for Items 11, 13, 17, 

and 19 were generated to have greater DSF effect in the second steps (1-logit difference in the 

generating parameters for the two groups) between the two groups than the first steps (.5-logit 

difference in the generating parameters for the two groups). The data for Items 14 and 15 were 

generated to reflect DIF between two the groups (.5-logit difference in the generating parameters 

for the two groups for steps 1 and 2). Because these were the DIF or DSF items, the posterior SD 

estimates corresponding to these items were expected to be larger than the estimates for the other 

items. Table XV contains the item category step posterior mean and SD estimates for this data 

condition, presented for each sample size condition. 

Sample size condition of 400. Across the 20 items, the posterior SD estimates for the 

item category steps had range (0.50, 0.76). The second step for Item 1 had the largest estimate 

(posterior SD = 0.76), which was a DSF-free item. Among the DSF and DIF items, the posterior 

SD estimates had range (0.52, 0.64). These values fell within a very narrow range (0.12 

difference between the minimum and maximum within this subset of items). Moreover, these 

values were highly similar to the estimates for the items free of DSF and DIF. Thus, the size of 

the posterior SD estimates did not appear to provide insight into which items had DSF given the 

generating conditions. 
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TABLE XV 

POSTERIOR MEAN AND STANDARD DEVIATION (IN PARENTHESES) ESTIMATES OF 
THE ITEM CATEGORY STEPS BY SAMPLE SIZE FOR CONDITION 10 

    N = 400   N = 800 
Item  Step 1   Step 2   Step 1   Step 2 

1  –2.09   (0.66)  –1.04  (0.76)  –2.12  (0.60)  –0.97  (0.48) 
2  –1.61   (0.60)  –0.93  (0.64)  –1.69  (0.59)  –0.57  (0.57) 
3  –1.11   (0.59)  –0.36  (0.56)  –1.07  (0.53)  –0.16  (0.58) 
4  –0.89   (0.50)    0.16  (0.58)  –0.82  (0.61)    0.16  (0.71) 
5  –0.46   (0.54)    0.31  (0.56)  –0.72  (0.54)    0.52  (0.57) 
6  –0.33   (0.57)    0.81  (0.56)  –0.22  (0.50)    0.95  (0.52) 
7    0.03   (0.58)    1.31  (0.59)    0.15  (0.54)    1.12  (0.58) 
8    0.53   (0.56)    1.37  (0.62)    0.47  (0.62)    1.56  (0.54) 
9    0.84   (0.60)    1.69  (0.63)    0.89  (0.62)    2.01  (0.63) 
10    1.13   (0.55)    2.34  (0.62)    1.30  (0.58)    2.27  (0.57) 
11  –2.59   (0.64)  –1.34  (0.56)  –2.46  (0.61)  –1.53  (0.56) 
12  –1.70   (0.62)  –1.12  (0.65)  –1.73  (0.58)  –1.28  (0.55) 
13  –1.63   (0.56)  –0.80  (0.52)  –2.14  (0.62)  –0.80  (0.50) 
14  –1.60   (0.63)  –0.67  (0.61)  –1.75  (0.62)  –0.77  (0.54) 
15  –1.30   (0.57)  –0.37  (0.57)  –1.11  (0.55)  –0.32  (0.55) 
16  –0.51   (0.64)    0.38  (0.61)  –0.53  (0.64)    0.24  (0.61) 
17  –0.45   (0.58)    0.51  (0.54)  –0.47  (0.53)    0.68  (0.56) 
18    0.06   (0.66)    1.04  (0.57)    0.12  (0.51)    0.96  (0.67) 
19    0.41   (0.63)    1.39  (0.56)    0.17  (0.50)    1.29  (0.64) 
20     1.01   (0.55)     1.77  (0.61)     0.78  (0.58)     1.83  (0.63) 

Note. The items were indicators for two dimensions of the latent trait. Items 1 through 10 were 
indicators for the first ability dimension, and Items 11 through 20 were indicators for the second 
ability dimension. Items 11, 13, 17, and 19 were generated to have 1-logit DSF in the upper step 
and .5-logit DSF in the lower step. Items 14 and 15 had .5-logit DIF (i.e., both steps had .5-logit 
difference in the generating values between the two groups). 
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The posterior mean estimates followed the general pattern of difficulty ordering as the 

generating items. For the generating step values for this condition, please see Table VIII. Within 

the subset of items associated with the first ability dimension (i.e., Items 1 through 10), the first 

few items within this subset had lower posterior mean estimates, indicating that these items were 

easier, and the last few items within this subset had higher posterior mean estimates, indicating 

that these items were more difficult within this subset. Likewise, within the subset of items 

associated with the second ability dimension (i.e., Items 11 through 20), the first few items 

within this subset had lower posterior means and the last few items within this subset had higher 

posterior mean values. For the items that had DSF or DIF, the posterior mean estimates of the 

steps were roughly the average of the generating step values for the two groups. For example, 

Group 1’s generating values for Item 11’s category steps were –2.20 and –0.95 and Group 2’s 

generating values for this same item were –2.70 and –1.95. The posterior mean estimates for the  

first and second step for this item were –2.59 and –1.35, respectively, which were close to the 

average of the generating values for the two groups of –2.45 and –1.45, respectively. 

Figure 9 contains the posterior density plots for the category steps corresponding to Items 

11, 12, and 17. The posterior distributions for the three items were unimodal and had similar 

variability. Yet, Items 11 and 17 were the DSF items and Item 12 was a DSF-free item. The 

posterior densities for other items not included in this figure had similar forms. Thus, the 

posterior densities did not appear to clearly indicate which items had DSF given the simulation 

conditions for this study. 

Sample size condition of 800. Across the 20 items, the posterior SD estimates for the 

item category steps had range (0.48, 0.71). The estimate of 0.71 corresponds to the second 

category step for Item 4, which is a DSF-free item. The estimates for the other items, regardless  
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Figure 9. Posterior predictive density estimates of the category steps for Items 11, 12, and 17 for 
Condition 10 (N = 400). 
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of whether they were DSF or DIF items, were fairly similar. Thus, the size of the posterior SD 

estimates did not provide insight into which items had DSF given the generating conditions in 

this chapter.  

The posterior mean estimates followed the general pattern of difficulty ordering as the 

generating items. For the generating step values for this condition, please see Table VIII. Within 

the subset of items associated with the first ability dimension (i.e., Items 1 through 10), the first 

few items within this subset had lower posterior mean estimates, indicating that these items were 

easier, and the last few items within this subset had higher estimates, indicating that these items 

were more difficult within this subset. Likewise, within the subset of items associated with the 

second ability dimension (i.e., Items 11 through 20), the first few items within this subset had 

lower posterior mean estimates and the last few items within this subset had higher estimates. 

For the DSF or DIF items, the posterior mean estimates of the steps were roughly the average of 

the generating step values for the two groups. For example, the posterior mean estimates for  

Item 11’s first and second steps were –2.46 and –1.53, respectively, which were close to this 

item’s average of the generating values for the two groups of –2.45 and –1.45, respectively. 

Figure 10 includes the posterior density plots for the category steps corresponding to 

Items 4, 11, and 16. The posterior density plots for all three items were unimodal, with the 

density plot for Item 4’s second step slightly wider and flatter (i.e., had slightly more variability). 

Yet, Items 4 and 16 were the DSF-free items and Item 11 was the DSF item. The posterior 

densities for the other items had similar forms as those in this figure. Thus, the posterior density 

plots did not appear to clearly differentiate the items that had DSF given the simulation 

conditions for this chapter. 
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Figure 10. Posterior predictive density estimates of the category steps for Items 4, 11, and 16 for 
Condition 10 (N = 800). 
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IV. ANALYSIS OF REAL-LIFE DATA SETS 

 For this chapter, I analyzed the Verbal Aggression and the Acculturative Family 

Distancing (AFD) data sets. I first report the results of the analysis of the Verbal Aggression data 

and then the AFD data. For the analysis of these two data sets, the same proper priors were 

assigned on the parameters of the mDP model as those specified in the simulation study reported 

in the previous chapter. That is,    θ t ~ normal2 0,Σθ( )  with   Σθ ~ iw 4,.1I2( )  when the condition 

called for a two-dimensional ability parameter (for the Verbal Aggression data) and 

  
θt ~ normal 0,σθ

2( )   with  σθ
2 ~ ig .1,.1( )  when the generating called for a unidimensional ability 

parameter (for the AFD data); 
   
τ h j( ) ~ind normal2 µ j ,.5I2( ) , where 

   
µ j ~ normal2 0,25I2( ) ; and 

   υh x( ) ~ind beta 1,α( ) , where α  was set to 2. Nmax was set to 50. 

During the analysis of each data set, I ran the MCMC sampling algorithm for 200,000 

sampling iterations in order to perform Bayesian posterior estimation. I discarded the first 

100,000 samples (i.e., burn-in period) and saved every fifth sample thereafter for a total of 

20,000 MCMC samples that were used for posterior inferences.  

Analysis of the Verbal Aggression Data Set 

Diagnostics  

The trace plots of the MCMC samples corresponding to the parameters in the mDP model 

indicate that the samples displayed good mixing of values to represent the posterior distribution 

(i.e., the chain explored the support of the posterior distribution) and the parameter estimates 

stabilized after the burn-in period. Figure 11 contains the trace plots of the MCMC saved 

samples of the two-dimensional ability estimates for two different persons who completed the 

Verbal Aggression questionnaire. Figure 12 contains the trace plots of the MCMC saved samples 
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of the item category step estimates for two items, each item corresponding to a different person. 

The 95% MCMC half-width intervals for the person abilities had range (0.008, 0.022) and for the 

item category steps had range (0.008, 0.033), which suggests that the posterior mean estimates of 

these parameters had good precision.  

Predictive Performance of the Data 

I compared the predictive performance of the mDP model to each of the comparison 

models, using the D(m) criterion. The D(m) for each model based on the analysis of the Verbal 

Aggression data are in Table XVI, with its corresponding goodness of fit and penalty terms. 

Recall that, for this data set, the finite-mixture PCM was not one of the comparison models 

because the Winmira software cannot fit a model in which the person abilities are 

multidimensional. The mDP model bested the PCM, the next best model, by approximately 169 

D(m) units. The mDP model outperforming the comparisons models is consistent with the 

findings in the predictive performance portion of the simulation study reported in Chapter 3. 

Posterior Mean Estimates of the Mixing Distribution for the Category Steps 

For the mDP model, given covariates x, which in this study were item indicators, the 

posterior mean estimates of the mixing distribution 
  
Gx τ x( )( )  reveal how the respondents used 

the rating categories. The posterior mean and SD estimates of 
  
Gx τ x( )( )  for all items, which are 

in Table XVII, provide an overview of all mixing distributions corresponding to the item 

category steps. Across the 24 items, the posterior mean estimates for the category steps had 

range (–1.08, 4.03). This indicates that the items were relatively hard compared to the population 

from which the sample was drawn because the posterior mean for each of the two-dimensional 
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Figure 11. Trace plots of the MCMC saved samples of the two-dimensional abilities for two 
persons.  
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Figure 12. Trace plots of the MCMC saved samples of category steps for two items, each set 
corresponding to a different person.  



 

 
	
  

104 

TABLE XVI 

THE D(m), GOODNESS OF FIT, AND PENALTY VALUES BY MODEL BASED ON THE 
ANALYSIS OF THE VERBAL AGGRESSION DATA 

Model D(m) Goodness of Fit Penalty 
mDP 5091 2214 2877 
GPCM 5260 2517 2743 
GRM 5278 2527 2751 
NRM 5331 2525 2806 
PCM 5348 2554 2794 
RSM 5361 2564 2797 

Note. mDP = multiple Dirichlet process model, GPCM = generalized partial credit model,     
PCM = partial credit model, RSM = rating scale model, NRM = nominal response model, and        
GRM = graded response model. Lower value indicates better predictive performance.  
 

 
 

 

 

person abilities was .02. That is, the respondents did not display the high level of verbal 

aggression associated with the higher categories. The posterior SD estimates had range (0.51, 

0.84), with the first steps for Items 13 and 16 having estimates of 0.51 and the second step for 

Item 21 having an estimate of 0.84. This indicates that the posterior densities for the category 

steps across the items had fairly similar variances, though the second step for Item 21 had 

slightly larger variability in its posterior density.  

A better depiction of the manner in which the respondents used the rating categories are 

reflected in the (marginal) posterior mean density estimates of 
   
Gx τ1 x( )( )  and 

   
Gx τ 2 x( )( ) . The 

densities for Items 11, 15, and 21 of the Verbal Aggression questionnaire are in Figure 13. The 

densities for these items were unimodal, though the density corresponding to the second step for 

Item 21 had slightly flatter and wider form, reflecting the larger posterior SD estimate previously 
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TABLE XVII 

POSTERIOR MEAN AND STANDARD DEVIATION (IN PARENTHESES) ESTIMATES OF 
THE ITEM CATEGORY STEPS PRODUCED DURING THE ANALYSIS OF THE VERBAL 
AGGRESSION DATA WITH THE mDP MODEL 

Item   Step 1   Step 2 
1  –0.50  (0.56)  –0.03  (0.55) 
2    0.11  (0.55)    0.23  (0.54) 
3    0.32  (0.58)    1.13  (0.68) 
4  –1.08  (0.57)    0.02  (0.57) 
5  –0.07  (0.52)    0.29  (0.58) 
6    0.51  (0.60)    0.73  (0.59) 
7  –0.16  (0.59)    1.17  (0.63) 
8    0.88  (0.53)    2.13  (0.63) 
9    1.64  (0.65)    2.78  (0.66) 
10  –0.64  (0.63)    0.80  (0.71) 
11    0.70  (0.52)    1.36  (0.63) 
12    1.38  (0.66)    1.56  (0.66) 
13  –0.74  (0.54)    0.40  (0.58) 
14    0.09  (0.51)    0.88  (0.53) 
15    1.29  (0.64)    1.73  (0.70) 
16  –0.33  (0.51)    0.43  (0.60) 
17    0.48  (0.52)    1.29  (0.59) 
18    1.85  (0.59)    2.15  (0.67) 
19    0.47  (0.66)    2.22  (0.75) 
20    1.75  (0.60)    2.85  (0.65) 
21    3.17  (0.64)    4.03  (0.84) 
22  –0.33  (0.54)    1.10  (0.71) 
23    0.73  (0.56)    1.78  (0.59) 
24     2.31  (0.69)     2.75  (0.69) 
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Figure 13. The marginal posterior mean density estimates of the rating category steps for three 
items contained in the Verbal Aggression questionnaire. 
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mentioned for this step. The posterior densities for the other items not presented in this figure 

had similar forms to Items 11 and 15, that is, unimodal and little variability.  

Overview of Person Abilities  

Based on the analysis of the data with the mDP model, the posterior mean estimates of 

the two-dimensional ability distribution were .02 for both dimensions. The posterior variance 

estimate of the first and second dimensions were 1.17 and 1.90, with a posterior correlation 

estimate of .75 between the two dimensions. This posterior correlation is similar to the estimated 

correlation between the two ability dimensions that the comparison models provided. The 

correlation estimated from the comparison models had range (.76, .79). Comparing the posterior 

variances of the ability distribution to the variance estimates from the comparison models is 

more difficult because some of the comparison models allow for the items to have different 

levels of discrimination (e.g., GPCM, GRM, and NRM), thus requiring those models to fix the 

person ability variances to 1. Therefore, I did not compare the variance estimates across the 

models.  

Analysis of the Acculturative Family Distancing Data Set 

Diagnostics 

The trace plots of the MCMC saved samples of the parameters of interest, which were 

produced during the analysis of the AFD data set with the mDP model, showed that the 

parameter estimates stabilized after the burn-in period and the chains mixed well (i.e., the chain 

explored the support of the posterior distribution). Figure 14 contains the trace plots of the 

MCMC saved samples of the unidimensional ability estimates for four persons who completed 

the AFD questionnaire. Figure 15 contains the trace plots of the MCMC saved samples of the 
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item category step estimates for two items, each set of trace plots corresponding to a different 

person. Trace plots corresponding to the other ability and category step estimates displayed 

similar patterns to those displayed in these two figures. The 95% MCMC half-width intervals for 

the person ability estimates had range (0.008, 0.022) and for the item category step estimates had 

range (0.008, 0.033), which suggests that the posterior mean estimates of these parameters had 

good precision. 

 Predictive Performance of the Data 

I compared the predictive performance of the mDP model to each of the comparison 

models, using the D(m) criterion. The D(m) for each model based on the analysis of the AFD 

data is in Table XVIII, with its goodness of fit and penalty terms. The mDP model outperformed 

the other models except the 3-mixture PCM. The 3-mixture PCM outperformed the mDP model 

by approximately 197 units. One possible reason for the better performance of the 3-mixture 

PCM is that three latent classes could be present in the data for all items. As previously noted, a 

finite-mixture IRT model assumes that the same number of latent classes apply across all items. 

This would be a limitation when the number of latent classes vary across items but would be the 

appropriate model when this assumption holds. Nevertheless, the 585 D(m) unit difference 

between the best among the non-mixture models and the mDP model suggests that assuming that 

a single latent class exists across all items is inappropriate for the AFD data. 

Posterior Mean Estimates of the Mixing Distribution for the Category Steps 

The posterior means and SD estimates of 
  
Gx τ x( )( )  for all items are in Table XIX and 

provide a quick overview of all mixing distributions corresponding to the item category steps. 

Across the 24 items, the posterior mean estimates of the category steps ranged between –0.46 
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Figure 14. Trace plots of the MCMC saved samples of the unidimensional ability estimates for 
four persons. 
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Figure 15. Trace plots of the MCMC saved samples of item category step estimates for two 
items, each set corresponding to a different person. 



 

 
	
  

111 

TABLE XVIII 

THE D(m), GOODNESS OF FIT, AND PENALTY VALUES BY MODEL BASED ON THE 
ANALYSIS OF THE AFD DATA 

Model D(m) Goodness of Fit Penalty 
mDP 5395 2281 3114 
3-mixture PCM 5198 2479 2720 
GPCM 5980 2949 3031 
NRM 5977 2942 3035 
GRM 6007 2978 3029 
PCM 6133 3016 3116 
RSM 6140 3023 3118 

Note. mDP = multiple Dirichlet process model, GPCM = generalized partial credit model,    
PCM = partial credit model, RSM = rating scale model, NRM = nominal response model, and 
GRM = graded response model. Lower value indicates better predictive performance. For the 
finite-mixture PCM, the optimal number of latent classes was identified using the AIC. 

 

 

 

 

 

and 2.37. This indicates that the items were relatively hard compared to the population from 

which the sample was drawn because the posterior mean estimate of the unidimensional person 

ability distribution was .01. Thus, the families that completed the AFD questionnaire did not 

have high levels of AFD on average. The posterior SD estimates ranged between 0.49 and 1.43, 

with the first step for Item 20 having an estimate of 0.49 and the second step for Item 24 having 

an estimate of 1.43. This indicates that there was variability across the mixing distributions of the 

category steps. 

The marginal posterior mean density estimates of 
   
Gx τ1 x( )( )  and 

   
Gx τ 2 x( )( )  for Items 

20, 23, and 24, which are in Figure 16, show the range of different forms that 
  
Gx τ x( )( )  took. 
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TABLE XIX 

POSTERIOR MEAN AND STANDARD DEVIATION (IN PARENTHESES) ESTIMATES OF 
THE ITEM CATEGORY STEPS PRODUCED DURING THE ANALYSIS OF THE AFD 
DATA WITH THE mDP MODEL 

Item   Step 1   Step 2 
1  2.37  (0.55)    1.65  (0.61) 
2  1.85  (0.51)    1.35  (0.54) 
3  2.02  (0.52)    0.69  (0.56) 
4  1.51  (0.57)    0.36  (0.56) 
5  1.03  (0.68)    0.55  (0.62) 
6  1.17  (0.53)    0.45  (0.67) 
7  0.69  (0.59)  –0.26  (0.73) 
8  0.78  (0.54)  –0.46  (0.63) 
9  1.85  (0.72)    0.64  (0.91) 
10  0.95  (0.72)    0.53  (0.94) 
11  0.89  (0.72)    0.35  (0.68) 
12  1.14  (1.15)    1.64  (1.15) 
13  2.03  (0.53)    1.63  (0.60) 
14  1.75  (0.51)    1.12  (0.56) 
15  1.76  (0.54)    1.04  (0.55) 
16  1.09  (0.57)    0.35  (0.54) 
17  0.92  (0.55)    0.65  (0.54) 
18  0.73  (0.50)    0.83  (0.67) 
19  0.98  (0.52)    0.19  (0.57) 
20  0.71  (0.49)    0.32  (0.60) 
21  1.97  (0.65)    0.79  (0.90) 
22  0.52  (0.66)  –0.09  (0.91) 
23  0.60  (0.68)  –0.01  (1.07) 
24   0.52  (1.21)     1.01  (1.42) 
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Figure 16. The marginal posterior mean density estimates of the rating category steps for three 
items contained in the AFD questionnaire. 
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Item 20’s posterior densities for the category steps were unimodal with small variances. In 

contrast, the category step posterior densities for Item 24 were bimodal, suggesting that two 

latent classes were present in the data, and these classes affected the category usage across the 

range of the rating categories within this items (i.e., DSF resided in both steps). For Item 23, the 

posterior density for the first category step was unimodal while the posterior density for the 

second category step was slightly bimodal. This indicates that two latent classes were present in 

the data corresponding to the upper two categories but only a single group corresponding to the 

lower categories.  

Person Ability Overview 

Based on the analysis of the AFD data with the mDP model, the posterior mean for 

person ability distribution was .01, with posterior variance of 1.47. Again, straight forward 

comparisons of the ability distribution variance estimates across all models is difficult because 

some of the comparison models allow the items to have differing levels of discrimination (e.g., 

GPCM, GRM, and NRM), thus requiring the model to fix the variances to 1. Therefore, I did not 

compare the variance estimates across the models.  
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V. FOLLOW-UP SIMULATION ANALYSES 

 The marginal posterior mean estimates of the mixing distributions for the category steps 

in Figure 16 suggest that Item 23 had DSF between two latent classes in the categories associated 

with the second step, and Item 24 had DSF between two latent classes at both steps. However, 

the simulation study in Section III suggests that the mDP version of the DDP-RM might not be 

capable of detecting DIF or DSF given the conditions of the simulation study. The one instance 

in which a bimodal density appeared corresponded to an item that was supposed to be free of 

DSF, though in all other instances, the posterior densities for the random category steps were 

unimodal with fairly small variances. The question then arises, are the densities in Figure 16 also 

an anomaly, or do Items 23 and 24 indeed have DSF across two latent classes. If the latter, then 

another question arises. Was the 1-logit difference used for the DSF effect and the sample size 

conditions in the simulation study large enough for the mDP model to identify the latent classes 

contributing to DSF in an item?  

If indeed the DSF effect and/or sample size played a role the mDP model’s lack of ability 

to detect the DSF items in the simulation study presented in Chapter III, this issue could be 

analogous to power in detecting a statistically significant difference between two group means, 

such as via a t-test. To explore this possibility, I performed two follow-up analyses. The first 

analysis involved examining how the frequency distribution of the data corresponding to DSF 

items changed as a function of sample size and DSF effect. The second follow-up analysis 

involved generating marginal posterior mean estimates of the mixing distributions for the 

category steps based on data generated under a wider condition of sample sizes and DSF effects. 
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Frequency Distribution of the Data 

For this portion of the analysis, the person abilities were assumed to be unidimensional 

and were drawn from a normal distribution with a mean of 0 and variance of 2.25. The sample 

size conditions consisted of 500; 1,000; 2,000; and 3,000. The other condition that varied was the 

DSF effect between two groups (with the sample size divided equally between the two groups). 

One item had DSF, with the following effects sizes: 1-, 2-, 2.5-, 3-, and 3.5-logit difference. 

Within each of the four sample sizes by six DSF conditions, I generated 1,000 data sets and 

averaged the frequencies. Each data set consisted of 3-point rating scale (k = 0, 1, or 2) generated 

for 10 items. The first nine items were free of DSF and the 10th item had DSF in the second step. 

The generating values for the ten items are in Table XX. The value presented in the table 

corresponding to Item 10’s second step is the overall step value for the two groups. For a given 

DSF effect, the effect was divided by two and then subtracted from this overall step value for 

Group 1’s generating step value and added to this overall step value for Group 2’s generating 

step value. For example, when the DSF effect was 2, Group 1’s generating step value was –0.50 

and Group 2’s generating step value was 1.50.  

The average frequencies across the 1,000 generated data for Item 10 (the DSF item) are 

in Table XXI. Because the DSF resided in the second step, the key values are in the rows 

corresponding to category 2. When N = 500, under the 1-logit DSF condition, the difference in 

average frequencies of a score of 2 between the two groups was 44. This difference in frequency 

in the categories corresponding to where the DSF lies could be the reason why the mDP model 

could not identify the problematic items through the marginal posterior predictive densities for 

the item category steps. When the DSF effect was 1-logit, the difference in the sheer number of 

persons generated with values corresponding to category 2 between the two groups progressively 
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TABLE XX 
 
GENERATING CATEGORY STEP VALUES FOR THE ITEMS USED IN BOTH FOLLOW-
UP ANALYSES 

Item Step 1 Step 2 
1 –2.30 –1.30 
2 –1.85 –0.85 
3 –1.30 –0.30 
4 –0.90   0.10 
5 –0.50   0.50 
6 –0.10   0.90 
7   0.30   1.30 
8   0.85   1.85 
9   1.30   2.30 
10 –1.50 Group 1 = 0.50 – (DSF effect/2) 

Group 2 = 0.50 + (DSF effect/2) 
Note. The DSF resided in the second step of Item 10. The value of 0.50 was the overall starting 
value for the two groups. When the DSF effect was 2, Group 1’s generating value was –0.50 and 
Group 2’s generating value was 1.50.  

 

 

 

 

increased as the sample size increased. For instance, when N = 1,000, the difference increased to 

78. When N = 2,000, the difference increased to 148. Finally, when N = 3,000, the difference 

increased to 240. This trend of difference in the frequency of scores between the two groups as a 

function of sample size appeared under different DSF effect conditions as well. 

Within each sample size condition, the difference between two groups with respect to 

frequency of scores of 2 also increased as the DSF effect increased. When N = 500, there was a 

difference of 115 in frequency of scores of 2 between the two groups when the DSF effect was 3 

logits, and the difference increased to 130 when the DSF effect increased to 3.5 logits. This  
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TABLE XXI 

AVERAGE FREQUENCY DISTRIBUTION (PROPORTION WITHIN GROUP IN 
PARENTHESES) OF GENERATED RESPONSES BY GROUP AS A FUNCTION OF 
SAMPLE SIZE AND DSF EFFECT 

    DSF Effect 
N Group Category  DSF Free  1 Logit  2 Logits  2.5 Logits  3 Logits  3.5 Logits 

500 

 0   50 (.20)   46 (.18)   42 (.17)   40 (.16)   38 (.15)   35 (.14) 
1 1  100 (.40)   84 (.34)   68 (.27)   61 (.24)   54 (.22)   47 (.19) 
 2  100 (.40)  120 (.48)  140 (.56)  149 (.59)  158 (.63)  167 (.67) 
 0   52 (.21)   55 (.22)   57 (.23)   58 (.23)   59 (.24)   60 (.24) 

2 1  103 (.41)  119 (.48)  134 (.54)  141 (.57)  148 (.59)  153 (.61) 
 2   95 (.38)   76 (.30)   58 (.23)   50 (.20)   43 (.17)   37 (.15) 

1000 

 0  110 (.22)  103 (.21)   95 (.19)   91 (.18)   86 (.17)   81 (.16) 
1 1  200 (.40)  168 (.34)  138 (.28)  123 (.25)  109 (.22)   96 (.19) 
 2  190 (.38)  229 (.46)  267 (.53)  286 (.57)  304 (.61)  322 (.64) 
 0  108 (.22)  114 (.23)  118 (.24)  121 (.24)  122 (.24)  123 (.25) 

2 1  204 (.41)  235 (.47)  265 (.53)  278 (.56)  290 (.58)  302 (.60) 
 2  188 (.38)  151 (.30)  117 (.23)  102 (.20)   88 (.18)   75 (.15) 

2000 

 0  215 (.22)  200 (.20)  184 (.18)  175 (.17)  164 (.16)  154 (.15) 
1 1  412 (.41)  348 (.35)  285 (.28)  254 (.25)  227 (.23)  200 (.20) 
 2  373 (.37)  452 (.45)  531 (.53)  571 (.57)  609 (.61)  646 (.65) 
 0  216 (.22)  226 (.23)  235 (.23)  240 (.24)  242 (.24)  245 (.24) 

2 1  406 (.41)  470 (.47)  530 (.53)  556 (.56)  582 (.58)  606 (.61) 
 2  379 (.38)  304 (.30)  235 (.24)  204 (.20)  176 (.18)  150 (.15) 

3000 

 0  329 (.22)  308 (.21)  282 (.19)  268 (.18)  254 (.17)  238 (.16) 
1 1  615 (.41)  519 (.35)  424 (.28)  380 (.25)  337 (.22)  297 (.20) 
 2  556 (.37)  674 (.45)  794 (.53)  852 (.57)  909 (.61)  965 (.64) 
 0  332 (.22)  350 (.23)  363 (.24)  369 (.25)  373 (.25)  378 (.25) 

2 1  622 (.41)  716 (.48)  801 (.53)  839 (.56)  877 (.58)  908 (.61) 
 2  546 (.36)  434 (.29)  335 (.22)  292 (.19)  250 (.17)  214 (.14) 

Note. One item was treated as having DSF. Values are averaged across 1,000 data sets. The DSF 
effect was in the step separating categories 1 and 2. 
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pattern appeared with other sample sizes as well. These frequencies indicate the role sample size 

and DSF effect size play in the number of persons being impacted by DSF. 

Posterior Mean Estimates of the Mixing Distribution for the Category Steps  

Within each of the sample size (500; 1,000; 2,000; and 3,000) by DSF effect (2-, 2.5-, 3-, 

and 3.5-logit difference) conditions, I analyzed a simulated data set generated for the previous 

section with the mDP model. I assigned the same proper priors on the estimated parameters of 

the mDP model that were assigned in the simulation study in Section III and the analysis of real-

life data sets in Section IV. That is, 
  
θt ~ normal 0,σθ

2( )  with  σθ
2 ~ ig .1,.1( ) ; 

   
τ h j( ) ~ind normal2 µ j ,.5I2( ) , where 

   
µ j ~ normal2 0,25I2( ) ; and    υh x( ) ~ind beta 1,α( ) , where α  

was set to 2.  Nmax was set to 50. I ran the MCMC sampling algorithm for 110,000 sampling 

iterations in order to perform Bayesian posterior estimation. I discarded the first 50,000 samples 

(i.e., burn-in period) and saved every third sample thereafter for a total of 20,000 MCMC 

samples that were used for posterior inferences. 

I examined the (marginal) posterior mean density estimates of 
   
Gx τ1 x( )( )  and 

   
Gx τ 2 x( )( )  

to determine whether the mDP model was capable of detecting DSF between two latent classes 

as the sample size increased, holding the DSF effect constant, and as the DSF effect increased, 

holding the sample size constant. All items were treated as random for this portion of the study. 

Figure 17, 18, 19, 20, and 21 contain the marginal posterior densities of the category steps for 

Item 10 (the DSF item) for each sample size when the DSF effect between the two groups in the 

second step was 1, 2, 2.5, 3, and 3.5 logits, respectively. 
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Figure 17. The marginal posterior mean density estimates of the rating category steps for Item 10 
(the DSF item) by sample size for the data sets corresponding to a 1-logit DSF effect in the 
second step. 
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Figure 18. The marginal posterior mean density estimates of the rating category steps for Item 10 
(the DSF item) by sample size for the data sets corresponding to a 2-logit DSF effect in the 
second step. 
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Figure 19. The marginal posterior mean density estimates of the rating category steps for Item 10 
(the DSF item) by sample size for the data sets corresponding to a 2.5-logit DSF effect in the 
second step. 
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Figure 20. The marginal posterior mean density estimates of the rating category steps for Item 10 
(the DSF item) by sample size for the data sets corresponding to a 3-logit DSF effect in the 
second step. 
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Figure 21.	
  The marginal posterior mean density estimates of the rating category steps for Item 10 
(the DSF item) by sample size for the data sets corresponding to a 3.5-logit DSF effect between 
two groups in the second step.	
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 The posterior densities across these five figures indeed suggest that, as sample size and 

the DSF effect increases, the effectiveness of the posterior densities to capture the correct 

number of latent classes contributing to DSF increases. When the DSF effect was 1 logit, the 

posterior density of the category step infected with DSF only became nonnormal when the 

sample size reached 3,000, and even then, the density was not truly bimodal. When the DSF 

effect was 2 logits (Figure 18), at N = 500, the posterior density for the second step was still 

unimodal, thus indicating that DSF was not present in this step. As the sample size increased, 

however, the variability in the posterior densities corresponding to the second step increased, 

with the density corresponding to N = 2,000 showing slight bimodality and N = 3,000 displaying 

a slightly more defined bimodal form. The densities in this figure suggest that, for a DSF effect 

of 2 logits between two groups, a sample size of 500 is not large enough for the mDP model to 

detect the DSF. However, as the sample size increases, the marginal posterior predictive 

densities of the mixing distributions that the mDP model produces becomes more effective at 

capturing the DSF, with the number of modes corresponding to the number of latent classes 

contributing to the DSF. Within this DSF condition, the posterior densities corresponding to the 

first step were unimodal, which should be the case because the first step was free of DSF. This 

general pattern held for each DSF condition, as indicated by the five figures. The exception 

occurred in the posterior density corresponding to the first step for N = 2,000 and DSF condition 

of 3.5 logits (Figure 21). The density for this step had a slight bimodal form, but one mode was 

definitely larger than the other, thus suggesting that one value could still be appropriate to 

represent the data corresponding to the step. This density’s bimodal form did not resemble the 

bimodal form depicted in the density corresponding to the second step. This shape could also 

represent the random data generating process for this data set.  
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 The densities in Figure 17, 18, 19, 20, and 21 indicate the role DSF magnitude plays in 

the mDP model’s ability to identify DSF items, controlling for sample size. The densities 

corresponding to the sample size condition of N = 500 across these five figures reveal that, as the 

DSF effect increased, the variability in the density corresponding to the second step also 

increased. In fact, for N = 500, when the DSF effect reached 3 logits, the density for the second 

step was slightly bimodal (Figure 20), and at an effect of 3.5 logits, the density for the second 

step was clearly bimodal (Figure 21). The general pattern of the form of the density becoming 

bimodal as the DSF effect increased occurred in the other sample size conditions as well. 

 The follow-up analyses show that the marginal posterior predictive densities of the 

mixing distributions produced by the mDP model can identify when DSF occurs between two 

latent classes, given that a certain DSF effect and/or sample size is reached. The follow-up 

analyses also indicate that the difference in the actual frequency of persons corresponding to a 

category score associated with the DSF step between the two groups (compared to difference in 

proportional distribution between the two groups) is more important. This is supported by the 

finding that, as the sample size increased, the DSF effect appeared in the posterior densities. 

Recall that, for the DSF item, the proportion of cases receiving a score associated with the step 

where the DSF resided remained relatively the same across the sample size condition (see Table 

XXI). Yet, the increase in sample size, which corresponded to an actual difference in average 

frequency of cases receiving a score associated with the step where the DSF existed, led to an 

improvement in the density reflecting the DSF condition.  
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VI. DISCUSSION 

Summary 

The work performed in this thesis was undertaken to address issues related to examining 

the technical properties of rating scale items for invariance across subgroups of persons. In 

Chapter 1, I distinguished between DIF and DSF, two forms of item property noninvariance. An 

item is said to have DIF when group membership (either known or latent) equally affects all 

category steps for an item. DSF, on the other hand, occurs when group membership has a 

differential effect on the category steps within an item. This differential effect is what makes 

examining items for DSF more challenging than examining items for DIF. To detect DSF, each 

category step must be examined within an item.  

I then reviewed the common approaches within IRT used to examine items for DIF and 

DSF. The traditional approach within IRT is to include group membership information (e.g., 

gender or race) into the model to examine the effect of such variable(s) on the category steps. 

Unfortunately, this approach requires some decision on the manner in which a common metric 

across all groups examined is established (e.g., anchoring on a subset of items), and the chosen 

method could have ramifications on the effectiveness in detecting DIF/DSF (Thissen, Steinberg, 

& Gerrard, 1986; Thissen, Steinberg, & Wainer, 1988; Wang, 2004; 2008). This approach also 

ignores the possibility that latent groups, or latent classes, are present in the data that could also 

be contributing to DIF/DSF.  

Finite-mixture IRT models were developed to address the issues of detecting when 

DIF/DSF occurs across latent classes. Unfortunately, these models require the number of mixture 

components to be specified to a finite value, the same number of mixture components are used to 

describe the data for all items, and this number is assumed to apply across all ability dimensions 
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when the latent trait space is multidimensional. Such assumption can easily be violated, such as 

when a subset of items is free of DIF/DSF while another subset has DIF/DSF across three racial 

groups. In the data corresponding to the first subset of items, only one mixture component needs 

to be specified while in the data corresponding to the second subset of items, three mixture 

components are required. This assumption can also be inappropriate when the set of items that 

measures one dimension of the latent trait space is free of DIF/DSF while the set of items that 

measures another dimension of the latent trait space has DIF/DSF. 

These limitations with the multiple-group and finite-mixture IRT models in performing 

DSF analysis is what inspired the introduction of a new type of Bayesian nonparametric IRT 

model within the DDP-RM framework. In the model presented in this study, the covariate-

dependent mixing distribution is formed via an mDP. The mDP model does not require group 

membership to be known. That is, it seeks to identify latent classes that could be contributing to 

DIF/DSF in an item. It does so without assuming that the same set of mixture components form 

the mixing distribution of the category steps across all items, which addresses the limitation of 

the finite-mixture IRT models. Another benefit of forming the mixing distribution via the mDP, 

and DDP in general, is that the mixing distribution can take on different forms, such as unimodal 

with small variance and bimodal with very large variance (which would be the case when an 

item has DSF between two groups), and the mixing distribution can vary across a set of 

covariates. This approach does not make the assumption that the true form of the distribution of 

each the category step is normally distributed, which many parametric random effects models 

make. Another feature of the mDP model is that it does not require a common set of items to 

serve as anchor items to establish a common metric across possible known or latent groups, as 

often done with the multiple-group and finite-mixture IRT models. The hyper priors for the 
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mixing distribution establish a link across all persons, which in turn leads to a link across all 

latent classes. Because a subset of items do not have to serve as anchors, the mDP model can 

simultaneously examine all items for DSF rather than only those items that do not serve as 

anchors. 

The simulation study in Chapter III, the analysis of real-life data sets in Chapter IV, and 

the follow-up analyses in Chapter V display the conditions under which the mDP model can 

identify when DSF in a category step occurs across two latent classes. As the simulation study in 

Chapter III showed, the mDP model outperformed the other traditional IRT models in terms of 

predictive performance of the data. In this portion of the simulation study, data sets were 

generated to reflect conditions in which none of the items had DSF while other data sets were 

generated to have DSF for a subset of items. After accounting for model complexity, the mDP 

model was a better fit for the data than the other used to analyze the data in this simulation study, 

which included a finite-mixture IRT model. Unfortunately, given the simulation conditions, the 

posterior predictive densities for the category steps did not flag the items that had DSF, as others 

have found (Fujimoto & Karabatsos, 2014). There are a few possible reasons for this discrepancy 

in findings. First, in the other study, the DSF item had a 2-logit difference between two groups 

while in the simulation study performed in Chapter III, the effect was 1-logit difference. Second, 

the other study subjected only two items to the covariate-dependent infinite mixtures while in the 

present study, all items were treated as random. Third, the other study generated data for 3,000 

cases while the largest number of cases in this portion of the study was 800. Finally, the mixing 

distributions were formed through different processes: the other study relied on a modified 

version of the local DP while this study utilized the mDP. 
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The mDP model’s lack of ability to detect the DSF item within the given conditions in 

Chapter III and greater predictive performance of the simulated data in relation to the 

comparison models suggest that the gains in predictive performance was most likely because the 

mDP model accounted for the random variation that occurs in the response process by treating 

the category steps as random.  

Based on the analysis of the real-life data sets, discrepancy in terms of predictive 

performance between the mDP model and the finite-mixture PCM appeared. The results of the 

AFD data analysis revealed that the 3-mixture PCM bested the mDP model with respect to 

predictive performance after accounting for model complexity. As previously noted, the finite-

mixture IRT models assume that the specified number of latent classes in the data applies across 

all items, which is a limitation when the number of latent classes actually varies across items. 

This assumption is actually appropriate when the same number of specified latent classes is 

present in the data for all items. It could be the case, then, that three latent classes indeed are 

present in the AFD data for all items, which would make the 3-mixture PCM the most 

appropriate. Although the mDP model accounts for the random process in the response process, 

which could be why the goodness of fit (GF) is better for the mDP (GF = 2,281) than the 3-

mixture PCM (GF = 2,470) (please see Table XVIII), the mDP model incorporates many more 

parameters to accomplish this goodness of fit than the finite-mixture PCM, which is reflected in 

the penalty term. The mDP model and the 3-mixture PCM had penalty terms of 3,114 and 2,720 

units, respectively. These results possibly suggest that, if the assumptions of the finite-mixture 

IRT models are met, then the added complexity of the mDP model does not lead to greater 

predictive gains.  
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Another finding that resulted from the analysis of the AFD data is that the posterior 

predictive densities of the category steps for Items 23 and 24 followed a bimodal form rather 

than a unidimensional distribution with small variance. These bimodal densities were similar to 

the density for one item’s steps in the simulation study in Chapter III, though that item was a 

DSF item. The results of the simulation study in Chapter III and the analysis of the real-life data 

sets in Chapter IV led to the question, are the bimodal densities that the mDP model produced 

during the analysis of the AFD data because the items had a large enough DSF for the densities 

to capture or was a false positive observed with the one density in Chapter III?  

As previously noted, others showed that the marginal posterior mean predictive density 

of the mixing distribution was capable of revealing DSF when the magnitude of the DSF was 2 

logits. Thus, it is possible that the magnitude of the DSF for these items in the AFD data was 

sufficient for the posterior densities to capture the DSF effect, while the magnitude of 1-logit 

difference between two groups used in the simulation study in Chapter III was insufficient. Thus, 

to gain a better understanding of the role the magnitude of the DSF and sample size plays in the 

mDP model’s ability to detect when DSF occurs between two latent classes, I performed follow-

up simulation studies for which the results were presented in Chapter V.  

The follow-up analyses in Chapter V highlighted the two variables that play a role in 

whether the posterior predictive densities of the category steps can correctly reflect the DSF 

condition. Holding sample size constant, as the magnitude of the DSF increased, the variability 

in the densities increased and the form became bimodal; and holding the DSF effect constant, as 

the sample size increased, the variability in the densities also increased and the form also became 

bimodal. These findings indicate that the posterior predictive densities produced with the mDP 

model can indeed detect DSF in an item, given that a certain magnitude of DSF or sample size is 
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met. It accomplishes this without having to specify the number of latent classes and not 

restricting the same mixture components to describe the data across all items. The finding of the 

role of sample size and magnitude of DSF is analogous to the issue of power in detecting a 

statistically significant difference between two group means, such as through a t-test. In other 

words, when the mean difference between two groups is constant, a larger sample size increases 

the chances of obtaining a statistically significant difference. Likewise, for a given sample size, 

as the difference in two group means increases, so does the probability of detecting a statistically 

significant difference between the two groups.  

Another finding from the follow-up analyses is that the sheer number of persons affected 

by the DSF appears to play a greater role than the proportion of persons within group that are 

affected by the DSF, as the average of the frequencies of scores for the DSF item suggest. That 

is, between the two groups, the sheer difference in the number of persons receiving scores 

associated with the categories where the DSF resides after controlling for ability level(s) appears 

to be a factor. This echoes the previous findings of the role sample size plays as a function of 

DSF effect. As the numbers corresponding to the categories differ between the two groups, more 

information is provided to estimate the posterior densities, which in turn is a likely reason why 

the densities corresponding to the DSF items move away from normality as the sample size 

increases, holding the DSF effect constant and the effect is not 0. 

Limitations of the Study 

 Although the mDP model showed that it could identify the items with DSF, some 

limitations of the study should be noted. The generating item category step values used in the 

simulation portions of this study (Chapter III) were targeted to the ability distribution rather than 

randomly generating the values in order to study the effectiveness of the mDP model in detecting 
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the problematic items. In the follow-up analyses (Chapter V), the generating values for the 

category steps were also matched to the ability distribution. That is, the average value for the 

second step, which was where the DSF resided, was near the mean of the ability where most of 

the cases belonged. Also, this study only examined whether the mDP model could detect DSF 

when the rating scale contained three categories. The simulation conditions in this study 

consisted of DSF between two latent classes. In real applications, it is likely that some items 

could have DSF across three or more latent classes. Finally, this study did not explore whether 

latent classes exist within known groups. In real world applications, it is often of interest to 

examine whether gender contributes to DSF in an item, and it could be of interest to determine 

whether latent classes within each gender contribute further to DSF in an item. The mDP model 

presented here is general enough to accommodate such known group characteristics, but this 

aspect was not explored.  

Future Directions and Modeling Extensions 

In the immediate future, the issues noted as limitations could be addressed. That is, the 

item parameters can be randomly generated and then the effectiveness of detecting the DSF 

items through the posterior predictive densities of the category steps produced with the mDP 

model could be investigated. Additionally, the effectiveness of the mDP model in detecting 

problematic items could be examined when the category step where the DSF resides is off target 

from the mean of the person ability distribution. For instance, the starting point for the 

generating category step (i.e., the average of the generating category step value for the two 

groups) where the DSF resides could be two standard deviations above the mean of the ability 

distribution. In this case, given the findings in the follow-up simulation portion of this study 

(Chapter V), an even larger sample size should be required before the posterior densities can 
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capture the DSF compared to when the average generating step value is near the mean of the 

ability distribution. That is because, as the category step value moves away from the mean of the 

ability distribution, fewer cases within each group will be assigned to the categories separated by 

this step. Recall that the follow-up analyses suggest that the sheer difference in the number of 

cases assigned to the categories corresponding to the DSF plays a factor. Given that fewer 

persons will receive scores associated with a category step that is further away from the mean of 

the ability distribution, a larger sample size should be required before the difference in the 

number of cases receiving the scores corresponding the step where the DSF resides reaches a 

level where the posterior density could reveal the DSF.  

In addition to addressing these limitations, another possible investigation could include 

examining whether the mDP model is more effective at recovering the generating ability values 

compared to other traditional IRT model when the DSF effect is strong enough so that the 

posterior predictive densities indicate the presence of DSF. For this thesis, the recovery of the 

generating ability values was only explored under conditions when the DSF could not be 

detected through the posterior densities (Chapter III). The recovery of the generating values was 

not explored in the follow-up analyses (Chapter V), where the DSF could be detected. It is 

possible that, when the densities can reveal the DSF effects, gains in recovery of the generating 

ability values could be achieved with the mDP model compared to the traditional IRT models 

included in this study. 

With respect to modeling extensions to the mDP model, one possibility is to allow the 

true form of the ability distribution to be modeled nonparametrically. In this study, a normal or 

multivariate normal distribution was chosen as the prior for the true distributional form of the 

abilities. Within the mDP specification of the DDP-RM, another DP could be assigned on the 
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distribution of abilities 
  
i.e., θt ~ DP α ,G0θ( ),  with G0θ

= normal 0,σθ
2( )( )  or a DDP when the 

abilities are multidimensional 
   
i.e., θ t ~ DDP α x ,Gx0θ( ),  with Gx0θ

= normalQ 0,Σθ( )( ) , where Q is 

the number of dimensions in the latent trait space. Within the mDP model, assigning a DP prior 

on the distribution of abilities would keep the mixing distribution independent from the mixing 

distributions of the category steps. That is, the ability side and the item side will remain 

independent from each other, which would be consistent with IRT models that assume an 

additive effect between the ability and item parameters. The utility of modeling the abilities 

nonparametrically is that, in most real life applications, the means of the abilities for the latent 

classes should differ, and this difference should be taken into consideration. Failing to do so 

could have grave implications for detecting DIF/DSF items (Thissen, Steinberg, & Gerrard, 

1986; Thissen, Steinberg, & Wainer, 1988; Wang, 2004; 2008). Modeling the ability distribution 

nonparametrically could account for variation in the ability means across the latent classes while 

examining the item category steps for DSF.  

Another possible future study could be to form more flexible weights for the infinite 

mixtures, which would lead to a covariate-dependent infinite-mixture IRT model that falls 

outside of the DDP framework. The reason to pursue this avenue is that, as the simulation study 

in Chapter V indicates, for smaller sample sizes, a very large DSF effect is required (e.g., about 2 

times the standard deviation of the ability distribution for a sample size of 500). More flexible 

mixture weights could lead to a model that detects DSF across latent classes when the effect is 

weaker (e.g., 1 times the standard deviation of the ability distribution) and the sample size is 

smaller. The mixture weights in this study follow the stick-breaking weights proposed by 

Sethuraman (1994), and with these stick-breaking weights, a mixing distribution that follows a 
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DP can be formed. These stick-breaking weights could be restrictive in that they place higher 

support on the earlier mixture components compared to later components. This emphasis on the 

earlier components could be limiting a model in detecting DSF items when the effect and sample 

sizes are small. A mixture weight that relaxes this downward support on the latter mixture 

components could provide advantages, as Karabatsos and Walker (2012a) have shown with their 

mixture weights that are based on an infinite-ordered probits regression model with covariate 

dependence in the mean and variance.  

A different type of mixture weight could possibly place support on nonconsecutive 

mixture components or support the range of the mixture components equally rather than 

following a progressively decreasing support on later mixture components as the stick-breaking 

weights do. This type of mixture weight could possibly be formed within the normalized random 

measures framework (James, Lijoi, & Prünster, 2009; Lijoi, Mena, & Prünster, 2005, 2007; 

Regazzini, Lijoi, & Prünster, 2003).  

Conclusions 

Examining whether the technical properties of educational and psychological test items 

are invariant across subgroups of persons (known or latent) is good practice. When the properties 

of an item are noninvariant across subgroups, it suggests that the characteristic(s) that describe 

the subgroups (e.g., gender and race) are part of the response process for that item. The 

implication of having a test comprised of noninvariant items is that the same test score does not 

represent the same level of the construct of interest across the groups, thus preventing direct 

comparison of individuals from different subgroups unless statistical adjustments are made to the 

test scores first. However, in order to make statistical adjustments to the scores, the problematic 

items must be identified.  
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 Identifying noninvariant rating scale items (i.e., items that are polytomously scored) 

comes with an additional challenge that is not faced when the items are dichotomously scored. 

That is, with rating scale items, the person characteristic does not have to affect all scores 

equally. It could affect only a subset of scores, it could have a differential effect on all scores or 

it could affect all scores equally. Thus, with rating scale items, each category step should be 

examined by performing a differential step functioning (DSF) analysis. The mDP model, which 

is a Bayesian nonparametric IRT model introduced in this thesis, shows promise as a tool to 

perform such analysis. When certain conditions are met, the model is effective at identifying 

problematic rating scale items with category steps that have DSF across latent classes. It 

accomplishes this without having to specify the number of latent classes, allows the mixture 

components to vary across items, and all items can be treated as random, thus testing all items 

simultaneously. The potential of this model’s approach to identifying DSF appears promising. 
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