
Open Classification and Change Detection in the Similarity Space

by

Geli Fei
B.S., Software Engineering, Harbin Institute of Technology, 2011

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2017

Chicago, Illinois

Defense Committee:
Bing Liu, Chair and Advisor
Barbara Di Eugenio
Piotr Gmytrasiewicz
Philip S. Yu
Jalal Mahmud, IBM Research - Almaden

This thesis is dedicated to my family, teachers and friends.

ii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my Ph.D. advisor Professor Bing Liu for his dedi-

cation, encouragement and support during all of my Ph.D. years. Working with him to pursue

my Ph.D. degree is my greatest honor. This dissertation and all my Ph.D. research would not

have been done without his guidance and advice. His enthusiasm in pursuing unexplored areas

in academic research, his kindness to his students, and his dedication to his family have always

inspired me. I will always be grateful to his mentoring and advising without any reservation.

I would also like to thank Professor Philip S. Yu, Professor Barbara Di Eugenio, Professor

Piotr Gmytrasiewicz and Doctor Jalal Mahmud for their valuable time. Their constructive

comments and suggestions contributed a lot to this thesis. Special thanks to Professor Philip

S. Yu and Doctor Jalal Mahmud, who have helped me in many ways during my Ph.D. study.

During my Ph.D. study, I have been fortunate enough to make many friends, who not only

helped me through discussions and collaborations, but also made my Ph.D. life enjoyable and

less stressful. I wish them all the best in pursuing their current studies and future careers.

Last but not least, I would like to thank my family for their unconditional love and support.

I have been blessed to be born and raised up in a warm family, which gives me freedom to pursue

my life in every aspect with full support and understanding. I want to thank my parents and

grandparents for everything they have given to raise me up to the way I currently am.

GF

iii

CONTRIBUTION OF AUTHORS

Chapter 2 presents a published manuscript (Fei and Liu, 2015) for which I was the primary

author. My advisor Professor Bing Liu contributed to the discussions about the ideas and

assisted in revising the manuscript.

Chapter 3 presents a published manuscript (Fei and Liu, 2016) for which I was the primary

author. My advisor Professor Bing Liu contributed to the discussions with respect to the

preliminary ideas and helped revise the manuscript.

Chapter 4 presents a published manuscript (Fei et al., 2016) for which I was the primary

author. Shuai Wang and my advisor Professor Bing Liu contributed to the discussions about

the preliminary ideas and assisted in revising the manuscript.

Chapter 5 presents a manuscript under review (Fei et al., 2017) for which I was the pri-

mary author. Shuai Wang, my advisor Professor Bing Liu, and Professor Leman Akoglu all

contributed to the discussions about the ideas and helped revise the paper.

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Text Classification under Negative Covariate Shift 2
1.2 Open World Classification . 3
1.3 Cumulative Learning . 4
1.4 Detecting Changed-Hands Online Review Accounts 5

2 TEXT CLASSIFICATION UNDER NEGATIVE COVARIATE
SHIFT . 6
2.1 Introduction . 6
2.2 Related Work . 10
2.3 Center-based Similarity Space Learning 14
2.3.1 Basic Idea . 15
2.3.2 CBS Learning . 17
2.3.3 Features . 19
2.3.4 CBS Learning for Negative Covariate Shift 20
2.4 Experiments . 21
2.4.1 Dataset . 22
2.4.2 Baselines . 22
2.4.3 Kernels and Parameters . 23
2.4.4 Results . 25

3 OPEN WORLD TEXT CLASSIFICATION 29
3.1 Introduction . 29
3.2 Related Work . 32
3.2.1 SVM Decision Score Calibration 32
3.2.2 Open Space Risk Management 34
3.2.3 Multi-class Semi-supervised Learning 35
3.3 Proposed Method . 35
3.3.1 Open Space Risk Formulation 36
3.3.2 CBS Learning for rO Estimation 38
3.3.3 Final Open World Classifier . 39
3.4 Experiments . 40
3.4.1 Baselines . 40
3.4.2 Datasets . 43
3.4.3 Experiment Settings . 43
3.4.4 Results and Discussion . 45

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4 CUMULATIVE LEARNING . 50
4.1 Introduction . 50
4.2 Related Work . 55
4.2.1 Lifelong Machine Learning . 55
4.2.2 Online and Incremental Learning 56
4.3 Cumulative Learning . 57
4.3.1 Training a Cumulative Classification Model 57
4.3.2 Final Classification Model . 61
4.4 Evaluation . 61
4.4.1 Datasets . 61
4.4.2 Baselines . 62
4.4.3 Experimental Settings . 63
4.4.4 Classification Results . 64
4.4.5 Running Time Analysis . 66
4.4.6 Qualitative Analysis of Cumulative Learning 70

5 DETECTING CHANGED-HANDS ONLINE REVIEW ACCOUNTS 72
5.1 Introduction . 72
5.2 Related Work . 76
5.2.1 Opinion Spam Detection . 76
5.2.2 Tracking Linguistic Evolution 78
5.2.3 Change Point Detection . 78
5.3 Proposed Method . 79
5.3.1 The Overall Algorithm . 79
5.3.2 Features and Similarity Metrics 82
5.3.3 Pivot-Level Feature Selection . 83
5.3.4 Change Point Detection . 86
5.3.5 Two-Round Voting . 88
5.4 Experiments . 89
5.4.1 Datasets and Evaluation Metrics 89
5.4.2 Baselines . 91
5.4.3 Parameter Settings . 92
5.4.4 Results and Analysis . 93

6 CONCLUSIONS . 98

APPENDICES . 101

CITED LITERATURE . 105

VITA . 117

vi

LIST OF TABLES

TABLE PAGE
I Result summary for 50 topics. 26
II Complete results for 40 topics under the combined setting. 27
III Open classification results on the Amazon dataset. 46
IV Open classification results on the 20newsgroup dataset. 47
V 10 chosen domains in 20newsgroup for analysis. 48
VI Results on example classes vs. unknown classes. 48
VII Open classification results on the Amazon dataset. 65
VIII Open classification results on the 20newsgroup dataset. 65
IX Negative classes selected by CL-1-vs-rest-SVM and CL-cbsSVM. . 70
X Results of CH detection on the Amazon accounts. 93
XI Results of CH detection on the Yelp accounts. 94
XII Effect of varying y under evalcp on the Amazon accounts. 96
XIII Effect of varying y under evalcp on the Yelp accounts. 96

vii

LIST OF FIGURES

FIGURE PAGE
1 CBS Learning vs. DS Learning . 21
2 Illustration of the positively labeled open space. 37
3 Cumulative learning efficiency analysis. 67
4 Five main steps of CHAD. 79
5 Sample similarity sequences in an Si. 85

viii

SUMMARY

Text categorization has developed into one of the key techniques for handling and organizing

text data. However, the rapid emergence of new topics and the highly diverse nature of online

text data have brought new challenges to existing classification techniques. Among many, one

of the main challenges is their lack of ability in handling unseen classes of documents due to

the closed world assumption that has been commonly made by existing techniques. Under this

assumption, all test classes are assumed to be known at training time. However, a more realistic

scenario is to expect unseen classes during testing (open world). In this case, the goal is to

design a learning system that classifies documents of the known classes into their respective

classes and also to identify documents from unknown classes. This problem is called open

(world) classification. In this thesis, we first study three closely related research problems to

open classification.

We start with studying the problem of text classification under negative covariate shift (Fei

and Liu, 2015), which can be seen as a special case of open classification, because the covariate

shift in our setting is mainly caused by documents of unseen negative classes in testing. In order

to solve the problem, we propose a novel learning technique, called center-based similarity (CBS)

space learning. We show that in the similarity space, the covariate shift problem is significantly

mitigated.

Then, we proceed to study the general problem of open classification and study it from

an open space risk management perspective (Fei and Liu, 2016). In particular, we propose an

ix

SUMMARY (Continued)

open space risk formulation and employ our proposed CBS learning technique as the underlying

learner. Our method is able to significantly reduce the open space risk compared to existing

methods, and the proposed classifier achieves superior results to the state-of-the-art approaches.

Often times, being able to detect unseen classes/topics is still insufficient for a multi-class

classifier to handle the growing number of topics of interest of users. The detected unseen

classes also need to be incorporated into the existing classifier system with minimal effort.

Simply re-training the entire system from scratch is only feasible if the number of classes is

small. For this reason, we propose cumulative learning (Fei et al., 2016), where unseen classes

of documents are not only identified, but also added into the existing system in an efficient

manner. The proposed cumulative learning strategy, as a form of lifelong machine learning,

mimics the process of human concept learning and utilizes existing knowledge in helping learn

the new class of data.

One of the key techniques used in the above research is the transformation of documents

from the traditional n-gram document space to a similarity space to detect a special type of

change in the test class distribution, i.e., unseen classes, in the supervised setting. As the last

part of this thesis, we explore the use of similarity-based approaches in detecting a differnt type

of change in social media accounts, especially online review accounts, in an unsupervised setting.

In particular, we study the problem of detecting changed-hands (CH) online review accounts

(Fei et al., 2017). We propose a novel algorithm, called CHAD, which relies on transforming

a sequence of reviews in an account to a set of similarity sequences for CH accounts detection

and to estimate the change point.

x

CHAPTER 1

INTRODUCTION

Applications using social media data, such as reviews, discussion posts, and (micro) blogs

are becoming increasingly popular. Text classification, being a research topic for decades, has

developed into one of the most widely used techniques in helping people organize and collect

such data from the Web. However, the vast diversity and rapid emergence of new topics in

social media also have posed new challenges to existing text classification techniques. Among

many, one of the main challenges is their lack of ability in handling unseen classes of documents

because of one commonly made assumption by existing techniques, which says all classes in

testing have been seen at training time. However, such an assumption is often violated in

reality, which results in inferior classifiers. A more realistic scenario is to expect the unseen

classes during testing (open world), and the goal is to design a learning system that is able

to classify documents of the known classes into their respective classes and also to detect

documents from unseen classes. This problem is called open (world) classification. Compared

to research on classification with the closed world assumption, there is relatively less work on

open classification.

Thus, in this thesis, we focus on three research problems related to open classification, whose

core issue is the handling of unseen classes of documents.

• We first study a special case of the open classification problem, the goal of which is to

build a classifier system that is able to identify the documents of a particular topic of

1

2

interest from the Web. Due to the difference in training and test class distributions, the

problem is also known as covariate shift.

• Then, we proceed to study the general open classification problem, and propose a solution

from an open space risk management perspective.

• We propose and study the problem of cumulative machine learning for text classification,

as a new form of lifelong machine learning, where unseen classes of documents are not

only detected, but also cumulatively incorporated into the existing system in an efficient

manner.

One of the key techniques used in the above research is the transformation of documents

from their original document space to a similarity space to deal with a specific type of change in

the test class distribution, i.e., the appearance of unseen classes. As the last part of this thesis,

we explore the use of similarity-based approaches in detecting a type of change in social media

accounts, especially online review accounts, in an unsupervised setting. In particular, we study

the problem of detecting changed-hands online review accounts from a linguistic perspective.

In summary, this thesis consists of studies on the following four research problems:

1.1 Text Classification under Negative Covariate Shift

In Chapter 2, we focus on text classification under negative covariate shift. In a typical

social media content analysis task, a user is interested in analyzing posts of a particular topic.

Identifying such posts is often formulated as a binary classification problem. However, often

times the resulting classifier may not be satisfactory. There may be many reasons. One key

3

reason is the covariate shift problem. That is, the training data is not fully representative of

the test data.

We observed that in an application as we mentioned above, the covariate shift problem

mainly occurs in the negative data because topics discussed in social media are highly diverse

and numerous, although a user may label enough positive training data, the user-labeled nega-

tive training data may cover only a small number of topics, and many unseen negative classes

appear in testing. Thus, we assume that the covariate shift problem occurs mainly in the neg-

ative training and test data, and no or minimum covariate shift exists in the positive training

and test data, and thus we call it negative covariate shift as a special case of covariate shift.

We propose a novel technique to solve this problem. The key novelty of the technique is in

the transformation of document representation from the traditional n-gram feature space to

a center-based similarity (CBS) space. We found that in the CBS space, the covariate shift

problem is significantly mitigated, which enables us to build much better classifiers.

1.2 Open World Classification

In Chapter 3, we study the general problem of open world classification. Existing research

on multi-class text classification mostly makes the closed world assumption, which focuses on

designing accurate classifiers under the assumption that all test classes are known at training

time. In reality, this assumption is often violated, which results in inferior classifiers. A more

realistic scenario is to expect unseen classes during testing (open world). In this case, the goal is

to design a learning system that classifies documents of the known classes into their respective

classes and also to detect (reject) documents from unseen classes. This problem is called

4

open (world) classification. We approach the problem from an open space risk management

perspective by reducing the open space risk while balancing the empirical risk, and propose

to generalize the center-based similarity (CBS) space learning (or CBS learning) technique to

provide a novel solution to the problem.

1.3 Cumulative Learning

In Chapter 4, we go one step further from open classification and propose the problem of

cumulative machine learning in the context of text classification. In classic supervised learning

settings, a learning algorithm takes a training data consisting of a fixed number of classes to

build a classifier. We propose to study a new problem, i.e., building a learning system that

learns cumulatively. As time goes by, the system sees and learns more and more classes of data

and becomes more and more knowledgeable. We believe that this is similar to human learning.

We humans learn continuously, retaining the learned knowledge, identifying and learning new

things, and updating the existing knowledge with new experiences. Over time, we cumulate

more and more knowledge. A learning system should be able to do the same. As algorithmic

learning matures, it is time to tackle this cumulative machine learning (or simply cumulative

learning) problem, which is a kind of lifelong machine learning problem. It presents two major

challenges. First, the system must be able to detect data from unseen classes in the test set.

Second, the system needs to be able to selectively update its models whenever a new class of

data arrives without re-training the whole system from scratch using the entire past and present

training data. Chapter 4 proposes a novel approach and system to tackle these challenges.

5

1.4 Detecting Changed-Hands Online Review Accounts

In Chapter 5, we propose and study the problem of detecting changed-hands social media

accounts, especially online review accounts. Social media websites, especially review websites,

have become important platforms for people to express opinions towards different products or

services and to make purchase decisions. However, due to profits, such websites have become

the targets of various types of spammers with different agendas. With the advances of spam

filtering techniques, many types of spamming activities can be caught, which forces spammers

to resort to other strategies. Having a reputable account or one with a clean history can

be a good cover for spamming activities. In fact, it has become prevalent that spammers

buy/sell such accounts openly on the Web. We call these sold/bought accounts changed-hands

(CH) accounts. Such accounts, seemingly benign but having changed hands, exhibit behavioral

and/or linguistic changes. They are hard to detect by existing spam detection algorithms as

their spamming activities are under the disguise of clean histories or high reputation scores.

Chapter 5 proposes a novel algorithm to determine whether an account has changed hands and

estimate the change point.

CHAPTER 2

TEXT CLASSIFICATION UNDER NEGATIVE COVARIATE SHIFT

(This chapter was previously published as “Social Media Text Classification under Negative

Covariate Shift”, in The 2015 Conference on Empirical Methods on Natural Language Processing

(EMNLP’15) (Fei and Liu, 2015).)

2.1 Introduction

Applications using social media data, such as reviews, discussion posts, and (micro) blogs

are becoming increasingly popular. We observed from our collaborations with social science

and health science researchers that in a typical application, a researcher first needs to obtain

a set of posts of a particular topic that he/she wants to study, e.g., a political issue. Keyword

search is often used as the first step. However, that is not sufficient due to low precision and

low recall. A post containing the keyword “politics” may not be a political post while a post

that does not contain the keyword may be a political post. Thus, text classification is needed

to make more sophisticated decisions to improve accuracy.

For classification, the user first starts with manually labeling a set of relevant posts (positive

data) about the political issue and many irrelevant posts (negative data) not about the political

issue, and then builds a classifier by running a learning algorithm, e.g. SVM or näıve Bayes.

However, the resulting classifier is often times not satisfactory. There may be many reasons.

6

7

One key reason we observed is that the labeled negative training data is not fully representative

of the negative test data.

Let the user-interested topic be P (positive), and the set of all other irrelevant topics

discussed in a social media source be T = {T1, T2, ..., Tn}, which forms the negative data. n is

usually large. However, due to the labor-intensive effort of manual labeling, the user can label

only a certain number of training posts. Then the labeled negative training posts may cover

only a small number of irrelevant topics S of T (S ⊆ T) as negative. Further, due to the highly

dynamic nature of social media, it is probably impossible to label all possible negative topics.

In testing, when posts of other negative topics in T − S show up, their classification can be

unpredictable. For example, in an application, the training data has no negative examples about

sports. However, in testing, some sports posts show up. These unexpected sports posts may

be classified arbitrarily, which results in low classification accuracy. We propose a technique to

solve this problem in Section 2.3.

In machine learning, this problem is called covariate shift, a type of sample selection bias.

Classic machine learning assumes that the training and the test data are drawn from the same

distribution. However, this assumption may not hold in many real-world scenarios such as in our

case above, i.e., the training and the test distributions are different (Heckman, 1977; Shimodaira,

2000; Zadrozny, 2004; Huang et al., 2006a; Sugiyama et al., 2008; Bickel et al., 2009). There is no

general solution for the sample selection bias problem because the training and test distributions

can be very different from each other (Li et al., 2010). Thus, researchers attempted to deal with

special cases of the problem by making different assumptions. One commonly made assumption,

8

which leads to the covariate shift problem, says that the conditional distribution of the class

label given a data point is identical in the training and test data (Shimodaira, 2000; Bickel et

al., 2009).

In this chapter, we focus on a special case of the covariate shift problem. We assume

that the co-variate shift problem occurs mainly in the negative training and test data, and no

or minimum covariate shift exists in the positive training and test data. This assumption is

reasonable because the user knows the type of posts/documents that s/he is looking for and

can label many of them.

Following the notations in (Bickel et al., 2009), our special case of the covariate shift problem

can be stated formally as follows: let the set of training examples be {(x1, y1), (x2, y2), . . . , (xk, yk)},

where xi is the data/feature vector and yi is the class label of xi. Let the set of test cases be

{xk+1,xk+2, . . . ,xn}, which have no class labels. Since we are interested in binary classification,

yi is either +1 (positive class) or −1 (negative class). The labeled training data and the unseen

test data have the same target conditional distribution p(y|x) and the marginal distributions of

the positive data in both the training and testing are also the same. But the marginal distribu-

tions of the negative data in the training and testing are different, i.e., pL(x−) 6= pT (x−), where

L, T , and − represent the labeled training data, test data, and the negative class respectively.

Existing methods for addressing the covariate shift problem basically work as follows (more

details in Section 2.2). First, statistical methods are employed to estimate the training data

bias using the given test data. Then, a classifier is trained and the estimated bias of the original

training set is taken into account by giving the training instances different weights. Requiring

9

the test data to be available in training is, however, a major weakness. In the social media post

classification setting, the system needs to constantly classify the incoming data. It is infeasible

to perform training constantly.

In this chapter, we propose a novel learning technique that does not need the test data to

be available during training due to the specific nature of our problem, i.e., the positive training

data does not have the covariate shift issue.

One obvious solution to this problem is one-class classification (Schölkopf et al., 2000; Tax

and Duin, 1999b), e.g., One-class SVM. We simply discard the negative training posts/documents

completely because they have the covariate shift problem. Although this is a valid solution, as

we will see in the evaluation section, the models built based on One-class SVM perform poorly.

Although it is conceivable to use an unsupervised method such clustering, SVD (Alter et al.,

2000) or LDA (Blei et al., 2003), supervised learning usually give much higher accuracy.

In our proposed method, instead of performing supervised learning in the original document

space based on n-grams, we perform learning in a similarity space. Thus, the key novelty of the

method is the transformation from the original document space (DS) to a center-based similarity

(CBS) space. In the new space, the covariate shift problem is significantly mitigated, which

enables us to build more accurate classifiers. The reason for this is that in CBS based learning

the vectors in the similarity space enable SVM (which is the learning algorithm that we use) to

find a good boundary of the positive class data based on similarity and to separate it from all

possible negative class data, including those negative data that is not represented in training.

10

We will explain this in greater detail in Section 2.3 after we present the proposed algorithm,

which we call CBS-L (for CBS Learning). Our contributions can be summarized as follows:

1. First, it formulates a special case of the covariate shift problem. This case occurs fre-

quently in social media data classification as we discussed above.

2. Second, it proposes a novel algorithm in the CBS space, CBS-L, which avoids the co-

variate shift problem to a large extent because it is able to find a good similarity boundary

of the positive data.

3. Third, it experimentally demonstrates the effectiveness of the proposed method.

2.2 Related Work

Traditional supervised learning assumes that the training examples and the test instances

are drawn from the same distribution. However, this assumption does not always hold in many

applications. This is especially the case for social media data because of the high topic diversity

and constant changes of topics. This problem is known as covariate shift, which is a form of

sample selection bias. In this section, we will cover several related research areas including

sample selection bias, one-class classification, document representations, and PU learning.

Heckman (1997) for the first time introduced the concept of sample selection bias in the field

of econometrics. It drew the attention of researchers in the machine learning community thanks

to the work of Zadrozny (2004). As we have mentioned earlier, the commonly used approach in

machine learning is to first use statistical methods to estimate the training data bias using the

given test data, and then train a classifier, taking into account the estimated bias of the original

training set by giving the training instances different weights (Bickel et al., 2009). For example,

11

Shimodaira (2000) and Sugiyama and Müller (2005) employed kernel density estimation to

estimate the training and test data distributions, which were subsequently used to compute

a density ratio in order to generate weights for training examples. Alternative approaches

include (Dud́ık et al., 2005; Bickel and Scheffer, 2007), which used maximum entropy density

estimation. Huang et al. (2006a) proposed kernel mean matching. The idea of minimizing

the Kullback-Leibler divergence between the test and the weighted training distributions was

proposed in (Sugiyama et al., 2008; Tsuboi et al., 2009) in order to compute the weights for

the training examples. And an integrated approach was proposed in (Bickel et al., 2009). As

we can see, all the above techniques require test data at the training time, which is a major

weakness of the above mentioned approaches for social media data classification. The proposed

technique CBS-L doesn’t have this restriction.

As mentioned in the introduction, one-class classification is a natural and suitable approach

to solve the problem. Schölkopf et al. (1999) introduced the One-class SVM for one-class

classification based on the SVM methodology, which assumes that the origin defined by a

kernel function is the only data point in the negative class. The objective is to separate the

positive data points from the origin with the largest margin. The final classification function

f gives the value +1 in the region where the majority of the (positive) training data resides,

and −1 elsewhere. Let X = {x1, x2, . . . , xm} be the training data from a single class, Ψ be a

12

kernel function that transform the training data to a different space. One-class SVM solves the

following quadratic programming problem for w and p to learn the classification function f .

min
1

2
‖w‖2 +

1

vm

m∑
i=1

ξi − p, (2.1)

subject to

(w ·Ψ(xi)) ≥ p− ξi, ξi ≥ 0, i = 1, 2, . . . ,m (2.2)

where p is the offset of the hyperplane in the transformed feature space defined by the kernel Ψ,

and ξi is a slack variable for each training data point xi. The regularization parameter v ∈ (0, 1]

is used to control the trade-off between training error and the smoothness of the model, and

thus has an effect on the chosen support vectors. Among many, RBF and other Gaussian

kernels are the most commonly used kernels for One-class SVM. Although they achieve better

performance compared to using other kernels (Manevitz and Yousef, 2001), they often lead to

over-fitting of the training data and are very sensitive to parameters.

Other than the One-class SVM, many other techniques have been proposed for one-class clas-

sification. Tax and Duin (1999a; 1999b) proposed Support Vector Data Description (SVDD).

SVDD seeks to find a hypersphere around the positive data that encompasses the training data

points with minimum radius. It has been shown that the use of Gaussian kernel makes SVDD

and One-class SVM equivalent, and the results reported in (Khan and Madden, 2013) demon-

strate that SVDD and One-class SVM are indeed comparable. In order to balance between

13

model over-fitting and under-fitting for one-class classifiers, Tax and Duin (2002) proposed

a method that tries to use artificially generated outliers to optimize the model parameters.

However, as suggested in their paper, the proposed procedure is only feasible for generating

artificial outliers in a hyper-sphere with up to 30 dimensions (Khan and Madden, 2013). Also,

as pointed out by Khan and Madden (2010; 2013), one drawback of their methods is that

they often require a large dataset and the methods become very inefficient in high dimensional

feature spaces. Since text documents are usually represented in a much higher dimensional

space, these methods are less suitable for text applications. Manevitz and Yousef (2001) con-

ducted extensive experiments of one-class classification on text documents using the One-class

SVM proposed by Schölkopf et al. and a proposed variant called Outlier-SVM. The proposed

Outlier-SVM is based on identifying outlier data that are representative of the second class.

Instead of assuming the origin is the only member of the outlier class, it assumes those data

points with few non-zero entries are also outliers. However, as reported in the paper, their

method, Outlier-SVM, produced quite weak results. Another similar approach was proposed

by Li et al. (2010) for detecting anomalies, which considers all data points that are close to the

origin as outliers. Liu and Madden (2007) and Tian and Gu (2010) tried to refine Schölkopf’s

model by searching optimal parameters. Luo et al., (2007) proposed a cost-sensitive One-class

SVM algorithm for intrusion detection. We will see in the experiment section that one-class

classification is far inferior to our proposed CBS-L method.

Our work is also related to document representations, as we propose to represent docu-

ments in the similarity space. Many alternative document representations have been proposed

14

in the past and have shown to perform well in many applications (Radev et al., 2000; He et al.,

2004; Lebanon, 2006; Ranzato and Szummer, 2008; Wang and Domeniconi, 2008). In (Radev

et al., 2000), although the centroid sentence/document vector was computed, documents were

not transformed into a similarity space vector representation. Wang and Domeniconi (2008)

proposed to use external knowledge to build semantic kernels for documents in order to improve

text classification. Recently, distributed document representations (Le and Mikolov, 2014) have

drawn much attention from the research community and have achieved state-of-the-art perfor-

mance on many tasks. In our problem, the main difficulty is that testing negative documents

cannot be well covered in training. And it is not clear how the enriched document representa-

tions could help solve our problem.

This work is also related to learning from positive and unlabeled examples, also known as

PU learning (Denis, 1998; Yu et al., 2002; Liu et al., 2003; Lee and Liu, 2003; Elkan and Noto,

2008; Li et al., 2010). In this learning model, there is a set of labeled positive training data and

a set of unlabeled data, but there is no labeled negative training data. Clearly, their setting

is different from ours too. There is also no guarantee that the unlabeled data has the same

distribution as the future test data.

2.3 Center-based Similarity Space Learning

We now formulate the proposed supervised learning in the CBS space, called CSB-L. The

key difference between CBS learning and the classic document space (DS) learning is in the

document representation, which applies to both training and testing documents or posts. In

the next subsection, we first give the intuitive idea and a simple example. The detailed algo-

15

rithm follows. In Section 2.3.4, we explain why CBS-L is better than DS-based learning when

unexpected negative data appear in the test set.

2.3.1 Basic Idea

In the proposed CBS-L formulation, each document d is no longer represented as a feature

vector based on textual n-grams. Instead, it represents a set of similarity values between

document d and the center of the positive documents. Specifically, the learning consists of the

following steps:

1. Each document d (in the positive or negative class) is first represented with a set of doc-

ument representations, i.e., document space vectors (ds-vectors) based on the document

itself as in traditional text classification. Each vector denotes one representation of the

document. For example, one representation may be based on only unigrams, and another

representation may be based on only bigrams. For simplicity, we use only one represen-

tation/vector x (e.g., unigrams) here to represent d. Note that we use bold lower case

letters to represent vectors. Each feature in a ds-vector is called a ds-feature.

2. A center vector c is then computed for each document representation for the positive class

documents using the ds-vectors of all positive and negative documents of that represen-

tation. c is thus also a ds-vector.

3. Each document d in the positive and negative class is then transformed to a center-based

similarity space vector sd (called a cbs-vector). sd consists of a set of similarity values

between document d’s set of ds-vectors, i.e., {x} in our case here (since we use only one

16

representation), and the set of corresponding positive class center vectors, i.e., {c} in our

case:

sd = Sim({x}, {c}),

where Sim is a similarity function consisting of a set of similarity measures. Each feature

in sd is called an cbs-feature. sd still has the same original class label as d. Let us see an

actual example. We assume that our single center vector for the positive class has been

computed (see Section 2.3.2) based on the unigram representation of documents:

c: 1:1 2:1 6:2,

where y : z represents a ds-feature y (e.g., a word) and its feature value (e.g., term

frequency, tf). We want to transform the following positive document d1, represented as

x1, and negative document d2, represented as x2, to their cbs-vectors (the first number

is the class label):

x1: +1 1:2 2:1 3:1 x2: -1 2:2 3:1 5:2

Assuming we apply cosine similarity as the first similarity metric in Sim, then we are able

to generate a cbs-feature 1 : 0.50 for d1 (as cosine(x1, c) = 0.50) and a cbs-feature 1 : 0.27

for d2 (as cosine(x2, c) = 0.27). With more similarity metrics, more cbs-features will be

generated. The final cbs-vectors for d1 and d2, represented by s1 and s2 respectively, with

their class labels +1 and −1, are:

s1: +1 1:0.50 . . . s2: -1 1:0.27 . . .

17

4. We now have a binary classification problem in the CBS space. This step simply runs a

classification algorithm, e.g., SVM, to build a classifier. We use SVM in our work.

2.3.2 CBS Learning

We are given a binary text classification problem. Let D = {(d1, y1), (d2, y2), . . . , (dn, yn)}

be the set of training examples, where di is a document and yi ∈ {+1,−1} is its class label.

Traditional classification directly uses D to build a binary classifier. However, in the CBS space,

we learn a classifier that returns +1 for documents that are “close enough” to the center of the

training positive documents and −1 for documents elsewhere.

We now detail the proposed technique. As we mentioned above, instead of using one single

ds-vector to represent a document di ∈ D, we use a set Ri of p ds-vectors Ri = {xi1,xi2, . . . ,xip}.

Each vector xij denotes one document space representation of the document, e.g., unigram

representation. We then compute the center of positive training documents, which is represented

as a set of p centroids C = {c1, c2, . . . , cp}, each of which corresponds to one document space

representation in Ri. The way to compute each center cj is similar to that in the Rocchio

relevance feedback method in information retrieval (Rocchio, 1971; Manning et al., 2008), which

uses the corresponding ds-vectors of all training positive and negative documents. The detail

will be given below. Based on Ri for document di and the center C, we can transform a

document di from its document space representations Ri to one center-based similarity vector

cbs-vi by applying a similarity function Sim on each element xij of Ri and its corresponding

center cj . We now detail document transformation.

18

Training document transformation: The training data transformation from ds-vectors

to cbs-vectors performs the following two steps:

Step 1: Compute the set C of centroids for the positive class. Each centroid vector cj ∈ C is

for one document representation xij . And it is computed by applying the Rocchio method to

the corresponding ds-vectors of all documents in both positive and negative training data.

cj =
α

| D+ |
∑
di∈D+

xij
|| xij ||

− β

| D −D+ |
∑

di∈D−D+

xij
|| xij ||

(2.3)

where D+ is the set of documents in the positive class and | · | is the size function. α and β are

parameters, which are usually set empirically. It is reported that using tf-idf representation,

α = 16 and β = 4 usually work quite well (Buckley et al. 1994). The method reduces the weights

of those terms that appear in both positive and negative documents, which are considered not

discriminative, by using subtraction.

Step 2: Compute the similarity vector cbs-vi (center-based similarity space vector) for each

document di ∈ D based on its set of document space vectors Ri and the corresponding centroids

C of the positive documents.

cbs-vi = Sim(Rd, C) (2.4)

Sim has a set of similarity measures, and each measure mt is applied to p document rep-

resentations xij in Ri and their corresponding centers in C to generate p similarity features

(cbs-features) in cbs-vi. We discuss the ds-features and similarity measures for computing

cbs-features in the next two subsections.

19

Complexity: The data transformation step is clearly linear in the number of examples,

i.e., n.

Test document transformation: For each test document di, we can use step 2 above to

produce a cbs-vector for di.

2.3.3 Features

DF Features. In order to compute cbs-features (center-based similarity space features) for

each document, we need to have the ds-features of a document and the center of the positive

class. We discuss ds-features first, which are extracted from each document itself.

Since our task is document classification, we use the popular unigram, bigram and trigram

with tf-idf weighting as the ds-features for a document. These three types of ds-features also

give us three different document representations.

CBS Features. Ds-vectors are transformed into cbs-vectors by applying a set of similarity

measures on each document space vector and the corresponding center vector. In this work, we

employed five similarity measures in (Cha, 2007) to gauge the similarity of two vectors. Based

on these measures, we produce 15 CBS features using the unigram, bigram, and trigrams

representations of each document. The similarity measures we used are listed below, where P

and Q are two vectors and d represents the dimension of P and Q.

scos =

∑d
i=1 PiQi√∑d

i=1 P
2
i

√∑d
i=1Q

2
i

(2.5)

20

sgow = 1− 1

d

d∑
i=1

| Pi√∑d
i=1 P

2
i

− Qi√∑d
i=1Q

2
i

| (2.6)

slor = 1−
d∑
i=1

ln(1+ | Pi −Qi |) (2.7)

sdice =
2
∑d

i=1 PiQi∑d
i=1 P

2
i +

∑d
i=1Q

2
i

(2.8)

sjac =

∑d
i=1 PiQi∑d

i=1 P
2
i +

∑d
i=1Q

2
i −

∑d
i=1 PiQi

(2.9)

2.3.4 CBS Learning for Negative Covariate Shift

We now try to explain why CBS learning (CBS-L) can deal with the covariate shift problem,

and thus can perform better than document space learning. The reason is that due to the use of

similarity features, CBS-L is essentially trying to generate a boundary for the positive training

data because similarity is not directional and thus covers all directions in a spherical shape in

the space. In classification, the negative data from anywhere or direction outside the spherical

shape can be detected. The covariate shift problem will not affect the classification much.

Many types of documents that are not represented in the negative training data will still be

detected due to their low similarity. For example, in Figure 1, we want to build a SVM classifier

to separate positive data represented as black squares and negative data represented as empty

21

Figure 1. CBS Learning vs. DS Learning

circles. The constructed CBS-L classifier would look like a circle (in dashed line) in the original

document space covering the positive data. The size of this (boundary) circle depends on

the separation margin between the two classes. Although data points represented by empty

triangles are not represented in the negative training data (which has only empty circles) in

building the classifier, our classifier is able to identify them as not positive at the test time

because they are outside the boundary circle.

If we had used the document space (DS) features to build a SVM classifier, the classifier

would be a line between the positive data (black squares) and the negative data (empty circles).

This line unfortunately will not be able to identify data points represented as empty triangles

as not positive because the triangles actually lie on the positive side and would be classified as

positive, which is clearly wrong.

2.4 Experiments

In this section, we evaluate the proposed learning in the center-based similarity space and

compare it with baselines.

22

2.4.1 Dataset

As stated at the beginning of the chapter, this work was motivated by the real-life problem of

identifying the right social media posts or documents for specific applications. For an effective

evaluation, we need a large number of classes in the data to reflect the topic richness and

diversity of the social media. The whole data also has to be labeled for evaluation. Using

online reviews of a large number of products is a natural choice because there are many types

of products and services and there is no need to do manual labeling, which is very labor

intensive, time consuming, and error prone. We used the Amazon review dataset in (Chen

and Liu, 2014a), which contains 100 types of products or domains. We randomly select 50 of

them, which we also call 50 topics. Each topic has 1000 reviews. For each class in the dataset,

we randomly sampled 700 of documents for training, and the rest 300 for testing. Note that

although we use this product review collection, we do not perform sentiment classification.

Instead, we still perform the traditional topic based classification. That is, given a review, the

system decides what type of product the review is about. In our experiments, we use every

topic as the positive class. This gives us 50 classification results.

2.4.2 Baselines

Now we introduce three baseline methods that will be used in our evaluation.

Document space One-class SVM (ds-osvm): As we discussed earlier, due to the co-

variate shift problem in the negative training data, one obvious solution is to drop the negative

training data completely to build a one-class classifier. As One-class SVM is the most repre-

sentative and one of the most widely used one-class classification algorithms, we apply it to

23

the documents in the document space as one of the baselines. One-class SVM assumes that

the origin is the only member of the second class. The data is first mapped into a transformed

feature space via a kernel and then a standard two-class SVM is employed to construct a hyper-

plane that separates the data and the original with maximum margin. As we mentioned earlier,

the support vector data description (SVDD) (Tax and Duin, 1999a) is another formulation for

one-class classification, and it gives comparable results to One-class SVM when Gaussian ker-

nel is used. Thus in the experiments, we only use One-class SVM with Gaussian kernel. Its

implementation is in the LIBSVM library (version 3.20) (Chang and Lin, 2011).

Center-based similarity space One-class SVM (cbs-osvm): Instead of applying One-

class SVM to documents in the original document space, this baseline applies it to documents

in the CBS space. Documents are first transformed to CBS vectors before One-class SVM is

applied. Note that this baseline uses the negative data in the document transformation step,

although One-class SVM does not.

Document space SVM: This baseline is the standard binary classification using SVM,

where SVM is applied in the original document space. Although in this case, there is covariate

shift problem, we hope to evaluate how serious the problem might be, and see how the proposed

CBS-L technique is able to deal with the problem. We also use the SVM implementation in

the LIBSVM package (Chang and Lin, 2011).

2.4.3 Kernels and Parameters

As Khan and Madden (2013) pointed out that One-class SVM performs the best when

Gaussian kernel is used, we use Gaussian kernel as well. Manevitz and Yousef (2001) applied

24

One-class SVM to text classification, and the authors reported that One-class SVM works the

best with binary feature weighting scheme compared to tf or tf-idf weighting schemes. Also,

they reported that a small number of features (10) with highest document frequency performed

the best with Gaussian kernel. We also use binary representation, but found that 10 features

are already too many in our case. In fact, 5 features give the best results. Using a small number

of features is intuitive because to find the boundary of a very high dimensional space is very

difficult. We also tried more features but they were poorer.

For SVM classification in the document space, we use the linear kernel as it has been shown

by many researchers that the linear kernel performs the best (Joachims, 1998; Colas and Brazdil,

2006). We experimented with RBF kernels extensively, but they did not perform well with the

traditional document representation. The term weighting scheme is tf-idf (Colas and Brazdil,

2006) with no feature selection.

For our proposed method CBS-L, we use tf-idf term weighting scheme of unigram, bigram

and trigram to represent a document in three ways in the document space. As mentioned earlier,

five document similarity functions are used to transform document space vectors to CBS space

vectors. And in order to filter out less useful features for the center vector of the positive class,

we performed feature selection in the document space using the classic information gain method

(Yang and Pedersen, 1997) to empirically choose the most effective 100 features for the positive

class.

25

2.4.4 Results

We now present the experiment results. As mentioned above, we treat each topic as the

positive class. This gives 50 test results. To test the effect of covariate shift, we also vary

the number of topics in the negative class. We used 10, 20, 30, and 40 topics in the training

negative class. The test set always has 49 topics of negative data.

For each setting, we give three sets of results for the positive class, which is the target topic

data that we are interested in obtaining through classification. Each set of results includes the

standard measures of precision, recall, and F1-score for the positive class. The three sets are:

1. In-training: In this case, the test negative data contains only data from those topics used

in training. This is the classical supervised learning setting where the training and test data

are randomly drawn from the same distribution.

2. Not-in-training: In this case, the test negative set contains only data from the other

topics not used in training. The classical setting of supervised learning does not deal with

this problem. This represents covariate shift.

3. Combined: In this case, the test data contains both in-training and not-in-training negative

topics. Due to the use of not-in-training test data, this is also not the classical setting.

Due to a large number of experiment results, we only summarize them in Table I by focusing

on the F1 scores of all settings. Notice that for ds-osvm, it does not make sense to have in-

training and not-in-training results because it does not use any training negative data. Thus,

there is only one set of results for “Combined”, which is duplicated in the table for easy

26

In-training Out-of-training Combined

prec. recall F1 prec. recall F1 prec. recall F1

10 topics are used in the training negative class

ds-osvm N/A N/A 0.154 0.498 0.205

cbs-osvm 0.664 0.453 0.514 0.357 0.442 0.339 0.343 0.452 0.330

SVM 0.678 0.811 0.736 0.176 0.803 0.282 0.160 0.819 0.262

CBS-L 0.796 0.766 0.776 0.384 0.768 0.491 0.368 0.754 0.481

20 topics are used in the training negative class

ds-osvm N/A N/A 0.154 0.498 0.205

cbs-osvm 0.561 0.477 0.466 0.430 0.445 0.390 0.364 0.457 0.344

SVM 0.566 0.753 0.643 0.304 0.753 0.422 0.254 0.758 0.371

CBS-L 0.761 0.700 0.723 0.557 0.702 0.608 0.485 0.693 0.558

30 topics are used in the training negative class

ds-osvm N/A N/A 0.154 0.498 0.205

cbs-osvm 0.451 0.491 0.393 0.488 0.524 0.407 0.378 0.487 0.355

SVM 0.508 0.721 0.591 0.450 0.722 0.547 0.323 0.726 0.439

CBS-L 0.723 0.650 0.678 0.721 0.644 0.667 0.569 0.649 0.598

40 topics are used in the training negative class

ds-osvm N/A N/A 0.154 0.498 0.205

cbs-osvm 0.423 0.482 0.379 0.590 0.511 0.444 0.372 0.486 0.347

SVM 0.456 0.689 0.544 0.641 0.685 0.658 0.374 0.695 0.481

CBS-L 0.697 0.613 0.644 0.848 0.616 0.699 0.639 0.613 0.619

TABLE I

Result summary for 50 topics.

comparison. However, note that cbs-osvm uses negative data for training in order to compute

the center for the positive class.

From Table I , we can make the following observations.

1. The proposed CBS-L method performs markedly better than all baselines. For the results

of in-training, not-in-training, and combined, CBS-L is consistently better in all cases than

27

Topic ds-osvm cbs-osvm SVM CBS-L

Amplifier 0.125 0.360 0.406 0.597

Automotive 0.041 0.031 0.240 0.383

Battery 0.266 0.425 0.433 0.656

Beauty 0.079 0.401 0.470 0.618

Cable 0.131 0.028 0.231 0.500

Camera 0.376 0.361 0.433 0.523

CD Player 0.154 0.274 0.344 0.585

Clothing 0.046 0.234 0.292 0.486

Computer 0.117 0.225 0.328 0.455

Fan 0.408 0.581 0.581 0.724

Flashlight 0.273 0.487 0.528 0.744

Graphics Card 0.419 0.473 0.552 0.631

Headphone 0.298 0.338 0.432 0.533

Home Improvement 0.039 0.032 0.178 0.233

Jewelry 0.362 0.579 0.632 0.800

Kitchen 0.042 0.118 0.197 0.261

Lamp 0.091 0.249 0.374 0.487

Magazine Subscriptions 0.406 0.597 0.796 0.858

Mattress 0.435 0.562 0.603 0.702

Memory Card 0.134 0.256 0.367 0.508

Microphone 0.103 0.223 0.25 0.417

Microwave 0.378 0.577 0.637 0.735

Monitor 0.136 0.345 0.312 0.513

Movies TV 0.146 0.507 0.641 0.682

Musical Instruments 0.073 0.241 0.446 0.575

Network Adapter 0.164 0.483 0.481 0.596

Office Products 0.040 0.193 0.327 0.346

Patio Lawn Garden 0.043 0.226 0.295 0.483

Pillow 0.491 0.640 0.781 0.888

Printer 0.549 0.557 0.624 0.859

Projector 0.230 0.459 0.482 0.805

Shoes 0.224 0.524 0.585 0.793

Speaker 0.241 0.251 0.253 0.410

Subwoofer 0.147 0.268 0.346 0.401

Tablet 0.069 0.234 0.142 0.424

Telephone 0.099 0.034 0.144 0.167

Toys 0.088 0.029 0.331 0.449

Video Games 0.424 0.387 0.508 0.705

Wall Clock 0.401 0.582 0.607 0.777

Webcam 0.155 0.304 0.372 0.645

TABLE II

Complete results for 40 topics under the combined setting.

28

all baselines. Even for in-training, CBS-L performs better than SVM. This clearly shows the

superiority of the proposed CBS-L method.

2. Ds-osvm performs poorly. Cbs-osvm is much better because it uses the negative data in

feature selection and center computation.

3. SVM in the document space performed poorly (Combined) when only a small number of

negative topics are used in training. It gets better than both One-class SVM baselines when

more negative topics are used in training (see the reason in the next point).

4. Finally, we can also see that with the number of training negative topics increases, the

results of the combined case of both SVM and CBS-L improve. This is expected because

with the increased number of negative topics for training, the number of not-in-training

negative topics for testing decreases and the covariate shift problem gets smaller. We can

also see that cbs-osvm, SVM and CBS-L’s F1-scores for not-in-training improve with the

increased training negative topics due to the same reason. However, their F1-scores drop for

in-training because with more negative topics, the data becomes more skewed, which hurts

in-training classification.

To give a flavor of the detailed results for each topic (product), we give the full results

for one setting with 40 randomly selected topics as the training negative data (Table II). The

results in the table are F1-scores of the combined case.

CHAPTER 3

OPEN WORLD TEXT CLASSIFICATION

(This chapter was previously published as “Breaking the Closed World Assumption in Text

Classification”, in The 15th Annual Conference of the North American Chapter of the Associ-

ation for Computational Linguistics (NAACL’16) (Fei and Liu, 2016).)

3.1 Introduction

With the rapid growth of online information, text classifiers have become one of the most

important tools for people to track and organize information. And the emergence of social

media platforms has brought increasing diversity and dynamics to the Web. Many social sci-

ence researchers rely on the collected online user generated content to carry out research on

different social phenomenon. In this case, multi-class text classifiers are widely used to gather

information of several topics of interest. However, most existing research on multi-class text

classification makes the closed world assumption, meaning that all the test classes have been

seen in training. However, in a more realistic scenario where people use a multi-class classifier

to collect information of several topics from a data source that covers a much broader range of

topics, it is normal to break the closed world assumption and to see the arrival of documents

from unknown classes that have never been seen in training. In this case, a multiclass classifier

should not always assign a document to one of the known classes. Instead, it should identify

29

30

unknown classes of documents and label them as unknown or reject. This is called open (world)

classification.

More precisely, in the traditional multi-class classification setting, the learner assumes a

fixed set of classes Y = {C1, C2, . . . , Cm}, and the task is to construct a m-class classifier using

the training data. The resulting classifier is tested/applied on the data from only the m classes.

The assumption is often violated in reality and documents not belonging to any of the m classes

are forced to fall into one of the m classes. While in open classification, we allow the classifier to

predict labels/classes from the set of C1, C2, . . . , Cm, C0 classes, where class C0 represents the

unknown which covers documents of all unknown or unseen classes or topics. In other words,

every test instance may be predicted to belong to either one of the known classes yi ∈ Y , or C0

(unknown).

It is thus not sufficient for a classifier to just return the most likely class label among the

m known classes. An option to reject must be provided. An obvious approach to predicting

the class label y ∈ Y ∪ {C0} for an n-dimensional data point x ∈ Rn is to incorporate a

posterior probability estimator p(y|x) and a decision threshold into an existing multi-class

learning algorithm (Kwok, 1999; Fumera and Roli, 2002; Huang et al., 2006b; Bravo et al., 2008).

There are many reasons this technique would not achieve good results in open classification. As

we will discuss in the following sections, one of the most important reasons is that the underlying

classifier is not robust or is not informed enough to reject unseen classes of documents due to

its significant open space risk.

31

Traditional multi-class learners optimize only on the known classes under the closed world

assumption, while a potential learner for open classification has to optimize for both the known

classes and the unknown classes. Some recent research in the field of computer vision studied the

problem, which they call open set recognition (Scheirer et al., 2013; Scheirer et al., 2014; Jain

et al., 2014) for facial recognition. Classic learners define and optimize over empirical risk,

which is measured on the training data. For open classification, it is crucial to measure the risk

of classifying the unseen as positive by preventing overgeneralization or overspecialization. In

order to tackle this problem, Scheirer et al. (2013) introduced the concept of open space risk

and formulated an extension of the existing one-class and binary SVMs to address the open

classification problem. However, as we will see in Section 3.3, their proposed method is weak

as the positively labeled open space is still an infinite area.

In this chapter, we propose a solution to reduce the open space risk while also balancing the

empirical risk for open classification. Intuitively, given a positive class of documents, our open

space for the positive class is considered as the space that is sufficiently far from the center of

the positive documents. In the multi-class classification setting, each of the m target classes is

surrounded by a ball covering the positively labeled (the target class) area, while any document

falling outside of all the m balls is considered belonging to the unknown class.

In Chapter 2 we introduced a learning technique called center-based similarity (CBS) space

learning to deal with the problem of covariate shift in binary classification. We found that it

is also suitable for open world classification. Unlike SVM learning in the document space that

bounds the positive class only by an infinite half-space formed with the decision hyperplane,

32

which has a huge open space risk, CBS learning finds a closed boundary for the positive class

covering only a finite area, which is a spherical area in the original document space and thus

reduce the open space risk significantly. Our final multi-class classifier is called cbsSVM, as it

uses SVM as the underlying learner.

In summary, this work makes the following contributions:

1. To the best of our knowledge, this work is the first attempt to study multi-class open

classification in text from the open space risk management perspective.

2. It gives an open space risk formulation for the problem and applies CBS learning technique

as an initial solution based on our formulation.

3. Extensive experiments show that the proposed cbsSVM for multi-class open classification

produces superior classifiers to existing state-of-the art methods.

3.2 Related Work

Comparing to research on multi-class classification with the closed world assumption, there

is relatively less work on open world classification. This work is related to existing research on

one-class classification, which we have discussed in detail in Section 2.2. In this section we will

first focus on reviewing two areas of work in open world classification. Then, we discuss related

work in the semi-supervised learning setting.

3.2.1 SVM Decision Score Calibration

Early work on SVM-based open world classification relied on a calibration process to trans-

form raw SVM scores to probabilities. As the decision score produced by SVM is not a prob-

ability distribution, several techniques have been proposed to convert a raw decision score

33

to calibrated probabilistic output (Bravo et al., 2008; Duan and Keerthi, 2005; Huang et al.,

2006b; Platt, 1999; Zadrozny and Elkan, 2002). Usually a parametric distribution is assumed

(Gaussian models are the most popularly used) for the underlying distribution, and raw scores

are mapped based on the learned model. For the task of score calibration, the most widely used

technique is proposed in (Platt, 1999), which has been extended and applied in many other

learning systems. It is based on the observation that data is in general “roughly sigmoidal” by

analyzing specific empirical data instances. In particular, a sigmoid function is first used to fit

the raw SVM scores during the training phase, and then the raw SVM scores for test instances

are transformed into calibrated probabilities based on the model. Provided with a threshold,

a test instance can be rejected if its highest probability of belonging to any class is lower than

the threshold. In this work, we also apply Platt’s (1999) method for decision score calibration

due to its simplicity. Its implementation is included in the LIBSVM package (Chang and Lin,

2011).

Recent work in computer vision (Scheirer et al., 2011) suggested that the assumptions

made in the statistical extreme value theory (EVT) (Kotz and Nadarajah, 2000) is coherent

to recognition problems, and compared to existing techniques, the EVT allows us to calculate

probabilities without the overall distribution of the data. The extreme scores given by any

recognition algorithm can be modeled using the EVT. More specifically, a reverse Weibull

distribution can be used to fit the data if it is bounded from above, and a Weibull distribution

is suitable if the data is bounded from below (Scheirer et al., 2014). Thus, new SVM score

calibration techniques based on the EVT were proposed (Jain et al., 2014; Scheirer et al.,

34

2014). In particular, Scheirer et al. (2014) proposed W-SVM, which is a combination of a

One-class SVM and a binary SVM for each target class. The One-class SVM is used as a

conditioner to reject test instances that have small likelihood of belonging to some target class.

And the EVT is applied to the calibration process for both the One-class SVM and the binary

SVM. A similar idea was also used in (Jain et al., 2014), where the EVT is used to estimate the

unnormalized posterior probability of inclusion for each class by fitting a Weibull distribution

over the positive class scores from a 1-vs-rest multi-class RBF SVM classifier. For both of the

above methods, decision thresholds need to be chosen based on the prior knowledge of the ratio

of unseen classes in testing, which is a weakness of the methods.

3.2.2 Open Space Risk Management

Recently, researchers made several attempts to solve open world classification (which they

call open set recognition) for visual learning from new angles (Scheirer et al., 2013; Scheirer

et al., 2014). In particular, Scheirer et al. (2013) introduced the concept of open space risk,

and defined it as a relative measure. The proposed technique, 1-vs-set machine, reduces the

open space risk of traditional SVM by replacing the positively labeled half-space with a positive

region bounded by two parallel hyperplanes. While the positively labeled region for a target

class is reduced compared to the half-space in traditional linear SVM, the open space risk is

still infinite. Scheirer et al. (2014) introduced the Compact Abating Probability (CAP) model,

which explains how thresholding the probabilistic output of RBF One-class SVM manages the

open space risk. However, due to the fact that One-class SVM produces relatively weak results,

the overall performance of the technique is also negatively affected.

35

3.2.3 Multi-class Semi-supervised Learning

Apart from supervised learning, researchers also tried to deal with unseen/unknown classes

in the semi-supervised learning setting. Dalvi et al. (2013) proposed Exploratory Learning in

the multi-class semi-supervised learning (SSL) setting. In their work, an “exploratory” version

of expectation-maximization (EM) is proposed to extend traditional multi-class SSL methods.

In the new setting, the algorithm is only given seed documents from a subset of the classes in

the data, either because of the lack of complete knowledge of the data or special interest of

the user. It automatically explores different numbers of new classes in the EM iterations. The

underlying assumption is that when an instance x has close to uniform probability of belonging

to the existing classes, a new class should be created. This is quite different from our work

and objective. Firstly, it works in the semi-supervised setting and assumes that test data is

available during training. Secondly, it only focuses on improving accuracy on the classes with

seed examples.

3.3 Proposed Method

In this section, we propose our technique for the open classification problem. First we

introduce our open space risk formulation for the case of binary classification. Then we show how

our proposed CBS learning technique (Chapter 2) can be used as an initial solution according

to the proposed open space risk formulation. Lastly, we combine all the binary classifiers in the

1-vs-rest fashion to produce our final multi-class open world classifier.

36

3.3.1 Open Space Risk Formulation

Consider the risk formulation by Scheirer et al. (2013), where apart from the empirical

risk, there is risk in labeling the open space (space away from positive training examples) as

“positive” for any known class. Due to lack of information on a classification function on the

open space, open space risk is approximated by a relative Lebesgue measure (Shackel, 2007).

Let SO be a large ball of radius rO that contains both the positively labeled open space O and

all of the positive training examples; and let f be a classification function where fy(x) = 1 for

classifying y as positive and fy(x) = 0 otherwise. The probabilistic open space risk RO(f) of

function f for a class y is defined as the ratio of the positive open space (the positively labeled

space that is far from most positive examples) to the overall space that is positively labeled

(which includes the space where most positive examples reside).

RO(f) =

∫
O fy(x)dx∫
SO
fy(x)dx

(3.1)

Equation 3.1 indicates that the more we label open space as positive, the greater open space

risk is. However, it does not suggest how to specify the positively labeled open space O.

In this work, we formulate O as the positively labeled area that is sufficiently far from the

center of the positive training examples. Let Bry(ceny) be a closed ball of radius ry centered

around the center of positive class y (ceny), which ideally contains all positive examples of class

y; SO be a larger ball BrO(ceny) of radius rO with the same center ceny. Let classification

function fy(x) = 1 when x ∈ BrO(ceny), and fy(x) = 0 otherwise. Also let h be the positive

37

(a) SVM (b) 1-vs-set Machine (c) Ours

Figure 2. Illustration of the positively labeled open space.

half space defined by a binary SVM decision hyperplane Ω obtained using positive and negative

training examples, and let the size of ball BrO be bounded by Ω, BrO ∩ h = BrO . We define

open space as

O = SO −Bry(ceny) (3.2)

where the radius of SO, rO, needs to be determined from the training data for each known

positive class.

This open space formulation greatly reduces the open space risk compared to traditional

SVM and the 1-vs-set Machine in (Scheirer et al., 2013), which is illustrated in Figure 2. In

particular, Figure 2(a) shows the positively labeled space for traditional SVM, whose classi-

fication function fSVM
y (x) = 1 when x ∈ h. Thus, its positive open space is approximately

h − Bry(ceny), which is only bounded by the SVM decision hyperplane Ω. Figure 2(b) shows

the positively labeled space for 1-vs-set Machine in (Scheirer et al., 2013), whose classification

function f1-vs-set
y (x) = 1 when x ∈ g, where g is a slab area with thickness δ bounded by two

parallel hyperplanes Ω and Ψ (Ω ‖ Ψ) in h. And its positive open space is approximately

38

g −Bry(ceny). Figure 2(c) illustrates our proposed open space formulation, in which the posi-

tively labeled space is a finite ball bounded by the SVM decision hyperplane Ω. Given the open

space formulations of traditional SVM and the 1-vs-set Machine, we can see that both of these

methods label an unlimited area as positively labeled space, while our formulation reduces it

to a bounded spherical area.

Given our open space formulation, the question is how we estimate the radius rO of the

spherical area SO for each positive class. We show that our proposed center-based similarity

space learning (CBS learning) in Chapter 2 follows the proposed open space risk formulation

and is able to give an estimation, although the technique was original proposed to deal with

the negative covariate shift problem in binary text classification.

3.3.2 CBS Learning for rO Estimation

Due to learning in the similarity space with similarities as features, CBS learning generates

a boundary based on similarities to separate the positive and negative training data in the

similarity space, which is essentially a ball encompassing the positive training data in the original

document space. In other words, instead of explicitly minimizing the positively labeled open

space risk, CBS learning approximates the radius rO by learning a score based on similarities

in the similarity space, which is equivalent to a limited spherical area in the original document

space. The generated model thus not only limits the positively labeled open space on the positive

side of Ω (SVM decision hyperplane), but also balances the empirical risk from the positive

and negative training examples. In fact, rO is approximately the distance from the center

of positive class to Ω measured in similarities (Figure 2(c)). The positively labeled/classified

39

region produced by CBS learning is the circle in the original document space, while SVM

learning produces a half space bounded by its decision line. Note that as multiple similarity

features are used, the spherical area is formed by an integrated similarity produced by SVM,

which combines all similarity features.

In order for the method to work well for our multi-class classification, ideally two assump-

tions should be made about the data. First, the target classes of documents are generated

by a mixture model, where each mixture component is responsible for one class of documents.

Secondly, after feature normalization each target class of documents is generated by a Gaussian

distribution, where the Gaussian mean resides at the center of the class, and its n×n covariance

matrix has equal eigenvalues so that the positive class can have a spherical shape boundary or

a ball. This assumption may be too strict and may be violated, but empirical results show it

works well in reality. Note that we do not make any assumptions about data from non-target

classes.

3.3.3 Final Open World Classifier

The preceding discussion is based on binary open classification. We follow the standard

technique of combining a set of 1-vs-rest binary classifiers to perform multi-class classification

with a rejection option for the unknown. The SVM scores for each classifier are first converted

to probabilities based on a variation of Platt’s (1999) algorithm, which is supported in LIBSVM

(Chang and Lin, 2011). Let P (y|x) be a probably estimate, where y ∈ Y is a class label and x

is a feature vector, and let λ be the decision threshold (usually 0.5). Let Y be the set of known

40

classes, C0 be the unknown class, and y∗ is the final predicted class for x. The final classifier,

called cbsSVM, uses this following for classification:

y∗ =


argmaxy∈Y P (y|x) if P (y|x) ≥ λ

C0 otherwise

(3.3)

3.4 Experiments

In this section, we show the results of the proposed method cbsSVM and compare it with

the state-of-the-art baselines across two datasets. We first introduce the baseline methods and

the experimental datasets.

3.4.1 Baselines

This subsection lists a set of start-of-the-art baselines for open world classification. In

Chapter 4, they will be used again for comparison.

1-vs-rest multi-class SVM (1-vs-rest-SVM). This is the standard 1-vs-rest multi-

class SVM with Platt’s Probability Estimation (Platt, 1999), and it is implemented based on

LIBSVM 1 (version 3.20) (Chang and Lin, 2011). It works in the same way as the proposed

cbsSVM in Section 3.3.3 except that it uses the document space classification. Linear kernel is

used as it is shown by many researchers that linear SVM performs the best for text classification

(Joachims, 1998; Colas and Brazdil, 2006).

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/

41

1-vs-set Machine (1-vs-set-linear). This is the baseline method proposed in (Scheirer

et al., 2013), and we use all the default parameter settings in the original paper. That is, the

near and far plane pressures are set at pA = 1.6 and pΩ = 4 respectively, which are the two

parameters to allow users to specify the importance of the open space near the two decision

hyperplanes. Regularization constant is set at λr = 1, which gives equal weights on the empirical

risk and the open space risk. And no explicit hard constraints are used on the training error

(α = 0, β = 1).

W-SVM (wsvm-linear and wsvm-rbf). These are the two baselines proposed in

(Scheirer et al., 2014), which combine a RBF One-class SVM with a binary SVM with lin-

ear and RBF kernel respectively. For thresholding the output, two parameters δτ and δR are

required. We set δτ = 0.001, which is used to control what data is considered to be relevant by

the One-class SVM classifier. δR is the final decision threshold not only for W-SVM, but also

for the next two baselines (PI-SVM, PI-OSVM). Two ways of setting δR were suggested by the

authors. We set it as the prior probability of the number of unseen classes during evaluation

(testing). An alternative way is to set it based on an openness score computed using the num-

ber of training and testing classes. We tried both methods and found the former gave better

results.

PI-SVM (PI-svm-linear and PI-svm-rbf). This baseline is from (Jain et al., 2014),

which estimates the probability of inclusion by applying the EVT on the positive class scores

from the output of binary SVMs. Both linear and RBF kernels are tested. The threshold δ

42

serves the same purpose as the δR in W-SVM, and is set as the prior probability of the number

of unseen classes in test data.

PI-OSVM (PI-osvm-linear and PI-osvm-rbf). This baseline is similar to PI-SVM.

The only difference is that PI-OSVM (Jain et al., 2014) uses a multi-class One-class SVM before

fitting an Extreme Value Theory distribution to estimate the probability of inclusion. Again,

two kernel functions are tested and the prior probability of the number of unseen classes is used

to set δ. As PI-OSVM is a variant of the traditional One-class SVM, we do not use One-class

SVM as a baseline.

Exploratory Seeded K-Means (Exploratory-EM). In (Dalvi et al., 2013), three well-

known multi-class semi-supervised learning methods were extended under the exploratory learn-

ing framework. We compare with exploratory version of Seeded K-Means due to its superior

performance on 20newsgroup dataset reported by the authors. We also applied the criteria

that work the best in the original paper for creating new classes and for model selection, i.e.,

the MinMax criterion and the AICc criterion. Note that ExploratoryEM works in the semi-

supervised setting and uses both the training and test data as labeled and unlabeled data in

training. As more than one new class can be introduced during training, for comparison we

lump together all instances assigned to new classes as being rejected (unknown). In the exper-

iments, we set the max number of iterations to be 50. Little changes in results are observed

after 50 iterations.

43

All documents use tf-idf term weighting scheme with no feature selection. Source code for

different baselines (1-vs-set Machine 1, W-SVM and PI-SVM 2, and Exploratory learning 3)

was provided by the authors of their original papers.

3.4.2 Datasets

We perform experimental evaluation using two public available datasets: the 20-newsgroup

in (Joachims, 1996) and the Amazon reviews (Chen and Liu, 2014a). For the Amazon dataset,

we use the same 50 domains/products of reviews as in Chapter 2 to perform the traditional topic

based classification. The 20-newsgroup data contains 20 non-overlapping classes with a total

of 18828 documents. For each class in both datasets, we randomly sampled 700 of documents

for training, and the rest 300 for testing.

3.4.3 Experiment Settings

Following (Jain et al., 2014; Dalvi et al., 2013), we conduct open world cross-validation

style analysis, which means some classes are held out during training and are mixed back

during testing. We also vary the number of training and test classes. In particular, we set the

number of test classes at 10, 20, 30, 40, 50 for Amazon dataset, and at 10, 20 for 20-newsgroup

dataset. For each chosen number of test classes, we randomly use 25%, 50%, 75% and 100%

of the test classes in the training step. Varying the ratio of the number of training classes to

1https://github.com/Vastlab/liblinear.git

2https://github.com/ljain2/libsvm-openset

3http://www.cs.cmu.edu/ bbd/ExploreEM package.zip

44

test classes is to test the robustness of different systems in handling different “openness” of the

problem. Since there are many different combinations on the subset of training classes we can

select, for each setting we repeat the experiments for 5 times and report the average results.

The only exception is when 100% of the test classes are chosen in training, we only conduct the

experiment once.

When 100% of test classes are used in training, the problem reduces to the closed world

classification. As most of our baselines such as W-SVM, PI-OSVM and PI-SVM use prior

knowledge to set decision threshold, i.e., δR = 0 for W-SVM and δ = 0 for PI-OSVM and

PI-SVM, in the closed world setting, for fair comparison we also set the threshold to λ = 0 for

both 1-vs-rest-SVM and our proposed cbsSVM in the closed world classification setting. By

doing this, we always assign a known class label to a test instance. For Exploratory Seeded

K-Means, we use an option supported in the exploratory learning package that does not allow

any new classes to be introduced in learning.

For each setting, we first compute precision, recall and F1 score for each class and then

macro-average the results across all classes. Final results are given by averaging the results

across 5 random training and test classes combinations, except for the case of using 100% of

the test classes in training. Since there are many results, we only report F1 scores.

For all the methods that use the RBF kernel, the parameters are empirically chosen through

cross validation on the training data. In particular, we set C = 5 and γ = 0.2 for Amazon, and

C = 10 and γ = 0.5 for 20newsgroup. We do not perform over-sampling or under-sampling

all methods for two reasons. First, as we have discussed earlier, our experiments have multiple

45

settings that use different number of classes, it is hard to select the optimal sampling number

every time, and it is also not the focus of our work. Secondly, since this strategy applies to all

the methods, we do not bias against any one.

3.4.4 Results and Discussion

In this subsection, we first show the main results on two datasets, and then conduct further

analysis on the performance of our technique and discuss its weakness. Open classification

results on the Amazon dataset is given in Table III, and those on 20-newsgroup are given in

Table IV. As we can see across two datasets, in most situations (23 of 28 settings) our proposed

cbsSVM method performs the best. Even when 100% of the test classes are used for training

(the traditional closed world classification), cbsSVM still performs the best in almost all settings

(6 out of 7) except for 20-newsgroup with 20 classes. In this case, it lost to ExploratoryEM by

1.12%. In fact, it is unfair to compare cbsSVM with ExploratoryEM because ExploratoryEM

uses the test data in training.

We also analyze the cases where our technique does not perform well. By looking at the

sub-tables where 10 domains are tested in Table III and Table IV, we see that our method loses

to 1-vs-set-linear, wsvm-linear and PI-svm-linear on both datasets when training on 2 classes

(25%) and testing on 10 classes, though in other cases training on 25% known classes can still

yield good results. By inspecting the results, we found that in both settings our technique

achieves very high recall but low precision on the known classes, while achieving high precision

but low recall on the unknown classes. After careful investigation, we found this is caused by

46

25% 50% 75% 100% 25% 50% 75% 100%

10 Domains 20 Domains

cbsSVM 0.450 0.715 0.775 0.873 0.566 0.695 0.695 0.760

1-vs-rest-SVM 0.219 0.658 0.715 0.817 0.466 0.610 0.616 0.688

ExploratoryEM 0.386 0.647 0.704 0.854 0.571 0.561 0.573 0.691

1-vs-set-linear 0.592 0.698 0.700 0.697 0.506 0.560 0.589 0.620

wsvm-linear 0.603 0.694 0.698 0.702 0.553 0.618 0.625 0.641

wsvm-rbf 0.246 0.587 0.701 0.792 0.397 0.502 0.574 0.701

PI-osvm-linear 0.207 0.590 0.662 0.731 0.453 0.531 0.589 0.629

PI-osvm-rbf 0.061 0.142 0.137 0.148 0.143 0.079 0.058 0.050

PI-svm-linear 0.600 0.695 0.701 0.705 0.547 0.620 0.628 0.644

PI-svm-rbf 0.245 0.590 0.718 0.774 0.396 0.546 0.675 0.714

30 Domains 40 Domains

cbsSVM 0.565 0.645 0.630 0.686 0.541 0.633 0.619 0.650

1-vs-rest-SVM 0.463 0.568 0.545 0.627 0.463 0.543 0.515 0.584

ExploratoryEM 0.500 0.511 0.569 0.659 0.467 0.496 0.562 0.628

1-vs-set-linear 0.462 0.511 0.542 0.585 0.429 0.489 0.526 0.558

wsvm-linear 0.521 0.574 0.578 0.598 0.499 0.554 0.560 0.565

wsvm-rbf 0.372 0.444 0.502 0.651 0.351 0.402 0.464 0.609

PI-osvm-linear 0.428 0.510 0.553 0.605 0.413 0.483 0.533 0.571

PI-osvm-rbf 0.108 0.047 0.043 0.047 0.078 0.043 0.047 0.049

PI-svm-linear 0.520 0.575 0.581 0.602 0.497 0.554 0.563 0.568

PI-svm-rbf 0.379 0.517 0.629 0.680 0.371 0.505 0.602 0.634

50 Domains
25% 50% 75% 100%

cbsSVM 0.557 0.615 0.586 0.634
1-vs-rest-SVM 0.460 0.533 0.502 0.568

ExploratoryEM 0.348 0.467 0.534 0.618
1-vs-set-linear 0.420 0.483 0.514 0.551

wsvm-linear 0.488 0.545 0.549 0.559
wsvm-rbf 0.317 0.367 0.436 0.584

PI-osvm-linear 0.403 0.489 0.535 0.578
PI-osvm-rbf 0.066 0.039 0.047 0.050

PI-svm-linear 0.487 0.546 0.551 0.562
PI-svm-rbf 0.360 0.509 0.632 0.630

TABLE III

Open classification results on the Amazon dataset.

47

25% 50% 75% 100% 25% 50% 75% 100%

10 Domains 20 Domains

cbsSVM 0.417 0.769 0.796 0.855 0.593 0.701 0.720 0.852

1-vs-rest-SVM 0.246 0.722 0.784 0.828 0.552 0.683 0.682 0.807

ExploratoryEM 0.648 0.706 0.733 0.852 0.555 0.633 0.713 0.864

1-vs-set-linear 0.678 0.671 0.659 0.567 0.497 0.557 0.550 0.577

wsvm-linear 0.666 0.666 0.665 0.679 0.563 0.597 0.602 0.677

wsvm-rbf 0.320 0.523 0.675 0.766 0.365 0.469 0.607 0.773

PI-osvm-linear 0.300 0.571 0.668 0.770 0.438 0.534 0.640 0.757

PI-osvm-rbf 0.059 0.074 0.032 0.026 0.143 0.029 0.022 0.009

PI-svm-linear 0.666 0.667 0.667 0.680 0.563 0.599 0.603 0.678

PI-svm-rbf 0.320 0.540 0.705 0.749 0.370 0.494 0.680 0.767

TABLE IV

Open classification results on the 20newsgroup dataset.

the relatively poor approximation of radius rO when positive and negative training examples

are far apart.

To verify the cause, we conducted more experiments on the 20-newsgroup data using the

same setting (10 classes for test and 2 for training). The 10 classes are listed in Table V.

We show the results for two sets of experiments. In each set of the experiments, we keep one

known class unchanged in training and select different classes as the second class. We show how

the results change on the unchanged class as well as the unknown (reject) classes. Table VI

illustrates two examples. In particular, the top sub-table lists the precision, recall, and F1

score for comp.windows.x and for the unknown classes. Similarly, the bottom sub-table gives

the results for rec.motorcycles and for the unknown classes. The first column in Table VI is

the different second classes used in training. We can see that in both sets of experiments, the

48

Domain names

rec.motorcycles comp.graphics

comp.os.ms-windows.misc alt.atheism

comp.sys.mac.hardware comp.windows.x

misc.forsale comp.sys.ibm.pc.hardware

rec.autos rec.sport.baseball

TABLE V

10 chosen domains in 20newsgroup for analysis.

comp.windows.x Unknown (reject)

Prec. Recall F1 Prec. Recall F1

rec.motorcycles 0.260 0.963 0.410 0.972 0.168 0.287

comp.graphics 0.380 0.850 0.525 0.966 0.482 0.643

comp.sys.mac.hardware 0.286 0.972 0.442 0.977 0.356 0.522

comp.os.ms-windows.misc 0.418 0.877 0.567 0.976 0.513 0.672

misc.forsale 0.244 0.959 0.389 0.966 0.201 0.334

rec.autos 0.226 0.979 0.367 0.976 0.162 0.277

rec.motorcycles Unknown (reject)

Prec. Recall F1 Prec. Recall F1

comp.sys.mac.hardware 0.284 0.956 0.438 0.962 0.198 0.328

rec.autos 0.459 0.892 0.606 0.974 0.470 0.634

comp.windows.x 0.260 0.963 0.410 0.972 0.168 0.287

comp.graphics 0.289 0.953 0.444 0.964 0.177 0.299

comp.sys.ibm.pc.hardware 0.284 0.953 0.438 0.958 0.169 0.288

alt.atheism 0.194 0.973 0.324 0.980 0.333 0.498

TABLE VI

Results on example classes vs. unknown classes.

49

precision and F1 score on the unchanged known classes (comp.windows.x and rec.motorcycles)

are better when a more similar class (closer in distance) is selected in training. In particular,

comp.windows.x achieves the best result when comp.os.ms-windows.misc is the second known

class, and rec.motorcycles achieves the best result when rec.autos is the second known class.

This is because the radius rO for each positively labeled space is determined based on the

distance between the positive and negative training examples. As related classes are closer in

distance, a tighter boundary with smaller rO can be learned. However, our results show in the

cases when only 2 known classes are available, a tight boundary is harder to achieve for either

class for the proposed cbsSVM.

CHAPTER 4

CUMULATIVE LEARNING

(This chapter was previously published as “Learning Cumulatively to Become More Knowl-

edgeable”, in The 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD’16) (Fei et al., 2016).)

4.1 Introduction

Supervised learning has been very successful in research and in applications. However,

existing supervised learning research has focused on developing effective individual statistical

algorithms that learn accurate models or classifiers given a fixed dataset. Relatively little

research has been done on how to build continuous learning systems that learn cumulatively

and become more and more knowledgeable as the system sees more and more classes of data

over time.

Let us use an example to motivate this research. The 2016 presidential election in the USA

has been a hot topic on social media and many social science researchers rely on the collected

online user discussions to carry out political science research. During the long campaign, every

new proposal made by a presidential candidate is followed by a huge amount of discussions on

social media. A multiclass classifier is thus needed to track and to organize the discussions

from the general public. As the campaign goes on, the initially built model or classifier will

inevitably and frequently encounter new topics (e.g. Donald Trump’s plan for immigration

50

51

reform or Hillary Clinton’s new proposal for tax increase) that have not been covered in previous

learning. In this case, the classifier must first be able to detect these new topics when they

occur rather than classifying them into some existing classes or topics. Second, after enough

training examples of new/unseen topics are collected by human users, the existing classifier

should incorporate the new classes or topics in the classification system in a manner that does

not require rebuilding the whole classification system from scratch.

Based on this example, we can see two inter-related challenges in building a multi-class

cumulative supervised learning system:

1. The ability to continuously detect new/unseen classes of data that have not been covered

in training by the current classification system.

2. The ability to cumulatively add new classes to the system without having to re-train the

entire system from scratch using all the past training data.

In this chapter, we aim to solve these two problems in the context of text classification. We

call this cumulative machine learning or simply cumulative learning, which is a special form

of lifelong machine learning (Carlson et al., 2010; Pentina and Lampert, 2014; Silver et al.,

2013; Thrun and Mitchell, 1995). Formally, cumulative learning is stated as follows:

Problem Statement (Cumulative Learning): At any time point t, the system main-

tains a classifier, Ht, learned from a set of past training datasets Dt = {D1, D2, . . . , Dt} labeled

with corresponding classes (labels) Y t = {l1, l2, . . . , lt}, where every example in each dataset

Di ∈ Dt is labeled with the same class li ∈ Y t. Ht is able to classify each test instance to

either one of the known classes in Y t or the unknown class l0, which represents all new or

52

unseen topics. In this case, Ht is said to perform open world classification (Chapter 3). Once

enough training data Dt+1 has been collected for an unknown topic/class lt+1 by the user, Ht

is updated to cover the new class lt+1 to produce a new classifier Ht+1 and Ht+1 is also able

to perform open world classification. We want to build Ht+1 upon Ht with minimal effort and

without re-training the entire system.

Let us now explain why cumulative learning is a form of lifelong machine learning (Chen et

al., 2015), which is defined as follows:

Lifelong Machine Learning (LML) Definition: At any time point t, a learner has

performed a sequence of t learning tasks, T1, T2, . . . , Tt, and has accumulated the knowledge

K learned in these past t tasks. At time point t+ 1, it is faced with a new learning task Tt+1.

The learner is able to make use of the past knowledge K to help perform the new learning task

Tt+1.

Cumulative learning is a form of lifelong machine learning because we can treat task Tt+1

as the task of learning a multi-class classifier Ht+1 using all the past and the current data, D1,

D2, . . . , Dt, Dt+1 labeled with corresponding classes, l1, l2, . . . , lt, lt+1, as well as the past

classifier Ht as the knowledge to help train Ht+1.

In Chapter 3, we have introduced the problem of open world classification, where unseen

classes in testing are expected and can be detected by a classifier. We have also described our

proposed open classifier, cbsSVM, by generalizing our center-based similarity space learning

(CBS learning) technique in Chapter 2 following an open space risk formulation.

53

However, being able to detect unseen classes/topics is still insufficient for a multi-class

classifier to handle the growing number of topics of interest. We need to incorporate the detected

new classes into the system with minimal effort. A naive approach to solving this problem is

to re-train the entire system including the new class of data from scratch. However, such a

solution is only feasible if the number of classes is small. It is inappropriate and impracticable

when the number of classes grows very large.

In this chapter, we propose a new learning strategy, which is inspired by the process of human

concept learning, to make an attempt to tackle the cumulative learning problem. Human beings

are exposed to new concepts all the time. One particular way we learn a new concept is by

searching from the already known concepts, looking for similar ones, and then trying to find the

difference between these known concepts and the new one without using all the known concepts.

For example, assume we have already learned concepts like “movie”, “furniture”, and “soccer”.

Now we are presented with the concept of “basketball” and its documents. We find that

“basketball” is similar to “soccer”, but very different from “movie” and “furniture”. Thus we

just need to accommodate the new concept “basketball” into our old knowledge base by focusing

on distinguishing the “basketball” and “soccer” concepts. We do not need to worry about the

difference between “basketball” and “movie” or “furniture”, because the existing perception or

concepts of “movie” and “furniture” can easily tell that documents from “basketball” do not

belong to either of them. Based on the above possible human learning process, the proposed

learning process adds a new class of documents to the system that only disturbs a small subset

of the past classes.

54

As we indicated above, cumulative learning is related to lifelong learning (Carlson et al.,

2010; Pentina and Lampert, 2014; Silver et al., 2013; Thrun and Mitchell, 1995) because we

aim to perform learning continuously to make the system more and more knowledgeable, which

is analogous to human learning. However, it is different from current lifelong machine learning

(Silver et al., 2013) and transfer learning (Pan and Yang, 2010) methods because existing works

in these areas mainly focus on knowledge transfer, i.e., how to make use of the past data or

knowledge to help new learning tasks. None of the methods is able to detect unseen classes or

incrementally update an existing classifier, which make cumulative learning require a different

type of algorithms. Our problem is also different from existing research in online learning

and incremental learning (Blum, 1998; Cauwenberghs and Poggio, 2000; Zhao et al., 2011).

Online learning aims to handle new instances of the known classes, while we focus on handling

unseen/new classes of documents by recognizing them and updating the existing classification

system.

In summary, this work makes the following contributions:

1. It proposes the new learning problem of cumulative learning, which presents a new form of

lifelong learning. It involves two unique challenges, detecting and learning new knowledge

(classes or concepts) over time so that the system becomes more and more knowledgeable.

The first challenge is called open world classification and we have addressed the problem

in Chapter 3.

2. In order to address the second problem of learning new knowledge (classes or concepts)

over time, it proposes a learning strategy for cumulatively adding new classes of documents

55

into the existing classification system without requiring re-training the whole system from

scratch.

3. Extensive experiments show that the proposed method gives superior results compared to

state-of-the-art baselines in terms of both classification accuracy and learning efficiency.

4.2 Related Work

This work addresses an issue that is related to and has received attention from various

machine learning paradigms such as open world classification, lifelong learning, transfer learn-

ing, multi-task learning, and online learning. We have covered open world classification in

Section 3.2. Now we focus on the rest of the topics.

4.2.1 Lifelong Machine Learning

Lifelong machine learning (or lifelong learning) (Carlson et al., 2010; Pentina and Lampert,

2014; Silver et al., 2013; Thrun and Mitchell, 1995) is a machine learning paradigm that learns

continuously, accumulating the knowledge learned in previous tasks and using it to help future

tasks. In the process, the learner becomes more and more knowledgeable. However, most

existing machine learning techniques learn in isolation. For a given training dataset, a machine

learning algorithm learns a model on the dataset. However, it does not try to retain any learned

knowledge and use it for future learning tasks.

In the context of supervised learning, early work on lifelong learning focused on transferring

invariances in neural networks. For example, memory-based and explanation-based neural

networks (EBNN) based methods were proposed in (Thrun, 1996; Thrun and Mitchell, 1995),

which transferred knowledge across multiple learning tasks. Their learning task was similar to

56

ours, but they mainly focused on helping the classification of the new class. Also, their methods

were inefficient. Silver and Poirier (2004) made some improvements in terms of efficiency to

those in (Thrun, 1996; Thrun and Mitchell, 1995), but the framework was similar. Ruvolo and

Eaton (2013b) proposed the Efficient Lifelong Learning Algorithm (ELLA). Ruvolo and Eaton

(2013a) further enhanced ELLA through active selection of the next task to learn. However,

each of ELLA’s learning task is independent of others, i.e., each task’s learning and testing are

not related to others. Thus, it solves a different problem. Also, none of previous works detects

new or unseen classes. Our work is complementary to existing research. Lifelong learning has

also been conducted in reinforcement learning (Carlson et al., 2010), and unsupervised topic

modeling (Chen and Liu, 2014b; Chen et al., 2015), where past documents of many domains are

used to extract knowledge and the knowledge is subsequently used to improve topic discovery

in future tasks.

4.2.2 Online and Incremental Learning

Online learning and incremental learning (Blum, 1998; Cauwenberghs and Poggio, 2000;

Crammer et al., 2006; Fink et al., 2006; Kakade et al., 2008; Zhao et al., 2011) mainly aim at

handling new instances of known classes. In both scenarios, new data instances belonging to the

known classes and their class labels are incrementally revealed. The goal of online learning is to

make a sequence of accurate predictions in an online manner given the knowledge of the correct

answers to previous prediction tasks. However, our problem has a different setting, in which a

new class of documents arrives together and online updating is not required. We also detect

new classes and update the learned classifier without re-training the entire system. Although

57

(Xiao et al., 2014) allows new classes of data to be incrementally added, the paper does not

detect new/unseen classes, which makes the system less applicable in real-world applications.

4.3 Cumulative Learning

This section presents the proposed learning strategy and process to solve the cumulative

learning problem. As discussed in the introduction section, the proposed learning process is

similar to that of human concept learning. It cumulates knowledge and uses the cumulated

knowledge to help update the existing classification model and to accommodate the new class,

so that the new classification model can classify both existing classes and the new class, as

well as detecting unseen classes constantly. This section focuses on the overall algorithm and

how to incorporate the new class with minimum effort in training by exploiting the existing

classification model and the past data as prior knowledge.

4.3.1 Training a Cumulative Classification Model

Assuming we already have an open world classification system at time t with its classifi-

cation model Ht = {h1, h2, . . . , ht} built for the past t classes Y t = {l1, l2, . . . , lt} using their

corresponding training sets Dt = {D1, D2, . . . , Dt}. At time t + 1, the new dataset Dt+1 of

class lt+1 arrives, and the classification model Ht needs to be updated or extended to produce a

new classification model Ht+1 to perform open world classification. Each hi in Ht or Ht+1 is a

1-vs-rest SVM based on the CBS learning technique introduced in Chapter 2, which is built for

class li by treating li as the positive class. In other words, Ht and Ht+1 are both open world

classifiers, cbsSVM (Chapter 3).

58

The learning system goes through the following two steps to update the current state of the

classification system Ht to build a new one Ht+1 that can classify test data from all classes in

{l1, l2, . . . , lt, lt+1} as well as detect unseen classes of documents denoted by l0.

1. Searching for a set of similar classes, denoted by SC, that are similar to the new class

data Dt+1 with label lt+1.

2. Learning to separate the new class lt+1 from the classes in SC.

In order to perform the first step, we need a way to measure the similarity between classes.

There are many possible ways. One way is to perform clustering every time when a new class

arrives and see which cluster the new class falls in. However, it is difficult to set the number of

clusters as the number of classes changes over time. It is also hard to know how the classes in

the same cluster are related in the overall classification problem. Another way to measure the

similarity between classes is by computing the similarity between the centers of each class of

documents. However, this approach does not know the spread of each class of documents and

again, it is not clear how this distance is related to the final classification.

In this work, we propose to quantify the similarity between a new class lt+1 and the existing

ones l1, l2, . . . , lt by running each of the 1-vs-rest binary classifiers in Ht = {h1, h2, . . . , ht}

to classify instances in Dt+1. Those past classifiers that accept (classify as positive) a certain

number/percentage λsim of instances from Dt+1 are regarded as similar classes and are denoted

by SC. This method is intuitive because if a past classifier hi classifies many instances in

Dt+1 as positive, it means that the two classes of data are close to each other and need to be

separated subsequently.

59

Separating the new class lt+1 and classes in SC actually involves two steps:

1. Building a binary classifier ht+1 for the new class lt+1. It is intuitive to build ht+1 for

class lt+1, using Dt+1 as the positive training data and the data of the classes in SC as

the negative training data.

2. Updating the existing classifiers for the classes in SC. The reason for the updating is

that the addition of class lt+1 confuses those classifiers in SC. To re-build each existing

classifier hi, the system needs to use the original negative data employed to build the

existing classifier hi and the new data Dt+1 as the new negative training data. We still

need the old negative training data because we want the new classifier still to be able to

separate class li from those old classes.

The detailed algorithm is given in Algorithm 1. Line 1 initializes SC to the empty set while

Line 3 initializes the variable CT (for count) to record the number of instances in Dt+1 that

are classified as positive by classifier hi. Lines 4-9 use hi to classify each instance in Dt+1 and

record the number of instances that are classified (or accepted) as positive by hi. Lines 10-12

check whether there are too many instances in Dt+1 that have been classified as positive by hi

to render class li as similar to class lt+1. λsim is a threshold controlling how many percent of

instances in Dt+1 should be classified to class li before considering lt+1 as similar/close to class

li. Lines 14-17 build a new classifier ht+1 and update all the classifiers for classes in SC.

In summary, the proposed learning process uses the set SC of similar classes to the new

class lt+1 to control both the number of classifiers need to be built/updated at time t+ 1 and

also the number of negative instances used in building the new classifier ht+1. It thus greatly

60

Algorithm 1 Cumulative Learning

Input: Classification model Ht = {h1, h2, . . . , ht} till time t
Past dataset {D1, D2, . . . , Dt} till time t
New dataset Dt+1 at time t+ 1
Similarity threshold λsim

Output: Updated classification model Ht+1 = {h1, . . . , ht, ht+1}

1: SC = Ø
2: for each classifier hi ∈ Ht do
3: CT = 0
4: for each instance dj ∈ Dt+1 do
5: class = hi(dj) // classify doc dj using hi
6: if class = li then // wrongly classified
7: CT = CT + 1
8: end if
9: end for
10: if CT > λsim × |Dt+1| then
11: SC = SC ∪ {li}
12: end if
13: end for
14: build ht+1 and add to Ht+1

15: for each hi of class li ∈ SC do
16: update hi
17: end for
18: Return Ht+1

reduces the time compared to that of training a 1-vs-rest multi-class classifier using all the data.

However, running existing classifiers to classify instances from the new class will cause some

overhead. But the overhead is small compared to the training time needed when the number

of classes is very large.

61

Applying the above cumulative update algorithm together with the cbsSVM open world

classifier (Chapter 3), our final system, which is able to handle both challenges in cumulative

learning, is called CL-cbsSVM (CL stands for Cumulative Learning).

4.3.2 Final Classification Model

Following the cumulative training algorithm discussed in the above subsection, we end up

with an updated classifier system Ht+1 = {h1, h2, . . . , ht, ht+1} that is able to perform open

world classification. Since Ht+1 is essentially a cbsSVM open world classifier, for testing we use

the same technique of cbsSVM introduced in Section 3.3.3. That is, for a test instance x, each

binary classifier hi ∈ Ht+1 is used to produce a probability P (li|x). If none of the probabilities

is greater than a decision threshold λ (= 0.5), the document represented by x is regarded as

unseen or belonging to l0; otherwise it is classified to the class with the highest probability.

4.4 Evaluation

In this section, we evaluate our proposed system and compare it with extensive baselines in

terms of both classification results and computational speed.

4.4.1 Datasets

For evaluation, we again use the Amazon product reviews dataset (Chen and Liu, 2014a)

and the 20-newsgroup dataset (Joachims, 1996). However, in order to mimic real life scenarios

and show the superiority of our approach in its efficiency, we need a larger number of classes.

Thus, for experiments we use the complete set of 100 classes of Amazon product reviews. For

each class/domain in both datasets, we randomly keep 700 of the documents for training and

the rest 300 for testing.

62

4.4.2 Baselines

Our supervised learning baselines can be classified into two categories depending on the

strategy they use to update the system given new classes of documents. Most of our supervised

learning baselines except for CL-1-vs-rest-SVM are based on the rebuilding strategy, and they

have been introduced and used in Section 3.4 as baselines. CL-1-vs-rest-SVM is a variant of

our proposed CL-cbsSVM, which is able to cumulatively update the system given a new class

of documents. For more complete evaluation, we also include the semi-supervised learning

method, Exploratory-EM, which has also been introduced in Section 3.4 as a baseline. All the

baseline methods are summarized below. All documents use tf-idf term weighting scheme with

no feature selection.

1. Supervised learning baselines based on rebuilding strategy. This set of baselines

are based on the rebuilding strategy, which means they take all the past data and the

new class of data to re-train the system from scratch. We have introduced them in

Section 3.4, which include 1-vs-rest multi-class SVM (1-vs-rest-SVM), 1-vs-set Machine

(1-vs-set-linear), W-SVM (wsvm-linear and wsvm-rbf), PI-SVM (PI-svm-linear and PI-

svm-rbf). We do not compare with PI-OSVM (PI-osvm-linear and PI-osvm-rbf), as they

have shown poor results in Section 3.4.

2. Cumulative Learning with 1-vs-rest SVM (CL-1-vs-rest-SVM). Intuitively, the

choice of the underlying learner should affect cumulative learning in both classification

result and running time. As our proposed cumulative learning process is independent

of the learner used in building the classifier, instead of using cbsSVM as the underlying

63

learner, we apply 1-vs-rest-SVM in the cumulative learning process as one baseline. This

is the only supervised learning baseline that supports cumulative update of the model

without rebuilding the system from scratch given a new class of documents.

3. Exploratory Seeded K-Means (Exploratory-EM). This baseline is the multi-class

semi-supervised method introduced in Section 3.4.

One thing to note is that we did not include any 1-vs-1 SVM based multi-class classification

methods as baselines. This is because although a 1-vs-1 SVM technique for multi-class classi-

fication can support learning cumulatively by adding t new 1-vs-1 classifiers for the arrival of

the (t+ 1)th class, to the best of our knowledge, none of the existing such methods can support

open world classification.

4.4.3 Experimental Settings

Similar as in Section 3.4, we conduct open world cross-validation style analysis. In particu-

lar, we vary the number of test classes n = 50, 75, 100 for Amazon, and n = 20 for 20-newsgroup.

For each of these choices on the number of test classes, we also select m = 33%, 66% and 100%

of the number of test classes for training.

When m = 100% of test classes are used for training, the problem reduces to the closed

world classification. In this case, we force all the methods to perform closed world classification

by setting δR = 0 for W-SVM, δ = 0 for PI-SVM, and λ = 0 for methods 1-vs-rest-SVM, CL-

1-vs-rest-SVM, cbsSVM and CL-cbsSVM. By doing this, we always assign a known class label

to a test instance. For Exploratory-EM, we use its “semisup” mode instead of the “explore”

mode, which allows no new classes to be introduced in learning.

64

For methods that support the proposed cumulative update (CL-cbsSVM and CL-1-vs-rest-

SVM), we build a k-class classifier system starting from only 2 classes and cumulatively add

new classes to the system one at a time till k classes. We set λsim = 2% for all methods,

as it gives the best results, and we will discuss its effect in Section 4.4.5. For methods that

use rebuilding strategy (1-vs-rest-SVM, 1-vs-set-linear, wsvm-linear, wsvm-rbf, PI-svm-linear,

and PI-svm-rbf, cbsSVM), instead of simulating the whole process of building classifiers starting

from 2 classes till k classes by rebuilding the system over and over again, we only build a k-class

classifier once using all the k classes to simulate what happens when the kth class arrives.

Same parameters are used for the RBF kernel as in Section 3.4, with C = 5, γ = 0.2 for

Amazon and C = 10, γ = 0.5 for 20-newsgroup.

In the following subsections, we first show the classification results of all the methods dis-

cussed in this chapter, and then conduct running time analysis in Section 4.4.5 to compare their

efficiency. Finally, we perform qualitative analysis of the proposed cumulative learning.

4.4.4 Classification Results

In order to compare the classification results of different systems, for each train-test parti-

tion, we first compute precision, recall and F1 score for each class and then macro-average the

results across all classes. We only show F1 scores due to too many results.

We show the results of different methods in building a (m × n)-class open world classifier

based on the rebuilding and cumulative learning strategies in Table VII and Table VIII. Ta-

ble VII contains three sub-tables. From left to right, we show results of different methods on

the Amazon dataset when the number of test classes n = 50, 75, 100. And Table VIII contains

65

n = 50 n = 75 n = 100

m = 33% 66% 100% 33% 66% 100% 33% 66% 100%

1-vs-rest-SVM 0.498 0.501 0.568 0.442 0.490 0.541 0.460 0.444 0.418

cbsSVM 0.580 0.632 0.639 0.546 0.581 0.619 0.579 0.565 0.569

CL-cbsSVM 0.549 0.610 0.623 0.511 0.574 0.616 0.536 0.552 0.549

CL-1-vs-rest-SVM 0.352 0.511 0.472 0.488 0.440 0.424 0.352 0.373 0.394

1-vs-set-linear 0.437 0.496 0.334 0.379 0.499 0.534 0.379 0.463 0.290

wsvm-linear 0.506 0.537 0.335 0.454 0.535 0.547 0.465 0.499 0.309

wsvm-rbf 0.347 0.382 0.398 0.278 0.357 0.544 0.264 0.289 0.095

PI-svm-linear 0.507 0.539 0.337 0.454 0.536 0.550 0.465 0.499 0.303

PI-svm-rbf 0.407 0.595 0.409 0.388 0.576 0.603 0.389 0.562 0.310

ExploratoryEM 0.419 0.523 0.618 0.366 0.514 0.576 0.377 0.480 0.538

TABLE VII

Open classification results on the Amazon dataset.

n = 20

m = 33% 66% 100%

1-vs-rest-SVM 0.652 0.714 0.808

cbsSVM 0.662 0.728 0.852

CL-cbsSVM 0.644 0.716 0.820

CL-1-vs-rest-SVM 0.417 0.632 0.713

1-vs-set-linear 0.620 0.529 0.577

wsvm-linear 0.597 0.606 0.677

wsvm-rbf 0.417 0.643 0.773

PI-svm-linear 0.598 0.608 0.678

PI-svm-rbf 0.435 0.715 0.767

ExploratoryEM 0.559 0.690 0.864

TABLE VIII

Open classification results on the 20newsgroup dataset.

66

results for 20newsgroup when n = 20. Within each set of results in Table VII and Table VIII,

different columns list results of different methods when different proportions of test classes are

used for training. From both tables, we can see that cbsSVM (Chapter 3) performs the best in

almost all settings with only one exception. Even when 100% of the test classes are used for

training, which is in the traditional closed world classification setting. Note that it does not

use cumulative update of the system given new classes of documents. That is, it is based on

the re-building strategy.

We also notice that the proposed CL-cbsSVM (which is the cumulative version of cbsSVM)

always gives comparable results as cbsSVM. It is not surprising that CL-cbsSVM loses to

cbsSVM, because cbsSVM uses all the classes when building the classifier while CL-cbsSVM

only relies on a small subset of previous classes. This leads to dramatic efficiency increase over

cbsSVM as will be shown in Section 4.4.5. In contrast to CL-cbsSVM, the baseline method CL-

1-vs-rest-SVM, which also supports learning cumulatively, performs poorly in both open world

and closed world classification tasks. The main reason is that its underlying learner SVM learns

in the document space. Due to this reason, SVM is not suitable in handling unseen classes,

identifying similar domains, or learning effectively given similar classes during the cumulative

learning process.

4.4.5 Running Time Analysis

Apart from the classification results, we are also interested in evaluating the efficiency of

each method. For comparison, we measure the time it takes for different systems to rebuild or

cumulatively update when the last new class is presented in each setting. For methods based

67

(a) Running time summary (b) The number of classifiers built

Figure 3. Cumulative learning efficiency analysis.

on the rebuilding strategy, this is equivalent to the total training time because we only build

the system once using all the training classes.

In this work, all experiments are conducted using a single thread on a single 64-bit Windows

server with Intel Xeon X5650 2.67GHz CPU. At the same time, we are also aware that some

of the experimented methods can be easily parallelized. For example, a single classifier can

be trained on a different machine for 1-vs-rest-SVM, 1-vs-set-linear and cbsSVM. And for

methods based on the proposed cumulative learning process CL-cbsSVM and CL-1-vs-rest-

SVM, both detecting similar classes and building/updating existing classifiers can be sent to

different machines to speed up the overall running time. However, we plan to leave this part of

work to the future.

For all the methods except Exploratory-EM, we implemented data preprocessing and trans-

formation in Java, and called LIBSVM (Chang and Lin, 2011) or its extension packages for

68

training. Summary of the running time of different methods is shown in Figure 3(a). The

x-axis indicates experimental settings. For example, 50 × 0.33 indicates the setting in which

50 × 0.33 (= 16) classes are used to train, and 50 classes for testing. The reason we show it

this way is because Exploratory-EM is a semi-supervised method, the number of test domains

also affects its running time. The y-axis indicates running time (in seconds) to rebuild/update

the system when the last domain (50× 0.33 = 16th) arrives. Due to the wide range of running

time of different algorithms, the y-axis (seconds) is in log2 scale. However, note that two rea-

sons made the running time of Exploratory-EM algorithm not very comparable. Firstly, the

Exploratory Learning package was written in Matlab. Secondly, its a semi-supervised method,

which uses test data during learning.

From Figure 3(a), we are able to make several interesting observations. Firstly, apart from

Exploratory-EM, cbsSVM takes longer time to run compared to other 1-vs-rest methods, which

is due to the extra data preprocessing and transformation overhead and the use of RBF kernel.

Secondly, our proposed CL-cbsSVM takes the shortest time to update especially when the

number of classes is big. Due to the data transformation overhead, it is slightly slower than

some other baselines when the number of classes is small. Thirdly, although also based on

the updating strategy, running speed of CL-1-vs-rest-SVM is dramatically slower than that of

CL-cbsSVM. This is because CL-1-vs-rest-SVM uses SVM as the underlying learner and is not

good at identifying new classes. Thus many existing classifiers misclassify many instances from

the new class and get retrained. As the number of classes in the system increases over time,

this effect is amplified further. Lastly, most of other algorithms based on 1-vs-rest SVM (1-vs-

69

rest-SVM, 1-vs-set-linear, wsvm-linear, wsvm-rbf, PI-svm-linear and PI-svm-rbf) have similar

running time and trend with the increase on the number of training classes/domains.

Although the running time of different methods is affected by many factors, another way

of comparing the efficiency of different approaches is to look at the number of classifiers they

build/update each time a new class arrives starting from two classes to k classes. In Figure 3(b),

we show results for CL-1-vs-rest-SVM, CL-cbsSVM as well as all methods based on the rebuild-

ing strategy. The y-axis indicates the number of classifiers that were built/updated (in log2

scale) and x-axis is the arrival of the ith class. As all the methods based on the rebuilding

strategy always build t classifiers when the tth new class is presented to the system, it is thus

the upper bound for CL-1-vs-rest-SVM and CL-cbsSVM. To illustrate the effect of λsim param-

eter, we vary the parameter λsim = 10%, 5%, 2% for both systems. But for the clarity of the

plot, we only show λsim = 2% for CL-1-vs-rest-SVM, as both methods show similar trends by

varying λsim. Since the sequence of arrival of new classes affects the results of our method, we

average the numbers across 5 runs.

From Figure 3(b), we can see that CL-1-vs-rest-SVM clearly builds more classifiers than

CL-cbsSVM does when λsim is set at 2% for both systems. By comparing different λsim values

for CL-cbsSVM, we see that on average smaller λsim leads to more classifiers being updated.

This is intuitive because smaller λsim indicates being stricter on if an old classifier should be

updated, while at the same time, smaller λsim gives slightly better accuracy in classification,

which is also intuitive.

70

Diaper Clothing Headphone Lamp Laptop

CL-cbsSVM

Baby Baby CDPlayer Kindle HardDrive

Clothing
ArtsCrafts

Sewing
CarStereo Books Lamp

Care Amplifier Battery

Beauty Care Computer

Clothing

GPS

CL-1-vs-rest-SVM

Baby Baby DVDPlayer
Home

Improvement
HardDrive

Care Automotive CDPlayer Kindle Computer

DVDPlayer Care CarStereo Automotive Clothing

Clothing Beauty Amplifier
Industrial
Scientific

Automotive

ArtsCrafts
Sewing

ArtsCrafts
Sewing

Clothing DVDPlayer
Home

Improvement

Automotive Battery Care Clothing Battery

Beauty CarStereo Gloves Battery Car Stereo

CDPlayer CDPlayer Golf CDPlayer DVDPlayer

BluRay
Player

Camcorder
(2 more)

GPS
(1 more)

Care
(9 more)

Kindle
(11 more)

TABLE IX

Negative classes selected by CL-1-vs-rest-SVM and CL-cbsSVM.

4.4.6 Qualitative Analysis of Cumulative Learning

One way to gain more insight into our proposed cumulative learning system CL-cbsSVM is

by looking at what existing classes are selected as the negative training data during its learning

process in building/updating classifiers when new classes arrive. Intuitively, an effective and

efficient learning algorithm should be able to select the minimal number of closely relevant

71

domains instead of lots of irrelevant ones. For comparison, we also show the results from CL-

1-vs-rest-SVM with the same class arrival order. Table IX lists the negative classes picked by

both methods for the 26th till the 30th new class when building the system cumulatively on

the Amazon dataset. The first row shows the names of the new classes, and each column shows

the chosen similar classes by two systems. The reason we pick these five positions is because

there are enough existing classes for a system to make mistakes, and not too many so that we

can still list them. In fact, CL-1-vs-rest-SVM still picked too many classes beyond what we can

enumerate. We also tried to manually identify those picked classes that we feel are unrelated,

and they are marked in red.

From the results shown in Table IX, we can easily tell that not only the number of negative

training classes selected by CL-cbsSVM is much smaller, they are also more relevant than those

picked by CL-1-vs-rest-SVM.

CHAPTER 5

DETECTING CHANGED-HANDS ONLINE REVIEW ACCOUNTS

(This chapter includes and expands the paper currently under review, “Detecting Changed-

Hands Online Review Accounts” in The 55th Annual Meeting of the Association for Computa-

tional Linguistics (ACL’17) (Fei et al., 2017).)

5.1 Introduction

Reputable social media accounts can be of great value to spammers with hidden agendas.

A common type of spam in e-commerce (i.e., review sites such as Amazon, Yelp, etc.) or

review sites is the opinion spam, because individuals and organizations rely heavily on online

reviews/opinions to make their purchase decisions. Due to huge profits brought by positive

reviews, opinion spammers game the system by posting fake reviews to promote or discredit

some target products or services. Since the early work by Jindal and Liu (2008), detecting fake

reviews and reviewers have drawn wide attention from both the research community and the

industry.

A large number of methods have been proposed in recent years to fight against opinion spam

and the problem has been investigated through different approaches, including linguistic (Ott

et al., 2011; Li et al., 2014b), behavioral (Feng et al., 2012b; Ye and Akoglu, 2015), temporal

(Xie et al., 2012; Li et al., 2015; Ye et al., 2016) and relational analysis (Wang et al., 2011; Jiang

72

73

et al., 2014; Rayana and Akoglu, 2015; Wang et al., 2016). (Please see Section 5.2 for additional

related work.)

As a result of the advances in spam filtering techniques, spamming has become harder than

before. For example, giving all-extreme ratings (Lim et al., 2010), writing near-duplicate reviews

(Jindal and Liu, 2008), or posting many reviews in a short period of time (Fei et al., 2013) can

be easily caught by an existing filtering system. Driven by profits, opinion spammers are

forced to resort to other strategies. One of the strategies is offering to buy reputable accounts1

(those with a clean history) and use them to post spam reviews. Selling/buying accounts is

also prevalent in other forms of social media. Karma farmers2 are such an example in the

community website Reddit3, who try to gain high karma (upvotes and reputation) quickly with

new accounts so that their posts can show up in the front page, and then sell these seemingly

benign and reputable accounts to spammers. In rare cases, accounts may also change hands

when they are compromised by spammers, while it is harder to break into frequently-used

reputable accounts.

In all of the above situations, accounts change hands at a certain time point and start to

exhibit linguistic and/or behavioral differences in the midst of their life span. To the best of

our knowledge, such changes, as a new form of spam, have not been studied before. Moreover,

1https://www.yelp.com/topic/boston-someone-offered-to-buy-my-yelp-account

2https://www.reddit.com/r/AgainstKarmaWhores/comments/3gwmae/types_of_karma_whores/

3https://www.reddit.com/r/AgainstKarmaWhores/comments/383qsp/why_are_we_doing_this/

https://www.yelp.com/topic/boston-someone-offered-to-buy-my-yelp-account
https://www.reddit.com/r/AgainstKarmaWhores/comments/3gwmae/types_of_karma_whores/
https://www.reddit.com/r/AgainstKarmaWhores/comments/383qsp/why_are_we_doing_this/

74

as most existing spam filtering methods study the overall language usage and behaviors of

reviewers, they are less likely to detect such accounts since they look normal in their early

stage.

In this chapter, we propose to fill the gap to investigate the problem of detecting CH

accounts from a linguistic perspective. An algorithm, called CHAD (CH Accounts Detection),

is proposed to identify whether an account has changed hands and to estimate the time point

of change if so. In case of a change, we assume there is only one change in an account’s life

time. This is reasonable as it is sufficient for spam detection purposes. Formally, our problem

definition is as follows:

Problem Definition: Given an account A = {r1, r2, . . . , rn} with reviews rj sorted by

their posting dates, CHAD determines if a significant linguistic change has occurred starting

from a particular review ri (1 < i < n). The algorithm returns i if yes, and returns none

otherwise.

The proposed algorithm CHAD is based on the idea that reviews/posts written by one user

are similar among themselves but different from those written by another user. It works in five

main steps: (1) It computes a sequence of similarity scores by comparing reviews in a small

window (called pivot window) with a moving window on the rest of the reviews of the same

account based on a feature in a set of m features. Thus each pivot window generates m similarity

sequences. (2) It eliminates noisy features and their sequences from the set of sequences for each

pivot window. (3) It aggregates the remaining sequences for each pivot window. (4) It runs a

statistical algorithm for change-point detection on each aggregated sequence. (5) It performs

75

two rounds of voting on the change-point detection results of the aggregated sequences of all

pivot windows for each account to identify whether the account has changed hands and where

the change has occurred.

Our problem presents two unique challenges:

1. Inter-user differences: Different CH accounts exhibit different changes, because not every

pair of users has the same differences in their writings. For example, in some CH accounts,

the two users can be distinguished by the average length of the words they use, e.g., one

of the users likes to use short words, while the other uses long words. In some other CH

accounts, the two users may be distinguished by the average sentence length but not by the

average word length, because one user likes to use long sentences while the other likes to use

short ones, but both of them mainly use short words.

2. Intra-user variance: Every review is unique in some way, which results in a certain amount

of difference and variance when compared with other reviews of even the same user using

some features in step (1). However, such differences may not indicate a real changing of

hands between two users.

Given the above two challenges, an effective detection method needs to perform the above

five steps on individual accounts (account level). In fact, step (2) of the proposed method

CHAD uses a novel feature selection technique, which is very different from traditional feature

selection approaches, on the similarity sequences constructed ‘for individual pivot windows

(pivot level). It performs pivot-level feature selection which aims to address both challenges at

the same time. We describe the details in Section 5.3.

76

The contributions of this work are as follows:

1. We study the outstanding problem of detecting CH accounts, which have become prevalent in

many social media websites. The proposed approach is complementary to existing literature

in spam detection and especially opinion spam detection on review websites.

2. We propose a novel algorithm, called CHAD, which leverages linguistic evidences to identify

whether an account has changed hands during its life time and estimates the change point.

3. We evaluate our proposed algorithm CHAD on two datasets constructed from Amazon and

Yelp reviews, and demonstrate that the approach is highly effective and superior to a list of

baselines.

5.2 Related Work

Our work is related to opinion spam detection, tracking linguistic evolution and change

point detection. We discuss these related work in turn here.

5.2.1 Opinion Spam Detection

The spamming activities that have received the most attention from the research community

are web spam and email spam (Castillo et al., 2007; Spirin and Han, 2012; Chirita et al., 2005).

However, opinion spam differs considerably in its ultimate goals and execution by the spammers

(Jindal and Liu, 2008).

Since the first work by Jindal and Liu (2008), opinion spam has been widely studied. A

wide range of techniques have been proposed for detecting individual spam reviews (Jindal and

Liu, 2008; Li et al., 2011; Wang et al., 2011; Ott et al., 2012; Feng et al., 2012b; Feng et al.,

2012a; Xie et al., 2012; Li et al., 2014a; Li et al., 2014b; Li et al., 2015; KC and Mukherjee,

77

2016; Hai et al., 2016), individual spammers (Jindal et al., 2010; Lim et al., 2010; Akoglu et al.,

2013; Fei et al., 2013; Mukherjee et al., 2013a) and spammer groups (Mukherjee et al., 2012; Xu

et al., 2013; Xu and Zhang, 2015; Ye and Akoglu, 2015). However, the use of CH accounts as

a new instrument for spamming has not been studied thus far and no techniques are available

for their detection.

Among existing techniques, detecting individual spammers is the most related task to our

problem. In particular, Jindal et al. (2010) and Lim et al. (2010) studied rating behaviors

of users; Akoglu et al. (2013) studied the relational collusion between reviewers and their

target products; Mukherjee et al. (2013a) proposed a Bayesian approach to modeling the

behavioral patterns of spammers and non-spammers; Fei et al. (2013) exploited review bursts

for spammer detection. However, none of these approaches can effectively detect CH accounts

because they examine the overall linguistic and/or behavioral patterns of each user account,

while the spamming activities of CH accounts may go undetected by existing systems given a

clean early history.

Our work is also related to using linguistics-based approaches to detecting individual spam

reviews (Ott et al., 2011; Li et al., 2014b; Ren et al., 2014; Hai et al., 2016). In particular,

Ott et al. (2011) hired Amazon turkers to write fake reviews and created a gold standard fake

review dataset which can be used for developing supervised spam review detection models. Li

et al. (2014) created a more comprehensive benchmark on three domains of reviews (Hotel,

Restaurant, and Doctor), and explored generalized approaches for identifying online spam re-

views. Our work is also loosely related to psycholinguistic deception detection (Feng et al.,

78

2012a; Newman et al., 2003; Hancock et al., 2007; Pérez-Rosas et al., 2015; Pérez-Rosas and

Mihalcea, 2015), as we also use a linguistic-based approach in this work.

5.2.2 Tracking Linguistic Evolution

Our work is related to tracking linguistic evolution across time. Juola (2003) quantified

the rate of change in language across two time periods. Säily et al. (2011) studied variations

in noun/pronoun frequencies and Lijffijt et al. (2012) studied lexical stability in a historical

corpus. Our work is different because the above works study linguistic changes by comparing

language from two chosen time periods, while our goal is to estimate the change point from a

sequence of documents. Tracking shifts in the meaning of individual words has been studied

in (Wijaya and Yeniterzi, 2011; Gulordava and Baroni, 2011; Mitra et al., 2014; Kim et al.,

2014; Kulkarni et al., 2015). Our work does not study shifts of meaning of words but “shifts

in authorship”. Authorship attribution methods (Stamatatos, 2009), while related, cannot be

directly applied to a sequence of documents.

5.2.3 Change Point Detection

Change point detection is a core time series analysis problem (Basseville et al., 1993; Chen

and Gupta, 1999; Taylor, 2000; Adams and MacKay, 2007). For extended surveys on change

point analysis theory and applications, please refer to (Basseville et al., 1993) and (Chen and

Gupta, 2012). In our work, we adopt the single change point detection technique of (Chen and

Gupta, 1999), as it aligns with our goal of detecting CH accounts.

79

Figure 4. Five main steps of CHAD.

5.3 Proposed Method

This section presents our CHAD algorithm for detecting CH accounts. We start with

describing the overall algorithm, and then go into the details.

5.3.1 The Overall Algorithm

As mentioned earlier, the main idea of CHAD is that the reviews written by one user

are similar among themselves but different from those written by a different user. CHAD is

outlined in Algorithm 2, which works on one account at a time. Note that it needs a pre-selected

80

Algorithm 2 CHAD

Input: Account := A = {r1, r2, . . . , rn},
Window size := K, Smoothing factor := λS
Features := F (⊆ F all) = {f1, f2, . . . , fm}

Output: Result := index i (1 < i < n), or none

1: C := Ø // C is a multiset for voting.
2: for each ri ∈ A(1 ≤ i ≤ n−K + 1) do
3: Si := Ø // Si is a set of similarity sequences for a pivot window.
4: pivot-window := {ri, . . . , ri+K−1}
5: A := A \ pivot-window
6: for each fj ∈ F do
7: ssij := compute-sim-seq(ri,K,A, fj)
8: Si := Si ∪ {ssij}
9: end for
10: Si := pivot-level-feature-select(Si)
11: si := aggregate(Si)
12: ci := change-point-detect(si) // ci is either a review’s temporal index or none.
13: C := C ∪ {ci}
14: end for
15: result := is-change-vote(C)
16: if (result 6= none) then
17: C−none := remove none elements from C
18: CS

−none := smooth(C−none, λS)
19: result := change-point-vote(CS

−none)
20: end if
21: return result

feature set F as input, which is a subset of all features F all. We will explain this shortly. We

first introduce its five main steps (which is also illustrated in Figure 4):

1. Generate similarity sequences (lines 2-9): This step builds a set of similarity sequences Si

using features in F (Section 5.3.2) for a pivot window (size K) starting from review ri. Each

sequence ssij ∈ Si is computed by comparing the similarity of reviews in the pivot window

81

and reviews within a moving window of also size K in the remaining reviews A using one (fj)

of the features in F (line 7). For a CH account, we expect the similarities in a sequence to be

high when comparing reviews written by the same user, but low across two different users.

We expect to detect such changes using a change-point detection algorithm (Section 5.3.4).

2. Eliminate noisy features (line 10) (Section 5.3.3): This step performs pivot-level feature

selection and removes the corresponding noisy sequences from Si. This step is the key to

addressing the main challenges of our problem.

3. Aggregate sequences (line 11): We aggregate the remaining sequences for each pivot window

by averaging the sequences in the resulting Si.

4. Change-point detection (line 12) (Section 5.3.4): We run a statistical algorithm for change-

point detection on each aggregated sequence si.

5. Two-round Voting (line 15-20) (Section 5.3.5): We perform two rounds of voting on the

change-point detection results on the aggregated sequences of all pivot windows for an ac-

count to determine if CH occurs and also identify the final change point.

Global feature pre-selection: As mentioned before, CHAD requires a pre-selected feature

set F as input. F is selected globally by running Algorithm 2 without line 10 (pivot-level

feature selection) on all accounts of a development set for multiple iterations starting with all

features F all as input. Each iteration removes one feature from F all that gives the biggest

performance gain in F1 score under the change-point evaluation (evalcp) (Section 5.4.1). It

globally removes those features in F all that do not help our task. We will give more insights

for this in Section 5.3.3.

82

5.3.2 Features and Similarity Metrics

We first introduce the set of all features F all and similarity metrics used in the compute-

sim-seq function in Algorithm 2 (line 7). Features with * produce a single value for reviews in

a given window and the rest use the Bag-of-Words (BOW) model.

• Average sentence length*. A single value feature that computes the average number

of words in a sentence in a review window.

• Average token length*. A single value feature that computes the average number of

characters in a word in a review window.

• Word unigrams. All word unigrams in a review window represented by a BOW model.

• Word bigrams. All word bigrams in a review window represented by a BOW model.

• Part-of-Speech unigrams. All Part-of-Speech tags of unigrams in a review window

represented by a BOW model.

• Part-of-Speech bigrams. All Part-of-Speech tags of bigrams in a review window rep-

resented by a BOW model.

• Adjectives & adverbs. All adjectives and adverbs in a review window represented by

a BOW model.

• Nouns. All nouns in a review window represented by a BOW model.

• Function words. All function words in a review window represented by a BOW model.

• Punctuations. All punctuations in a review window represented by a BOW model.

83

To measure the similarity between two review windows, we use cosine similarity for BOW

features. We tried some other measures but they did not perform well. For single value features,

we compute the similarity sim using their absolute difference diff and normalizing it to [0,1]:

sim = 1/(1 + log(1 + diff)) (5.1)

5.3.3 Pivot-Level Feature Selection

Now we describe the pivot-level-feature-select function in line 10 of Algorithm 2. As we

pointed out earlier, one key challenge of our problem is that the writing differences between the

pair of users in one CH account may be different from those between other pairs in other CH

accounts. Furthermore, each review is unique in some way which can result in a certain amount

of difference when computing similarity with other reviews using some features. Such differences

however may not indicate real writing differences between two users. To solve the above two

issues, we propose to perform pivot-level feature selection (Algorithm 3). The corresponding

similarity sequence of each removed feature is deleted from Si.

The pivot-level-feature-select function selects a subset of sequences in Si through correla-

tion analysis, which is the same as selecting their corresponding features. It first averages all

sequences in Si to construct a target sequence (line 1). It then computes Pearson’s correla-

tion (Pc) of each sequence in Si with the target and sorts the sequences based on correlation

strength in descending order (line 3). Line 4 adds the sequence with the highest correlation to

the result set E. It then goes through the sorted sequence set S
′
i and tests if adding another

84

Algorithm 3 Pivot-level-Feature-Select

Input: Si := {ssi1, ssi2, . . . , ssiT }
Output: E := the set of selected sequences

1: target := avg(Si)
2: E = Ø
3: S

′
i = sort({Pc(ssij ∈ Si, target)}) // computes Pearson’s correlation (Pc) of each ssit ∈ Si

to target and sort in descending order.
4: E := E ∪ {S′

i[1]} // adds the sequence with highest correlation to E.
5: for j ∈ {2 : T} do
6: p := avg(E)
7: l := S

′
i[j]

8: if Pc(avg(E ∪ {l}), target) > Pc(p, target) then
9: E := E ∪ {l}
10: else
11: break
12: end if
13: end for
14: return E

sequence to E would increase E’s average’s correlation to target (lines 5-13). If the correlation

improves by the addition, we update E; otherwise exit and return E.

The intuition is that target is a representative sequence assuming only a few noisy sequences

exist. Through correlation analysis, we identify sequences (or their features) that align with

the target and discard those outlier ones that otherwise hinder the change point detection

performance. Given the intuition above, it becomes clearer why we perform global feature

selection for CHAD. Because the pivot-level-feature-select function considers target as a reference

and assumes only a few noisy sequences exist, globally removing noisy features is able to enhance

its effectiveness, as we will see in Section 5.4.4.

85

Figure 5. Sample similarity sequences in an Si.

Figure 5 gives an example of several similarity sequences computed for a pivot window

on a CH account in the Amazon dataset (Section 5.4.1), where the actual change happens at

review #119. For clarity, we only plot a subset of sequences generated using 4 features. We

can see that changes in similarity can be captured by features such as punctuations, unigrams

and bigrams and are reflected on their corresponding similarity sequences, while the sequence

constructed using Adj&Adv is quite noisy and no change can be spotted. Through correlation

analysis, our Algorithm 3 is able to effectively eliminate the noisy sequence generated from the

feature Adj&Adv.

86

5.3.4 Change Point Detection

As mentioned in the introduction, we assume there is at most one change point in each

account. As such, we use the single point change detection algorithm by (Chen and Gupta,

1999), which uses the Schwarz Information Criterion (SIC) (Schwarz and others, 1978) to search

for the change point. We briefly review the technique in (Chen and Gupta, 1997; Chen and

Gupta, 1999) in this subsection. Suppose X1, X2, . . . , Xn is a sequence of independent Gaussian

random variables with means µ1, µ2, . . . , µn and variances σ2
1, σ

2
2, . . . , σ

2
n, respectively. The

method tests the hypothesis of whether there exists a single change point at an unknown

position k, 2 ≤ k ≤ n− 1, where the mean and variance change:

H0 :µ1 = µ2 = · · · = µn = µ and

σ2
1 = σ2

2 = · · · = σ2
n = σ2,

versus the alternative hypothesis

H1 :µ1 = · · · = µk 6= µk+1 = · · · = µn and

σ2
1 = · · · = σ2

k 6= σ2
k+1 = · · · = σ2

n,

where µ and σ2 are unknown common parameters when there are no changes. We thus have two

models corresponding to theH0 andH1. The decision to rejectH0 is made based on the principle

of minimum Schwarz information criterion (Schwarz and others, 1978), SIC. In particular,

H0 is not rejected if SIC(n) ≤ minkSIC(k), and rejected otherwise. SIC(n′) is defined as

87

−2logL(Θ̂) + plogn′, where L(Θ̂) and p are the respective maximum likelihood function and

degree of freedom for each model, and n′ being the sample size.

More specifically, the MLE’s for µ and σ2 under H0 can be found to be: µ̂ = X̄ = 1
n

∑n
i=1Xi,

and σ̂2 = 1
n

∑n
i=1(Xi − X̄)2. Then the SIC under H0 (Chen and Gupta, 1997), SIC(n), is

obtained as:

SIC(n) = −2logL0(µ̂, σ̂2) + 2logn

= nlog2π + nlog
n∑
i=1

(Xi − X̄)2 + n+ (2− n)logn,

(5.2)

in which the function L0 is the maximum likelihood function under H0.

While under H1, the MLE’s for µ1, µn, σ1
2, σn

2 can be found to be: µ̂1 = X̄k = 1
k

∑k
i=1Xi,

σ̂2
1 = 1

k

∑k
i=1(Xi − X̄k)

2, µ̂n = X̄n−k = 1
n−k

∑n
i=k+1Xi, σ̂

2
n = 1

n−k
∑n

i=k+1(Xi − X̄n−k)
2. And

the SIC under H1, SIC(k) for a particular k (2 ≤ k ≤ n− 2), is thus defined as:

SIC(k) = −2logL1(µ̂1, µ̂n, σ̂
2
1, σ̂

2
n) + 4logn

= nlog2π + klogσ̂2
1 + (n− k)logσ̂2

n + n+ 4logn,

(5.3)

where L1(µ̂1, µ̂n, σ̂
2
1, σ̂

2
n) is the maximum likelihood function under H1.

H0 cannot be rejected if SIC(n) ≤ minkSIC(k), and can otherwise be rejected if SIC(n) >

minkSIC(k), and under such circumstance the change point k can be estimated by k̂ such that

SIC(k̂) = minkSIC(k). Here, SIC(k) is the test statistic for the model selection.

88

5.3.5 Two-Round Voting

In Algorithm 2, CHAD uses a two-round voting scheme (step 5) to determine if an account

has changed hands and also to pinpoint the location of change (lines 15-20). In the first round

(line 15), is-change-vote function determines if a change has occurred. Note that each element

ci ∈ C returned by the change point detection algorithm is either a change point (i.e., a review)

or none (indicating no change). This function simply counts the number of votes for each

change point and none. If none has the highest number of votes, it returns none; otherwise

it registers that change has occurred and removes all the none elements from C (line 17). It

then moves on to the second round of voting to pinpoint the actual change location. Instead of

directly voting based on elements in C−none, we perform smoothing on C−none first (line 18).

Let us look at an example. Given a set of votes in C−none in the format of change-point:#-

of-votes 10:8, 50:5, 51:7, 52:4, the point that gets the highest votes is 10. However, the actual

change point is more likely to be around 51. In order to overcome this possible noise factor,

we smooth the votes by adding some extra counts to near-by locations of every change point

in C−none to construct CS
−none. Specifically, we pick a smoothing factor λS ∈ Z>0 and for a

change point i with v votes, we add v/λdistS extra votes to locations i+ dist and i− dist, where

dist = 1, 2, Finally, we perform the second round of voting on CS
−none to determine the

final change location. Assuming λS = 2, the final votes in the above example becomes 7:1,

8:2, 9:4, 10:8, 11:4, 12:2, 13:1, 48:1, 49:3, 50:9, 51:10, 52:8, 53:3, 54:1, and the 51th review is

selected as the final change point.

89

5.4 Experiments

In this section, we evaluate our proposed changed hands detection algorithm, CHAD, and

compare it with a list of baselines. We start by introducing two datasets, followed by the

evaluation schemes and metrics.

5.4.1 Datasets and Evaluation Metrics

Datasets: Identifying opinion spam manually has been shown to be very challenging and

unreliable by previous works (Ott et al., 2011). As such, no publicly available labeled data

exists for our experiments. We thus constructed synthetic datasets for this work. Similar

construction has been done previously, e.g., in identifying the same author under multiple

userids (Qian and Liu, 2013). We use two publicly-available review datasets to construct CH

accounts, one from Amazon (Jindal and Liu, 2008), which contains reviews for multiple product

categories such as books, electronics and etc., and the other from Yelp (Mukherjee et al.,

2013b), which contains only hotel reviews. The construction of CH accounts from each dataset

is done as follows: We first randomly select two different accounts A1 = {r11, r12, . . . , r1n} and

A2 = {r21, r22, . . . , r2n′}, both sorted by their review posting dates. We then concatenate one

account to the other, giving us Asyn = {r11, r12, . . . , r1n, r21, r22, . . . , r2n′}. For each dataset,

we created 700 accounts, 350 CH accounts and 350 normal (i.e., original) accounts. We then

randomly sample 200 accounts from each set, 100 in each class, as the development set and

consider the rest 500 accounts as the test set.

90

We believe that this construction method is reasonable because this is what usually happens

with CH accounts. Also since we randomly select accounts from a large dataset, which may

already contain some CH accounts, the chance of selecting existing CH accounts is very small.

We next explain why we use the Amazon and Yelp datasets in our experiments. The Amazon

dataset has reviews of all kinds of products. We use it to create the scenario where a spammer

buys an account and uses it to review products that are potentially quite different from those

reviewed by the original user (although we do not enforce this when constructing the dataset).

Moreover, products reviewed by a single user can also be quite diverse. In contrast, the Yelp

dataset has only hotel reviews, which allows us to show whether our approach is able to detect

CH accounts when the two users wrote reviews for the same type of entities. As we show below,

CHAD is able to perform well on both scenarios.

Evaluation Schemes and Metrics: We deploy two evaluation schemes, CH-accounts

detection evaluation (evalcha) and change-point detection evaluation (evalcp), and report cor-

responding precision, recall, F1, and accuracy on both tasks.

For evalcha, we only identify CH accounts but not the actual change locations. For evalcp,

we go one step further to also evaluate the change point locations. Since it is quite hard

to identify the exact change point (the review) at which a change-of-hands has occurred, we

define a window x± y around the actual change point x with window size y, and consider the

predicted change point as accurate as long as it resides within the window. When a change

point is detected for a non-CH account, it is considered an error. We study performance by

varying y at the end of section 5.4.4.

91

5.4.2 Baselines

Since there is no previous work on detecting changed-hands accounts, we propose the fol-

lowing baselines:

• One Sequence (OS). One of the simplest approaches to detecting CH accounts is to con-

struct a single sequence of feature values directly from a moving window of reviews of size

K (one value per review window) of an account and use it to run a change point detection

algorithm. The set of features we tried includes: average sentence length, average token

length, ratio of nouns, ratio of adjectives and adverbs, ratio of function words, and ratio of

punctuations and special characters. This baseline thus produces 6 results named with OS-

as the prefix.

• One Feature (OF). This baseline is a variant of CHAD. The difference is that it only uses

a single feature from F all as input. Thus, lines 10-11 in Algorithm 2 do not have any effect.

Since F all contains 10 features, this baseline produces 10 different results, which are named

with OF- as the prefix.

• CHAD w/out Pivot-level Feature Selection (CHAD-PFS). This baseline is another

variant of CHAD. The difference is that it does not perform pivot-level feature selection in

Algorithm 2. It deploys the same procedure to pre-select a feature set and thus shares the

same F with CHAD.

• CHAD w/out Pre-selecting F (CHAD-F). This is a variant of CHAD that directly

uses F all without pre-selecting feature set F as input. It still performs pivot-level feature

selection.

92

• CHAD with Individual Voting (IndV). This baseline is also a variant of CHAD. The

main difference is in lines 10-13 of Algorithm 2. Specifically, it does not perform pivot-level

feature selection (line 10) or sequence aggregation on Si (line 11). Instead, it performs change-

point detection on every individual sequence in Si and adds every result to C for final voting.

It does use pre-selected feature set F , however, by running IndV itself on the development

set for multiple iterations. Each iteration removes one feature until the performance does not

increase.

5.4.3 Parameter Settings

We use the respective development set of each dataset to set parameters. For both datasets,

K = 5 was chosen for the window size in constructing similarity sequences (Section 5.3.1),

and λS = 2 was chosen for vote smoothing (Section 5.3.5). For change-point detection, we

use the implementation in R changepoint package (Killick and Eckley, 2014), which outputs

an estimated change point along with its confidence level. We set a confidence level threshold

of θconf = 0.99 based on the development set, and consider any detected change point with

confidence level lower than θconf as no change (none). In parameter selection and in the main

results reporting, we use y = 5 for evalcp, and later show the results by varying y.

We make the following remarks about these parameters. First, using a very small K (e.g.,

1 or 2) leads to bad performance due to the high variance in similarities between reviews. On

the other hand, while using a large K (e.g., 7 or 8) improves results for CH accounts detection

(evalcha), the performance of change-point detection (evalcp) drops due to loss of granularity.

Second, it is important to set the confidence level threshold θconf high to consider only the most

93

evalcha evalcp
Feature Name Prec. Recall F1 Accu. Prec. Recall F1 Accu.

One Sequence Baselines

OS-AvgSentLen 0.681 0.76 0.718 0.702 0.365 0.629 0.462 0.526

OS-AvgTokenLen 0.736 0.692 0.713 0.722 0.353 0.518 0.420 0.542

OS-Punctuations Ratio 0.624 0.812 0.706 0.662 0.298 0.673 0.413 0.45

OS-Adj&Adv Ratio 0.518 0.344 0.413 0.512 0.132 0.118 0.125 0.384

OS-Noun Ratio 0.449 0.268 0.335 0.47 0.067 0.051 0.058 0.356

OS-Function Word Ratio 0.663 0.632 0.647 0.656 0.239 0.382 0.294 0.454

One Feature Baselines

OF-Unigrams 0.832 0.776 0.803 0.81 0.639 0.726 0.680 0.72

OF-Bigrams 0.824 0.768 0.795 0.802 0.639 0.719 0.677 0.716

OF-Punctuations 0.778 0.8 0.788 0.785 0.548 0.738 0.629 0.667

OF-Function Words 0.832 0.576 0.680 0.73 0.606 0.497 0.546 0.652

OF-POS Unigrams 0.865 0.672 0.756 0.784 0.644 0.603 0.623 0.698

OF-POS Bigrams 0.872 0.684 0.766 0.792 0.632 0.610 0.621 0.698

OF-Nouns 0.733 0.804 0.767 0.756 0.536 0.75 0.625 0.648

OF-Adj&Adv 0.821 0.496 0.618 0.694 0.602 0.419 0.494 0.628

OF-AvgSentLen 0.703 0.616 0.656 0.678 0.328 0.428 0.372 0.514

OF-AvgTokenLen 0.810 0.496 0.615 0.69 0.398 0.326 0.358 0.564

CHAD Variants

IndV 0.901 0.584 0.708 0.76 0.820 0.561 0.666 0.734

CHAD-PFS 0.864 0.792 0.826 0.834 0.751 0.767 0.759 0.782

CHAD-F 0.879 0.844 0.861 0.864 0.729 0.817 0.770 0.792

CHAD

CHAD 0.876 0.852 0.864 0.866 0.757 0.832 0.793 0.808

TABLE X. Results of CH detection on the Amazon accounts.

confident detections—due to the fact that each review is unique in some way, the constructed

similarity sequences unavoidably fluctuate to a large extent.

5.4.4 Results and Analysis

Now we show the experimental results using the parameters set in Section 5.4.3. We present

the results on Amazon and Yelp datasets, respectively in Tables Table X and Table XI. For each

94

evalcha evalcp
Feature Name Prec. Recall F1 Accu. Prec. Recall F1 Accu.

One Sequence Baselines

OS-AvgSentLen 0.748 0.728 0.738 0.742 0.473 0.628 0.539 0.608

OS-AvgTokenLen 0.761 0.576 0.656 0.698 0.402 0.417 0.409 0.562

OS-Punctuations Ratio 0.660 0.724 0.690 0.676 0.321 0.560 0.408 0.49

OS-Adj&Adv Ratio 0.508 0.36 0.421 0.506 0.107 0.106 0.106 0.364

OS-Noun Ratio 0.478 0.316 0.380 0.486 0.109 0.095 0.101 0.364

OS-Function Word Ratio 0.718 0.612 0.660 0.686 0.356 0.439 0.393 0.532

One Feature Baselines

OF-Unigrams 0.950 0.688 0.798 0.826 0.839 0.661 0.739 0.786

OF-Bigrams 0.914 0.684 0.782 0.81 0.796 0.653 0.718 0.766

OF-Punctuations 0.875 0.76 0.813 0.826 0.658 0.704 0.680 0.732

OF-Function Words 0.903 0.376 0.531 0.668 0.644 0.300 0.409 0.614

OF-POS Unigrams 0.945 0.484 0.640 0.728 0.773 0.434 0.556 0.684

OF-POS Bigrams 0.946 0.492 0.647 0.732 0.730 0.427 0.539 0.676

OF-Nouns 0.796 0.392 0.525 0.646 0.528 0.299 0.382 0.58

OF-Adj&Adv 0.869 0.32 0.467 0.636 0.684 0.270 0.387 0.602

OF-AvgSentLen 0.734 0.576 0.645 0.684 0.510 0.485 0.497 0.596

OF-AvgTokenLen 0.888 0.352 0.504 0.654 0.545 0.25 0.342 0.586

CHAD Variants

IndV 0.989 0.36 0.527 0.678 0.945 0.349 0.510 0.67

CHAD-PFS 0.981 0.62 0.759 0.804 0.892 0.597 0.715 0.776

CHAD-F Same as CHAD as no features are globally removed from F all.

CHAD

CHAD 0.954 0.752 0.841 0.858 0.847 0.729 0.784 0.816

TABLE XI. Results of CH detection on the Yelp accounts.

dataset we only list all 6 OS results, all 10 OF results, results of IndV, CHAD-PFS, CHAD-F

and our proposed CHAD. Note that CHAD and CHAD-F produce the same results on the

Yelp dataset as no features are removed from F all.

First, CHAD achieves the best results on both datasets. CHAD-F, which uses pivot-level

feature selection, outperforms CHAD-PFS, which demonstrates the effectiveness of our pivot-

95

level feature selection over global feature pre-selection. Moreover, for the Amazon dataset

(Table Table X), CHAD-F outperforms CHAD-PFS, and CHAD improves upon CHAD-F

further, which show that filtering the input feature set F helps pivot-level feature selection. We

also note that IndV performs poorly on both datasets. This is because it detects change points

on individual similarity sequences for each pivot window, which are unreliable due to noise and

fluctuations.

Second, the results of OS baselines are quite poor, for which there are two possible ex-

planations. They rely on computing a single value as feature, which may not be sufficient in

capturing the differences between users in CH accounts. Moreover, OS baselines construct only

one sequence, which is potentially less reliable than multiple sequences in CHAD.

Third, the three best OF baselines are the same for both datasets, namely OF-unigrams,

OF-bigrams and OF-punctuations. They are inferior to CHAD-PFS, CHAD-F and CHAD on

the Amazon dataset, but are better than CHAD-PFS on Yelp. As noted in Section 5.4.1, Yelp is

different from Amazon in that all its reviews are about hotels. It thus requires more fine-grained

feature selection where global feature selection is insufficient.

Fourth, we found that two OF baselines, OF-nouns and OF-adjective&adverbs, give very

different results on two datasets. Specifically, they yield significantly better results on Ama-

zon than on Yelp. We believe the difference is caused by the nature of the two datasets. As

the Amazon dataset contains multiple categories of products, nouns and adjectives&adverbs

may be able to capture the differences between users in CH accounts better than those on

the Yelp dataset where all the reviews are about hotels. Overall, however, nouns and adjec-

96

y = 1 y = 3

CHAD-PFS 0.117 0.341 0.175 0.492 0.475 0.677 0.558 0.656

CHAD-F 0.095 0.370 0.152 0.488 0.487 0.75 0.590 0.676

CHAD 0.127 0.455 0.199 0.502 0.485 0.761 0.592 0.676

y = 5 y = 7

CHAD-PFS 0.751 0.767 0.759 0.782 0.764 0.770 0.767 0.788

CHAD-F 0.729 0.817 0.770 0.792 0.775 0.826 0.8 0.814

CHAD 0.757 0.832 0.793 0.808 0.781 0.837 0.808 0.82

TABLE XII

Effect of varying y under evalcp on the Amazon accounts.

y = 1 y = 3

CHAD-PFS 0.139 0.188 0.16 0.538 0.689 0.534 0.602 0.712

CHAD-F Same as CHAD

CHAD 0.152 0.326 0.207 0.542 0.614 0.661 0.636 0.724

y = 5 y = 7

CHAD-PFS 0.892 0.597 0.715 0.776 0.917 0.604 0.728 0.784

CHAD-F Same as CHAD

CHAD 0.847 0.729 0.784 0.816 0.878 0.736 0.801 0.828

TABLE XIII

Effect of varying y under evalcp on the Yelp accounts.

tives&adverbs do not perform as well as the best-3 OF-baselines (OF-unigrams, OF-bigrams

and OF-punctuations). This might be due to the fact that an average Amazon reviewer is also

likely to post reviews on different categories of products, which creates variance in similarities.

Lastly, we notice that two OF baselines, OF-AvgSentLen and OF-AvgTokenLen, perform

worse than their counterparts OS-AvgSentLen and OS-AvgTokenLen on both datasets. We

97

believe this is caused by the fact that OF features are normalized to the range of [0,1] as

we described in Section 5.3.2, while OS features are not. Normalized features may have less

distinguishable power.

In the end, we aim to investigate the effect of window size y (Section 5.4.1) on change-point

evaluation (evalcp) by varying y = 1, 3, 5, 7. We report the results for CHAD-PFS, CHAD-F

and CHAD on both datasets in Table Table XII and Table Table XIII. Only results for evalcp

are listed as those for evalcha are not affected by the value of y. Both both tables, we can see

that as expected, the results improve as the value of y increases. CHAD performs the best

compared to the other two regardless of the value of y. And CHAD-F, which uses pivot-level

feature selection, outperforms CHAD-PFS with a single exception at y = 1 on Amazon.

CHAPTER 6

CONCLUSIONS

In this thesis, we have studied three research problems related to open classification and

the problem of detecting changed-hands online review accounts. We started with a special

case of open classification—text classification under negative covariate shift. Then we studied

the general problem of open classification. We further proposed cumulative learning in the

context of text classification, which allows unseen classes of data not only be detected, but also

cumulatively added to the existing system without rebuilding the system from scratch. In the

end, we proposed to detect changed-hands online review accounts from a linguistic perspective

in the unsupervised setting. In all of the above problems, transforming text data to a similarity

space or similarity sequences enabled us to detect different types of changes in the data. The

contributions of this thesis are summarized as below:

• First, we studied the problem of text classification under negative covariate shift, which

can be seen as a special case of open classification. The problem is prevalent when one

aims to collect relevant posts/documents of a particular topic of interest from social media.

We attempted to solve this problem by proposing a new learning technique, called center-

based similarity space learning (CBS-L), which transforms document representation from

the traditional n-gram feature space to a similarity space and learns in the similarity

space. Our experimental results show that the proposed method CBS-L outperformed

strong baselines by large margins.

98

99

• We then studied the general problem of open classification. In particular, we approached

the problem from an open space risk management perspective by proposing an open space

formulation and provided a solution by generalizing the proposed CBS learning technique.

Our open space formulation greatly reduced the positively labeled area compared to pre-

vious works, which markedly reduced the open space risk. With extensive experiments

across two public datasets, we demonstrated that the proposed solution is highly promis-

ing. One of the future directions could be to design a more robust solution that works

better when the number of known classes is small.

• We further proposed cumulative learning, as a special form of supervised lifelong machine

learning. Two unique challenges in cumulative learning were identified and presented,

namely, the ability to perform open classification in order to detect data from unseen

classes in the test set and the ability to selectively update the existing classification

model without requiring rebuilding the whole system from scratch. We also proposed a

cumulative learning strategy, which we believe is similar to human concept learning. It

only requires updating part of the existing classification model whenever a new class of

data arrives and needs to be covered by the classification model. As time goes by, the

system keeps learning more and more in an efficient manner and becomes more and more

knowledgeable. Through extensive experiments by building classifiers for up to 100 con-

secutive classes, and comparing with strong baselines, we demonstrated the effectiveness

and efficiency of the proposed approach.

100

• Lastly, we explored the use of similarity-based approaches in detecting a type of change

in social media accounts in an unsupervised fashion. In particular, we aimed to detect

changed-hands online review accounts. The problem has presented two unique challenges

due to the differences in intra-user and inter-user writing styles. We introduced a detection

algorithm, CHAD, which determines if an account has changed hands and the possible

change point by transforming a sequence of reviews in an account into sequences of sim-

ilarity scores. In order to address our challenges, CHAD employs a pivot-level feature

selection algorithm, which removes noisy features and their corresponding similarity se-

quences for each pivot window. Experiments on two synthetic datasets constructed using

Amazon and Yelp review datasets demonstrated that CHAD is highly effective compared

to a list of baselines.

APPENDICES

101

Association for Computational LinguisticsAssociation for Computational Linguistics

Copyright Transfer Agreement

Title of Work:

Author(s):

Copyright to the above work (including, without limitation, the right to publish the work
in whole or in part in any and all forms and media, now or hereafter known) is hereby
transferred to the Association for Computational Linguistics (ACL), effective as of the
date of this agreement, on the understanding that the work has been accepted for
presentation at a meeting sponsored by the ACL and for publication in the proceedings of
that meeting. However, each of the authors and the employers for whom the work was
performed reserve all other rights, specifically including the following: (1) All proprietary
rights other than copyright and publication rights transferred to ACL; (2) The right to
publish in a journal or collection or to be used in future works of the author’s own (such
as articles or books) all or part of this work, provided that acknowledgment is given to the
ACL and a full citation to its publication in the particular proceedings is included; (3) The
right to make oral presentation of the material in any forum; (4) The right to make copies
of the work for internal distribution within the author’s organization and for external
distribution as a preprint, reprint, technical report, or related class of document. In the
case of a work prepared under a government contract, if the contract so requires, that
government may reproduce all or portions of the article and may authorize others to do
so, for official government purposes only.

By signing below, I confirm that all authors of the work have agreed to the above and that
I am authorized to execute this transfer on their behalf.

Signature(s) Date

Name(s) (please print)

Your job title (if not one of the authors)

Name and address of your organization

Social Media Text Classification under Negative Covariate Shift

Geli Fei, Bing Liu

Geli Fei

08/14/2015

102

Appendix A : Copyrights

Association for Computational LinguisticsAssociation for Computational Linguistics

Copyright Transfer Agreement

Title of Work:

Author(s):

Copyright to the above work (including, without limitation, the right to publish the work
in whole or in part in any and all forms and media, now or hereafter known) is hereby
transferred to the Association for Computational Linguistics (ACL), effective as of the
date of this agreement, on the understanding that the work has been accepted for
presentation at a meeting sponsored by the ACL and for publication in the proceedings of
that meeting. However, each of the authors and the employers for whom the work was
performed reserve all other rights, specifically including the following: (1) All proprietary
rights other than copyright and publication rights transferred to ACL; (2) The right to
publish in a journal or collection or to be used in future works of the author’s own (such
as articles or books) all or part of this work, provided that acknowledgment is given to the
ACL and a full citation to its publication in the particular proceedings is included; (3) The
right to make oral presentation of the material in any forum; (4) The right to make copies
of the work for internal distribution within the author’s organization and for external
distribution as a preprint, reprint, technical report, or related class of document. In the
case of a work prepared under a government contract, if the contract so requires, that
government may reproduce all or portions of the article and may authorize others to do
so, for official government purposes only.

By signing below, I confirm that all authors of the work have agreed to the above and that
I am authorized to execute this transfer on their behalf.

Signature(s) Date

Name(s) (please print)

Your job title (if not one of the authors)

Name and address of your organization

Breaking the Closed World Assumption in Text Classification

Geli Fei; Bing Liu

Geli Fei

04/01/2016

103

104

ACM Author Rights

“Authors can reuse any portion of their own work in a new work of their own (and no fee is

expected) as long as a citation and DOI pointer to the Version of Record in the ACM Digital

Library are included.

Contributing complete papers to any edited collection of reprints for which the author is

not the editor, requires permission and usually a republication fee.

Authors can include partial or complete papers of their own (and no fee is expected) in a

dissertation as long as citations and DOI pointers to the Versions of Record in the ACM Digital

Library are included. Authors can use any portion of their own work in presentations and in

the classroom (and no fee is expected).

Commercially produced course-packs that are sold to students require permission and pos-

sibly a fee.” 1

1http://authors.acm.org/main.html

CITED LITERATURE

[Adams and MacKay, 2007] Ryan Prescott Adams and David JC MacKay. 2007. Bayesian
online changepoint detection. arXiv preprint arXiv:0710.3742.

[Akoglu et al., 2013] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. 2013. Opinion
fraud detection in online reviews by network effects. ICWSM, 13:2–11.

[Alter et al., 2000] Orly Alter, Patrick O Brown, and David Botstein. 2000. Singular value
decomposition for genome-wide expression data processing and modeling. Proceedings
of the National Academy of Sciences, 97(18):10101–10106.

[Basseville et al., 1993] Michèle Basseville, Igor V Nikiforov, et al. 1993. Detection of abrupt
changes: theory and application, volume 104. Prentice Hall Englewood Cliffs.

[Bickel and Scheffer, 2007] Steffen Bickel and Tobias Scheffer. 2007. Dirichlet-enhanced spam
filtering based on biased samples. Advances in neural information processing systems,
19:161.

[Bickel et al., 2009] Steffen Bickel, Michael Brückner, and Tobias Scheffer. 2009. Discriminative
learning under covariate shift. Journal of Machine Learning Research, 10(Sep):2137–
2155.

[Blei et al., 2003] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet
allocation. Journal of machine Learning research, 3(Jan):993–1022.

[Blum, 1998] Avrim Blum. 1998. On-line algorithms in machine learning. In Online algorithms,
pages 306–325. Springer.

[Bravo et al., 2008] Cristian Bravo, Jose Luis Lobato, Richard Weber, and Gaston L’Huillier.
2008. A hybrid system for probability estimation in multiclass problems combining
svms and neural networks. In Hybrid Intelligent Systems, 2008. HIS’08. Eighth Inter-
national Conference on, pages 649–654. IEEE.

[Carlson et al., 2010] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Este-
vam R Hruschka Jr, and Tom M Mitchell. 2010. Toward an architecture for never-
ending language learning. In AAAI, volume 5, page 3.

105

106

[Castillo et al., 2007] Carlos Castillo, Debora Donato, Aristides Gionis, Vanessa Murdock, and
Fabrizio Silvestri. 2007. Know your neighbors: Web spam detection using the web
topology. In Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 423–430. ACM.

[Cauwenberghs and Poggio, 2000] Gert Cauwenberghs and Tomaso Poggio. 2000. Incremental
and decremental support vector machine learning. In NIPS, volume 13.

[Cha, 2007] Sung-Hyuk Cha. 2007. Comprehensive survey on distance/similarity measures
between probability density functions. City, 1(2):1.

[Chang and Lin, 2011] Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm: a library for
support vector machines. ACM Transactions on Intelligent Systems and Technology
(TIST), 2(3):27.

[Chen and Gupta, 1997] Jie Chen and Arjun K Gupta. 1997. Testing and locating variance
changepoints with application to stock prices. Journal of the American Statistical
association, 92(438):739–747.

[Chen and Gupta, 1999] Jie Chen and AK Gupta. 1999. Change point analysis of a gaussian
model. Statistical Papers, 40(3):323–333.

[Chen and Gupta, 2012] Jie Chen and Arjun K Gupta. 2012. Parametric Statistical Change
Point Analysis: With Applications to Genetics, Medicine, and Finance; 2nd ed.
Springer, Boston.

[Chen and Liu, 2014a] Zhiyuan Chen and Bing Liu. 2014a. Topic modeling using topics from
many domains, lifelong learning and big data.

[Chen and Liu, 2014b] Zhiyuan Chen and Bing Liu. 2014b. Topic modeling using topics from
many domains, lifelong learning and big data. In Tony Jebara and Eric P. Xing,
editors, Proceedings of the 31st International Conference on Machine Learning (ICML-
14), pages 703–711. JMLR Workshop and Conference Proceedings.

[Chen et al., 2015] Zhiyuan Chen, Nianzu Ma, and Bing Liu. 2015. Lifelong learning for sen-
timent classification. Volume 2: Short Papers, page 750.

[Chirita et al., 2005] Paul-Alexandru Chirita, Jörg Diederich, and Wolfgang Nejdl. 2005. Mail-
rank: using ranking for spam detection. In Proceedings of the 14th ACM international
conference on Information and knowledge management, pages 373–380. ACM.

107

[Colas and Brazdil, 2006] Fabrice Colas and Pavel Brazdil. 2006. Comparison of svm and
some older classification algorithms in text classification tasks. In IFIP International
Conference on Artificial Intelligence in Theory and Practice, pages 169–178. Springer.

[Crammer et al., 2006] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and
Yoram Singer. 2006. Online passive-aggressive algorithms. Journal of Machine Learn-
ing Research, 7(Mar):551–585.

[Dalvi et al., 2013] Bhavana Dalvi, William W Cohen, and Jamie Callan. 2013. Exploratory
learning. In Joint European Conference on Machine Learning and Knowledge Discov-
ery in Databases, pages 128–143. Springer.

[Denis, 1998] François Denis. 1998. Pac learning from positive statistical queries. In Interna-
tional Conference on Algorithmic Learning Theory, pages 112–126. Springer.

[Duan and Keerthi, 2005] Kai-Bo Duan and S Sathiya Keerthi. 2005. Which is the best mul-
ticlass svm method? an empirical study. In International Workshop on Multiple
Classifier Systems, pages 278–285. Springer.

[Dud́ık et al., 2005] Miroslav Dud́ık, Steven J Phillips, and Robert E Schapire. 2005. Correcting
sample selection bias in maximum entropy density estimation. In Advances in neural
information processing systems, pages 323–330.

[Elkan and Noto, 2008] Charles Elkan and Keith Noto. 2008. Learning classifiers from only
positive and unlabeled data. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 213–220. ACM.

[Fei and Liu, 2015] Geli Fei and Bing Liu. 2015. Social media text classification under negative
covariate shift. In EMNLP, pages 2347–2356.

[Fei and Liu, 2016] Geli Fei and Bing Liu. 2016. Breaking the closed world assumption in text
classification. In Proceedings of NAACL-HLT, pages 506–514.

[Fei et al., 2013] Geli Fei, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos, and
Riddhiman Ghosh. 2013. Exploiting burstiness in reviews for review spammer detec-
tion. ICWSM, 13:175–184.

[Fei et al., 2016] Geli Fei, Shuai Wang, and Bing Liu. 2016. Learning cumulatively to be-
come more knowledgeable. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1565–1574. ACM.

108

[Fei et al., 2017] Geli Fei, Shuai Wang, Leman Akoglu, and Bing Liu. 2017. Detecting changed-
hands online review accounts. In ACL under review. Association for Computational
Linguistics.

[Feng et al., 2012a] Song Feng, Ritwik Banerjee, and Yejin Choi. 2012a. Syntactic stylometry
for deception detection. In Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Short Papers-Volume 2, pages 171–175. Association
for Computational Linguistics.

[Feng et al., 2012b] Song Feng, Longfei Xing, Anupam Gogar, and Yejin Choi. 2012b. Distri-
butional footprints of deceptive product reviews. ICWSM, 12:98–105.

[Fink et al., 2006] Michael Fink, Shai Shalev-Shwartz, Yoram Singer, and Shimon Ullman.
2006. Online multiclass learning by interclass hypothesis sharing. In Proceedings
of the 23rd international conference on Machine learning, pages 313–320. ACM.

[Fumera and Roli, 2002] Giorgio Fumera and Fabio Roli. 2002. Support vector machines with
embedded reject option. In Pattern Recognition with Support Vector Machines, pages
68–82. Springer.

[Gulordava and Baroni, 2011] Kristina Gulordava and Marco Baroni. 2011. A distributional
similarity approach to the detection of semantic change in the google books ngram
corpus. In Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural
Language Semantics, pages 67–71. Association for Computational Linguistics.

[Hai et al., 2016] Zhen Hai, Peilin Zhao, Peng Cheng, Peng Yang, Xiao-Li Li, Guangxia Li, and
Ant Financial. 2016. Deceptive review spam detection via exploiting task relatedness
and unlabeled data. In EMNLP.

[Hancock et al., 2007] Jeffrey T Hancock, Lauren E Curry, Saurabh Goorha, and Michael
Woodworth. 2007. On lying and being lied to: A linguistic analysis of deception
in computer-mediated communication. Discourse Processes, 45(1):1–23.

[He et al., 2004] Xiaofei He, Deng Cai, Haifeng Liu, and Wei-Ying Ma. 2004. Locality preserv-
ing indexing for document representation. In Proceedings of the 27th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval,
pages 96–103. ACM.

109

[Heckman, 1977] James J. Heckman. 1977. Sample selection bias as a specification error (with
an application to the estimation of labor supply functions). Working Paper 172,
National Bureau of Economic Research, March.

[Huang et al., 2006a] Jiayuan Huang, Arthur Gretton, Karsten M Borgwardt, Bernhard
Schölkopf, and Alex J Smola. 2006a. Correcting sample selection bias by unlabeled
data. In Advances in neural information processing systems, pages 601–608.

[Huang et al., 2006b] Tzu-Kuo Huang, Ruby C Weng, and Chih-Jen Lin. 2006b. General-
ized bradley-terry models and multi-class probability estimates. Journal of Machine
Learning Research, 7(Jan):85–115.

[Jain et al., 2014] Lalit P Jain, Walter J Scheirer, and Terrance E Boult. 2014. Multi-class open
set recognition using probability of inclusion. In European Conference on Computer
Vision, pages 393–409. Springer.

[Jiang et al., 2014] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang.
2014. Catchsync: catching synchronized behavior in large directed graphs. In KDD,
pages 941–950. ACM.

[Jindal and Liu, 2008] Nitin Jindal and Bing Liu. 2008. Opinion spam and analysis. In Pro-
ceedings of the 2008 International Conference on Web Search and Data Mining, pages
219–230. ACM.

[Jindal et al., 2010] Nitin Jindal, Bing Liu, and Ee-Peng Lim. 2010. Finding unusual review
patterns using unexpected rules. In Proceedings of the 19th ACM international con-
ference on Information and knowledge management, pages 1549–1552. ACM.

[Joachims, 1996] Thorsten Joachims. 1996. A probabilistic analysis of the rocchio algorithm
with tfidf for text categorization. Technical report, DTIC Document.

[Joachims, 1998] Thorsten Joachims. 1998. Text categorization with support vector machines:
Learning with many relevant features. In European conference on machine learning,
pages 137–142. Springer.

[Kakade et al., 2008] Sham M Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. 2008. Effi-
cient bandit algorithms for online multiclass prediction. In Proceedings of the 25th
international conference on Machine learning, pages 440–447. ACM.

110

[KC and Mukherjee, 2016] Santosh KC and Arjun Mukherjee. 2016. On the temporal dynamics
of opinion spamming: Case studies on yelp. In Proceedings of the 25th International
Conference on World Wide Web, pages 369–379. International World Wide Web Con-
ferences Steering Committee.

[Khan and Madden, 2013] Shehroz S. Khan and Michael G. Madden. 2013. One-class classifi-
cation: Taxonomy of study and review of techniques. CoRR, abs/1312.0049.

[Killick and Eckley, 2014] Rebecca Killick and Idris A. Eckley. 2014. changepoint: An R pack-
age for changepoint analysis. Journal of Statistical Software, 58(3):1–19.

[Kim et al., 2014] Yoon Kim, Yi-I Chiu, Kentaro Hanaki, Darshan Hegde, and Slav Petrov.
2014. Temporal analysis of language through neural language models. arXiv preprint
arXiv:1405.3515.

[Kotz and Nadarajah, 2000] Samuel Kotz and Saralees Nadarajah. 2000. Extreme value distri-
butions: theory and applications. World Scientific.

[Kulkarni et al., 2015] Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2015.
Statistically significant detection of linguistic change. In Proceedings of the 24th In-
ternational Conference on World Wide Web, pages 625–635. ACM.

[Kwok, 1999] JT-Y Kwok. 1999. Moderating the outputs of support vector machine classifiers.
IEEE Transactions on Neural Networks, 10(5):1018–1031.

[Le and Mikolov, 2014] Quoc V Le and Tomas Mikolov. 2014. Distributed representations of
sentences and documents. In ICML, volume 14, pages 1188–1196.

[Lebanon, 2006] Guy Lebanon. 2006. Sequential document representations and simplicial
curves. In Proceedings of the Twenty-Second Conference on Uncertainty in Artifi-
cial Intelligence, UAI’06, pages 273–280, Arlington, Virginia, United States. AUAI
Press.

[Lee and Liu, 2003] Wee Sun Lee and Bing Liu. 2003. Learning with positive and unlabeled
examples using weighted logistic regression. In ICML, volume 3, pages 448–455.

[Li et al., 2010] Xiao-Li Li, Bing Liu, and See-Kiong Ng. 2010. Negative training data can
be harmful to text classification. In Proceedings of the 2010 conference on empirical
methods in natural language processing, pages 218–228. Association for Computational
Linguistics.

111

[Li et al., 2011] Fangtao Li, Minlie Huang, Yi Yang, and Xiaoyan Zhu. 2011. Learning to iden-
tify review spam. In IJCAI Proceedings-International Joint Conference on Artificial
Intelligence.

[Li et al., 2014a] Huayi Li, Zhiyuan Chen, Bing Liu, Xiaokai Wei, and Jidong Shao. 2014a.
Spotting fake reviews via collective positive-unlabeled learning. In 2014 IEEE Inter-
national Conference on Data Mining, pages 899–904. IEEE.

[Li et al., 2014b] Jiwei Li, Myle Ott, Claire Cardie, and Eduard H Hovy. 2014b. Towards a
general rule for identifying deceptive opinion spam. In ACL (1), pages 1566–1576.
Citeseer.

[Li et al., 2015] Huayi Li, Zhiyuan Chen, Arjun Mukherjee, Bing Liu, and Jidong Shao. 2015.
Analyzing and detecting opinion spam on a large-scale dataset via temporal and spatial
patterns. In Proceedings of The 9th International AAAI Conference on Web and Social
Media (ICWSM-15), Oxford, UK, pages 26–29.

[Lim et al., 2010] Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu, and Hady Wirawan
Lauw. 2010. Detecting product review spammers using rating behaviors. In Pro-
ceedings of the 19th ACM international conference on Information and knowledge
management, pages 939–948. ACM.

[Liu et al., 2003] Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and Philip S Yu. 2003. Building
text classifiers using positive and unlabeled examples. In Data Mining, 2003. ICDM
2003. Third IEEE International Conference on, pages 179–186. IEEE.

[Manevitz and Yousef, 2001] Larry M Manevitz and Malik Yousef. 2001. One-class svms for
document classification. Journal of Machine Learning Research, 2(Dec):139–154.

[Manning et al., 2008] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al.
2008. Introduction to information retrieval, volume 1. Cambridge university press
Cambridge.

[Mitra et al., 2014] Sunny Mitra, Ritwik Mitra, Martin Riedl, Chris Biemann, Animesh
Mukherjee, and Pawan Goyal. 2014. That’s sick dude!: Automatic identification
of word sense change across different timescales. arXiv preprint arXiv:1405.4392.

[Mukherjee et al., 2012] Arjun Mukherjee, Bing Liu, and Natalie Glance. 2012. Spotting fake
reviewer groups in consumer reviews. In Proceedings of the 21st international confer-
ence on World Wide Web, pages 191–200. ACM.

112

[Mukherjee et al., 2013a] Arjun Mukherjee, Abhinav Kumar, Bing Liu, Junhui Wang, Meichun
Hsu, Malu Castellanos, and Riddhiman Ghosh. 2013a. Spotting opinion spammers
using behavioral footprints. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 632–640. ACM.

[Mukherjee et al., 2013b] Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and Natalie S
Glance. 2013b. What yelp fake review filter might be doing? In ICWSM.

[Newman et al., 2003] Matthew L Newman, James W Pennebaker, Diane S Berry, and Jane M
Richards. 2003. Lying words: Predicting deception from linguistic styles. Personality
and social psychology bulletin, 29(5):665–675.

[Ott et al., 2011] Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T Hancock. 2011. Finding
deceptive opinion spam by any stretch of the imagination. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pages 309–319. Association for Computational Linguistics.

[Ott et al., 2012] Myle Ott, Claire Cardie, and Jeff Hancock. 2012. Estimating the prevalence
of deception in online review communities. In Proceedings of the 21st international
conference on World Wide Web, pages 201–210. ACM.

[Pan and Yang, 2010] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning.
IEEE Transactions on knowledge and data engineering, 22(10):1345–1359.

[Pentina and Lampert, 2014] Anastasia Pentina and Christoph H Lampert. 2014. A pac-
bayesian bound for lifelong learning. In ICML, pages 991–999.

[Pérez-Rosas and Mihalcea, 2015] Verónica Pérez-Rosas and Rada Mihalcea. 2015. Experi-
ments in open domain deception detection. In EMNLP, pages 1120–1125.

[Pérez-Rosas et al., 2015] Verónica Pérez-Rosas, Mohamed Abouelenien, Rada Mihalcea, Yao
Xiao, CJ Linton, and Mihai Burzo. 2015. Verbal and nonverbal clues for real-life
deception detection. In EMNLP, pages 2336–2346.

[Platt, 1999] John C. Platt. 1999. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. Advances in large margin classifiers,
10(3):61–74.

[Qian and Liu, 2013] Tieyun Qian and Bing Liu. 2013. Identifying multiple userids of the same
author. In EMNLP, pages 1124–1135.

113

[Radev et al., 2000] Dragomir R Radev, Hongyan Jing, and Malgorzata Budzikowska. 2000.
Centroid-based summarization of multiple documents: sentence extraction, utility-
based evaluation, and user studies. In Proceedings of the 2000 NAACL-ANLP Work-
shop on Automatic summarization, pages 21–30. Association for Computational Lin-
guistics.

[Ranzato and Szummer, 2008] Marc’Aurelio Ranzato and Martin Szummer. 2008. Semi-
supervised learning of compact document representations with deep networks. In
Proceedings of the 25th international conference on Machine learning, pages 792–799.
ACM.

[Rayana and Akoglu, 2015] Shebuti Rayana and Leman Akoglu. 2015. Collective opinion spam
detection: Bridging review networks and metadata. In KDD, pages 985–994. ACM.

[Ren et al., 2014] Yafeng Ren, Donghong Ji, and Hongbin Zhang. 2014. Positive unlabeled
learning for deceptive reviews detection. In EMNLP, pages 488–498.

[Rocchio, 1971] Joseph John Rocchio. 1971. Relevance feedback in information retrieval.

[Scheirer et al., 2011] Walter J Scheirer, Anderson Rocha, Ross J Micheals, and Terrance E
Boult. 2011. Meta-recognition: The theory and practice of recognition score analysis.
IEEE transactions on pattern analysis and machine intelligence, 33(8):1689–1695.

[Scheirer et al., 2013] Walter Scheirer, Anderson Rocha, Archana Sapkota, and Terrance Boult.
2013. Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell.,
35(7):1757–1772, July.

[Scheirer et al., 2014] Walter J Scheirer, Lalit P Jain, and Terrance E Boult. 2014. Probability
models for open set recognition. IEEE transactions on pattern analysis and machine
intelligence, 36(11):2317–2324.

[Schölkopf et al., 2000] B. Schölkopf, RC. Williamson, AJ. Smola, J. Shawe-Taylor, and JC.
Platt. 2000. Support vector method for novelty detection. In Advances in Neural
Information Processing Systems 12, pages 582–588, Cambridge, MA, USA, June. Max-
Planck-Gesellschaft, MIT Press.

[Schwarz and others, 1978] Gideon Schwarz et al. 1978. Estimating the dimension of a model.
The annals of statistics, 6(2):461–464.

114

[Shackel, 2007] Nicholas Shackel. 2007. Bertrands paradox and the principle of indifference.
Philosophy of Science, 74(2):150–175.

[Shimodaira, 2000] Hidetoshi Shimodaira. 2000. Improving predictive inference under covariate
shift by weighting the log-likelihood function. Journal of statistical planning and
inference, 90(2):227–244.

[Silver et al., 2013] Daniel L Silver, Qiang Yang, and Lianghao Li. 2013. Lifelong machine
learning systems: Beyond learning algorithms. In AAAI Spring Symposium: Lifelong
Machine Learning, pages 49–55. Citeseer.

[Spirin and Han, 2012] Nikita Spirin and Jiawei Han. 2012. Survey on web spam detection:
principles and algorithms. ACM SIGKDD Explorations Newsletter, 13(2):50–64.

[Stamatatos, 2009] Efstathios Stamatatos. 2009. A survey of modern authorship attribution
methods. Journal of the American Society for Information Science and Technology,
60(3):538–556.

[Sugiyama et al., 2008] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul V Bue-
nau, and Motoaki Kawanabe. 2008. Direct importance estimation with model selection
and its application to covariate shift adaptation. In Advances in neural information
processing systems, pages 1433–1440.

[Tax and Duin, 1999a] David M. J. Tax and Robert P. W. Duin. 1999a. Data domain descrip-
tion using support vectors. In Proceedings of the European Symposium on Artificial
Neural Networks, pages 251–256.

[Tax and Duin, 1999b] David M.J Tax and Robert P.W Duin. 1999b. Support vector domain
description. Pattern Recognition Letters, 20(1113):1191 – 1199.

[Taylor, 2000] Wayne A Taylor. 2000. Change-point analysis: a powerful new tool for detect-
ing changes. preprint, available as http://www. variation. com/cpa/tech/changepoint.
html.

[Thrun and Mitchell, 1995] Sebastian Thrun and Tom M Mitchell. 1995. Lifelong robot learn-
ing. In The biology and technology of intelligent autonomous agents, pages 165–196.
Springer.

[Thrun, 1996] Sebastian Thrun. 1996. Is learning the n-th thing any easier than learning the
first? Advances in neural information processing systems, pages 640–646.

115

[Tsuboi et al., 2009] Yuta Tsuboi, Hisashi Kashima, Shohei Hido, Steffen Bickel, and Masashi
Sugiyama. 2009. Direct density ratio estimation for large-scale covariate shift adap-
tation. Information and Media Technologies, 4(2):529–546.

[Wang and Domeniconi, 2008] Pu Wang and Carlotta Domeniconi. 2008. Building seman-
tic kernels for text classification using wikipedia. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
713–721. ACM.

[Wang et al., 2011] Guan Wang, Sihong Xie, Bing Liu, and S Yu Philip. 2011. Review graph
based online store review spammer detection. In 2011 IEEE 11th International Con-
ference on Data Mining, pages 1242–1247. IEEE.

[Wang et al., 2016] Xuepeng Wang, Kang Liu, Shizhu He, and Jun Zhao. 2016. Learning to
represent review with tensor decomposition for spam detection. In EMNLP.

[Wijaya and Yeniterzi, 2011] Derry Tanti Wijaya and Reyyan Yeniterzi. 2011. Understanding
semantic change of words over centuries. In Proceedings of the 2011 international
workshop on DETecting and Exploiting Cultural diversiTy on the social web, pages
35–40. ACM.

[Xiao et al., 2014] Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, Yuxin Peng, and Zheng Zhang.
2014. Error-driven incremental learning in deep convolutional neural network for large-
scale image classification. In Proceedings of the 22nd ACM international conference
on Multimedia, pages 177–186. ACM.

[Xie et al., 2012] Sihong Xie, Guan Wang, Shuyang Lin, and Philip S Yu. 2012. Review spam
detection via temporal pattern discovery. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 823–831.
ACM.

[Xu and Zhang, 2015] Chang Xu and Jie Zhang. 2015. Combating product review spam cam-
paigns via multiple heterogeneous pairwise features. In Proceedings of the 2015 SIAM
International Conference on Data Mining, pages 172–180. SIAM.

[Xu et al., 2013] Chang Xu, Jie Zhang, Kuiyu Chang, and Chong Long. 2013. Uncovering
collusive spammers in chinese review websites. In Proceedings of the 22nd ACM inter-
national conference on Conference on information & knowledge management, pages
979–988. ACM.

116

[Yang and Pedersen, 1997] Yiming Yang and Jan O Pedersen. 1997. A comparative study on
feature selection in text categorization. In ICML, volume 97, pages 412–420.

[Ye and Akoglu, 2015] Junting Ye and Leman Akoglu. 2015. Discovering opinion spammer
groups by network footprints. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 267–282. Springer.

[Ye et al., 2016] Junting Ye, Santhosh Kumar, and Leman Akoglu. 2016. Temporal opinion
spam detection by multivariate indicative signals. In ICWSM, pages 743–746.

[Yu et al., 2002] Hwanjo Yu, Jiawei Han, and Kevin Chen-Chuan Chang. 2002. Pebl: posi-
tive example based learning for web page classification using svm. In Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 239–248. ACM.

[Zadrozny and Elkan, 2002] Bianca Zadrozny and Charles Elkan. 2002. Transforming classifier
scores into accurate multiclass probability estimates. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 694–699. ACM.

[Zadrozny, 2004] Bianca Zadrozny. 2004. Learning and evaluating classifiers under sample
selection bias. In Proceedings of the Twenty-first International Conference on Machine
Learning, ICML ’04, pages 114–, New York, NY, USA. ACM.

[Zhao et al., 2011] Peilin Zhao, Steven CH Hoi, and Rong Jin. 2011. Double updating online
learning. Journal of Machine Learning Research, 12(May):1587–1615.

VITA

Geli Fei

Education

Ph.D., Computer Science, University of Illinois at Chicago, Chicago, Illinois, 2017.

B.S., Software Engineering, Harbin Institute of Technology, China, 2011.

Working Experience

Software Engineering Intern at Google, Mountain View, CA, USA. May 2016 - August 2016.

Software Engineering Intern at Google, Mountain View, CA, USA. May 2015 - August 2015.

Research Intern at IBM Research-Almaden, Almaden, CA, USA. May 2014 - August 2014.

Summer Intern at @WalmartLabs, Mountain View, CA. May 2013 - August 2013.

Selected Publications

• Huayi Li, Geli Fei, Shuai Wang, Bing Liu, Weixiang Shao, Arjun Mukherjee, Jidong Shao.

“Bimodal Distribution and Co-Bursting in Review Spam Detection”. Long Paper. To Appear

In Proceedings of WWW 2017.

• Geli Fei, Shuai Wang, Bing Liu “Learning Cumulatively to Become More Knowledgeable”.

Full Paper. In Proceedings of KDD 2016.

• Shuai Wang, Zhiyuan Chen, Geli Fei, Bing Liu, Sherry Emery. “Targeted Topic Modeling

for Focused Analysis”. Full Paper. In Proceedings of KDD 2016.

117

118

• Geli Fei, Bing Liu. “Open Text Classification by Reducing Open Space Risk”. Full Paper.

In Proceedings of NAACL 2016.

• Geli Fei, Zhiyuan Chen, Arjun Mukherjee, Bing Liu. “Discovering Correspondence of Senti-

ment Words and Aspects”. Full Paper. In Proceedings of CICLING 2016.

• Jalal Mahmud, Geli Fei, Anbang Xu, Aditya Pal, Michelle Zhou. “Predicting Attitude and

Actions of Twitter Users”. Short Paper. In Proceedings of IUI 2016.

• Geli Fei, Huayi Li, Bing Liu. “Opinion spam detection in Social Networks”. In Handbook of

Sentiment Analysis in Social Network, Elsevier 2016.

• Geli Fei, Bing Liu. “Social Media Text Classification under Negative Covariate Shift”. Long

Paper. In Proceedings of EMNLP 2015.

• Geli Fei, Zhiyuan Chen, Bing Liu. “Review Topic Discovery with Phrases using the Pólya

Urn Model”. Oral Paper. In Proceedings of COLING 2014.

• Geli Fei, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos, Riddhiman Ghosh.

“Exploiting Burstiness in Reviews for Review Spammer Detection”. Long Paper. In Pro-

ceedings of ICWSM 2013.

• Geli Fei, Bing Liu. “A Dictionary-Based Approach to Identifying Aspects Implied by Adjec-

tives for Opinion Mining”. Poster Paper. In Proceedings of COLING 2012.

	to1 Introduction
	 Text Classification under Negative Covariate Shift
	 Open World Classification
	 Cumulative Learning
	 Detecting Changed-Hands Online Review Accounts

	to2 Text Classification under Negative Covariate Shift
	 Introduction
	 Related Work
	 Center-based Similarity Space Learning
	 Basic Idea
	 CBS Learning
	 Features
	 CBS Learning for Negative Covariate Shift

	 Experiments
	 Dataset
	 Baselines
	 Kernels and Parameters
	 Results

	to3 Open World Text Classification
	 Introduction
	 Related Work
	 SVM Decision Score Calibration
	 Open Space Risk Management
	 Multi-class Semi-supervised Learning

	 Proposed Method
	 Open Space Risk Formulation
	 CBS Learning for bold0mu mumu rOrOrOrOrOrO Estimation
	 Final Open World Classifier

	 Experiments
	 Baselines
	 Datasets
	 Experiment Settings
	 Results and Discussion

	to4 Cumulative Learning
	 Introduction
	 Related Work
	 Lifelong Machine Learning
	 Online and Incremental Learning

	 Cumulative Learning
	 Training a Cumulative Classification Model
	 Final Classification Model

	 Evaluation
	 Datasets
	 Baselines
	 Experimental Settings
	 Classification Results
	 Running Time Analysis
	 Qualitative Analysis of Cumulative Learning

	to5 Detecting Changed-Hands Online Review Accounts
	 Introduction
	 Related Work
	 Opinion Spam Detection
	 Tracking Linguistic Evolution
	 Change Point Detection

	 Proposed Method
	 The Overall Algorithm
	 Features and Similarity Metrics
	 Pivot-Level Feature Selection
	 Change Point Detection
	 Two-Round Voting

	 Experiments
	 Datasets and Evaluation Metrics
	 Baselines
	 Parameter Settings
	 Results and Analysis

	to6 Conclusions
	to APPENDICES
	to CITED LITERATURE
	to VITA

