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SUMMARY

In  the  last  twenty  years  the  development  of  new  technologies  has  radically 

expanded  the  kind  of  activity  structures  that  can  be  designed  and  built  for  the 

classroom. A subset among these technology-enhanced learning environments, that I 

call  macroworlds,  leverages  the  notions  of  ubiquitous  computing  (Weiser,  1991), 

distributed  interaction  (Luyten  &  Coninx,  2005),  and  the  increasing  availability  in 

classrooms of pervasive, non-desktop technologies (e.g. handhelds, large wall-mounted 

displays,  tangibles  and  many  others)  to  provide  engaging  ways  for  students  to 

“experience” and interact with classroom-sized simulations of scientific phenomena. So 

far, a number of studies demonstrated how macroworlds can help students engage in 

authentic  science  practices  (Duschl  et  al.,  2007),  and  build  meaningful  connections 

between physical activity and important principles in different science domains (e.g. 

Moher et al., 2010; Enyedy et al., 2012), making macroworlds an active area of research 

both in the field of Human-Computer Interaction and the Learning Sciences (Lindgren 

& Johnson-Glenberg, 2013). 

Despite their promise, macroworlds have proven challenging to design, build, 

and enact,  restricting this  kind of  learning environments  to  only  few exemplars.   In 

particular, one of the main challenges faced by developers while building and enacting 

macroworlds  is  the  lack  of  a  software  framework  supporting  these  processes, 

specifically designed to address the requirements of this learning technology. The goal 
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SUMMARY (continued) 

of this dissertation is to tackle this problem and to devise a method, a set of guidelines 

and a software framework to support the development and enactment of macroworlds.

In this dissertation, I will first develop a set of requirements that characterize the 

construction  and  enactment  of  macroworlds,  based  on  a  review  of  existing 

macroworlds,  the  work  of  Roschelle  and  Pea  (2002)  on  Wireless  Internet  Learning 

Devices, and especially my experience in dozens of macroworld classroom enactments 

over the past seven years. I will then introduce nutella, a software framework I created 

to support the constriction and enactment of macroworlds. Finally, I will demonstrate 

the versatility and design space of nutella by sketching a set of macroworld applications 

and by describing the experience of a group of developers using the framework during 

a three day hackathon.
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Chapter 1
Introduction

This dissertation introduces nutella, a software framework and suite of services, 

tools, and design templates that support the construction, configuration, and delivery of 

simulated scientific phenomena to elementary school classrooms. nutella is designed to 

support an emergent genre of learning applications—macroworlds—in which location in 

the  classroom  is  indexed  to  simulated  phenomena  made  accessible  through  a 

networked collection of public and private, embedded and mobile, representational and 

interactive technologies. 

Macroworlds represent an activity abstraction layer designed to subsume two 

existing  genres:  "participatory  simulations"  (Colella,  2000)  and  "simulated 

investigations." In participatory simulations, students adopt a first-person perspective, 

interacting  as  agents  to  drive  the  simulation;  the  record  of  their  behavior  and  the 

emergent results from that behavior become the objects of community inquiry (Colella, 

2000). In Colella's virus simulation, students wore small portable computers ("Thinking 

Tags") around their necks with LED displays showing how many people the person had 

met during the activity and whether or not they are infected with the virus. At the same 

time,  the  thinking  tags  function  as  infrared  transmitters  and  receivers  giving  the 

students the ability to transfer the virus to others by walking up to them. The goal of the 

activity was for the students to infer the rules that govern the simulation (e.g., virus 
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latency, degree of contagiousness, who was the first infected agent, etc.) by recollecting 

and reflecting on their individual actions and how they affect the emergent outcomes 

(Chi  et  al.,  2012).  In  simulated  investigations,  learners  assume  a  third-person 

perspective as investigators of an algorithmically simulated phenomena rather than as 

actors in the simulation itself. For example, in RoomQuake (Moher et al., 2005), learners 

experienced  a  series  of  simulated  earthquakes  reflected  on  simulated  seismographs 

positioned  at  known  locations  around  the  classroom.  Working  in  teams,  students 

analyzed the seismograms, from which they were able to determine the distance of the 

simulated earthquake from each seismograph. Using tape measures anchored at each 

seismogram, students used trilateration to determine the epicenter of the event, marked 

on  the  ceiling  of  the  classroom.  As  more  and  more  events  accumulated,  students 

identified the location of the fault line in their classroom, and identified the temporal 

pattern and magnitude distribution resulting from the series of quakes. 

Like the microworlds (Krajcik & Berg, 1987) that inspire their label, macroworlds 

offer  access  to  simulated  objects  of  inquiry.  Unlike  microworlds,  in  which  the  user 

experiences the simulation through the lens of a personal display, in macroworlds users 

experience the simulation as a kind of sparse immersion through a collection of devices 

distributed  throughout  the  physical  space  of  the  classroom.  All  students  in  the 

classroom  engage  with  the  macroworld  and  with  one  another  in  physical  space, 

enacting experiences that serve to generate a data corpus for collaborative knowledge 
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construction (Scardamalia & Bereiter, 1994; Bielaczyc & Collins, 1999; Slotta & Najafi, 

2010) and gain experience with agent behaviors, including science practices (Duschl et 

al.,  2007).  Macroworlds seek to leverage the captive audience,  tight-knit  community, 

and available  space  and technologies  of  classrooms to  create  opportunities  for  play 

(Enyedy et al, 2012), peer interaction (Vygotsky, 1978), autonomy, embodied interaction 

(Lindgren  &  Johnson-Glenberg,  2013),  and  other  affordances  of  the  form  factor,  to 

support learning and teaching.  

Evidence  of  the  effectiveness  of  macroworlds  in  supporting  learning  and 

teaching  is  growing,  and  they  have  drawn  strong  interest  within  the  research 

community.  In addition to their  “core role” of  allowing learners to construct  a  data 

corpus (through learners’ activity) to be used in subsequent knowledge construction 

activities and getting students to enact authentic science practices, macroworlds have 

demonstrated to help improve students’ attitudes toward science inquiry (Moher, 2008; 

Moher at al., 2010). The importance of this role play component in science teaching has 

been  highlighted  by  Jarvis  &  Pell  (2005),  which  demonstrated  how  role-play  helps 

student develop an identity as investigators and improve their attitudes toward science. 

Some  macroworld  applications  take  this  role-play  element  a  step  closer  to  reality 

providing students with physical analogs to some of the tools used by scientists,  as 

demonstrated  for  instance  by  AquaRoom  (Moher  at  al.,  2012).  These  role  play 

components have also been shown to have an impact on students’ motivation, as do 
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their desire to play (Enyedy et al., 2012) and their curiosity and motivation to explore. 

Macroworlds leverage both these elements to maintain kids engaged while playfully 

exploring  and  experiencing  the  simulated  scientific  phenomena  in  their  classroom. 

Macroworlds also afford learners to freely move around the classroom allowing them 

the opportunity to engage in more social exchanges than if they were sitting down in a 

fixed group. This has two two separate advantages. First, students can exercise more 

agency in choosing which people they want to interact with. Second, it leverages the 

richer social interactions among learners as more opportunities to exchange information 

and learn.  Moreover,  allowing students to freely roam around the classroom carries 

three side effects: it fulfills children's need for physical activity and exercise (Strong et 

al.,  2005),  it  leverages  the  beneficial  role  of  movement  on  students’  cognitive  skills 

(Sibley et al., 2003) and it allows to make batter use of the classroom space allowing kids 

more  “elbow  room”.  Finally,  macroworlds  leverage  both  spatial  and  temporal 

embodiment to allow students to experience the unfolding of the simulated phenomena 

in a spatially and temporally situated way. Moving around the classroom and collecting 

data at different times, students can change their point of view of the phenomena and 

this can help them better understand the rules of the simulation and create a model of 

the phenomena (e.g.  Moher et  al.,  2010).  The importance of  embodiment has strong 

advocates  both  in  psychology  (Johnson,  1987;  Clancey,  1997;  Clark,  1997;  Glenberg, 
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1997,  1999;  Winn,  2003;  Lindgren  &  Johnson-Glenberg,  2013)  and  human-computer 

interaction (Dourish, 2004).

In spite of their promise (and a nearly 20-year history), there is only only a small 

collection of applications today that could be considered classroom macroworlds, and 

none that have been adopted for regular instruction. Two main technological problems 

limit the growth of the genre. First, there are no specialized frameworks or resources for 

the  development  of  macroworlds;  each  of  the  research  groups  working  in  the  area 

maintains separate code bases. This frustrates attempts to share technologies and recruit 

new  members  to  the  development  community.  Second,  there  are  no  standard 

mechanisms for the delivery of macroworlds, limiting access to classrooms serving as 

research sites.

nutella addresses both of these problems for a significant class of macroworlds. 

By providing an architectural framework for macroworld applications, an extensible set 

of core services (communication, asset tracking, and device management), debugging 

and monitoring tools, and a library of application and component templates, nutella has 

the  potential  to  advance  the  pace  and  reliable  construction  of  macroworlds.  For 

teachers, nutella offers a web-based configuration interface and run-time controller that 

allows them to configure and schedule macroworlds for "delivery" to their classrooms 

through the Internet, for the first time widely creating opportunities for incorporating 

macroworlds in their instruction. These are novel and potentially impactful capabilities. 



!6

We would like to see nutella become the first step toward the growth of a macroworld 

developer community and "macroworld store" ecology.

The design and development of nutella were guided by two research questions.

Research  question  1:  What  are  the  application-level  affordances  that  characterize 

macroworlds and the requirements they impose on technology?

What core capabilities does nutella need to support? The emergent nature of the 

macroworld genre complicates the design of technologies due to the lack of canonical 

requirements. To address this problem, I adopted the strategy used by Roschelle & Pea 

(2002) of identifying a superset of core "application-level affordances" associated with a 

genre  of  activity  (in  their  case,  mobile  computing  devices,  in  mine,  macroworlds) 

through a review of the existing cases of the genre. (In this, I was aided by the fact that I 

had been involved in  the construction and enactment  of  many of  the  applications.) 

These  affordances  constituted  a  set  of  requirements  that  guided  design  and  whose 

satisfaction guaranteed that nutella would, at a minimum, enable the construction and 

delivery of those macroworlds that have been introduced in the literature.  

Research question 2: How can we design resources to support the processes of developing 

and enacting macroworld applications?
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I address this question by presenting the capabilities and organization of nutella, 

describing the rationale that led to that design, demonstrating that the design meets the 

application-level  affordance  requirements,  and  describing  the  early  experience  of  a 

small group of developers in developing nutella applications. 

The remainder of the dissertation is organized as follows:

Chapter 2 presents a survey of existing macroworlds applications.

Chapter  3  identifies  and formalizes  a  set  of  five application-level  affordances 

characteristic of macroworlds and describes the requirements they impose on software 

infrastructures. 

Chapter 4 presents a survey of application frameworks in several ubiquitous-

computing research areas that are relevant to this work and reviews research relevant to 

the five application-level affordances of macroworlds described in the previous chapter.

Chapter  5  describes  nutella,  the  software  framework I  created to  support  the 

construction and enactment of macroworlds. The chapter will detail the framework’s 

software architecture, main components and how they interact with each other.

Chapter  6  demonstrates  how  nutella  provides  support  for  each  of  the  five 

application-level affordances identified earlier and how the framework can be used to 

build macroworlds.
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Chapter 7 describes some early experience using the framework. In particular, 

this chapter will outline the growth of the nutella developers’ community over the past 

year,  demonstrate how the framework was used by a group of developers during a 

three-day hackathon and describe the experiences of the framework contributors.

Chapter  8  presents  a  summary  of  the  conclusions  and  contributions  of  this 

research, limitations and future directions of work.  



Chapter 2
Macroworlds

In Chapter  1,  I  described a  strategy for  identifying a  core set  of  macroworld 

affordances  to  serve  as  a  requirements  base  for  nutella  based  on  an  inventory  of 

reported macroworlds. In this chapter, I provide that inventory, primarily as a reference 

for  the  discussion in  Chapter  3,  in  which the  set  of  application-level  affordances  is 

developed.

2.1 Participatory simulations

In participatory simulations, students experience and influence the phenomena 

by taking on the role of an element (e.g., a bee, a car) within a complex system (e.g., a 

beehive, a traffic jam). Sensor-based devices (e.g., GPS enabled handheld devices) are 

worn or carried by participants, allowing for the automatic exchange and aggregation 

of contextually relevant information. Participants experience the simulation both at a 

local level (i.e., from the perspective of the element they are enacting), and also from a 

global viewpoint, where they can see how their individual actions affect patterns within 

the overall system. 
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2.1.1 Virus simulation

In  Colella's  virus  simulation  (2000),  students  wore  small  portable  computers 

("Thinking Tags") around their necks with LED displays showing how many people the 

person had met during the activity and whether or not they are infected with the virus. 

At  the  same time,  the  thinking  tags  function  as  infrared  transmitters  and receivers 

giving the students the ability to transfer the virus to others by walking up to them. The 

goal of the activity was for the students to infer the rules that govern the simulation 

(e.g., virus latency, degree of contagiousness, who was the first infected agent, etc.) by 

recollecting and reflecting on their individual actions and how they affect the emergent 

outcomes (Chi et al., 2012). 

2.1.2 BeeSim

BeeSim (Peppler  et  al.,  2010)  is  a  participatory  simulation which puts  young 

children in the shoes of honeybees collecting nectar. The simulation makes extensive use 

of  wearable  technologies  and  aims  at  teaching  kids  about  both  the  value  of 

communicating nectar sources to other bees and the difficulty of finding nectar. In this 

context, students assume the role of a honeybee looking for nectar (agent) by wearing a 

“ForagerBee” glove (a sensor embedded wearable). Kids have only 45 seconds to collect 

as  much nectar  as  possible  while  wrestling  with  the  constraints  of  the  system (e.g. 

limited nectar carrying capacity). Children take turns hunting for nectar and, when a 
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child’s turn is over, they have to pass the glove to one of their teammates. As the glove 

exchange  happens,  the  child  returning  from  the  hunt  can  try  to  communicate  the 

location of high-yield flowers to the “next bee”, through the use of nonverbal language. 

Once each child had their chance to wear the glove and hunt for nectar, the team with 

the most nectar is the “most prepared for winter” and therefore the winning team.

2.1.3 Hunger Games

Hunger Games (Gnoli et al., 2014) is a participatory simulation designed to allow 

upper elementary school learners to explore fundamental concepts of competitive and 

cooperative games in the context  of  animal foraging.  In Hunger Games the authors 

“transform” the physical space of the classroom into a natural habitat containing six 

food patches  of  different  richness.  Each student  in  the  classroom receives  a  stuffed 

animal with an RFID tag embodied in it, which acts as his or her “avatar” during the 

activity. Whenever a student walks to a patch and places their “squirrel” on top of it, the 

RFID reader embedded in the patch recognizes the tag and starts to provide energy to 

the students’ avatar at  a rate dependent on patch quality and competition (i.e.  how 

many  avatars  are  feeding  off  the  same  patch  at  the  same  time).  After  the  activity 

students  observe  and reflect  on their  individual  and collective  foraging patters  and 

design new strategies to improve their individual and/or collective outcome.
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2.2 Simulated investigations

In  simulated  investigations,  students  assume  the  role  of  investigators  and 

scientists tasked with studying and understanding a simulated scientific phenomena co-

located within the classroom space. Students monitor and inspect the local state of the 

phenomena using a collection of media distributed around the room. Over the course of 

several weeks, students gather and aggregate evidence to answer questions related to 

the object of inquiry.

2.2.1 Hunting of the Snark

In the Hunting of the Snark (Price et al., 2003), students investigate and discover 

characteristics  of  a  virtual  imaginary  creature  (called  the  Snark)  hidden  within  the 

virtual  space,  co-located  with  the  physical  space  of  the  classroom.  Students  use  a 

number of physically-digitally coupled tools to locate and interact with the imaginary 

and elusive creature while it moves across “land, air and water.” Technologies such as 

handhelds,  RFID tags,  ultrasound tracking,  pressure pads and accelerometers  afford 

students the ability to fly with the Snark, sneak around it while it is sleeping (pressure 

sensitive floor pads), find its food (handheld and ultrasounds) and take pictures of it 

using the “Snarkcam” (handheld).
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2.2.2 RoomQuake

In RoomQuake (Moher et al., 2005), the classroom is transformed into a seismic 

area  where  a  series  of  earthquakes  is  expected  in  the  next  few  weeks.  Learners 

experienced  the  earthquakes  through  simulated  seismographs  positioned  at  known 

locations around the classroom. Working in teams, students analyzed the seismograms, 

from which they were able to determine the distance of the simulated earthquake from 

each seismograph. Using tape measures anchored at each seismogram, students used 

trilateration  to  determine  the  epicenter  of  the  event,  marked  on  the  ceiling  of  the 

classroom. As more and more events accumulated, students identified the location of 

the fault line in their classroom, and identified the temporal pattern and magnitude 

distribution resulting from the series of quakes. 

2.2.3 HelioRoom

HelioRoom (Thompson & Moher, 2006) is an embedded phenomena application 

about astronomy, where students are immersed in a classroom-sized model of the solar 

system. The sun is  hypothetically located at  the center of  the classroom where four 

screens, adjacent to each one of the walls, are actually “portals” looking into the virtual 

space beyond the classroom walls. These portals display eight, equally-sized, colored 

circles moving at different speeds from the right to the left of the screens and from one 

screen to the next in counter-clockwise order. The eight circles represent the planets of 
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the solar  system orbiting around the sun.  The challenge students  have to face is  to 

associate each colored circle with the right planet. During the unit students work with 

the  simulation  and  collect  observations  about  the  planets’ speeds  and  mutual 

occlusions, trying to accumulate enough evidence to help them associate planets and 

colors.

2.2.4 WallCology

WallCology  (Moher  et  al.,  2008;  Cober  et  al.,  2012)  is  another  embedded 

phenomena application designed to provide elementary and middle school students 

with a multi-week simulation of population ecology. WallCology situates students as 

investigators  within a  complex simulated ecosystem located in  the  classroom walls. 

Students  can  access  the  state  of  the  simulation  through  a  set  of  computer  screens 

adjacent  to  the  classroom  walls,  called  “WallScopes” which  give  them  access  to 

distinctive (but connected) local virtual environments containing mold, vegetation and 

various species  of  animated creatures crawling over lath and pipes.  Students  act  as 

ecologists whose goal is to keep the ecosystem (and particularly endangered species) 

alive.  In  order  to  do  so,  students  need  to  conduct  investigations  on  population 

estimation the identification and classification of species and focus on topics such as life 

cycle  phases,  food chains,  predator-prey  relationships,  habitat  selection,  response  to 

environmental change and adaptation.
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2.2.5 AquaRoom

In  AquaRoom  (Novellis  &  Moher,  2011),  the  latest  embedded  phenomena 

application, students take on the role of hydrogeologists with the task of mapping a 

subterranean aquifer  system (mapped to their  classroom floor plan)  and to use this 

information  to  decide  where  to  locate  a  new  chemical  plant  within  the  “local 

community” to minimize potential environmental impacts. In order to accomplish this 

task, students “inject tracer dyes” and “obtain water samples” using a portable tablet-

based “drilling unit." A suction cup attached to a (non-functional) Ethernet cable is used 

to select locations for dye injection or water sampling. Test tubes capped with i- Buttons 

(similar to contact RFID tags) serve as simulated dye sources and sample repositories. 

Students “inject” dyes by inserting the test tubes into USB readers attached to the tablet 

drilling unit,  with the liquids virtually running through the cabling.  The interactive 

interface on the tablet computer allows them to mark the injection location, based on a 

grid  system  defined  by  the  tiles  on  the  room’s  drop  ceiling.  “Water  samples” are 

subsequently collected in a similar fashion, and tested for the presence of dyes using a 

simulated spectrometer represented by a shared desktop computer with its own USB 

reader. The injection of a dye followed by sampling allows students to establish the 

presence of an aquifer and the direction and rate of flow, which are marked on the tablet 

map and on a collective classroom map.
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2.2.6 EvoRoom

EvoRoom (Lui & Slotta, 2013, 2014) is a room-sized, immersive simulation of a 

rainforest ecosystem modeled after Borneo and Sumatra. The goal of EvoRoom is to 

teach high-school students about biodiversity and evolution. The simulation unfolds 

and leverages the what the authors call a “smart classroom”: a room with six projected 

displays (three on each, opposite side of the room) and two interactive whiteboards in 

the middle. The six displays on each side of the room display a representation of the 

Borneo  and  rainforest.  Within  this  context,  students  assume  the  role  of  “field 

researchers,”  and  are  tasked  with  gathering  evidence  of  evolution  by  comparing 

simulations from a range of time periods. Working individually and in groups, they 

observe changes in life forms over time (the room can be “played” through 200 million 

years of evolution), consolidate their findings as a community, and develop hypotheses 

about the evolutionary changes that might have taken place.



Chapter 3
Application-level affordances and

technology requirements of macroworlds 

In  an  article  published  in  2002  and  titled  “A walk  on  the  WILD  side,  how 

wireless  handheld  may  change  computer-supported  collaborative  learning”�Jeremy 

Roschelle and Roy Pea discuss the physical affordances of Wireless Internet Learning 

Devices  (WILD)  and outline  how the  use  of  this  technology might  reshape activity 

structures in K-12 classrooms. As part of their argument, the authors survey a set of 

early  WILD applications  and extract  a  set  of  five  application-level  affordances  (e.g. 

defining traits) that characterize WILD learning environments.

In  the  years  since  the  “WILD  article” �was  published,  many  scholars  have 

contributed to the conversion around WILD learning environments by designing new 

WILD  applications,  better  shaping  the  boundaries  of  this  learning  technology  (e.g. 

Penuel  at  al.,  2004)  and contributing  research  around WILD applications  in  several 

fields  of  Computer  Supported  Collaborative  Learning  (CSCL)  such  as  knowledge 

building and classroom orchestration. Looking back, it becomes evident that Roschelle 

and  Pea  correctly  anticipated  the  evolution  and  growth  of  WILD  learning 

environments.  Macroworlds  too “stand on the shoulder”�of  WILD and some of  the 

application-level  affordances  proposed by Roschelle  and Pea still  present  significant 

technical challenges to their effective implementation in macroworld applications.
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The goal of this chapter is to survey a number of early macroworlds applications, 

similarly to  what  Roschelle  and Pea did for  WILD, in order to  extract  a  set  of  five 

application-level  affordances  that  are  beginning  to  emerge  and  characterize  these 

learning environments. I will then describe the challenges that each application-level 

affordance imposes on technology and derive a set  of  capabilities that  a framework 

supporting the construction and enactment of macroworlds should have.

3.1 Support multiple macroworld simulations types

As  described  earlier,  macroworlds’ main  goal  is  to  allow  students  to  access, 

manipulate and experience a simulated scientific phenomenon in order to study it while 

engaging in authentic scientific practices. In this context, one of the application-level 

affordances critical for the success of macroworlds is the ability to simulate a variety of 

different  scientific  phenomena.  In  particular,  it  is  possible  to  identify  three  separate 

categories of macroworlds based on the type of object of inquiry they provide access to. 

First,  there  are  simulated  phenomena.  In  this  type  of  macroworlds,  a  simulation  of  a 

scientific phenomena is build by the application designers and accessed by the students 

in the classroom. Students accumulate data over time by studying the phenomena and 

they use  these  data  to  build  and verify  their  theories  and models  of  the  simulated 

phenomena. Among the macroworlds surveyed in chapter 2, the Hunting of the Snark, 

RoomQuake, HelioRoom, WallCology, AquaRoom and EvoRoom all belong to this first 
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category. Second, there are generated phenomena. In this type of macroworld application, 

which  includes  participatory  simulations,  BeeSim,  the  Hunger  Games,  the  object  of 

inquiry  is  represented  by  the  data  corpus  generated  by  instrumenting  students 

activities. In this kind of macroworld students act both as “agents” in the simulation 

that generates the data corpus and as “scientists” trying to understand the phenomena 

as a whole by studying and interpreting the data corpus. The third kind of macroworlds 

are the ones that allow students to engage with emulated phenomena. Designers of this 

kind  of  applications  typically  have  a  data  corpus  already  available  to  them  (e.g. 

historical records of some natural phenomena) or they have access to a real-time data 

source (e.g. instrumenting a scientific phenomena using sensors and telemetry). These 

macroworlds provide access to such data either by “replaying” the historic data in real-

time or simply by streaming the data from the remote location to the classroom. This 

allows students to access the very same data scientists wrestled or are wrestling with.

Despite  the value of  providing different  types of  simulations and,  within the 

same type, a variety of different science domains, imposes radically different demands 

on  technologies  powering  macroworld  applications.  In  simulated  phenomena,  for 

instance, designers need to be able to actually define somewhere in the software the 

rules that govern the simulation. These rules are unique, of course, for each simulation. 

Moreover, from an hardware perspective, some simulations are extremely demanding, 

requiring systems to track students movement (like generated phenomena) while others 
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simply require only a handful of computers (like HelioRoom for instance). This variety 

of requirements needs to be addressed somewhere, either on a “per-application basis”, 

leaving the burden on the designers, or harnessed in a software framework which can 

then be reused, freeing designers from solving the same problems over and over.

Capability 1: provide support for the creation and enactment of simulated, emulated and 

generated macroworld simulations.

3.2 Support the leveraging of the physical space of the classroom

Another  key  characteristic  of  macroworlds  is  the  fact  that  they  leverage  the 

physical space of the whole classroom for pedagogical reasons. As described in chapter 

1, this trait provides a series of benefits for learners such as allowing them to engage in 

a spatially situated exploration of the object of inquiry, increasing the amount of social 

exchanges  among  them  (and  therefore  multiplying  the  possibilities  for  learning), 

affording them more agency, and ultimately making a better use of the classroom space.

The importance of leveraging the physical space of the classroom for pedagogical 

reasons has also been highlighted by Roschelle and Pea. They found that almost all 

WILD applications augment and leverage the physical space “between the devices” as 

opposed to more traditional CSCL applications which leverage the space “inside the 

devices”. Moreover, the authors point out that this application-level affordance of WILD 
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learning  environments  (including  macroworlds)  focuses  on  embodiment  and,  in 

particular,  on using the physical  space to help learners  "reconnect  abstractions with 

embodied, physical and spatial explorations” (Roschelle and Pea, 2002).

In macroworlds, leveraging the physical space of the classroom comes in two 

slightly  different  flavors.  In  generated  phenomena  (e.g.  participatory  simulations, 

BeeSim and Hunger Games), information is overlaid on top of the physical movements 

of  students,  captured  and stored  by  the  system.  The  aggregate  patters  of  students’

movement then become the focus of students’ inquiry as they try to make sense of their 

collective behavior. In a way, students’ movements are tracked and are used as an input 

to  the  macroworld simulation and these  patterns  represent  the  data  corpus  driving 

students’ inquiry. 

Conversely,  in  simulated  and  emulated  macroworlds  (e.g.  RoomQuake, 

HelioRoom, WallCology and AquaRoom, the hunting of the Snark and EvoRoom) the 

physical space of the classroom is used to “index” the simulation. In other words, there 

is a mapping between the physical space of the classroom and the virtual space of the 

simulated phenomena. In particular, the location of devices within the physical space of 

the  classroom  is  relevant  because  it  provides  access  to  different  portions  of  the 

simulated scientific phenomena. In this second scenario, students’ ability to freely roam 

the  classroom  is  crucial  because  it  allows  them  to  autonomously  select  and  study 

different  portions  of  the  simulation  (i.e.  the  different  devices  at  different  locations) 
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providing them with different points of view which they have to collectively reconcile, 

like in the story of the blind men and the elephant.

Despite the fact that leveraging the physical space of the classroom is one of the 

characteristic  elements  of  macroworlds,  this  application-level  affordance  presents  a 

series of practical challenges that need to be addressed in order to effectively employ it 

in the design of macroworlds. As mentioned earlier, macroworld application leverage a 

vast  array of technologies and devices such as large (multi-touch) displays,  laptops, 

tablets, smartphones, tangibles, iBeacons, etc. These differences among devices impact 

their capabilities in terms of their ability to sense their own location, with some devices 

reacting  to  proximity  (e.g.  iBeacons),  others  capable  of  more  sophisticated  location 

tracking and others incapable of both (e.g. large screens). Some devices are even capable 

of sensing their orientation, are frequently manipulated and moved (such as handhelds 

and  tangibles)  while  other  never  change  their  location  during  an  enactment  of  a 

macroworld-based curriculum unit (e.g. workstations). Not all macroworld applications 

impose the same requirements of spatial fidelity with some application requiring a very 

fine-grained  positioning  of  devices  within  the  room  (e.g.  RoomQuake)  and  others 

imposing very little requirements on the precision of locational information. In addition 

to these differences, some applications are based on the relative position among devices 

(such as participatory simulations) while other on the absolute position of devices with 

respect  to  the  classroom  space  (such  as  embedded  phenomena).  Finally,  different 
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devices have different network capabilities which render the distribution of locational 

information between devices and other components in the macroworld application even 

more challenging. 

As it is easy to imagine, leveraging such variety of devices and variables (i.e. 

device  type,  sensing  capabilities,  granularity,  degree  of  dynamism,  relative  vs 

absolute…) makes the macroworld application-space rich but, at the same time, hard for 

developers  to  leverage the physical  space of  the classroom. In order  to  successfully 

create a macroworld application that does this a developer needs to understand this 

vast  application-space  which  in  turn  requires  a  significant  effort  and  expertise. 

Therefore,  any  software  tools  supporting  the  construction  and  enactment  of 

macroworld applications should provide a method and a set of tools to harness this 

complexity and make it more manageable. 

Capability  2:  support  activities  requiring location tracking and location awareness  of 

significant  numbers  of  objects  and/or  individuals  across  spectra  of  granularities  and 

technologies.

3.3 Provide feedback during and after the enactment of macroworlds

So far I only talked about the “simulation” portion of macroworlds. However, 

the purpose of macroworlds applications is to enable the creation of a data corpus to be 
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used  in  subsequent  knowledge  construction  activities.  In  macroworlds,  such  data 

corpus is created either by providing students with a set of tools to collect data about 

the  macroworld  (like  in  simulated  and  emulated  phenomena)  or  automatically 

capturing and synthesizing their movement patters (like in the generated phenomena) 

when acting as agents in an agent-based simulation (such as the Hunger Games or 

BeeSim). Independently from the fact that students are contributing to the data corpus 

by entering data with their fingers on a data-collection interface or using their body, 

macroworlds need to support this data collection process. One of the key characteristic 

of macroworlds is their ability to support students and teachers during this process by 

providing them (and researchers as well) with real-time and a-posteriori feedback. The 

next  three  sections  will  describe  three  separate  scenarios  for  this  application-level 

affordance: providing students with real-time feedback while building a data corpus, 

providing teachers with real-time preferential feedback over the data-collection process, 

and providing researchers with preferential, a-posteriori feedback. 

3.3.1 Providing feedback for students and teachers

Roschelle and Pea (2002) argue that a key application-level affordance provided 

by WILD learning environments (including macroworlds) is their ability to aggregate 

the work of all students (not only a few) in real-time (not a-posteriori). They also argue 

that this aggregation process often results in a “coherent representation that can be read 
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and understood as a whole fairly easily” that can serve to direct the inquiry process as 

the  students  “see  what  they  are  building  together”.  The  importance  of  real-time, 

aggregate representations of the data corpus as a way of directing the collective inquiry 

process, highlight areas of disagreement and serve as a basis for consensus has been re-

iterated also by Cober et al. (2012).

In science spaces, geo-spatial and semio-spatial representations (Roschelle and 

Pea, 2002) are often used to create shared, aggregate representations of the data corpus 

created by students. Geo-spatial representations are spatial graphical representations of 

spatial data (e.g. locations of students among each other or within the classroom) while 

semio-spatial  representations  are  graphical-spatial  representation  of  non-spatial  data 

(e.g. a scatter-plot or any other graph). 

An example of real-time, geo-spatial, aggregate representation of the students’

collected-data (i.e. the data corpus) can be observed in RoomQuake. As part of the unit, 

students were required to determine the position of a series of quakes. After each quake, 

students could use a data-entry interface available on their iPads (figure 1) to enter their 

reading of  one  (or  more)  of  the  four  seismograms available  to  them as  part  of  the 

simulation.  As soon as  students  entered their  observations,  these  observations  were 

aggregated on a shared display available to them at the front of the classroom (figure 2). 

Using this shared representation, students could not only make sense of the data they 
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collected so far (helping them determine magnitude, time and epicenter of the quake) 

but also help them guide their future inquiry steps (i.e. which seismogram to read next). 

An  example  of  semio-spatial  representation,  instead,  can  be  observed  in 

HelioRoom. In HelioRoom, students’s main goal is to associate planets names to the 

Figure 1. Tablet interface used by the students to collect data about simulated quakes 
in RoomQuake. Students use this interface to record their observations while reading 
the simulated seismographs in their classrooms.
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Figure  2.  Aggregate  representation  of  students’  observations  in  RoomQuake.  As 
students  collect  observations  (using  the  interface  in  figure  1)  about  different 
RoomQuakes,  the aggregate  representation updates  in  real-time.  As more students 
contribute  data,  the  aggregate  representation  facilitates  the  students'  discussion 
around location, magnitude and time of the event.
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colored circles spinning around their classrooms and representing the planets in the 

solar system. In order to gather evidence to support this task, students collect pair-wise 

observations about planets’ overlap (e.g. “red is in front of green”). In order to facilitate 

this  process,  designers  of  the  HelioRoom  application  created  an  interface  to  allow 

students  to  collect  these  observations  and,  at  the  same  time,  provide  them  with 

feedback on the state of the inquiry process and the data corpus (figure 3). In addition to 

tallying students observations, (i.e. how many people observed that a planed is closer to 

the Sun than another) this interface also provided students with a list of people that 

agreed with a certain observation they made.

3.3.2 Providing preferential feedback to teachers

In addition to the feedback provided by the aggregate representations described 

above, sometimes teachers need preferential feedback on the data collection process in 

order  to  monitor  student  progress  and  provide  them  with  additional  formative 

feedback.  For  instance,  simulated  macroworlds  are  often  designed  to  present  an 

extended  narrative,  gradually  revealed  through  the  accumulation  of  students’

observations  over  time.  Therefore,  the  clarity  of  this  narrative  is  highly sensitive  to 

students’ consistent and accurate data collection procedures. When erroneous data are 

added to the historical  shared representation of  the phenomenon,  they can serve to 

obscure the underlying data-driven narrative of the unit. Therefore, the timely detection 
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Figure  3.  Aggregate  representation  of  students’  observations  in  HelioRoom.  This 
interactive  representation  serves  a  dual  purpose:  it  aggregates  all  students' 
observations about the planets they are trying to identify and it allows students to 
enter their observations. This is done by dragging small planets in the palette on the 
right, over to the big circles in the main area of the interface.
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and remediation of practice errors become critical capabilities in successful enactments 

of macroworlds curriculum units. 

An example of this can be observed in WallCology where teachers were provided 

with  a  tablet  application  that  informed  them  in  real-time  whenever  students’

population  estimates  deviated  from the  values  programmed into  the  simulation  by 

more than 5% (figure 4). Using this strategy, we were able to reduce the error rates in 

students’ population estimates from 33% to 8% (Gnoli, 2012).

3.3.3 Providing a-posteriori feedback to researchers

Providing a-posteriori feedback on the data-collection process to researchers is 

crucial in order to enable them to use such data as evidence in their research. For this 

reason, macroworlds application logs are a common source of evidence used in research 

on this topic. 

Figure 4. Detail of the teacher feedback interface in WallCology. The interface notifies 
teachers of discrepancies between the creature counts recorded by students and the 
ones provided by the WallCology simulation. Teachers can take action upon receiving 
such notifications or dismiss them if they can't deal with them at the moment.
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The importance of “log files” and application logs for research on macroworlds 

was, once again, outlined by Roschelle and Pea (2002). The scholars highlight how the 

ability  to  instrument  the  learning  space  with  the  goal  of  collecting  summaries  of 

messaging  patterns  and  content  for  research  purposes  is  another  application-level 

affordance  of  WILD.  Their  intuition  that  “the  database  of  interactions  can  be  data-

mined, analyzed, and reflected upon” has proven true as demonstrated by the nascent 

field  of  learning  analytics  and  educational  data  mining.  Accordingly,  almost  all 

macroworlds  applications  described earlier  have  been  designed to  collect  and store 

messaging patterns between the various components of the applications and between 

all the devices used in the classroom.

3.3.4 Putting it all together

Providing students and teachers with real-time feedback on the status of the data 

corpus, teachers with real-time, preferential feedback on the data-collection process and 

researchers with a-posteriori, preferential feedback on the enactment of a macroworld 

unit imposes, once again, very different demands on technology. In particular, even if all 

three  these  scenarios  are  concerned  with  capturing  messages  between  application 

components, there is quite a variety in the delivery strategies (e.g. push vs pull), the 

way these messaging patters are accessed (e.g. real-time vs a-posteriori) and amount 

and  type  of  filtering  that  needs  to  be  performed.  A  framework  supporting  the 
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construction and enactment of macroworlds applications should support and harness 

this complexity and provide a mechanism to simplify the way developers handle these 

different messaging patterns.

Capability 3: support student’s data collection process, including the ability of providing 

teachers,  students  and  researchers  with  real-time  and  a-posteriori  on  their  activity  and  the 

outcomes of their work.

3.4 Support classroom orchestration during the enactment of macroworlds

In  both  WILD applications  and macroworlds,  teachers  can be  metaphorically 

seen  as  "conductors  of  performances"  to  which  each  student  in  the  classroom 

contributes  to.  Roschelle  and Pea (2002)  also suggest  that  teachers  attend mostly  to 

group performance (not individuals) and that they are responsible for choosing and 

sequencing the material introduced to students. Teachers might also send small groups 

to practice separately, as it happens in orchestra rehearsals, while making sure that all 

the orchestra sections are heard during a whole-class performance.

Virtually  all  macroworld  applications  surveyed  earlier  are  designed  thinking 

about teachers this way. For instance, in the WallCology enactment described by Cober 

et al. (2012), teachers were instrumental in guiding the process of inquiry, scaffolding 

whole-class discussions around aggregate artifacts, orchestrate (Fischer & Dillenbourg, 



!33

2006) and script (Kollar, Fischer & Slotta, 2007) the interleaving pedagogical, activities 

and simulation narratives. Findings about the pivotal role of the teacher as a “conductor 

of performance” in macroworlds (similar to the ones reported here for this particular 

enactment  of  WallCology)  have  been  observed  over  and  over  in  over  a  dozen 

macroworlds enactments. 

The  “conductor  of  performances” metaphor  imposes  significant  enactment 

demands  on  teachers.  They  have  to  develop  strategies  to  establish  the  scientific 

narrative driving the unit,  and then strive to maintain it over the course of a multi-

week, episodic time frame. They have to learn how to “use” macroworlds applications 

well enough to help the kids learn how to use them. Teachers have to engage learners in 

discussions involving question making,  design and execution of  investigations,  data 

interpretation,  and  domain-specific  practices.  During  the  enactment  of  inquiry 

activities,  teachers  also have to  monitor  heterogeneous,  physically  distributed,  often 

self-selected student activity and respond with appropriate pedagogical interventions.

The next  four  sections  outline  four  common challenges  faced by teachers  (as 

“conductors of performances”) that I observed over the course of several enactments of 

macroworld-based curriculum units.
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3.4.1 Provide teachers with privileged access, control and configuration over 

macroworld simulations

One of the key features of macroworlds is that the simulations are persistent and 

run continuously through the whole school day concurrently with the regular flow of 

instruction. In this context, key events might happen at times when kids can’t divert 

their attention to the simulation and record their observations, missing on important 

learning opportunities. One of the major challenges faced by a significant number of the 

teachers who have enacted macroworlds units has been their inability to “tweak” the 

simulation (within the limits imposed by the laws of science) to ensure that all kids had 

a chance to contribute. The fidelity of the simulation to reality (i.e. nature doesn’t wait 

for students) that was supposed to support deeper learning ended up undermining it. 

Teachers  have  been  very  vocal  in  the  past  about  having  affordances  to  make 

pedagogically motivated changes to the phenomena in response to students’ behavior 

and needs. For instance, during one of the enactments of WallCology, teachers explicitly 

asked if it was possible to change the amount of creatures in the simulated ecosystem to 

make it  more  explicit  for  the  kids  that  the  introduction of  an  invasive  species  was 

decimating  the  population  of  a  native  one.  In  that  particular  situation,  the  teacher 

perceived that their kids did not see the gap in the native’s species population as a first 

step toward their extinction. 
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The need for affordances that allowed teachers to gain privileged access to the 

macroworld simulation is a cross-cutting theme among many macroworld applications 

and  in  order  to  support  teachers  in  their  “conductor  of  performance” role  several 

macroworlds applications provide technology specifically designed for this task. In one 

enactment  of  HelioRoom for  instance,  I  developed a  teacher  dashboard  application 

which  was  affectively  called  “the  HelioRoom  god  view”  (figure  5).  This  interface 

provided teachers with control over the simulation and with privileged access to the the 

state of the simulation, beyond what was revealed to students through the portals. This 

allowed  the  teachers  to  validate  students’ observation  and  better  scaffold  their 

reasoning. This Android application disclosed to teachers the position of all the planets 

in the simulation, a cheat-sheet revealing the association of planets and colors, together 

with their orbital time. Using this interface, teachers could also manipulate the position 

of an arbitrary planet and “pause” the simulation.

In  EvoRoom  (Lui  &  Slotta,  2014)  instead,  teachers  have  available  to  them  a 

special  tablet which allows them to “accelerate” the simulation in order to keep the 

phenomenal narrative aligned to the pedagogical and instructional narratives. Similar 

“macroworld simulation control dashboards” have been provided to teachers in other 

macroworlds, including the Hunger Games and RoomQuake (figure 6).

In particular, this interface allows teachers to configure and schedule a series of 

quakes  in  advance  in  their  classroom.  This  is  different  from  the  real-time  controls 
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Figure 5. HelioRoom simulation control dashboard. This interface provides teachers 
with preferential information on the HelioRoom simulation. In particular, it discloses 
the position of all the planets and provides teachers with a cheat-sheet that associated 
the colored circles displayed by the simulation with the names of the planets.
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provided by the HelioRoom and EvoRoom but it highlights how, for some macroworld 

simulations,  it  might be necessary to “schedule” events offline and in advance. This 

demonstrates how, despite several attempts have been made in the past to build teacher 

dashboards for the purpose of controlling and accessing macroworld simulations, each 

application is slightly different and requires a custom-made dashboard. Nonetheless, a 

Figure 6. RoomQuake administration dashboard. This interface provides teachers with 
complete control over the simulation portion of the macroworld. It allows teachers to 
generate and manipulate a series of quakes that will unfold in their classroom.
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framework  supporting  the  construction  and  enactment  of  macroworld  applications 

should strive to provide support for the creation of such utilities providing privileged 

access and control of the macroworld simulation to teachers.

3.4.2 Provide teachers with control over representational affordances, both public 

and private

As described earlier, macroworld simulations are used by students to create a 

data  corpus.  This  requires  students  to  collect  data  about  the simulated phenomena. 

Sometimes this process is automated (e.g in the Hunger Games) and the results of this 

data  collection  are  displayed to  students.  Either  way,  the  representational  and data 

collection affordances used by students need to be aligned with the simulation. 

For  instance  in  the  most  recent  enactment  of  RoomQuake  (Fall  2014),  the 

curriculum  was  divided  into  two  separate  phases.  During  the  first  phase  teachers 

generated a series of “on-demand” quakes and guided students through the process of 

understanding  the  procedures  scientists  used  to  study  quakes  and  determine  the 

position of the epicenter, the time and the magnitude of the quake. In the second potion 

of  the  curriculum,  students  studied  a  series  of  quakes  and  tried  to  determine  the 

position of the fault line in their classroom and the distribution of quakes magnitudes, 

following  the  Gutenberg–Richter  law.  During  these  two  phases  of  the  activity  the 

affordances  used  by  students  to  collect  their  data  changed  dramatically  and  they 
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needed to be aligned with the simulation phases.  This  was achieved by making all 

affordances respond to a toggle button which switched between the modes (figure 7).

Another  example  of  providing  teachers  with  controls  over  representational 

affordances are the controls for the RoomQuake aggregate representation of students 

observations (figure 2). This interface was capable of displaying only one quake at the 

time so before students could move on to the next quake teachers had to “wipe the 

board” and prepare it for students to enter data about the new quake. For this reason, 

we provided teachers with a control interface (figure 8) that they used to change the 

quake students were working on. 

The  point  of  both  interfaces  presented  above  is,  representational  affordances 

need  to  be  controlled  by  teachers  and  often  they  need  to  be  synchronized  to  the 

unfolding of  the  simulated phenomena.  Controls  for  teachers  to  retain  control  over 

Figure  7.  “Demo”  and  “schedule”  mode  switch  for  RoomQuake.  Using  this  tool, 
teachers can choose to operate the macroworld in demo mode (where quakes can be 
generated in real time) or in schedule mode (where a series of quakes is scheduled for 
the future).
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representational  affordances  should  be  included  in  a  framework  supporting  the 

enactment of macroworld applications.

3.4.3 Provide a way to adapt macroworld applications to the technologies available 

in the classroom

When  deploying  macroworlds  in  real  classrooms  there  is  a  huge  variability 

among  classrooms  and  schools  in  the  technology  available.  This  imposes  on 

macroworlds  an  additional  requirement  of  flexibility  requiring  a  variety  of 

progressively advanced classroom setups with some enactments deploying a very thin 

Figure 8.  Representational affordances controls in RoomQuake. Using this interface 
(top), teachers can control which quake students are working on. This automatically 
erases observations from previous quakes (popup), resets the aggregate representation 
and instruct  the  simulation bot  to  annotate  students'  observations  with  the  quake 
number.
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layer of technology (Colella & Borovoy, 1997) and others taking full advantage of the 

technological  affordances  available.  In  addition,  other  factors  such  as  teachers’

confidence with technologies and the research goals of the enactment, have influenced 

the  choice  of  technologies  powering  macroworld  applications.  Kids  forgetting  their 

personal  device,  collective  devices  breaking  or  being  shared  among  classrooms  are 

common place in most schools and macroworld need to be able to adapt, to a certain 

extent, to these daily disruptions.

3.4.4 Provide support for different instructional organizations

Another  area  where  macroworld  applications  are  required  to  be  flexible  is 

instructional organization. Some schools for instance have self contained classrooms, 

where students spend their entire day in the same room, while others have rotating 

classroom, where students change room at every period. Moreover, the same teachers 

might have multiple, concurrent sections engaged in the same macroworld unit. Other 

times,  like in the last  enactment of  RoomQuake (Fall  2014),  different sections might 

share  the  same  macroworld  simulation  but  collect  separate  datasets.  Macroworld 

applications need to be able to adapt to all these scenarios.
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3.4.5 Putting it all together

In  summary,  a  framework supporting  the  enactment  of  macroworlds,  should 

strive to:

• provide  teachers  with  tools  that  afford  them privileged  access,  control  and 

configuration of the macroworld simulation;

• provide teachers  with tools  that  afford them control  of  the  representational 

affordances, both public and private;

• provide a way to adapt macroworld applications to the technologies available 

in the classroom;

• provide support for different instructional organizations.

Capability  4:  provide  teachers  with  support  for  classroom  orchestration  during  the 

enactment  of  macroworlds,  including  controls  for  the  macroworld  simulation,  adapting  to 

instructional organizations and flexibility utilizing available technologies.. 

3.5 Support interoperability with other learning technologies

As already discussed, the goal of Macroworlds is to provide a way for students 

to engage in authentic scientific practices and generate a data corpus. However, despite 

the fact that data collection and participation in the scientific practices are important, in 

order for students to actually learn from the data they collected it is essential for them to 
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step  back,  reflect  on  such  data  and  move  away  from  rote  “procedural 

engagement” (Gresalfi,  et  al.,  2008).  For  example,  while  the  individual  mastery  of 

population estimation methods in WallCology, is an important skill, it is intended to 

serve the larger objective of providing a base of data that students can use to collectively 

reason about the course of the phenomenon and build their understanding of ecological 

principles of population dynamics, habitat fit, and the impact of invasive species.

Reflection  has  been  described  as  a  primary  means  of  social-constructivist 

learning (Bransford et  al.,  2000),  as it  allows students to build their  own personally 

relevant  understandings  from  their  educational  experiences.  In  the  context  of 

macroworlds,  reflection  becomes  the  collective  work  of  a  knowledge  community 

(Scardamaila and Bereiter, 2003), in which the goal is to make progress on ideas based 

on  contributions  from  all  members  of  the  community.  During  macroworld-based 

curriculum  units,  students  are  given  responsibility  over  the  whole  knowledge 

construction process: generating new ideas and theories, building on other students’ 

ideas,  and synthesizing ideas  into  higher-level  concepts.  The product  of  knowledge 

building activities is the creation or modification of public knowledge, which means 

that the collectively generated knowledge is available to other students and groups to 

be used, improved and worked upon. In this scenarios, students work collectively to 

develop a community knowledge base and improve upon one another’s  ideas.  This 
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process,  in  turn,  helps  students  to  develop  a  deep,  personal  understanding  as 

autonomous learners (Bereiter & Scardamalia, 1989).

To  support  this  knowledge  construction  process,  several  knowledge  building 

systems and software infrastructure have been devised and developed. Of particular 

relevance here,  is  the SAIL Smart Space architecture (Tissenbaum & Slotta,  2015) an 

open-source software framework explicitly created to support Knowledge Community 

and Inquiry (Slotta and Najafi, 2010) which specifies a set of design principles for a 

knowledge community approach for science learning.

In  order  to  make this  knowledge-building approach possible  in  macroworlds 

learning  environments,  it  is  necessary  for  technologies  powering  the  macroworlds 

simulations and the data collection infrastructure to  integrate  and interoperate  with 

knowledge building systems such as SAIL Smart Space. In addition to providing a way 

for the two systems to communicate, this also requires the two software infrastructures 

to be aligned on a number of issues, such as data models, users, authentication and the 

notion of a classroom run (i.e. instance). For this reason, a framework supporting the 

construction and enactment of macroworlds should provide a way to integrate with 

knowledge building systems.

Capability 5: provide a set of strategies to integrate with software modules external to the 

framework supporting the construction and enactment of macroworlds.
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3.6 Provide support for “non-functional” capabilities

In addition to the requirements described above, macroworlds impose a series of 

“engineering” requirements on the technology that powers them. This in turn forces 

developers of macroworld applications to deal with such constraints and address the 

challenges  that  they  impose.  For  instance,  the  variety  of  devices,  technologies  and 

platforms  typically  used  in  macroworlds  comes  with  very  different  “hardware 

footprints” and capabilities, requiring the used of different development strategies and 

languages. This complicates the communication among these components,  especially 

when considering the unreliable network capabilities in most schools. This ultimately 

results in additional word and, consequently, additional resources (i.e. developers) that 

might not always be available (Slotta et al, 2009). 

Part of macroworlds’ developers job is also to deal with this kind of issues, which 

need to  be  tackled in  order  to  successfully  develop a  new macroworld application. 

However, all these “engineering challenges” are not unique to macroworlds but they 

are shared with other ubiquitous computing applications (Raychoudhury et al., 2013), 

technology-enhanced  learning  environments  (such  as  Knowledge  Building  Systems; 

Slotta & Aleahmad, 2009)), distributed applications and, ultimately, a consistent portion 

of modern software. Nonetheless, support for tackling this kind of requirements should 

be  present  in  any  software  tool  attempting  to  assist  developers  when  building 
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embodied macroworlds.  Borrowing from the software and requirements engineering 

terminology, I define this class of challenges “non-functional challenges” since they are 

the analogous of “non-functional requirements” in requirements engineering. 

In  this  scenario,  supporting  developers  while  tackling  these  non-functional 

challenges becomes a necessary requirement for any framework attempting to support 

the creation and enactment of macroworlds. Two requirements, in particular, stand out: 

a)  the  need  of  developers  for  diagnostic  tools  while  constructing  and  enacting 

macroworlds and b) the need of developers for a mechanism to package, share and 

reuse their work. 

non-functional  capabilities:  provide  developers  with  a  way  to  inspect  and  diagnose 

macroworlds  during  their  construction  and  enactment  together  with  a  mechanism  for  the 

community to leverage each other work by sharing macroworlds’ components and applications.



Chapter 4
Literature review

The idea of  designing a software framework to support  the construction and 

enactment of  a  particular  type of  application is  certainly not  new to the domain of 

macroworlds. In particular, in ubiquitous computing research there is a rich tradition of 

creating  frameworks  and  middleware  to  help  developers  deal  with  the  inherent 

complexity of ubicomp applications and their implementation challenges. The first part 

of  this  chapter  presents  a  survey  of  application  frameworks  in  several  ubiquitous-

computing research areas that are particularly relevant for this work. The second part of 

the chapter, instead, focuses on previous work done around supporting the application-

level affordances of macroworlds described in the previous chapter.

4.1 Application frameworks in ubiquitous computing

Perhaps, the most prolific of the research areas around frameworks and middleware for 

ubiquitous computing is the one concerned with general-purpose application frameworks. 

These  frameworks  combine  context-awareness  and  ambient  intelligence  with 

networking abstraction, devices abstraction, and other techniques in order to provide a 

single, consistent middleware for all kinds of ubiquitous computing applications. The 

first such framework to be developed was Carnegie Mellon’s Project Aura (Garlan et al., 

2002) that provided a series of operating-system-level abstractions, such as nomadic file 
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access,  “surrogate  client” servers  and  resource  monitoring,  to  “shield” ubicomp 

application developers from low-level implementation hurdles and allow them to focus 

on  higher-level  application  logic.  A second  notable  example  of  “general  purpose”

ubiquitous computing framework is Gaia (Román et al., 2002). This framework provides 

a  components-based,  distributed  “operating  system” for  active  spaces  (“confined 

regions of physical space containing physical objects, heterogeneous networked devices, 

and users performing a range of activities”) which provides a set of tools and services 

(event manager, context and presence services, space repository and context file system) 

available to active spaces applications developers. Finally, systems such as OneWorld 

(Grimm, 2004) and HOMEROS (Han et al., 2004) focus on providing device/component 

abstraction  and  automatic  adaptability  whenever  new  devices  join  or  leave  the 

application spaces they are subscribed to.

Research around general-purpose ubiquitous computing frameworks continued 

to  be  a  prominent  area  of  interest  in  the  ubicomp  community  through  the  years. 

Recently,  work  in  this  area  has  been  focusing  on  the  development  of  platforms  to 

support Internet of Things (Ashton, 2009) applications. Examples of work in this area 

are Magic Broker (Erbad et al., 2008), Magic Broker 2 (Blackstock et al., 2010) and the 

latest  iteration,  ThingBroker (Perez de Almeida et  al.,  2013).  This family of software 

platforms  is  designed  to  offer  a  simple  and  consistent  programming  interface  to 

designers of IoT applications. The way these frameworks achieve this, and the main 
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contribution of this work, is a solid, event-based, publish/subscribe message passing 

middleware, which allows different components to communicate together. The authors 

also provide a set of APIs to abstract devices, sensors, and components and a facility to 

monitor all the communications mediated by the architecture.

Of course the frameworks described in this section represent just the tip of the 

iceberg  of  all  the  work  done  around  applications  framework  by  the  ubiquitous 

computing research community. More thorough surveys exist and the reader interested 

in knowing more about this topic should reference the work of Raychoudhury et al. 

(2013), Bronsted et al. (2010) and Machado et al. (2013).

4.1.1 Context aware applications

One of the first examples of application-frameworks for ubicomp applications is 

Salber's  et  al.  (1999)  context  toolkit  that  simplifies  designing,  implementing,  and 

evolving context-aware applications.  Context here covers information that is part of an 

application's operating environment and that can be sensed by the application itself. 

This work, in particular, emphasizes the strict separation of context sensing and storage 

from  application-specific  reactions  to  contextual  information,  and  this  decoupling 

facilitates  the  construction  of  context-aware  applications.  Yau  et  al.  (2002),  provide 

another  example  of  framework  to  help  designers  of  context  sensitive  ubicomp 

applications: their work provides a system to automatically decide which components 
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of  the  applications  are  allowed  to  communicate  with  each  other  based  on  certain 

elements of context (i.e. location).

4.1.2 Smart houses and ambient intelligence

A second area that saw considerable work in the early two-thousands was the 

one characterized by frameworks and middleware concerned with assisting designers 

of smart houses (Helal et al., 2005), ambient intelligence applications (Aarts et al., 2001), 

smart (Lee et al.,  2003) and active spaces (Roman et al.,  2002).  Applications in these 

domains typically seek to help users carry out their domestic chores and everyday tasks 

(e.g. cleaning, cooking…) by “automating” some or all aspect of the home environment. 

Two  examples  of  frameworks  designed  to  help  developers  of  ambient  intelligence 

applications are the Gator Tech Smart House framework and IDE (Helal et al.,  2005; 

Yang et al., 2006) and the EQUIP framework (Åkesson et al., 2002; Humble et al., 2003; 

Rodden et al., 2004). The first is a comprehensive framework for abstracting sensors and 

actuators  and  encapsulating  higher-level  context  information  while  the  second  is 

essentially  a  data-space  library  (i.e.  an  object-oriented  tuple  space),  which  aims  to 

support  cross-platform and cross-language  data  sharing  between networked clients. 

Analogously to what these frameworks do for the home environment, frameworks such 

as BEACH (Tandler, 2001), powering the i-LAND/RoomWare project (Streitz et al., 1999; 

2001), provide tools to simplify the design of ubiquitous computing applications within 
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smart  offices  and  workplaces.  The  BEACH  framework  consists  essentially  of  a 

communication architecture together with a device abstraction layer that simplifies the 

design of applications where multiple user interacting with different devices (such as 

PDAs, Tablets and tiled wall-displays) need to communicate among each other to allow, 

for  instance,  the  creation  of  a  seamless,  collaborative  interaction  space  among  the 

devices.

4.1.3 Ubicomp ecologies

Another area that has been getting quite a bit of attention lately are ubiquitous 

computing  ecologies  (Greenberg  et  al.,  2011).  A  notable  example  of  an  application 

framework in this  area is  The Proxemics  Toolkit  (Marquardt  et  al.,  2011).  The main 

design  goal  of  this  platform  is  to  simplify  access  to  proxemics  information  for 

developers  and  its  distribution  among  all  the  components  of  an  application.  For 

example, using this toolkit, students in a graduate Human-Computer Interaction course 

were able  to  build a  proxemics application that  allowed two portable  computers  to 

share a drawing canvas. The level of sharing increased as the laptops got progressively 

closer to each other with the user gaining progressive awareness of each others’ work 

up to a point when they were sharing the same drawing canvas.

Ensemble (Brenton et al., 2013) is a software architecture designed to encourage 

exploratory  development  of  distributed,  multimodal,  tangible,  collaborative 
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applications  by  isolating  changes  to  one  component  from  other  components. 

Particularly interesting is the design decision of making “supporting prototyping” the 

main design goal  for  the  platform.  Using this  framework,  the  authors  were  able  to 

create an application called Grendl, which allowed several performers in a university 

laptop and portable devices orchestra to “play” together and create music.

4.1.4 Pervasive games

Before  wrapping  up  this  section  on  frameworks  for  ubiquitous  computing 

applications, I would like to briefly discuss the work around the creation of software 

framework to  assist  designers  of  pervasive  games.  According to  Benford et  al.  (2005) 

“pervasive games extend the gaming experience out into the real world—be it on city 

streets, in the remote wilderness, or a living room.” Among the projects that pioneered 

the field of pervasive games, Equator (www.equator.ac.uk, 2000-2006) and its successor 

IPerG  (www.pervasive-gaming.org,  2004-2008)  introduced  and  number  of  pervasive 

games such as: Can you see me now? (Benford et al., 2006), Uncle Roy all Around you 

(Benford et al., 2004) and Epidemic Menace (Lindt et al., 2007). A side product of this 

research,  and the technology powering all  these pervasive games,  is  the EQUATOR 

Component Toolkit (ECT, equip.sourceforge.net;  Greenhalgh, 2002; Greenhalgh et al., 

2004). The toolkit is essentially a tuple-space, loosely coupled architecture that allows 

distributed applications to run over multiple hosts each running on or more software 
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components that can either be simple pieces of code, representations of physical devices 

and sensors or graphical user interfaces for the users. The framework also provides a set 

of tools for scripting, (re)configuring and monitoring the running application. 

MoWeT (Barchetti et al., 2009) is an indoor/outdoor hybrid framework to design 

very simple location-based applications. In particular, the proposed software is tailored 

for  a  particular  category  of  location-based  applications  called  context-aware  tourist 

guides  (Cheverst  et  al.,  2000):  mobile  phone  applications  that  display  multimedia 

content (e.g. web pages, images, sounds and movies) whenever a user gets close enough 

to  a  pre-specified  Point  of  Interest  (POI).  Despite  the  relative  simplicity  of  the 

applications it tries to support and the fact that the it tailors a specific hardware and 

software platform, the MoWeT framework gets  credit  for  trying to solve one of  the 

longest  running  problems  in  Ubiquitous  computing  (Varshavsky  &  Patel,2009):  an 

accurate, low-cost, easy to deploy, and ubiquitous location-tracking system.

TaggingCreaditor (Sintoris et al., 2014), like MoWeT, has also been developed in 

the context of pervasive games for cultural heritage sites. This framework supports the 

design of what its authors call linking games. In these games, players roam freely in the 

game space (e.g. a city center, a museum, an heritage site) and, whenever they reach a 

Point  of  Interest,  they  use  their  location  aware  mobile  devices  to  link  real-world 

elements  around the particular  location they are  in,  with concepts,  ideas,  or  factual 

knowledge in the virtual  world.  What  TaggingCreaditor  does is  basically  offering a 
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graphical interface to game designers that simplifies the process of specifying pairs of 

real-world elements (identified by GPS coordinates pairs, QR codes and NFC tags) and 

digital  media.  Such  pairs  are  then  stored  into  a  database  and  then  used  by  the 

framework to validate  players’  own matches,  assigning them score and,  sometimes, 

directing them to the next point of interest. 

Although not properly a framework, Treasure (Guo, 2012) is the only toolkit I am 

aware  of  that  specifically  supports  the  creation  of  indoor  pervasive  games  (by  the 

players themselves).  This framework allows its users to create simple treasure-hunt-

style games by (1) hiding a series of smart objects (i.e. regular objects equipped with 

ultrasonic 3D sensors and Crossbow MOTE sensors) all over the game space; (2) using a 

graphical interface to specify the rules of the game, such as what conditions need to be 

satisfied to end the game (i.e. players found the treasure) and what kind of hints (i.e. 

media) needs to be displayed whenever players find clues to help them progress toward 

the end of the game.

The  last  framework  in  our  survey  is  perhaps  the  most  complex  and  feature 

complete  of  them  all.  fAARS  (Gutierrez  et  al.,  2012)  and  its  predecessor  fAR-Play 

(Gutierrez et al., 2011) provide a platform for designing a particular kind of pervasive 

games which the authors call Mobile Augmented Alternate Reality Games. These games 

use mobile phones, augmented reality and QR codes to allow players to impersonate 

both physical characters (using their bodies, their location in the real world and their 
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phones) and virtual ones (controlling a virtual avatar very much like in a traditional 

video  game).  The  platform  achieves  this  keeping  the  virtual  and  real  world 

synchronized by using the  mobile  phones  both as  smart  sensors  (GPS location,  QR 

codes, user input) and smart actuators (Augmented Reality). In addition to introducing 

their  own frameworks,  the  authors  present  a  survey  of  pervasive  games  platforms 

(Gutierrez 2012).

4.1.5 Impact of ubicomp application frameworks on nutella

nutella’s  design  leverages  the  work  in  the  area  of  ubicomp  application 

frameworks reviewed above in several ways. The idea of connecting many different 

devices using a message broker was inspired by the research of Blackstock et al.  (2010) 

on Magic Broker. nutella combines this approach to devices-connectivity together with 

the  “devices  abstraction”  approach  typical  of  early  frameworks  for  context-aware 

computing  and  smart-houses  (e.g.  Gator  Tech  House).  Both  approaches  rely  on 

abstraction to manage complexity in the same way as nutella does. Another area where 

nutella  leverages  this  work  is  location  sensing  and tracking.  In  particular,  nutella’s 

central mechanism of decoupling location sensing and retrieval is heavily inspired by 

the work of Salber's et al. (1999) that also uses decoupling to simplify context handling. 

Finally,  nutella’s  approach to  physical-digital  coupling is  similar  to  the one used in 
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fAARS (Gutierrez et al., 2012) where real and virtual worlds are coupled through the 

use of ambient and mobile technology.

Despite  all  the  work  in  this  area,  however,  there  is  no  single  framework  or 

technology  among  the  ones  reviewed  above  that  provides  all  the  key  technology 

capabilities of macroworlds. For instance, while Ensemble (Brenton et al., 2013) contains 

many of the elements that are also in nutella, it lacks support for location sensing and 

tracking, a crucial component to enabling macroworld design and enactment. 

4.2 Supporting the construction and enactment of macroworld applications

In  this  section,  I  will  describe  work  that  has  already  been  done  around  the 

challenges that arise when constructing and enacting macroworld applications. 

4.2.1 Support multiple macroworld simulations types

To the best  of  my knowledge,  there are no other systems other than the one 

presented  in  this  dissertation  that  enable  the  design  and enactment  of  macroworld 

applications  based  on  simulated,  emulated  and  generated  phenomena.  However, 

nutella evolved from previous work by the author himself on the phenomena server, a 

technology that provided support for the development and enactment of a particular 

kind  of  simulated  phenomena  called  embedded  phenomena  (Moher,  2006).  The 

phenomena  server  was  an  application  container  that  provided encapsulation  and a 
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common  interface  for  different  types  of  embedded  phenomena  simulations.  The 

phenomena  server  enabled  developers  to  create  applications  following  a  standard 

structure and a shared set of APIs, which simplified and unified different embedded 

application designs.  The phenomena server proved extremely reliable  and stable  by 

powering dozen embedded phenomena classroom enactments with hundreds of days 

of  continuous  operation.  It  has  recently  been  decommissioned  because  it  has  been 

replaced by the system described in this dissertation. However, some of the ideas and 

technologies developed during the work on the phenomena server continue to live on 

in nutella.

4.2.2 Support leveraging of the physical space of the classroom

As highlighted earlier, leveraging the physical space of the classroom, imposes a 

series of challenges that developers of macroworld applications need to leverage. The 

first challenges that developers of this kind of applications need to overcome are the 

limitations of today’s indoor location-tracking and sensing technologies. Cheap, reliable 

and easy to install tracking systems for all individuals and relevant devices (n=30) in a 

classroom covering the whole classroom space doesn’t exist today, to the best of my 

knowledge. Historically, designers solved this problem by asking students to either self-

report their location (Novellis & Moher, 2011) or specifying it  a-priori (Moher et al., 

2005)  through the use  of  a  traditional  desktop-based interface.  In  the last  ten years 



!58

however, there has been tremendous progress in the affordability of systems based on 

RFID systems (e.g. Gnoli et al., 2014) and iBeacons (e.g. Sørensen & Kjeldskov, 2013), 

capable  of  detecting  proximity  of  up  to  30  objects  among  a  number  of  “hotspots”

scattered around the classroom. 

At the same time, as described in earlier sections in this chapter, the ubicomp 

community has been hard at work building frameworks and middleware to provide 

developers  with  an  easier  way  to  access  location  and  proxemics  information. 

Unfortunately,  almost  all  these  frameworks  are  affected  by  one  (or  more)  of  the 

following. a) They are often (still) very tightly coupled with a particular kind of location 

awareness technology such as RFID, GPS, some “flavor” of tracking, etc. b) They often 

mix  context  and  location  awareness  together  with  other  features  (such  as  context 

reasoning, storage, modeling, etc.) making them impractical to use (Buschmann, 2010). 

c) They provide support only for devices that are capable of sensing their own location 

frustrating the articulation of a single, consistent and coherent paradigm for location 

awareness.

4.2.3 Provide feedback during and after the enactment of macroworlds

In addition to the work reviewed by Roschelle and Pea (2002) and described in 

the previous chapter, Jim Slotta and his group have done a lot of work on providing co-

located students with real-time feedback on their actions. In particular, his research in 
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this area focuses on students collectively developing a shared discourse that allows for 

idea-sharing, critique and improvement (Brown & Campione, 1996) in order to advance 

a shared knowledge base (Bielaczyc & Collins, 1999). To this end, Slotta and his group 

have developed a software framework called SAIL Smart Space (Tissenbaum & Slotta, 

2015) which allows for more rapid development of learning materials and environments 

enabling a broad research program on collaborative inquiry.

Complementary  to  research  programs  exploring  feedback  to  students  and 

teachers  alike,  others  have  explored  the  possibility  of  providing  teachers  with 

preferential feedback on their students’ activities using tangible technologies. FireFlies 

(Bakker  et  al.,  2013)  is  a  tangible  learning  technology  that  enables  teachers  to 

continuously  gather  feedback  on  student’s  activities  using  the  periphery  of  their 

attention. Interestingly, the system comes with a tangible teacher tool, which enables the 

teacher to control the shared-ambient display and regulate the rate of feedback they get.  

4.2.4 Support classroom orchestration during the enactment of macroworlds

There is a long tradition of research in the learning sciences on the most effective 

ways  of  supporting  complex  collaborative  learning  designs  in  the  classroom.  One 

common approach that is used to support the orchestration of complex collaborative 

learning  activities  is  that  of  the  “collaboration  script,”  which  has  been  shown  to 

effectively foster collaboration and improve learning outcomes (e.g., Weinberger, et al. 
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2005; Rummel & Spada, 2005). However, of particular interest for this dissertation, is the 

use of technology for classroom orchestration. Research in this area has been pioneered 

by Dillenbourg and Jermann (2010). In their paper, the authors summarize 14 design 

factors  (e.g.  flexibility,  control,  integration)  to  take  into  account  when  designing 

technologies for classroom orchestration. 

Few researchers in Human-Computer Interaction have also worked on tangible 

technologies  for  classroom orchestrations.  As  an  example,  CowClock  (Bakker  et  al., 

2012) is a tool that fosters time awareness in primary school classrooms. Teachers can 

mark timeframes in the clock using tangible tokens and the clock will play soundscapes 

associated  to  the  token  with  increasing  frequency  to  signal  the  passing  of  time.  A 

qualitative,  two-weeks  exploration  of  CowClock  in  the  classroom  revealed  that  the 

peripheral,  auditory feedback provided by the tool was successful in fostering time-

awareness.

4.2.5 Supporting interoperability and reuse in learning technologies

The problem of reuse of software components in educational technologies has 

been around for as long as there has been educational software. In 2009, a panel titled

“Toward a Technology Community in the Learning Sciences” was presented at the 8th 

International Conference on Computer Supported Collaborative Learning (Slotta et al., 

2009).  In  their  presentation,  panelists  highlighted  several  challenges  in  the  learning 
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sciences community that hamper the design of reusable software components and the 

interoperability between technologies designed by different research groups. Quintana 

and  Soloway  highlight  issues  with  the  grain  size  of  software  components,  their 

customization and usability of software frameworks used to stitch components together 

into  applications.  Roschelle  and  Pea  lament  how  other  developers  and  learning 

scientists are not using ESCOT, one of the first attempts at componentizing educational 

technologies, to build learning technologies. The reason for this, they though, was due 

to the immaturity of  the underlying technology platform at  the time (Java)  and the 

divergence in handhelds operating systems. Finally, Aleahmad and Slotta describe their 

experience  successfully  designing  SAIL,  an  open-source  platform  for  learning 

technologies. Their strategy was to “separate out the plumbing” from the content so it 

could be used in different applications. 

Besides talking about components, software, and frameworks, the authors also 

make an important point about the importance of developers’ communities as a venue 

for  developers  to  exchange  ideas,  work  on  collaborations  and explore  technologies. 

They  also  briefly  outline  their  plans  to  create  a  learning-technologies,  developers’ 

community,  called  Educoder  (Slotta  &  Aleahmad,  2009).  The  importance  of  a 

community as a way to help foster the reuse and development of open-source tools that 

solve recurring problems is not an idea new to the learning sciences. Communities like 
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Github  (https://github.com)  have  proven  to  foster  developers’ collaboration  and 

advance the community (Dabbish et al., 2012).



Chapter 5
nutella

nutella (http://nutella-framework.github.io) is an open source framework that 

supports  the  building  and  enactment  of  macroworlds.  This  chapter,  describes  the 

internal software architecture of nutella, its main functional sub-modules, and provides 

a  high-level  overview  of  the  process  of  developing  and  enacting  a  macroworld 

application using the framework.

5.1 nutella’s architecture

nutella’s internal design is heavily inspired by the actor model of computation 

(Hewitt et al., 1973). According to this paradigm, the basic unit of computation is an 

actor. An actor is simply a piece of software that executes on some host, can receive 

inputs and produce outputs. Complex behavior is modeled by composing many actors 

together  to  obtain  the  desired  functionality.  In  nutella,  consistent  with  this  model, 

applications are collections of actors which can be of only two types: user interface or bot. 

User interfaces are actors which can receive inputs from other actors and human users 

(typically through a Graphical User Interface, GUI), while bots are actors that can only 

receive  inputs  from  other  actors.  Actors  communicate  among  each  other  using 

messages. Actors register event listeners for incoming messages (and user inputs if they 

are user interfaces) and emit messages as outputs. This “inputs, computation, outputs”�
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has  been  strongly  influenced  by  the  ubiquitous  (pun  not  intended)  Mode-View-

Controller pattern (Krasner & Pope, 1988). 

nutella’s  internal  software  structure  is  divided  into  three  layers:  existing 

software, APIs, and components, with the framework core running across the previous 

three layers (figure 9). 

5.1.1 Existing technology

At its core, nutella is powered by a robust message-oriented middleware (Curry, 

2004) that allows actors (called components in nutella) to exchange messages among each 

other. In particular, all the messages exchanged by software components go through a 

Figure 9. Overall architecture of the nutella framework. nutella's internal structure is 
organized into  three  vertical  layers  (existing  technology,  APIs,  components)  and a 
framework core perpendicular tying these three levels together.
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message broker, which, in the case of nutella, is an open source software called mosca 

(http://www.mosca.io).  All  exchanged messages must comply to the MQ Telemetry 

Transport  (MQTT) protocol,  which was designed by IBM as  a  lightweight  publish/

subscribe  protocol  specifically  for  Internet  of  Things  applications  (http://mqtt.org). 

This protocol was chosen because of its  small  memory footprint and simplicity that 

make it easy to implement it even on devices with very limited resources (e.g. Arduino, 

tangibles,  etc.).  Moreover,  the  established  open-source  community  maintaining  the 

protocol  and  its  support  for  both  WebSockets  and  regular  TCP/IP sockets  make  it 

practically  ubiquitous  among  platforms  and  programming  languages,  providing 

developers with a very high degree of freedom when choosing platforms. 

5.1.2 nutella protocol

On top of this existing layer of technology sits the first abstraction layer provided 

by nutella, what I call the APIs layer. The goal of this portion of the architecture is to 

provide to the all the components in a nutella application a set of expressive primitives 

to  communicate  with  each  other.  The  goal  of  this  layer  is  to  move  designers  and 

developers  away  from  low-level  communication  primitives  such  as  “connect”,  “re-

connect”, “disconnect”, “keep-alive”, “set timeout”, etc. and provide them with a set of 

more expressive communication APIs.
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The fist step in this process is to define a communication protocol, that specifies 

the structure of the messages that are exchanged between components. I decided to use 

JSON (http://json.org) as a data interchange format because it is human readable (and 

therefore easily debuggable), open, widely adopted, and because it has a light footprint 

compared to other human-readable formats such as XML. Moreover, exactly like there 

are MQTT libraries for virtually any programming language, the same is true for JSON 

parser libraries. 

The  nutella  protocol  (https://github.com/nutella-framework/docs/blob/ 

master/protocol/index.md) specifies the structure and semantic of the JSON messages 

that are sent back and forth between software components. In particular, the protocol 

specifies four primitives that actors can use to communicate with each other:

• Components can ask question directly to other components

• Components can answer questions other components ask them

• Components can say things to an audience of components that are listening 

and are interested in what the “speakers” are talking about

• Components can express their interest in what other components are saying, 

listen and wait for them to say something

These four actions can be grouped into two separate communication strategies: 

request/response or pull (first two actions) and publish/subscribe or push (last two actions). 

Each one of the two messaging patterns has its list of advantages and disadvantages 

https://github.com/nutella-framework/docs/blob/
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(Rodríguez-Domínguez et al., 2012) which I am not going to cover here. Nonetheless, I 

would like to provide some rationale for making both available in nutella. 

The request/response (or pull) mechanism was born to allow communication in 

client-server  applications.  In  this  model,  clients  are  responsible  for  visualizing  data 

while servers are responsible for storing them. Clients request the data they need to 

display to servers that reply. In nutella applications, data is rarely centralized in a single 

component but it is instead distributed among different actors. This creates a situation 

where each actor is,  at  the same time,  a  client  and server for different data.  In this 

scenario, a request/response messaging strategy presents two main limitations. First, if 

an actor needs data that is stored within several other actors it needs to know what data 

is where and then go perform all the requests needed to retrieve such data. Second, it is 

impossible  for  an  actor  to  just  wait  for  data  to  be  delivered  to  them,  whenever  it 

becomes available, but it forces the “client” actor to constantly poll other “server” actors, 

generating a lot of useless network traffic.

For  this  reason,  the  main  communication  mechanism  provided  by  nutella  is 

publish/subscribe. However, request/response is also provided because there are cases 

where a push mechanism alone can become cumbersome. For instance, consider the 

frequent scenario where an interface (client) is accessed and it needs to display data that 

is stored in a different bot (server). In this particular use case, Here, it is simpler to use 

request/response instead of: (1) having the interface listen for new data; (2) having the 
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bot listen for requests from the interface; (3) having the interface signal that they are up 

with a message; (4) having the bot capture that message (request), fetch the data and 

signal  they  have  data  (response);  (5)  having  the  interface  capture  that  message 

(response) and use the data.

The limitations of pull strategies together with the corner-cases inefficiencies of 

push strategies are the main motivation behind the use of both messaging patterns in 

nutella.

5.1.3 Native language nutella libraries

The layer on top of the nutella protocol is a set of libraries implementing the 

protocol  itself  and  simplifying  the  interaction  with  higher-level  components  of  the 

framework. The rationale behind the choice of implementing native language libraries 

is  rooted  in  the  desire  to  reduce  the  number  of  entry  barriers  developers  have  to 

overcome in order to adopt the framework. While “implementing the nutella protocol 

in your favorite programming language” can be a fun exercise, it is an extra step that a 

developer needs to make in order to take advantage of the communication facilities and 

higher  level  function  provided  by  nutella.  Vice-versa,  if  the  protocol  is  already 

implemented in a language-specific library, developers familiar with the language can 

import it and use it with the tools they are already familiar with.
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In addition to implementing the basic nutella communication protocol described 

above,  the  nutella  libraries  also  implement  higher-level  primitives  to  facilitate  the 

communication  with  the  framework  components  (see  next  section).  Again,  this 

simplifies developers’ lives because they are not forced to implement the portions of the 

protocol that enable the communication with higher-level framework components. 

So far I implemented native libraries for JavaScript (browser and node.js), Ruby, 

Swift. Java (standalone, Processing and Android) is in progress and I plan to extend the 

range of available languages in the future by implementing language-specific libraries 

for C# (Unity), Scala and Python.

5.1.4 nutella components

The last layer in the “nutella architecture sandwich” is the components layer. As 

described earlier, components (i.e. bots and user interfaces) encapsulate all the logic in 

nutella  applications  and  communicate  among each  other  using  the  native-language 

APIs  provided  by  the  nutella  libraries.  As  highlighted  by  the  diagram  in  figure  9, 

components come in two slightly different flavors: framework components and user-

defined components. Framework components, as the name hints, are integrated with 

the framework itself  and provide a set of high-level features (e.g. access to location, 

orchestration, logging…) to all nutella applications. These six framework components 

are the “heart” of the nutella framework and I will cover each one of them in detail in 
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section 5.2. User defined components, instead, are the way designers and developers 

implement  macroworld  applications.  Each  component  implements  a  portion  of  the 

macroworld application and, together with framework components, they collectively 

implement the desired functionality.

5.1.5 Framework core

With  the  macroworlds’  application  logic  distributed  among  actors,  a  crucial 

capability of the architecture, besides allowing communication between actors, is the 

ability to manage the components’  lifecycle.  Starting and stopping them, generating 

new  actors  and  destroying  them  are  tasks  that  are  typically  handled  by  “actors 

supervisors” (Hewitt et al., 1973). In nutella, this role is handled by a “vertical” module 

called framework core that spans across all layers of the architecture. The framework core 

provides a command line utility and APIs that can be used by developers to generate 

macroworld  application  skeletons,  control  and  configure  the  runtime  environment, 

instantiate new actors from templates and perform other “support” tasks during the 

development and enactment of macroworld applications.

5.2 framework components / macro-modules

As described earlier, framework components implement most of the high-level 

features provided by nutella. Since each framework component typically comes with its 
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own protocol extensions, and relative native-language library support, I am going to 

call  the  framework  component,  protocol,  and native-language  implementation  set  a 

macro-module.  nutella  comes  with  six  macro-modules:  RoomPlaces,  RoomCast, 

RoomRecorder, RoomComponents, RoomDebugger, and RoomMonitor.

• RoomPlaces is a classroom, physical space, and resources (i.e. devices) manager. 

It provides developers of macroworlds with a GUI that they can use to add/remove/

edit  devices  used  by  their  application  and  configure  their  location,  including 

automatic location tracking. It also provides a set of APIs that can be used to access all 

information about resources’ location and the classroom spatial organization in real 

time.

• RoomCast is a “cable TV system” for the classroom. Besides providing a way for 

students  and  teachers  to  access  a  macroworld  application,  RoomCast  allows 

developers to create channels  and channel  packages (using a GUI)  out of  existing 

visualizations and user interfaces. RoomCast allows developers (also via a GUI) to 

configure which users are subscribed to which packages and store this information 

inside a configuration. Many configurations can be used at the same time and can be 

controlled using a mobile, “TV remote” app which can be operated by teachers.

• RoomRecorder  is  a  distributed logging utility for  macroworld applications.  It 

automatically records all messages that are exchanged between all the components of 

a  macroworld  application  and  provides  a  mechanism  to  access  and  filter  this 
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information  both  in  real-time  and a-posteriori.  Under  the  hood,  RoomRecorder  is 

powered by a document-oriented database called MongoDB (www.mongodb.org). 

• RoomComponents  are a set of application components skeletons which can be 

used by macroworld developers to speed up their development. They are accessible in 

an online repository and any developer can contribute their component for others to 

use. This also provides macroworld developers with a way of reusing and sharing 

their work. At the moment of writing, there are 13 components in the repository.

• RoomDebugger is a debugging and testing GUI used by macroworld developers 

to  mock  application  components  (bots  and  interfaces)  during  the  development 

process.  This  component  is  particularly  useful  to  test  the  communication  and 

interaction among components in an application.

• RoomMonitor  provides  developers  with  a  GUI  to  monitor  macroworld 

applications  in  real-time  both  during  their  development  and  enactment.  Using 

RoomMonitor,  developers can be notified via email  when issues with macroworld 

applications  arise.  Moreover,  RoomMonitor  provides  them  with  a  way  of 

progressively  “drilling  down” from all  applications,  to  a  specific  application,  to  a 

specific instance of an application, to a specific component, helping them find the root 

cause of issues whenever they happen. 
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5.3 Macroworlds development process with nutella

The framework components described above, together with the rest of the nutella 

framework, were designed to support a particular development process derived mostly 

from my experience creating several macroworlds applications in the past seven years. 

In  this  section  I  will  go  through  each  one  of  the  phases  in  the  development  and 

enactment processes of a macroworld application and show how each of the macro-

modules in the nutella framework provides selective support for developers engaged in 

each one of these phases. In the next chapter, I will go into more detail and provide 

specific examples of how nutella addresses the challenges described in chapter 3. The 

overall development and enactment process enforced by nutella is depicted in figure 10.

5.3.1 Initial design

The first step in designing a macroworld application is to decide what to build. 

Typically, this involves a set of brainstorming sessions and several iterations where the 

design is progressively refined until it reaches a point where it is stable enough to start 

implementing it. It is important to point out that the design and development processes 

are tightly coupled and highly iterative. What is called initial design in figure 10 could 

be as simple as a paragraph-long description of the macroworld together with a set of 

ideas for its development.
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Figure  10.  Steps  involved  in  the  construction  and  enactment  of  a  macroworld 
application  using  nutella.  On  the  right,  the  name  of  the  nutella  macro-modules 
supporting each step.
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5.3.2 Macroworld skeleton

During this phase, developers use the Command Line Interface provided by the 

framework core module to create a skeleton of a macroworld application. However, 

developers need to install the framework on their computer first. In order to do so, they 

need  to  follow  the  instructions  on  the  nutella  website  (http://nutella-

framework.github.io) to a) install all the software prerequisites (node.js. Ruby, Git, tmux 

and MongoDB); b) download and install the framework using RubyGems (gem$install$

nutella_framework) and c) initialize it (nutella$checkup). Once developers successfully 

complete this procedure they will be able to type the command nutella in their shell 

and get a welcome message.

If nutella is already installed on their computers, developers only need to type 

three shell commands (figure 11) to create a new macroworld application skeleton that 

can then be customized and is immediately accessible via any web browser (figure 12). 

Figure 11. Output of "nutella new" and "nutella start" commands. Using the nutella 
framework core developers can create and start a nutella application skeleton with 
few simple shell commands.
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5.3.3 Create user interface(s) and bots(s)

With an application skeleton ready to be customized, developers can move onto 

the creation of user interfaces and bots. In my experience, most developers tend to start 

Figure 12. nutella's main interface. This is the default interface for a new macroworld 
application  presented  to  developers.  Developers  can  access  almost  all  higher-level 
functions provided by the framework using the buttons in the lower portion of the 
interface. As new interfaces are added to the application they become automatically 
accessible via this interface.
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with user interfaces but there is nothing in the framework preventing them to start from 

bots. nutella treats both user interfaces and bots as components. 

The first step a developer should take when creating a new component is to use 

the  repository  of  RoomComponents  to  see  if  someone  else  has  already  created  a 

component  template  that  would  simplify  the  component  creation  process.  Most 

RoomComponents provide some type of boilerplate code (in addition to the language 

specific nutella library) which provides a way to kick-start the development, speeding 

up the process of creating a new component. Examples of RoomComponents are, for 

instance, web user interfaces built using a particular framework (such as Facebook’s 

React.js), an iOS visualization, a Processing application, a simulated phenomenon, etc. 

One  of  the  main  advantages  of  RoomComponents  is  that  they  don’t  place  any 

restriction on the granularity of templates with some providing minimal support while 

others can be fairly complex and complete.  This provides developers with a flexible 

array of  components’ templates  to  choose  from,  reducing the  amount  of  boilerplate 

code they need to  write  and allowing them to focus on functionality  instead.  Once 

developers  have  identified  the  right  template  they  can  install  it  in  their  nutella 

application/project with a single command and start modifying it to fit their needs. 

As  describe  earlier,  components  don’t  exist  in  a  vacuum  but  they  all  work 

together  to  create  a  macroworld application.  However,  it  can be  challenging to  test 

communication among components when only some of them have been created. For 
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this  reason,  nutella  provides  a  tool  (called  RoomDebugger)  to  simulate  and  mock 

components. Using this tool, developers can work on individual components and send/

receive  mock  messages  in  order  to  test  their  functionality  in  the  larger  application 

context.

5.3.4 Configure space

Once  developers  have  implemented  and  tested  all  the  components  in  a 

macroworld application (over the course of several hours, days or weeks), they need to 

begin “packaging” it  for students and teachers to use it.  There are two steps in this 

process and the first one is to configure the physical space and decide which resources 

(i.e. devices) are needed for a particular application. RoomPlaces, and in particular the 

RoomPlaces GUI (figure 13), are the tools used for this particular task. The process is 

outlined in the diagram in figure 14 and it involves positioning stationary resources and 

configuring mobile ones to broadcast their location changes.

5.3.5 Create channels and packages

Once  the  physical  space  of  the  classroom has  been  laid  out,  the  last  part  of 

getting  a  macroworld  application  ready  to  run  in  a  classroom  is  to  assign  which 

interfaces are going to be on which devices and to who. The process to do so involves a 

series of sub-steps depicted in figure 14.
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Figure  13.  RoomPlaces  interface.  The  RoomCast  interface  has  two  portions.  The 
classroom map (top), where resources' location can be manipulated in real-time and 
the  devices  list  and  configuration  view  (bottom),  where  developers  can  configure 
parameters such as the type of  resource,  tracking mechanism and granularity.  The 
map shows the layout of resources for AquaRoom.
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This  process  involves  creating  sets  of  channels  (i.e.  interfaces),  which  I  call 

packages,  and then associating these  packages  to  users  and resources/devices.  This 

Figure  14.  Steps  involved  in  the  configuration  of  the  classroom  space  using 
RoomPlaces (left). This diagram is an "exploded view" of the box labeled “configure 
space”  in  the  diagram  in  figure  10.   Steps  involved  in  the  creation  of  RoomCast 
channels  and  packages  (right).  Performing  these  steps  is  necessary  to  "promote" 
interfaces to channels so that they can be used by students and teachers in classrooms.
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decoupling of device, ownership of the device and content (which I call “late binding”

of content to devices and users) provides developers (and teachers) with a high degree 

of freedom in terms of which content is accessed where. The ability of choosing at the 

“last-second” which interface  goes  to  a  particular  display  is  a  critical  capability  for 

developers and teachers to react to the volatility of the classroom environment, control 

it  and provide the capabilities outlined in chapter 3.  Once these associations (called 

configurations) are established, teachers can use a “classroom remote” tablet application 

to switch between them and control the classroom.

5.3.6 Testing and classroom(s) deployment

Once a new macroworld application is ready to be deployed in real classrooms, 

developers  typically  perform  one  or  more  complete  system  tests  to  verify  its 

functionality. Such tests are often performed in the laboratory where the application is 

being developed and, after the setup has been completed at schools, a final smoke test is 

performed  in-situ  to  ensure  the  absence  of  basic  problems  that  will  prevent  the 

macroworld from working at all. In order to perform both laboratory testing and use in 

classroom, a macroworld application needs to be deployed first. Developers can do so 

by  uploading  it  to  a  server  (typically  by  cloning  the  code  repository  where  the 

application is) and starting it using the framework core. nutella is capable of starting 

multiple instances of a single application, in order to support development/production 
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setups  and  enable  testing.  The  framework  core  also  takes  care  of  starting 

RoomRecorder. This distributed logging system stores all messages that are exchanged 

across all components in the macroworld. Developers can also write to the distributed 

log explicitly using the nutella native-language libraries. This becomes useful whenever 

students’ interactions need to be analyzed for research purposes or during testing to 

discover the root cause of bugs.

While macroworld applications are running in the classroom, developers have 

available  to  them  RoomMonitor  a  GUI  utility  that  allows  them  to  monitor  all 

components in all applications running on a certain instance of nutella.

5.3.7 Data analysis

Once  the  classroom  enactment  is  complete  (or  even  while  it  is  in  progress 

sometimes),  researchers  need to analyze the distributed application logs in order  to 

gather evidence supporting their research. In order to do so they can use RoomRecorder 

APIs to filter and export data in different formats (JSON, CSV). I plan to develop a GUI 

in  the  future  to  facilitate  this  process  and  allow  researchers  to  “replay” arbitrary 

sections of the logs in order to facilitate the complex logs sense-making process.



Chapter 6
Constructing and enacting macroworlds with nutella

In this  chapter,  I  will  describe how nutella  can be used to build macroworld 

applications. In particular, for each capability identified in chapter 3, I will show how 

nutella implements it and how the framework features can be used to overcome many 

of the challenges that arise during the construction and enactment of macroworlds. All 

examples in this chapter use JavaScript / node.js.

6.1 Support multiple macroworld simulations types

nutella’s  support  of  simulated,  emulated  and  generated  phenomena  hinges 

mainly on two features of the framework: the loose coupling between user interfaces 

and bots  and the  use  of  RoomComponents.  More  specifically,  in  nutella,  simulated 

phenomena are implemented by a bot continuously updating the state of the simulation 

and by a series of interfaces displaying portions of the simulation state in the classroom 

and allowing students to manipulate it. Generated phenomena are similar, but students 

use their movement as an input to the simulation. Emulated phenomena instead are 

implemented with a bot that filters and adapts the data coming from the monitoring of 

a  remote  phenomena  (or  historical  data)  and  a  series  of  user  interfaces  displaying 

“slices”�of such data. 
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The decoupling between user interfaces and bots provided by nutella plays an 

important role because, from an interface designer perspective, emulated and simulated 

phenomena are equivalent. Data comes to the interface and needs to be displayed, no 

matter where data comes from. The same is true for bots designers when looking at 

simulated and generated phenomena bots.  It  doesn’t matter where the inputs to the 

simulations come from (an interface, human movement, tangibles, etc.) they all look the 

same  to  the  simulation  bot.  These  “equivalences” are  important  because  they  help 

reduce the viability that developers need to face and contribute to simplifying their job. 

While the decoupling plays a role in reducing the variability between the three 

classes of macroworlds, RoomComponents play a similar role within each macroworld 

class. Consider AquaRoom and RoomQuake. They are both simulated phenomena, but 

their  implementation of  the  simulation bot  varies  dramatically  between the  two.  In 

AquaRoom, developers need to constantly update the simulation based on students’ 

dyes injections. The simulation is interactive and the code will look something like this:

while$(true)${$
$processInput();$
$update();$
$produceOutput();$
}$

In RoomQuake, instead, after the quakes schedule for the whole unit is decided, 

no action is needed by the bot other than storing such schedule and sending it to the 

user interfaces that request it. 
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These two simulated phenomena are examples of two different sub-classes of 

simulated  phenomena  that  I  call  active  and  passive  phenomena.  The  way  nutella 

provides  scaffolding for  both  is  via  RoomComponents.  By  providing templates  (i.e. 

RoomComponents) for both active and passive phenomena (in several programming 

languages) developers that want to implement a new active phenomena bot can install 

the appropriate RoomComponent in their macroworld application and then modify it to 

their  needs.  Any  nutella  developer  can  publish  their  templates  to  the  nutella 

RoomComponents repository which enables the number of templates to grow with the 

community. More on this in section 6.6.

6.2 Support leveraging of the physical space of the classroom

RoomPlaces is the module in the nutella framework that is devoted to handling 

resources location and space. The module provides a series of tools to help developers 

deal  with  the  challenges  that  emerge  when  leveraging  the  physical  space  of  the 

classroom in macroworlds. In particular, the RoomPlaces focuses on supporting setting 

and  getting  devices’  location  within  the  classroom,  at  different  granularities, 

independently from the devices location-sensing and communication capabilities.  To 

enable this, this nutella module was designed around three central ideas: abstract the 

different devices location sensing and network capabilities, define a unified model of location 

and provide a consistent interface, across programming languages and devices, to access 
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and  manipulate  location  and  spatial  information  about  the  classroom.  In  order  to 

demonstrate the capabilities of this module, I am going to present some examples.

First, there is the issue of dealing with resources location and different tracking 

and location reporting systems. Some macroworlds, such as Participatory Simulations 

and the Hunger Games, make use of automatic tracking systems that are able to detect 

proximity of kids between each other and the proximity of kids to particular areas of the 

classroom. Others,  such as  RoomQuake and HelioRoom, rely on manual  measuring 

procedures and the transcription of these measures into some sort of configuration file 

or  configuration Graphical  User  Interface.  Finally,  macroworlds  such as  AquaRoom, 

rely on students’ self-reporting their location and transcribing such measures directly in 

the interface provided to them. These three ways of specifying the location of a single 

resource  (automatic  tracking,  manual  configuration,  students’ self  reporting)  are  all 

handled by the nutella framework and, in particular, by the nutella.location APIs.

Before showing a real code example, I want to talk about a second issue that is 

closely intertwined to the first one, that is the fact that different macroworlds require 

different  granularities  of  precision and coordinate systems when handling resources 

location. In RoomQuake, for instance, students have to identify the position of a quake 

with an (X, Y) coordinates pair on a 2D continuous space and the same is true for the 

position  of  the  seismographs.  In  AquaRoom,  instead,  the  self-reported  position  of 

sampling location is expressed in “battleship” coordinate pairs (e.g. A1, B4, G2) that are 
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discrete. Finally, in WallCology, location of WallScopes is simply expressed in terms of 

“hotspots” labeled with a name (e.g. Wall 1, Wall A…). Again, nutella provides a way of 

handling all these different coordinate systems and allows them to be used at the same 

time (with some resources using a continuous tracking system for instance and other 

using  the  hotspot).  For  instance,  if  I  wanted  to  set  the  location  of  a  RoomQuake 

seismograph  in  a  continuous  coordinate  system  in,  I  can  simply  do  this  with  the 

following two lines of code:

nutella.location.resource[ seismograph_1 ].continuous.x$=$5.3$
nutella.location.resource[ seismograph_1 ].continuous.y$=$.2$

Similarly, if  I  wanted to set the location of the portable drilling unit (where a 

student is logged in as ‘alessandro’) in AquaRoom, we could simply use the discrete 

coordinate system APIs like so:

nutella.location.resource[ alessandro ].discrete.x$=$A$
nutella.location.resource[ alessandro ].discrete.y$=$2$

Finally, if we wanted to set the location of a particular WallScope in WallCology 

to be close to wall A I can do so by using the following API

nutella.location.resource[ wallscope_1 ].proximity.rid$=$ wall_a

As demonstrated by this three examples the APIs for continuous, discrete and 

proximity coordinate systems are roughly the same. What changes is simply the way 
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they are invoked. In the Hunger Games, the proximity APIs are called by the tracking 

systems  which  automatically  detects  the  location  of  each  kid,  in  RoomQuake  and 

HelioRoom the continuous APIs are called by a GUI that is used to configure the room 

before the simulation starts (more on this later) and in AquaRoom, the discrete APIs are 

called  by  the  portable  drilling  unit  itself,  whenever  a  kid  uses  it  to  self-report  its 

location.

So far  I  talked about  setting the  location of  a  certain  resource  but  not  about 

retrieving it.  This gives me the chance to talk about another feature of RoomPlaces, 

which  is  its  ability  to  handle  both  resources  that  are  both  static  and  dynamic.  In 

RoomQuake,  for  instance,  seismographs  never  change their  location across  the  unit 

(static resources) while, at the other end of the spectrum, kids are constantly moving in 

the Hunger Games (dynamic resources). The reason this is important is because the way 

the location of stationary and dynamic resources is accessed is different. Ideally, with 

slow or never changing information (such as the location of static resources), it would 

be better to be able to access it “as needed” while it would preferable to be notified 

whenever new information is available in a rapidly-changing information source (such 

as location in dynamic resources). Leveraging nutella’s native support for push and pull 

communication strategies, it is possible to “register” to receive location updates for an 

arbitrary set of dynamic resources like so:

nutella.location.resource[ my_resources_group_id ].notifyUpdate$=$true$
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It is then possible to register a callback function that will be fired every time a 

location update is received. For stationary and mobile resources, it is also possible to 

“query” for their location as follows:

nutella.location.resource[ rid ].proximity.rid$
nutella.location.resource[ rid ].proximity.continuous.x$
nutella.location.resource[ rid ].proximity.continuous.y$

RoomPlaces’s design, decoupling the setting and retrieval of location for each 

resource,  is the key to providing a homogeneous interface to locational information, 

independently  of  the  technology  used  underneath.  In  addition  to  simplifying  the 

development  of  applications  today,  this  will  allow  developers  to  plug  in  different 

tracking technologies in the future that are not yet available today.

RoomPlaces  APIs  also allow developers  to  store  arbitrary key-value pairs  for 

each resource in the systems. This simplifies storage and retrieval of information that is 

logically tied to physical devices. In the Hunger Games, for instance, each kid had an 

iBeacon, stuffed inside a plush animal (i.e. their token), which they could used to forage. 

If  a  developer  wanted  to  associate  how  many  calories  a  certain  squirrel  had 

accumulated so far it could do so with the following line. 

nutella.location.resource[ my_squirrel ].parameter[ tot_calories ]$=$115$
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Again, the APIs to set key-value pairs are consistent across languages and allow 

developers to easily store and retrieve information tied to physical devices, even if these 

devices are incapable of storing information themselves, such as iBeacons. This enables 

a lot of scenarios where regular objects can be enriched with information in order to 

quickly design applications where the same physical objects have different roles. For 

instance, an iBeacon could be a squirrel in the Hunger Games while, at the same time, a 

different one could be used by teachers as a control object (to lock a shared display for 

instance). 

Finally, as anticipated above, RoomPlaces provides a graphical user interface that 

“wraps” the  APIs  described  above  and  can  be  used  to  configure  and  monitor  the 

physical space of the classroom (figure 13). 

6.3 Provide feedback during and after the enactment of macroworlds

nutella’s strategy to assist developers while creating user interfaces to provide 

feedback  to  students,  teachers,  and  researchers  hinges  on  nutella’s  communication 

facilities, provided by the nutella native-language libraries and RoomRecorder. The first 

one provides support mostly for real-time, push-pull messaging while the second one 

provides  support  for  batch,  mostly  a-posteriori  aggregation.  Together  the  two 

implement  an  information  distribution  mechanism that  allows  developers  to  access 

information wherever they need it  and whenever they need it.  This ability to freely 
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distribute information across the various components of the framework was one of the 

main  design  principles  of  nutella.  For  this  the  reason  I  like  to  call  nutella  an 

“information everywhere” framework. In the next paragraphs, I will demonstrate with 

some examples how this principle works in practice to assist developers in dealing with 

specific challenges they face while designing macroworlds.

6.3.1 Providing feedback for students and teachers 

Despite providing support for making data available to geo-spatial and semio-

spatial representations (and other types of user interfaces and visualizations used in 

macroworlds),  nutella  doesn’t  explicitly  provide  support  for  actually  creating  such 

spatial representations. There are mainly two reasons for this. First, there is no reason to 

re-invent the wheel. There is already a plethora of excellent tools and graphic libraries 

(e.g. D3.js, Paper.js, Processing, etc.) to create a great variety of geo-spatial and semio-

spatial  representations.  Second,  providing  students  with  feedback  via  aggregate 

representations  of  the  data  they  collected  so  far  requires  representing  application-

specific representations that are dependent from the science domain the application is 

trying to support. A one-size-fits-all solutions for this problem doesn’t, unfortunately, 

exist. With these two constraints in mind, nutella has been created to afford interface 

designers an easy way to retrieve the data they need to display and to allow them to 

focus on what they do best: create the interfaces and design the interaction. 
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Consider take the aggregate representations of students’ seismograph reading in 

RoomQuake discussed in chapter 3 (figure 2). The code necessary to retrieve the data 

that  needs  to  be  displayed by  the  interface,  including  the  real-time  updates,  is  the 

following (retrieved from https://github.com/ltg-uic/roomquake/blob/master/

interfaces/rq-aggregate-display/index.html#L203):

var$query_params$=$NUTELLA.parseURLParameters();$
var$nutella$=$NUTELLA.init(query_params.broker,$query_params.app_id,$$
$ query_params.run_id,$NUTELLA.parseComponentId());$

nutella.net.request("room_configuration",$'',$function(response)${$
$configureRoom(response);$
});$

nutella.net.request("observations",$'',$function(response)${$
$response.observations.forEach(function(e)${$
$addObservation$(e.seismograph,$e.p_arrival_time,$$ $ $ $
$ e.s_arrival_time,$e.max_amplitude,$e.sp_gap,$e.distance,$$ $
$ e.magnitude,$e.quake_time);$
$});$
});$

nutella.net.subscribe("new_observation",$function(e)${$
$addObservation$(e.seismograph,$e.p_arrival_time,$e.s_arrival_time,$$
$ e.max_amplitude,$e.sp_gap,$e.distance,$e.magnitude,$$$ $
$ e.quake_time);$
});$

nutella.net.subscribe( new_quake",$function(quake)${$
$wipeObservations();$
$ $setNextQuakeTime(quake.quakeTime);$
});$

After initializing nutella, developers request the room configuration (position of 

seismographs,  size,  etc.)  and  the  observations  that  have  been  entered  by  students 

already. Then developers register listeners and callbacks for new observations (created 

by students using the data collection interface showed in figure 1) and the observations 

https://github.com/ltg-uic/roomquake/blob/master/
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wiping/quake change event that is generated by the teachers control panel. When a 

new message is delivered to the “wipe_observation” channel,  the registered callback 

effectively  providing  developers  with  a  mechanism  to  “push” data  whenever  it  is 

available. Also, whenever a messages is received, nutella takes care of parsing it so that 

developers can access its content right away. This code should hopefully demonstrate 

how straightforward it is to distribute and retrieve information using nutella and how 

this could help interaction designers stay focused on the interaction design as opposed 

to shuttling information.

6.3.2 Providing preferential feedback to teachers 

Suppose now I wanted to enhance RoomQuake with a notification system for 

teachers similar to the one created for WallCology and described in section 3.3.2 (figure 

4). This system could compare the actual “quakes” generated by the simulation with the 

data entered by the students and notify the teacher if there was a discrepancy between 

the two. The logic for this system is easy enough that it could be implemented in the 

user interface directly but, to be more modular, it is better to move it to a dedicated bot. 

The code for this bot will look something like this:

//$skipping$nutella$initialization$$

var$currentQuake;$

nutella.net.request('current_quake',$'',$function(response){$
$currentQuake$=$response.currentQuake;$
});$
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nutella.net.subscribe('new_quake',$function(quake){$
$currentQuake$=$quake;$
});$

nutella.net.subscribe("new_observation",$function(obs)${$
$var$notifications$=$compareWithCurrentQuake(obs);$
$nutella.net.publish('teacher_notifications',$notifications);$
});$

Again, the previous examples should demonstrate how nutella helps developers 

focus on implementing the functionality without worrying about “low-level” details. 

The code should be self-explicatory since it is very similar to the previous example. The 

only  difference  is  the  use  of  nutella.net.publish  to  send  notifications  to  the  user 

interface which is waiting for them.

6.3.3 Providing a-posteriori feedback to researchers 

Researchers typically access macroworlds applications logs in batch during or 

after macroworld enactments. Every time someone needs to access messages or logs in 

a-posteriori and batch way, they must use RoomRecorder. This module in the nutella 

architecture  provides  a  set  of  APIs  that  allow  any  component  in  a  macroworld 

application to retrieve data, according to a set of specified arbitrary filters. In order to 

understand how this works, consider the following example.

Suppose I  was trying to create a web interface for researchers to download a 

snapshot of the data from yesterday's enactment of RoomQuake (researchers are only 
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interested in students’ observations, not the rest of the messages and logs). Researchers 

need the data to be in CSV format so they can import and manipulate it in Microsoft 

The code to interact with RoomRecorder and retrieve such data is the following:

//$Returns$the$CSV$file$URL$
function$getYesterdayObservationsCSV()${$
$var$now$=$moment();$
$var$yesterday$=$now.subtract(1,$'day');$
$var$filter$=${$
$$$channels:$['new_observation'],$
$$$begin:$yesterday,$
$$$end:$now$
$};$
$return$nutella.net.filter(filter).asCSV();$
}$

After the function above executes developers will  be able to take a URL and 

paste  into  a  web  page  for  researchers  to  access.  If  developers  need  more  complex 

filtering (for instance over a series of intervals) or they are looking for specific patterns 

within a channel (e.g.  new observations about seismograph 1) they can still  use the 

nutella.net.filter function and simply pass different JSON patterns which will be used 

by the RoomRecorder framework bot to filter the messages and logs.

6.4 Support classroom orchestration during the enactment of macroworlds

Despite the several attempts at supporting teachers as conductor of performances 

described in chapter 3, more research is needed to better understand what kind of tools 

are needed to help teachers orchestrate macroworld classroom activities during their 

enactment. As a consequence, a one-size-fits-all approach won’t work when trying to 
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support the construction and enactment of these tools. Nonetheless, nutella provides 

two main facilities that can be used by developers (and sometimes directly by teachers) 

to  assist  them  in  the  creation  of  tools  for  macroworld  classroom  orchestration:  the 

RoomCast macro-module and a way to sandbox macroworld applications built into the 

framework. The rest of this section presents four examples of the use of these tools.

6.4.1 Provide teachers with privileged access, control, and configuration over 

macroworld simulations 

As said earlier,  each macroworld simulation is  different.  Therefore,  designing 

control interfaces for these simulations involves domain-specific knowledge that makes 

it impossible for nutella to provide complete support to their design. However, similarly 

to what happens for data-entry interfaces, nutella focuses on simplifying the process of 

exchanging  and  distributing  information  across  all  components  of  the  application. 

nutella’s  data  everywhere  approach  to  information  is  used  by  developers  designing 

simulations  dashboards  exactly  in  the  same  way  it  is  used  to  design  preferential 

feedback mechanisms for teachers. 
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6.4.2 Provide teachers with control over representational affordances, both public 

and private 

In order to facilitate the teacher during the process of control of representational 

affordances,  RoomCast  provides  them  with  a  universal  “remote” control  for  their 

classroom. This remote consists of an iPad app that allows teachers to switch between a 

set of pre-defined configurations. If I wanted to apply this to the RoomQuake example 

in section 3.4.2 the teacher interface will look like figure 15. This interface automatically 

reduces the size of each “configuration tile” to accommodate more configurations. In 

Figure  15.  RoomCast  “classroom  remote”  teacher  interface.  This  iPad  application 
provides teachers with a single control for all the macroworld devices and appliances 
in the classroom. In this picture, the remote is configured to switch between demo and 
schedule mode in RoomQuake.
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order to switch to a certain configuration, the teacher needs to hold his or her finger on 

a  configuration  tile  for  three  seconds.  The  rationale  behind  this  choice  is  avoiding 

accidental switches. This app might seem extremely simple and that is exactly the point. 

Teachers enacting macroworld curriculum units rarely have time to look down at their 

iPads while teaching and managing all  the variables that characterize a macroworld 

classroom. For this reason, I made the decision to leave the “online” interface provided 

to  teachers  during  classroom  enactments  simple  and  offload  the  complexity  to  the 

“offline” configuration interfaces:  the RoomPlaces channel  creator  and packages  creator 

(more on these later).

Any  component  in  the  application  can  of  course  register  callback  that  are 

triggered whenever there is configuration change.

nutella.cast.configurationChange(function(prev_config,$new_config){$
$//$React$to$change$of$configuration$
});$

Components can also actively query RoomCast for the current configuration at 

any moment.

var$cc$=$nutella.cast.currentConfiguration$
//$Use$the$configuration$value,$cc$

Using this simple mechanism, teachers can change the state of all components in 

a macroworld with the single click of a button. 
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6.4.3 Provide a way to adapt macroworld applications to the technologies available 

in the classroom 

In addition to providing teachers with control over the classroom affordances, 

RoomCast  is  also  the  way  nutella  supports  different  technology  setups  in  different 

classrooms. RoomCast allows developers to associate interfaces, channels and packages 

to  physical  devices  allowing them to  re-configure this  mapping at  any time and,  if 

necessary, in real time. The real-time component is especially important when dealing 

with the daily disruptions that characterize the classroom environment. A kid forgot 

their iPad, the projector in the room is broken, someone borrowed the laptop cart and 

didn’t  return it,  all  these are  common occurrences in elementary school  classrooms. 

RoomCast provides a way to re-configure where something is seen by who. The tools to 

do this are, as mentioned earlier, the RoomCast channel creator and package creator. 

The RoomCast channel creator (figure 16) is used by developers to “promote” an 

interface that  they created to be used by students  and teachers  in classrooms.  Each 

channel is represented across all interfaces by a card with a name, an icon and a brief 

description. Once the channel has been created it becomes available in the RoomCast 

Package creator.  RoomCast  package creation is  the interface responsible for  creating 

channels packages and configurations (figure 17).  Packages are simply collections of 
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channels identified by a name while configurations allow macroworld designers to store 

more than one association of channels to packages.

Using the RoomCast native applications teachers and students can log-in on any 

device in the room (iOS and OSX devices at the moment) and access the channels that 

are associated to their identity (or to the identity of a particular device, for ambient 

technology) at any time during the macroworld enactment. This decoupling of roles and 

devices, called late binding, enables the same interfaces to be put on any device in the 

room,  provided  that  the  interface  was  designed  for  that  device  and  to  account  for 

devices with different screen sizes and capabilities. 

Figure  16.  RoomCast  channel  creation  interface  (detail).  Using  this  interface, 
developers can "promote" interfaces to channels so that they can be used by teachers 
and students. Each channel has a name, a description, a picture and a color icon that 
identify it. Channels are represented with the metaphor of a card.



!101

Figure 17. RoomCast package creation interface. This interface is used by developers 
create channel packages that are then associated to physical devices in the classroom 
via late binding. The interface has two main sections: a channel catalog and a packages 
configuration area. 
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6.4.4 Provide support for different instructional organizations

The way nutella provides support for different instructional organizations is by 

sandboxing applications and having built-in support to run multiple instances of the 

same application. nutella allows all the following scenarios:

1. a single teacher with multiple classrooms each in their own room (rotating 

teacher)

2. a single teacher with multiple classrooms, all sharing the same space but each 

working on their separate macroworld (rotating classrooms)

3. a single teacher with multiple classrooms, all sharing the same space and all 

working on the same macroworld (rotating classrooms)

4. a single teacher with multiple classrooms, all  sharing the same space and 

portions of the macroworld simulation (rotating classrooms)

nutella achieves this because the notion of multiple, concurrent instances of the 

same application all running at the same time is built into the framework. In order to 

achieve this, nutella uses a data multiplexing mechanism to isolate communications and 

storage of data relative to a single instance of an application, called a run. 

In  order  to  enable  developers  to  share  components  of  a  single  macroworld 

application across different runs (allowing, for instance, multiple classrooms to work on 

the  same phenomena but  collect  separate  data)  nutella  has  the  notion of  application 

components.  These special components are shared among all the instances of a single 
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application escaping the data sandboxing mechanism used for regular components. In 

order to mark a component as an application component, a developer needs to modify 

the nutella.json file inside the macroworld application folder.

Here is how the previous four scenarios would be implemented in nutella:

1. Launch as many instances of the same application as there are classrooms. 

Each instance will be isolated. User interfaces can run on different hardware or, if 

necessary,  on  the  same  hardware  (i.e.  sharing  tablets  or  laptops  between 

classrooms).

2. Launch as many instances of the same application as there are classrooms. 

Each instance will be isolated. User interfaces run typically on the same hardware 

unless students have personal devices, which is also supported.

3. Launch a single instance of an application and all students will work on it.

4. Launch as many instances of the same application as there are classrooms 

and mark the components that are shared as application components so that they 

can be shared among classrooms. 

Each application is  completely isolated from the others so the same server is 

capable  of  serving  multiple  applications  (and  multiple  instances  of  the  same 

application) at the same time.



!104

6.5 Support interoperability with other learning technologies

nutella’s support for integration with other technologies begins with the choice 

of technologies and data formats. The choice of open source, ubiquitous technologies 

makes low-level integration statistically easier because no matter what system nutella is 

integrating  with,  the  chance  is  high  that  the  system  will  be  using  compatible 

technologies. At a higher level, nutella’s strategy for integration is based on the fact that 

“everything is a component”.  Any software loading the native-language nutella library 

can act as a nutella component. The only difference between these external components 

and the components native to a macroworld application is the fact that they can't benefit 

from the component lifecycle management offered by the nutella framework core. Apart 

from that, they can interact and benefit from all the APIs and functionalities provided 

by the nutella library described above. 

6.6 Provide support for “non-functional” capabilities 

nutella provides two separate tools to allow developers to diagnose and inspect 

components and macroworld applications: RoomDebugger and RoomMonitor.

RoomDebugger is  simply a debugging,  testing and components mocking tool 

that basically provides a Graphical User Interface for nutella.net methods (figure 18). 

Developers can use this interface to send and receive messages to any component in an 
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application  in  order  to  debug  and  test  communications.  RoomDebugger  is  mostly 

intended as a tool to be used by developers during the creation of macroworlds.

The twin tool of RoomDebugger that should be used by developers during the 

enactment of macroworlds in classrooms is RoomMonitor (figure 19). This tool provides 

a  graphical  visualization  of  the  health  of  all  the  components  in  a  macroworld 

application. It allows macroworld application developers to subscribe to components 

failures with different levels of granularity (component, instance, application) and be 

notified in real-time via email. Using the very same interface developers can also drill 

down to the component level and investigate what type of failure occurred by looking 

at  the  messages  exchanged  by  components  and  sending  “probe” messages  to  the 

Figure  18.  RoomDebugger  interface  (detail).  This  interface  enables  developers  to 
inspect and mock components while developing new macroworld applications. The 
detail in the picture shows how it is possible to publish and subscribe to arbitrary 
channels.
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Figure  19.  RoomMonitor  interface  (details).  This  interface  enables  developers  to 
monitor  macroworld  applications  during  their  enactment.  The  main  view  (top) 
provides  a  dynamic  and interactive  visualization of  all  the  components  within  an 
application and the communication among each other (white lines). Developers can 
subscribe to failures at different granularities using a modal (middle) and can debug 
and troubleshoot by inspecting/sending messages to various components (bottom).
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components or to other components.

In addition to these two tools  to inspect  and debug macroworld applications 

nutella is built with reuse and sharing in mind. As described earlier, components are the 

basic building blocks of macroworlds applications and nutella applications are simply 

collections of components stored inside a directory with a pre-defined structure and a 

nutella.json  file  describing some properties  of  the  application.  This  organization of 

nutella  applications in a pre-defined way has been inspired by a very popular web 

applications framework, Ruby on Rails, and it is a classic example of convention over 

configuration. According to O’Brien et al. (2010), this software design principle dictates 

that “Systems, libraries, and frameworks should assume reasonable defaults. Without 

requiring unnecessary configuration. Systems should ‘just work’.” The idea behind this 

software design principle is to reduce the amount of decisions a developer needs to 

make to “get going”, allowing them to focus their cognitive skills on the task at hand 

instead of the minutiae of the implementation. In nutella, having a standard directory 

structure for a project makes it  easier for developers to orient themselves and share 

entire applications knowing that other developers will know how to navigate them. 

The  use  of  convention  over  configuration  in  nutella  doesn’t  stop  at  the 

application level: components are also organized in the same way. Since components are 

organized in a standard way, developers can share them with each other facilitating 

reuse. Moreover, since the standard to create components is also publicly available, any 
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developer can turn any piece of software that already exists into a nutella component 

and use it  inside their  application.  To further simplify this sharing process I  built  a 

repository of components that can be installed simply referring to the component with 

their  (unique)  name.  Besides  the  convenience  of  a  quick  installation  process,  the 

repository  can  be  browsed  and  searched  in  order  to  simplify  the  discovery  of 

components whenever they are needed.  



Chapter 7
Early experiences with nutella

This chapter tells the story of how the nutella developers community grew over 

the  past  year.  As  developers  were  joining  the  community,  they  contributed  their 

expertise and feedback and helped improve the design and implementation of nutella. 

The growth of the community can be divided into three main phases, each described by 

a section in this chapter. For each one of these phases, I will describe the state of nutella 

at  that  particular  point  in  time,  summarize  the  events  that  happened  during  the 

development  phase  and  outline  the  lesson  learned  by  interacting  with  developers 

engaged with nutella and the rest of the community. 

7.1 Building RoomQuake with nutella

Despite the fact that it leverages work done over the past 6 years, the current 

version of  nutella has been developed over the past  year (June 2014,  May 2015).  In 

particular,  during the first  four months of  development (June 2014,  October 2012),  I 

focused  on  implementing  a  working  prototype  of  the  system.  During  this  time,  I 

completed  work  on  a  first  version  of  the  nutella  protocol,  APIs,  native-language 

libraries and the framework core. 
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During  the  first  three  weeks  of  November  2014  I,  together  with  another 

developer  and  a  designer,  used  nutella  to  develop  RoomQuake,  a  12-week-long 

curriculum  unit  on  seismology  and  earthquakes.  RoomQuake  was  the  first,  fully 

working, nutella application. It was composed of 5 interfaces and 2 bots which, taken 

together, implemented the macroworld application. In the previous chapters, I already 

described the students’ data collection interface (figure 1), the interface used to visualize 

and interact with the aggregate representation of these observations (figure 2) and the 

interface used to control and orchestrate the whole unit (figure 6, 7). In addition to these 

three  interfaces,  a  simulated  seismograph interface  was  designed  and implemented 

(figure  20)  together  with  a  score  calculator  interface  used  to  determine  how  close 

students were in their estimates of the epicenter, magnitude and time of a certain quake. 

Figure 20. RoomQuake seismograph interface.
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The backend portion of RoomQuake was implemented by two separate bots. The 

first  one was dedicated to  handling the simulation portion of  the macroworlds (i.e. 

storing and managing the quakes schedule)  while  the second one was dedicated to 

storing and accessing student’s observations.

7.1.1 Lesson learned

RoomQuake was  enacted in  three  fifth-grade  classrooms over  a  period of  12 

weeks.  During  this  time,  nutella  proved  extremely  reliable  from  a  connectivity, 

communication  and  uptime  point  of  view.  This  confirmed  the  reliability  of  the 

technologies nutella is based upon and the effectiveness of the nutella API layer design. 

Moreover, three people were able to collaborate on the same application and each work 

on separate components which were then integrated almost without change. This gave 

me confidence that the underlying design decision to organize macroworld applications 

as sets of components was helping collaboration.

Notably, the version of nutella used to build and enact RoomQuake didn’t have 

any  of  the  high-level  framework  components  and  macro-modules  (i.e.  RoomCast, 

RoomPlaces…) yet. This was addressed in the following development phase.
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7.2 Building nutella’s macro-modules

In December 2014, two developers (computer science graduate students) joined 

the  nutella  development  team  and  began  work  on  two  of  its  macro-modules: 

RoomPlaces and RoomCast. They worked on nutella for 6 months (Dec 2014-May 2015). 

In January, nutella was also used in the CS 422, User Interface Design class by a group 

of three students (including one of the two developers mentioned above). The group 

contributed another component to the framework (RoomMonitor) over the course of 

four months (January 2015, April 2015). The nutella development team completed the 

design of all higher-level framework components during first four months of 2015. 

During  this  second  phase  of  development,  as  a  team,  we  adopted  an  agile 

software development methodology called SCRUM (Schwaber, 2004). According to this 

methodology, the development of a new software system is broken down into a series of 

two to four week-long iterations called sprints (two weeks-long in the case of nutella). 

Each sprint is a time-boxed development effort that aims at implementing a restricted 

set of features and deliver, at the end of the iteration, a working product that could 

potentially  be  shipped.  The  methodology  is  particularly  indicated  to  guide  the 

development of software with fast-changing or ill-defined requirements.

Two of the staples of SCRUM are the sprint retrospective meeting and the project 

retrospective meeting (or post-mortem meeting) which happen at the end of each sprint and 

at the end of the project respectively. Both these events provide the opportunity for the 
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development team to “inspect itself” and create a plan for improvements to be enacted 

during the next sprint or project. During these meetings, participants often have, readily 

available,  the  products  of  their  work  and  the  project  documentation  (such  as  the 

finished product,  code commits,  code documentation,  emails,  meeting notes,  etc.)  in 

order to assist their recollection (Wohlin et al., 2003). 

While  working  on  high-level  components  the  team  “talked” to  the  language 

specific APIs and the lower level components of the framework a lot, strengthening and 

refining their design. In particular, the issues that were identified during a spring would 

be discussed during the sprint retrospective meetings and a plan to address them was 

drafted accordingly. 

7.2.1 Lesson learned

One  of  the  best  examples  of  improvements  in  the  low-level  nutella  APIs 

triggered by an unexpected need that arose while developing higher-level components 

is what we called framework-run communication. nutella’s communication APIs were 

originally  developed  to  support  self-contained  applications  and  to  enable  its 

components  to  exchange  information  as  described  in  the  previous  chapter.  In  this 

model,  messages can be addressed to components by simply calling them by name. 

However, with the introduction of framework level components, the need for a different 

way  of  addressing  components  arose.  The  problem  was  that,  for  framework  level 
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components,  span  across  multiple  applications  and,  therefore,  they  need  to  have  a 

mechanism  that  enables  them  to  select  a  particular  component  in  a  particular 

application and not simply a component. 

This, in conjunction with application-level components, created a complex three-

layer communication system that underwent complete re-design in order to make it 

approachable for end-users of the framework. Our solution was to use an hierarchical 

organization of these “communication” levels so that only framework-level components 

can  explicitly  address  run-level  components  (i.e.  the  components  used  normally  by 

developers of macroworlds applications).  This way we were able to encapsulate the 

complexity at level of the framework that are only accessible to framework maintainers.

7.3 Building macroworlds with nutella during a three-day hackathon

In  mid-May 2015  the  framework reached a  level  of  stability  that  allowed its 

development  team  (5  people  at  this  point)  to  open  it  up  to  a  selected  group  of  3 

developers for an external evaluation. The evaluation of software by its users has a long 

tradition in the discipline of software engineering. As suggested by Davis (1995), the 

best way to assess what software users really need is to give them a “working system”

and let them carry out “authentic tasks” using the system. However, as pointed out by 

the  author  himself,  this  methodology  is  often  impractical  due  to  the  demanding 
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requirements on the amount of  resources and time it  imposes.  This  methodology is 

particularly challenging if the system is still in the early stages of development. 

To  circumvent  the  limitations  of  the  methodology  outlined  above,  software 

engineers have long used software prototyping (Brooks, 1975) and iterative software 

development (Larman & Basili,  2003) as a way of evaluation of software in its early 

stages. More recently, with the software engineering community embracing qualitative 

methods  for  their  empirical  studies  (Seaman,  1999),  hackathons  have  become 

significantly  more  popular,  especially  in  the  industry,  as  a  way  of  collecting  user 

feedback during the early phases of development of frameworks (e.g. Schreiner et al., 

2015) and software systems in general (Raatikainen et al., 2013).

A hackathon (a portmanteau of the words "hack" and “marathon”) refers to an 

event  where  small  groups  of  developers  (and  sometimes  UX  designers,  project 

managers  and  other  involved  in  software  development)  participate  in  an  intensive 

software prototyping activity for a limited amount of time (typically from a day up to a 

week). The goal of a hackathon varies, but hackathons are often organized around a 

specific topic, such as the programming language used by the participants, a particular 

software framework, API or type of application developed. 

The structure of hackathons varies, but this type of events usually starts with 

some presentations introducing the technologies and the event itself. Then participants 

propose ideas or choose from a pool of available ideas and organize into teams. The 
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main  phase  of  the  hackathon  involves  teams  rapidly  prototyping  their  ideas.  The 

outcome  of  this  phase  is  typically  working  software  that  is  demonstrated  to  other 

participants  (and  sometimes  spectators)  at  the  end  of  the  event.  Often  hackathons 

involve a competition element where a panel of judges select the winning teams and 

awards them a prize.

Hackathons are appealing as a way of evaluating software by its users because 

they  provide  a  “realistic,  efficient,  and  effective  means  of  holistically  testing  the 

ecosystem including technical details but especially the overall design and developer 

experience” (Raatikainen et al., 2013) and a way to perform what Jackson et al. (2013) 

call tutorial-based assessment, a technique used to provide a pragmatic evaluation of 

usability  of  software  “as  is”.  Moreover,  hackathons  proved  to  be  a  good  trade-off 

between the amount of resources needed and the authenticity of the evaluation where 

small teams get to build working prototypes while at the same time collaborating and 

learning from each other as a community of practice (Lave & Wenger 1991). People get 

to build the full system and, therefore, exert the whole framework. They have to work 

collectively and support each other like a real community.

As  described  earlier,  developing  and enacting  a  macroworld  application  is  a 

complex process that involves a number of actors in addition to developers (such as 

researchers, designers, teachers, students) and lasts typically a few months. Similarly to 

the larger software engineering community, I  reached the conclusion that evaluating 
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nutella by closely following a group of professional developers using the framework to 

build and enact a or more real macroworld applications is not appropriate at this stage 

of the development process. Therefore, in order to gather feedback on the viability of 

nutella  as  a  framework  to  build  and  enact  macroworlds,  I  turned  my  attention 

hackathons.

7.3.1 nutella hackathon

The event itself was organized into three separate days. During the first day, the 

facilitator helped the participants install the framework on their machines and provided 

training to teach them how to use nutella to build a macroworld. During the second day 

participants selected from a set of proposed macroworld applications ideas, organized 

into teams and began building their application. The third day was devoted to more 

coding and building and,  at  the end of  the day,  teams presented and enacted their 

application for other participants acting as teachers and students. 

Participants were selected based on set of pre-requisites:

• Participants needed to bring a laptop with OS X or Ubuntu installed on them, a 

text editor and make sure they had internet connectivity.

• At  the  moment,  nutella  supports  only  JavaScript  and  Swift  as  interface 

languages and Ruby and JavaScript/node.js as bots languages. Participants needed to 

be familiar with at least one interface and one bot language.
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• Familiarity with the Unix shell, git, and Github definitely helps was strongly 

encouraged as well as a little knowledge of the Ruby programming language and its 

ecosystem (i.e. gem, RVM).

A total  of  three  participants  attended the  hackathon.  All  the  participants  are 

seasoned developers  with  four  years  of  experience  designing  and creating  learning 

technologies  applications.  They  all  had  been  exposed  to  macroworlds  before  and 

participated  in  projects  where  they  needed  to  at  least  interact  with  a  macroworld 

simulation.  In  particular,  one  of  the  participants  had  prior  experience  building  

macroworld simulations such as the Hunger Games and HelioRoom. In terms of their 

programming languages knowledge, the first two participants considered themselves 

JavaScript  developers  while  the  third  considered  himself  equally  proficient  in 

JavaScript, Objective-C/Swift and Java.

7.3.1.1 Day one

The first activity of the first day was an “install-fest” where the facilitator helped 

the participants install nutella and all its pre-requisites on their laptops. At the end of 

this activity, all participants were able to type the nutella command in their shells and 

successfully  see  a  welcome message.  The  goal  of  this  activity  was  to  smooth entry 

barriers into the framework and to “level the playing field” among the participants. 

Even  with  the  right  pre-requisite  knowledge,  while  installing  the  framework  many 
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potential roadblocks could arise, preventing participants from successfully participate 

in the hackathon. Being able to install nutella is not a measure of its viability its just a 

measure  of  its  adaptability,  how  streamlined  the  installation  process  is  and  how 

complete and clear the documentation is. 

The predicted length of this activity was a couple of hours, but one participant 

was able to complete the activity, mostly by himself, even before starting the hackathon. 

Another participant was able to complete the setup process, assisted by the facilitator, in 

35 minutes while the last  one,  which started with a brand new laptop,  was able to 

complete the setup process (including installing all the pre-requisite software) in a little 

under an hour. 

After  lunch,  the  facilitator  guided  the  participants  through  and  interactive 

training session (i.e. tutorial) that took them from an empty macroworld application to a 

fully working application, created using nutella.  Training started by recapping what 

macroworld applications are and the typical process that drives their development and 

enactment. After the facilitator gave this brief introduction, it allowed each participant 

to proceed at their own pace following the online tutorial (https://github.com/nutella-

framework/docs/blob/master/getting_started/tutorial_1.md)  and  inviting 

participants to ask questions whenever they needed help or clarification. The predicted 

length of this activity was the whole afternoon and the estimate proved to be accurate. 
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At the end of the day, facilitator and participants engaged in a 30 minutes discussion 

aimed at gaining feedback and first impressions from the participants.

7.3.1.2 Day 2

The day started with the facilitator dividing the participants into two teams, a 

two-participants and a single participant one,  and distributing to each one of them an 

“initial design” for a macroworld application. The two-people team was assigned to the 

implementation  of  a  simplified  version  of  AquaRoom.  Here  is  the  “initial  design“ 

specification that they received:

AquaRoom is a simulated macroworld where students take on the role of 
hydrogeologists with the task of mapping a subterranean aquifer system 
(mapped to  their  classroom floor  plan)  and to  use  this  information  to 
decide where to locate a new chemical plant within the “local community” 
to minimize potential environmental impacts. In order to accomplish this 
task,  students  “inject  tracer  dyes” and “obtain water  samples” using a 
portable  tablet-based “drilling unit."  Students  can only inject  dyes  and 
take samples at certain locations in their classrooms were there are “wells” 
that  provide  access  to  the  underlying  aquifers.  Wells  are  strategically 
arranged in a grid pattern which can be indexed using the tiles on the 
room’s  drop  ceiling.  Test  tubes,  enhanced  with  iBeacons  serve  as 
simulated dye sources and sample repositories. Students “inject” dyes by 
walking with their tablet drilling unit and dye-filled test tube to a well and 
using the tablet interface to confirm their injection. “Water samples” are 
subsequently collected in a similar fashion, and tested for the presence of 
dyes  using  a  simulated  spectrometer  represented  by  a  shared  desktop 
computer.  To  analyze  a  sample,  students  walk  to  the  simulated 
spectrometer with the sample, put their sample in the “analysis chamber”, 
click analyze and read the results of  their sampling on the screen.  The 
injection of a dye followed by sampling allows students to establish the 
presence of an aquifer, the direction and rate of flow, which are marked on 
a collective classroom map.
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The  one-person  team  was  assigned  to  the  implementation  of  an  emulated 

macroworld that replayed pictures of animals captured using camera-trap technology. 

Here is the “initial design“ specification the team received:

In ClassroomSafari students are tasked with studying the wildlife of the 
savannah co-occupying the physical space of their classrooms. Students 
do so by placing food patches and “camera traps” at specific locations in 
their  classroom.  These  virtual  camera  traps  work  like  their  real-life 
counterparts and take a burst of pictures (usually with 1 second interval 
between them) whenever “motion” is detected. When a virtual creature 
forages  at  a  certain  patch,  the  camera  trap  at  that  patch  is  activated. 
Camera traps  are  represented by ambient  displays  (i.e.  iMacs,  laptops) 
that  display  the  pictures  in  real-time,  as  soon  as  they  are  taken.  The 
interesting part of this macroworld is that the pictures displayed by the 
ambient affordances in the classroom are part of a data set of real camera-
trap pictures taken, over the course of three weeks, in the context of an 
actual population-ecology study in Kenya. In addition to the simulated 
camera-trap  interface,  ClassroomSafari  provides  a  dashboard  interface 
where it is possible for the teacher to view the whole data set on a time 
line  and  choose  which  portion  of  it  to  “replay”  in  their  classrooms. 
Teachers  can  choose  arbitrary  time  intervals  in  the  original  pictures 
sequence and replay them, compressed or extended, in their classroom. 
Intervals  between  pictures  are  automatically  adjusted,  maintaining  the 
correct  proportions  among  them,  by  the  ClassroomSafari  simulation 
engine.

After  receiving  their  “assignments,”  participants  were  encouraged  to  ask 

clarifying questions.  Developers  in  both groups were also encouraged not  to  worry 

about implementing the whole design but to proceed from the most to the least critical 

functionalities, based on their judgment. Participants spent the rest of the day working 

on their macroworld application prototypes. Similarly to day one, the facilitator invited 

participants  to  proceed  independently  and  ask  whenever  they  were  stuck,  had 
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questions or needed clarification. The facilitators also encouraged participants to help 

each other out, sharing their expertise and their work. These conditions were meant to 

simulate  the  working environment  participants  are  used to  operate  in:  small  teams 

working on independent projects but often collaborating with each other.

7.3.1.3 Day 3

The majority of the third day was dedicated to allowing participants complete 

the coding of their macroworld prototype. At the end of the day, each of the two teams 

did  a  short  demo  of  their  macroworld  application  to  other  participants  acting  as 

“teachers” and “students”. At the end of this activity, the facilitator and the participants 

engaged in an hour-long discussion where participants were asked, once again, to share 

their opinion and feedback on the framework.

7.3.3 Results

All  the participants  in the hackathon were able to successfully use nutella  to 

create a macroworld application prototype. As described earlier, the development and 

enactment processes of a macroworld application can be broken down into a series of 

steps. These steps, and the tools that nutella provides to support them were covered in 

the  day-one  tutorial  and  subsequently  applied  by  developers  while  creating  their 

macroworld  application,  as  demonstrated  by  the  artifacts  that  they  produced.  All 
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developers were able to move their application through all the steps that characterize 

the lifecycle of a nutella application (figure 10).

The  AquaRoom  prototype  macroworld  application  contained  two  interfaces 

(figure 21) and one bot. Interfaces were simple web GUIs but they implemented the 

basic  functionality  of  dye injection / sampling (portable  drilling unit  interface)  and 

sample analysis (spectrometer). The ClassroomSafari application instead was composed 

of one bot and one interface. The bot was in charge of replaying, over a specified time 

interval, a set of camera traps pictures while the interface was in charge of displaying 

the images sent to it.

7.3.3.1 Support multiple macroworld simulations types

During  the  hackathon  participants  implemented  two  different  macroworld 

simulations types: a simulated (AquaRoom) and an emulated (ClassroomSafari) one. 

Developers in each team used the same RoomComponent (active_simulation_js_bot) 

to scaffold the development of bots in both macroworlds. The ClassroomSafari group 

used the event loop provided by the bot in order to constantly look for pictures to send 

and actually send them to the appropriate display at the right time. Developers of the 

AquaRoom prototype didn’t use the event loop because they didn’t have enough time 

to  implement  the  logic  that  models  the  water  flow  in  the  aquifers  underneath  the 

classroom since they focused on different elements of the macroworld simulation. 
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Figure  21.  AquaRoom  prototype  built  by  hackathon  participants  (details).  Two 
hackathon participants were able to build a simple AquaRoom prototype with two 
interfaces and a bot. Using the first interface (top) developers could inject dyes into the 
simulated aquifer and take samples. Using the second interface (bottom) they could 
perform an analysis of the water samples and confirm or reject the presence of a dye.
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7.3.3.2 Support the leveraging of the physical space of the classroom 

Both macroworld prototypes developed during the hackathon made intensive 

use  of  RoomPlaces.  AquaRoom developers  leveraged  RoomPlace’s  discrete  tracking 

mode to create the grid of wells used by kids to perform injections and samplings. For 

each tile in the grid, developers positioned an iBeacon into it  to enable the portable 

drilling unit to detect which well the students are working on. 

The ClassroomSafari  group used RoomPlaces to define the location of  virtual 

camera traps and food patches. After some discussion with the facilitator, the group 

decided to use RoomPlaces’s hotspot tracking mode to assign a unique identified to 

each camera trap that was then subsequently used in the simulation code to uniquely 

identify each ambient display. 

7.3.3.3 Provide feedback during and after the enactment of macroworlds

During the hackathon, due to the restricted amount of time available to them, 

participants focused on the design and implementation of the “scientific phenomena 

simulation” portion of their macroworld prototypes. As a consequence, neither group 

created a data entry interface for students and/or an aggregate interface to provide 

feedback to them. However, the communication and “data everywhere” APIs used to 

build this kind of interfaces are exactly the same that are used to build the simulation 

portion  of  the  macroworld  prototype.  Therefore,  even  if  the  communication  APIs 
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weren’t explicitly leveraged to build data collection and feedback interfaces, they were  

still leveraged to build simulation interfaces and visualizations. Particularly interesting 

is  the  fact  that  ClassroomSafari  made  extensive  use  of  nutella’s  “binary 

communication” capabilities which provide a set of simplified APIs the facilitate the 

exchange of non-textual messages between components.

Moreover, developers experimented briefly with the logging and filtering APIs at 

the end of the demo enactment on day 3. They collectively tried to create a report for an 

imaginary researcher interested in looking at  AquaRoom data and, in particular,   at 

patterns in dye injections and sample taking. Participants achieved this by accessing the 

collection  of  all  messages  automatically  stored  by  RoomRecorder  and  filtering  this 

collection by channel using the appropriate nutella APIs.

7.3.3.4 Support classroom orchestration during the enactment of macroworlds

Similarly  to  what  has  been  reported  in  the  previous  section,  there  was  no 

opportunity to leverage all the capabilities provided by nutella in this area. However, all 

the  participants  were  able  to  run  more  than  one  instance  of  their  macroworld 

prototypes, simulating a scenario where multiple classes are using separate instances of 

the same application at the same time.

There was also no opportunity to leverage the RoomCast “room remote” iPad 

app due to some bugs and code signing issues. However, participants successfully used 
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RoomCast  to  create  channels  for  the interfaces  they designed and then to  assemble 

those channels into packages. Developers were also able to exercise some “late binding 

capabilities”  by  running  the  interfaces  they  created  on  each  others  laptop  and  by 

accessing such interfaces also with their phones. Since none of the teams decided to 

create  native  iOS  applications,  participants  didn’t  have  the  opportunity  to  test 

RoomCast’s support for this type of interfaces.

7.3.3.5 Support interoperability with other learning technologies

Even  if  developers  didn’t  have  the  opportunity  to  make  their  macroworld 

prototypes interact with an external application, they demonstrated to understand the 

“everything is a component” strategy behind it as demonstrated by the following verbal 

exchange during the hackathon.

Participant:  So  all  I  have  to  do  is  import  the  nutella  library,  configure 
nutella, create a  nutella variable with it and boom I can use it. Then my 
app is just a nutella component. Oh that’s brilliant! Oh but I guess then I’ll 
have to run it myself right?
Facilitator: Yes, that is correct. 
Participant: Ah but that’s good because that way I can run it in my server 
and the app can talk to the broker on your side. Ok, that makes sense.

7.3.3.6 Provide support for “non-functional” capabilities 

RoomDebugger was heavily used by all hackathon participants and praised as 

one of the best features of the whole framework since it allowed developers to mock 
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components,  inspect  and  debug  issues  with  inter-components  communications. 

Participants also demonstrated interest for RoomMonitor but,  besides looking at the 

interface briefly during their own AquaRoom demo, they didn’t have the opportunity 

to test the full set of features that RoomMonitor offers to developers. Participants  also 

commented that, even if the interface seemed to be very promising and useful, it was 

hard to evaluate it over a short period of time and since its best use case is for long 

running, real-world macroworld enactments when, sometimes, components crash for 

unexpected reasons.

7.3.4 Lesson learned

Through the whole duration of the hackathon, participants maintained a positive 

opinion  of  nutella.  In  particular,  developers  were  impressed  by  the  framework’s 

communication facilities and its ease of use. No major flaws were pointed out by the 

participants although they discovered and highlighted a number of minor bugs. Often, 

participants created Github “tickets” on the spot for the bugs they discovered and some 

of those issues have already been addressed by the framework developers. 

The most interesting outcome of the hackathon, at least from the point of view of 

the framework designers, is the fact that participants pointed out a series of concerns 

that they would like to see addressed, together with some features that they thought 

were missing in nutella. In particular, three main concerns emerged.
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Participant felt that the persistence APIs provided by nutella weren’t as polished 

and functional  as  the  communication APIs,  or  other  portions  of  the  framework.  As 

pointed out by one of the participants:

“we had some trouble with syncing up our projects over Github - again, 
this was mostly a data storage issue, and not too hard to solve”

These issues with the persistence layer were caused by a rushed design decision 

of the framework author. nutella has been designed to keep each separate instance of 

the framework self-contained. The reason for this was to provide developers with a way 

of keeping a developing environment on their machines and a production environment 

on  some  publicly  accessible,  remote  server.  Unfortunately,  the  consequence  of  this 

decisions is that data is bound to nutella and not to the application itself, which caused 

synchronization  problems  when  two  developers  tried  to  collaborate  on  the  same 

application.  This  issue  didn’t  emerge  while  working  on  RoomQuake  because 

developers  were  collaborating directly  on the  production instance  of  nutella,  which 

caused this issue to remain latent. Fortunately, this can be easily addressed by allowing 

developers to specify where a certain macroworld application should store data. 

However, this is not possible at the moment in nutella and, as pointed out by 

hackathon participants, this should be also address. nutella developers should address 

this and other scalability and security concerns. In particular, right now nutella relies on 

a single broker and database, which must reside on the same host. Providing a way for 

the database and the broker to be separate  and their  access,  password protected or 
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somehow authenticated are necessary next steps to make nutella available to a bigger 

community where such concerns are of primary importance. 

Third,  participants  lamented how,  sometimes,  the  “debugging” capabilities  of 

nutella were not adequate to their needs. As pointed out by two developers during the 

hackathon

“Another point of  problems might be the fact  that nutella does certain 
things and it takes a bit of digging and learning to understand what they 
do and how to trouble shoot them. For example, sometimes a [framework] 
bot dies off and it is not right away visible that the bot died nor why the 
bot crashed.”

“Weakness: Notifications that your [framework] bot and or instance failed 
or stopped. Many times I ran into the problem of an unresponsive app 
that was caused by the server crashing.”

Both  comments  above  refer  to  the  fact  that  framework  bots  lacked  a  proper 

logging mechanism, frustrating developers’ attempt of debugging them. Again, this is 

the  result  of  a  superficial  design  decision  of  the  framework  author.  The  (incorrect) 

assumption that lead to such decision was the fact that framework bot should have been 

stable  enough not  to  need a  proper  logging mechanism.  Unfortunately,  this  proved 

false, and forced developers to use a cumbersome work-around to verify the framework 

bots were operating properly. Luckily, this issue is also easy to address by leveraging 

the distributed logging mechanism provided by nutella (RoomRecorded).



Chapter 8
Conclusion, limitations and future work

The  work  presented  in  this  dissertation  focused  on  macroworlds,  a  learning 

technology that provides engaging ways for students to “experience”�and interact with 

classroom-sized  simulations  of  scientific  phenomena.  In  this  context,  this  research 

identified  five  application-level  affordances  of  macroworlds  and  the  corresponding 

capabilities that they impose on technologies powering these learning environments. A 

software framework (called nutella) implementing the capabilities described earlier was 

designed  and  implemented.  Finally,  this  dissertation  reported  on  some  early 

experiences of  developers using and building the framework.  The outcome of  these 

experiences  provides  some early  evidence to  support  nutella’s  viability  as  a  tool  to 

support the construction and enactment of macroworld applications.

Despite being designed explicitly to support the construction and enactment of 

macroworlds,  nutella  could  be  adapted  and  reused  in  different  domains  and 

environments, such as at-home entertainment and work-related applications in office 

environments. The reason for this is that, at its core, nutella con be seen as a “distributed 

simulation engine”. Exactly like nutella can power scientific phenomena simulations it 

could  as  well  power  simulations  of  war  rooms,  cockpits  and,  in  general,  any 

applications that requires distributed cognition�(Hutchins, 1995). Similarly, it is possible 

to envision scenarios where a scientific phenomena simulation is replaced by fiction or 
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narrative and the classroom space is replaced by a living room or even a full house. As 

one of the nutella contributors pointed out:

“Finally,  even if  the  framework is  specifically  meant  to  be used in  the 
context of the classroom and for learning technologies applications, I can 
foresee a much wider range of projects which could leverage the power 
and simplicity of nutella in many other domains.”

There are of course some limitations to the types of simulations and narratives 

that can be experienced with nutella. Some of these limitations are technical limitations 

that are “inherited” from the technologies nutella is based upon. As an example, the 

choice of MQTT as the main communication protocol, which is in turn implemented on 

top of TCP/IP and Websockets, imposes limitations on the latency of messages. This 

imposes limitations on the speed of synchronization of two components. In addition to 

technical limitations, the framework still  assumes a certain degree of supervision by 

developers. For instance, if one of the bots crashes teachers need to rely on developers 

to bring it back up. Ideally, macroworld applications should be as easy to install in a 

classroom as  app on  an  iPad but  that  is  not  possible  with  the  current  state  of  the 

framework.  Again,  this  kind of  issues  is  typical  of  software  in  its  infancy and will 

certainly be addressed as the development progresses.

Moreover, as pointed in the previous paragraph and by several subjects during 

the  hackathon,  nutella  is  still  under  development  and it  needs  polishing in  several 

areas.  In  addition  to  bug  fixing,  and  addressing  the  issues  pointed  out  by  the 

developers’ community, the nutella development team is already working to implement 
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new features to improve the accessibility and usefulness of the framework. One of the 

first things we are going to focus on is implementing nutella libraries in more languages 

in order to lower the entry-barrier for even more developers. Moreover, we would like 

to incorporate different tracking technologies (e.g. Microsoft Kinect) and increase our 

support for more native platforms and operating systems (e.g. Android, Windows). We 

would  also  like  to  simplify  the  framework  installation  process,  the  distribution  of 

macroworld  applications  and  provide  better  authoring  tools  so  that  students  and 

teachers could, eventually, start editing and creating new macroworld applications.

From a research point of view, nutella is ready for a more formal evaluation “in 

the  wild”.  This  will  require  the  framework  being  used  to  create  and  enact  a  real 

macroworld application and enact it in real-world classrooms. We are working to make 

this  happen  in  late-Summer/Fall  2015  since  the  Learning  Technologies  Group  and 

EncoreLab will be working with the framework to implement a new iteration of the 

WallCology macroworld.
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