
nutella: the construction and enactment
of simulated macroworlds

BY

ALESSANDRO GNOLI
B.S., Politecnico di Milano, 2006
M.S., Politecnico di Milano, 2008

M.S., University of Illinois at Chicago, 2009

THESIS

Submitted as partial fulfillment of the requirements  
for the degree of Doctor of Philosophy in Computer Science

 in the Graduate College of the  
University of Illinois at Chicago, 2015

Chicago, Illinois

Defense Committee:

Tom Moher, Chair and advisor
Andrew Johnson
Leilah Lyons
Chris Quintana, University of Michigan
James Slotta, University of Toronto

To my family, for teaching me the hardest thing in life: unconditional love.  

!ii

ACKNOWLEDGEMENTS

It might sound like a tautology but, for most graduate students, a Ph.D. is an

hard endeavor. It certainly was an arduous journey for me and if I have gotten so far I

owe it to the patient and constant guidance of my committee and in particular of my

advisor, Professor Tom Moher. Thank you so much for your support, your expertise,

and for not giving up on me all the times I was ready to quit my Ph.D. and open a

gelato shop.

My sincerest gratitude goes also to all the friends at the Learning Technologies

Group that shared a piece of (or all) the journey with me and were always there to help

and support me.

Finally, I would like to say a big thank you to my family and friends whose love

and support carried me through these years in graduate school.

AG

  

!iii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION ……………………….…………………………………… 1

2. MACROWORLDS …………………………………………………………… 9
2.1 Participatory simulations …………………………………………… 9
2.2 Simulated investigations ……………………………………………. 12

3. APPLICATION-LEVEL AFFORDANCES AND REQUIREMENTS OF
MACROWORLDS …………………………………………………………… 17
3.1 Support multiple macroworld simulations types ………………… 18
3.2 Support the leveraging of the physical space of the classroom …. 20
3.3 Provide feedback during and after the enactment of

macroworlds ………………………………………………………….. 23
3.4 Support classroom orchestration during the enactment of

macroworlds ………………………………………………………….. 32
3.5 Support interoperability with other learning technologies ……… 42
3.6 Provide support for “non-functional” capabilities ……………….. 45

4. LITERATURE REVIEW ……………………………………………………… 47
4.1 Application frameworks in ubiquitous computing ………………. 47
4.2 Supporting the construction and enactment of macroworld

applications …………………………………………………………… 56

5. NUTELLA ……………………………………………………………………. 63
5.1 nutella’s architecture ………………………………………………… 63
5.2 framework components / macro-modules ……………………….. 70
5.3 Macroworlds development process with nutella ………………… 73

6. CONSTRUCTING AND ENACTING MACROWORLDS WITH
NUTELLA …………………………………………………………………… 83
6.1 Support multiple macroworld simulations types ………………. 83
6.2 Support leveraging of the physical space of the classroom …….. 85
6.3 Provide feedback during and after the enactment of

macroworlds …………………………………………………………. 90
6.4 Support classroom orchestration during the enactment of

macroworlds …………………………………………………………. 95

!iv

TABLE OF CONTENTS (continued)

CHAPTER PAGE

6.5 Support interoperability with other learning technologies …….. 104
6.6 Provide support for “non-functional” capabilities ……………… 103

7. EARLY EXPERIENCES WITH NUTELLA ……………………………….. 109
7.1 Building RoomQuake with nutella ……………………………….. 109
7.2 Building nutella’s macro-modules ………………………………… 112
7.3 Building macroworlds with nutella during a three-day

hackathon …………………………………………………………….. 114

8. CONCLUSION, LIMITATIONS AND FUTURE WORK …………………131

REFERENCES ………………………………………………………………...134

VITA ………………………………………………………………………….. 145

!v

LIST OF FIGURES

FIGURE PAGE

1. Tablet interface used by the students to collect data about simulated
quakes .……………………………………………………………………….. 26

2. Aggregate representation of students’ observations in RoomQuake ….. 27

3. Aggregate representation of students’ observations in HelioRoom ……. 29

4. Detail of the teacher feedback interface in WallCology ………………….. 30

5. HelioRoom simulation control dashboard ………………………………… 36

6. RoomQuake administration dashboard …………………………………… 37

7. Demo” and “schedule” mode switch for RoomQuake …………………… 39

8. Representational affordances’ control in RoomQuake …………………….40

9. Overall architecture of the nutella framework …………………………..… 64

10. Steps involved in the construction and enactment of a macroworld
application using nutella ……………………………………………………. 74

11. Output of "nutella new" and "nutella start" commands ………………….. 75

12. nutella's main interface ………………………………………………………. 76

13. RoomPlaces interface ………………………………………………………….79

14. Steps involved in the configuration of the classroom space using
RoomPlaces (left) and in the creation of RoomCast channels and
packages (right) ………………………………………………………………. 80

15. RoomCast “classroom remote” teacher interface …………………………. 97

16. RoomCast channel creation interface (detail) ……………………………. 100

!vi

LIST OF FIGURES (continued)

FIGURE PAGE

17. RoomCast package creation interface …………………………………….. 101

18. RoomDebugger interface (detail) …………………………………………. 105

19. RoomMonitor interface (details) ………………………………………….. 106

20. RoomQuake seismograph interface ………………………………………. 110

21. AquaRoom prototype built by hackathon participants (details) …….… 124

!vii

SUMMARY

In the last twenty years the development of new technologies has radically

expanded the kind of activity structures that can be designed and built for the

classroom. A subset among these technology-enhanced learning environments, that I

call macroworlds, leverages the notions of ubiquitous computing (Weiser, 1991),

distributed interaction (Luyten & Coninx, 2005), and the increasing availability in

classrooms of pervasive, non-desktop technologies (e.g. handhelds, large wall-mounted

displays, tangibles and many others) to provide engaging ways for students to

“experience” and interact with classroom-sized simulations of scientific phenomena. So

far, a number of studies demonstrated how macroworlds can help students engage in

authentic science practices (Duschl et al., 2007), and build meaningful connections

between physical activity and important principles in different science domains (e.g.

Moher et al., 2010; Enyedy et al., 2012), making macroworlds an active area of research

both in the field of Human-Computer Interaction and the Learning Sciences (Lindgren

& Johnson-Glenberg, 2013).

Despite their promise, macroworlds have proven challenging to design, build,

and enact, restricting this kind of learning environments to only few exemplars. In

particular, one of the main challenges faced by developers while building and enacting

macroworlds is the lack of a software framework supporting these processes,

specifically designed to address the requirements of this learning technology. The goal

!viii

SUMMARY (continued)

of this dissertation is to tackle this problem and to devise a method, a set of guidelines

and a software framework to support the development and enactment of macroworlds.

In this dissertation, I will first develop a set of requirements that characterize the

construction and enactment of macroworlds, based on a review of existing

macroworlds, the work of Roschelle and Pea (2002) on Wireless Internet Learning

Devices, and especially my experience in dozens of macroworld classroom enactments

over the past seven years. I will then introduce nutella, a software framework I created

to support the constriction and enactment of macroworlds. Finally, I will demonstrate

the versatility and design space of nutella by sketching a set of macroworld applications

and by describing the experience of a group of developers using the framework during

a three day hackathon.

!ix

Chapter 1
Introduction

This dissertation introduces nutella, a software framework and suite of services,

tools, and design templates that support the construction, configuration, and delivery of

simulated scientific phenomena to elementary school classrooms. nutella is designed to

support an emergent genre of learning applications—macroworlds—in which location in

the classroom is indexed to simulated phenomena made accessible through a

networked collection of public and private, embedded and mobile, representational and

interactive technologies.

Macroworlds represent an activity abstraction layer designed to subsume two

existing genres: "participatory simulations" (Colella, 2000) and "simulated

investigations." In participatory simulations, students adopt a first-person perspective,

interacting as agents to drive the simulation; the record of their behavior and the

emergent results from that behavior become the objects of community inquiry (Colella,

2000). In Colella's virus simulation, students wore small portable computers ("Thinking

Tags") around their necks with LED displays showing how many people the person had

met during the activity and whether or not they are infected with the virus. At the same

time, the thinking tags function as infrared transmitters and receivers giving the

students the ability to transfer the virus to others by walking up to them. The goal of the

activity was for the students to infer the rules that govern the simulation (e.g., virus

!1

!2

latency, degree of contagiousness, who was the first infected agent, etc.) by recollecting

and reflecting on their individual actions and how they affect the emergent outcomes

(Chi et al., 2012). In simulated investigations, learners assume a third-person

perspective as investigators of an algorithmically simulated phenomena rather than as

actors in the simulation itself. For example, in RoomQuake (Moher et al., 2005), learners

experienced a series of simulated earthquakes reflected on simulated seismographs

positioned at known locations around the classroom. Working in teams, students

analyzed the seismograms, from which they were able to determine the distance of the

simulated earthquake from each seismograph. Using tape measures anchored at each

seismogram, students used trilateration to determine the epicenter of the event, marked

on the ceiling of the classroom. As more and more events accumulated, students

identified the location of the fault line in their classroom, and identified the temporal

pattern and magnitude distribution resulting from the series of quakes.

Like the microworlds (Krajcik & Berg, 1987) that inspire their label, macroworlds

offer access to simulated objects of inquiry. Unlike microworlds, in which the user

experiences the simulation through the lens of a personal display, in macroworlds users

experience the simulation as a kind of sparse immersion through a collection of devices

distributed throughout the physical space of the classroom. All students in the

classroom engage with the macroworld and with one another in physical space,

enacting experiences that serve to generate a data corpus for collaborative knowledge

!3

construction (Scardamalia & Bereiter, 1994; Bielaczyc & Collins, 1999; Slotta & Najafi,

2010) and gain experience with agent behaviors, including science practices (Duschl et

al., 2007). Macroworlds seek to leverage the captive audience, tight-knit community,

and available space and technologies of classrooms to create opportunities for play

(Enyedy et al, 2012), peer interaction (Vygotsky, 1978), autonomy, embodied interaction

(Lindgren & Johnson-Glenberg, 2013), and other affordances of the form factor, to

support learning and teaching.

Evidence of the effectiveness of macroworlds in supporting learning and

teaching is growing, and they have drawn strong interest within the research

community. In addition to their “core role” of allowing learners to construct a data

corpus (through learners’ activity) to be used in subsequent knowledge construction

activities and getting students to enact authentic science practices, macroworlds have

demonstrated to help improve students’ attitudes toward science inquiry (Moher, 2008;

Moher at al., 2010). The importance of this role play component in science teaching has

been highlighted by Jarvis & Pell (2005), which demonstrated how role-play helps

student develop an identity as investigators and improve their attitudes toward science.

Some macroworld applications take this role-play element a step closer to reality

providing students with physical analogs to some of the tools used by scientists, as

demonstrated for instance by AquaRoom (Moher at al., 2012). These role play

components have also been shown to have an impact on students’ motivation, as do

!4

their desire to play (Enyedy et al., 2012) and their curiosity and motivation to explore.

Macroworlds leverage both these elements to maintain kids engaged while playfully

exploring and experiencing the simulated scientific phenomena in their classroom.

Macroworlds also afford learners to freely move around the classroom allowing them

the opportunity to engage in more social exchanges than if they were sitting down in a

fixed group. This has two two separate advantages. First, students can exercise more

agency in choosing which people they want to interact with. Second, it leverages the

richer social interactions among learners as more opportunities to exchange information

and learn. Moreover, allowing students to freely roam around the classroom carries

three side effects: it fulfills children's need for physical activity and exercise (Strong et

al., 2005), it leverages the beneficial role of movement on students’ cognitive skills

(Sibley et al., 2003) and it allows to make batter use of the classroom space allowing kids

more “elbow room”. Finally, macroworlds leverage both spatial and temporal

embodiment to allow students to experience the unfolding of the simulated phenomena

in a spatially and temporally situated way. Moving around the classroom and collecting

data at different times, students can change their point of view of the phenomena and

this can help them better understand the rules of the simulation and create a model of

the phenomena (e.g. Moher et al., 2010). The importance of embodiment has strong

advocates both in psychology (Johnson, 1987; Clancey, 1997; Clark, 1997; Glenberg,

!5

1997, 1999; Winn, 2003; Lindgren & Johnson-Glenberg, 2013) and human-computer

interaction (Dourish, 2004).

In spite of their promise (and a nearly 20-year history), there is only only a small

collection of applications today that could be considered classroom macroworlds, and

none that have been adopted for regular instruction. Two main technological problems

limit the growth of the genre. First, there are no specialized frameworks or resources for

the development of macroworlds; each of the research groups working in the area

maintains separate code bases. This frustrates attempts to share technologies and recruit

new members to the development community. Second, there are no standard

mechanisms for the delivery of macroworlds, limiting access to classrooms serving as

research sites.

nutella addresses both of these problems for a significant class of macroworlds.

By providing an architectural framework for macroworld applications, an extensible set

of core services (communication, asset tracking, and device management), debugging

and monitoring tools, and a library of application and component templates, nutella has

the potential to advance the pace and reliable construction of macroworlds. For

teachers, nutella offers a web-based configuration interface and run-time controller that

allows them to configure and schedule macroworlds for "delivery" to their classrooms

through the Internet, for the first time widely creating opportunities for incorporating

macroworlds in their instruction. These are novel and potentially impactful capabilities.

!6

We would like to see nutella become the first step toward the growth of a macroworld

developer community and "macroworld store" ecology.

The design and development of nutella were guided by two research questions.

Research question 1: What are the application-level affordances that characterize

macroworlds and the requirements they impose on technology?

What core capabilities does nutella need to support? The emergent nature of the

macroworld genre complicates the design of technologies due to the lack of canonical

requirements. To address this problem, I adopted the strategy used by Roschelle & Pea

(2002) of identifying a superset of core "application-level affordances" associated with a

genre of activity (in their case, mobile computing devices, in mine, macroworlds)

through a review of the existing cases of the genre. (In this, I was aided by the fact that I

had been involved in the construction and enactment of many of the applications.)

These affordances constituted a set of requirements that guided design and whose

satisfaction guaranteed that nutella would, at a minimum, enable the construction and

delivery of those macroworlds that have been introduced in the literature.

Research question 2: How can we design resources to support the processes of developing

and enacting macroworld applications?

!7

I address this question by presenting the capabilities and organization of nutella,

describing the rationale that led to that design, demonstrating that the design meets the

application-level affordance requirements, and describing the early experience of a

small group of developers in developing nutella applications.

The remainder of the dissertation is organized as follows:

Chapter 2 presents a survey of existing macroworlds applications.

Chapter 3 identifies and formalizes a set of five application-level affordances

characteristic of macroworlds and describes the requirements they impose on software

infrastructures.

Chapter 4 presents a survey of application frameworks in several ubiquitous-

computing research areas that are relevant to this work and reviews research relevant to

the five application-level affordances of macroworlds described in the previous chapter.

Chapter 5 describes nutella, the software framework I created to support the

construction and enactment of macroworlds. The chapter will detail the framework’s

software architecture, main components and how they interact with each other.

Chapter 6 demonstrates how nutella provides support for each of the five

application-level affordances identified earlier and how the framework can be used to

build macroworlds.

!8

Chapter 7 describes some early experience using the framework. In particular,

this chapter will outline the growth of the nutella developers’ community over the past

year, demonstrate how the framework was used by a group of developers during a

three-day hackathon and describe the experiences of the framework contributors.

Chapter 8 presents a summary of the conclusions and contributions of this

research, limitations and future directions of work.  

Chapter 2
Macroworlds

In Chapter 1, I described a strategy for identifying a core set of macroworld

affordances to serve as a requirements base for nutella based on an inventory of

reported macroworlds. In this chapter, I provide that inventory, primarily as a reference

for the discussion in Chapter 3, in which the set of application-level affordances is

developed.

2.1 Participatory simulations

In participatory simulations, students experience and influence the phenomena

by taking on the role of an element (e.g., a bee, a car) within a complex system (e.g., a

beehive, a traffic jam). Sensor-based devices (e.g., GPS enabled handheld devices) are

worn or carried by participants, allowing for the automatic exchange and aggregation

of contextually relevant information. Participants experience the simulation both at a

local level (i.e., from the perspective of the element they are enacting), and also from a

global viewpoint, where they can see how their individual actions affect patterns within

the overall system.

!9

!10

2.1.1 Virus simulation

In Colella's virus simulation (2000), students wore small portable computers

("Thinking Tags") around their necks with LED displays showing how many people the

person had met during the activity and whether or not they are infected with the virus.

At the same time, the thinking tags function as infrared transmitters and receivers

giving the students the ability to transfer the virus to others by walking up to them. The

goal of the activity was for the students to infer the rules that govern the simulation

(e.g., virus latency, degree of contagiousness, who was the first infected agent, etc.) by

recollecting and reflecting on their individual actions and how they affect the emergent

outcomes (Chi et al., 2012).

2.1.2 BeeSim

BeeSim (Peppler et al., 2010) is a participatory simulation which puts young

children in the shoes of honeybees collecting nectar. The simulation makes extensive use

of wearable technologies and aims at teaching kids about both the value of

communicating nectar sources to other bees and the difficulty of finding nectar. In this

context, students assume the role of a honeybee looking for nectar (agent) by wearing a

“ForagerBee” glove (a sensor embedded wearable). Kids have only 45 seconds to collect

as much nectar as possible while wrestling with the constraints of the system (e.g.

limited nectar carrying capacity). Children take turns hunting for nectar and, when a

!11

child’s turn is over, they have to pass the glove to one of their teammates. As the glove

exchange happens, the child returning from the hunt can try to communicate the

location of high-yield flowers to the “next bee”, through the use of nonverbal language.

Once each child had their chance to wear the glove and hunt for nectar, the team with

the most nectar is the “most prepared for winter” and therefore the winning team.

2.1.3 Hunger Games

Hunger Games (Gnoli et al., 2014) is a participatory simulation designed to allow

upper elementary school learners to explore fundamental concepts of competitive and

cooperative games in the context of animal foraging. In Hunger Games the authors

“transform” the physical space of the classroom into a natural habitat containing six

food patches of different richness. Each student in the classroom receives a stuffed

animal with an RFID tag embodied in it, which acts as his or her “avatar” during the

activity. Whenever a student walks to a patch and places their “squirrel” on top of it, the

RFID reader embedded in the patch recognizes the tag and starts to provide energy to

the students’ avatar at a rate dependent on patch quality and competition (i.e. how

many avatars are feeding off the same patch at the same time). After the activity

students observe and reflect on their individual and collective foraging patters and

design new strategies to improve their individual and/or collective outcome.

!12

2.2 Simulated investigations

In simulated investigations, students assume the role of investigators and

scientists tasked with studying and understanding a simulated scientific phenomena co-

located within the classroom space. Students monitor and inspect the local state of the

phenomena using a collection of media distributed around the room. Over the course of

several weeks, students gather and aggregate evidence to answer questions related to

the object of inquiry.

2.2.1 Hunting of the Snark

In the Hunting of the Snark (Price et al., 2003), students investigate and discover

characteristics of a virtual imaginary creature (called the Snark) hidden within the

virtual space, co-located with the physical space of the classroom. Students use a

number of physically-digitally coupled tools to locate and interact with the imaginary

and elusive creature while it moves across “land, air and water.” Technologies such as

handhelds, RFID tags, ultrasound tracking, pressure pads and accelerometers afford

students the ability to fly with the Snark, sneak around it while it is sleeping (pressure

sensitive floor pads), find its food (handheld and ultrasounds) and take pictures of it

using the “Snarkcam” (handheld).

!13

2.2.2 RoomQuake

In RoomQuake (Moher et al., 2005), the classroom is transformed into a seismic

area where a series of earthquakes is expected in the next few weeks. Learners

experienced the earthquakes through simulated seismographs positioned at known

locations around the classroom. Working in teams, students analyzed the seismograms,

from which they were able to determine the distance of the simulated earthquake from

each seismograph. Using tape measures anchored at each seismogram, students used

trilateration to determine the epicenter of the event, marked on the ceiling of the

classroom. As more and more events accumulated, students identified the location of

the fault line in their classroom, and identified the temporal pattern and magnitude

distribution resulting from the series of quakes.

2.2.3 HelioRoom

HelioRoom (Thompson & Moher, 2006) is an embedded phenomena application

about astronomy, where students are immersed in a classroom-sized model of the solar

system. The sun is hypothetically located at the center of the classroom where four

screens, adjacent to each one of the walls, are actually “portals” looking into the virtual

space beyond the classroom walls. These portals display eight, equally-sized, colored

circles moving at different speeds from the right to the left of the screens and from one

screen to the next in counter-clockwise order. The eight circles represent the planets of

!14

the solar system orbiting around the sun. The challenge students have to face is to

associate each colored circle with the right planet. During the unit students work with

the simulation and collect observations about the planets’ speeds and mutual

occlusions, trying to accumulate enough evidence to help them associate planets and

colors.

2.2.4 WallCology

WallCology (Moher et al., 2008; Cober et al., 2012) is another embedded

phenomena application designed to provide elementary and middle school students

with a multi-week simulation of population ecology. WallCology situates students as

investigators within a complex simulated ecosystem located in the classroom walls.

Students can access the state of the simulation through a set of computer screens

adjacent to the classroom walls, called “WallScopes” which give them access to

distinctive (but connected) local virtual environments containing mold, vegetation and

various species of animated creatures crawling over lath and pipes. Students act as

ecologists whose goal is to keep the ecosystem (and particularly endangered species)

alive. In order to do so, students need to conduct investigations on population

estimation the identification and classification of species and focus on topics such as life

cycle phases, food chains, predator-prey relationships, habitat selection, response to

environmental change and adaptation.

!15

2.2.5 AquaRoom

In AquaRoom (Novellis & Moher, 2011), the latest embedded phenomena

application, students take on the role of hydrogeologists with the task of mapping a

subterranean aquifer system (mapped to their classroom floor plan) and to use this

information to decide where to locate a new chemical plant within the “local

community” to minimize potential environmental impacts. In order to accomplish this

task, students “inject tracer dyes” and “obtain water samples” using a portable tablet-

based “drilling unit." A suction cup attached to a (non-functional) Ethernet cable is used

to select locations for dye injection or water sampling. Test tubes capped with i- Buttons

(similar to contact RFID tags) serve as simulated dye sources and sample repositories.

Students “inject” dyes by inserting the test tubes into USB readers attached to the tablet

drilling unit, with the liquids virtually running through the cabling. The interactive

interface on the tablet computer allows them to mark the injection location, based on a

grid system defined by the tiles on the room’s drop ceiling. “Water samples” are

subsequently collected in a similar fashion, and tested for the presence of dyes using a

simulated spectrometer represented by a shared desktop computer with its own USB

reader. The injection of a dye followed by sampling allows students to establish the

presence of an aquifer and the direction and rate of flow, which are marked on the tablet

map and on a collective classroom map.

!16

2.2.6 EvoRoom

EvoRoom (Lui & Slotta, 2013, 2014) is a room-sized, immersive simulation of a

rainforest ecosystem modeled after Borneo and Sumatra. The goal of EvoRoom is to

teach high-school students about biodiversity and evolution. The simulation unfolds

and leverages the what the authors call a “smart classroom”: a room with six projected

displays (three on each, opposite side of the room) and two interactive whiteboards in

the middle. The six displays on each side of the room display a representation of the

Borneo and rainforest. Within this context, students assume the role of “field

researchers,” and are tasked with gathering evidence of evolution by comparing

simulations from a range of time periods. Working individually and in groups, they

observe changes in life forms over time (the room can be “played” through 200 million

years of evolution), consolidate their findings as a community, and develop hypotheses

about the evolutionary changes that might have taken place.

Chapter 3
Application-level affordances and

technology requirements of macroworlds

In an article published in 2002 and titled “A walk on the WILD side, how

wireless handheld may change computer-supported collaborative learning”�Jeremy

Roschelle and Roy Pea discuss the physical affordances of Wireless Internet Learning

Devices (WILD) and outline how the use of this technology might reshape activity

structures in K-12 classrooms. As part of their argument, the authors survey a set of

early WILD applications and extract a set of five application-level affordances (e.g.

defining traits) that characterize WILD learning environments.

In the years since the “WILD article” �was published, many scholars have

contributed to the conversion around WILD learning environments by designing new

WILD applications, better shaping the boundaries of this learning technology (e.g.

Penuel at al., 2004) and contributing research around WILD applications in several

fields of Computer Supported Collaborative Learning (CSCL) such as knowledge

building and classroom orchestration. Looking back, it becomes evident that Roschelle

and Pea correctly anticipated the evolution and growth of WILD learning

environments. Macroworlds too “stand on the shoulder”�of WILD and some of the

application-level affordances proposed by Roschelle and Pea still present significant

technical challenges to their effective implementation in macroworld applications.

!17

!18

The goal of this chapter is to survey a number of early macroworlds applications,

similarly to what Roschelle and Pea did for WILD, in order to extract a set of five

application-level affordances that are beginning to emerge and characterize these

learning environments. I will then describe the challenges that each application-level

affordance imposes on technology and derive a set of capabilities that a framework

supporting the construction and enactment of macroworlds should have.

3.1 Support multiple macroworld simulations types

As described earlier, macroworlds’ main goal is to allow students to access,

manipulate and experience a simulated scientific phenomenon in order to study it while

engaging in authentic scientific practices. In this context, one of the application-level

affordances critical for the success of macroworlds is the ability to simulate a variety of

different scientific phenomena. In particular, it is possible to identify three separate

categories of macroworlds based on the type of object of inquiry they provide access to.

First, there are simulated phenomena. In this type of macroworlds, a simulation of a

scientific phenomena is build by the application designers and accessed by the students

in the classroom. Students accumulate data over time by studying the phenomena and

they use these data to build and verify their theories and models of the simulated

phenomena. Among the macroworlds surveyed in chapter 2, the Hunting of the Snark,

RoomQuake, HelioRoom, WallCology, AquaRoom and EvoRoom all belong to this first

!19

category. Second, there are generated phenomena. In this type of macroworld application,

which includes participatory simulations, BeeSim, the Hunger Games, the object of

inquiry is represented by the data corpus generated by instrumenting students

activities. In this kind of macroworld students act both as “agents” in the simulation

that generates the data corpus and as “scientists” trying to understand the phenomena

as a whole by studying and interpreting the data corpus. The third kind of macroworlds

are the ones that allow students to engage with emulated phenomena. Designers of this

kind of applications typically have a data corpus already available to them (e.g.

historical records of some natural phenomena) or they have access to a real-time data

source (e.g. instrumenting a scientific phenomena using sensors and telemetry). These

macroworlds provide access to such data either by “replaying” the historic data in real-

time or simply by streaming the data from the remote location to the classroom. This

allows students to access the very same data scientists wrestled or are wrestling with.

Despite the value of providing different types of simulations and, within the

same type, a variety of different science domains, imposes radically different demands

on technologies powering macroworld applications. In simulated phenomena, for

instance, designers need to be able to actually define somewhere in the software the

rules that govern the simulation. These rules are unique, of course, for each simulation.

Moreover, from an hardware perspective, some simulations are extremely demanding,

requiring systems to track students movement (like generated phenomena) while others

!20

simply require only a handful of computers (like HelioRoom for instance). This variety

of requirements needs to be addressed somewhere, either on a “per-application basis”,

leaving the burden on the designers, or harnessed in a software framework which can

then be reused, freeing designers from solving the same problems over and over.

Capability 1: provide support for the creation and enactment of simulated, emulated and

generated macroworld simulations.

3.2 Support the leveraging of the physical space of the classroom

Another key characteristic of macroworlds is the fact that they leverage the

physical space of the whole classroom for pedagogical reasons. As described in chapter

1, this trait provides a series of benefits for learners such as allowing them to engage in

a spatially situated exploration of the object of inquiry, increasing the amount of social

exchanges among them (and therefore multiplying the possibilities for learning),

affording them more agency, and ultimately making a better use of the classroom space.

The importance of leveraging the physical space of the classroom for pedagogical

reasons has also been highlighted by Roschelle and Pea. They found that almost all

WILD applications augment and leverage the physical space “between the devices” as

opposed to more traditional CSCL applications which leverage the space “inside the

devices”. Moreover, the authors point out that this application-level affordance of WILD

!21

learning environments (including macroworlds) focuses on embodiment and, in

particular, on using the physical space to help learners "reconnect abstractions with

embodied, physical and spatial explorations” (Roschelle and Pea, 2002).

In macroworlds, leveraging the physical space of the classroom comes in two

slightly different flavors. In generated phenomena (e.g. participatory simulations,

BeeSim and Hunger Games), information is overlaid on top of the physical movements

of students, captured and stored by the system. The aggregate patters of students’

movement then become the focus of students’ inquiry as they try to make sense of their

collective behavior. In a way, students’ movements are tracked and are used as an input

to the macroworld simulation and these patterns represent the data corpus driving

students’ inquiry.

Conversely, in simulated and emulated macroworlds (e.g. RoomQuake,

HelioRoom, WallCology and AquaRoom, the hunting of the Snark and EvoRoom) the

physical space of the classroom is used to “index” the simulation. In other words, there

is a mapping between the physical space of the classroom and the virtual space of the

simulated phenomena. In particular, the location of devices within the physical space of

the classroom is relevant because it provides access to different portions of the

simulated scientific phenomena. In this second scenario, students’ ability to freely roam

the classroom is crucial because it allows them to autonomously select and study

different portions of the simulation (i.e. the different devices at different locations)

!22

providing them with different points of view which they have to collectively reconcile,

like in the story of the blind men and the elephant.

Despite the fact that leveraging the physical space of the classroom is one of the

characteristic elements of macroworlds, this application-level affordance presents a

series of practical challenges that need to be addressed in order to effectively employ it

in the design of macroworlds. As mentioned earlier, macroworld application leverage a

vast array of technologies and devices such as large (multi-touch) displays, laptops,

tablets, smartphones, tangibles, iBeacons, etc. These differences among devices impact

their capabilities in terms of their ability to sense their own location, with some devices

reacting to proximity (e.g. iBeacons), others capable of more sophisticated location

tracking and others incapable of both (e.g. large screens). Some devices are even capable

of sensing their orientation, are frequently manipulated and moved (such as handhelds

and tangibles) while other never change their location during an enactment of a

macroworld-based curriculum unit (e.g. workstations). Not all macroworld applications

impose the same requirements of spatial fidelity with some application requiring a very

fine-grained positioning of devices within the room (e.g. RoomQuake) and others

imposing very little requirements on the precision of locational information. In addition

to these differences, some applications are based on the relative position among devices

(such as participatory simulations) while other on the absolute position of devices with

respect to the classroom space (such as embedded phenomena). Finally, different

!23

devices have different network capabilities which render the distribution of locational

information between devices and other components in the macroworld application even

more challenging.

As it is easy to imagine, leveraging such variety of devices and variables (i.e.

device type, sensing capabilities, granularity, degree of dynamism, relative vs

absolute…) makes the macroworld application-space rich but, at the same time, hard for

developers to leverage the physical space of the classroom. In order to successfully

create a macroworld application that does this a developer needs to understand this

vast application-space which in turn requires a significant effort and expertise.

Therefore, any software tools supporting the construction and enactment of

macroworld applications should provide a method and a set of tools to harness this

complexity and make it more manageable.

Capability 2: support activities requiring location tracking and location awareness of

significant numbers of objects and/or individuals across spectra of granularities and

technologies.

3.3 Provide feedback during and after the enactment of macroworlds

So far I only talked about the “simulation” portion of macroworlds. However,

the purpose of macroworlds applications is to enable the creation of a data corpus to be

!24

used in subsequent knowledge construction activities. In macroworlds, such data

corpus is created either by providing students with a set of tools to collect data about

the macroworld (like in simulated and emulated phenomena) or automatically

capturing and synthesizing their movement patters (like in the generated phenomena)

when acting as agents in an agent-based simulation (such as the Hunger Games or

BeeSim). Independently from the fact that students are contributing to the data corpus

by entering data with their fingers on a data-collection interface or using their body,

macroworlds need to support this data collection process. One of the key characteristic

of macroworlds is their ability to support students and teachers during this process by

providing them (and researchers as well) with real-time and a-posteriori feedback. The

next three sections will describe three separate scenarios for this application-level

affordance: providing students with real-time feedback while building a data corpus,

providing teachers with real-time preferential feedback over the data-collection process,

and providing researchers with preferential, a-posteriori feedback.

3.3.1 Providing feedback for students and teachers

Roschelle and Pea (2002) argue that a key application-level affordance provided

by WILD learning environments (including macroworlds) is their ability to aggregate

the work of all students (not only a few) in real-time (not a-posteriori). They also argue

that this aggregation process often results in a “coherent representation that can be read

!25

and understood as a whole fairly easily” that can serve to direct the inquiry process as

the students “see what they are building together”. The importance of real-time,

aggregate representations of the data corpus as a way of directing the collective inquiry

process, highlight areas of disagreement and serve as a basis for consensus has been re-

iterated also by Cober et al. (2012).

In science spaces, geo-spatial and semio-spatial representations (Roschelle and

Pea, 2002) are often used to create shared, aggregate representations of the data corpus

created by students. Geo-spatial representations are spatial graphical representations of

spatial data (e.g. locations of students among each other or within the classroom) while

semio-spatial representations are graphical-spatial representation of non-spatial data

(e.g. a scatter-plot or any other graph).

An example of real-time, geo-spatial, aggregate representation of the students’

collected-data (i.e. the data corpus) can be observed in RoomQuake. As part of the unit,

students were required to determine the position of a series of quakes. After each quake,

students could use a data-entry interface available on their iPads (figure 1) to enter their

reading of one (or more) of the four seismograms available to them as part of the

simulation. As soon as students entered their observations, these observations were

aggregated on a shared display available to them at the front of the classroom (figure 2).

Using this shared representation, students could not only make sense of the data they

!26

collected so far (helping them determine magnitude, time and epicenter of the quake)

but also help them guide their future inquiry steps (i.e. which seismogram to read next).

An example of semio-spatial representation, instead, can be observed in

HelioRoom. In HelioRoom, students’s main goal is to associate planets names to the

Figure 1. Tablet interface used by the students to collect data about simulated quakes
in RoomQuake. Students use this interface to record their observations while reading
the simulated seismographs in their classrooms.

!27

Figure 2. Aggregate representation of students’ observations in RoomQuake. As
students collect observations (using the interface in figure 1) about different
RoomQuakes, the aggregate representation updates in real-time. As more students
contribute data, the aggregate representation facilitates the students' discussion
around location, magnitude and time of the event.

!28

colored circles spinning around their classrooms and representing the planets in the

solar system. In order to gather evidence to support this task, students collect pair-wise

observations about planets’ overlap (e.g. “red is in front of green”). In order to facilitate

this process, designers of the HelioRoom application created an interface to allow

students to collect these observations and, at the same time, provide them with

feedback on the state of the inquiry process and the data corpus (figure 3). In addition to

tallying students observations, (i.e. how many people observed that a planed is closer to

the Sun than another) this interface also provided students with a list of people that

agreed with a certain observation they made.

3.3.2 Providing preferential feedback to teachers

In addition to the feedback provided by the aggregate representations described

above, sometimes teachers need preferential feedback on the data collection process in

order to monitor student progress and provide them with additional formative

feedback. For instance, simulated macroworlds are often designed to present an

extended narrative, gradually revealed through the accumulation of students’

observations over time. Therefore, the clarity of this narrative is highly sensitive to

students’ consistent and accurate data collection procedures. When erroneous data are

added to the historical shared representation of the phenomenon, they can serve to

obscure the underlying data-driven narrative of the unit. Therefore, the timely detection

!29

Figure 3. Aggregate representation of students’ observations in HelioRoom. This
interactive representation serves a dual purpose: it aggregates all students'
observations about the planets they are trying to identify and it allows students to
enter their observations. This is done by dragging small planets in the palette on the
right, over to the big circles in the main area of the interface.

!30

and remediation of practice errors become critical capabilities in successful enactments

of macroworlds curriculum units.

An example of this can be observed in WallCology where teachers were provided

with a tablet application that informed them in real-time whenever students’

population estimates deviated from the values programmed into the simulation by

more than 5% (figure 4). Using this strategy, we were able to reduce the error rates in

students’ population estimates from 33% to 8% (Gnoli, 2012).

3.3.3 Providing a-posteriori feedback to researchers

Providing a-posteriori feedback on the data-collection process to researchers is

crucial in order to enable them to use such data as evidence in their research. For this

reason, macroworlds application logs are a common source of evidence used in research

on this topic.

Figure 4. Detail of the teacher feedback interface in WallCology. The interface notifies
teachers of discrepancies between the creature counts recorded by students and the
ones provided by the WallCology simulation. Teachers can take action upon receiving
such notifications or dismiss them if they can't deal with them at the moment.

!31

The importance of “log files” and application logs for research on macroworlds

was, once again, outlined by Roschelle and Pea (2002). The scholars highlight how the

ability to instrument the learning space with the goal of collecting summaries of

messaging patterns and content for research purposes is another application-level

affordance of WILD. Their intuition that “the database of interactions can be data-

mined, analyzed, and reflected upon” has proven true as demonstrated by the nascent

field of learning analytics and educational data mining. Accordingly, almost all

macroworlds applications described earlier have been designed to collect and store

messaging patterns between the various components of the applications and between

all the devices used in the classroom.

3.3.4 Putting it all together

Providing students and teachers with real-time feedback on the status of the data

corpus, teachers with real-time, preferential feedback on the data-collection process and

researchers with a-posteriori, preferential feedback on the enactment of a macroworld

unit imposes, once again, very different demands on technology. In particular, even if all

three these scenarios are concerned with capturing messages between application

components, there is quite a variety in the delivery strategies (e.g. push vs pull), the

way these messaging patters are accessed (e.g. real-time vs a-posteriori) and amount

and type of filtering that needs to be performed. A framework supporting the

!32

construction and enactment of macroworlds applications should support and harness

this complexity and provide a mechanism to simplify the way developers handle these

different messaging patterns.

Capability 3: support student’s data collection process, including the ability of providing

teachers, students and researchers with real-time and a-posteriori on their activity and the

outcomes of their work.

3.4 Support classroom orchestration during the enactment of macroworlds

In both WILD applications and macroworlds, teachers can be metaphorically

seen as "conductors of performances" to which each student in the classroom

contributes to. Roschelle and Pea (2002) also suggest that teachers attend mostly to

group performance (not individuals) and that they are responsible for choosing and

sequencing the material introduced to students. Teachers might also send small groups

to practice separately, as it happens in orchestra rehearsals, while making sure that all

the orchestra sections are heard during a whole-class performance.

Virtually all macroworld applications surveyed earlier are designed thinking

about teachers this way. For instance, in the WallCology enactment described by Cober

et al. (2012), teachers were instrumental in guiding the process of inquiry, scaffolding

whole-class discussions around aggregate artifacts, orchestrate (Fischer & Dillenbourg,

!33

2006) and script (Kollar, Fischer & Slotta, 2007) the interleaving pedagogical, activities

and simulation narratives. Findings about the pivotal role of the teacher as a “conductor

of performance” in macroworlds (similar to the ones reported here for this particular

enactment of WallCology) have been observed over and over in over a dozen

macroworlds enactments.

The “conductor of performances” metaphor imposes significant enactment

demands on teachers. They have to develop strategies to establish the scientific

narrative driving the unit, and then strive to maintain it over the course of a multi-

week, episodic time frame. They have to learn how to “use” macroworlds applications

well enough to help the kids learn how to use them. Teachers have to engage learners in

discussions involving question making, design and execution of investigations, data

interpretation, and domain-specific practices. During the enactment of inquiry

activities, teachers also have to monitor heterogeneous, physically distributed, often

self-selected student activity and respond with appropriate pedagogical interventions.

The next four sections outline four common challenges faced by teachers (as

“conductors of performances”) that I observed over the course of several enactments of

macroworld-based curriculum units.

!34

3.4.1 Provide teachers with privileged access, control and configuration over

macroworld simulations

One of the key features of macroworlds is that the simulations are persistent and

run continuously through the whole school day concurrently with the regular flow of

instruction. In this context, key events might happen at times when kids can’t divert

their attention to the simulation and record their observations, missing on important

learning opportunities. One of the major challenges faced by a significant number of the

teachers who have enacted macroworlds units has been their inability to “tweak” the

simulation (within the limits imposed by the laws of science) to ensure that all kids had

a chance to contribute. The fidelity of the simulation to reality (i.e. nature doesn’t wait

for students) that was supposed to support deeper learning ended up undermining it.

Teachers have been very vocal in the past about having affordances to make

pedagogically motivated changes to the phenomena in response to students’ behavior

and needs. For instance, during one of the enactments of WallCology, teachers explicitly

asked if it was possible to change the amount of creatures in the simulated ecosystem to

make it more explicit for the kids that the introduction of an invasive species was

decimating the population of a native one. In that particular situation, the teacher

perceived that their kids did not see the gap in the native’s species population as a first

step toward their extinction.

!35

The need for affordances that allowed teachers to gain privileged access to the

macroworld simulation is a cross-cutting theme among many macroworld applications

and in order to support teachers in their “conductor of performance” role several

macroworlds applications provide technology specifically designed for this task. In one

enactment of HelioRoom for instance, I developed a teacher dashboard application

which was affectively called “the HelioRoom god view” (figure 5). This interface

provided teachers with control over the simulation and with privileged access to the the

state of the simulation, beyond what was revealed to students through the portals. This

allowed the teachers to validate students’ observation and better scaffold their

reasoning. This Android application disclosed to teachers the position of all the planets

in the simulation, a cheat-sheet revealing the association of planets and colors, together

with their orbital time. Using this interface, teachers could also manipulate the position

of an arbitrary planet and “pause” the simulation.

In EvoRoom (Lui & Slotta, 2014) instead, teachers have available to them a

special tablet which allows them to “accelerate” the simulation in order to keep the

phenomenal narrative aligned to the pedagogical and instructional narratives. Similar

“macroworld simulation control dashboards” have been provided to teachers in other

macroworlds, including the Hunger Games and RoomQuake (figure 6).

In particular, this interface allows teachers to configure and schedule a series of

quakes in advance in their classroom. This is different from the real-time controls

!36

Figure 5. HelioRoom simulation control dashboard. This interface provides teachers
with preferential information on the HelioRoom simulation. In particular, it discloses
the position of all the planets and provides teachers with a cheat-sheet that associated
the colored circles displayed by the simulation with the names of the planets.

!37

provided by the HelioRoom and EvoRoom but it highlights how, for some macroworld

simulations, it might be necessary to “schedule” events offline and in advance. This

demonstrates how, despite several attempts have been made in the past to build teacher

dashboards for the purpose of controlling and accessing macroworld simulations, each

application is slightly different and requires a custom-made dashboard. Nonetheless, a

Figure 6. RoomQuake administration dashboard. This interface provides teachers with
complete control over the simulation portion of the macroworld. It allows teachers to
generate and manipulate a series of quakes that will unfold in their classroom.

!38

framework supporting the construction and enactment of macroworld applications

should strive to provide support for the creation of such utilities providing privileged

access and control of the macroworld simulation to teachers.

3.4.2 Provide teachers with control over representational affordances, both public

and private

As described earlier, macroworld simulations are used by students to create a

data corpus. This requires students to collect data about the simulated phenomena.

Sometimes this process is automated (e.g in the Hunger Games) and the results of this

data collection are displayed to students. Either way, the representational and data

collection affordances used by students need to be aligned with the simulation.

For instance in the most recent enactment of RoomQuake (Fall 2014), the

curriculum was divided into two separate phases. During the first phase teachers

generated a series of “on-demand” quakes and guided students through the process of

understanding the procedures scientists used to study quakes and determine the

position of the epicenter, the time and the magnitude of the quake. In the second potion

of the curriculum, students studied a series of quakes and tried to determine the

position of the fault line in their classroom and the distribution of quakes magnitudes,

following the Gutenberg–Richter law. During these two phases of the activity the

affordances used by students to collect their data changed dramatically and they

!39

needed to be aligned with the simulation phases. This was achieved by making all

affordances respond to a toggle button which switched between the modes (figure 7).

Another example of providing teachers with controls over representational

affordances are the controls for the RoomQuake aggregate representation of students

observations (figure 2). This interface was capable of displaying only one quake at the

time so before students could move on to the next quake teachers had to “wipe the

board” and prepare it for students to enter data about the new quake. For this reason,

we provided teachers with a control interface (figure 8) that they used to change the

quake students were working on.

The point of both interfaces presented above is, representational affordances

need to be controlled by teachers and often they need to be synchronized to the

unfolding of the simulated phenomena. Controls for teachers to retain control over

Figure 7. “Demo” and “schedule” mode switch for RoomQuake. Using this tool,
teachers can choose to operate the macroworld in demo mode (where quakes can be
generated in real time) or in schedule mode (where a series of quakes is scheduled for
the future).

!40

representational affordances should be included in a framework supporting the

enactment of macroworld applications.

3.4.3 Provide a way to adapt macroworld applications to the technologies available

in the classroom

When deploying macroworlds in real classrooms there is a huge variability

among classrooms and schools in the technology available. This imposes on

macroworlds an additional requirement of flexibility requiring a variety of

progressively advanced classroom setups with some enactments deploying a very thin

Figure 8. Representational affordances controls in RoomQuake. Using this interface
(top), teachers can control which quake students are working on. This automatically
erases observations from previous quakes (popup), resets the aggregate representation
and instruct the simulation bot to annotate students' observations with the quake
number.

!41

layer of technology (Colella & Borovoy, 1997) and others taking full advantage of the

technological affordances available. In addition, other factors such as teachers’

confidence with technologies and the research goals of the enactment, have influenced

the choice of technologies powering macroworld applications. Kids forgetting their

personal device, collective devices breaking or being shared among classrooms are

common place in most schools and macroworld need to be able to adapt, to a certain

extent, to these daily disruptions.

3.4.4 Provide support for different instructional organizations

Another area where macroworld applications are required to be flexible is

instructional organization. Some schools for instance have self contained classrooms,

where students spend their entire day in the same room, while others have rotating

classroom, where students change room at every period. Moreover, the same teachers

might have multiple, concurrent sections engaged in the same macroworld unit. Other

times, like in the last enactment of RoomQuake (Fall 2014), different sections might

share the same macroworld simulation but collect separate datasets. Macroworld

applications need to be able to adapt to all these scenarios.

!42

3.4.5 Putting it all together

In summary, a framework supporting the enactment of macroworlds, should

strive to:

• provide teachers with tools that afford them privileged access, control and

configuration of the macroworld simulation;

• provide teachers with tools that afford them control of the representational

affordances, both public and private;

• provide a way to adapt macroworld applications to the technologies available

in the classroom;

• provide support for different instructional organizations.

Capability 4: provide teachers with support for classroom orchestration during the

enactment of macroworlds, including controls for the macroworld simulation, adapting to

instructional organizations and flexibility utilizing available technologies..

3.5 Support interoperability with other learning technologies

As already discussed, the goal of Macroworlds is to provide a way for students

to engage in authentic scientific practices and generate a data corpus. However, despite

the fact that data collection and participation in the scientific practices are important, in

order for students to actually learn from the data they collected it is essential for them to

!43

step back, reflect on such data and move away from rote “procedural

engagement” (Gresalfi, et al., 2008). For example, while the individual mastery of

population estimation methods in WallCology, is an important skill, it is intended to

serve the larger objective of providing a base of data that students can use to collectively

reason about the course of the phenomenon and build their understanding of ecological

principles of population dynamics, habitat fit, and the impact of invasive species.

Reflection has been described as a primary means of social-constructivist

learning (Bransford et al., 2000), as it allows students to build their own personally

relevant understandings from their educational experiences. In the context of

macroworlds, reflection becomes the collective work of a knowledge community

(Scardamaila and Bereiter, 2003), in which the goal is to make progress on ideas based

on contributions from all members of the community. During macroworld-based

curriculum units, students are given responsibility over the whole knowledge

construction process: generating new ideas and theories, building on other students’

ideas, and synthesizing ideas into higher-level concepts. The product of knowledge

building activities is the creation or modification of public knowledge, which means

that the collectively generated knowledge is available to other students and groups to

be used, improved and worked upon. In this scenarios, students work collectively to

develop a community knowledge base and improve upon one another’s ideas. This

!44

process, in turn, helps students to develop a deep, personal understanding as

autonomous learners (Bereiter & Scardamalia, 1989).

To support this knowledge construction process, several knowledge building

systems and software infrastructure have been devised and developed. Of particular

relevance here, is the SAIL Smart Space architecture (Tissenbaum & Slotta, 2015) an

open-source software framework explicitly created to support Knowledge Community

and Inquiry (Slotta and Najafi, 2010) which specifies a set of design principles for a

knowledge community approach for science learning.

In order to make this knowledge-building approach possible in macroworlds

learning environments, it is necessary for technologies powering the macroworlds

simulations and the data collection infrastructure to integrate and interoperate with

knowledge building systems such as SAIL Smart Space. In addition to providing a way

for the two systems to communicate, this also requires the two software infrastructures

to be aligned on a number of issues, such as data models, users, authentication and the

notion of a classroom run (i.e. instance). For this reason, a framework supporting the

construction and enactment of macroworlds should provide a way to integrate with

knowledge building systems.

Capability 5: provide a set of strategies to integrate with software modules external to the

framework supporting the construction and enactment of macroworlds.

!45

3.6 Provide support for “non-functional” capabilities

In addition to the requirements described above, macroworlds impose a series of

“engineering” requirements on the technology that powers them. This in turn forces

developers of macroworld applications to deal with such constraints and address the

challenges that they impose. For instance, the variety of devices, technologies and

platforms typically used in macroworlds comes with very different “hardware

footprints” and capabilities, requiring the used of different development strategies and

languages. This complicates the communication among these components, especially

when considering the unreliable network capabilities in most schools. This ultimately

results in additional word and, consequently, additional resources (i.e. developers) that

might not always be available (Slotta et al, 2009).

Part of macroworlds’ developers job is also to deal with this kind of issues, which

need to be tackled in order to successfully develop a new macroworld application.

However, all these “engineering challenges” are not unique to macroworlds but they

are shared with other ubiquitous computing applications (Raychoudhury et al., 2013),

technology-enhanced learning environments (such as Knowledge Building Systems;

Slotta & Aleahmad, 2009)), distributed applications and, ultimately, a consistent portion

of modern software. Nonetheless, support for tackling this kind of requirements should

be present in any software tool attempting to assist developers when building

!46

embodied macroworlds. Borrowing from the software and requirements engineering

terminology, I define this class of challenges “non-functional challenges” since they are

the analogous of “non-functional requirements” in requirements engineering.

In this scenario, supporting developers while tackling these non-functional

challenges becomes a necessary requirement for any framework attempting to support

the creation and enactment of macroworlds. Two requirements, in particular, stand out:

a) the need of developers for diagnostic tools while constructing and enacting

macroworlds and b) the need of developers for a mechanism to package, share and

reuse their work.

non-functional capabilities: provide developers with a way to inspect and diagnose

macroworlds during their construction and enactment together with a mechanism for the

community to leverage each other work by sharing macroworlds’ components and applications.

Chapter 4
Literature review

The idea of designing a software framework to support the construction and

enactment of a particular type of application is certainly not new to the domain of

macroworlds. In particular, in ubiquitous computing research there is a rich tradition of

creating frameworks and middleware to help developers deal with the inherent

complexity of ubicomp applications and their implementation challenges. The first part

of this chapter presents a survey of application frameworks in several ubiquitous-

computing research areas that are particularly relevant for this work. The second part of

the chapter, instead, focuses on previous work done around supporting the application-

level affordances of macroworlds described in the previous chapter.

4.1 Application frameworks in ubiquitous computing

Perhaps, the most prolific of the research areas around frameworks and middleware for

ubiquitous computing is the one concerned with general-purpose application frameworks.

These frameworks combine context-awareness and ambient intelligence with

networking abstraction, devices abstraction, and other techniques in order to provide a

single, consistent middleware for all kinds of ubiquitous computing applications. The

first such framework to be developed was Carnegie Mellon’s Project Aura (Garlan et al.,

2002) that provided a series of operating-system-level abstractions, such as nomadic file

!47

!48

access, “surrogate client” servers and resource monitoring, to “shield” ubicomp

application developers from low-level implementation hurdles and allow them to focus

on higher-level application logic. A second notable example of “general purpose”

ubiquitous computing framework is Gaia (Román et al., 2002). This framework provides

a components-based, distributed “operating system” for active spaces (“confined

regions of physical space containing physical objects, heterogeneous networked devices,

and users performing a range of activities”) which provides a set of tools and services

(event manager, context and presence services, space repository and context file system)

available to active spaces applications developers. Finally, systems such as OneWorld

(Grimm, 2004) and HOMEROS (Han et al., 2004) focus on providing device/component

abstraction and automatic adaptability whenever new devices join or leave the

application spaces they are subscribed to.

Research around general-purpose ubiquitous computing frameworks continued

to be a prominent area of interest in the ubicomp community through the years.

Recently, work in this area has been focusing on the development of platforms to

support Internet of Things (Ashton, 2009) applications. Examples of work in this area

are Magic Broker (Erbad et al., 2008), Magic Broker 2 (Blackstock et al., 2010) and the

latest iteration, ThingBroker (Perez de Almeida et al., 2013). This family of software

platforms is designed to offer a simple and consistent programming interface to

designers of IoT applications. The way these frameworks achieve this, and the main

!49

contribution of this work, is a solid, event-based, publish/subscribe message passing

middleware, which allows different components to communicate together. The authors

also provide a set of APIs to abstract devices, sensors, and components and a facility to

monitor all the communications mediated by the architecture.

Of course the frameworks described in this section represent just the tip of the

iceberg of all the work done around applications framework by the ubiquitous

computing research community. More thorough surveys exist and the reader interested

in knowing more about this topic should reference the work of Raychoudhury et al.

(2013), Bronsted et al. (2010) and Machado et al. (2013).

4.1.1 Context aware applications

One of the first examples of application-frameworks for ubicomp applications is

Salber's et al. (1999) context toolkit that simplifies designing, implementing, and

evolving context-aware applications. Context here covers information that is part of an

application's operating environment and that can be sensed by the application itself.

This work, in particular, emphasizes the strict separation of context sensing and storage

from application-specific reactions to contextual information, and this decoupling

facilitates the construction of context-aware applications. Yau et al. (2002), provide

another example of framework to help designers of context sensitive ubicomp

applications: their work provides a system to automatically decide which components

!50

of the applications are allowed to communicate with each other based on certain

elements of context (i.e. location).

4.1.2 Smart houses and ambient intelligence

A second area that saw considerable work in the early two-thousands was the

one characterized by frameworks and middleware concerned with assisting designers

of smart houses (Helal et al., 2005), ambient intelligence applications (Aarts et al., 2001),

smart (Lee et al., 2003) and active spaces (Roman et al., 2002). Applications in these

domains typically seek to help users carry out their domestic chores and everyday tasks

(e.g. cleaning, cooking…) by “automating” some or all aspect of the home environment.

Two examples of frameworks designed to help developers of ambient intelligence

applications are the Gator Tech Smart House framework and IDE (Helal et al., 2005;

Yang et al., 2006) and the EQUIP framework (Åkesson et al., 2002; Humble et al., 2003;

Rodden et al., 2004). The first is a comprehensive framework for abstracting sensors and

actuators and encapsulating higher-level context information while the second is

essentially a data-space library (i.e. an object-oriented tuple space), which aims to

support cross-platform and cross-language data sharing between networked clients.

Analogously to what these frameworks do for the home environment, frameworks such

as BEACH (Tandler, 2001), powering the i-LAND/RoomWare project (Streitz et al., 1999;

2001), provide tools to simplify the design of ubiquitous computing applications within

!51

smart offices and workplaces. The BEACH framework consists essentially of a

communication architecture together with a device abstraction layer that simplifies the

design of applications where multiple user interacting with different devices (such as

PDAs, Tablets and tiled wall-displays) need to communicate among each other to allow,

for instance, the creation of a seamless, collaborative interaction space among the

devices.

4.1.3 Ubicomp ecologies

Another area that has been getting quite a bit of attention lately are ubiquitous

computing ecologies (Greenberg et al., 2011). A notable example of an application

framework in this area is The Proxemics Toolkit (Marquardt et al., 2011). The main

design goal of this platform is to simplify access to proxemics information for

developers and its distribution among all the components of an application. For

example, using this toolkit, students in a graduate Human-Computer Interaction course

were able to build a proxemics application that allowed two portable computers to

share a drawing canvas. The level of sharing increased as the laptops got progressively

closer to each other with the user gaining progressive awareness of each others’ work

up to a point when they were sharing the same drawing canvas.

Ensemble (Brenton et al., 2013) is a software architecture designed to encourage

exploratory development of distributed, multimodal, tangible, collaborative

!52

applications by isolating changes to one component from other components.

Particularly interesting is the design decision of making “supporting prototyping” the

main design goal for the platform. Using this framework, the authors were able to

create an application called Grendl, which allowed several performers in a university

laptop and portable devices orchestra to “play” together and create music.

4.1.4 Pervasive games

Before wrapping up this section on frameworks for ubiquitous computing

applications, I would like to briefly discuss the work around the creation of software

framework to assist designers of pervasive games. According to Benford et al. (2005)

“pervasive games extend the gaming experience out into the real world—be it on city

streets, in the remote wilderness, or a living room.” Among the projects that pioneered

the field of pervasive games, Equator (www.equator.ac.uk, 2000-2006) and its successor

IPerG (www.pervasive-gaming.org, 2004-2008) introduced and number of pervasive

games such as: Can you see me now? (Benford et al., 2006), Uncle Roy all Around you

(Benford et al., 2004) and Epidemic Menace (Lindt et al., 2007). A side product of this

research, and the technology powering all these pervasive games, is the EQUATOR

Component Toolkit (ECT, equip.sourceforge.net; Greenhalgh, 2002; Greenhalgh et al.,

2004). The toolkit is essentially a tuple-space, loosely coupled architecture that allows

distributed applications to run over multiple hosts each running on or more software

!53

components that can either be simple pieces of code, representations of physical devices

and sensors or graphical user interfaces for the users. The framework also provides a set

of tools for scripting, (re)configuring and monitoring the running application.

MoWeT (Barchetti et al., 2009) is an indoor/outdoor hybrid framework to design

very simple location-based applications. In particular, the proposed software is tailored

for a particular category of location-based applications called context-aware tourist

guides (Cheverst et al., 2000): mobile phone applications that display multimedia

content (e.g. web pages, images, sounds and movies) whenever a user gets close enough

to a pre-specified Point of Interest (POI). Despite the relative simplicity of the

applications it tries to support and the fact that the it tailors a specific hardware and

software platform, the MoWeT framework gets credit for trying to solve one of the

longest running problems in Ubiquitous computing (Varshavsky & Patel,2009): an

accurate, low-cost, easy to deploy, and ubiquitous location-tracking system.

TaggingCreaditor (Sintoris et al., 2014), like MoWeT, has also been developed in

the context of pervasive games for cultural heritage sites. This framework supports the

design of what its authors call linking games. In these games, players roam freely in the

game space (e.g. a city center, a museum, an heritage site) and, whenever they reach a

Point of Interest, they use their location aware mobile devices to link real-world

elements around the particular location they are in, with concepts, ideas, or factual

knowledge in the virtual world. What TaggingCreaditor does is basically offering a

!54

graphical interface to game designers that simplifies the process of specifying pairs of

real-world elements (identified by GPS coordinates pairs, QR codes and NFC tags) and

digital media. Such pairs are then stored into a database and then used by the

framework to validate players’ own matches, assigning them score and, sometimes,

directing them to the next point of interest.

Although not properly a framework, Treasure (Guo, 2012) is the only toolkit I am

aware of that specifically supports the creation of indoor pervasive games (by the

players themselves). This framework allows its users to create simple treasure-hunt-

style games by (1) hiding a series of smart objects (i.e. regular objects equipped with

ultrasonic 3D sensors and Crossbow MOTE sensors) all over the game space; (2) using a

graphical interface to specify the rules of the game, such as what conditions need to be

satisfied to end the game (i.e. players found the treasure) and what kind of hints (i.e.

media) needs to be displayed whenever players find clues to help them progress toward

the end of the game.

The last framework in our survey is perhaps the most complex and feature

complete of them all. fAARS (Gutierrez et al., 2012) and its predecessor fAR-Play

(Gutierrez et al., 2011) provide a platform for designing a particular kind of pervasive

games which the authors call Mobile Augmented Alternate Reality Games. These games

use mobile phones, augmented reality and QR codes to allow players to impersonate

both physical characters (using their bodies, their location in the real world and their

!55

phones) and virtual ones (controlling a virtual avatar very much like in a traditional

video game). The platform achieves this keeping the virtual and real world

synchronized by using the mobile phones both as smart sensors (GPS location, QR

codes, user input) and smart actuators (Augmented Reality). In addition to introducing

their own frameworks, the authors present a survey of pervasive games platforms

(Gutierrez 2012).

4.1.5 Impact of ubicomp application frameworks on nutella

nutella’s design leverages the work in the area of ubicomp application

frameworks reviewed above in several ways. The idea of connecting many different

devices using a message broker was inspired by the research of Blackstock et al. (2010)

on Magic Broker. nutella combines this approach to devices-connectivity together with

the “devices abstraction” approach typical of early frameworks for context-aware

computing and smart-houses (e.g. Gator Tech House). Both approaches rely on

abstraction to manage complexity in the same way as nutella does. Another area where

nutella leverages this work is location sensing and tracking. In particular, nutella’s

central mechanism of decoupling location sensing and retrieval is heavily inspired by

the work of Salber's et al. (1999) that also uses decoupling to simplify context handling.

Finally, nutella’s approach to physical-digital coupling is similar to the one used in

!56

fAARS (Gutierrez et al., 2012) where real and virtual worlds are coupled through the

use of ambient and mobile technology.

Despite all the work in this area, however, there is no single framework or

technology among the ones reviewed above that provides all the key technology

capabilities of macroworlds. For instance, while Ensemble (Brenton et al., 2013) contains

many of the elements that are also in nutella, it lacks support for location sensing and

tracking, a crucial component to enabling macroworld design and enactment.

4.2 Supporting the construction and enactment of macroworld applications

In this section, I will describe work that has already been done around the

challenges that arise when constructing and enacting macroworld applications.

4.2.1 Support multiple macroworld simulations types

To the best of my knowledge, there are no other systems other than the one

presented in this dissertation that enable the design and enactment of macroworld

applications based on simulated, emulated and generated phenomena. However,

nutella evolved from previous work by the author himself on the phenomena server, a

technology that provided support for the development and enactment of a particular

kind of simulated phenomena called embedded phenomena (Moher, 2006). The

phenomena server was an application container that provided encapsulation and a

!57

common interface for different types of embedded phenomena simulations. The

phenomena server enabled developers to create applications following a standard

structure and a shared set of APIs, which simplified and unified different embedded

application designs. The phenomena server proved extremely reliable and stable by

powering dozen embedded phenomena classroom enactments with hundreds of days

of continuous operation. It has recently been decommissioned because it has been

replaced by the system described in this dissertation. However, some of the ideas and

technologies developed during the work on the phenomena server continue to live on

in nutella.

4.2.2 Support leveraging of the physical space of the classroom

As highlighted earlier, leveraging the physical space of the classroom, imposes a

series of challenges that developers of macroworld applications need to leverage. The

first challenges that developers of this kind of applications need to overcome are the

limitations of today’s indoor location-tracking and sensing technologies. Cheap, reliable

and easy to install tracking systems for all individuals and relevant devices (n=30) in a

classroom covering the whole classroom space doesn’t exist today, to the best of my

knowledge. Historically, designers solved this problem by asking students to either self-

report their location (Novellis & Moher, 2011) or specifying it a-priori (Moher et al.,

2005) through the use of a traditional desktop-based interface. In the last ten years

!58

however, there has been tremendous progress in the affordability of systems based on

RFID systems (e.g. Gnoli et al., 2014) and iBeacons (e.g. Sørensen & Kjeldskov, 2013),

capable of detecting proximity of up to 30 objects among a number of “hotspots”

scattered around the classroom.

At the same time, as described in earlier sections in this chapter, the ubicomp

community has been hard at work building frameworks and middleware to provide

developers with an easier way to access location and proxemics information.

Unfortunately, almost all these frameworks are affected by one (or more) of the

following. a) They are often (still) very tightly coupled with a particular kind of location

awareness technology such as RFID, GPS, some “flavor” of tracking, etc. b) They often

mix context and location awareness together with other features (such as context

reasoning, storage, modeling, etc.) making them impractical to use (Buschmann, 2010).

c) They provide support only for devices that are capable of sensing their own location

frustrating the articulation of a single, consistent and coherent paradigm for location

awareness.

4.2.3 Provide feedback during and after the enactment of macroworlds

In addition to the work reviewed by Roschelle and Pea (2002) and described in

the previous chapter, Jim Slotta and his group have done a lot of work on providing co-

located students with real-time feedback on their actions. In particular, his research in

!59

this area focuses on students collectively developing a shared discourse that allows for

idea-sharing, critique and improvement (Brown & Campione, 1996) in order to advance

a shared knowledge base (Bielaczyc & Collins, 1999). To this end, Slotta and his group

have developed a software framework called SAIL Smart Space (Tissenbaum & Slotta,

2015) which allows for more rapid development of learning materials and environments

enabling a broad research program on collaborative inquiry.

Complementary to research programs exploring feedback to students and

teachers alike, others have explored the possibility of providing teachers with

preferential feedback on their students’ activities using tangible technologies. FireFlies

(Bakker et al., 2013) is a tangible learning technology that enables teachers to

continuously gather feedback on student’s activities using the periphery of their

attention. Interestingly, the system comes with a tangible teacher tool, which enables the

teacher to control the shared-ambient display and regulate the rate of feedback they get.  

4.2.4 Support classroom orchestration during the enactment of macroworlds

There is a long tradition of research in the learning sciences on the most effective

ways of supporting complex collaborative learning designs in the classroom. One

common approach that is used to support the orchestration of complex collaborative

learning activities is that of the “collaboration script,” which has been shown to

effectively foster collaboration and improve learning outcomes (e.g., Weinberger, et al.

!60

2005; Rummel & Spada, 2005). However, of particular interest for this dissertation, is the

use of technology for classroom orchestration. Research in this area has been pioneered

by Dillenbourg and Jermann (2010). In their paper, the authors summarize 14 design

factors (e.g. flexibility, control, integration) to take into account when designing

technologies for classroom orchestration.

Few researchers in Human-Computer Interaction have also worked on tangible

technologies for classroom orchestrations. As an example, CowClock (Bakker et al.,

2012) is a tool that fosters time awareness in primary school classrooms. Teachers can

mark timeframes in the clock using tangible tokens and the clock will play soundscapes

associated to the token with increasing frequency to signal the passing of time. A

qualitative, two-weeks exploration of CowClock in the classroom revealed that the

peripheral, auditory feedback provided by the tool was successful in fostering time-

awareness.

4.2.5 Supporting interoperability and reuse in learning technologies

The problem of reuse of software components in educational technologies has

been around for as long as there has been educational software. In 2009, a panel titled

“Toward a Technology Community in the Learning Sciences” was presented at the 8th

International Conference on Computer Supported Collaborative Learning (Slotta et al.,

2009). In their presentation, panelists highlighted several challenges in the learning

!61

sciences community that hamper the design of reusable software components and the

interoperability between technologies designed by different research groups. Quintana

and Soloway highlight issues with the grain size of software components, their

customization and usability of software frameworks used to stitch components together

into applications. Roschelle and Pea lament how other developers and learning

scientists are not using ESCOT, one of the first attempts at componentizing educational

technologies, to build learning technologies. The reason for this, they though, was due

to the immaturity of the underlying technology platform at the time (Java) and the

divergence in handhelds operating systems. Finally, Aleahmad and Slotta describe their

experience successfully designing SAIL, an open-source platform for learning

technologies. Their strategy was to “separate out the plumbing” from the content so it

could be used in different applications.

Besides talking about components, software, and frameworks, the authors also

make an important point about the importance of developers’ communities as a venue

for developers to exchange ideas, work on collaborations and explore technologies.

They also briefly outline their plans to create a learning-technologies, developers’

community, called Educoder (Slotta & Aleahmad, 2009). The importance of a

community as a way to help foster the reuse and development of open-source tools that

solve recurring problems is not an idea new to the learning sciences. Communities like

!62

Github (https://github.com) have proven to foster developers’ collaboration and

advance the community (Dabbish et al., 2012).

Chapter 5
nutella

nutella (http://nutella-framework.github.io) is an open source framework that

supports the building and enactment of macroworlds. This chapter, describes the

internal software architecture of nutella, its main functional sub-modules, and provides

a high-level overview of the process of developing and enacting a macroworld

application using the framework.

5.1 nutella’s architecture

nutella’s internal design is heavily inspired by the actor model of computation

(Hewitt et al., 1973). According to this paradigm, the basic unit of computation is an

actor. An actor is simply a piece of software that executes on some host, can receive

inputs and produce outputs. Complex behavior is modeled by composing many actors

together to obtain the desired functionality. In nutella, consistent with this model,

applications are collections of actors which can be of only two types: user interface or bot.

User interfaces are actors which can receive inputs from other actors and human users

(typically through a Graphical User Interface, GUI), while bots are actors that can only

receive inputs from other actors. Actors communicate among each other using

messages. Actors register event listeners for incoming messages (and user inputs if they

are user interfaces) and emit messages as outputs. This “inputs, computation, outputs”�

!63

!64

has been strongly influenced by the ubiquitous (pun not intended) Mode-View-

Controller pattern (Krasner & Pope, 1988).

nutella’s internal software structure is divided into three layers: existing

software, APIs, and components, with the framework core running across the previous

three layers (figure 9).

5.1.1 Existing technology

At its core, nutella is powered by a robust message-oriented middleware (Curry,

2004) that allows actors (called components in nutella) to exchange messages among each

other. In particular, all the messages exchanged by software components go through a

Figure 9. Overall architecture of the nutella framework. nutella's internal structure is
organized into three vertical layers (existing technology, APIs, components) and a
framework core perpendicular tying these three levels together.

!65

message broker, which, in the case of nutella, is an open source software called mosca

(http://www.mosca.io). All exchanged messages must comply to the MQ Telemetry

Transport (MQTT) protocol, which was designed by IBM as a lightweight publish/

subscribe protocol specifically for Internet of Things applications (http://mqtt.org).

This protocol was chosen because of its small memory footprint and simplicity that

make it easy to implement it even on devices with very limited resources (e.g. Arduino,

tangibles, etc.). Moreover, the established open-source community maintaining the

protocol and its support for both WebSockets and regular TCP/IP sockets make it

practically ubiquitous among platforms and programming languages, providing

developers with a very high degree of freedom when choosing platforms.

5.1.2 nutella protocol

On top of this existing layer of technology sits the first abstraction layer provided

by nutella, what I call the APIs layer. The goal of this portion of the architecture is to

provide to the all the components in a nutella application a set of expressive primitives

to communicate with each other. The goal of this layer is to move designers and

developers away from low-level communication primitives such as “connect”, “re-

connect”, “disconnect”, “keep-alive”, “set timeout”, etc. and provide them with a set of

more expressive communication APIs.

!66

The fist step in this process is to define a communication protocol, that specifies

the structure of the messages that are exchanged between components. I decided to use

JSON (http://json.org) as a data interchange format because it is human readable (and

therefore easily debuggable), open, widely adopted, and because it has a light footprint

compared to other human-readable formats such as XML. Moreover, exactly like there

are MQTT libraries for virtually any programming language, the same is true for JSON

parser libraries.

The nutella protocol (https://github.com/nutella-framework/docs/blob/

master/protocol/index.md) specifies the structure and semantic of the JSON messages

that are sent back and forth between software components. In particular, the protocol

specifies four primitives that actors can use to communicate with each other:

• Components can ask question directly to other components

• Components can answer questions other components ask them

• Components can say things to an audience of components that are listening

and are interested in what the “speakers” are talking about

• Components can express their interest in what other components are saying,

listen and wait for them to say something

These four actions can be grouped into two separate communication strategies:

request/response or pull (first two actions) and publish/subscribe or push (last two actions).

Each one of the two messaging patterns has its list of advantages and disadvantages

https://github.com/nutella-framework/docs/blob/

!67

(Rodríguez-Domínguez et al., 2012) which I am not going to cover here. Nonetheless, I

would like to provide some rationale for making both available in nutella.

The request/response (or pull) mechanism was born to allow communication in

client-server applications. In this model, clients are responsible for visualizing data

while servers are responsible for storing them. Clients request the data they need to

display to servers that reply. In nutella applications, data is rarely centralized in a single

component but it is instead distributed among different actors. This creates a situation

where each actor is, at the same time, a client and server for different data. In this

scenario, a request/response messaging strategy presents two main limitations. First, if

an actor needs data that is stored within several other actors it needs to know what data

is where and then go perform all the requests needed to retrieve such data. Second, it is

impossible for an actor to just wait for data to be delivered to them, whenever it

becomes available, but it forces the “client” actor to constantly poll other “server” actors,

generating a lot of useless network traffic.

For this reason, the main communication mechanism provided by nutella is

publish/subscribe. However, request/response is also provided because there are cases

where a push mechanism alone can become cumbersome. For instance, consider the

frequent scenario where an interface (client) is accessed and it needs to display data that

is stored in a different bot (server). In this particular use case, Here, it is simpler to use

request/response instead of: (1) having the interface listen for new data; (2) having the

!68

bot listen for requests from the interface; (3) having the interface signal that they are up

with a message; (4) having the bot capture that message (request), fetch the data and

signal they have data (response); (5) having the interface capture that message

(response) and use the data.

The limitations of pull strategies together with the corner-cases inefficiencies of

push strategies are the main motivation behind the use of both messaging patterns in

nutella.

5.1.3 Native language nutella libraries

The layer on top of the nutella protocol is a set of libraries implementing the

protocol itself and simplifying the interaction with higher-level components of the

framework. The rationale behind the choice of implementing native language libraries

is rooted in the desire to reduce the number of entry barriers developers have to

overcome in order to adopt the framework. While “implementing the nutella protocol

in your favorite programming language” can be a fun exercise, it is an extra step that a

developer needs to make in order to take advantage of the communication facilities and

higher level function provided by nutella. Vice-versa, if the protocol is already

implemented in a language-specific library, developers familiar with the language can

import it and use it with the tools they are already familiar with.

!69

In addition to implementing the basic nutella communication protocol described

above, the nutella libraries also implement higher-level primitives to facilitate the

communication with the framework components (see next section). Again, this

simplifies developers’ lives because they are not forced to implement the portions of the

protocol that enable the communication with higher-level framework components.

So far I implemented native libraries for JavaScript (browser and node.js), Ruby,

Swift. Java (standalone, Processing and Android) is in progress and I plan to extend the

range of available languages in the future by implementing language-specific libraries

for C# (Unity), Scala and Python.

5.1.4 nutella components

The last layer in the “nutella architecture sandwich” is the components layer. As

described earlier, components (i.e. bots and user interfaces) encapsulate all the logic in

nutella applications and communicate among each other using the native-language

APIs provided by the nutella libraries. As highlighted by the diagram in figure 9,

components come in two slightly different flavors: framework components and user-

defined components. Framework components, as the name hints, are integrated with

the framework itself and provide a set of high-level features (e.g. access to location,

orchestration, logging…) to all nutella applications. These six framework components

are the “heart” of the nutella framework and I will cover each one of them in detail in

!70

section 5.2. User defined components, instead, are the way designers and developers

implement macroworld applications. Each component implements a portion of the

macroworld application and, together with framework components, they collectively

implement the desired functionality.

5.1.5 Framework core

With the macroworlds’ application logic distributed among actors, a crucial

capability of the architecture, besides allowing communication between actors, is the

ability to manage the components’ lifecycle. Starting and stopping them, generating

new actors and destroying them are tasks that are typically handled by “actors

supervisors” (Hewitt et al., 1973). In nutella, this role is handled by a “vertical” module

called framework core that spans across all layers of the architecture. The framework core

provides a command line utility and APIs that can be used by developers to generate

macroworld application skeletons, control and configure the runtime environment,

instantiate new actors from templates and perform other “support” tasks during the

development and enactment of macroworld applications.

5.2 framework components / macro-modules

As described earlier, framework components implement most of the high-level

features provided by nutella. Since each framework component typically comes with its

!71

own protocol extensions, and relative native-language library support, I am going to

call the framework component, protocol, and native-language implementation set a

macro-module. nutella comes with six macro-modules: RoomPlaces, RoomCast,

RoomRecorder, RoomComponents, RoomDebugger, and RoomMonitor.

• RoomPlaces is a classroom, physical space, and resources (i.e. devices) manager.

It provides developers of macroworlds with a GUI that they can use to add/remove/

edit devices used by their application and configure their location, including

automatic location tracking. It also provides a set of APIs that can be used to access all

information about resources’ location and the classroom spatial organization in real

time.

• RoomCast is a “cable TV system” for the classroom. Besides providing a way for

students and teachers to access a macroworld application, RoomCast allows

developers to create channels and channel packages (using a GUI) out of existing

visualizations and user interfaces. RoomCast allows developers (also via a GUI) to

configure which users are subscribed to which packages and store this information

inside a configuration. Many configurations can be used at the same time and can be

controlled using a mobile, “TV remote” app which can be operated by teachers.

• RoomRecorder is a distributed logging utility for macroworld applications. It

automatically records all messages that are exchanged between all the components of

a macroworld application and provides a mechanism to access and filter this

!72

information both in real-time and a-posteriori. Under the hood, RoomRecorder is

powered by a document-oriented database called MongoDB (www.mongodb.org).

• RoomComponents are a set of application components skeletons which can be

used by macroworld developers to speed up their development. They are accessible in

an online repository and any developer can contribute their component for others to

use. This also provides macroworld developers with a way of reusing and sharing

their work. At the moment of writing, there are 13 components in the repository.

• RoomDebugger is a debugging and testing GUI used by macroworld developers

to mock application components (bots and interfaces) during the development

process. This component is particularly useful to test the communication and

interaction among components in an application.

• RoomMonitor provides developers with a GUI to monitor macroworld

applications in real-time both during their development and enactment. Using

RoomMonitor, developers can be notified via email when issues with macroworld

applications arise. Moreover, RoomMonitor provides them with a way of

progressively “drilling down” from all applications, to a specific application, to a

specific instance of an application, to a specific component, helping them find the root

cause of issues whenever they happen.

!73

5.3 Macroworlds development process with nutella

The framework components described above, together with the rest of the nutella

framework, were designed to support a particular development process derived mostly

from my experience creating several macroworlds applications in the past seven years.

In this section I will go through each one of the phases in the development and

enactment processes of a macroworld application and show how each of the macro-

modules in the nutella framework provides selective support for developers engaged in

each one of these phases. In the next chapter, I will go into more detail and provide

specific examples of how nutella addresses the challenges described in chapter 3. The

overall development and enactment process enforced by nutella is depicted in figure 10.

5.3.1 Initial design

The first step in designing a macroworld application is to decide what to build.

Typically, this involves a set of brainstorming sessions and several iterations where the

design is progressively refined until it reaches a point where it is stable enough to start

implementing it. It is important to point out that the design and development processes

are tightly coupled and highly iterative. What is called initial design in figure 10 could

be as simple as a paragraph-long description of the macroworld together with a set of

ideas for its development.

!74

Figure 10. Steps involved in the construction and enactment of a macroworld
application using nutella. On the right, the name of the nutella macro-modules
supporting each step.

!75

5.3.2 Macroworld skeleton

During this phase, developers use the Command Line Interface provided by the

framework core module to create a skeleton of a macroworld application. However,

developers need to install the framework on their computer first. In order to do so, they

need to follow the instructions on the nutella website (http://nutella-

framework.github.io) to a) install all the software prerequisites (node.js. Ruby, Git, tmux

and MongoDB); b) download and install the framework using RubyGems (gem$install$

nutella_framework) and c) initialize it (nutella$checkup). Once developers successfully

complete this procedure they will be able to type the command nutella in their shell

and get a welcome message.

If nutella is already installed on their computers, developers only need to type

three shell commands (figure 11) to create a new macroworld application skeleton that

can then be customized and is immediately accessible via any web browser (figure 12).

Figure 11. Output of "nutella new" and "nutella start" commands. Using the nutella
framework core developers can create and start a nutella application skeleton with
few simple shell commands.

!76

5.3.3 Create user interface(s) and bots(s)

With an application skeleton ready to be customized, developers can move onto

the creation of user interfaces and bots. In my experience, most developers tend to start

Figure 12. nutella's main interface. This is the default interface for a new macroworld
application presented to developers. Developers can access almost all higher-level
functions provided by the framework using the buttons in the lower portion of the
interface. As new interfaces are added to the application they become automatically
accessible via this interface.

!77

with user interfaces but there is nothing in the framework preventing them to start from

bots. nutella treats both user interfaces and bots as components.

The first step a developer should take when creating a new component is to use

the repository of RoomComponents to see if someone else has already created a

component template that would simplify the component creation process. Most

RoomComponents provide some type of boilerplate code (in addition to the language

specific nutella library) which provides a way to kick-start the development, speeding

up the process of creating a new component. Examples of RoomComponents are, for

instance, web user interfaces built using a particular framework (such as Facebook’s

React.js), an iOS visualization, a Processing application, a simulated phenomenon, etc.

One of the main advantages of RoomComponents is that they don’t place any

restriction on the granularity of templates with some providing minimal support while

others can be fairly complex and complete. This provides developers with a flexible

array of components’ templates to choose from, reducing the amount of boilerplate

code they need to write and allowing them to focus on functionality instead. Once

developers have identified the right template they can install it in their nutella

application/project with a single command and start modifying it to fit their needs.

As describe earlier, components don’t exist in a vacuum but they all work

together to create a macroworld application. However, it can be challenging to test

communication among components when only some of them have been created. For

!78

this reason, nutella provides a tool (called RoomDebugger) to simulate and mock

components. Using this tool, developers can work on individual components and send/

receive mock messages in order to test their functionality in the larger application

context.

5.3.4 Configure space

Once developers have implemented and tested all the components in a

macroworld application (over the course of several hours, days or weeks), they need to

begin “packaging” it for students and teachers to use it. There are two steps in this

process and the first one is to configure the physical space and decide which resources

(i.e. devices) are needed for a particular application. RoomPlaces, and in particular the

RoomPlaces GUI (figure 13), are the tools used for this particular task. The process is

outlined in the diagram in figure 14 and it involves positioning stationary resources and

configuring mobile ones to broadcast their location changes.

5.3.5 Create channels and packages

Once the physical space of the classroom has been laid out, the last part of

getting a macroworld application ready to run in a classroom is to assign which

interfaces are going to be on which devices and to who. The process to do so involves a

series of sub-steps depicted in figure 14.

!79

Figure 13. RoomPlaces interface. The RoomCast interface has two portions. The
classroom map (top), where resources' location can be manipulated in real-time and
the devices list and configuration view (bottom), where developers can configure
parameters such as the type of resource, tracking mechanism and granularity. The
map shows the layout of resources for AquaRoom.

!80

This process involves creating sets of channels (i.e. interfaces), which I call

packages, and then associating these packages to users and resources/devices. This

Figure 14. Steps involved in the configuration of the classroom space using
RoomPlaces (left). This diagram is an "exploded view" of the box labeled “configure
space” in the diagram in figure 10. Steps involved in the creation of RoomCast
channels and packages (right). Performing these steps is necessary to "promote"
interfaces to channels so that they can be used by students and teachers in classrooms.

!81

decoupling of device, ownership of the device and content (which I call “late binding”

of content to devices and users) provides developers (and teachers) with a high degree

of freedom in terms of which content is accessed where. The ability of choosing at the

“last-second” which interface goes to a particular display is a critical capability for

developers and teachers to react to the volatility of the classroom environment, control

it and provide the capabilities outlined in chapter 3. Once these associations (called

configurations) are established, teachers can use a “classroom remote” tablet application

to switch between them and control the classroom.

5.3.6 Testing and classroom(s) deployment

Once a new macroworld application is ready to be deployed in real classrooms,

developers typically perform one or more complete system tests to verify its

functionality. Such tests are often performed in the laboratory where the application is

being developed and, after the setup has been completed at schools, a final smoke test is

performed in-situ to ensure the absence of basic problems that will prevent the

macroworld from working at all. In order to perform both laboratory testing and use in

classroom, a macroworld application needs to be deployed first. Developers can do so

by uploading it to a server (typically by cloning the code repository where the

application is) and starting it using the framework core. nutella is capable of starting

multiple instances of a single application, in order to support development/production

!82

setups and enable testing. The framework core also takes care of starting

RoomRecorder. This distributed logging system stores all messages that are exchanged

across all components in the macroworld. Developers can also write to the distributed

log explicitly using the nutella native-language libraries. This becomes useful whenever

students’ interactions need to be analyzed for research purposes or during testing to

discover the root cause of bugs.

While macroworld applications are running in the classroom, developers have

available to them RoomMonitor a GUI utility that allows them to monitor all

components in all applications running on a certain instance of nutella.

5.3.7 Data analysis

Once the classroom enactment is complete (or even while it is in progress

sometimes), researchers need to analyze the distributed application logs in order to

gather evidence supporting their research. In order to do so they can use RoomRecorder

APIs to filter and export data in different formats (JSON, CSV). I plan to develop a GUI

in the future to facilitate this process and allow researchers to “replay” arbitrary

sections of the logs in order to facilitate the complex logs sense-making process.

Chapter 6
Constructing and enacting macroworlds with nutella

In this chapter, I will describe how nutella can be used to build macroworld

applications. In particular, for each capability identified in chapter 3, I will show how

nutella implements it and how the framework features can be used to overcome many

of the challenges that arise during the construction and enactment of macroworlds. All

examples in this chapter use JavaScript / node.js.

6.1 Support multiple macroworld simulations types

nutella’s support of simulated, emulated and generated phenomena hinges

mainly on two features of the framework: the loose coupling between user interfaces

and bots and the use of RoomComponents. More specifically, in nutella, simulated

phenomena are implemented by a bot continuously updating the state of the simulation

and by a series of interfaces displaying portions of the simulation state in the classroom

and allowing students to manipulate it. Generated phenomena are similar, but students

use their movement as an input to the simulation. Emulated phenomena instead are

implemented with a bot that filters and adapts the data coming from the monitoring of

a remote phenomena (or historical data) and a series of user interfaces displaying

“slices”�of such data.

!83

!84

The decoupling between user interfaces and bots provided by nutella plays an

important role because, from an interface designer perspective, emulated and simulated

phenomena are equivalent. Data comes to the interface and needs to be displayed, no

matter where data comes from. The same is true for bots designers when looking at

simulated and generated phenomena bots. It doesn’t matter where the inputs to the

simulations come from (an interface, human movement, tangibles, etc.) they all look the

same to the simulation bot. These “equivalences” are important because they help

reduce the viability that developers need to face and contribute to simplifying their job.

While the decoupling plays a role in reducing the variability between the three

classes of macroworlds, RoomComponents play a similar role within each macroworld

class. Consider AquaRoom and RoomQuake. They are both simulated phenomena, but

their implementation of the simulation bot varies dramatically between the two. In

AquaRoom, developers need to constantly update the simulation based on students’

dyes injections. The simulation is interactive and the code will look something like this:

while$(true)${$
$processInput();$
$update();$
$produceOutput();$
}$

In RoomQuake, instead, after the quakes schedule for the whole unit is decided,

no action is needed by the bot other than storing such schedule and sending it to the

user interfaces that request it.

!85

These two simulated phenomena are examples of two different sub-classes of

simulated phenomena that I call active and passive phenomena. The way nutella

provides scaffolding for both is via RoomComponents. By providing templates (i.e.

RoomComponents) for both active and passive phenomena (in several programming

languages) developers that want to implement a new active phenomena bot can install

the appropriate RoomComponent in their macroworld application and then modify it to

their needs. Any nutella developer can publish their templates to the nutella

RoomComponents repository which enables the number of templates to grow with the

community. More on this in section 6.6.

6.2 Support leveraging of the physical space of the classroom

RoomPlaces is the module in the nutella framework that is devoted to handling

resources location and space. The module provides a series of tools to help developers

deal with the challenges that emerge when leveraging the physical space of the

classroom in macroworlds. In particular, the RoomPlaces focuses on supporting setting

and getting devices’ location within the classroom, at different granularities,

independently from the devices location-sensing and communication capabilities. To

enable this, this nutella module was designed around three central ideas: abstract the

different devices location sensing and network capabilities, define a unified model of location

and provide a consistent interface, across programming languages and devices, to access

!86

and manipulate location and spatial information about the classroom. In order to

demonstrate the capabilities of this module, I am going to present some examples.

First, there is the issue of dealing with resources location and different tracking

and location reporting systems. Some macroworlds, such as Participatory Simulations

and the Hunger Games, make use of automatic tracking systems that are able to detect

proximity of kids between each other and the proximity of kids to particular areas of the

classroom. Others, such as RoomQuake and HelioRoom, rely on manual measuring

procedures and the transcription of these measures into some sort of configuration file

or configuration Graphical User Interface. Finally, macroworlds such as AquaRoom,

rely on students’ self-reporting their location and transcribing such measures directly in

the interface provided to them. These three ways of specifying the location of a single

resource (automatic tracking, manual configuration, students’ self reporting) are all

handled by the nutella framework and, in particular, by the nutella.location APIs.

Before showing a real code example, I want to talk about a second issue that is

closely intertwined to the first one, that is the fact that different macroworlds require

different granularities of precision and coordinate systems when handling resources

location. In RoomQuake, for instance, students have to identify the position of a quake

with an (X, Y) coordinates pair on a 2D continuous space and the same is true for the

position of the seismographs. In AquaRoom, instead, the self-reported position of

sampling location is expressed in “battleship” coordinate pairs (e.g. A1, B4, G2) that are

!87

discrete. Finally, in WallCology, location of WallScopes is simply expressed in terms of

“hotspots” labeled with a name (e.g. Wall 1, Wall A…). Again, nutella provides a way of

handling all these different coordinate systems and allows them to be used at the same

time (with some resources using a continuous tracking system for instance and other

using the hotspot). For instance, if I wanted to set the location of a RoomQuake

seismograph in a continuous coordinate system in, I can simply do this with the

following two lines of code:

nutella.location.resource[seismograph_1].continuous.x$=$5.3$
nutella.location.resource[seismograph_1].continuous.y$=$.2$

Similarly, if I wanted to set the location of the portable drilling unit (where a

student is logged in as ‘alessandro’) in AquaRoom, we could simply use the discrete

coordinate system APIs like so:

nutella.location.resource[alessandro].discrete.x$=$A$
nutella.location.resource[alessandro].discrete.y$=$2$

Finally, if we wanted to set the location of a particular WallScope in WallCology

to be close to wall A I can do so by using the following API

nutella.location.resource[wallscope_1].proximity.rid$=$ wall_a

As demonstrated by this three examples the APIs for continuous, discrete and

proximity coordinate systems are roughly the same. What changes is simply the way

!88

they are invoked. In the Hunger Games, the proximity APIs are called by the tracking

systems which automatically detects the location of each kid, in RoomQuake and

HelioRoom the continuous APIs are called by a GUI that is used to configure the room

before the simulation starts (more on this later) and in AquaRoom, the discrete APIs are

called by the portable drilling unit itself, whenever a kid uses it to self-report its

location.

So far I talked about setting the location of a certain resource but not about

retrieving it. This gives me the chance to talk about another feature of RoomPlaces,

which is its ability to handle both resources that are both static and dynamic. In

RoomQuake, for instance, seismographs never change their location across the unit

(static resources) while, at the other end of the spectrum, kids are constantly moving in

the Hunger Games (dynamic resources). The reason this is important is because the way

the location of stationary and dynamic resources is accessed is different. Ideally, with

slow or never changing information (such as the location of static resources), it would

be better to be able to access it “as needed” while it would preferable to be notified

whenever new information is available in a rapidly-changing information source (such

as location in dynamic resources). Leveraging nutella’s native support for push and pull

communication strategies, it is possible to “register” to receive location updates for an

arbitrary set of dynamic resources like so:

nutella.location.resource[my_resources_group_id].notifyUpdate$=$true$

!89

It is then possible to register a callback function that will be fired every time a

location update is received. For stationary and mobile resources, it is also possible to

“query” for their location as follows:

nutella.location.resource[rid].proximity.rid$
nutella.location.resource[rid].proximity.continuous.x$
nutella.location.resource[rid].proximity.continuous.y$

RoomPlaces’s design, decoupling the setting and retrieval of location for each

resource, is the key to providing a homogeneous interface to locational information,

independently of the technology used underneath. In addition to simplifying the

development of applications today, this will allow developers to plug in different

tracking technologies in the future that are not yet available today.

RoomPlaces APIs also allow developers to store arbitrary key-value pairs for

each resource in the systems. This simplifies storage and retrieval of information that is

logically tied to physical devices. In the Hunger Games, for instance, each kid had an

iBeacon, stuffed inside a plush animal (i.e. their token), which they could used to forage.

If a developer wanted to associate how many calories a certain squirrel had

accumulated so far it could do so with the following line.

nutella.location.resource[my_squirrel].parameter[tot_calories]$=$115$

!90

Again, the APIs to set key-value pairs are consistent across languages and allow

developers to easily store and retrieve information tied to physical devices, even if these

devices are incapable of storing information themselves, such as iBeacons. This enables

a lot of scenarios where regular objects can be enriched with information in order to

quickly design applications where the same physical objects have different roles. For

instance, an iBeacon could be a squirrel in the Hunger Games while, at the same time, a

different one could be used by teachers as a control object (to lock a shared display for

instance).

Finally, as anticipated above, RoomPlaces provides a graphical user interface that

“wraps” the APIs described above and can be used to configure and monitor the

physical space of the classroom (figure 13).

6.3 Provide feedback during and after the enactment of macroworlds

nutella’s strategy to assist developers while creating user interfaces to provide

feedback to students, teachers, and researchers hinges on nutella’s communication

facilities, provided by the nutella native-language libraries and RoomRecorder. The first

one provides support mostly for real-time, push-pull messaging while the second one

provides support for batch, mostly a-posteriori aggregation. Together the two

implement an information distribution mechanism that allows developers to access

information wherever they need it and whenever they need it. This ability to freely

!91

distribute information across the various components of the framework was one of the

main design principles of nutella. For this the reason I like to call nutella an

“information everywhere” framework. In the next paragraphs, I will demonstrate with

some examples how this principle works in practice to assist developers in dealing with

specific challenges they face while designing macroworlds.

6.3.1 Providing feedback for students and teachers

Despite providing support for making data available to geo-spatial and semio-

spatial representations (and other types of user interfaces and visualizations used in

macroworlds), nutella doesn’t explicitly provide support for actually creating such

spatial representations. There are mainly two reasons for this. First, there is no reason to

re-invent the wheel. There is already a plethora of excellent tools and graphic libraries

(e.g. D3.js, Paper.js, Processing, etc.) to create a great variety of geo-spatial and semio-

spatial representations. Second, providing students with feedback via aggregate

representations of the data they collected so far requires representing application-

specific representations that are dependent from the science domain the application is

trying to support. A one-size-fits-all solutions for this problem doesn’t, unfortunately,

exist. With these two constraints in mind, nutella has been created to afford interface

designers an easy way to retrieve the data they need to display and to allow them to

focus on what they do best: create the interfaces and design the interaction.

!92

Consider take the aggregate representations of students’ seismograph reading in

RoomQuake discussed in chapter 3 (figure 2). The code necessary to retrieve the data

that needs to be displayed by the interface, including the real-time updates, is the

following (retrieved from https://github.com/ltg-uic/roomquake/blob/master/

interfaces/rq-aggregate-display/index.html#L203):

var$query_params$=$NUTELLA.parseURLParameters();$
var$nutella$=$NUTELLA.init(query_params.broker,$query_params.app_id,$$
$ query_params.run_id,$NUTELLA.parseComponentId());$

nutella.net.request("room_configuration",$'',$function(response)${$
$configureRoom(response);$
});$

nutella.net.request("observations",$'',$function(response)${$
$response.observations.forEach(function(e)${$
$addObservation$(e.seismograph,$e.p_arrival_time,$$ $ $ $
$ e.s_arrival_time,$e.max_amplitude,$e.sp_gap,$e.distance,$$ $
$ e.magnitude,$e.quake_time);$
$});$
});$

nutella.net.subscribe("new_observation",$function(e)${$
$addObservation$(e.seismograph,$e.p_arrival_time,$e.s_arrival_time,$$
$ e.max_amplitude,$e.sp_gap,$e.distance,$e.magnitude,$$$ $
$ e.quake_time);$
});$

nutella.net.subscribe(new_quake",$function(quake)${$
$wipeObservations();$
$ $setNextQuakeTime(quake.quakeTime);$
});$

After initializing nutella, developers request the room configuration (position of

seismographs, size, etc.) and the observations that have been entered by students

already. Then developers register listeners and callbacks for new observations (created

by students using the data collection interface showed in figure 1) and the observations

https://github.com/ltg-uic/roomquake/blob/master/

!93

wiping/quake change event that is generated by the teachers control panel. When a

new message is delivered to the “wipe_observation” channel, the registered callback

effectively providing developers with a mechanism to “push” data whenever it is

available. Also, whenever a messages is received, nutella takes care of parsing it so that

developers can access its content right away. This code should hopefully demonstrate

how straightforward it is to distribute and retrieve information using nutella and how

this could help interaction designers stay focused on the interaction design as opposed

to shuttling information.

6.3.2 Providing preferential feedback to teachers

Suppose now I wanted to enhance RoomQuake with a notification system for

teachers similar to the one created for WallCology and described in section 3.3.2 (figure

4). This system could compare the actual “quakes” generated by the simulation with the

data entered by the students and notify the teacher if there was a discrepancy between

the two. The logic for this system is easy enough that it could be implemented in the

user interface directly but, to be more modular, it is better to move it to a dedicated bot.

The code for this bot will look something like this:

//$skipping$nutella$initialization$$

var$currentQuake;$

nutella.net.request('current_quake',$'',$function(response){$
$currentQuake$=$response.currentQuake;$
});$

!94

nutella.net.subscribe('new_quake',$function(quake){$
$currentQuake$=$quake;$
});$

nutella.net.subscribe("new_observation",$function(obs)${$
varnotifications$=$compareWithCurrentQuake(obs);$
$nutella.net.publish('teacher_notifications',$notifications);$
});$

Again, the previous examples should demonstrate how nutella helps developers

focus on implementing the functionality without worrying about “low-level” details.

The code should be self-explicatory since it is very similar to the previous example. The

only difference is the use of nutella.net.publish to send notifications to the user

interface which is waiting for them.

6.3.3 Providing a-posteriori feedback to researchers

Researchers typically access macroworlds applications logs in batch during or

after macroworld enactments. Every time someone needs to access messages or logs in

a-posteriori and batch way, they must use RoomRecorder. This module in the nutella

architecture provides a set of APIs that allow any component in a macroworld

application to retrieve data, according to a set of specified arbitrary filters. In order to

understand how this works, consider the following example.

Suppose I was trying to create a web interface for researchers to download a

snapshot of the data from yesterday's enactment of RoomQuake (researchers are only

!95

interested in students’ observations, not the rest of the messages and logs). Researchers

need the data to be in CSV format so they can import and manipulate it in Microsoft

The code to interact with RoomRecorder and retrieve such data is the following:

//$Returns$theCSVfileURL
function$getYesterdayObservationsCSV()${$
varnow$=$moment();$
varyesterday$=$now.subtract(1,$'day');$
varfilter$=${$
$$$channels:$['new_observation'],$
$$$begin:$yesterday,$
$$$end:now
$};$
$return$nutella.net.filter(filter).asCSV();$
}$

After the function above executes developers will be able to take a URL and

paste into a web page for researchers to access. If developers need more complex

filtering (for instance over a series of intervals) or they are looking for specific patterns

within a channel (e.g. new observations about seismograph 1) they can still use the

nutella.net.filter function and simply pass different JSON patterns which will be used

by the RoomRecorder framework bot to filter the messages and logs.

6.4 Support classroom orchestration during the enactment of macroworlds

Despite the several attempts at supporting teachers as conductor of performances

described in chapter 3, more research is needed to better understand what kind of tools

are needed to help teachers orchestrate macroworld classroom activities during their

enactment. As a consequence, a one-size-fits-all approach won’t work when trying to

!96

support the construction and enactment of these tools. Nonetheless, nutella provides

two main facilities that can be used by developers (and sometimes directly by teachers)

to assist them in the creation of tools for macroworld classroom orchestration: the

RoomCast macro-module and a way to sandbox macroworld applications built into the

framework. The rest of this section presents four examples of the use of these tools.

6.4.1 Provide teachers with privileged access, control, and configuration over

macroworld simulations

As said earlier, each macroworld simulation is different. Therefore, designing

control interfaces for these simulations involves domain-specific knowledge that makes

it impossible for nutella to provide complete support to their design. However, similarly

to what happens for data-entry interfaces, nutella focuses on simplifying the process of

exchanging and distributing information across all components of the application.

nutella’s data everywhere approach to information is used by developers designing

simulations dashboards exactly in the same way it is used to design preferential

feedback mechanisms for teachers.

!97

6.4.2 Provide teachers with control over representational affordances, both public

and private

In order to facilitate the teacher during the process of control of representational

affordances, RoomCast provides them with a universal “remote” control for their

classroom. This remote consists of an iPad app that allows teachers to switch between a

set of pre-defined configurations. If I wanted to apply this to the RoomQuake example

in section 3.4.2 the teacher interface will look like figure 15. This interface automatically

reduces the size of each “configuration tile” to accommodate more configurations. In

Figure 15. RoomCast “classroom remote” teacher interface. This iPad application
provides teachers with a single control for all the macroworld devices and appliances
in the classroom. In this picture, the remote is configured to switch between demo and
schedule mode in RoomQuake.

!98

order to switch to a certain configuration, the teacher needs to hold his or her finger on

a configuration tile for three seconds. The rationale behind this choice is avoiding

accidental switches. This app might seem extremely simple and that is exactly the point.

Teachers enacting macroworld curriculum units rarely have time to look down at their

iPads while teaching and managing all the variables that characterize a macroworld

classroom. For this reason, I made the decision to leave the “online” interface provided

to teachers during classroom enactments simple and offload the complexity to the

“offline” configuration interfaces: the RoomPlaces channel creator and packages creator

(more on these later).

Any component in the application can of course register callback that are

triggered whenever there is configuration change.

nutella.cast.configurationChange(function(prev_config,$new_config){$
$//$Reacttochangeofconfiguration$
});$

Components can also actively query RoomCast for the current configuration at

any moment.

varcc=$nutella.cast.currentConfiguration$
//Usethe$configuration$value,cc

Using this simple mechanism, teachers can change the state of all components in

a macroworld with the single click of a button.

!99

6.4.3 Provide a way to adapt macroworld applications to the technologies available

in the classroom

In addition to providing teachers with control over the classroom affordances,

RoomCast is also the way nutella supports different technology setups in different

classrooms. RoomCast allows developers to associate interfaces, channels and packages

to physical devices allowing them to re-configure this mapping at any time and, if

necessary, in real time. The real-time component is especially important when dealing

with the daily disruptions that characterize the classroom environment. A kid forgot

their iPad, the projector in the room is broken, someone borrowed the laptop cart and

didn’t return it, all these are common occurrences in elementary school classrooms.

RoomCast provides a way to re-configure where something is seen by who. The tools to

do this are, as mentioned earlier, the RoomCast channel creator and package creator.

The RoomCast channel creator (figure 16) is used by developers to “promote” an

interface that they created to be used by students and teachers in classrooms. Each

channel is represented across all interfaces by a card with a name, an icon and a brief

description. Once the channel has been created it becomes available in the RoomCast

Package creator. RoomCast package creation is the interface responsible for creating

channels packages and configurations (figure 17). Packages are simply collections of

!100

channels identified by a name while configurations allow macroworld designers to store

more than one association of channels to packages.

Using the RoomCast native applications teachers and students can log-in on any

device in the room (iOS and OSX devices at the moment) and access the channels that

are associated to their identity (or to the identity of a particular device, for ambient

technology) at any time during the macroworld enactment. This decoupling of roles and

devices, called late binding, enables the same interfaces to be put on any device in the

room, provided that the interface was designed for that device and to account for

devices with different screen sizes and capabilities.

Figure 16. RoomCast channel creation interface (detail). Using this interface,
developers can "promote" interfaces to channels so that they can be used by teachers
and students. Each channel has a name, a description, a picture and a color icon that
identify it. Channels are represented with the metaphor of a card.

!101

Figure 17. RoomCast package creation interface. This interface is used by developers
create channel packages that are then associated to physical devices in the classroom
via late binding. The interface has two main sections: a channel catalog and a packages
configuration area.

!102

6.4.4 Provide support for different instructional organizations

The way nutella provides support for different instructional organizations is by

sandboxing applications and having built-in support to run multiple instances of the

same application. nutella allows all the following scenarios:

1. a single teacher with multiple classrooms each in their own room (rotating

teacher)

2. a single teacher with multiple classrooms, all sharing the same space but each

working on their separate macroworld (rotating classrooms)

3. a single teacher with multiple classrooms, all sharing the same space and all

working on the same macroworld (rotating classrooms)

4. a single teacher with multiple classrooms, all sharing the same space and

portions of the macroworld simulation (rotating classrooms)

nutella achieves this because the notion of multiple, concurrent instances of the

same application all running at the same time is built into the framework. In order to

achieve this, nutella uses a data multiplexing mechanism to isolate communications and

storage of data relative to a single instance of an application, called a run.

In order to enable developers to share components of a single macroworld

application across different runs (allowing, for instance, multiple classrooms to work on

the same phenomena but collect separate data) nutella has the notion of application

components. These special components are shared among all the instances of a single

!103

application escaping the data sandboxing mechanism used for regular components. In

order to mark a component as an application component, a developer needs to modify

the nutella.json file inside the macroworld application folder.

Here is how the previous four scenarios would be implemented in nutella:

1. Launch as many instances of the same application as there are classrooms.

Each instance will be isolated. User interfaces can run on different hardware or, if

necessary, on the same hardware (i.e. sharing tablets or laptops between

classrooms).

2. Launch as many instances of the same application as there are classrooms.

Each instance will be isolated. User interfaces run typically on the same hardware

unless students have personal devices, which is also supported.

3. Launch a single instance of an application and all students will work on it.

4. Launch as many instances of the same application as there are classrooms

and mark the components that are shared as application components so that they

can be shared among classrooms.

Each application is completely isolated from the others so the same server is

capable of serving multiple applications (and multiple instances of the same

application) at the same time.

!104

6.5 Support interoperability with other learning technologies

nutella’s support for integration with other technologies begins with the choice

of technologies and data formats. The choice of open source, ubiquitous technologies

makes low-level integration statistically easier because no matter what system nutella is

integrating with, the chance is high that the system will be using compatible

technologies. At a higher level, nutella’s strategy for integration is based on the fact that

“everything is a component”. Any software loading the native-language nutella library

can act as a nutella component. The only difference between these external components

and the components native to a macroworld application is the fact that they can't benefit

from the component lifecycle management offered by the nutella framework core. Apart

from that, they can interact and benefit from all the APIs and functionalities provided

by the nutella library described above.

6.6 Provide support for “non-functional” capabilities

nutella provides two separate tools to allow developers to diagnose and inspect

components and macroworld applications: RoomDebugger and RoomMonitor.

RoomDebugger is simply a debugging, testing and components mocking tool

that basically provides a Graphical User Interface for nutella.net methods (figure 18).

Developers can use this interface to send and receive messages to any component in an

!105

application in order to debug and test communications. RoomDebugger is mostly

intended as a tool to be used by developers during the creation of macroworlds.

The twin tool of RoomDebugger that should be used by developers during the

enactment of macroworlds in classrooms is RoomMonitor (figure 19). This tool provides

a graphical visualization of the health of all the components in a macroworld

application. It allows macroworld application developers to subscribe to components

failures with different levels of granularity (component, instance, application) and be

notified in real-time via email. Using the very same interface developers can also drill

down to the component level and investigate what type of failure occurred by looking

at the messages exchanged by components and sending “probe” messages to the

Figure 18. RoomDebugger interface (detail). This interface enables developers to
inspect and mock components while developing new macroworld applications. The
detail in the picture shows how it is possible to publish and subscribe to arbitrary
channels.

!106

Figure 19. RoomMonitor interface (details). This interface enables developers to
monitor macroworld applications during their enactment. The main view (top)
provides a dynamic and interactive visualization of all the components within an
application and the communication among each other (white lines). Developers can
subscribe to failures at different granularities using a modal (middle) and can debug
and troubleshoot by inspecting/sending messages to various components (bottom).

!107

components or to other components.

In addition to these two tools to inspect and debug macroworld applications

nutella is built with reuse and sharing in mind. As described earlier, components are the

basic building blocks of macroworlds applications and nutella applications are simply

collections of components stored inside a directory with a pre-defined structure and a

nutella.json file describing some properties of the application. This organization of

nutella applications in a pre-defined way has been inspired by a very popular web

applications framework, Ruby on Rails, and it is a classic example of convention over

configuration. According to O’Brien et al. (2010), this software design principle dictates

that “Systems, libraries, and frameworks should assume reasonable defaults. Without

requiring unnecessary configuration. Systems should ‘just work’.” The idea behind this

software design principle is to reduce the amount of decisions a developer needs to

make to “get going”, allowing them to focus their cognitive skills on the task at hand

instead of the minutiae of the implementation. In nutella, having a standard directory

structure for a project makes it easier for developers to orient themselves and share

entire applications knowing that other developers will know how to navigate them.

The use of convention over configuration in nutella doesn’t stop at the

application level: components are also organized in the same way. Since components are

organized in a standard way, developers can share them with each other facilitating

reuse. Moreover, since the standard to create components is also publicly available, any

!108

developer can turn any piece of software that already exists into a nutella component

and use it inside their application. To further simplify this sharing process I built a

repository of components that can be installed simply referring to the component with

their (unique) name. Besides the convenience of a quick installation process, the

repository can be browsed and searched in order to simplify the discovery of

components whenever they are needed.  

Chapter 7
Early experiences with nutella

This chapter tells the story of how the nutella developers community grew over

the past year. As developers were joining the community, they contributed their

expertise and feedback and helped improve the design and implementation of nutella.

The growth of the community can be divided into three main phases, each described by

a section in this chapter. For each one of these phases, I will describe the state of nutella

at that particular point in time, summarize the events that happened during the

development phase and outline the lesson learned by interacting with developers

engaged with nutella and the rest of the community.

7.1 Building RoomQuake with nutella

Despite the fact that it leverages work done over the past 6 years, the current

version of nutella has been developed over the past year (June 2014, May 2015). In

particular, during the first four months of development (June 2014, October 2012), I

focused on implementing a working prototype of the system. During this time, I

completed work on a first version of the nutella protocol, APIs, native-language

libraries and the framework core.

!109

!110

During the first three weeks of November 2014 I, together with another

developer and a designer, used nutella to develop RoomQuake, a 12-week-long

curriculum unit on seismology and earthquakes. RoomQuake was the first, fully

working, nutella application. It was composed of 5 interfaces and 2 bots which, taken

together, implemented the macroworld application. In the previous chapters, I already

described the students’ data collection interface (figure 1), the interface used to visualize

and interact with the aggregate representation of these observations (figure 2) and the

interface used to control and orchestrate the whole unit (figure 6, 7). In addition to these

three interfaces, a simulated seismograph interface was designed and implemented

(figure 20) together with a score calculator interface used to determine how close

students were in their estimates of the epicenter, magnitude and time of a certain quake.

Figure 20. RoomQuake seismograph interface.

!111

The backend portion of RoomQuake was implemented by two separate bots. The

first one was dedicated to handling the simulation portion of the macroworlds (i.e.

storing and managing the quakes schedule) while the second one was dedicated to

storing and accessing student’s observations.

7.1.1 Lesson learned

RoomQuake was enacted in three fifth-grade classrooms over a period of 12

weeks. During this time, nutella proved extremely reliable from a connectivity,

communication and uptime point of view. This confirmed the reliability of the

technologies nutella is based upon and the effectiveness of the nutella API layer design.

Moreover, three people were able to collaborate on the same application and each work

on separate components which were then integrated almost without change. This gave

me confidence that the underlying design decision to organize macroworld applications

as sets of components was helping collaboration.

Notably, the version of nutella used to build and enact RoomQuake didn’t have

any of the high-level framework components and macro-modules (i.e. RoomCast,

RoomPlaces…) yet. This was addressed in the following development phase.

!112

7.2 Building nutella’s macro-modules

In December 2014, two developers (computer science graduate students) joined

the nutella development team and began work on two of its macro-modules:

RoomPlaces and RoomCast. They worked on nutella for 6 months (Dec 2014-May 2015).

In January, nutella was also used in the CS 422, User Interface Design class by a group

of three students (including one of the two developers mentioned above). The group

contributed another component to the framework (RoomMonitor) over the course of

four months (January 2015, April 2015). The nutella development team completed the

design of all higher-level framework components during first four months of 2015.

During this second phase of development, as a team, we adopted an agile

software development methodology called SCRUM (Schwaber, 2004). According to this

methodology, the development of a new software system is broken down into a series of

two to four week-long iterations called sprints (two weeks-long in the case of nutella).

Each sprint is a time-boxed development effort that aims at implementing a restricted

set of features and deliver, at the end of the iteration, a working product that could

potentially be shipped. The methodology is particularly indicated to guide the

development of software with fast-changing or ill-defined requirements.

Two of the staples of SCRUM are the sprint retrospective meeting and the project

retrospective meeting (or post-mortem meeting) which happen at the end of each sprint and

at the end of the project respectively. Both these events provide the opportunity for the

!113

development team to “inspect itself” and create a plan for improvements to be enacted

during the next sprint or project. During these meetings, participants often have, readily

available, the products of their work and the project documentation (such as the

finished product, code commits, code documentation, emails, meeting notes, etc.) in

order to assist their recollection (Wohlin et al., 2003).

While working on high-level components the team “talked” to the language

specific APIs and the lower level components of the framework a lot, strengthening and

refining their design. In particular, the issues that were identified during a spring would

be discussed during the sprint retrospective meetings and a plan to address them was

drafted accordingly.

7.2.1 Lesson learned

One of the best examples of improvements in the low-level nutella APIs

triggered by an unexpected need that arose while developing higher-level components

is what we called framework-run communication. nutella’s communication APIs were

originally developed to support self-contained applications and to enable its

components to exchange information as described in the previous chapter. In this

model, messages can be addressed to components by simply calling them by name.

However, with the introduction of framework level components, the need for a different

way of addressing components arose. The problem was that, for framework level

!114

components, span across multiple applications and, therefore, they need to have a

mechanism that enables them to select a particular component in a particular

application and not simply a component.

This, in conjunction with application-level components, created a complex three-

layer communication system that underwent complete re-design in order to make it

approachable for end-users of the framework. Our solution was to use an hierarchical

organization of these “communication” levels so that only framework-level components

can explicitly address run-level components (i.e. the components used normally by

developers of macroworlds applications). This way we were able to encapsulate the

complexity at level of the framework that are only accessible to framework maintainers.

7.3 Building macroworlds with nutella during a three-day hackathon

In mid-May 2015 the framework reached a level of stability that allowed its

development team (5 people at this point) to open it up to a selected group of 3

developers for an external evaluation. The evaluation of software by its users has a long

tradition in the discipline of software engineering. As suggested by Davis (1995), the

best way to assess what software users really need is to give them a “working system”

and let them carry out “authentic tasks” using the system. However, as pointed out by

the author himself, this methodology is often impractical due to the demanding

!115

requirements on the amount of resources and time it imposes. This methodology is

particularly challenging if the system is still in the early stages of development.

To circumvent the limitations of the methodology outlined above, software

engineers have long used software prototyping (Brooks, 1975) and iterative software

development (Larman & Basili, 2003) as a way of evaluation of software in its early

stages. More recently, with the software engineering community embracing qualitative

methods for their empirical studies (Seaman, 1999), hackathons have become

significantly more popular, especially in the industry, as a way of collecting user

feedback during the early phases of development of frameworks (e.g. Schreiner et al.,

2015) and software systems in general (Raatikainen et al., 2013).

A hackathon (a portmanteau of the words "hack" and “marathon”) refers to an

event where small groups of developers (and sometimes UX designers, project

managers and other involved in software development) participate in an intensive

software prototyping activity for a limited amount of time (typically from a day up to a

week). The goal of a hackathon varies, but hackathons are often organized around a

specific topic, such as the programming language used by the participants, a particular

software framework, API or type of application developed.

The structure of hackathons varies, but this type of events usually starts with

some presentations introducing the technologies and the event itself. Then participants

propose ideas or choose from a pool of available ideas and organize into teams. The

!116

main phase of the hackathon involves teams rapidly prototyping their ideas. The

outcome of this phase is typically working software that is demonstrated to other

participants (and sometimes spectators) at the end of the event. Often hackathons

involve a competition element where a panel of judges select the winning teams and

awards them a prize.

Hackathons are appealing as a way of evaluating software by its users because

they provide a “realistic, efficient, and effective means of holistically testing the

ecosystem including technical details but especially the overall design and developer

experience” (Raatikainen et al., 2013) and a way to perform what Jackson et al. (2013)

call tutorial-based assessment, a technique used to provide a pragmatic evaluation of

usability of software “as is”. Moreover, hackathons proved to be a good trade-off

between the amount of resources needed and the authenticity of the evaluation where

small teams get to build working prototypes while at the same time collaborating and

learning from each other as a community of practice (Lave & Wenger 1991). People get

to build the full system and, therefore, exert the whole framework. They have to work

collectively and support each other like a real community.

As described earlier, developing and enacting a macroworld application is a

complex process that involves a number of actors in addition to developers (such as

researchers, designers, teachers, students) and lasts typically a few months. Similarly to

the larger software engineering community, I reached the conclusion that evaluating

!117

nutella by closely following a group of professional developers using the framework to

build and enact a or more real macroworld applications is not appropriate at this stage

of the development process. Therefore, in order to gather feedback on the viability of

nutella as a framework to build and enact macroworlds, I turned my attention

hackathons.

7.3.1 nutella hackathon

The event itself was organized into three separate days. During the first day, the

facilitator helped the participants install the framework on their machines and provided

training to teach them how to use nutella to build a macroworld. During the second day

participants selected from a set of proposed macroworld applications ideas, organized

into teams and began building their application. The third day was devoted to more

coding and building and, at the end of the day, teams presented and enacted their

application for other participants acting as teachers and students.

Participants were selected based on set of pre-requisites:

• Participants needed to bring a laptop with OS X or Ubuntu installed on them, a

text editor and make sure they had internet connectivity.

• At the moment, nutella supports only JavaScript and Swift as interface

languages and Ruby and JavaScript/node.js as bots languages. Participants needed to

be familiar with at least one interface and one bot language.

!118

• Familiarity with the Unix shell, git, and Github definitely helps was strongly

encouraged as well as a little knowledge of the Ruby programming language and its

ecosystem (i.e. gem, RVM).

A total of three participants attended the hackathon. All the participants are

seasoned developers with four years of experience designing and creating learning

technologies applications. They all had been exposed to macroworlds before and

participated in projects where they needed to at least interact with a macroworld

simulation. In particular, one of the participants had prior experience building

macroworld simulations such as the Hunger Games and HelioRoom. In terms of their

programming languages knowledge, the first two participants considered themselves

JavaScript developers while the third considered himself equally proficient in

JavaScript, Objective-C/Swift and Java.

7.3.1.1 Day one

The first activity of the first day was an “install-fest” where the facilitator helped

the participants install nutella and all its pre-requisites on their laptops. At the end of

this activity, all participants were able to type the nutella command in their shells and

successfully see a welcome message. The goal of this activity was to smooth entry

barriers into the framework and to “level the playing field” among the participants.

Even with the right pre-requisite knowledge, while installing the framework many

!119

potential roadblocks could arise, preventing participants from successfully participate

in the hackathon. Being able to install nutella is not a measure of its viability its just a

measure of its adaptability, how streamlined the installation process is and how

complete and clear the documentation is.

The predicted length of this activity was a couple of hours, but one participant

was able to complete the activity, mostly by himself, even before starting the hackathon.

Another participant was able to complete the setup process, assisted by the facilitator, in

35 minutes while the last one, which started with a brand new laptop, was able to

complete the setup process (including installing all the pre-requisite software) in a little

under an hour.

After lunch, the facilitator guided the participants through and interactive

training session (i.e. tutorial) that took them from an empty macroworld application to a

fully working application, created using nutella. Training started by recapping what

macroworld applications are and the typical process that drives their development and

enactment. After the facilitator gave this brief introduction, it allowed each participant

to proceed at their own pace following the online tutorial (https://github.com/nutella-

framework/docs/blob/master/getting_started/tutorial_1.md) and inviting

participants to ask questions whenever they needed help or clarification. The predicted

length of this activity was the whole afternoon and the estimate proved to be accurate.

!120

At the end of the day, facilitator and participants engaged in a 30 minutes discussion

aimed at gaining feedback and first impressions from the participants.

7.3.1.2 Day 2

The day started with the facilitator dividing the participants into two teams, a

two-participants and a single participant one, and distributing to each one of them an

“initial design” for a macroworld application. The two-people team was assigned to the

implementation of a simplified version of AquaRoom. Here is the “initial design“

specification that they received:

AquaRoom is a simulated macroworld where students take on the role of
hydrogeologists with the task of mapping a subterranean aquifer system
(mapped to their classroom floor plan) and to use this information to
decide where to locate a new chemical plant within the “local community”
to minimize potential environmental impacts. In order to accomplish this
task, students “inject tracer dyes” and “obtain water samples” using a
portable tablet-based “drilling unit." Students can only inject dyes and
take samples at certain locations in their classrooms were there are “wells”
that provide access to the underlying aquifers. Wells are strategically
arranged in a grid pattern which can be indexed using the tiles on the
room’s drop ceiling. Test tubes, enhanced with iBeacons serve as
simulated dye sources and sample repositories. Students “inject” dyes by
walking with their tablet drilling unit and dye-filled test tube to a well and
using the tablet interface to confirm their injection. “Water samples” are
subsequently collected in a similar fashion, and tested for the presence of
dyes using a simulated spectrometer represented by a shared desktop
computer. To analyze a sample, students walk to the simulated
spectrometer with the sample, put their sample in the “analysis chamber”,
click analyze and read the results of their sampling on the screen. The
injection of a dye followed by sampling allows students to establish the
presence of an aquifer, the direction and rate of flow, which are marked on
a collective classroom map.

!121

The one-person team was assigned to the implementation of an emulated

macroworld that replayed pictures of animals captured using camera-trap technology.

Here is the “initial design“ specification the team received:

In ClassroomSafari students are tasked with studying the wildlife of the
savannah co-occupying the physical space of their classrooms. Students
do so by placing food patches and “camera traps” at specific locations in
their classroom. These virtual camera traps work like their real-life
counterparts and take a burst of pictures (usually with 1 second interval
between them) whenever “motion” is detected. When a virtual creature
forages at a certain patch, the camera trap at that patch is activated.
Camera traps are represented by ambient displays (i.e. iMacs, laptops)
that display the pictures in real-time, as soon as they are taken. The
interesting part of this macroworld is that the pictures displayed by the
ambient affordances in the classroom are part of a data set of real camera-
trap pictures taken, over the course of three weeks, in the context of an
actual population-ecology study in Kenya. In addition to the simulated
camera-trap interface, ClassroomSafari provides a dashboard interface
where it is possible for the teacher to view the whole data set on a time
line and choose which portion of it to “replay” in their classrooms.
Teachers can choose arbitrary time intervals in the original pictures
sequence and replay them, compressed or extended, in their classroom.
Intervals between pictures are automatically adjusted, maintaining the
correct proportions among them, by the ClassroomSafari simulation
engine.

After receiving their “assignments,” participants were encouraged to ask

clarifying questions. Developers in both groups were also encouraged not to worry

about implementing the whole design but to proceed from the most to the least critical

functionalities, based on their judgment. Participants spent the rest of the day working

on their macroworld application prototypes. Similarly to day one, the facilitator invited

participants to proceed independently and ask whenever they were stuck, had

!122

questions or needed clarification. The facilitators also encouraged participants to help

each other out, sharing their expertise and their work. These conditions were meant to

simulate the working environment participants are used to operate in: small teams

working on independent projects but often collaborating with each other.

7.3.1.3 Day 3

The majority of the third day was dedicated to allowing participants complete

the coding of their macroworld prototype. At the end of the day, each of the two teams

did a short demo of their macroworld application to other participants acting as

“teachers” and “students”. At the end of this activity, the facilitator and the participants

engaged in an hour-long discussion where participants were asked, once again, to share

their opinion and feedback on the framework.

7.3.3 Results

All the participants in the hackathon were able to successfully use nutella to

create a macroworld application prototype. As described earlier, the development and

enactment processes of a macroworld application can be broken down into a series of

steps. These steps, and the tools that nutella provides to support them were covered in

the day-one tutorial and subsequently applied by developers while creating their

macroworld application, as demonstrated by the artifacts that they produced. All

!123

developers were able to move their application through all the steps that characterize

the lifecycle of a nutella application (figure 10).

The AquaRoom prototype macroworld application contained two interfaces

(figure 21) and one bot. Interfaces were simple web GUIs but they implemented the

basic functionality of dye injection / sampling (portable drilling unit interface) and

sample analysis (spectrometer). The ClassroomSafari application instead was composed

of one bot and one interface. The bot was in charge of replaying, over a specified time

interval, a set of camera traps pictures while the interface was in charge of displaying

the images sent to it.

7.3.3.1 Support multiple macroworld simulations types

During the hackathon participants implemented two different macroworld

simulations types: a simulated (AquaRoom) and an emulated (ClassroomSafari) one.

Developers in each team used the same RoomComponent (active_simulation_js_bot)

to scaffold the development of bots in both macroworlds. The ClassroomSafari group

used the event loop provided by the bot in order to constantly look for pictures to send

and actually send them to the appropriate display at the right time. Developers of the

AquaRoom prototype didn’t use the event loop because they didn’t have enough time

to implement the logic that models the water flow in the aquifers underneath the

classroom since they focused on different elements of the macroworld simulation.

!124

Figure 21. AquaRoom prototype built by hackathon participants (details). Two
hackathon participants were able to build a simple AquaRoom prototype with two
interfaces and a bot. Using the first interface (top) developers could inject dyes into the
simulated aquifer and take samples. Using the second interface (bottom) they could
perform an analysis of the water samples and confirm or reject the presence of a dye.

!125

7.3.3.2 Support the leveraging of the physical space of the classroom

Both macroworld prototypes developed during the hackathon made intensive

use of RoomPlaces. AquaRoom developers leveraged RoomPlace’s discrete tracking

mode to create the grid of wells used by kids to perform injections and samplings. For

each tile in the grid, developers positioned an iBeacon into it to enable the portable

drilling unit to detect which well the students are working on.

The ClassroomSafari group used RoomPlaces to define the location of virtual

camera traps and food patches. After some discussion with the facilitator, the group

decided to use RoomPlaces’s hotspot tracking mode to assign a unique identified to

each camera trap that was then subsequently used in the simulation code to uniquely

identify each ambient display.

7.3.3.3 Provide feedback during and after the enactment of macroworlds

During the hackathon, due to the restricted amount of time available to them,

participants focused on the design and implementation of the “scientific phenomena

simulation” portion of their macroworld prototypes. As a consequence, neither group

created a data entry interface for students and/or an aggregate interface to provide

feedback to them. However, the communication and “data everywhere” APIs used to

build this kind of interfaces are exactly the same that are used to build the simulation

portion of the macroworld prototype. Therefore, even if the communication APIs

!126

weren’t explicitly leveraged to build data collection and feedback interfaces, they were

still leveraged to build simulation interfaces and visualizations. Particularly interesting

is the fact that ClassroomSafari made extensive use of nutella’s “binary

communication” capabilities which provide a set of simplified APIs the facilitate the

exchange of non-textual messages between components.

Moreover, developers experimented briefly with the logging and filtering APIs at

the end of the demo enactment on day 3. They collectively tried to create a report for an

imaginary researcher interested in looking at AquaRoom data and, in particular, at

patterns in dye injections and sample taking. Participants achieved this by accessing the

collection of all messages automatically stored by RoomRecorder and filtering this

collection by channel using the appropriate nutella APIs.

7.3.3.4 Support classroom orchestration during the enactment of macroworlds

Similarly to what has been reported in the previous section, there was no

opportunity to leverage all the capabilities provided by nutella in this area. However, all

the participants were able to run more than one instance of their macroworld

prototypes, simulating a scenario where multiple classes are using separate instances of

the same application at the same time.

There was also no opportunity to leverage the RoomCast “room remote” iPad

app due to some bugs and code signing issues. However, participants successfully used

!127

RoomCast to create channels for the interfaces they designed and then to assemble

those channels into packages. Developers were also able to exercise some “late binding

capabilities” by running the interfaces they created on each others laptop and by

accessing such interfaces also with their phones. Since none of the teams decided to

create native iOS applications, participants didn’t have the opportunity to test

RoomCast’s support for this type of interfaces.

7.3.3.5 Support interoperability with other learning technologies

Even if developers didn’t have the opportunity to make their macroworld

prototypes interact with an external application, they demonstrated to understand the

“everything is a component” strategy behind it as demonstrated by the following verbal

exchange during the hackathon.

Participant: So all I have to do is import the nutella library, configure
nutella, create a nutella variable with it and boom I can use it. Then my
app is just a nutella component. Oh that’s brilliant! Oh but I guess then I’ll
have to run it myself right?
Facilitator: Yes, that is correct.
Participant: Ah but that’s good because that way I can run it in my server
and the app can talk to the broker on your side. Ok, that makes sense.

7.3.3.6 Provide support for “non-functional” capabilities

RoomDebugger was heavily used by all hackathon participants and praised as

one of the best features of the whole framework since it allowed developers to mock

!128

components, inspect and debug issues with inter-components communications.

Participants also demonstrated interest for RoomMonitor but, besides looking at the

interface briefly during their own AquaRoom demo, they didn’t have the opportunity

to test the full set of features that RoomMonitor offers to developers. Participants also

commented that, even if the interface seemed to be very promising and useful, it was

hard to evaluate it over a short period of time and since its best use case is for long

running, real-world macroworld enactments when, sometimes, components crash for

unexpected reasons.

7.3.4 Lesson learned

Through the whole duration of the hackathon, participants maintained a positive

opinion of nutella. In particular, developers were impressed by the framework’s

communication facilities and its ease of use. No major flaws were pointed out by the

participants although they discovered and highlighted a number of minor bugs. Often,

participants created Github “tickets” on the spot for the bugs they discovered and some

of those issues have already been addressed by the framework developers.

The most interesting outcome of the hackathon, at least from the point of view of

the framework designers, is the fact that participants pointed out a series of concerns

that they would like to see addressed, together with some features that they thought

were missing in nutella. In particular, three main concerns emerged.

!129

Participant felt that the persistence APIs provided by nutella weren’t as polished

and functional as the communication APIs, or other portions of the framework. As

pointed out by one of the participants:

“we had some trouble with syncing up our projects over Github - again,
this was mostly a data storage issue, and not too hard to solve”

These issues with the persistence layer were caused by a rushed design decision

of the framework author. nutella has been designed to keep each separate instance of

the framework self-contained. The reason for this was to provide developers with a way

of keeping a developing environment on their machines and a production environment

on some publicly accessible, remote server. Unfortunately, the consequence of this

decisions is that data is bound to nutella and not to the application itself, which caused

synchronization problems when two developers tried to collaborate on the same

application. This issue didn’t emerge while working on RoomQuake because

developers were collaborating directly on the production instance of nutella, which

caused this issue to remain latent. Fortunately, this can be easily addressed by allowing

developers to specify where a certain macroworld application should store data.

However, this is not possible at the moment in nutella and, as pointed out by

hackathon participants, this should be also address. nutella developers should address

this and other scalability and security concerns. In particular, right now nutella relies on

a single broker and database, which must reside on the same host. Providing a way for

the database and the broker to be separate and their access, password protected or

!130

somehow authenticated are necessary next steps to make nutella available to a bigger

community where such concerns are of primary importance.

Third, participants lamented how, sometimes, the “debugging” capabilities of

nutella were not adequate to their needs. As pointed out by two developers during the

hackathon

“Another point of problems might be the fact that nutella does certain
things and it takes a bit of digging and learning to understand what they
do and how to trouble shoot them. For example, sometimes a [framework]
bot dies off and it is not right away visible that the bot died nor why the
bot crashed.”

“Weakness: Notifications that your [framework] bot and or instance failed
or stopped. Many times I ran into the problem of an unresponsive app
that was caused by the server crashing.”

Both comments above refer to the fact that framework bots lacked a proper

logging mechanism, frustrating developers’ attempt of debugging them. Again, this is

the result of a superficial design decision of the framework author. The (incorrect)

assumption that lead to such decision was the fact that framework bot should have been

stable enough not to need a proper logging mechanism. Unfortunately, this proved

false, and forced developers to use a cumbersome work-around to verify the framework

bots were operating properly. Luckily, this issue is also easy to address by leveraging

the distributed logging mechanism provided by nutella (RoomRecorded).

Chapter 8
Conclusion, limitations and future work

The work presented in this dissertation focused on macroworlds, a learning

technology that provides engaging ways for students to “experience”�and interact with

classroom-sized simulations of scientific phenomena. In this context, this research

identified five application-level affordances of macroworlds and the corresponding

capabilities that they impose on technologies powering these learning environments. A

software framework (called nutella) implementing the capabilities described earlier was

designed and implemented. Finally, this dissertation reported on some early

experiences of developers using and building the framework. The outcome of these

experiences provides some early evidence to support nutella’s viability as a tool to

support the construction and enactment of macroworld applications.

Despite being designed explicitly to support the construction and enactment of

macroworlds, nutella could be adapted and reused in different domains and

environments, such as at-home entertainment and work-related applications in office

environments. The reason for this is that, at its core, nutella con be seen as a “distributed

simulation engine”. Exactly like nutella can power scientific phenomena simulations it

could as well power simulations of war rooms, cockpits and, in general, any

applications that requires distributed cognition�(Hutchins, 1995). Similarly, it is possible

to envision scenarios where a scientific phenomena simulation is replaced by fiction or

!131

!132

narrative and the classroom space is replaced by a living room or even a full house. As

one of the nutella contributors pointed out:

“Finally, even if the framework is specifically meant to be used in the
context of the classroom and for learning technologies applications, I can
foresee a much wider range of projects which could leverage the power
and simplicity of nutella in many other domains.”

There are of course some limitations to the types of simulations and narratives

that can be experienced with nutella. Some of these limitations are technical limitations

that are “inherited” from the technologies nutella is based upon. As an example, the

choice of MQTT as the main communication protocol, which is in turn implemented on

top of TCP/IP and Websockets, imposes limitations on the latency of messages. This

imposes limitations on the speed of synchronization of two components. In addition to

technical limitations, the framework still assumes a certain degree of supervision by

developers. For instance, if one of the bots crashes teachers need to rely on developers

to bring it back up. Ideally, macroworld applications should be as easy to install in a

classroom as app on an iPad but that is not possible with the current state of the

framework. Again, this kind of issues is typical of software in its infancy and will

certainly be addressed as the development progresses.

Moreover, as pointed in the previous paragraph and by several subjects during

the hackathon, nutella is still under development and it needs polishing in several

areas. In addition to bug fixing, and addressing the issues pointed out by the

developers’ community, the nutella development team is already working to implement

!133

new features to improve the accessibility and usefulness of the framework. One of the

first things we are going to focus on is implementing nutella libraries in more languages

in order to lower the entry-barrier for even more developers. Moreover, we would like

to incorporate different tracking technologies (e.g. Microsoft Kinect) and increase our

support for more native platforms and operating systems (e.g. Android, Windows). We

would also like to simplify the framework installation process, the distribution of

macroworld applications and provide better authoring tools so that students and

teachers could, eventually, start editing and creating new macroworld applications.

From a research point of view, nutella is ready for a more formal evaluation “in

the wild”. This will require the framework being used to create and enact a real

macroworld application and enact it in real-world classrooms. We are working to make

this happen in late-Summer/Fall 2015 since the Learning Technologies Group and

EncoreLab will be working with the framework to implement a new iteration of the

WallCology macroworld.

REFERENCES

Aarts, E., Harwig, R., & Schuurmans, M. (2001). Chapter ‘Ambient Intelligence’. The
Invisible Future: The Seamless Integration Of Technology Into Everyday Life, McGraw-
Hill Companies.

Åkesson, K. P., Bullock, A., Rodden, T., Koleva, B., & Greenhalgh, C. (2002). A toolkit for
user re-configuration of ubiquitous domestic environments. Companion to
Proceedings of UIST 2002.

Ashton, K. (2009). That ‘internet of things’ thing. RFiD Journal, 22, 97-114.

Bakker, S., van den Hoven, E., Eggen, B., & Overbeeke, K. (2012, February). Exploring
peripheral interaction design for primary school teachers. In Proceedings of the
Sixth International Conference on Tangible, Embedded and Embodied Interaction (pp.
245-252). ACM.

Bakker, S., Van Den Hoven, E., & Eggen, B. (2013, February). FireFlies: physical
peripheral interaction design for the everyday routine of primary school
teachers. In Proceedings of the 7th International Conference on Tangible, Embedded and
Embodied Interaction (pp. 57-64). ACM.

Barchetti, U., Bucciero, A., Benedittis, T., Macchia, F., Mainetti, L., & Tamborino, A.
(2009, July). MoWeT: A Configurable Framework to Support Ubiquitous
Location-Aware Applications. In Ubiquitous, Autonomic and Trusted Computing,
2009. UIC-ATC'09. Symposia and Workshops on (pp. 75-82). IEEE.

Benford, S., Crabtree, A., Flintham, M., Drozd, A., Anastasi, R., Paxton, M., ... & Row-
Farr, J. (2006). Can you see me now?. ACM Transactions on Computer-Human
Interaction (TOCHI), 13(1), 100-133.

Benford, S., Flintham, M., Drozd, A., Anastasi, R., Rowland, D., Tandavanitj, N., ... &
Sutton, J. (2004). Uncle Roy All Around You: Implicating the city in a location-
based performance. Proc. Advances in Computer Entertainment (ACE 2004), 21, 47.

Benford, S., Magerkurth, C., & Ljungstrand, P. (2005). Bridging the physical and digital
in pervasive gaming. Communications of the ACM, 48(3), 54-57.

Bereiter, C., and Scardamalia, M. (1989). Intentional learning as a goal of instruction. In
L. Resnick (Ed), Knowing, Learning, and Instruction (pp. 361-392). Hillsdale, New
Jersey: Lawrence Erlbaum Associates.

!134

!135

Bielaczyc, K., & Collins, A. (1999). Learning communities in classrooms: A
reconceptualization of educational practice. Instructional-design theories and
models: A new paradigm of instructional theory, 2, 269-292.

Blackstock, M., Kaviani, N., Lea, R., & Friday, A. (2010, November). MAGIC Broker 2:
An open and extensible platform for the Internet of Things. In Internet of Things
(IOT), 2010 (pp. 1-8). IEEE.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn. Washington,
DC: National Academy Press.

Branton, C., Ullmer, B., Wiggins, A., Rogge, L., Setty, N., Beck, S. D., & Reeser, A. (2013,
June). Toward rapid and iterative development of tangible, collaborative,
distributed user interfaces. In Proceedings of the 5th ACM SIGCHI symposium on
Engineering interactive computing systems (pp. 239-248). ACM.

Bronsted, J., Hansen, K. M., & Ingstrup, M. (2010). Service composition issues in
pervasive computing. Pervasive Computing, IEEE, 9(1), 62-70.

Brooks, F. P. (1975). The mythical man-month (Vol. 1995). Reading, MA: Addison-Wesley.

Brown, A. L., & Campione, J. C. (1996). Psychological theory and the design of innovative
learning environments: On procedures, principles, and systems. Lawrence Erlbaum
Associates, Inc.

Buschmann, F. (2010). Featuritis, Performitis, and Other Diseases. IEEE software, 27(1),
10-11.

Cheverst, K., Davies, N., Mitchell, K., Friday, A., & Efstratiou, C. (2000, April).
Developing a context-aware electronic tourist guide: some issues and
experiences. In Proceedings of the SIGCHI conference on Human factors in computing
systems (pp. 17-24). ACM.

Chi, M. T., Roscoe, R. D., Slotta, J. D., Roy, M., & Chase, C. C. (2012). Misconceived
causal explanations for emergent processes. Cognitive science, 36(1), 1-61.

Clancey, W. (1997). Situated Cognition: On Human Knowledge and Computer
Representations. Cambridge, MA: Cambridge University Press.

Clark, A. (1997). Being There: Putting Brain Body and World Together Again. Cambridge,
MA: MIT Press.

!136

Cober, R., Fong, C., Gnoli, A., Silva, B. L., Lui, M., Madeira, C., ... & Tissenbaum, M.
(2012). Embedded Phenomena for Knowledge Communities: Supporting
complex practices and interactions within a community of inquiry in the
elementary science classroom. In Proceedings of the 10th International Conference of
the Learning Sciences (Vol. 2, pp. 64-71).

Colella, V., and Borovoy, R. (1997, December). Adding a Thin Layer of Computation to
Face-to-Face Collaboration. Presented at the Computer Supported Collaborative
Learning Conference (CSCL). Toronto, Ontario.

Colella, V. (2000). Participatory simulations: Building collaborative understanding
through immersive dynamic modeling. The Journal of the Learning Sciences, 9(4),
471-500.

Curry, E. (2004). Message-oriented middleware. Middleware for communications, 1-28.

Davis, A. M. (1995). Software prototyping. Advances in computers, 40, 39-63.

Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012, February). Social coding in GitHub:
transparency and collaboration in an open software repository. In Proceedings of
the ACM 2012 conference on Computer Supported Cooperative Work (pp. 1277-1286).
ACM.

Dillenbourg, P., & Jermann, P. (2010). Technology for classroom orchestration. In New
science of learning (pp. 525-552). Springer New York.

Dourish, P. (2004). Where the action is: the foundations of embodied interaction. MIT press.

Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). Taking Science to
School: Learning and Teaching Science in Grades K-8. National Academies Press.

Enyedy, N., Danish, J. A., Delacruz, G., & Kumar, M. (2012). Learning physics through
play in an augmented reality environment. International Journal of Computer-
Supported Collaborative Learning, 7(3), 347-378.

Erbad, A., Blackstock, M., Friday, A., Lea, R., & Al-Muhtadi, J. (2008, March). Magic
broker: A middleware toolkit for interactive public displays. In Pervasive
Computing and Communications, 2008. PerCom 2008. Sixth Annual IEEE
International Conference on (pp. 509-514). IEEE.

Fischer, F., & Dillenbourg, P. (2006). Challenges of orchestrating computer-supported
collaborative learning. Paper presented at the 87th Annual Meeting of the American
Educational Research Association (AERA), San Francisco, California, USA.

!137

Garlan, D., Siewiorek, D. P., Smailagic, A., & Steenkiste, P. (2002). Project aura: Toward
distraction-free pervasive computing. Pervasive Computing, IEEE, 1(2), 22-31.

Glenberg, A. (1997). What memory is for. Behavioral and Brain Sciences 20, 1-55.

Glenberg, A. (1999). Why Mental Models Must Be Embodied. In Mental Models in
Discourse Processing and Reasoning, Rickheit, G. and Habel, C. (eds). New York:
Elsevier.

Gnoli, A. (2012) Connecting teachers with information in real-time, embodied, whole-
class, collaborative inquiry. Presented at 10th International Conference on Learning
Sciences (Sidney, Australia, July 2 - 6, 2012). ICLS 2012.

Gnoli, A., Perritano, A., Guerra, P., Lopez, B., Brown, J., & Moher, T. (2014). Back to the
future: embodied classroom simulations of animal foraging. In Proceedings of the
8th International Conference on Tangible, Embedded and Embodied Interaction (pp.
275-282). ACM.

Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino, R., & Wang, M. (2011).
Proxemic interactions: the new ubicomp?. interactions, 18(1), 42-50.

Greenhalgh, C. (2002, July). EQUIP: An extensible platform for distributed
collaboration. In The Second Workshop on Advanced Collaborative Environments.

Greenhalgh, C., Izadi, S., Mathrick, J., Humble, J., & Taylor, I. (2004). A Toolkit to
Support Rapid Construction of Ubicomp Environments. Proceedings of UbiSys.

Gresalfi, M.S., Barab, S., Siyahhan, S., & Christensen, T. (2009). Virtual worlds,
conceptual understanding, and me: Designing for Critical engagement. On the
Horizon 17(1), 21-34.

Grimm, R. (2004). One. world: Experiences with a pervasive computing architecture.
IEEE Pervasive Computing, (3), 22-30.

Guo, B., Fujimura, R., Zhang, D., & Imai, M. (2012). Design-in-play: improving the
variability of indoor pervasive games. Multimedia Tools and Applications, 59(1),
259-277.

Gutierrez, L., Nikolaidis, I., Stroulia, E., Gouglas, S., Rockwell, G., Boechler, P., ... &
King, S. (2011, March). far-play: A framework to develop augmented/alternate
reality games. In Pervasive Computing and Communications Workshops (PERCOM
Workshops), 2011 IEEE International Conference on (pp. 531-536). IEEE.

!138

Gutierrez, L., Stroulia, E., & Nikolaidis, I. (2012). fAARS: a platform for location-aware
trans-reality games. In Entertainment Computing-ICEC 2012 (pp. 185-192).
Springer Berlin Heidelberg.

Gutiérrez, L. A. G. (2012). The FAARS Platform: For Augmented Alternate Reality Services
and Games (Master thesis, University of Alberta).

Han, S. W., Yoon, Y. B., Youn, H. Y., & Cho, W. D. (2004, May). A new middleware
architecture for ubiquitous computing environment. In Software Technologies for
Future Embedded and Ubiquitous Systems, 2004. Proceedings. Second IEEE Workshop
on (pp. 117-121). IEEE.

Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., & Jansen, E. (2005). The
gator tech smart house: A programmable pervasive space. Computer, 38(3), 50-60.

Hewitt, C., Bishop, P., & Steiger, R. (1973, August). A universal modular actor formalism
for artificial intelligence. In Proceedings of the 3rd international joint conference on
Artificial intelligence (pp. 235-245). Morgan Kaufmann Publishers Inc.

Humble, J., Crabtree, A., Hemmings, T., Åkesson, K. P., Koleva, B., Rodden, T., &
Hansson, P. (2003, January). “Playing with the Bits” User-configuration of
Ubiquitous Domestic Environments. In UbiComp 2003: Ubiquitous Computing (pp.
256-263). Springer Berlin Heidelberg.

Hutchins, E. (1995). Cognition in the Wild. MIT press.

Jackson, M., Crouch, S., & Baxter, R. (2013). Software Evaluation Guide. Software
Sustainability Institute.

Jarvis, T., & Pell, A. (2005). Factors influencing elementary school children's attitudes
toward science before, during, and after a visit to the UK National Space Centre.
Journal of research in science teaching, 42(1), 53-83.

Johnson, M. L. (1987). The body in the mind: The bodily basis of meaning, imagination, and
reason. Chicago University Press.

Kollar, I., Fischer, F., and Slotta, J. D. (2007). Internal and external scripts in computer-
supported collaborative inquiry learning. Learning & Instruction, 17(6), 708-721.

Krasner, G. E., & Pope, S. T. (1988). A description of the model-view-controller user
interface paradigm in the smalltalk-80 system. Journal of object oriented
programming, 1(3), 26-49.

!139

Krajcik, J. S., & Berg, C. (1987). Exemplary software for the science classroom. School
Science and Mathematics, 87(6), 494-500.

Larman, C., & Basili, V. R. (2003). Iterative and incremental development: A brief
history. Computer, 36(6), 47-56.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation.
Cambridge university press.

Lee, C., Nordstedt, D., & Helal, S. (2003). Enabling smart spaces with OSGi. Pervasive
Computing, IEEE, 2(3), 89-94.

Lindgren, R., & Johnson-Glenberg, M. (2013). Emboldened by Embodiment Six Precepts
for Research on Embodied Learning and Mixed Reality. Educational Researcher,
42(8), 445-452.

Lindt, I., Ohlenburg, J., Pankoke-Babatz, U., & Ghellal, S. (2007). A report on the
crossmedia game epidemic menace. Computers in Entertainment (CIE), 5(1), 8.

Lui, M., & Slotta, J. D. (2013). Exploring Evolutionary Concepts with Immersive
Simulations. In Proceedings of the 10th International Conference on Computer
Supported Collaborative Learning (pp. 304-311). ISLS.

Lui, M., & Slotta, J. D. (2014). Immersive simulations for smart classrooms: exploring
evolutionary concepts in secondary science. Technology, Pedagogy and Education,
23(1), 57-80.

Luyten, K., & Coninx, K. (2005). Distributed user interface elements to support smart
interaction spaces. In Multimedia, Seventh IEEE International Symposium on (pp. 8-
pp). IEEE.

Machado, C., Silva, E., Batista, T., Leite, J., & Yumi Nakagawa, E. (2013, October).
Architectural elements of ubiquitous systems: A systematic review. In ICSEA
2013, The Eighth International Conference on Software Engineering Advances (pp.
208-213).

Marquardt, N., Diaz-Marino, R., Boring, S., & Greenberg, S. (2011, October). The
proximity toolkit: prototyping proxemic interactions in ubiquitous computing
ecologies. In Proceedings of the 24th annual ACM symposium on User interface
software and technology (pp. 315-326). ACM.

Moher, T., Hussain, S., Halter, T., & Kilb, D. (2005). RoomQuake: embedding dynamic
phenomena within the physical space of an elementary school classroom. In

!140

CHI'05 Extended Abstracts on Human Factors in Computing Systems (pp. 1665-1668).
ACM.

Moher, T. (2006). Embedded phenomena: supporting science learning with classroom-
sized distributed simulations. In Proceedings of the SIGCHI conference on Human
Factors in computing systems (pp. 691-700). ACM.

Moher, T. (2008, June). Learning and participation in a persistent whole-classroom
seismology simulation. In Proceedings of the 8th international conference on
International conference for the learning sciences-Volume 2 (pp. 82-90). International
Society of the Learning Sciences.

Moher, T., Uphoff, B., Bhatt, D., López Silva, B., & Malcolm, P. (2008). WallCology:
Designing interaction affordances for learner engagement in authentic science
inquiry. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 163-172). ACM.

Moher, T., Wiley, J., Jaeger, A., Silva, B. L., Novellis, F., & Kilb, D. (2010, June). Spatial
and temporal embedding for science inquiry: an empirical study of student
learning. In Proceedings of the 9th International Conference of the Learning Sciences-
Volume 1 (pp. 826-833). International Society of the Learning Sciences.

Moher, T., Novellis, F., Lopez Silva, B., Gnoli, A. (2012). Embodied science practices in
hybrid spaces. In O. Smortal (Chair), Hybrid spaces for science learning: New
demands and opportunities for research. In Proceedings of the 10th International
Conference of the Learning Sciences. ISLS.

Novellis, F., & Moher, T. (2011). How real is 'real enough'?: designing artifacts and
procedures for embodied simulations of science practices. In Proceedings of the
10th International Conference on Interaction Design and Children (pp. 90-98). ACM.

O’Brien, T., Moser, M., Casey, J., Fox, B., Zyl, J., Redmond, E., & Shatzer, L. (2010).
Maven: The Complete Reference. Online Book.

Penuel, W. R., Roschelle, J., Crawford, V., Shechtman, N., & Abrahamson, L. (2004).
Advancing Research on the Transformative Potential of Interactive Pedagogies
and Classroom Network. In Workshop Report, SRI International and Better Education
Foundation.

Peppler, K., Danish, J., Zaitlen, B., Glosson, D., Jacobs, A., & Phelps, D. (2010, June).
BeeSim: leveraging wearable computers in participatory simulations with young

!141

children. In Proceedings of the 9th International Conference on Interaction Design and
Children (pp. 246-249). ACM.

Perez de Almeida, R. A., Blackstock, M., Lea, R., Calderon, R., do Prado, A. F., &
Guardia, H. C. (2013, September). Thing broker: A twitter for things. In
Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing
adjunct publication (pp. 1545-1554). ACM.

Price, S., Rogers, Y., Scaife, M., Stanton, D., & Neale, H. (2003). Using ‘tangibles’ to
promote novel forms of playful learning. Interacting with computers, 15(2),
169-185.

Raatikainen, M., Komssi, M., Dal Bianco, V., Kindstom, K., & Jarvinen, J. (2013, July).
Industrial Experiences of Organizing a Hackathon to Assess a Device-centric
Cloud Ecosystem. In Computer Software and Applications Conference (COMPSAC),
2013 IEEE 37th Annual (pp. 790-799). IEEE.

Raychoudhury, V., Cao, J., Kumar, M., & Zhang, D. (2013). Middleware for pervasive
computing: A survey. Pervasive and Mobile Computing, 9(2), 177-200.

Rodden, T., Crabtree, A., Hemmings, T., Koleva, B., Humble, J., Åkesson, K. P., &
Hansson, P. (2004, August). Between the dazzle of a new building and its
eventual corpse: assembling the ubiquitous home. In Proceedings of the 5th
conference on Designing interactive systems: processes, practices, methods, and
techniques (pp. 71-80). ACM.

Rodríguez-Domínguez, C., Benghazi, K., Noguera, M., Garrido, J. L., Rodríguez, M. L.,
& Ruiz-López, T. (2012). A communication model to integrate the request-
response and the publish-subscribe paradigms into ubiquitous systems. Sensors,
12(6), 7648-7668.

Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R. H., & Nahrstedt, K.
(2002). Gaia: a middleware platform for active spaces. ACM SIGMOBILE Mobile
Computing and Communications Review, 6(4), 65-67.

Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R. H., & Nahrstedt, K.
(2002). A middleware infrastructure for active spaces. IEEE pervasive computing,
1(4), 74-83.

Roschelle, J., & Pea, R. (2002). A walk on the WILD side: How wireless handhelds may
change computer-supported collaborative learning. International Journal of
Cognition and Technology, 1(1), 145-168.

!142

Rummel, N., and Spada, H. (2005). Learning to collaborate: An instructional approach to
promoting collaborative problem-solving in computer-mediated settings. Journal
of the Learning Sciences, 14(2), 201-241.

Salber, D., Dey, A. K., & Abowd, G. D. (1999, May). The context toolkit: aiding the
development of context-enabled applications. In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems (pp. 434-441). ACM.

Scardamalia, M., & Bereiter, C. (1994). Computer support for knowledge-building
communities. The journal of the learning sciences, 3(3), 265-283.

Scardamalia, M., and Bereiter, C. (2003). Knowledge building environments: Extending
the limits of the possible in education and knowledge work. In A. DiStefano, K.E.
Rudestam, & R. Silverman (Eds.), Encyclopedia of distributed learning. Thousand
Oaks, CA: Sage Publications.

Schreiner, M., Rädle, R., Jetter, H.-C., & Reiterer, H. (2015). Connichiwa: A Framework
for Cross-Device Web Applications. In Proceedings of the 33rd Annual ACM
Conference Extended Abstracts on Human Factors in Computing Systems (pp. 2163–
2168). New York, NY, USA: ACM. doi:10.1145/2702613.2732909

Schwaber, K. (2004). Agile project management with Scrum. Microsoft Press.

Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering.
Software Engineering, IEEE Transactions on, 25(4), 557-572.

Sibley, B. A., & Etnier, J. L. (2003). The relationship between physical activity and
cognition in children: a meta-analysis. Pediatric Exercise Science, 15(3), 243-256.

Sintoris, C., Yiannoutsou, N., Ortega-Arranz, A., López-Romero, R., Masoura, M.,
Avouris, N., & Dimitriadis, Y. (2014, November). TaggingCreaditor: A tool to
create and share content for location-based games for learning. In MLCIOS:
Special Session" Mobile Learning in Cultural Institutions and Open Spaces",
IMCL2014.

Slotta, J. D., & Aleahmad, T. (2009). WISE technology lessons: Moving from a local
proprietary system to a global open source framework. Research and Practice in
Technology Enhanced Learning, 4(02), 169-189.

Slotta, J. D., Aleahmad, T., & van Joolingen, W. (2009, June). Toward a technology
community in the learning sciences. In Proceedings of the 8th International
Conference on Computer Supported Collaborative Learning, Vol.2 (pp. 12-14). ISLS.

!143

Slotta J D and Najafi H (2010), Knowledge Communities in the Classroom. In Penelope
Peterson, Eva Baker, Barry McGaw, (Eds), International Encyclopedia of Education.
Volume 8, pp. 189-196. Oxford: Elsevier.

Sørensen, H., & Kjeldskov, J. (2013, December). Moving Beyond Weak Identifiers for
Proxemic Interaction. In Proceedings of International Conference on Advances in
Mobile Computing & Multimedia (p. 18). ACM.

Streitz, N. A., Geißler, J., Holmer, T., Konomi, S. I., Müller-Tomfelde, C., Reischl, W., ... &
Steinmetz, R. (1999, May). i-LAND: an interactive landscape for creativity and
innovation. In Proceedings of the SIGCHI conference on Human Factors in Computing
Systems (pp. 120-127). ACM.

Streitz, N. A., Tandler, P., Müller-Tomfelde, C., & Konomi, S. I. (2001). Roomware:
Towards the Next Generation of Human-Computer: Interaction based on an
Integrated Design of Real and Virtual Worlds. Human-Computer Interaction in the
New Millenium, Addison Wesley, 551-576.

Strong, W. B., Malina, R. M., Blimkie, J. R., Daniels, S., Dishman, R., Gutin, B., ... &
Trudeau, F. (2005). Physical activity recommendations for school-age youth. J
Pediatr, 146, 732-737.

Tandler, P. (2001, January). Software infrastructure for ubiquitous computing
environments: Supporting synchronous collaboration with heterogeneous
devices. In Ubicomp 2001: Ubiquitous Computing (pp. 96-115). Springer Berlin
Heidelberg.

Thompson, M., & Moher, T. (2006). HelioRoom: Problem-solving in a whole class visual
simulation. In Proceedings of the 7th international conference on Learning sciences (pp.
1000-1001). International Society of the Learning Sciences.

Tissenbaum, M., & Slotta, J. D. (2015). Scripting and Orchestration of Learning Across
Contexts: A Role for Intelligent Agents and Data Mining. In Seamless Learning in
the Age of Mobile Connectivity (pp. 223-257). Springer Singapore.

Varshavsky, A., & Patel, S. (2009). Location in ubiquitous computing. Ubiquitous
computing fundamentals, 285-320.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes.
Harvard university press.

Weinberger, A., Ertl, B., Fischer, F., and Mandl, H. (2005). Epistemic and social scripts in
computer- supported collaborative learning. Instructional Science, 33, 1–30.

!144

Weiser, M. (1991). The Computer for the 21st Century. Scientific American, 265(3), 94-104.
DOI:10.1038/scientificamerican0991-94

Winn, W.D. (2003). Learning in artificial environments: Embodiment, embeddedness
and dynamic adaptation. Technology, Instruction, Cognition and Learning 1, 87-114.

Wohlin, C., Höst, M., & Henningsson, K. (2003). Empirical research methods in software
engineering. In Empirical methods and studies in software engineering (pp. 7-23).
Springer Berlin Heidelberg.

Yang, H., Jansen, E., Helal, A., & Mann, W. (2006). An IDE for programmable pervasive
spaces based on a context-driven programming model. 4th IEEE Intl. Conference
on Pervasive Computing and Communications.

Yau, S. S., Karim, F., Wang, Y., Wang, B., & Gupta, S. K. (2002). Reconfigurable context-
sensitive middleware for pervasive computing. IEEE Pervasive Computing, 1(3),
33-40.

VITA

Name: Alessandro Gnoli

Education: B.S., Computer Science, Politecnico di Milano, Milan, Italy, 2006
M.S., Computer Science, Politecnico di Milano, Milan, Italy, 2008
M.S., Computer Science, University of Illinois at Chicago, Illinois,
2009
Ph.D, Computer Science, University of Illinois at Chicago, Illinois,
2015

Professional American Education Research Association
membership: Association for Computer Machinery

Institute of Electrical and Electronics Engineers
International Society of the Learning Sciences

Professional Graduate Research Assistant
experience: Computer Science Department, Learning Technologies Group

January 2008 - May 2015

Graduate Research Assistant
Learning Sciences Research Institute, Digital Literacy project
January 2010 - May 2010

Teaching Assistant, CS 440 Software Engineering
Spring semester 2010

Teaching Assistant, CS 335 Computer Ethics
Spring semester 2009

Publications: Moher, T. Slotta, J. Acosta, A. Gnoli, A. … Perritano, A. (2015)
Knowledge Construction in the Instrumented Classroom: Supporting
Student Investigations of Their Physical Learning Environment. In
Proceedings of the 11th International Conference on Computer Supported
Collaborative Learning (pp. 631-638). ISLS

Gnoli, A. Perritano, A. Guerra, P. Lopez, B. Brown, J. Moher, T. (2014)
Back to the Future: Embodied Classroom Simulations of Animal

!145

!146

Foraging. In Proceedings of the 8th International Conference on Tangible,
Embedded and Embodied Interaction (pp. 275-283). ACM.

Gnoli, A. Moher, T. (2013) Providing Teachers With Real-Time Feedback
on the Fidelity of Science Practice. Paper presented at the Annual
Conference of the American Educational Research Association (San Francisco,
CA, April 27 – May 1, 2013). AERA 2013.

Smørdal, O. Slotta, J. Krange, I. Moher, T. Novellis, F. Gnoli, A. Silva, B.
L. Lui, M. Jornet, A. Jahreie, C. F. (2012) Hybrid spaces for science
education. In Proceedings of the 10th International Conference on Learning
Sciences (Sidney, Australia, July 2 - 6, 2012). ICLS 2012.

Cober, R. Fong, C. Gnoli, A. Silva, B. L. Lui, M. Madeira, C. McCann, C.
Moher, T. Slotta, J. Tissenbaum, M. (2012) Embedded Phenomena for
Knowledge Communities: Supporting complex practices and
interactions within a community of inquiry in the elementary science
classroom. In Proceedings of the 10th International Conference on Learning
Sciences (Sidney, Australia, July 2 - 6, 2012). ICLS 2012.

Gnoli, A. (2012) Connecting teachers with information in real-time,
embodied, whole-class, collaborative inquiry. Accepted at Doctoral
Consortium of the 10th International Conference on Learning Sciences
(Sidney, Australia, July 2 - 6, 2012). ICLS 2012.

Madeira, C.A. Gnoli, A., Messina, R. (2012) Fostering an adaptive nature
for Teacher Practice: Technology Supports in a Co-Design Community.
Paper presented at the Annual Conference of the American Educational
Research Association (Vancouver, BC, April 13 - 17, 2011). AERA 2012.

Slotta J., Tissenbaum. M, Lui M., Alagha I, Burd E., Higgins S., Mercier
E., Fischer F., Pilz F., Kollar I., Moher T., Gnoli A., Jaeger A., Wiley J.,
López Silva B., Evans M., Motto A., Brunger A., Crider J., Wilkins J.
(2011) Embedding CSCL in Classrooms: Conceptual and Methodological
Challenges of Research on New Learning Spaces. In Proceedings of the 9th
International Conference on Computer-Supported Collaborative Learning
(Hong Kong, China, July 4 - 9, 2011). CSCL 2011.

Moher, T., Slotta, J., & Gnoli, A. (2011). Embedded phenomena:
Rethinking technology support for complex collaborative activity

!147

structures in classrooms. Paper presented at the Annual Conference of the
American Educational Research Association (New Orleans, LA, April 8 - 12,
2011). AERA 2011.

Jaeger, A., Moher, T., Wiley, J., Malcolm, P., López Silva, B., Gnoli, A., and
Brown, J. (2009). WallCology: Using Embedded Phenomena to Motivate
Learning About Dynamic Ecosystems. Paper presented at the Annual
Conference of the American Educational Research Association (San Diego,
CA, April 13 - 17, 2009). AERA 2009

