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SUMMARY

Integrated optics has been seen as the next generation of network and processor technology.

It provides advantages such as higher performance, increased bandwidth and speed, more com-

pact size, lower coupling losses, lower package cost and lower power consumption. However, the

research slowly paves its way with limited progress. The difficulty are such but no limited to

the complexity of material system for photonics, the fabrication precision limits, the quantum

mechanical limits, etc.. Enormous efforts and approaches have been contributed to the build-

ing blocks of integrated optics. This dissertation contributes to developing one building block

of integrated optics through a new interpretation of the Goos-Hänchen shift that resulted in

the first grating structures that potentially display a high signal to noise ratio to enable many

applications.

In this dissertation, an innovative approach to describe and implement the Goos-Hänchen

Shift theory and application in the nano photonics area is presented. The Goos-Hänchen shift is

an optical phenomenon in which linearly polarized light experiences certain lateral shift under

total internal reflection (TIR). The theory to explain Goos-Hänchen (GH) shift has under-

gone a long time to mature and is still ongoing. The discussion resulted in mathematical and

physical aspects which are the stationary phase and evanescent wave penetration approach,

respectively. However, problems showed up for the validity to extend the understanding of

negative GH shift, which is theoretically predicted and was experimentally observed in recent

years. Hence, it brought renewed interests in realization and theoretical understanding of the

xii



SUMMARY (Continued)

negative shift property, particularly with the study of resonance features such as surface plas-

monic resonance and metamaterial (a negative permittivity or permeability material realized

by the electromagnetic resonance concept). Besides these two approaches, this thesis discusses

another approach using dielectric gratings to realize giant negative or positive GH shift taking

advantage of the guided mode resonance (GMR). Theoretical analysis of the physical property

of GH shift will be presented to understand the giant and negative anomaly from a energy flow

point of view. Further, implementation of GH shift to the nonlinear optical phenomenon stabil-

ity is discussed for optical switch applications. The application of the guided mode resonance

includes controlling the dispersion of a waveguide in order to stop optical signal flow, which

will be presented in this dissertation.

The thesis is organized in the following: Chapter 1 provides an introduction of the GH

shift and current trends in research; Chapter 2 describes the details of guided mode resonance;

in Chapter 3, negative or positive and giant GH shift realization based on the guided mode

resonance is presented; followed by Chapter 4 exhibits application to the optical bistability

phenomenon; Chapter 5 demonstrates another application of the giant negative GH shift to

achieve broad spectrum light signal trapping, the “trapped rainbow” and Chapter 6 concludes

this thesis and discusses the future of further study.

xiii



CHAPTER 1

INTRODUCTION

When a light beam experiences total internal reflection (TIR), instead of being immediately

reflected back, it shifts along the interface at a certain distance. The displacement between the

incidence and reflection point is a striking discrepancy with the prediction of geometric optics

that light beams are supposed to bounce back directly. Such a lateral displacement between

the centers of the incident and reflected beams is called Goos-Hänchen shift, named after its

discoverers Hermann Fritz Gustav Goos and Hilda Hänchen in 1947 (1).

One year after the discovery of the Goos-Hänchen shift, Artmman proposed an explanation

of such a phenomenon based on an argument of stationary phase (2). He explained that the

displacement was due to angular components of the beam experiencing different phase loss at

the reflection and he formulated a mathematical expression according to the phase loss. This

theoretical work also predicted the different responses for parallel and perpendicular polariza-

tions. Goos and Hänchen then conducted another measurement and verified the polarization

dependence in 1949 (3). Artmman’s theory was further proven by Wolter in 1950 in good

agreement with measurement (4). In addition to the mathematical interpretation, Burke has

provided a straight forward model introducing the concept of penetration depth (5). It explains

the phenomenon as the beam could penetrate into the lower refractive index media for a cer-

tain depth and then be reflected back. Such penetration increases the optical path in the low

refractive index media while appearing on the interface as the Goos-Hänchen shift.

1
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The Goos-Hänchen shift has since attracted interests for several decades with considerable

amount of efforts focused toward a better understanding of the underlying physical principle,

and gained renewed attention in recent years when plasmonic materials and metamaterials

were analyzed for implementations in the next generation of nano-processor technology. Goos-

Hänchen shift is generally considered as a small position leap forwards due to the delay of the

center of a Gaussian beam. However, a negative Goos-Hänchen shift was discovered specifically

in the studies of plasmonic and metamaterial surfaces (6; 7; 8). Up to now, the concept has been

extended from a small positive shift to giant negative and positive shifts. The condition also

has been relaxed from total internal reflection to partial reflection. Sensor schemes based on

the Goos-Hänchen shift have been proposed and led to applications in thermal, biomechanical

sensoring and wavelength monitoring, etc. The sensitivity of these sensors has a direct relation

to the strength of the Goos-Hänchen shift. Hence, for achieving a large Goos-Hänchen shift

results in a realistic verification. However, plasmonic or metamaterial have a considerable ohmic

loss at the optical frequency which results in a trade-off between the amount of Goos-Hänchen

shift and reflectivity. Larger Goos-Hänchen shift values always lead to smaller reflectivity and

thus a greater loss of signal to noise ratio. On the other hand, a limited extent of lateral

displacement would cost more sensitivity of the optical position sensor. This thesis provides

a solution to this still unresolved issue by replacing the metalic material with dielectrics. In

the thesis, a one dimensional periodic dielectric grating was designed as a “metasurface”being

a function of metamaterials, of which the grating provides the abnormal reflection phase loss

that only metamaterial does. It can achieve positive and negative Goos-Hänchen shift while
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maintaining the reflectance as 100% based on the Guided Mode Resonance (GMR) inside the

grating and prism couplers. GMR is a typical resonance inside subwavelength grating structure.

It has been used in broadband reflectors, sensors, cavities, couplers and filters. This study

explores the possibility to use GMR for achieving giant Goos-Hänchen shifts. Besides that,

more potential use of this grating and the GMR effect were discovered and implemented to

certain other applications (9; 10; 11).

1.1 Review of Goos-Hänchen Shift Theory

This section reviews the fundamental conditions for the Goos-Hänchen shift which is the

total internal reflection of a light beam. From the Fresnel’s law we can state that the complex

reflection coefficient for incident angle must be larger than the critical angle. Then, we use

Arthmann’s equation to derive the general Goos-Hänchen shift for dielectrics. More advanced

Goos-Hänchen shift phenomena are discussed leading to current studies.

1.1.1 Reflection Phase Loss of Total Internal Reflection (TIR)

Goos-Hänchen shift, in general, refers to the lateral shift along the interface when a light

beam experiences total internal reflection. Total internal reflection is a well-known concept

and a light beam will experience and total reflection as long as the incident angle exceeds the

critical angle when it travels from a high refractive index media to a lower one. However, while

discussing the problem of total internal reflection, most of the interest is typically focused on

the magnitude of the reflectivity while little attention is paid to the phase property of the

reflection. To give a brief introduction of the TIR, we begin from the Fresnel reflection and

transmission formulas of two homogeneous media (12). Equation 1.1 shows both the reflection
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coefficients of the perpendicular, ’s’ and parallel, ’p’ polarization for an incident plane wave

travelling from medium 1 to medium 2

Γs =
η2 cos θi − η1 cos θt
η2 cos θi + η1 cos θt

(1.1a)

Γp =
−η1 cos θi + η2 cos θt
η1 cos θi + η2 cos θt

(1.1b)

Here, η is the lossless wave impedance of each medium, which can be also written as η =
√
µ/ε,

where µ is the permeability while ε is the permittivity. θi and θt are incident and transmitted

angle respectively. Since for most dielectric media, except for ferromagnetic materials, the

permeability µ1 ≈ µ2 ≈ µ0, we may rewrite Snell’s law of refraction as:

n1 sin θi = n2 sin θt (1.2)

Here n is the refractive index which is n =
√
εr. Also, we define nr = n2/n1 as the relative

refractive index. We can then reduce Equation 1.1 by applying Equation 1.2 to

Γs =
cos θi − nr

√
1− sin2 θi

n2
r

cos θi + nr

√
1− sin2 θi

n2
r

(1.3a)

Γp =
− cos θi + 1

nr

√
1− sin2 θi

n2
r

cos θi + 1
nr

√
1− sin2 θi

n2
r

(1.3b)
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When the incidence angle θi exceeds the critical angle, the reflection coefficients for both po-

larizations become a complex number with a magnitude of 1. The expression can be written

as:

Γs =
cos θi − jnr

√
sin2 θi
n2
r
− 1

cos θi + jnr

√
sin2 θi
n2
r
− 1

(1.4a)

Γp =
− cos θi + j 1

nr

√
sin2 θi
n2
r
− 1

cos θi + j 1
nr

√
sin2 θi
n2
r
− 1

(1.4b)

Then the reflection coefficient can be expressed as Γ = e−jφr . Notice here e−jωt time

harmonic is used through out the dissertation. Using Euler’s equation e−jφ = cosφ− j sinφ, it

is easy to derive from Equation 1.4 the reflection phase loss φr of both polarizations.

φsr = −2 tan−1

(√
sin2 θi − n2

r

cos θi

)
(1.5a)

φpr = −2 tan−1

(√
sin2 θi − n2

r

n2
r cos θi

)
(1.5b)

Notice here that Equation 1.5 is only valid for TIR because when the incident angle is below the

critical angle, i.e. sin θi < nr, the reflection coefficient is always a real value, which is apparent

from Equation 1.3.

1.1.2 Artmman’s Theory of Goos-Hänchen Shift and Its Development

Artmman’s theory (2), based on the stationary phase argument, says that the the displace-

ment was due to different reflective phase losses of angular components of the beam. Hence, the
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Goos-Hänchen shift can be expressed as the derivative of the reflection phase loss with respect

to the beam’s lateral wavenumber according to (2) as

S = −dφr
dβ

= − 1

k1 cos θi

dφr
dθi

(1.6)

Here, S is the Goos-Hänchen shift, φr is the reflection phase loss while β is the lateral wavenum-

ber of the beam. It can be also written in a second form where k1 = 2π/λ1 = β/ cos θi is the

wavenumber of the media 1 while λ1 is the wavelength of the beam inside media 1. Based

on Artmman’s formula (2), the corresponding Goos-Hänchen shift for both perpendicular and

parallel polarization can be derived by substituting Equation 1.5 into Equation 1.6:

Ss =
λ1

π

sin θi√
sin2 θi − n2

r

(1.7a)

Sp =
n2
r

sin2 θi(1 + n2
r)− n2

r

Ss (1.7b)

In Figure 1, it is clear to see that the expression for the Goos-Hänchen shift diverges near

the critical angle. Artmman and Wolter did the early generalization to the near critical angle

and more recently Horowitz and Tamir (13) and Lai et al. (14) developed theories involving

uniform approximations near the critical angle. These theories further pointed out that there are

nonvanishing Goos-Hänchen shifts even for an incident angle below the critical angle, although

in the plane wave approximation, discussed above, there is no reflection phase loss for such

incidence. The theoretical result reveals also the fact that a light beam having finite width
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(a) (b)

Figure 1: An example of the reflection phase loss and the Goos-Hänchen shift of a beam with
the two media’s relative refractive index nr = 1.5. (a) The reflection phase loss response to the
incidence angle. (b): The Goos-Hänchen shift response to the incidence angle.

consists of a range of angles of incidence. The angle used in the mathematical expression is

regarded as the average or center incidence. At the near critical angle, the incidence beam

contains angles experiencing both TIR and normal reflection simultaneously, which refers to a

greater Goos-Hänchen shift. The maximum value of the Goos-Hänchen shift is typically of few

wavelengths for a beamwidth of hundreds of wavelengths.

Another interesting phenomenon in Figure 1 is the non-vanishing Goos-Hänchen shift at

the grazing angle, θi = 90◦. According to Artmman’s theory, the Goos-Hänchen shift does not

vanish at the grazing angle which is counter-intuitive. This problem was questioned by Renard

in 1964 (15). He then proposed that the Goos-Hänchen shift is related to the lateral energy

flow carried by the evanescent wave beyond the interface of the TIR. Finally, Renard achieved
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a modified expression for which the Goos-Hänchen shift vanishes at the grazing angle. Later

Lotsch also obtained an expression vanishing at the grazing incidence (16), however, the result

was questioned and corrected by Carnaglia (17). Carnaglia’s suggestion to correct Lotsch’s

result, in turn, supported Artmman’s result that the Goos-Hänchen shift at grazing incidence

indeed exists. Lai then supported the result by arguing that Artmman’s result is valid between

an incidence angle of θc + ε and π/2− ε, where θc is the critical angle and ε is typically on the

order of a hundredth of a radian.

A comprehensive model was first introduced by Burke (5). As described in Figure 2, the

light ray penetrates the interface to the lower refractive index medium for a certain depth and

then is reflected back. As a consequence of the penetration, the light travels an additional

distance while on the interface appears as a lateral shift.

Figure 2: The schematics of a beam penetrating the interface of total internal reflection for a
certain depth then being reflected back. The lateral projection of the penetration, zs, indicates
the Goos-Hänchen shift along propagation direction x̂.
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1.1.3 Review of Negative Goos-Hänchen Shift

The study of the negative Goos-Hänchen shift in TIR was started as early as 1971 (6),

which was the first claim that a leaky wave structure can lead to a negative shift. At that

time, the amount of negative shift was small and had always been less than a wavelength. A

theoretic analysis of reflection at a subwavelength metallic grating further claimed the existence

of negative Goos-Hänchen shift (18) later in 1978. Four years later, a striking theoretical result

based on Artmman’s theory found by Wild and Giles (19), suggested a 2.8 wavelength long

negative Goos-Hänchen shift on a germanium/air interface with complex index of refraction.

Yet, the authors were not able to provide an explanation to such a phenomenon. Even the

detectability of the result was doubted in the same paper for the conducted realistic experiment

since the reflectance of the beam is relatively small. Larger negative Goos-Hänchen shift to

tens of times the wavelength was achieved theoretically by Lai and Chan (20) on reflection

from weakly absorbing media near the Brewster dip. They claimed that for a parallel polarized

incident beam across the Brewster angle, the reflection coefficient would have a phase shift of

π, which resulted in a large negative Goos-Hänchen shift according to Artmman’s theory. The

result had an impressive amount of Goos-Hänchen shift of 42.4 wavelength, however, reduces

the reflectance to less than 0.01%.

The negative Goos-Hänchen shift gained renewed attention when plasmonic material, pho-

tonic crystal and metamaterial were implemented. Berman derived a negative Goos-Hänchen

shift in a negative refractive media (left-handed material) for both perpendicular and parallel

polarization, while before that it was only achieved with parallel polarization (21). However,
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the hypothesis of perfect lensing by a slab of left-handed material described in the paper has

not been proven yet. The author left an open question in the end to the possibility of ob-

serving a reversed Goos-Hänchen shift. Since that, considerable theoretical analyses of neg-

ative Goos-Hänchen shift were carried out as to achieve larger displacements and reflectance

(7; 22; 23; 24; 25). In the mean time, the negative Goos-Hänchen shift of the parallel polarized

incident beam at a metallic surface had been experimentally observed by Merano et al. (26).

The Goos-Hänchen shift had been generally understood as to account for the penetration

of the evanescent field to the other side of the interface (27). This interpretation faces difficulty

in explaining the negative Goos-Hänchen shift. Renard explained that the Goos-Hänchen shift

is related to the lateral energy flow carried by the evanescent wave beyond the interface of

total reflection (15). Whether the Goos-Hänchen shift is positive or negative depends on the

direction of the energy flow: When it is in the same direction of the projection of beam prop-

agation direction to the interface, the shift is positive; when the energy flow is the opposite,

negative Goos-Hänchen shift happens. This explanation gives an intuitive understanding to

the phenomenon, and can perfectly explain the negative Goos-Hänchen shift on plasmonic and

metamaterial interfaces.

In addition, a series of theoretical works by Tamir (6; 28) on the relationship between

the Goos-Hänchen shift and the leaky mode of multi-layer and periodic structures have been

studied. Experimental works demonstrating his theory were carried out much more recently,

but mostly on acoustic waves (29; 30; 31).
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1.2 Overview

In this thesis, we will introduce a new method based dielectric grating approach that applies

to the guided mode resonance for generating large positive and negative Goos-Hänchen shifts.

A figure of merit for guided mode resonance would be a high quality factor. We will show that

low threshold power bistability can be achieved via the grating-substrate structure. Nonlinear

material was then implemented to the device to achieve optical bistablity, an important tech-

nique to apply to optical switches and memories. We also will demonstrate the potential of the

gratings to control the dispersion of the waveguide via surface dispersion engineering. Exciting

phenomena include slow light and trapping broadband light signal spectrum across the visible

light range.



CHAPTER 2

REVIEW OF GUIDED MODE RESONANCE

2.1 Introduction

When bringing a diffraction grating and an optical waveguide into proximity, guided modes

can be excited to and simultaneously extracted from the waveguide by the diffraction grating.

This occurs when the angle of the diffracted mode is matched with that of the guided mode.

Such a phenomenon is called guided mode resonance (GMR). In recent years, high contrast

gratings have been introduced to functioning as both grating and waveguide, which is called

grating waveguide structure. This structure can excite a high quality factor GMR and provide

pronounced features. It has advantages such as frequency selectivity, high reflectivity and

compact size. One of the features is broadband ultra-high reflectivity (> 98.5%) or transmission

(9; 10). It was implemented to vertical-cavity-surface-emitting lasers (VCSELs) instead of the

several times bulkier Distributed Bragg Reflector(DBR) (32). Another important application

is broadband filters (33; 11). The advantage not only includes high reflection/transmission, but

also design feasibility. The quality factor of GMR, which determines the reflectivity, can be

determined by the parameters of the high contrast grating. For example, the filling factor of

the material and the contrast of the refractive index of the material and the gap, etc.. Also, the

size of the grating, especially the period and thickness, is essential for the resonant frequency.

GMR can provide different reflection phases by changing the grating size. More interestingly,

12
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it can provide a curved wave front by engineering the phase response. This leads to a planar,

single-layer grating lens that can focus light (34). There are many more applications of GMR

in sensing technologies and other fields. In this chapter, we will demonstrate the fundamental

physics of GMR as the prerequisite knowledge of this thesis. Note that, the detailed field

expression derivation are represented in Appendix A.

2.2 Guided Mode Resonance

Guided mode resonance is also named as leak wave resonance or waveguide-mode resonance,

which is a phenomenon wherein the guided mode a of waveguide can be excited while simulta-

neously coupled out using phase-matching elements, such as a diffraction grating. The guided

mode resonance is also named as “leaky mode resonance”, which means the guided wave keeps

radiating to the ambient media as the wave propagates. This section introduces the funda-

mental phenomenon of the guided mode resonance which the diffracted mode of the grating

matches with the waveguide mode.

2.2.1 Review of Diffraction Gratings and Slab Waveguide

A classic grating is a one-dimensional periodic structure that consists of equally spaced

grooves. According to the Huygens-Fresnel principle, each one of the grooves will act as second

light source when a light beam is incident onto the grating surface. Hence diffraction occurs.

The function of a classic diffracted grating is to interact with a wave such that it generates

a series of additional waves, traveling in different directions which are dependent upon the

wavelength and the grating parameters (35).
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Figure 3: Basic geometry of grating waveguide structure and relevant interference waves. The
red line represents the incidence while blue and black lines represent the diffracted waves.

In the original experiment of a normal incident plane wave diffracted by a slit aperture, two

second sources, the edges of the slit, scattering light towards a point constructively with each

other will be considered in phase. Constructive interference obeys the relation: d = λ/ sin θ,

where d is the width of the slit, λ is the wavelength, while θ is the transmission angle. This

concept can be extended to multi-slit structures, the grating with arbitrary incident angle.

Consider a plane wave striking on the grating surface with an incident angle θi with respect to

the grating grooves, the diffracted angle can be arbitrarily distributed which can be represented

by θd, shown in Figure 3. Note that the angles of the diffracted waves can be reflection (θd) or

transmission (θ′d), respectively. Taking the diffraction reflected back to media 1 as an example,

the optical path difference between two adjacent grooves will then be (n1Λ sin θi − n1Λ sin θd),

where Λ is the period of the grating. In order to build up constructive interference between the

two adjacent diffracted waves, the optical path difference must be equal to an integer multiple of
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the incident light wavelength, or n1Λ sin θi−n1Λ sin θd = mλ m = 0,±1,±2, .... The diffracted

waves satisfying the relations will be enhanced while those with other angles will experience

destructive interference so that the light waves are eventually canceled by each other. The

enhanced diffracted waves at specific angles are then called the diffraction modes. Therefore,

it is easy to derive the diffraction modes for the transmission gratings. The diffraction modes

for both reflected and transmitted ones can be expressed as:

n1 sin[θr(m)] = n1 sin θi −
λ0

Λ
(Reflection region) (2.1a)

n2 sin[θt(m)] = n1 sin θi −
λ0

Λ
(Transmission region) (2.1b)

where θr(m) and θt(m) represent the angle of the mth order of the reflected and transmitted

diffracted waves, respectively.

It is more convenient to study the diffraction mode in the K−space, where K refers to the

wave number. We translate Equation 2.1 to wave vector expressions:

kx(m) = β +m
2π

Λ
m = 0,±1,±2, ... (2.2)

Here kx(m) is the wave number for each diffraction mode along the grating groove direction, β

is the wave number of the incident wave along the grating groove. Notice that in the k-space
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the periodicity is along the grating groove direction. Taking the photonic crystal concept into

account, the grating wave number will be

K =
2π

Λ
(2.3)

The dispersion relation of the diffracted and incident wave will be periodic in K-space with

periodicity of K.

Consider the incident wave number in the free space as k0, and the diffraction modes can

be categorized into propagating and evanescent modes. In order to achieve a propagating

diffraction mode that carries energy, the order of the mode must satisfies |kx(m)| < √εs|k0|, so

that

−√ε2(1 + sin θi)
Λ

λ
< m <

√
ε2(1− sin θi)

Λ

λ
(2.4)

where ε2 is the permittivity of the substrate.

Figure 4: Schematics of ray picture of a waveguide mode property.



17

The guided mode resonance is a phenomenon such that the diffraction mode is also the

eigenmode inside the waveguide (36). One can analyze it for both perpendicular and parallel

polarization rigorously using time harmonic Maxwell’s equations — Appendix Equation A.1

and boundary conditions:

D1 · n̂−D2 · n̂ = ρs (2.5a)

n̂×E1 − n̂×E2 = 0 (2.5b)

B1 · n̂−B2 · n̂ = 0 (2.5c)

n̂× (H1 −H2) = Js (2.5d)

By enforcing the boundary condition at two sides of the waveguide, we can obtain the

eigenmodes of the waveguide. On the other hand, recalling that the Fresnel equations are

derived based on the boundary conditions, and from Fresnel equations we can recover the

reflection phase for the interface of the dielectric media from Equation 1.5. For the grating

side, we can use the frequency domain computational EM method — Rigorous Coupled Wave

Analysis(RCWA) (37) to achieve the reflection phase where the RCWA is introduced in the next

section. In the geometric view which is shown in the Figure 4, a waveguide mode is formed

when the light ray bounces back and forth inside the waveguide with the phase shift of a round

trip as integer multiple of 2π

2k0nch cos θ −
∑
n=1,2

φn = 2mπ m = 0, 1, 2, ... (2.6)
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where k0 is the free space wavenumber, nc is the refractive index of the waveguide, h is the

height of the waveguide, θ is the beam angle, and φn is the reflection phase at the interface of

the waveguide for both TE and TM waves.

2.2.2 Guided mode resonance (GMR)

If the grating mode and waveguide were brought to proximity, and the diffraction mode

matches with the waveguide mode, the external wave can be coupled to the waveguide mode.

This phenomenon is denoted as guided mode resonance (GMR). Due to reciprocity, the waveg-

uide mode can leak back out of the waveguide. Such guided modes are also called “leaky modes”

since the guided modes are not completely confined while leaking energy out during propaga-

tion. The concept is very similar to the grating coupler for which the grating is used to couple

the external light to the waveguide. For guided mode resonance, the structure can be simplified

when the dielectric grating serves as grating but also the waveguide, which is also called grating

waveguide structure. An example of guided mode resonance for dielectric grating is shown in

Figure 5. A plane wave with “s” polarzation (E field out of plane) is normally incident on a di-

electric grating made of Si and SiO2 from the top which the grating is surrounded by free space.

The color plot (color online) is the electric field distribution. In Figure.5a, the frequency is set

off from the resonance, therefore the structure exhibits the normal response of transmission

and reflection of a plane wave towards a dielectric slab. The structure at resonance is shown in

Figure. 5b, where part of the applied wave is coupled into the counter propagating guided mode

inside the grating. Notice that the electric field in the grating structure at resonance (shown in

Figure. 5b) is much more enhanced. The guided mode then interferes with the incidence wave.
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(a)

(b)

Figure 5: The schematics of normal incidence light to a SiO2/Si grating with thickness 100 nm
and the electric field distribution of one period of the grating. Fig. (a): shows the incidence,
reflection and transmission wave when the frequency is off the guided mode resonance. The
magnitude of electric field is shown right to the color plot. Fig. (b): shows the guided mode
resonance case for which two counter propagating leaky modes are excited inside the dielectric
grating.
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If the leaky modes are in phase with the incident light (constructive interference), the grating

functions as a high reflective mirror. If the leaky mode are 180◦ out of phase with the incidence

(destructive interference), it is transparent to the light and can be a bandpass filter.

2.3 Characteristic field in periodic structure

The characteristic fields in a periodic structure is complicated. Since the environment is

inhomogeneous, the usual Helmholtz equation is not applicable, but the field can be computed

with FDTD (Finite-Difference-Time-Domain) (38) or FEM (Finite-Element-Method) (39) sim-

ulations using commercial and open source software. We implement the RCWA (Rigorous

Coupled Wave Analysis) also called FFM (Fourier Modal Method) to fast and accurate com-

pute the field components.

2.3.1 Guided mode in periodic structure

For a guided mode propagation along periodic waveguide, the plane wave approximation

is not valid due to the nonuniform structure. Hence, a rigorous approach was introduced by

Peng et al (40) to analyze the field inside the grating. A classic periodic thin-film structure is

depicted in Figure 3, which shows a structure consisting of air, grating layer and substrate. The

grating can be considered as a planar layer of constant thickness tg whose composition varies

periodically along x with period of Λ. Note that in the figure the permittivity ε(x) varies as a

step function, however in general, it could be sinusoidal or of any other periodic forms.
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Figure 6: Schematics for Fourier modal method analysis

2.3.1.1 Characteristic fields in the uniform regions

Assume a 1D structure shown in ??. In a homogeneous media, according to the Helmholtz

equation Equation A.7 the electric/magnetic (E/H) field can be written as

G(x, z) = G0 exp[j(kxx+ kzz)] (2.7)

Here G stands for either E or H field while G0 is a constant and

k2
x + k2

z = k2 = k2
0ε (2.8)

Here k0 = 2π/λ0 is the plane-wave propagation constant in free space and ε = n2 is the

permittivity of the material. If the media is lossless, uniform structure will support waves

that propagate without attenuation. These waves are therefore characterized by real values of

kx = β.

When a grating is superimposed on the uniform media, the electromagnetic wave should be

modified to satisfy the periodic boundary conditions on the grating. Multiple modes are excited
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due to the diffraction caused by the grating (41). Modes in uniform regions must appear in the

Floquet form

G(x, z) =
∑
n

Gn exp[j(kxnx+ kznz)] (2.9)

Note that this form applies to all uniform regions except for the grating region. Here we have

to introduce the Floquet period boundary condition. The Floquet theorem (42) is commonly

known as Bloch’s theorem (43) in solid-state physics and requires that the field satisfies the

following condition in the K space

G(kx) = G(kx +m
2π

Λ
) (m = 0,±1,±2, ...) (2.10)

if periodicity occurs along the x direction, where n is integer. Hence, values of the wavenumber

kx that differ by integral multiples of 2π/Λ are not different from a physical point of view.

Thus, the mode frequencies must also be periodic in kx: ω(kx) = ω(kx + 2nπ/Λ). Therefore,

we will only need to consider kx exist in the range −π/Λ < kx ≤ π/Λ. This important region

with nonredundant values of kx is call the Brillouin zone.

The quantities kxn are related to the fundamental longitudinal factor kx0 by the Floquet

condition:

kxn = kx0 + 2nπ/d (n = 0,±1,±2, ...) (2.11)
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Each partial function Gn exp[j(kxnx+ kznz)] of G(x, z) exists in a uniform region and must

satisfy the Helmholtz equation, Equation 2.7, leading to the dispersion relation:

kzn = ±
√
k2 − k2

xn (2.12)

Observe that each nth partial function can be regarded as a mode with transverse variation

exp(jkxnx) along x, which propagated along z with a propagation factor kzn. Hence, within a

finite-thickness layer, both signs in Equation 2.12 shall be counted because they refer to waves

that travel along both +z and −z directions, respectively. Thus, each nth term in Equation 2.10

includes two separate components. On the other hand, in the open regions, it is necessary to

restrain the component so the energy decays or flows when travel away from the structure.

The propagation constant of the 0th order mode kx0 would be very close to the propagation

factor kx of the incidence wave if the grating’s diffraction efficiency is small (no gratings present).

And in general, higher order modes possess very small amount of energy. However, some of

these higher order modes may modify the nature of the guided wave, therefore, all higher modes

must be accounted for to satisfy the boundary conditions.

The following feature may be clarified by considering a plane wave incident from the left in

a homogeneous media, as shown in Figure 3. Assuming the grating is long enough to be treated

as infinite along x direction. The traveling wave will leak into the medium on the other side

of the grating by adding up the scattering at a large portion of the energy brought into the

grating region by the incident wave. The individually scattered waves interfere constructively
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only along certain preferred directions. Because energy loss occurs due to radiation, the total

guided field must decay with x as it propagates along the grating region. Hence, the propagation

factor kx0 along the grating region cannot remain purely real, but, instead, kx0 is changed from

the incidence’s propagation constant β to complex values:

kxn = βn + jαn =

(
β0 +

2nπ

Λ

)
+ jα (2.13)

where the imaginary term α > 0 is responsible for the decay due to leakage. Notice that the

longitudinal decay factor α is the same for all the partial field components in Equation 2.9,

which is constrained by the Floquet theory. The wave number kzn is then complex as well

according to Equation 2.8.

kzn = ξn + jηn (2.14)

However, different from kxn, the imaginary part of kzn is generally different for each mode.

Because kzn is given by kzn =
√
k2

0 − k2
xn. This leaves the question about sign should be

used in evaluating kzn, i.e. the propagating constant for upward propagation. The signs of

components in kzn are selected according to

ηnβn > 0 (2.15)
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because waves guided by periodic structures generally contain radiating field components, which

are called leaky waves. The sign selection in Equation 2.15 then satisfies the energy conservation

law.

2.3.1.2 Characteristic fields in the grating regions

To evaluate the fields supported by the grating layer, we have to analyze the wave specifically

for two orthogonal polarizations. The Helmholtz equation will then be written as:

∇2Ggrt + k2(x)Ggrt = 0 (2.16)

where Ggrt refers to the E or H fields and k2(x) = ε(x)k2
0. Note that the wavenumber is not a

constant but varies with x since the permitivitty of the media is defined as ε(x).

Since ε(x) is periodic, we can then represent k(x) with a Fourier series. First, we can expand

the permitivitty function ε(x) into Fourier coefficients εn by Fourier transform:

εn =
1

Λ

∫ Λ

0
ε(x)× exp(−jnKx)dx (2.17)

where K = 2π/Λ. We may then have:

Ggrt =
∑
n

Gn(z) exp(jkxnx) (2.18)

where Gn stands for the nth order coefficient for either E or H field.
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For TE polarization the possible field components are (Ey, Hx, Hz) and we have

Ey =
∑
n

Eyn(z) exp(−jkxnx) (2.19a)

Hx =− j
√
ε0
µ0

∑
n

Hxn(z) exp(−jkxnx) (2.19b)

Here Eyn(z) and Hxn(z) are the field components of nth order. Hz is not shown since we

only care for transverse components. According to Maxwell’s equation, we find:

∂Ey
∂z

= jωµ0Hx (2.20a)

∂Hx

∂z
= jωε0ε(x)Ey +

∂Hz

∂x
(2.20b)

∂2Ey
∂z2

= −jωε0µ0ε(x)Ey (2.20c)

Substituting Equation 2.19a and Equation 2.19b into Equation 2.20a and Equation 2.20b and

eliminating Hz, we obtain the coupled-wave equations:

∂Eyn
∂z

= k0Hxn (2.21a)

∂Hxn
∂z

=

(
kxn
k0

)2

Eyn − k0

∑
m

εn−mEym (2.21b)

Here n and m are integers.

In matrix form,
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
∂Ey

∂z

∂Hx
∂z

 = jω

 0 I

K2 − [ε] 0


Ey
Hx

 (2.22)

which may be reduced to, [
∂2Ey
∂z2

]
= jω

[
K2 − [ε]

][
Ey

]
(2.23)

where [ε] is the matrix formed by the permittivity coefficient with m, n element being εm−n, K

is a diagonal matrix with the n, n entry being kn/k0, I is an identity matrix. Here Ey and Hx

components are both matrices.

For TM polarization the possible field components are (Hy, Ex, Ez) and we have

∂Hy

∂z
= jωε(x)Ex (2.24a)

∂Ex
∂z

= jωµ0Hy +
1

k0

∂

∂x

(
1

ε(x)

∂Hz

∂x

)
(2.24b)

∂2Hy

∂z2
= ε(x)

[
∂

∂x

(
1

ε(x)

∂Hy

∂x

)
+ µ0k

2
0Hy

]
(2.24c)

Using the same method, we find:

∂Hyn
∂z

=jk0

∑
m

εn−mExm (2.25a)

∂Exn
∂z

=jk0µ0Hyn −
kn
k0

∑
m

(
1

εn−m

)
kmHym (2.25b)

However, in Equation 2.25a, ∂Hyn/∂z is the derivative of uniformly convergent Fourier

series. However, the right-hand side is a non-uniformly convergent trigonometric series. These
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two series does not converge in the same rate and neither match in corresponding order. The

continuity of ε(x)Ex cannot be preserved uniformly. We use the Toeplitz matrix [ε] to preserve

the continuity (44).

∂Hyn
∂z

=jk0

∑
m

[
1

ε

]−1

nm

Exm (2.26a)

∂Exn
∂z

=jk0µ0Hyn −
kn
k0

∑
m

[ε]−1
nmkmHym (2.26b)

We have:

∂2Exn
∂z2

=
∑
m

(kxn[ε]−1
nmkxm − µ0k

2
0δnm)

∑
l

[
1

ε

]−1

ml

Exn (2.27)

Same as TE polarization, this leads to an eigen value problem which will be deliberately

discussed in next section rigorous coupled wave analysis.

2.4 Rigorous Coupled Wave Analysis (RCWA)

Rigorous coupled wave analysis, or Fourier Modal Method, is introduced to compute Elec-

tromagnetic field in 2D periodic structures with periods Λx and Λy (40; 37). The 1D binary

grating will then be considered as a special case for 2D strictures with Λy = 0/∞. For 2D

structures, polarizations will introduce EM symmetry which can greatly reduce the computa-

tion load. The transverse and longitudinal view of the multilayer 2D structures that RCWA

treats is shown in Figure 7. The field inside each layer is represented as the summation of

positive and negative propagating eigenmodes [VE]u(p) and [VE]d(p), respectively. Here VE or

VH stand for eigenmodes of transverse E and H fields. u(p) and d(p) are both vectors with each

element, the coefficient of the corresponding eigenmode, p stands for the order of the layer.
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(a) (b)

Figure 7: Structure of a multilayer grating and the representation of fields inside each layer.
(a): Transverse view, (b): Longitudinal view.

2.4.1 Eigenvalue Problem

In RCWA (37), for each layer that is invariant in the ẑ direction while 2D periodic in the

x̂− ŷ directions, the eigenmode is assumed to be:

E(p) = Ep(x, y)ejk
(p)
z z (2.28a)

H(p) = Hp(x, y)ejk
(p)
z z (2.28b)

where p indicates the pth layer. k
(p)
z is the propagating constant along ẑ. Notice that Ep and

Hp both have three component (x̂, ŷ and ẑ). However, since matching the boundary conditions

would need only the transverse components, only those in xy plane will be considered. The

longitudinal component (ẑ) can then be recovered from those components using Equation 2.30.

The eigenproblem is also constructed for the transverse components only.
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From time harmonic Maxwell’s equation, we find:

∇×E = jωµH (2.29a)

∇×H = jωεE (2.29b)

In Cartesian coordinates,we find:

jωµHz =
∂Ey
∂x
− ∂Ex

∂y
−jωεEz =

∂Hy

∂x
− ∂Hx

∂y
(2.30a)

jωµHx =
∂Ez
∂y
− ∂Ez

∂z
−jωεEx =

∂Hz

∂y
− ∂Hy

∂z
(2.30b)

jωµHy =
∂Ex
∂z
− ∂Ey

∂x
−jωεEy =

∂Hx

∂z
− ∂Hz

∂x
(2.30c)

Using the equations above, we can transform the partial differential equation into a eigen-

value problem. Consider z as the wave propagation direction, by analyzing the transverse

electrical field ET (x, y)ejkzz in x, y direction, we can have other entire field component infor-

mation. Here ET refers to the transverse field. By substituting equations into each other from

the equation set Equation 2.30 we show:

∂Ex
∂z

=

(
jωµ+

j

ωε

∂2

∂x2

)
Hy −

j

ωε

∂2

∂x∂y
Hx (2.31a)

∂Ey
∂z

= −
(
jωµ+

j

ωε

∂2

∂y2

)
Hx +

j

ωε

∂2

∂x∂y
Hy (2.31b)

∂Hx

∂z
= −jωεHy −

j

ωε

(
∂2

∂x2
Ey −

∂2

∂x∂y
Ex

)
(2.31c)

∂Hy

∂z
=

(
jωε+

j

ωµ

∂2

∂y2

)
Ex −

j

ωµ

∂2

∂x∂y
Ey (2.31d)
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Writing Equation 2.31d into matrix form, yields

∂

∂z

Ex
Ey

 =

 − j
ωε

∂2

∂x∂y −jωµ− j
ωε

∂2

∂x2

−jωµ− j
ωε

∂2

∂y2
j
ωε

∂2

∂x∂y


︸ ︷︷ ︸

F

Hx

Hy

 (2.32a)

∂

∂z

Hx

Hy

 =

 j
ωµ

∂2

∂x∂y −jωε− j
ωµ

∂2

∂x2

jωµ+ j
ωµ

∂2

∂y2
− j
µε

∂2

∂x∂y


︸ ︷︷ ︸

G

Ex
Ey

 (2.32b)

Let F and G represent the matrices described in the equations above, we can have:

∂2

∂z2

Ex
Ey

 = FG

Ex
Ey



∂2

∂z2

Ex
Ey

 = −k2
z

Ex
Ey





=⇒
(

FG + k2
z

)Ex
Ey

 = 0 (2.33)

2.4.2 Fourier Modes

For each layer the electromagnetic field can be expanded in Floquet-Fourier series (42),

Ψ(x, y, z) =
∑
m,n

(z) exp(jkxmx+ jkyny) (2.34)

kxm = kx0 +
2mπ

Λx

kyn = ky0 +
2nπ

Λy
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where Φ stands for any one of the E/H field components. For a homogeneous layer, where ε is

a constant, which can be directed solved for the eigen vectors using For the grating layer, the

z-dependent Fourier coefficients Ψmn are to be solve from Eq. (32)-(34) of Ref. (37).

Since the transverse fields are represented in Fourier components, the number of those com-

ponents are infinite. For computational purposes, we select the highest order Fourier component

in the x̂ and ŷ direction and refer to them as M1 and M2, respectively. That means for each

direction, we have 2Mi + 1 components from −Mi to Mi. The field are represented by their

Fourier components by e for E field and h for H field. Each field vector has two parts, the x

component and the y component, i.e.:

e =

ex

ey

 ; h =

hx

hy

 (2.35)

The mode indexing ex,y and hx,y are one-dimensional while the Fourier modes have components

in two directions. A rule to map spatial Fourier components of order (m, n) with m the order

for that of x̂ direction while n for that of ŷ direction to the linear index of the elements of ex,y

and hx,y is needed. The resulting map is:

[(−M1,−M2), (−M1,−M2 + 1), ..., (−M1,M2 − 1), (−M1,M2), ...

(−M1 + 1,−M2), (−M1 + 1,−M2 + 1), ..., (M1,M2 − 1), (M1,M2)]T (2.36)
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We can solve the eigenproblem solely for e vectors, while h vector can be obtained from e

afterwards. The size of e would be M = 2(2M1 + 1)(2M2 + 1), which is also the rank of the

eigenproblem. The eigenproblem will give M eigenvectors and the same number of eigenvalues.

All the eigenvectors when placed side by side form a eigenvector matrix VE,

VE = [e1, e2, ..., eM ] (2.37)

The corresponding kz should form a vector D,

D = [kz|1, kz|2, ..., kz|M ]T (2.38)

The corresponding h vectors form matrix of VH,

VH = [h1,h2, ...,hM ] (2.39)
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2.4.3 Field inside each layer

After the eigenproblem for each layer is solved, the transverse components of the fields in

layer p is represented by the positive and negative propagating eigenmodes as:

E
(p)
T (x, y, z)

H
(p)
T (x, y, z)

 =

VE(p)

VH(p)





ejk
(p)
z |1z 0 · · · 0

0 ejk
(p)
z |2z · · · 0

...
...

. . .
...

0 · · · · · · ejk
(p)
z |Mz


u(p)

+

 VE(p)

-VH(p)





e−jk
(p)
z |1z 0 · · · 0

0 e−jk
(p)
z |2z · · · 0

...
...

. . .
...

0 · · · · · · e−jk
(p)
z |Mz


d(p) (2.40)

Here u(p) and d(p) stand for the coefficients of each up/down propagation eigenmode. Notice

that the eigenmodes for down propagation is the same as the that for up propagation only that

the matrix for H field is of the negative sign. The length of u(p) and d(p) is the same as the rank

of VE, which is M. The origin of z used for each layer is the bottom boundary of that layer.

This means u(p) and d(p) are actually the coefficients of each eigenmode of the corresponding

layer at the lower boundary.

Let

W(p) =

VE(p) VE(p)

VH(p) −VH(p)

 (2.41)
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We then have

E
(p)
T (x, y, z)

H
(p)
T (x, y, z)

 = W(p)

exp(jkz|mz) 0

0 exp(−jkz|mz)


u(p)

d(p)

 (2.42)

The entire field components can be revealed by the transverse field described in Equation 2.42.

Note that the longitudinal field can be obtained by time harmonic Maxwell’s equations (Equa-

tion 2.30). Also, due to the orthogonality in Fourier space, the Fourier modes for each layer

have one to one correspondence to match the boundary condition (the modes with identical

spatial frequency). By matching the amplitude of the mode coefficient u(p) and d(p), the field

characteristics can be revealed for every single layer.

Besides RCWA (37), Finite Element Methods (FEM) (39) and FDTD (Finite Different

Time Domain method) (38) can be applied to solve a 2D periodic structure problem. However,

they suffer from trade-off between computational efficiency (size of mesh grid) and accuracy.

RCWA is considered a fast and accurate method to analysis periodic structure and guided mode

resonance.



CHAPTER 3

GIANT POSITIVE AND NEGATIVE GOOS-HÄNCHEN SHIFT BASED

ON GUIDED MODE RESONANCE

Disclaimer: This chapter is reproduced from published paper — Rui Yang, Wenkan Zhu,

Jingjing Li, “Giant positive and negative Goos-Hänchen shift based on guided mode resonance”,

Opt. Express 22, 2043-2050 (2014). The author of this thesis was the main contributor to the

publication.

In this chapter, giant positive and negative Goos-Hänchen shifts of more than 5000 times

of the operating wavelength are observed when a beam is totally reflected from a substrate

covered by a dielectric grating. Different from the former studies for which Goos-Hänchen

shift is related to metamaterials or plasmonic materials with ohmic loss, here the giant shift

is realized with 100% reflectance without the loss. This is extremely advantageous for sensor

applications due to achievable high signal to noise ratio. The Goos-Hänchen shift exhibits a

strong resonant feature at the frequency of guided mode resonance, and is associated to the

energy flow carried by the guided mode.

3.1 Schematics and Dispersion Property of Periodic Dielectric Grating

The structure we considered is a binary 1D grating of thickness t, period Λ and filling factor

F sitting on a dielectric substrate, as shown in Figure 8. The filling factor is defined as the ratio

of the width of high refractive index part to the period, i.e. F = a/Λ. The grating consists of

36
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two parts having relative permittivity of εh and εl (εh > εl). In general, the lower permittivity

part is considered to be the same as the environment. The substrate is of permittivity εs and

the environment that of εc, respectively.

Figure 8: Schematic of a dielectric gating and the Goos-Hänchen shift under total internal
reflection. The grating has a spatial period Λ, a is the length of the portion of the grating with
high refractive index εh and F = a/Λ is the filling factor. “I” and “R” refer to the incident and
reflected beams respectively. zs is the Goos-Hänchen shift.

The dispersion property of the eigenmodes propagating towards the lateral +x̂ direction

is studied. Figure 9 shows the dispersion curve of a grating of Λ = 0.43µm, t = 0.11µm,

εh = 12.12(Si), εl = εc = 1. Notice that the wave numbers depicted in this thesis are all

normalized to K = 2π/Λ, which is the periodicity of the grating’s reciprocal lattice. To achieve

the dispersion property, software package MEEP(MIT Electromagnetic Equation Propagation),

a numerical electromagnetic solver based on the finite-difference time-domain algorithm is used
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(38). Both s (electric field perpendicular to xy plane )and p (electric field parallel to xy plane

) polarized modes are studied (referring to Figure 8).

Figure 9: Dispersion curve for guided mode of “s” and “p” polarizations. The grating’s
parameters are: Λ = 0.43µm, t = 0.11µm, εh = 12.12 (Si), εl = εc = 1 (free space), εs = 2.09
(SiO2). The top dashed line is the light line of the free space while the bottom one is the light
line of the substrate. The grey boxes shows the guided mode of the grating between the two
light lines.

Figure 8 shows typical dispersion features of a periodic crystalline structure. Here k0 rep-

resents the wave number of the free space while kx stands for the lateral wave number in the x

direction. According to Floquet theory for periodic structures, the entire dispersion property

is shown in the first Brillouin zone, which corresponds to the kx values in the range [0, π/Λ]

in Figure 9. For the s (perpendicular) polarization, the lowest band is below the light line of
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the substrate, thus is confined to the grating structure without any coupling to the substrate

or propagating components. This band represent a conventional positive propagating guided

mode (i.e. the energy flow is at the same direction of the wave vector kx). A typical band gap

of photonic crystal shows up at the edge of the first Brillouin zone, above which lies the second

band that is a negative propagating mode (energy flows towards −x̂ direction). Recalling that

the speed of energy flow or the group velocity is

vg =
∂ω

∂kx
=

1

c

∂k0

∂kx
(3.1)

where c is the speed of light inside the grating. The lower part of this band is still below the

light line of the substrate, and is a confined, negative flowing guided mode. As the operating

frequency k0 increases, the mode goes above the light line of the substrate when it begins to

leak energy into the substrate, and finally above the free space light line when the mode leaks

to both sides. In former studies of guided mode resonance for reflector and filter applications,

it was usually the part above the free space light line that was used, which cannot sustain

total reflection. Since the Goos-Hänchen shift studied in this thesis focuses on total internal

reflection, the specific interest resides in the part between the two light lines when propagating

incidence from the substrate is used (refer to the grey boxes in Figure 9).
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3.2 Reflection Property and Goos-Hänchen Shift of the Grating Based On Guided

Mode Resonance

According to Artmman’s theory (2), large Goos-Hänchen shift occurs only with a very sharp

change of reflection phase loss with little incident angle variation. Our study finds an abnormal

reflection phase loss compared to what would be expected from general total internal reflection

property, which leads to a very large negative Goos-Hänchen shift. A detailed study shows that

the guided mode resonance inside the grating is responsible for the large Goos-Hänchen shift

and will be discussed next.

3.2.1 Abnormal Reflection Phase and Giant Negative Goos-Hänchen Shift

The guided modes of the grating between the two line lights (refer to grey boxes in Figure 9)

are the total internal reflection region. The reflection property for a plane wave incident from

the substrate for various angles (i.e. various kx) is studied. Since the properties of s and p

polarizations are similar, only the result of s polarization is explicitly discussed. k0 and kx

are selected so that inside the substrate only the 0th order diffraction (the direct reflection)

propagates, while all higher order diffraction modes are evanescent, corresponding to

∣∣∣∣kx − 2π

Λ

∣∣∣∣ < k0 (3.2)

The free space wavelength of the incidence is 1.5µm, corresponding to k0/(2π/Λ) = 0.287.

Rigorous coupled wave analysis (RCWA) (37)was used to compute the reflection coefficient for

kx between the two light lines (0.287 ∼ 0.414×2π/Λ, or 43.8◦ < θi < 90◦). The resulting phase
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Figure 10: (a): Reflection phase loss ∠r (dashed line) and Goos-Hänchen shift (solid line) vs
normalized kx for a incidence of 1.5µm free space wavelength from the substrate. (b): Goos-
Hänchen shift vs normalized k0 for an incidence from the substrate side with kx = 0.38×2π/Λ.
The kx corresponds to the maximum dip of the Goos-Hänchen shift in (a). The k0, where
the Goos-Hänchen shift’s magnitude is maximum corresponds to the guided mode resonance
frequency of the kx value.

is shown in 10a with a dashed line. Notice that the magnitude of the reflection coefficient

remains 1 throughout the whole kx range because k0 < kx <
√
εsk0 which is the condition

of total internal reflection. The curve of the reflection phase loss exhibits a sharp increase of

almost 2π at kx around 0.38 × 2π/Λ. This is exactly the value of kx when the guided mode

resonance at this frequency is excited, as confirmed by the point of (k0, kx) = (0.287, 0.38) in

Figure 9. Here k0, kx are normalized to 2π/Λ. Hence, it is confirmed that the abnormal phase

change at this kx is caused by the guided mode resonance excited in the grating.

Recall from Artmman’s theory that the Goos-Hänchen shift can be expressed by the deriva-

tive of the reflection phase loss to the lateral wavenumber kx given in Equation 1.6. The drastic
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increase of phase with kx indicates a negative Goos-Hänchen shift of giant magnitude which

is shown by the solid line in Figure 10a. At its maximum magnitude, the Goos-Hänchen shift

reaches a value of 360µm, about 240 times the free space wavelength. The frequency dispersion

of the Goos-Hänchen shift for incidence at a fixed kx is also studied and is shown in Figure 10b,

For kx = 0.38 × 2π/Λ corresponding to when the Goos-Hänchen shift achieves its maximum

magnitude in Figure 10a. Hence, the Goos-Hänchen shift exhibits an obvious resonance peak,

and the resonant frequency corresponds to that of the guided mode resonance. Such a resonant

property has wide applications for sensors as discussed in Chapter 2. It is necessary to point

out that, in our design, the giant negative Goos-Hänchen shift is achieved when the magnitude

of the reflection coefficient maintains 1 and with a much greater magnitude of Goos-Hänchen

shift. This result is in sharp contrast of some former studies when large negative Goos-Hänchen

shift is achieved at the cost of resonant ohmic loss with a reflectance towards 0 (45) . A large

reflectance means better signal to noise ratio in sensor applications, thus is of great engineering

importance.

3.2.2 Guided Mode Resonance

To explicitly reveal the relationship between the resonant behavior of Goos-Hänchen shift

and the excitation of guided mode resonance, the field distribution and Poynting vector inside

and outside the grating at the resonance of Goos-Hänchen shift are analyzed. The results are

shown in Figure 11, where the color indicates the instantaneous distribution of electric field Ez.

The result in Figure 11a is achieved for λ0 = 1.5µm free space wavelength, kx = 0.38 × 2π/Λ

when Goos-Hänchen shift is of the negative value of maximum magnitude. Notice that the
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incidence comes from the substrate (y < 0) from the lower left side. In the color plot, we notice

a strong field around the grating is excited with a field strength much stronger than that of the

incidence, which is identified as the guided mode of the grating. What is more interesting is

the energy flow. The x component of the Poynting vector on a line parallel to ŷ and through

the center of a grating period (refer to the white dashed line in the color plot of Figure 11a) is

plotted as a function of y and is placed next to the field plot. Notice that, around the grating

(0 < y < 0.11µm), Sx shows a strong dip of negative value. Far away from the grating inside

the substrate, the field is a plane wave that is standing along the y direction while propagating

towards +x, thus a positive Sx is observed (see the inset of Figure 11a). However, the maximum

magnitude of negative Sx inside the grating is about 500 times larger than the positive Sx 1µm

away from the grating. This is consistent with the explanation of Goos-Hänchen shift in Ref.(15)

where the negative Goos-Hänchen shift is attributed to the negative energy flow beyond the

reflection interface. For comparison purposes, we also present the results at a condition far

from the guided mode resonance when a mediocre positive Goos-Hänchen shift of 0.33µm is

observed and shown in Figure 11b. As we can see, no obvious field enhancement inside the

grating can be observed, and the energy still flows to the +x direction inside the grating.

The relationship between the guided mode resonance and the giant Goos-Hänchen shift is

most obviously seen in Figure 12a, where the Goos-Hänchen shift for k0 and kx in the range

inside the grey box in Figure 9 is shown. In this plot, the color plots represent the Goos-

Hänchen shift, while the crosses represent the eigenmodes on the dispersion curve inside the
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Figure 11: Instantaneous distribution of the electric field Ez (the color plot). The plot for
the distribution of the x component of the Poynting vector (Sx) along the white dashed line
is placed nearby. The operating conditions are the same as inFigure 10 with λ0 = 1.5µm
free space wavelength, kx = 0.38 × 2π/Λ (negative GH shift of maximum magnitude (a)), or
kx = 0.29× 2π/Λ (positive GH shift of 0.33µm, (b)).

grey box of Figure 9. As we can see, the position of giant negative Goos-Hänchen shift overlaps

well with the guided mode of the grating in all cases.

Again we study the part of the dispersion curve that is between the light lines of the free

space and the substrate (dashed rectangle in Figure 12b) where the incidence from the substrate

can be totally reflected. Similar observation to that of the s polarization is made: Goos-Hänchen

shift exhibits a large negative value when the guided mode is excited. The maximum of the

Goos-Hänchen shift is, for this design case, even larger than that of the s polarization: a negative

shift as large as thousands of µm is observed.
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A total internal reflection is usually required when discussing the Goos-Hänchen shift. This

limits the incidence to come from the substrate side at an angle larger than the critical angle,

and it is the part of the dispersion curve between the light lines of the substrate and the free

space that is used. Notice that the first band of the grating mode is a positive propagating

mode and is below the light line of the substrate. Modes in this band cannot be excited by

an incidence from the substrate to achieve a positive Goos-Hänchen shift, unless the whole

structure is placed on a prism of higher refractive index, and frustrated total internal reflection

(FTIR) is used to excite the modes. The next positive propagating band is the one above

the second band gap (see Figure 9), and the part of this band in between the two light lines

(not shown in Figure 9) can in principle be used to achieve giant positive Goos-Hänchen shift.

However, this usually happen at relatively high frequency, and care must be taken in designing

the grating so that the first and higher order diffractions are still evanescent modes at this

frequency.

When the incidence comes from the free space side, the grating considered in Figure 10 and

Figure 11 give a reflectance that in general is less than 1. To achieve unity reflectance for a

broad incidence angle, we can place the grating on top of a perfect electric conductor (PEC)

substrate. The PEC surface is responsible for the total reflection while the dielectric grating

can help provide a giant Goos-Hänchen shift. It is true that metal has loss issues at optical

frequency range. However, a Distributed Bragg Reflector will provide total reflection with

negligible loss which functions as a PEC. The principle is similar, that is, giant Goos-Hänchen

shift exhibits when a guided mode is excited. Of course, the exact position of the guided mode
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Figure 12: Results for the grey boxes of Figure 9 are given in (a) for s polarization and in (b)
for p polarization. (c) corresponds to the same design parameters, excepts that the substrate
is a perfect electrical conductor; (d) corresponds to p polarization, same design parameters
except that the grating as half the original thickness. The crosses are the eigenmodes of the
corresponding gratings.



47

resonance is different from that of Figure 9. Using an incidence from the air can be more

convenient in many situations. Furthermore, since total reflection occurs as promised for any

kx value, incidence close to the surface normal (kx ∼ 0) can be used (the case of Figure 12c),

so that the guided modes in the positive propagating band at relatively high frequency can

be excited without worrying about bringing higher order diffraction modes into propagation:

Positive Goos-Hänchen shift can then be realized. We show the simulation results for a dielectric

grating on a gold substrate in Figure 12c (s polarization) and Figure 12d (p polarization). For

the sake of simplicity, here the PEC is modeled as ε = −∞ with no ohmic loss. Besides the

fact that giant negative Goos-Hänchen shift is again observed at the guided mode resonance,

several features deserve specific mention. First of all, giant negative Goos-Hänchen shift can

be observed for incidence with s polarization. This is contrary to the bare plasmonic substrate

case where negative Goos-Hänchen shift caused by surface plasmon only happens for the p

polarization, while for s polarization, positive Goos-Hänchen shift is observed. This is another

proof that the grating decoration on top of the PEC surface plays a crucial role in achieving

the Goos-Hänchen shift. Second, giant Goos-Hänchen shift of positive value is indeed observed

at the third eigenmode band, a positive propagating mode above the second band gap. This

is shown in Figure 12c (the first band, which is a positive mode band below the light line,

is not shown in this plot). As discussed before, the p polarization incidence on metal could

excite surface plasmonic resonance and exhibits giant Goos-Hänchen shift, however, with poor

reflection rate. Figure 12d shows that p polarization can achieve total reflection and giant

Goos-Hänchen shift for free space incidence.
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3.3 Conclusion

In conclusion, we have used the guided mode resonance on dielectric gratings to realize giant

Goos-Hänchen shift. The giant Goos-Hänchen shift is caused by the coupling of the incidence

to the guided mode of the grating which are leaky on the incidence side. The large power flow

carried by the guided mode is responsible for the giant Goos-Hänchen shift. By exciting either

a positive or a negative propagating mode, positive or negative Goos-Hänchen shift is realized.

Since the entire design is based on dielectric structure, ohmic loss can ideally be completely

avoided and a unity reflectance can be realized. This is advantageous compared to many of

the plasmonic material based approaches. We believe the design has great potential in sensor

applications (45; 46). Notice that a large Goos-Hänchen shift happening in a finite reflection

phase range (∼ 2π) usually means a sharp resonance with the incidence angle (Figure 10a),

the frequency (Figure 10b), the dielectric constant of the ambient environment, and other

parameters. Such sharp resonances can be used for sensing with high sensitivity. The design

also has wide application in optical bistability, slow light control, and waveguide dispersion

engineering as will be shown in following chapters.



CHAPTER 4

BISTABLE GOOS-HÄNCHEN SHIFT AND PHASE SHIFT BASED ON

THE GUIDED MODE RESONANCE

This chapter presents the assessment of guided mode resonance to perform optical bistable

functionality. Optical bistability is one of the phenomena exhibited by Kerr-type resonators

(47). It is a promising candidate for optical switches and memory applications. In this chapter,

we made use of the high quality factor resonant grating cavity to perform bistable Goos-Hänchen

shift.

4.1 Optical bistability at a glance

Among research on all-optical interaction, optical bistability phenomena generated interests

for research studies with performance of one input state, two possible stable output states. The

two different outputs are determined not only by the intensity of the input, but also by the

ascending and descending derivatives of the input signal. Optical bistability is a promising

feature to be applied to the optical switching and memory systems, specifically in high speed

all-optical information processing (48). It was first discovered by Gibbs in 1975 (49), since then

numerous nonlinear materials and optical resonant structures have been studied and demon-

strated to exhibit the bistate features. In general, there are two types of systems that produce

optical bistability: hybrid optical bistable system with electronic feedback circuit involved or

intrinsic optical bistable system with light involved only. This chapter focuses on intrinsic op-

49
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tical bistable system. Since for all-optical circuits, speed is one of the most important figures

of merit. The optical feedback mechanism is preferable due to a shorter delay compared to

electronic circuits.

Intrinsic optical bistable systems must have a resonant feature and normally takes advantage

of the nonlinearity of Kerr type material, whose refractive index depends on the optical intensity.

Since light intensity influences the refractive index as well as the phase of the electromagnetic

field, the resonance frequency ωres of the structure experiences perturbation. In other words,

this perturbation due to the resonance influences the amplitude of the electromagnetic field

inside the structure hence the intensity. Therefore, a feedback loop is intrinsically built in so

that a steady states can be reached eventually.

Regarding optical resonators, several geometries can be good candidates. The most common

device would be the Fabry-Pérot cavity which exhibits Airy resonance (50). Photonic crystals

possess the potential due to compact size and reduced power (51). Grating couplers that can

excite guided mode resonance with easy multiplex/demultiplex at input and output ports are

also studied (52). Besides the self-feedback schemes of bistability, systems that use one input

signal to control another are also presented. Optical switching was realized in cross-waveguide

geometry with one controlling signal and one input signal (53), which can be good candidates

for optical transistor. Similar concepts were used in a Kerr type ring resonator, for which one

input signal were to control the refractive index of the ring resonator (54). There still exists

a great challenge to implement the system mentioned above for all-optical applications. These

systems are either too bulky, or require great laser intensity to exceed the threshold. The
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reason for the limitations is due to the fact that most materials having very small nonlinear

Kerr effects (49; 55).

To make these systems compatible for integrated optics, it is necessary to reduce their

threshold intensity. Subwavelength grating and photonic crystals were found to display such

advantage. Guided mode resonance can be launched inside the grating with a high quality factor

and field confinement (56; 57). A high quality factor provides great field enhancement inside

the stricture with respective to the incidence, high field confinement will allow the effective

aperture to be very small, for example (λ/5)2 in Ref. (58). These features tremendously reduce

the threshold power and size of the system, which makes the applications possible.

Most studies are currently focused on the bi-state of the transmissivity which gives a direct

signal via optical detectors. Recently, a new bistable phenomenon regarding the Goos-Hänchen

shift along the interface has been discovered and demonstrated (59; 60; 61). and could lead

to new approaches for delivering information and implementing the applications. As previous

chapters mentioned, negative and positive Goos-Hänchen shift could be achieved, which allows

more freedom in designing specific components (62) and also lead to various of applications

in sensors (45) and slow light devices (63). In this chapter, we are going to introduce the

realization of giant bistable Goos-Hänchen shift based on the high quality factor guided mode

resonance. We first explain the mechanics of the optical bistability. Then, we describe in detail

our device. Finally, we will discuss the potential and future improvement of our device.
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4.2 Mechanics of Optical Bistability

The physics behind different bistable systems is similar. Among them, the Fabry-Pérot

etalon would be the simplest system to demonstrate the mechanics of optical bistability (64).

We use the Fabry-Pérot etalon as an example to explain the details of a bistable system (12; 64).

Consider a Fabry-Pérot etalon, a dielectric plate of refractive index n′ with that of ambient

medium as n, and assume a monochromatic beam is incident upon the plate at incidence angle

θ, which is shown in Figure 13. The light is incident on the surface of the plate and divided

into a reflected and a transmitted beam. The transmitted beam will again be divided into

reflected and transmitted plane waves when the light arrives on the other surface. The process

continues infinite times as indicated in the figure. Suppose the amplitude of the electric field

of the incident wave is E0. The polarization is linear and of either ‘s’ or ‘p’ type. For each

reflected or transmitted wave, the phase difference from the preceding one would be twice the

amount corresponding to the traversal of the plate. i.e.

Φ0 =
4π

λ0
n′h cos θ (4.1)

where h is the thickness of the plate and λ0 is the wavelength in vacuum. Let r be the reflection

coefficient and t the transmission coefficient from the surrounding environment n to the plate

n′, while r′ and t′ be the coefficient for plate to the surroundings, respectively. The coefficients
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here stand for the ratio between amplitudes of electrical fields. Recalling Fresnel’s formula given

by Equation 1.1, we would obtain the relation of

tt′ = T

r = −r′

r2 = r′2 = R (4.2)

where R and T are the reflectivity and transmissivity of the plate surface with energy conser-

vation relation

R+ T = 1 (4.3)

Figure 13: Schematics of Fabry Pérot etalon
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The complex amplitudes of the waves reflected each time from the plate’s upper surface are

then

rE0, tt′r′E0e
jφ, tt′r3E0e

2jφ, ... tt′r′2(p−1)φ, ... (4.4)

Adding the complex amplitudes of the infinite reflected waves yields the total reflected field

Er of the plate:

Er = r + tt′r′ejφ(1 + r′2ejφ + ...+ r′2(p−2)ej(p−2)φ)

= −r
′{1− (r′2 + tt′)ejφ}

1− r′2ejφ E0 (p →∞) (4.5)

Using Equation 4.2 the previous relation is transformed into

Er =
(1− ejφ)

√
R

1−Rejφ E0 (4.6)

and the associated intensity is related to Iin according to

Ir =
(2− 2 cosφ)R

1 +R2 − 2R cosφ
Iin =

4R sin2 φ
2

(1−R)2 + 4R sin2 φ
2

Iin (4.7)

where Ir = 1
2cε0ErE

∗
r .

Similarly, from energy conservation considerations the transmitted wave is

It =
T 2

(1−R)2 + 4R sin2 φ
2

Iin (4.8)
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Defining a parameter F called finesse satisfying

F =
4R

(1−R)2
(4.9)

Equation 4.8 is written as:

It =
1

1 + F sin2 φ
2

Iin (4.10)

Figure 14: Transmissivity T = It/Iin as the function of phase difference φ. Multiple beam
fringes of equal inclination in transmitted light.

The finesse of Fabry-Pérot etalon is parameter proportional to the quality factor. The total

transmissivity T = It/Iin as a function of the round trip phase difference φ inside the plate is
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shown in Figure 14 for various values of the finesses. If the surface reflectivity R is increased,

the intensity of the minimal of the transmission decreases, and the transmission peak becomes

narrower until R approaches unity. The dielectric plate becomes transparent and the light beam

is totally transmitted when the phase difference φ = 2mπ, which is the resonance condition of

the Fabry-Pérot etalon.

As discussed above, the transmissivity of the Fabry-Pérot is determined by the round trip

phase difference and the finesse. The transmission will always be unity while at resonance,

where the round trip phase delay becomes an integer multiple of 2π. According to Figure 14,

the transmission coefficient strongly depends on the phase difference, especially when the finesse

has a large value. To realize optical bistablity, nonlinearity must be included into to the system.

Consider a plate is made of Kerr type material, which has the property that its refractive index

can be changed by the local power of the light according to

n = nL + n2I (4.11)

where nL is the linear refractive index of the material while the intensity is zero. n2 is the

nonlinear Kerr coefficient with unit of cm2/W, I is the local field intensity. For Kerr material,

the round trip phase difference φ will be denoted as ΦNL (NL: Nonlinear). The transmission

coefficient T is written as

T =
1

1 + F sin2 ΦNL
(4.12)
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where

ΦNL = Φ0 +KT Iin (4.13)

Φ0 is given by Equation 4.1 and K is constant proportional to the thickness of the etalon the

Kerr coefficient, n2.

Equation 4.13 provides the nonlinear phase shift resulted from the intrinsic refractive index

variation associated with the optical Kerr effect. It indicates a linear relation with the trans-

missivity and the phase shift ΦNL and its slope is inversely proportional to the input intensity

Iin. Thus, we can interpret the total transmissivity T as

T =
ΦNL − Φ0

KIin
(4.14)

The nonlinear system reaches steady states only when Equation 4.12 and Equation 4.14 are

satisfied simultaneously. Referring to Figure 15, we show the procedure for the realization of

two stable states with one input state. As the intensity increases from zero, the intersection

of Equation 4.12 and Equation 4.14 is presented by points 1, 2, 3, 4, 4′, 5, sequentially. Notice

that in some situation two or more solutions exist, however, the correct solution falls in the

first achieved stable state. A discontinuous transition occurs from point 4 to point 4′, for which

point 4 is the point of tangency of the transmissivity curve. In fact, the transmissivity suddenly

increases resulting into a higher level output intensity. The input intensity at point 4 is defined

as the threshold input Ith. When the input intensity Iin decreases, the output intensity will

form a hysteresis loop not tracing the previous path but following the route of 5, 4′, 3′′′, 2′, 2,
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Figure 15: Transmission response analysis for a nonlinear Fabry-Pérot etalon

1. Again, a sudden decay of the transmissivity occurs from point 2′ to 2 leading to a drastic

reduction of the output signal.

The output intensity behavior versus the input is plotted in Figure 16. We can observe that

once the input intensity exceed the threshold Ith, a hysteresis loop for the output intensity is

formed. Within the window of the hysteresis loop, one input state leads to two output states.

The output states would not only depend on the magnitude, but also the derivative of the input

intensity to time.

4.3 Bistable Goos-Hänchen and phase shift

We present a 1D binary grating made of Kerr type Si material that covers a SiO2 substrate.

Under the condition of total internal reflection, the beam experiences a sharp reflection phase
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Figure 16: Bistable output intensity towards the input. A general hysteresis loop of bistability
is formed

shift and thus generate a large negative Goos-Hänchen shift(62). This phase shift is brought

about by the guided mode resonance inside the grating.

The Kerr coefficient of Si is n2 = 3×10−14cm2/W which is 100 times larger than that of the

SiO2 substrate. Hence, the nonlinearity essentially only applies to the material of the grating

while negligible on the ambient environment (the substrate and free space). Since the Kerr

coefficient for natural materials is generally small, a high quality factor is essential for operation

of a bistable system. The subwavelength grating can achieve a very high quality factor with a

level of 105 as reported in (65) and theoretically higher. This is particularly advantageous for

reducing the threshold intensity Ith of the source laser. Moreover, the reflection phase change

depends on the guided mode resonance rather than the Fabry-Pérot cavity mode. This leads

to a compact size which is important to build integrated chip devices. Since our device has
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nano-scale and the transient time of the Kerr effect is small, the bistability result is obtained

via a stationary numerical study.

4.4 Bistable phase shift and Goos-Hänchen shift with 1D Kerr grating

Figure 17: Schematic of a dielectric gating and the GH shift under a TIR. a is the length of
the high refractive index dielectric with a period, Λ is the period, the filling factor F = a/Λ.
“I” and “R” refer to the incident and reflected beams respectively. zs is the negative GH
shift. In this experiment, the filling factor F = 0.99, period Λ = 373nm, grating thickness
t = 239nm, refractive index of the grating ng = 3.48205 while of the substrate ns = 1.44462,
the polarization is s with E field perpendicular to the grating groove.

Figure 17 shows a 1D binary grating structure which was described in detail in Chapter 3.

The excitation coming from the SiO2 substrate has an incidence angle above the critical angle

thus experiencing total internal reflection, which differs from the normal incidence in (66).

As stated in Chapter 3, giant positive and negative Goos-Hänchen shifts were achieved due

to the guided mode resonance. The excitation of guided mode resonance is mediated by the

reciprocal lattice vector K = 2π/λ of the grating as for a conventional grating coupler according
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to Equation 2.2. The reflection phase from the grating is numerically calculated using the

Rigorous Coupled Wave Analysis (37).

(a) (b)

Figure 18: The amplification of the incident intensity inside the grating, reflection phase and
Goos-Hänchen shift varying with perturbation refractive index ∆n. (a): The intensity amplifi-
cation and reflection phase. (b) The intensity amplification and Goos-Hänchen shift.

The incident beam strikes the grating from the SiO2 substrate with a free space wavelength

of λ0 = 1.5µm and the incident angle of θ = 39.34◦. The local field intensity inside the grating

changes dramatically with small perturbation of the refractive index ∆n in a high quality

factor system. The parameters of the grating are designed to achieve a theoretical quality

factor of 4.23 × 104. For the grating structure to provide giant negative Goos-Hänchen shift,

the reflection phase and hence the Goos-Hänchen shift will vary as well as shown in Figure 18.
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Figure 19: Optical phase (top figure) and Goos-Hänchen shift (bottom figure) bistability with
the variation of the input field intensity. The threshold input intensity Ith = 1950W/cm2 and
the backward threshold intensity I ′th = 1400W/cm2 for both phase and GH shift bistability.
The solid lines show the steady state of the system while the dashed line represents the transient
states. The arrows show the directions of switching as the input intensity increases or decreases.

Note that in Figure 18, the local field is represented by the field amplification, Amp. More

interestingly, the reflection phase of the incident beam experiences an almost 2π shift within

extremely small change of grating’s refractive index as shown in Figure 18a. It has a promising

potential for applications in optical modulation, exhibiting a phase modulation range over π.

Also, the negative Goos-Hänchen shift appears to display a one to one correspondence with the

local intensity enhancement in Figure 18b. We can obtain the phase and Goos-Hänchen shift

response to the input field intensity subject to Iin = Amp × Iloc and ∆n = n2Iloc, where Iloc
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is the local field intensity. We discovered that the Kerr material grating leads to a bistable

reflection phase and Goos-Hänchen shift which are shown in Figure 19. The reflection phase

increases by 0.9π for the forward switch (state 4 to 4′) while it decreases 0.6π for the backward

process (state 2′ to 2). Simultaneously, the amplitude of negative Goos-Hänchen shift switches

at 6.3 × 104µm or 4200λ0 for the forward process while it switches 8.8 × 104µm or 5867λ0

for the backward one. The forward threshold field intensity is Ith = 1950W/cm2 while the

backward threshold field intensity is I ′ = 1400W/cm2. The intensity window for the bistable

states is ∆I = 550W/cm2. The window size is determined by both the quality factor and the

initial state, which are provided by Figure 13. The threshold field intensity is comparable with

Ith = 1400W/cm2 in (61). However, the Goos-Hänchen shift change obtained is more than 200

times, which provides a more distinct switching state. Among the three structural parameter

of the grating, the period Λ determines the resonance frequency, while the other two, the filling

factor F and grating thickness t, influence the quality factor. The analysis of the quality factor

is shown in Figure 20 and it indicates that a larger filling factor F results in a greater quality

factor. However, the thickness of the grating should be also considered because maximum

quality factor are achieved among the grating thickness from 240nm to 260nm. In Figure 20b,

the incident angle decreases while increasing either the filling factor or the grating thickness.

The bottom left corner of Figure 20b indicates that while filling factors and grating thickness are

both low, the resonance incident angle approaches the grazing angle. On the contrary, the top

right corner shows that the incident angle approaches the critical angle arcsin(1/nsub) = 43.8◦

when both filling factor and grating thickness are high. This behavior could result in reducing
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(a) (b)

Figure 20: The quality factor and corresponding resonant incident angle for the grating design.
The y axis is the filling factor while the x axis is the thickness of the grating. The free space
resonant wavelength is 1500nm while the period Λ = 373nm. (a): The quality factor. (b): The
incident angle for resonance.

the quality factor as shown in Figure 20 since the critical angle is the boundary of the radiative

or non-radiative regions in the dispersion relation.

4.5 Conclusion

In this chapter, we introduced another approach to achieve optical bistability by implement-

ing the Goos-Hänchen shift rather than the general bistable transmission scenario. By taking

advantage of the high quality factor feature of the guided mode resonance and of the low loss of

dielectric material, it is feasible to design a grating achieving very high distinct bistable state

with relatively low laser intensity input. We demonstrated an example of giant bistable Goos-

Hänchen shift and phase shift with extremely large quality factor. The Goos-Hänchen shift

bistability could be applied to the positional sensor while the later could be more important
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for modulation and switches. The feasibility of designing the quality factor of the grating is

also demonstrated. The grating parameters can be selected to fit the fabrication limits, input

laser power and frequencies. The input threshold power can be further reduced by selecting

artificial Kerr material which are hundreds times higher than natural material. The bistable

Goos-Hánchen shift and phase shift are very promising features to be further investigated and

applied to optical circuits.



CHAPTER 5

BROADBAND LIGHT SIGNAL TRAPPING

BASED ON NEGATIVE GOOS-HÄNCHEN SHIFT

Disclaimer: This chapter is reproduced from published paper — Rui Yang, Wenkan Zhu,

Jingjing Li, “Realization of “trapped rainbow” in 1D slab waveguide with Surface Dispersion

Engineering” Opt. Express 23, 6326-6335 (2015). The author of this thesis was the main

contributor to the publication.

This chapter presents a design of a one-dimensional dielectric waveguide that can trap

a broadband light signal with different frequency components stored at different positions,

effectively forming a “trapped rainbow”. The spectrum of the rainbow covers the entire visible

range. To do this, we first show that the dispersion of a SiO2 waveguide with a Si grating

placed on top can be engineered through the design parameter of the grating. Specifically,

guided modes with zero group velocity (frozen modes) can be realized. Negative Goos-Hänchen

shift along the surface of the grating is responsible for such a dispersion control. The frequency

of the frozen mode is tuned by changing the lateral feature parameters (period and filling factor)

of the grating. By tuning the grating feature point by point along the waveguide, a light pulse

can be trapped with different frequency components frozen at different positions, so that a

“rainbow” is formed. The device is expected to have extremely low ohmic loss because only

dielectric materials are used. A planar geometry also promises significantly reduced fabrication

difficulty.

66
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5.1 Review of Light Trapping Schemes

To use photons as information carriers is currently under intense study because of the al-

most unlimited bandwidth and the high energy efficiency. Many devices in an optical network

depend on the capability to control the dispersion property of a waveguide. One example is

the slow light for which the group velocity of light is much smaller than that in the free space.

Applications of slow light devices include optical buffers, nonlinear optics, and optical signal

processing. Whereas the slow light is usually realized on Bose-Einstein condensate (67), building

solid-state slow light devices is of great practical importance. The former is based on electro-

magnetically induced transparency (EIT) and usually demands bulky, ultra-low temperature

apparatus, while the latter is of much lighter weight and is applicable for on-chip integration.

Photonic crystals are used almost exclusively for on-chip slow light devices. Usually, the part

of the dispersion curve around the edge of the reduced Brillouin zone is used. This part of

the dispersion curve are flattened because of the coupling between the forward and backward

propagating modes, and exhibits a very small group velocity (68; 69; 70; 71). In 2007, a new

idea to realize slow light was proposed in theory by Tsakmakidis, et. al., making use of the

anomalous property of metamaterials (72). In their proposal, the negative Goos-Hänchen shift

on a interface between a metamaterial and a regular dielectric is used. It was shown that, for

a waveguide made of a metamaterial, when the Goos-Hänchen shift on the side walls of the

waveguide compensates completely the forward-leap of the ray in a round trip, the guided mode

would become, intuitively, “frozen” on the waveguide and no forward power propagation can be

observed. This is actually a description of slow light using the ray picture. Further, a scheme of
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trapping optical signals of a broad frequency band is proposed: since the operating frequency to

freeze the light is related to the waveguide thickness, a waveguide segment of tapered thickness

should be able to trap light of a continuous spectrum at different positions along the waveguide,

forming a “trapped rainbow”.

This idea has since attracted many researchers and different designs have been attempted.

However, the experimental realization of the original idea of “trapped rainbow” faces great

challenge. In the original design, the metamaterial was treated as a homogeneous medium

similar to a regular dielectric, while in reality such an artificial material is always composed of

discrete inclusions with strong temporal and spatial dispersion. Up to now, the best optical

metamaterial uses inclusions of ∼ λ0/3 in size, where λ0 is the free space wavelength at the

operating frequency. When used to build a waveguide which itself might only be a few wave-

lengths in width, the modeling of the waveguide as a homogeneous one is problematic. The

optical metamaterial usually operates at a frequency up to the near infrared. Little progress

has been made for metamaterials working in the visible band with reasonably good properties.

Also, metamaterials are inevitably dispersive, and there have been no report on metamaterials

with negative ε and/or µ that cover the entire visible domain. Further, the ohmic loss related

with metamaterial is a formidable factor. In the optical frequency domain, plasmonic materials

(gold or silver) are used almost exclusively to build metamaterials. Their ohmic loss is far

from tolerable for the application of “trapped rainbow”, and might erase any feature related to

the broadband rainbow trapping. There have been a few reports on the experimental demon-

stration of the “trapped rainbow” after the theoretical proposal (73; 74; 75). However, none
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has actually used the approach proposed in the original paper that was based on the negative

Goos-Hänchen shift. Rather, they are realized on the edge of the Brillouin zone of a plasmonic

periodic structure. Inevitably, the strong ohmic loss makes the trapping effect very weak.

In this chapter, we numerically demonstrate an approach to realize frozen mode based on the

negative Goos-Hänchen shift. The proposed approach uses only dielectric materials, thus could

have extremely low ohmic loss. The “trapped rainbow” is then realized by a waveguide with

chirped or adiabatically tuned design of the frozen mode waveguide. We believe our approach is

the first, complete demonstration for a frozen mode and trapped rainbow that uses the negative

Goos-Hänchen shift, the original idea in Ref. (72). In the following, we first review the idea

of using negative Goos-Hächen shift to construct a frozen mode, and our recent discovery that

negative Goos-Hänchen shift, sometimes of giant magnitude, can be realized on the surface of a

dielectric covered by a grating. We then demonstrate rigorously that a “frozen mode” where the

Goos-Hänchen shift fully compensates the forward leap of the ray in a round trip inside a slab

waveguide indeed corresponds to zero group velocity of the guided mode, and show numerical

results of such a frozen mode. Based on this waveguide that supports frozen mode, we then

show our designs of the “trapped rainbow” concept, for which a broadband pulse is stopped

with different frequency components trapped on different positions along the device.

5.2 Theory of Negative Goos-Hänchen Shift and Frozen Mode

We would like to realize Tsakmakidis’s idea (72) to form a frozen mode using a dielectric

grating to obtain the Goos-Hänchen shift, as discussed in Chapter 3. We recall that, mathemat-
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ically, the Goos-Hänchen shift can be evaluated according to Equation 1.6 which is rewritten

here for convenience,

zs = − ∂φ

∂kx
(5.1)

where φ is the phase of the reflection coefficient of the plane wave component with a lateral

wavenumber of kx. The Goos-Hänchen shift is usually positive for the reflection from an in-

terface between two regular dielectrics, while negative for interfaces between regular dielectrics

and plasmonic material or metamaterial.

The negative Goos-Hänchen shift has attracted considerable research interests, one of which

is to control the direction of energy flow in a dielectric slab waveguide with respect to the wave

vector of the guided mode, as discussed in the same paper that proposed the trapped rainbow

(72). Whereas the original discussion was from a rather intuitive approach, here we would like

to give a rigorous mathematical description. Consider a slab waveguide made of a dielectric of

refractive index n and thickness h. A guided mode can be described as a plane wave totally

internally reflected back and forth on the two interfaces that satisfy the following relationship:

2nhk0 cos θ + φ1(θ, k0) + φ2(θ, k0) = 2mπ (5.2)

where k0 is the free space wavenumber, θ is the angle of incidence, φj(θ, k0), j = 1, 2 is the

phase loss (the phase of the reflection coefficient) on the two side walls, respectively, with m an
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integer. When written in terms of kx, the wavenumber parallel to the waveguide wall, we find

that

2h
√
n2k2

0 − k2
x + φ1(kx, k0) + φ2(kx, k0) = 2mπ (5.3)

Taking the total differential of both sides with respect to k0 and kx, we get

2nh
∆k0√

1− k2x/(nk0)2
− 2h

kx√
n2k20 − k2x

∆kx +
∑
j=1,2

(
∂φj
∂k0

∆k0 +
∂φj
∂kx

∆kx

)
= 0 (5.4)

which is a relationship a guided mode must satisfy in addition to Equation 5.2. When deriving

the former equation, we assume that n does not change with frequency, which is a reasonable

assumption for dielectric waveguides. Divide both sides by ∆kx and take the limit of ∆kx → 0,

we get  2nh√
1− k2x/(nk0)2

+
∑
j=1,2

∂φj
∂k0

 ∂k0
∂kx

= 2h
kx√

n2k20 − k2x
+
∑
j=1,2

−∂φj
∂kx

(5.5)

Notice that ∂φi/∂k0 is always positive. This is because ∂φi/∂k0 is the delay of the center of

the Gaussian pulse at the reflection of the interface. For a lossless reflection (which is the case

here), this delay must be positive for a causal system. This means the sign of the right hand side

completely determines the sign of ∂k0/∂kx, which is proportional to the group velocity. For the

right hand side, the second term is the Goos-Hänchen shift on the two side walls. Also notice

that kx/
√
n2k2

0 − k2
x = kx/ky. Thus, if we let zw = hkx/

√
n2k2

0 − k2
x, zw is actually the forward

displacement of the ray when propagating from one side wall to the other (see Figure 21a).

Combining the contribution of zs and zw together, the right hand side of Equation 5.5 gives
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Figure 21: Energy flow and Goos-Hänchen shift in a planar waveguide . The incidence is
colored in red, Goos-Hänchen shift zs in blue, while the forward displacement zw in orange.
The rays travels inside the waveguide are in black.
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the total x direction displacement of a ray in a round trip, as we see in Figure 21. When the

waveguide and the surrounding medium are both made of regular dielectrics, the Goos-Hänchen

shift is positive, thus the right hand side is always positive. This means ∂k0/∂kx > 0 is always

satisfied. Matters become interesting when we have negative Goos-Hänchen shift on one or

both of the side walls, especially when it is of large magnitude so that the total displacement

is negative (Figure 21d). In this case, the group velocity would be negative, and the energy

propagates anti-parallel to kx. When the Goos-Hänchen shift is just enough to make the right

hand side go to zero (the situation described by Figure 21c), we satisfy ∂k0/∂kx = 0, and

a “frozen mode” of the waveguide is formed. This is a guided mode with finite propagating

constant, but zero net power propagation. All these conclusions are consistent with those in

Ref (72) but based on rigorous mathematical analysis. We would like to point out that the

conclusions only hold when the waveguide material has no temporal or spatial dispersion, i.e.

∂n/∂k0 = 0 and ∂n/∂kx = 0, as assumed when deriving Equation 5.4. This is a reasonable

assumption for dielectric waveguide, but not for metamaterial waveguides.

5.3 Realization of Frozen Mode Based On Negative Goos-Hänchen Shift Grating

A negative Goos-Hänchen shift is crucial in building a frozen mode. This can be achieved

on the surface of plasmonic materials or metamaterials, but is usually accompanied with large

ohmic losses. However, it is possible to make negative Goos-Hänchen shift using pure dielectric

devices, as we demonstrated in previous chapters and in our publication (62). The system under

consideration is shown in Figure 8, where a thin grating made of Si is placed on a substrate of
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SiO2. For certain grating design, the phase of the reflection coefficient for incidence from the

SiO2 side is of very different nature compared to that on the SiO2/Air interface, as we see in

Figure 22 in which s polarized incidence is studied, i.e. Ez is the only electric field component.

Whereas the phase decreases with the incident angle for a SiO2/air interface indicating a positive

Goos-Hänchen shift (see black dashed line in Figure 22), on the SiO2/grating interface, the

phase increases, exhibiting a negative Goos-Hänchen shift (see red solid line and black solid

line in Figure 22). This is similar to that of a SiO2/Metamaterial case (see red dashed line

in Figure 22). The negative Goos-Hänchen shift is related to the guided mode of the grating.

For the second band of the guided mode of the grating, the energy propagates to the opposite

direction of the wave vector. The part of the dispersion curve for this band that is between

the light lines of the free space and the substrate is leaky on the substrate side, and can couple

to the incident beam efficiently. The amount of Goos-Hänchen shift can be controlled by the

grating design: depending on the parameters of the grating, we may have a very large (a steep

φ-kx curve) or a mediocre (a slow-varying φ-kx curve) Goos-Hänchen shift. In fact, the amount

of Goos-Hänchen shift ranges from tens of nanometers up to several millimeters.

With the aid of the negative Goos-Hänchen shift on the grating, we can readily realize the

frozen mode discussed in the former section, by placing the grating on the sides of a dielectric

waveguide. It turns out that grating on one side is sufficient to realize our goal. One of the

designs makes use of a SiO2 waveguide of 200nm thick and a grating of 40nm in thickness. The

schematic of the design is shown in Figure 23.
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Figure 22: Reflection phase vs incidence angle θ for different interfaces when incidence is
from the SiO2 substrate. Operating free space wavelength is 1.5µm. GratingI parameters:
ΛI = 0.53µm, tI = 0.097µm, FI = 0.65. GratingII parameters:ΛII = 0.43µm, tII = 0.11µm,
FII = 0.93.

Figure 23: The schematic for a frozen mode design. The circulating rays depict the frozen
mode using geometric optics.
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In order to calculate the dispersion curve of this grating-decorated waveguide, we first find

out the reflection phase φ(k0, kx) on the SiO2/Grating interface and the SiO2/Air interface,

respectively. These values are then used in Equation 5.2 to obtain the dispersion relation. The

results are shown in Figure 24 as red cross. Notice how the dispersion curve bends to form a

local extreme, ∂k0/∂kx goes to zero where a frozen mode is formed. Calculation confirms that

the right hand side of Equation 5.5 indeed approaches zero at the top of the dispersion curve,

which demonstrates the application of Equation 5.5 in finding a frozen mode. The numerical

evaluation also shows that the right hand side of Equation 5.5 is positive for the part of the

dispersion curve with kx smaller than that at the top point, and negative when kx is larger than

that at the top. This is consistent with the positive or negative group velocity the dispersion

curve shows (see Figure 21). The nature of the negative Goos-Hänchen shift can be used to

understand the frozen mode. Recall that the negative Goos-Hänchen shift is usually explained

by an energy flow beyond the reflection interface that is opposite to kx (15). If this power

flow compensates completely the forward power flow inside the waveguide, no net power flow

is carried by the guided mode, and a zero group velocity is expected.

The evaluation of the dispersion relation using Equation 5.2 assumes that high order spatial

harmonics of the field around the grating may be neglected. To verify this assumption, we

also evaluated the dispersion relation of the waveguide using full wave analysis. To do this, we

use MEEP, an open source numerical electromagnetic package based on the finite-difference,

time-domain (FDTD) method (38). The result is shown as circles in the same plot of Figure 24,

together with the guided modes of the same Si grating sitting on a SiO2 substrate of infinite
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Figure 24: The dispersion property of waveguide with grating parameters: t = 0.04µm,Λ =
0.16µm, F = 0.6, εh = 10.24, εl = εc = 1; waveguide parameters: h = 0.2µm, εs = 2.09. The
upper and lower dashed lines are light lines of free space and the waveguide. The blue circles
stands for the FDTD result while red cross stands for the plane wave approximation analysis.
The solid violet line shows the dispersion of single grating laying on a SiO2 substrate, while the
solid orange line shows the dispersion of bare waveguide.
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thickness. We can identify the nature of each part of the dispersion curve by examining the

field distribution of the guided modes. For the lowest band below the light line of SiO2, the

electromagnetic field is well confined inside the grating, and the dispersion curve overlaps well

with the guided mode of the grating on SiO2 substrate. These modes are below the light line

of SiO2 and does not couple well with the propagating plane waves in the SiO2 waveguide, thus

can not be predicted by Equation 5.2. Rather, this is the guided mode of the grating itself.

The second band is above the light line of SiO2, thus the plane waves inside the SiO2 slab

waveguide take part in the formation of this band. Notice that the dispersion curve calculated

from Equation 5.2 (plotted as red “×”) indeed overlaps well with that calculated from full-wave

analysis. This means the high order spatial harmonics of the field do not contribute sufficiently

in forming the mode, and using Equation 5.2 for mode calculation is a safe approximation. The

shape of the lower part of the second band is similar to the dispersion curve of a bare SiO2 slab

waveguide of the same thickness, but shifted in kx because of the changed reflection phase on

the SiO2/grating wall (see Equation 5.2).

As the frequency increases, the waveguide mode approaches the second band of the grating’s

guided mode where the two anti-cross each other, causing the opening of a bandgap. Notice

that, the second band of the grating mode is also where negative Goos-Hänchen shift is observed

(62). The instantaneous field distribution of the frozen mode, i.e. the mode at the top of the

lower band, is shown in Figure 25a. It is then obvious for higher frequency frozen mode,

which is the bottom of the third band depicted in Figure 24, to show the frozen mode mostly
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Figure 25: The instantaneous field distribution of the frozen mode in three periods of the
waveguide.(a) refers to the frozen mode and top of the second band while (b) refers to the
frozen mode of the bottom of the third band.

concentrated in the grating Figure 25b. The Poynting vector evaluated from these simulation

results indeed confirm the zero net power flow of these modes.

5.4 Trapped Rainbow Design

One important feature needed for a trapped rainbow is the capability to tune the frequency

of the frozen mode. In the original paper about trapped rainbow (72), this is realized by

varying the thickness of the waveguide. A tapered waveguide requires gray-scale etching, which

is difficult in the conventional micro- and nano- fabrication developed for planar geometry. The

grating used in our device can tune the operating frequency without thickness variation: we

can change the lateral design parameters (the period Λ and the filling factor F ) to modulate
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the frequency of the frozen mode while leaving the waveguide thickness untouched. It appears

that the frozen mode frequency can be varied most effectively by changing the period. The

effect is shown in Figure 26, for the the dispersion curves of two waveguides of the same SiO2

slab and grating thickness (200 nm and 40 nm, respectively) but different grating periods ( blue

◦): Period = 160 nm; red 4: Period = 170 nm.) The result in this plot is again from MEEP

simulation. As we can see, the frequency of the frozen mode (the top of the lower band) is

obviously changed. For a period variation of ∼ 6%, the frequency is changed by ∼ 4.5% .

2 2.2 2.4 2.6 2.8 3
1.8

2

2.2

2.4

kx/(2πc)

k 0
/
(2

π
c)

Period = 160nm
Period = 170nm

Figure 26: The dispersion of two types of waveguide in the difference of Period = 0.16µm(Blue
circle) and Period = 0.17µm(Red triangle).

To construct a trapped rainbow requires building a waveguide on which the frozen mode

is of different frequency at different position along the device. In our design, this is realized
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by placing multiple segments of the waveguide of different grating period one after another. A

schematic is shown in the top of Figure 27a. As a demonstration, our first device is composed

of 14 waveguide segments, and the grating of each segment consists of 10 identical periods.

These gratings have the same thickness of t = 40 nm and filling factor F = 0.6, but the period

varies from 130 nm to 260 nm. The free-space wavelength of the frozen mode that would be

supported by waveguides of these different designs range from 395 nm to 704 nm. A broad

band pulse is then fed to the device from the left. We arrange the waveguide segments so

that the frozen mode frequency decreases from left to the right, with the segments of higher

frequency sitting at the upper stream of the optical power flow. This is because, according to

Figure 24 and Figure 26, each segment actually supports two modes of zero group velocity, one

at the top of the lower band while the other at the bottom of the top band. In our design, we

use the lower band of every segment, and the arrangement described above promises that the

bottom of the upper band of each segment falls inside the bandgap of its neighboring upper

stream segment, thus would not be excited. The structure is again simulated in MEEP. In the

simulation, we record the field at different positions along the center of the waveguide after

the transient field fades out. A Fourier transform then reveals the spectrum at each position.

The observed spectrum intensity at different positions along the whole device is shown in the

bottom of Figure 27a. Here the horizontal axis is the lateral position along the device with the

origin at the beginning of the first waveguide, while the vertical axis is the signal frequency.

The color shows the spectrum intensity. In the simulation, a pulse signal with approximately

flat spectrum in the band of interests is used, so that no frequency component has an advantage
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in the power intensity. As we walk from left to the right along the device, we can indeed observe

14 discrete steps in the spectrum at positions corresponding to the 14 waveguide segments (the

last one is less obvious due to the reflection by the segments ahead of it), going from 760 THz

(violet color) to 400 THz (red color). To give an intuitive understanding to the result, we

show the color that would be observed at different positions along the device rendered from the

spectrum measured at the very position. The algorithm to render a color from a distribution of

spectrum intensity is discussed in Ref. (76), and the result is shown in the middle of Figure 27a.

The result clearly gives a “rainbow” trapped along the device.

The former demonstration uses a piecewise continuous design. To have a rainbow with

adiabatic color change, we turn to a device with tapered design. Rather than physically tapering

the thickness of the slab waveguide, we use continuously varying grating period along the whole

device in the same range as for the former example, as in we see in the schematic shown

on the top of Figure 27b. We expect the result to be a smooth-out version of the trapped

rainbow shown in Figure 27a. The result indeed proves our expectation (refer to the middle

of Figure 27b). As we see in the bottom of Figure 27b, the peak frequency of the spectrum

changes as the observation position changes, and a rainbow of continuously varying color can

be observed.

5.5 Method

5.5.1 Rigorous Coupled Wave Analysis

For Figure 22, 25a and part of Figure 24, we used the Rigorous Coupled Wave Analysis

(RCWA) based on the algorithm presented by Li (37). When used for the simulation of gratings,
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Figure 27: The trapped rainbow field distribution corresponds to the position and frequency.
Top: The schematic of the rainbow-trapping device composed of multiple waveguide segments.
Bottom: Full wave analysis of the trapped rainbow obtain by FDTD simulation and Fast Fourier
Transform. For the waveguide, t = 0.2µm. (a): For the grating, F = 0.6, t = 0.04µm, period
range is designed from 0.13→ 0.26µm. The Gaussian pulse enters from the left of the structure
in the slab waveguide(not shown in the plot). Both figures demonstrate the field distribution
in the frequency domain(vertical axis) and the spatial position(horizontal axis). (a): Rainbow
trapping by waveguide of continuously varying parameters. The period varies from 0.130µm to
0.267µm gradually. The other design parameters and the excitation are the same as in (a).



84

the structure is modeled as a stack of layers periodic in the x − y plane. In each layer, the

electromagnetic field is expanded using the eigenmodes of the very layer as the base functions.

According to Bloch theorem, the eigenmodes can be written as

Ψl(x, y, z) = ψl(x, y) exp (ikzlz) exp(ikxx+ ikyy) (5.6)

where Ψ is either the electric field E or magnetic field H, and ψl(x, y) is a periodic function in

x − y plane, l is the order of the eigenmode. kx and ky are the lateral wavenumbers that are

usually determined by the incidence angle, and kzl is the propagating constant in z direction

of the corresponding eigenmode, which is evaluated from the eigenvalue. In RCWA, the eigen-

modes of each layer are first solved by expanding the periodic function ψl(x, y) into Fourier

series. The boundary conditions between neighboring layers are then enforced by equating the

lateral components (x and y components) of the electric and magnetic field of the same spatial

components in both layers, respectively. Since the geometry of our structure is one-dimensional,

we take into account spatial components of orders in [−25, 25] in the x direction (the direction

perpendicular to the grating lines), while in the y direction we only take into account the 0th

order. Care was taken to verify that this many Fourier orders give good enough precision.

5.5.2 Finite Difference Time Domain Simulation

The FDTD simulation was done on an open source software MEEP (38). For the corre-

sponding results in Figure 24 and Figure 26, we constructed a period of the grating or grating

decorated waveguide and used Bloch boundary conditions on the boundaries at ±x directions.
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Perfectly matched layers are used for the ±z boundaries. A Gaussian pulse is used as the source,

and the propagating modes are evaluated from the recorded time series of the electromagnetic

field by harmonic inversion (77).

For the results in Figure 27a and Figure 27b, a broadband Gaussian source is used. We

record the electromagnetic field only after sufficient running time to allow the transient field to

die out. The field is recorded on different positions along the center of the waveguide. A Fast

Fourier Transform is carried to give the signal in frequency domain. For the rainbow plots (the

middle panels of Figure 27a and Figure 27b), the color at each position was rendered using the

evaluated spectrum at the same position, following the method given in Ref. (76). This gives a

realistic image of how would the device look like in real life.

5.6 Conclusion

In this chapter we made use of the negative Goos-Hänchen shift on the surface of a dielectric

grating to realize a frozen mode, i.e. a guided mode on a waveguide with no net power propa-

gation. Further, by tuning the design parameters of the grating on a waveguide, we can achieve

frozen modes with different frequencies sitting at different positions along the waveguide, so

that a broad band pulse covering the whole visible spectrum can be caught by the waveguide,

with different frequency components stored at different positions. The current design is, to

the best of our knowledge, the first demonstration of the “trapped rainbow” proposed in (72)

that makes explicit use of the negative Goos-Hänchen shift, the mechanism originally proposed

in that paper. At the same time, the use of only dielectric materials promises a much lower

ohmic loss. The negative Goos-Hänchen shift is realized on the surface of a grating, which has
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a geometry much simpler to be fabricated compared to the usual three dimensional structure of

a metamaterial. Tuning the lateral design parameters rather than the thickness further reduces

the fabrication difficulty. All these features make the device suitable for practical use in areas

such as slow light propagation devices.

It should be pointed out that the “trapped rainbow” serves as a manifesto of the capability

of the grating in controlling the dispersion property of a slab waveguide. According to Equa-

tion 5.5, the Goos-Hänchen shift, or more generally, the reflection phase φ on the surface of

the grating, directly determines the behavior of the group velocity. Since the reflection phase

is controlled by the design parameters of the grating, Equation 5.5 gives us a straightforward

method to synthesize the dispersion property of the waveguide as needed. We believe this

dispersion engineering approach can lead to promising applications in optical networks.



CHAPTER 6

CONCLUSION

This thesis provides a detailed explanation for taking advantage of the guided mode reso-

nance in achieving the Goos-Hänchen shift from dielectric periodic structures rather than the

homogeneous dielectric interfaces.

The advantage of the guided mode resonance by using dielectric gratings is to generate giant

or mediocre Goos-Hänchen shift in both positive and negative directions. The guided mode

resonance can also generate high quality factor resonance, which is a promising feature to realize

low-threshold intensity bistability. We have shown that the grating can provide both phase and

Goos-Hänchen shift bistability, which deserves further investigation of its features to evaluate

the feasibility of many engineering applications. The capability to engineer the dispersion

relation was also developed for the dielectric grating. Together with the negative GH shift, the

grating can achieve a flat dispersion curve which corresponds to a “frozen mode”. By changing

the period of the grating, broadband light signal can be “frozen” inside the waveguide, forming

a “trapped rainbow” for the visible spectrum.

The design examined in this thesis used dielectric periodic grating to achieve giant GH

shift, especially negative ones that used to be obtained with high loss surface plasmonics and

metamaterial. This dielectric design dramatically reduces the metallic loss and increases the

portion among of GH shift that can be obtained. Therefore,we obtained a Goos-Hänchen

shift corresponding to 5000 times of the wavelength, however, there does not seem to be a

87
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theoretical upper bound. This GH shift based on guided mode resonance represents a good

candidate for applications where high sensitivity is needed. Gigantic GH shift can be realized

with high quality factor resonance and controlled by the grating parameters. Further, it can be

implemented to obtain optical bistability in applications that require bistable phases or lateral

shifts.

The abnormal reflection phase property of the grating can be taken advantage of to engineer

the dispersion of a slab waveguide. It was proved that engineering the reflection phase of one or

two sides of a common dielectric slab waveguide suffices to engineer the dispersion property. A

flat dispersion curve was achieved as the “frozen” mode which corresponds to zero net energy

flow. Also, it is mathematically verified using geometric optics by taking GH shift into account.

Further, the numerical experiments explain the “frozen mode” in both frequency (RCWA) and

time (FDTD) domain analysis. By tuning the horizontal parameter of the grating, the frequency

of “frozen mode” can range over the entire visible spectrum. This ultra broad bandwidth

indicates the great potential of the grating in dispersion engineering. The simplicity of the

device configuration and low-loss material used improve the realization of the original trapped

rainbow idea, which could contribute a building block to all-optical processing research.
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Appendix A

GENERAL SOLUTION FOR EM WAVES IN HOMOGENEOUS AND

INHOMOGENEOUS MEDIA

All free space electromagnetism is governed by the four free space Maxwell equations, which

are:

∇ ·E = 0 ∇×E +
∂B

∂t
= 0

∇ ·B = ρ ∇×H− ∂D

∂t
= J (A.1)

where E and H are the electric and magnetic fields, D = εE and B = µH are the electric

displacement and magnetic induction fields. ρ and J are the free charge and current densities.

From Maxwell equations, the wave equation in homogeneous media can be derived (ρ = 0,

J = 0) as following

∇× (∇×E) =
∂

∂t
∇×B = −µε∂

2E

∂t2
(A.2)

with the relation of

∇× (∇×E) = ∇(∇ · E)−∇2E = −∇2E (A.3)
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Appendix A (Continued)

we can have electric field wave equation as:

∇2E− 1

c2

∂2E

∂t2
= 0 (A.4)

and similarly for magnetic field:

∇2B− 1

c2

∂2B

∂t2
= 0 (A.5)

Here, c = 1/
√
µε is the speed of light in the media. In practice, many electromagnetic waves

are approximated as time-harmonic sinusoids at a certain frequency. Even if the wave were

not monochromatic, we can consider them as the superposition of multiple sinusoidal waves

at different frequencies using Fourier analysis (35). Therefore time-harmonic monochromatic

wave will be discussed in the following. The time harmonic fields are expressed as :

E(r, t) = E(r)e−jωt (A.6a)

B(r, t) = B(r)e−jωt (A.6b)

Follow the derivation above for time harmonic waves, we can achieve Helmholtz equation:

∇2G + k2G = 0 (A.7)

k = ω
√
µε (A.8)
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Appendix A (Continued)

here G stands for either electric or magnetic field. Note that Equation A.7 is equivalent to

Equation A.3 only if ∇ ·G = 0. A general solution for the electromagnetic wave is

G(r) = |G|ejkr (A.9)

The general solution applies to any media since it fulfills the requirements of Maxwell’s

equation. More sophisticated situation is inhomogeneous medium. The Maxwell equations for

a source free inhomogeneous medium can be written as:

∇ ·H(r, t) = 0 ∇×E(r, t) + µ0
∂H(r, t)

∂t
= 0

∇ · [ε(r)E(r, t)] = 0 ∇×H(r, t) + ε0ε(r)
∂E(r, t)

∂t
= 0 (A.10)

Here µ is generally considered as µ0 for most dielectric material in optics frequencies, while ε(r)

is a permitivitty function of the position. Due to the complexity of the material, a solution

similar to Helmholtz equation cannot be achieved but result in a master equation as:

∇
(

1

ε(r)
∇×H(r)

)
=
(ω
c

)2
H(r) (A.11)

Together with the divergence equations in Equation A.10, the property of the electromagnetic

wave can be revealed. The strategy is as follows: for a given structure of ε(r), we can solve the

eigenmode H(r) for the master equation Equation A.11. H(r) is the eigenvector which depicts
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Appendix A (Continued)

the spatial patterns of the time harmonic modes with eigenvalues (ω/c)2. Then use the fourth

equation in Equation A.10 to recover E(r):

E(r) =
j

ωε0ε(r)
∇×H(r) (A.12)

However, practical analysis via this approach could be computationally difficult. Particular

analysis will be demonstrated when periodicity or other constraints are introduced.
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