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SUMMARY

Currently in the United States, the National University Rail (NuRail) Center is leading a

federally funded renewed interest in railway engineering that includes research on high speed rail

networks and increase of speeds on shared corridors. Assessment of existing railroad bridges and

construction of new high speed rail bridges would require adequate theoretical modeling to

predict their dynamic behavior. Single span short bridges over roads, rivers, wildlife trails or

other environmental features are usually considered to have a relatively low budget compared to

larger structures. Consequently, they are assigned a correspondingly low budget for engineering

often requiring the use of simple methods for dynamic calculations. Although this philosophy

may be acceptable for highway bridges which are mostly governed by the ultimate limit state

criteria, this approach becomes problematic particularly for short span high speed rail bridges

where resonance may occur resulting in excessive vertical accelerations of the bridge deck.

These serviceability problems are real as experienced in France during the early stage of the high

speed rail program when some retrofitted existing short span bridges had to be shut down

temporarily. Facing similar challenges, the United States could benefit from the past experiences

gained in Europe and Asia. The literature review during this research has shown that simple

models consisting of simply supported beams subjected to a series of moving point loads grossly

overestimate results by as much as 50% in some short span bridges; and complex numerical

models of fully coupled vehicle-bridge systems are computational expensive. The effects of the

track-bridge interaction and the influence of boundary conditions on bridge responses are not yet

well studied. Motivated by the above statements, this research focuses on the formulation of a

numerical model for train-track-bridge interactions; investigation of the free vibration problems;

and parametric studies of short span high speed rail bridges through dynamic simulations.
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SUMMARY (Continued)

In the first part of this dissertation, a 2D numerical model is developed that takes into

account the interaction of the train moving at a constant speed as well as the track structure and

boundary conditions. The Train-Track-Bridge Interaction (TTBI) system is treated as two

separate subsystems. The equations of the train vehicle as a moving subsystem and the equations

of the stationary underlying track-bridge subsystem are formulated independently, thus

decoupling the whole system. The interaction between the two subsystems is assumed to occur at

the wheel-rail interface where constant contact is enforced through constraint equations. The

track-bridge finite elements are assumed to consist of contact elements and non-contact

elements. Using dynamic condensation and Hermitian cubic interpolation functions, the degrees

of freedom of the wheels at the contact points are related to the nodal displacement vector of the

rail. Vectors of velocity and acceleration of contact points are computed from the first two

derivatives respectively of the vector of displacement. The equations of motion of the vehicle are

solved using modified Newmark finite difference schemes based on the HHT alpha method.

Contact forces are obtained from the equations of the vehicle which are then used to solve the

equations of the track-bridge subsystem in a step-by-step direct time integration algorithm. The

boundary conditions of the bridge are incorporated using linear viscoelastic elements whose

values are added to the diagonals of global matrices at their corresponding degrees of freedom.

The result accuracy of the proposed numerical model is validated against results from a semi-

analytical method of a fully coupled vehicle-bridge interaction problem using modal

superposition and against results from other studies using different finite element models found

in the literature. Results comparisons show excellent agreement indicating accuracy of the

proposed model.
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SUMMARY (Continued)

In the second part of this dissertation, the effects of key model aspects in the free

vibrations of a track-bridge system are investigated. It is found that natural frequencies of the

bridge decrease when shear deformations and rotational inertia are considered. The decrease is

more significant when the slenderness ratio decreases and at the same time the shear deformation

parameter increases. The vertical stiffness of the bridge supports has a significant effect on the

natural frequencies of the bridge. The vertical stiffness ratio, defined as the ratio of support

vertical stiffness to bridge flexural stiffness, determines the degree of flexibility at the boundary

conditions. The natural frequencies of the bridge are reduced when this ratio decreases. For a

given value of this ratio, the decrease is more significant in the frequencies of higher modes.

Also, for constant bridge support conditions, the decrease is more significant for short span

bridges. The additional mass of the ballast decreases the natural frequencies of short span bridges

with rigid supports. However, for support vertical stiffness ratio less than 100, the ballast mass

has no significant effect on the fundamental frequency. The vertical stiffness of the track has

negligible effects on the natural frequencies of short span bridges modeled with rigid supports

but has noticeable effects as the bridge supports become more flexible.

In the third part of this dissertation, numerical simulations of bridges with spans ranging

from 5 m (16.4 ft) to 40 m (131.2 ft) are performed. The influence on the bridge vertical

accelerations and deflections of several key parameters and aspects of the numerical model are

investigated. Results show that shear deformations and rotational inertia can be ignored in the

dynamic analysis of short span high speed rail bridges when the slenderness ratio is greater than

50. As the slenderness ratio decreases, the magnitude of the dynamic response is increased and

the speed at which resonance occurs is smaller because the natural frequencies are reduced.
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SUMMARY (Continued)

Both the vehicle interaction and the track structure reduce dynamic peak responses at resonance

speeds. This reduction is more significant for shorter bridges. For example, for the cases

investigated in this study, reductions of about 30-50% in the vertical acceleration were observed.

The elastic properties of the boundary conditions have significant effects on bridge dynamic

responses. The logarithmic value of the support vertical stiffness to bridge flexural stiffness ( )

and the logarithmic value of the support rotational stiffness to bridge rotational stiffness ( ) are

found to be two important non-dimensional parameters that can be used to determine whether the

boundary conditions should be considered and their impacts on the bridge responses. Generally,

bridge dynamic responses increase when decreases and they decrease when increases.

However, the ratio is more critical than the ratio . For values of > 3 the bridge can be

modeled as a simply supported structure since there are no significant differences in dynamic

responses. For values of  ≤ 3 the fundamental frequency is reduced and the mode shapes 

become a combination of rigid modes and flexural modes. For very soft vertical supports with

values of , rigid mode dominates. For , dynamic responses are significantly

amplified and the damping at the supports becomes necessary and even more effective as this

ratio is further reduced. It is not recommended to have for short span high speed rail

bridges even with damping at supports. For soft supports with , the available structural

damping in elastomeric bearings and/or soil foundation may not be sufficient to reduce the

vertical bridge vibrations to acceptable levels. In that case, additional damping in the form of

external devices, such as Fluid Viscous Dampers (FVD), installed at the supports may be an

efficient method to control theses high vertical accelerations in short span high speed rail

bridges.
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CHAPTER 1

INTRODUCTION

1.1 Background

The rapid economic and technological development in the second half of the twentieth

century has led to a growing demand for a convenient and expeditious means of transport.

Expectations of continuously increasing standards of living have driven and continue to drive the

evolution of air, road and of course rail transportation networks.

The era of rail transport at high speeds began in 1964 when, during the Olympic Games

of Tokyo, Japan started circulating the first "bullet train" of the Tōkaidō Shinkansen that 

travelled from Tokyo to Osaka at a speed of 210 km/h (130 mph). The success of the bullet train

was so overwhelming it prompted Japan to expand the Shinkansen lines to other hubs of the

country creating a network of more than 2000 km (1243 mi.) that connects the different islands

of the Japanese archipelago. Today the world’s pioneer in modern high speed rail has an

established and still growing network as shown in Figure 1.1 (Shinkansen Route Map, 2016).

Seventeen years after the Shinkansen first high speed train, France became the first

European country entering the high speed rail market in 1981 with the TGV (Trains à Grande

Vitesse) line connecting Paris and Lyon at a speed of 260 km/h (162 mph). At the same time,

Germany began building its first high speed rail lines but, due to legal battles, has not deployed

the first generation of ICE (Inter-City Express) trains until 10 years later in 1991. A year later, on

the occasion of the Universal Exhibition that took place in Seville, Spain launched its first AVE

(Alta Velocidad Española) high speed train connecting the city to the capital.
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Figure 1.1 Japan High Speed Rail Network Map

Currently Europe has an extensive high speed rail network linking various parts of the continent

as shown in Figure 1.2 (High Speed Rail in Europe, Wikipedia, 2016).

Besides the Japanese, the first country in East Asia implementing a high speed rail

program was South Korea. The Korea Train eXpress (KTX), operated by Korail, began

construction of a high speed line from Seoul to Busan in 1992 and started services on April 1,

2004. Shortly after, in January 2007, Taiwan High Speed Rail Corporation (THSRC) has opened

its first high speed line running approximately 345 km (214 mi.) along the west coast of the

island.
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Figure 1.2 Europe High Speed Rail Network Map

China has drawn extensively on the Japanese and European experience and introduced its

first China Railway High-Speed (CRH) train in April 2007. As shown in Figure 1.3, in a very

short period of time, the CRH has become the longest High Speed Rail network in the world with

over 19000 km (12000 mi.) in service as of January 2016 according to Wikipedia (High Speed

Rail in China, Wikipedia, 2016) and an additional network of 30000 km (19000 mi.) planned for

the year 2020.
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Figure 1.3 Chinese High Speed Rail Network Map

The United States has not experienced a similar boom in High Speed Rail (HSR)

construction as in Europe and South East Asia primarily due to funding. The lack of investment

in HSR upgrades and development of new networks resulted in The HSR system being limited to

one line along the east coast. The California project has been in planning for over a decade and

the construction work is yet to begin. The proposed California project consists of new HSR

tracks that will eventually handle traffic speeds of 241 km/h (150 mph), which will be

unprecedented for HSR corridors in the U.S. The Boston to Washington HSR line uses

conventional rail systems. It is the only high speed system in operation in the U.S. However,

there is a new interest in HSR. Figure 1.4 (US High Speed Rail, 2016) shows the proposed plans

for the HSR systems in the United States.
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Figure 1.4 United States Planned High Speed Rail Map

1.2 Research Motivation

In the United States, the National University Rail (NuRail) Center is currently leading a

federally funded renewed interest in railway engineering which includes research on potential

high speed rail networks and possible increase of traffic speeds on shared corridors. Railroad

bridges in the U.S. have not been designed for true high speed trains. The assessment of existing

bridges or construction of new high speed rail bridges would therefore require proper theoretical

models to predict their dynamic behavior.

Bridges crossed by moving vehicles have been the subject of much research work.

Accurate evaluation of the interaction between trains and structures is an important aspect of

bridge dynamics. Most recent research projects are confined to a small number of models for the

vehicle or the bridge which necessitate complicated and computationally expensive dynamic
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analyses. Hence, a model of a general nature and capable of incorporating the interactions of the

vehicle, track system, bridge structure as well as the viscoelastic elements at the bridge supports

will improve the analysis procedure.

Dynamic response of the bridge without vehicle interaction was the focus in the majority

of research in this area. For cases where the bridge response only is of interest, the moving

vehicles are generally represented by a number of moving loads. This type of approximation

however overestimates significantly the actual dynamic response of the bridge. Moreover,

depending on the application under consideration, the vehicle response may be also important.

The vertical acceleration of the vehicle is a design criterion regarding the passenger comfort and

should be computed as accurately as possible.

In urban areas as well as over rivers, creeks or other environmental features, short

distance grade separation for the railway track usually necessitates the use of short span bridges.

This class of underpasses presents its own challenges in evaluating the dynamic responses with

the mostly used simplified models. In that context, most engineering design codes for railway

bridges have adopted the approach of a dynamic factor which takes into account the dynamic

effect of a single moving load. This approach does not cover the possibility of resonant response

of the bridge due to the periodic array of wheel loads moving at high speed which may surpass

largely that of a single moving load. Furthermore, the issue of dynamic analysis becomes more

important in the capacity assessment of an existing short span bridge that was not originally

designed for fast moving trains but planned for use in an upcoming new high speed rail line. The

consequences of waiving accurate dynamic calculations for existing short span bridges are such

that an underestimation of bridge responses will impact the safety and an overestimation will
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impact the retrofit or rehabilitation budget. In that sense, it is desirable to use appropriate models

that include the interaction effects and other key parameters or system aspects.

The vast majority of research on the dynamic analysis of short span bridges assumes the

boundary conditions to be simply supported. However, to minimize damages caused by violent

seismic events to bridges, elastic isolators are used as bearings in most cases. These are typically

located at the ends of the bridge for the purpose of isolating the transmission of energy from the

ground. These isolators may significantly alter the dynamic responses of the bridge due to the

moving train loads. The degree of soil compressibility in the foundation may also have an effect.

In light of the shortcomings related to simple models and the challenges still presented by

short span high speed rail bridges, it is the motivation of the author of this dissertation to carry

out a research on the dynamic behavior of short span high speed rail bridges considering the

various sources of dynamic loading that include vehicle interaction, track irregularities and the

viscoelasticity of the bridge supports. For that purpose, a Train-Track-Bridge Interaction (TTBI)

model is introduced. The TTBI analysis is suitable for the types of analysis where the mutual

effects of the vehicle, the track and the bridge are important. An effective method of the TTBI

analysis involves the use of the concept of “dynamic condensation” methods which condense the

degrees of freedom of the vehicle to those of the supporting subsystem. One of these methods

includes the application of the TTBI elements referring to rail beam elements which are directly

in contact with the wheels of the moving train. Other non-contact rail elements are therefore

modeled as conventional elements. Subsequent interaction of rail beam elements with bridge

beam elements are treated through coupling actions via the elastic layers in the track structure.

Therefore there is still a need for further research to address the shortcomings of available
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theoretical models and gain more knowledge in the quest of better understanding the dynamic

behavior of short span high speed rail bridges.

1.3 Research Objectives and Scope

The first goal of this study is to provide procedures within the frame work of analytical

and finite element methods for the dynamic calculations in the Train-Track-Bridge Interaction

problem related to short span high speed rail bridges with flexible support conditions and

subjected to various types of train loading and traffic speeds. The formulation of the numerical

model will remain as general as possible for use in most practical cases. At the same time the

effects of various parameters on the dynamic response of the vehicle, the track and the bridge

will be identified. The second objective of this research is to evaluate the influence of model

aspects and system parameters on the modal characteristics of short span bridges. The third and

final objective of this research is to use the developed model to investigate the dynamic behavior

of short span high speed rail bridges through numerical simulations of bridge prototypes and

evaluate the significance of key parameters influencing the dynamic results.

With the purpose of achieving these objectives, the scope of the research is to:

1. Develop a 2D model for Train-Track-Bridge Interaction (TTBI) problems

considering the predominantly vertical loadings and with the assumption

of constant traffic speed.

2. Establish the mathematical formulations of the TTBI model identifying

the governing equations of motion of each subsystem and their solution

algorithms.

3. Verify the validity and accuracy of the developed model with numerical

examples and compare results against those from other models.
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4. Investigate the free vibration problem with an emphasis on the fluctuations

of natural frequencies resulting from changes in the model aspects or

system parameters. The effects of elasticity in bridge supports, track

parameters and adopted beam theories are examined.

5. Carry out parametric studies through numerical simulations of short span

high speed rail bridges with the objective of investigating the influence of

key parameters on the critical dynamic responses.

1.4 Dissertation Outline

The dissertation is organized in six chapters as outlined below:

 Chapter 2 presents a comprehensive review of previous studies available in the

literature and that are closely related to the subject matter of this research.

 Chapter 3 deals with the modeling of the interactions between the train and track-

bridge subsystems. Mathematical formulation of equations governing the dynamic

behavior of each subsystem is established. This chapter also discusses the solution

methods of the TTBI problem and presents two examples to validate the model.

 Chapter 4 investigates the effects of flexibility in the boundary conditions on the

natural frequencies of the bridge. The influence of shear deformations and

rotational inertia on the free vibrations is also investigated. The impact of the

track structure on the bridge fundamental frequency is examined.

 Chapter 5 includes numerical simulations of several short span high speed rail

bridges. Parametric studies are carried and a discussion of results is provided.

 Chapter 6 presents the important outcome and conclusions of this research as well

as practical recommendations and suggested work for future research.
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CHAPTER 2

STATE OF THE ART

2.1 Historical Background

Problems that usually faced the engineering field rose from the desire of societies to

reach higher levels of development and welfare. This desire to overcome barriers imposed by

nature has always promoted the development of numerous disciplines that make up the now very

broad fields of science and technology. Rail transport, of course, is no exception. Since the times

of the industrial revolution railway has brought numerous advantages to societies such as

movements of heavy freights, reduced travel times, and the pursuit of safety and comfort for

travelers.

The construction of the first railway lines could be traced back to the first half of the 19th

century in England. On the 24th day of May 1847, in the outskirts of Chester, England, the

Stephenson’s cast and wrought-iron girder bridge over the Dee River suddenly collapsed while

being crossed by a passenger train, killing five people and injuring a dozen more (Taylor, 2013).

An illustration of the collapse is shown in Figure 2.1. The railway line was linking London to

Holyhead. This event happened only six months after the opening inauguration of the bridge

which was made of riveted iron beams. This incident raised safety questions related to all other

structures of the British Railway Network which was then in full expansion. By the order of
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Queen Victoria, a Royal Commission was created with the task of investigating the cause of the

fatal accident and to avoid similar tragedies in existing or new structures.

Figure 2.1 View of River Dee bridge collapse
(From Illustrated London News, June 12 1847, Courtesy of John Weedy)

Among the numerous problems faced by the new railway lines emerged an important

debate related to the construction of bridges. The debate divided the discussions into two schools

of thought. One group of engineers believed that the movement of the railway locomotive over

the bridge would generate an impact, while the other group believed the structure would not have

enough time to deform during the passage of the engine (Frýba, 1996). For this reason, Stokes
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was the first scientist who tried to tackle the issue in his theoretical studies (Stokes, 1847).

Neglecting the mass of the bridge with respect to the locomotive, he showed that the solution

was half-way between the two opposing ideas among engineers. Stokes’ solution, presented in

the form of series development, was later simplified by Willis (Willis, 1849) who performed the

first experiment and obtained a formula that increased the static response to cover the dynamic

effects. This approach to the problem can be regarded as the first attempt to obtain a coefficient

of impact.

In his doctoral work, Alvarez (Alvarez, 1984) included an introductory chapter which

provided facts and interesting data on the initial period of the development of dynamic

calculation in railway bridges. He summarized that no problem due to dynamic effects

manifested itself in the massive structures that were used until the beginning of the 19th century

but were soon suspected following the disasters that occurred in steel bridges. In fact, it was

likely that those disasters were also due to poor designs and construction of the structures.

However it became evident that dynamic effects, due to the profound ignorance about the issue

at that time, were valid reasons to blame.

During the rest of the century other authors have worked on the railway bridge dynamic

problems, but a definitive theoretical formulation was not reached until the beginning of the 20th

century with the work of (Bleich, 1924) and, mainly, (Timoshenko, 1955) and (Inglis, 1934),

whose approaches decisively influenced the further development of the discipline. In parallel

with the attempts to find a theoretical basis that would deal with the problem, early experimental

works were carried out to support the analytical results and obtain practical formulas. In reality,

poor correlations between theoretical and experimental results led to the development and use of

empirical formulas during the 19th century. Tests carried out by Robinson in 1887, as well as
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various campaigns undertaken by the American Railway Engineering Association (AREA) in the

first half of the 20th century are mentioned in the literature (Chu et al., 1979). Some of the

empirical formulas proposed during the nineteenth and early twentieth centuries are compiled in

(Alvarez, 1984), showing also the curious experimental apparatus system designed and built by

Professor Willis, Captain James and Lieutenant Galton in 1849 to support the hypothesis that the

dynamic deflection of girders due to rolling loads can grow larger than the static deflection; an

inquiry that was prompted by the collapse of the Chester railway bridge in the United Kingdom.

In the middle of the 1950’s, a new momentum was created in the field of railway bridge

dynamics when the Office de Recherches et d'Essais (O.R.E.) of the Union Internationale des

Chemins de Fer (U.I.C.) launched in 1955 the committee D23, a group of experts, in order to lay

a firm foundation for the dynamic calculations of railway bridges. The works of the ORE and its

successor, the ERRI (European Rail Research Institute), dealing with both the experimental and

the theoretical field, have become the standards in the field of Railway Engineering.

According to (Alvarez, 1984), Arne Hilleborg published the first attempt to model the

railway vehicle-track interaction using systems of masses and springs. This approach was later

followed by Biggs, Fleming and Romualdi in proposing the first models which took into account

the interaction between the vehicle and the structure. These models are some of the most used

approaches to this day.

The research carried out by the committee D23 and its successor D128 established a solid

framework that has been the basis for bridge dynamic calculation methods until the emergence of

high speed trains. In the work of both committees various types of numerical models were used;

from the most simple model based on constant moving forces to complex models of interaction
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which took into account track irregularities, wheel flats and a large number of factors that could

not be addressed until the development of computers in the second half of the last century. Frýba

(Frýba, 1999) has made an early contribution with the first theoretical model in the field of

railway vehicle-track-bridge interaction. As shown in Figure 2.2, he studied the responses of a

simple beam traversed by a multi-axle system representing a locomotive of a train including

significant parameters like suspensions and track irregularities.

Figure 2.2 Early theoretical model of a locomotive over ballasted bridge (Frýba, 1999)

The progressive increase in the speed of trains, mostly during the years 1960’s and

1970’s, culminated, a decade later, with the appearance of the first high speed line in passenger

trains. Since then, the adopted approach in the dynamic calculation of railway bridges changed

significantly and the focus shifted to the problems associated with the passenger comfort. With

this new scenario, the ORE launched in 1983 the committee D160, dedicated to the study of the

conditions that should prevail in the construction of new bridges to ensure the comfort of
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travelers. The studies of the committee D160 resulted in some new criteria for the maximum

admissible deflection of the bridge, requirements that went on to become, in most cases, the most

restrictive condition imposed on the structure.

2.2 Relevant Contributions of Previous Researchers

In this section of the chapter, a brief summary is presented regarding the research

contributions from the most current references that the author of this dissertation has had the

opportunity to review during the course of this research. The available literature with the most

relevance to the subject matter of this study is only selected and discussed below.

In the paper of (Maunder, 1960), the author discussed the Timoshenko paradox from the

point of view of the physical conditions required to transmit a purely vertical force to a beam,

which implied the need for tangential forces (friction slip or rotation) to develop. The paradox

arises when checking that the net work done by a force to traverse a beam is zero, while the

beam is in a state of free vibration (and therefore with a certain kinetic energy) when the load

leaves the beam. The author explained the paradox imagining a small disc of negligible mass

transmitting power to the beam. But after reading this paper, it is rather difficult to not have the

impression that the energy balance should be met equally without having to explicitly define the

nature of force transmission.

According to the authors of (Chu et al., 1979), this was the first study in which the

vertical motion of a train wagon was realistically modeled with a carriage having three degrees

of freedom (vertical displacement, pitch and rotation). Forces and masses were applied at the

nodes of the bridge model. The variations of displacements, velocities and accelerations were

assumed to be linear between consecutive nodes. The authors analyzed several cases with non-
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zero initial conditions of vehicles and obtained higher impact coefficients than the case with zero

initial conditions.

In the paper of (Chu et al., 1980), the researchers used the same numerical model as in

their work of the year before (Chu et al., 1979) for the purpose of confirming mainly their

previous conclusions. In addition, the authors found that the impact coefficients were much

lower than those proposed by the American Railway Engineering Association (AREA).

Furthermore, they observed that the impact coefficients in all members of the bridge did not

increase when using non-zero initial conditions of the vehicle or when the structural damping

was decreased from 2% to 0%.

The paper of (Vu-Quoc and Olsson, 1989) presented a comprehensive and rigorous

formulation of the equations of motion of a vehicle-structure system, as well as efficient

algorithms for its solution. The treatment of the energy balance in the system focused from the

perspective discussed by (Maunder, 1960). The study contained several original contributions,

among which few should be mentioned as follows: 1) the vehicle does not travel at a constant

speed but enters the bridge at a given speed and evolves freely in accordance with the laws of

motion; 2) the authors presented numerical examples demonstrating that the vehicle speed

decreased, and that the loss in kinetic energy equaled the energy that kept the beam in its free

vibration; 3) the decrease in speed with respect to the nominal speed was significant only for low

speeds, approximately less than about 10 m/s (32.8 ft/s); 4) the numerical examples

demonstrated that, even in the absence of dissipative mechanisms (viscous or friction), the

vehicle would end up stopping if the bridge was sufficiently long; 5) the formulation included

velocity and acceleration terms associated with the slope and curvature of the deformed shape of

the beam, claiming that they were significant, which may have been largely due to the ratio of
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span to static deflection which were of the order of 150/200 (i.e. some 10 times smaller than

typical high speed rail bridges).

In the work of (Klasztorny and Langer, 1990), the authors made some contributions to the

issue of a series of moving loads crossing a single-span beam bridge. Their basic load models

included moving forces with constant amplitudes as well as un-sprung masses and spring-damper

oscillators. The system’s equations of motion were established in matrix form. The issue “of

dynamic stability and steady-state response of a bridge carrying a periodic stream of inertial

loads” was discussed including the problem formulation and solution. The authors also studied

vibrations of a bridge beam “subjected to a uniform stream of moving loads, of a limited or

unlimited number of load cycles.”

The researcher (Olsson, 1991) presented the basic approach to the problem of moving

constant loads over a simply supported bridge, with special emphasis on the assumptions and

their implications. The author concluded that when the non-dimensional speed parameter,

defined by K = vt/2L, was greater than one the maximum response occurred after the load has

left the bridge which implies an impact (i.e. the period of the forcing load begins to be small

compared to the period of the bridge).

The authors (Yang and Yau, 1997a) contributed a vehicle-bridge interaction element for

use in the analysis of railway bridges carrying high speed trains. Their paper was an

improvement of the work presented by (Yang and Lin, 1995). In their study, the authors modeled

the train vehicle as sprung masses concentrated at the bogie (truck) level; and the bridge,

including track irregularities, as beam elements. They established a pair of coupled equations of
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motion. The sprung mass was discretized and condensed to that of the bridge element at the

contact point. They demonstrated the applicability of their element with numerical studies.

The researchers (Yang et al., 1997b) carried out an interesting analytical study on the

condition of speed, bridge span and train length that favor the appearance or cancellation of

resonance. The train was broken down into two series of equidistant loads corresponding to the

front and rear axles of the bogies (trucks) respectively. They demonstrated the relationship that

must be met between the bridge span and the distance between the loads for the resonance

cancellation of the first mode of vibration to occur.

The authors (Tartary and Fournol, 1999) presented a description of the Prony-Pisarenko

auto-regressive method and its application in estimating the damping ratio of real railway

bridges. The most interesting conclusion was that the damping ratio depended on the vibration

amplitude in some cases, while in other cases it was not. This result was indicative of the

difficulty involved in trying to get the damping ratio for use in projects.

The researchers (Le et al., 1999) discussed the possibility of placing rubber mat under the

ballast in order to reduce the degradation of high speed rail bridges. Using numerical

simulations, they concluded that: 1) this elastic layer reduces the pressure on the ballast but

increases the vertical accelerations unless special sleepers (crossties) with elastic fasteners are

used; 2) the maximum accelerations of the ballast at mid-span of the bridge are due to the first

frequency of the bridge vibration while the maximum ballast vibration at the ends of the bridge

are caused by higher frequency modes; 3) trial tests conducted in Switzerland showed that these

higher frequency components detected at the bridge ends were responsible for the degradation of

the transition zone; 4) the neoprene bearings at the ends of the bridge considerably affect the
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third mode lowering its frequency of vibration, so it is necessary to take these elements into

account in the model in order to assess realistically the vibrations at the ends of the bridge.

The authors (Zhang et al., 2001) proposed a three-dimensional formulation for bridge

dynamic analysis taking into account the vehicle-structure interaction and track irregularities.

The most significant conclusions of their work were: 1) the residual forces in the integration tend

to be negligible if a small time step is used; 2) results from a separate two-dimensional model

were similar to those from the three-dimensional model.

Frýba (Frýba, 2001) undertook the development of some simple expressions to evaluate

the critical speed, maximum deflection, maximum bending moment and maximum vertical

acceleration due to the passage of a freight train. The author used a model with point loads and

assumed, as in his previous work (Frýba, 1998), that the maximum amplitude of displacement

and acceleration occur when the last load leaves the bridge. The expressions proposed by this

author were later used to develop criteria for interoperability of rail networks in Europe. The

author also included results of measurements carried out with the TGV train composition that

showed a good agreement with those obtained from the simple expressions, even though the

ERRI D214 committee reports indicated that such expressions are generally conservative

estimates.

In 2003, Song proposed in (Song et al., 2003) a new three-dimensional finite element

model for the study of vehicle-structure interaction in high speed rail line bridges. Lagrange

equations were used to formulate the equations of motion of the vehicle-structure system. Global

system matrices were constructed by derivation of the equations of the interaction forces. The
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study was accompanied by numerical examples in which comparison of results obtained with the

new model were made against those obtained with previous models and experimental results.

The excellent book of (Yang et al., 2004) was entirely dedicated to the dynamics of

vehicle-bridge interaction in high speed rail bridges. Finite element models were developed to

address complex problems and at the same time analytical solutions of typical cases were

investigated, enabling the identification of the key parameters affecting the vehicle-bridge

system. Experimental results were also provided to compare performances of the proposed

different models. However, models of vehicle-bridge interaction in this book are based on simply

supported bridges.

2.3 Train-Track-Bridge System Identification and Modeling

Research endeavors in the study of dynamic responses of bridges carrying moving

vehicles have gone through two distinct stages. The appearance of modern computers can be

seen as the transition between these two stages. Simplified or approximate analytical methods

were used to solve basic and elementary problems before the age of computers. As those

simplified analyses used in earlier research work are not adequate for the study of complex

Train-Track-Bridge Interaction (TTBI) problems, this review will be focusing mostly on the

relatively recent published work.

The spread of digital computations allowed researchers to incorporate more realistic

models of train vehicles, tracks and bridges in their analysis. Previous work carried out by

(Timoshenko and Young, 1955) and later by (Biggs, 1964) considered the bridge analysis using

moving loads only with no track or vehicle interaction. Further studies on the moving load

analysis were performed by (Frýba, 1972) who was one of the first researchers to introduce
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analytical approach of the train-track-bridge interaction. Comprehensive studies on the dynamics

of railway bridges were later undertaken by (Garg and Dukkipati, 1984) and (Frýba, 1996).

Today, the modeling and analysis of the train-track-bridge interaction problems can be tackled

with more realistic characterization of the system components as discussed in the follow

sections.

2.3.1 Bridge modeling

Different types of models have been considered in the dynamic analysis of railway

bridges. The choice of the model is determined by the procedure of the analysis and objectives.

A few of the models relevant to the subject matter of this research are discussed in the following.

Previous research work on the TTBI Interaction analysis considered continuum models

described by Bernoulli beam theory equations. Such models are useful mainly for prismatic

bridges having a simple span. The benefit of such models, besides being simple, is the fact that

they provide closed-form solutions. These types of theoretical models are still used by

researchers whose objective is to solve the Vehicle-Bridge Interaction problem with closed-form

equations (Biondi et al., 2005). In some cases, the inherent simplifications of the Euler-Bernoulli

beam theory may not be adequate and models based on Timoshenko beam theory may be a good

choice, thus taking into account shear deformations and rotary inertia.

Models using the continuum beam models are satisfactory for simple structures only.

Combined continuum-discrete models were proposed for more complex bridges. This concept

was applied to model a continuous bridge with three spans having an internal hinge and uniform

cross-section (Veletsos and Huang, 1970), “double-I-girder bridges” (Chu et al., 1979), and

“truss bridge with rigid, semi-rigid or pinned joints” (Garg and Dukkipati, 1984).
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Very recently, in their quest to diminish the dynamic response of bridges, researchers

have introduced different types of models intended to include additional properties of the bridge

system or to approach the bridge dynamic issues from different perspectives. For example, the

authors of (Yang et al., 2004) have inserted spring elements at the ends of the bridge, as shown

in Figure 2.3, to represent elastomeric bearings. However, this type of model can be extended to

take into account the flexibility of boundary conditions characterizing any type of elastic

supports at bridge ends, including soft soil conditions.

Figure 2.3 Elastic supports of a bridge (Yang et al., 2004)

Reckmann (Reckmann, 2002) proposed a control system for the triangular falsework using the

model shown in Figure 2.4, suitable for short span bridges.

Figure 2.4 Triangular falsework system
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Even the so-called double systems were considered by some researchers. For instance, the

authors of (Kawazoe et al., 1998) have proposed the double beam system as shown in Figure 2.5

which may be suitable for short and medium span bridges, while the author of (Oniszczuk, 2000)

considered the double string system as shown in Figure 2.6 which is too soft for railway bridges

according to Frýba (Frýba, 2009).

Figure 2.5 Double beam system

Figure 2.6 Double string system

Further improvements in computer capabilities made it possible to use discrete models in

the study of any complex structures. These models also allow sound programming capability for

program codes to perform step-by-step dynamic calculations. In the majority of recent works,

one of these methods, namely the Finite Element Method (FEM), has been used extensively to

model various types of bridges in 2D or 3D. For example, the authors of (Majka and Hartnett,

2008) have modeled a railway bridge using 3D, two-node finite beam element. However, a

formulation based on the Euler-Bernoulli theory was adopted resulting in an element capable of
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capturing the torsional, axial and bi-directional bending displacements. The six degrees of

freedom at each node make an element with twelve degrees of freedom sufficient to simulate

different types of motions.

2.3.2 Railway track structure

Generally the railway track guides the trains in an economic and safe manner. It is

designed according to various criteria such as comfort, resistance, construction speed and

maintenance costs. The railway tracks can be categorized into two groups; ballasted tracks and

ballastless tracks. The track behavior when subjected to train loading depends on the properties

of its layers as well as their interaction with each other and with the supporting structure. The

track is an integral part of the railway bridge and for this reason it is necessary to include its

contribution in the modeling of the high speed rail bridges. The physical and mechanical

properties of each track types and their modeling techniques are discussed in the following

sections.

2.3.2.1 Characteristics of ballasted track

The ballasted track as shown in Figure 2.7 (Proença et al., 2011) is a solution that has

been in existence for over two centuries and used in the majority of high speed rail tracks.

Figure 2.7 Ballasted track
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In railroad bridges, this configuration consists of the superstructure including the rails,

crossties (sleepers) and fastening systems as well as the ballast as a substructure. Despite the fact

that this track arrangement is frequently adopted these days, its geometric definition and

elements’ properties have some variations as discussed in the following subsections.

2.3.2.1.1 Rails

The rails are the first components that are in contact with the wheels of the train

vehicle and their main functions are the transfer and distribution of vertical and horizontal forces

through the sleepers (crossties). They also serve to guide the wheels. In Europe, the commonly

used rail profile in high speed lines is the UIC60 for which a photo is shown on the left side and

dimensions on the right side in Figure 2.8 (Araujo, 2011).

Figure 2.8 Typical flat-bottomed UIC 60 rail used in high speed line
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In the United States, the relatively heavier AREMA 136RE rail profile is typical for the

Amtrak Acela lines, the only high speed line currently working in the North-East corridor. The

planned California high speed rail projects specify the even heavier AREMA 141RE rail profile.

The AREMA 136RE and 141RE rails are shown on the left side and right side of Figure 2.9

respectively. They are 12% and 16% heavier than the European UIC60 rail respectively.

Figure 2.9 Sketches of AREMA 136RE (left) and 141RE (right) rail profiles

The mechanical and physical properties of the UIC60, AREMA 136RE and AREMA 141RE

rails are shown in TABLE I (Rail Technical Guide, 2016), including their Poisson’s ratio and

shear correction factors.
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TABLE I
TYPICAL RAILS MATERIAL PROPERTIES

Notation Units
Value

UIC60 AREMA 136RE AREMA 141RE

Er Ibf/in
2 (MPa) 30 x 106 (206000)

Ir in4 (cm4) 73 (3038.3) 94.20 (3920.9) 100.44 (4180.5)

Ar in2 (cm2) 11.89 (76.7) 13.32 (85.94) 13.80 (89.03)

mr Ibm/ft (kg/m) 40.46 (60.21) 45.26 (67.36) 46.96 (69.88)

νr - 0.3

ksr - 0.4

2.3.2.1.2 Railway fastening systems

The selection of the fastening system is essentially determined by the railway track

and the sleeper (crosstie) that are being used as well as the stiffness of the granular layers

supporting the sleepers (crossties). Figure 2.10 (Araujo, 2011) shows typical rail pads (see top

left photo), proprietary Pandrol Fastclip (See top right photo), Vossloh Clip (see bottom left

photo), and Pandrol Clip (see bottom right photo) mostly used in current high speed rail tracks.

These components should guarantee a good connection between the rail and the sleepers

(crossties). Pads consisting of rubber elements and placed under the rail may also be included to

control the railway track stiffness for the purpose of decreasing the dynamic impact resulting

from the train traffic. Rail pads provide resiliency for the rail/sleeper system, provide damping of

vibrations induced by the wheels, reduce the contact friction between the rail and the sleeper, and

provide electrical insulation. Teixeira (Teixeira, 2003) reported that the stiffness of rail pads used

in high speed railways is between 171,305 Ibf/in (30 kN/mm) and 2,855,079 Ibf/in (500 kN/mm).
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Figure 2.10 Fastening systems: rubber rail pad (top left), Pandrol Fastclip (top right),
Vossloh Clip (bottom left), Pandrol Clip (bottom right)

2.3.2.1.3 Sleepers/crossties

The crosstie (sleeper) is an important component of the railway track and has a

considerable stiffness. The crossties (sleepers) distribute the stresses from the rails to the track

layer that supports them. The most common types are the concrete monoblock crossties and the

twin-block crossties as shown in Figure 2.11 (Araujo, 2011).
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Figure 2.11 Monoblock crosstie (left), twin-block concrete crosstie (right)

These elements are usually placed at a spacing of between approximately 19.7 inches (50

cm) and 27.6 inches (70 cm). The weight of the monoblock crosstie is typically taken between

600 Ibs (272 kg) to 750 Ibs (340 kg) according to California High-Speed Train Project (CHSTP)

Design Criteria Manual (California High Speed Train Project, 2014).

Although wood crossties are lighter, have better elasticity and easier to handle than

concrete crossties, their disadvantage is their short lifespan due to deterioration.

2.3.2.1.4 Ballast materials

The ballast is the well compacted granular material supporting the sleepers

(crossties). It is evenly graduated with angular shape and made of granite or limestone. The

ballast should not be affected by frost and should not inhibit vegetation growth. Its functions are

to absorb airborne noise, reduce pressure from the sleepers (crossties), allow drainage, and serve

as a resilient material to absorb track energy.

The ballast layer is proportioned to ensure the proper distribution and transmission of the

forces to the supporting structure. The European code EN 1991-2 (Eurocode 1, 2003) requires
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that, in order to distribute the stresses without damaging the surface of the bridge or the eventual

ballast mats, the ballast depth should not be less than 10 inches (250 mm). Generally however

the ballast depth is chosen to be around 13.75 inches (350 mm) which permits an efficient

maintenance of the track. The California High-Speed Train Project specifies a minimum ballast

depth of 12 inches (305 mm) on at-grade tracks and 15 inches (381 mm) on short span bridges

(California High Speed Train Project, 2014)

2.3.2.2 Characteristics of ballastless track

The ballastless track is a relatively newer development that was introduced in the late

1960’s. The first ballastless track was used on a 700 meter (2296.6 ft) long segment in the Rheda

Station in Germany. The so-called Rheda Solution 2000, as shown in Figure 2.12, is used

nowadays in high speed railway bridges and is made of pre-compressed crossties (sleepers)

embedded in a layer of reinforced concrete. The fastening system is made of materials having

elastic properties. The ballastless track is already gaining popularity in the railway engineering

field, offering many advantages in contrast to the ballasted track. The increasing and higher

demands of HSR traffic have created opportunities for new innovative tracks with higher levels

of performance. It is particularly in high speed rail lines that the ballastless track offers some real

benefits. The ballastless track becomes attractive primarily for its performance, resulting in

significant reduction of costs in maintenance as well as work such as tamping, cleaning of the

ballast or lining of the track.
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Figure 2.12 Typical Rheda 2000® ballastless track (Source: rail.One, n.d)

The higher initial construction costs may be offset by the maintenance savings over the

service life of the track, therefore providing a more economical and competitive solution. In

addition, the problem of forces of drag in ballasted track due to high speed traffic is not a

concern anymore. This benefit, along with others, has been producing incentives for the use of

ballastless tracks on HSR lines. There are many different types of ballastless developed by many

countries, such as Germany, Japan or even the Netherlands, that may overwhelm a designer

during the selection process. In fact, there exist higher functional, economical and technical

ambiguities associated with the different available solutions. However the Rheda® system is

generally considered as the solution that proved its efficiency and performance for a long time

since it has been used in many projects since its origin.

According to the work of (Tünnissen, 2007), the slab of the ballastless track is “anchored

to the bridge structure in pre-designated free-drilling zones by means of stainless steel dowels”,
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of high quality having a diameter of 1.5 in (40 mm). An interesting characteristic of this type of

connection is that it allows some movements in the longitudinal direction. Therefore, the

overstressing of dowels due to such movements of the bridge or even track slab can be

eliminated (Infraspeed, 2006). The ballastless track is typically made of slab segments having a

length of 11.5 feet (3.50 meters) to 21 feet (6.40 meters).

2.3.3 Modeling of ballasted track-bridge system

Researchers studying ballasted high speed rail bridges interested in including the effects

of the track have proposed and used several different types of models depending on the levels of

complexities required to achieve their objectives. Typically these models can be categorized as

continuous models or discrete models. Generally for the investigation of bridge vertical

responses, 2D continuous models were found to be sufficient. However for studies intended to

investigate the torsional behavior of the bridge deck, 3D models would be necessary. Discrete

models have become a better choice for the evaluation of track-bridge interaction where the

effects of the track on the bridge and the effects of the bridge on the track are equally important.

In the Finite Element Analysis (FEM) discrete models usually involve discretization of the track-

bridge system with nodal points coinciding with the positions of the sleepers (crossties). Brief

discussions are provided below related to most relevant 2D and 3D models dealing with the

vertical track-bridge interaction.

The earliest simplest continuous model that has been used in the study of track behavior

or track-bridge interaction is the one-layer Winkler model. The rails are modeled as an infinite

beam resting on uniformly distributed spring-damper systems characterizing the ballast as shown
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in Figure 2.13. The introduction of the viscoelastic damping of the track is an improvement of

the original Winkler foundation model with only distributed springs.

Figure 2.13 Continuous single-layer model with distributed vertical spring-dampers

Some researchers have also used a different continuous single-layer model as shown in

Figure 2.14. Similarly, with this model the rails are represented as infinite beams with in-plane

and out-plane flexural stiffness as well as axial stiffness. Linear spring-dampers in the vertical

and horizontal directions represent the ballast. This model is adequate for the vertical behavior of

railway ballasted bridge traversed by an accelerating or decelerating high speed trains as the

frictional effects of the ballast layer are taken into account.

Figure 2.14 Continuous single-layer model with vertical and horizontal spring-dampers
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The properties of the track in a track-bridge single-layer continuous model as shown in Figure

2.14 are given in TABLE II (Yang et al., 2004).

TABLE II
TRACK PROPERTIES OF SINGLE-LAYER CONTINUOUS MODEL

Description Notation Value
Vertical stiffness Kbv 104000 kN/m2 (15084 Ibf/in

2)
Vertical damping Cbv 50 kN.s/m2 (7.25 Ibf.s/in2)

Horizontal stiffness Kbh 10400 kN/m2 (1508.4 Ibf/in
2)

Horizontal damping Cbh 50 kN.s/m2 (7.25 Ibf.s/in2)

The continuous single-layer models as described above would be sufficient for the 2D

dynamic studies of vertical behavior of track-bridge system. The drawback is in their inability to

provide the tools to analyze the response of other individual components of the track such as the

crossties (sleepers) and ballast mass for which the 2D discrete models may be better alternatives.

A discrete 2D model as shown in Figure 2.15 is categorized as a two-layer model

providing the ability to capture the vertical dynamic behavior of the rail, sleepers and bridge

deck separately. This model considers the rail pads as linear spring-damper elements acting in

parallel and connecting the rails and the crossties. The crossties are included as rigid bodies with

point mass. The ballast bed is incorporated as discrete linear springs and viscous dampers. In this

model, the spacing of the discrete elements is defined by the spacing of the crossties (sleepers).

The ballast is assumed to be a non-vibrating material and its mass is usually added to the mass of

the bridge.



35

Figure 2.15 Two-layer discrete model for ballasted track-bridge system

The properties of track in a track-bridge two-layer discrete model as shown in Figure 2.15 are

given in TABLE III (Man, 2002).

TABLE III
TRACK PROPERTIES OF TWO-LAYER DISCRETE MODEL

Description Notation Value
Vertical stiffness (rail/sleeper) Krp 300,000 kN/m (1,713,047 Ibf/in)
Vertical damping (rail/sleeper) Crp 80 kN.s/m (457 Ibf.s/in)

Crosstie/sleeper mass Ms 300 kg (1.713 Ibf-s
2/in)

Crossties/sleeper spacing Ls 0.6 m (23.62 in)
Vertical stiffness of ballast Kb 120,000 kN/m (685,219 Ibf/in)
Vertical damping of ballast Cb 114 kN.s/m (651 Ibf.s/in)

Studies that require the inclusion of the ballast as a vibrating material may use the 2D

discrete three-layer model as shown in Figure 2.16. In this model, in addition to the two-layer

discrete model, the ballast is considered as suspended masses. These masses are connected to the

crossties (sleepers) and to the bridge deck through spring-dampers elements.
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Figure 2.16 Three-layer discrete model for ballasted track-bridge system

The properties of track in a track-bridge three-layer discrete model as shown in Figure 2.16 are

given in TABLE IV (ERRI, 1999).

TABLE IV
TRACK PROPERTIES OF THREE-LAYER DISCRETE MODEL

Description Notation Value
Vertical stiffness (rail/sleeper) Krp 500,000 kN/m (2,855,079 Ibf/in)
Vertical damping (rail/sleeper) Crp 200 kN.s/m (1142 Ibf.s/in)

Crosstie/sleeper mass Ms 290 kg (1.656 Ibf-s
2/in)

Crossties/sleeper spacing Ls 0.6 m (23.62 in)
Vertical stiffness (ballast/sleeper) Kbs 538,000 kN/m (3,072,065 Ibf/in)
Vertical damping (ballast/sleeper) Cbs 120 kN.s/m (685 Ibf.s/in)

Ballast mass Mba 412 kg (2.353 Ibf-s
2/in)

Vertical stiffness (bridge/ballast) Kbb 1,000,000 kN/m (5,710,157 Ibf/in)
Vertical damping (bridge/ballast) Cbb 50 kN.s/m (286 Ibf.s/in)
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2.3.4 Modeling of ballastless track-bridge system

Some researchers (Casal, 2010; Proença, 2011) used the model shown in Figure 2.17 to

study dynamic behavior of high speed railway bridges with a Rheda type track.

Figure 2.17 Schematic of a ballastless track model

A geotextile is placed under the slab. The main function of the geotextile is to reduce the effects

of the interaction between the support structure and the Rheda slab 2000 preventing the

breakdown between them, due to the cyclical effects of the use of the trains. Casal (Casal, 2010)

adopted a value of 2x1010 kN/m (1.14 x 1011 Ibf/in) for vertical stiffness of the geotextile.

2.3.5 Railway track irregularities

An important parameter in the railway bridge and vehicle dynamic responses is the track

irregularities. These are deviations from the ideal and perfectly smooth geometry. The rail

surface profile may have different conditions due to initial constructions, weather conditions and

maintenance. The track irregularities are naturally in three dimensions and the two rails of the

track can have two different irregularity profiles independent from each other. However, for the

studies of vertical responses of the structure, a mean value of rail irregularities is assumed and

they are generally modeled in two dimensions as shown in Figure 2.18.
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Figure 2.18 Vertical profile of track irregularities

The Track irregularity of railway bridges is typically a random parameter that is fundamentally

modeled by functions called Power Spectral Density (PSD). For that purpose, functions are

randomly generated depending on the conditions of the track and used to construct a profile over

the bridge.

2.3.6 Train vehicle modeling

A variety of models for train vehicles are available depending on applications and goals.

The choice of vehicle modeling has a significant impact on the amount of the analysis time and

required computational efforts. They should be chosen carefully. This section discusses several

different types of traffic loads on railway bridges via simple or complex vehicle models.

2.3.6.1 Moving force models

The most basic and straightforward model used to analyze the dynamic problem of

bridges is the moving force (or moving load) model as shown in Figure 2.19.
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Figure 2.19 Moving force model

In this model, train axle loads are represented by constant vertical forces p crossing the

bridge at a speed v equal to that of the vehicle. Therefore, the interaction effects of bridge and

vehicle as well as the vehicle’s inertia are all ignored. This is a satisfactory approach in situations

where the ratio of the mass of the vehicle to the mass of the bridge is negligible and therefore the

behavior of the bridge only is being studied (Yang et al., 2004). In addition, this approach may

be considered when certain dynamic sources (such as track irregularities, rail joints, wheel flat,

etc.) are not needed in the analysis. Furthermore, this model may be of interest for problems

where a closed-form solutions are sought or in the approximate evaluation of the bridge dynamic

responses as applied by the authors of (Frýba, 2001; Brady et al., 2006).

Despite providing approximate results the moving force model is the most used in the

design and analysis of bridges because it is simple. Extensive previous research efforts in this

area can be found in the literature (Frýba, 1972; Wu and Dai, 1987; Weaver et al., 1990;

Gbadeyan and Oni, 1995; Wang, 1997; Zheng et al., 1998; Rao, 2000; Chen and Li, 2000;

Dugush and Eisenberger, 2002). One more argument for the widespread applications of simple

methods like the moving force model is the fact that the important controlling parameters can be

ascertained with closed-form solutions; therefore, rational simplified formulas could be written

for adoption in codes of design (Humar and Kasif, 1993).
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2.3.6.2 Moving mass models

The subsequent straightforward model after the one described in the previous section is

the moving mass model as shown in Figure 2.20.

Figure 2.20 Moving mass model

This model may be suitable for problems where the ratio of the mass of the vehicle, M, to the

mass of the bridge as well as the vehicle’s inertia effects on the bridge are not negligible. A vast

amount of research has been carried out on the development of numerical and analytical

solutions of bridge dynamic problems using moving mass models. Fourier series expansion was

utilized by the authors of (Stanišić and Hardin, 1969) to compute “the response of a simple 

beam” subjected to an “arbitrary” number “of moving masses.” Also, in the work of (Ting et al.,

1974; Sadiku and Leipholz, 1987), the authors used Green's function to examine the problem of

the moving mass. For this model, a closed form solution was initially proposed by (Stanišić, 

1985) while investigating the dynamic response of a simple beam crossed by a single mass. The

authors of (Akin and Mofid, 1989) utilized the same closed-form solution in an analytical-

numerical method to investigate the problem of a moving mass crossing beams having different

boundary conditions.

Despite the fact that this model can take into consideration the moving vehicle’s inertia

effects, it does not however include the effect of relative displacement between the bridge and
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the vehicle. This could have considerable impact on the response of the bridge where the track

irregularities are to be added to the analysis and also for high-speed vehicles. Moreover, the

moving mass model is not adequate for cases where the vehicle’s response is also important

since the moving mass vibration is usually taken at the point of contact on the bridge surface

assuming no-jump of the moving mass.

2.3.6.3 Moving sprung mass models

A model that is simple and takes into consideration the effect of suspension system is the

so-called moving sprung mass model as shown in Figure 2.21. In this type of model, the moving

mass Mv is supported by a spring and dashpot having a vertical stiffness kv and a damping

constant cv respectively thus representing the suspensions system of the train vehicle.

Figure 2.21 Moving sprung mass model

This type of model may be used as a generic system to carry out studies of the interaction

between the bridge and the train. The solution of problems involving a sprung mass crossing a

simple beam was proposed by Biggs (Biggs, 1964) using an approach based on a semi-analytical

method. Later, Frýba (Frýba, 1972) considered various types of vehicle modeling including
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moving sprung mass, moving mass and moving load. He investigated the key parameters and the

sensitivity as well as impact of different variables on the response of the bridge. He then

proposed solutions based on numerical and analytical methods. Other researchers (Pesterev et al.,

(2001; Pesterev et al., 2003) also investigated the case of an elastic continuum subjected to

multiple moving oscillators using the technique of series expansion.

2.3.6.4 Moving system models

In contrast to sprung mass models, more complex models consisting of many degrees of

freedom are generally called moving system models. The different components of the train

vehicle are treated as discrete masses which are attached to each other by suspension systems.

The suspension systems are usually modeled using spring-dampers. Some researchers modeled

the stiffness of the suspension systems as springs with linear properties; and the damping of the

suspension system and air cushions as linear dashpots (Humar and Kashif, 1993; Green and

Cebon, 1994; Xia et al., 2003; Majka and Hartnett, 2008). Nevertheless, other researchers have

used nonlinear models for forces in the suspension systems (Hwang and Nowak, 1991; Zhai et

al., 2009).

Due to the important dynamic interactions between trains and railway bridges, numerous

models have been used to characterize the train. A rather simple model that is able to include the

carbody pitching effect was used by some researchers (Yang et al., 1999). Such a model has 4

degrees of freedom: one rotational (or pitching) and three vertical. The car body is assumed to be

a rigid bar connected to wheels by two suspension systems assumed to be linear spring-dampers.

Other more intricate models with several physical components of a train such as wheelset, truck

(bogie), and with the car body having linear suspension properties have been adopted greatly by
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many researchers (Zhang et al., 2001; Xia et al., 2001; Xia et al., 2003; Majka and Hartnett,

2008).

This type of advanced train models are mainly used for the analysis of the train-track-

bridge interaction systems in high speed rail lines. An example of a two-dimensional train model

used by the authors in (Wu and Yang, 2003) is shown in Figure 2.22. This type of 2D model,

with 10 degrees of freedom, consists of the carbody, front and rear truck (bogie), and four

wheelsets. All bodies are modeled as rigid; and linked by linear springs and dampers as shown.

Rotational (or pitching) and vertical degrees of freedom are retained for the carbody and trucks

(bogies), and only vertical degrees of freedom are considered for wheels.

Figure 2.22 Two-dimensional 10-DOF train vehicle model

Other researchers (Majka and Hartnett, 2008) have adopted the 3D vehicle model shown

in Figure 2.23. Comparable parts as in the 2D model are assumed for the train vehicle with
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additional degrees of freedom. For the carbody and the two trucks (bogies), the total number of

degrees of freedom is assumed to be 5.

Figure 2.23 Three-dimensional 27-DOF train vehicle model

Two translational degrees of freedom for lateral and vertical displacements and three rotational

degrees of freedom for rolling (about x-axis), yawning (about z-axis) and pitching motions are

used. For the wheelsets, only 3 degrees of freedom are used including the vertical, lateral and

rolling motions. Therefore, a total of 27 degrees of freedom are considered to represent one car

of a moving train using a 3D model.

2.3.7 Solution methods of vehicle-track-bridge interaction problems

This section of the chapter discusses the state-of-the-art solution methods used to solve

the vehicle-track-bridge interaction problems. For simple and elementary cases in which the
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moving force model and the moving mass model are used in conjunction with the bare beam

models, closed-form solutions can be found in the literature (Frýba, 1972; Stanišić, 1985). These 

basic models do not consider the interaction phenomenon. Another method used by many

researchers since 1960 is the modal superposition technique (Frýba, 1967; Frýba, 1972;

Richardson and Wormley, 1974; Ting and Genin, 1980; Genin et al., 1982; Xia et al., 2001; Xia

et al., 2003). However, this latter method is not versatile enough to include some additional

effects in the analysis, such as track irregularities. Therefore, this section of the literature review

will focus only on recently developed methods having enough complexity and versatility; and of

significant relevance to the research of this dissertation.

2.3.7.1 Iterative solution method

The iterative method is a widespread technique that has been used by many researchers to

solve the interaction problem between the vehicle and the underlying structure (Hwang and

Nowak, 1991; Yang and Fonder, 1996; Delgado and Santos, 1997; Lei and Noda, 2002; Xia et

al., 2008; Lee and Kimb, 2010). This method consists of establishing the equilibrium of forces

acting on the contact interface and uses successive iterations to impose the constraint equations

that relate the vehicle’s wheel displacement at the contact point with the corresponding

displacement of the structure.

The two subsystems, namely the vehicle and the structure, are treated as two separate

entities whose decoupled governing equilibrium equations may be expressed as

(2.1)
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where quantities M, C and K are the mass, damping and stiffness matrices, respectively. Vector

quantities , and are the nodal displacements, velocities and accelerations respectively. The

vector F contains the loads and the subscripts v and s indicate vehicle and structure, respectively.

According to this iterative method developed by the authors of (Delgado and Santos,

1997), each time step involves the following operations at each iteration j+1: 1) The action of

the moving forces, corresponding to the wheelsets of the train, is subjected to the structure. Each

moving force is described by

(2.2)

where is the static load of the wheelset and is the dynamic component of the interaction

force resulting from the previous iteration j. At each time step, the forces in the first

iteration are equal to those calculated in the previous time step. The nodal displacements of

the structure are computed by solving its corresponding system of equations, and, from the shape

functions of the finite elements, the displacements of the structure under the contact nodes

are calculated; 2) At the same time, the displacements , corresponding to the displacements

of the structure under the contact nodes plus any track irregularity r between the wheel and

the rail, are applied at the contact nodes of the vehicle. The reaction forces at the contact nodes

are then computed by solving the system of equations corresponding to the vehicle. These

reactions are the dynamic components of the interaction force that is to be applied to the
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structure in the next iteration; and 3) a convergence criterion is verified (after each iteration) as

described by the following

(2.3)

The parameter ε represents a desired tolerance. If the desired degree of convergence is obtained, 

the procedure may move to the next time step, otherwise, the process continues to the next

iteration.

A comparable approach is proposed by the authors of (Yang and Fonder, 1996) which

considers an acceleration scheme, namely the relaxation and Aitken techniques to make the

convergence rate better. The researchers in (Lei and Noda, 2002) also adopted a similar scheme,

in which the contact forces are computed using the Hertz formula with allowance of penetrations

or separations between the wheel and the rail.

These above described iterative methods are limited to the vertical interaction between

the vehicle and the structure. However, other authors have developed alternative iterative

methods to include the lateral interaction. For example, the researchers in (Nguyen et al., 2009a;

Nguyen et al., 2009b) developed a 3D dynamic interaction model that can incorporate the loss of

contact between the wheel and the rail, considering tensionless stiffness springs in the vertical

direction. In the lateral direction, the contact is characterized by a spring-dashpot in order to

model both the normal contact, due to the impact between wheel and rail, and the tangential

contact due to the creep forces. Despite the fact this approach accounts for the lateral dynamics



48

of the vehicle, its scope is limited to ordinary operation scenarios in which the movement of the

vehicle does not experience significant lateral disturbances caused by external sources, such as

earthquakes or crosswinds.

2.3.7.2 Dynamic condensation method

The authors in (Yang and Yau, 1997) developed a finite element called vehicle-bridge

interaction element as shown in Figure 2.24. According to the researchers, this element is both

accurate and efficient for modeling the vehicle-bridge interaction.

Figure 2.24 Vehicle-bridge interaction element without pitching effect

In their work, the vehicle is modeled as a sequence of lumped sprung masses; the bridge as beam

elements; and the track as lumped masses, springs and dashpot elements to represent the ballast.

The method is based on the formulation of two equations of motion of the system, one for the

bridge and one for the lumped sprung masses representing the vehicle. The equation of the

vehicle is then discretized using Newmark's finite difference formulas, resulting in the

condensation of its degrees of freedom into the bridge elements that are in contact. As the
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vehicle is modeled as a series of sprung masses, the developed interaction element ignores the

pitching effect of the vehicle, which may considerably affect the response of the whole system.

Therefore, the same authors (Yang et al., 1999) proposed an improved interaction element, in

which the vehicle is modeled with a rigid beam supported by two spring-dampers as shown

Figure 2.25.

Figure 2.25 Vehicle-bridge interaction element with pitching effect

Despite the fact this improved element considers the pitching effect of the vehicle; it does not

include in the model the bogies (trucks). To resolve this drawback, the authors of (Yang and Wu,

2001; Wu et al., 2001) later developed a model and procedure that can simulate vehicle-bridge

systems of varying complexity as shown in Figure 2.26.
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Figure 2.26 Vehicle-bridge interaction model with higher degree of complexity

In depth formulation of the different versions of the interaction element and a number of

applications on high-speed railway bridges may be found in (Yang et al., 2004).

The vehicle-bridge interaction element based on the condensation techniques preserve the

properties of symmetry and bandwidth. However, as the position of each contact point changes

over time, the matrices of the system in this method are time-dependent and must be updated and

factorized at each time step, which requires a considerable amount of computational effort.

2.3.7.3 Direct solution method

The author of (Neves et al., 2012) developed a new algorithm, referred to as the direct

method; in which additional constraint equations complement the governing equilibrium

equations of the vehicle and structure. With no separation between the vehicle and the structure,

these “constraint equations relate the displacements of the” vehicle’s contact nodes with “the

corresponding nodal displacements of the structure.” The track irregularities at the contact
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interface can be included in the constraint equations; and the vehicle and structure subsystems

can be modeled using various types of finite elements having any degree of complexity, such as

beams, springs, shells, and solids, as shown in Figure 2.27.

Figure 2.27 Vehicle-structure interaction: (a) schematic and (b) free body diagram

According to the authors of this method, “the equations of motion and the” constraint

“equations” represent “a single system, with displacements and contact forces as unknowns.”

The equations of the system are then solved directly using an optimized block factorization

algorithm, therefore avoiding the iterative procedure to satisfy the constraint equations. In this

case, the single system of linear equations is given in matrix form as

(2.4)

In the above equation, represents the “effective stiffness matrix of the vehicle-structure”

system. The quantity is a transformation “matrix that relates the contact forces” in the local
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coordinate to the “nodal forces in the global coordinate.” The quantity is a “transformation

matrix” that associates the global coordinate “nodal displacements” to the local coordinate

displacements of auxiliary points. The quantities and are the current time step’s

nodal displacements and contact forces respectively. The quantity is the load vector and the

quantity represents the track irregularities at the contact interface.

In a later publication in 2014, the authors of (Neves et al., 2014) extended their

formulation to include the case of a separation between the wheel and the rail. These researchers

developed a contact search algorithm that aims to detect which elements are in contact and

therefore the constraint is only imposed only when contact occurs. As a frictionless contact only

is considered in this formulation, the constraint equations are rather geometric and relate the

displacements of the contact node to the displacements of the corresponding target element.

Because of the nonlinear nature of the contact problem, an iterative algorithm based on the

Newton method (Owen and Hinton, 1980; Bathe, 1996) is considered to solve the equation of

motion of the vehicle-structure system, and therefore the system of equations is given in an

incremental form as

(2.5)

In the above equation, the quantities and at the current iteration represent the

incremental displacements and contact forces respectively. The quantity represents the
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residual force vector and depends on the nodal displacements and contact forces computed in the

previous iteration. The iterative process continues until the following condition is satisfied.

(2.6)

In the above equation, the quantity represents the vector of applied external loads at the

current time step. The parameter represents a desired tolerance. It should be noted that the

iteration procedure of this improved direct method is not related to the compatibility of

displacements between the vehicle and the underlying structure, as described in the iterative

solution method of section 2.3.7.1, but rather to the nonlinear nature of the contact due to the

consideration of contact loss.

2.4 Review of International Codes and Standards

The objective of this section of the dissertation is to provide an overview of the various

current international codes and technical standards dealing with the dynamic analysis of railway

bridges used in high speed train lines. In Europe, “Eurocodes for construction” of the new

European standards are now the basis for designing high speed railway bridges. Rules and

recommendations related to Serviceability Limit States (SLS), actions and calculations are

available in two major documents: Eurocode European Norm (EN) 1990 Annex A2 and

European Norm (EN) 1991, Part 2, Section 6. These two documents summarize study efforts

based on collective experience of different European railway companies. These works have been

compiled and published into the so-called UIC leaflets which serve as technical guidelines in
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many parts of the world, including the standards of the California High-Speed Train Project

(CHSTP, 2014) in the United States. As a result, this section focuses on the dynamic analysis of

railway bridges as outlined in the rules of Eurocodes and provides some background information

about those rules.

2.4.1 Requirements for dynamic analysis

The current state-of-the art in the evaluation of dynamic effects in high speed rail bridges

is, first of all, to make a determination whether dynamic analysis is required or not. For this

purpose, the ERRI D214 committee, appointed by the Union International de Chemin de fer

(UIC), proposed a flow chart as shown in Figure 2.28 adopted from (UIC Leaflet 776-2, 2nd

edition, 2009) that should be used for such a determination but also gives guidance concerning

dynamic analysis methodologies.

The parameters of the flow chart depend on: i) the maximum speed of the high speed rail

line; ii) the simplicity of the structure, iii) the span; and iv) the first natural bending and torsional

frequencies.

The “simplicity” of the structure refers to high speed railway bridges that may be

considered to be simply supported and modeled with longitudinal line beam or simple plate with

negligible skew. The flow chart implies that, for simple structures of high speed railway bridges

with a span L > 40 m (131.23 ft) and with first natural bending frequency no within the limits

shown in Figure 2.29 (UIC Leaflet 776-2, 2nd edition, 2009), no dynamic analysis is required.
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Figure 2.28 Flow chart for dynamic analysis requirement check
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Figure 2.29 Limits of first natural frequency in relation to span length

The limits of Figure 2.29 define the range of spans and first natural bending frequencies for

which the dynamic effects are obtained by multiplying the static effects with a dynamic

amplification factor Φ. According to the flow chart, the use of this dynamic amplification factor

is also valid for short span railway bridges of a span L< 40 m (131.23ft) with an unlikely

coupling of bending and torsion, and where the ratio vlim/n0 is lower than the ratio (v/n0)lim given

in TABLE V (referred to table 8 in Figure 2.29) for ballasted track and TABLE VI (referred to

table 9 in Figure 2.29) for ballastless track. Both tables are adopted from (UIC Leaflet 776-2, 2nd

edition, 2009).
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TABLE V

MAXIMUM VALUE (v/n0)lim FOR BEAM OR PLATE ON SIMPLE SUPPORTS AND WITH

A MAXIMUM PERMISSIBLE ACCELERATION SMALLER THAN 3.50 m/s2

It can be observed from the above flow chart that the use of dynamic amplification factor is

rather limited because the cases for which a dynamic analysis is required are many such as:

 non-simple bridges with continuous deck, skew decks, portal and frame bridges;

 simply supported structures with span greater than 40 m (131.23 ft) and first

natural bending frequency outside the specified limits; and

 simply supported bridges with span smaller than 40 m (131.23 ft) and nT < 1.2n0.
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TABLE VI

MAXIMUM VALUE (v/n0)lim FOR BEAM OR PLATE ON SIMPLE SUPPORTS AND WITH

A MAXIMUM PERMISSIBLE ACCELERATION SMALLER THAN 5 m/s2

A significant drawback of the flow chart is that, for small high speed railway bridges made of

reinforced concrete, models to be used in dynamic analysis are not given in European Norms

standards. Also, the stiffness for concrete in flexure or tension obtained using those standards is

underestimated. Deflections obtained with static actions are always lower than those obtained

with the rules of the standards.
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This is due to the fact that:

 the effects of the flexural track rigidity in small structures are more significant for

shorter span bridges;

 very high loads are used to estimate cracking in concrete;

 boundary conditions of the structure are often different from those assumed in the

modeling; and

 the dynamic modulus of the concrete is larger than the static modulus and the

actual static modulus may be larger than the assumed modulus.

2.4.2 Requirements for dynamic models

Dynamic problems where analytical procedure may be used to solve the equations

describing the effects of trains traversing a beam are confined to simply supported beams.

Approximations are made even when computer software is utilized. Nowadays, many Finite

Element Method (FEM) programs are able to correctly calculate dynamic response of trains

running over any kind of bridge.

In both cases, however, train loading, geometrical and mechanical data as well as track

parameters have to be defined by the designer. The standards provide a specific guidance to

determine the input values for the computations despite recommendations are lacking for the

type of bridge models to be used.
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2.4.2.1 Train and load models

The types of high speed train described in the standards vary broadly in terms of distance

between axles, coach lengths, etc. They can be classified into three categories as shown in Figure

2.30 (European Committee of Standardization, 2003): trains with articulated configuration (one

truck/bogie between coaches), trains with conventional configuration (two trucks/bogies per

coach) and trains of the regular type (one axle between coaches).

Figure 2.30 Types of high speed trains according to Eurocode 1

The approach of performing dynamic analysis for all train types is cumbersome and time

consuming. To limit the number of computations to be performed and standardize loading

models, the committee ERRI D214 has established the so-called High Speed Load Model
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(HSLM) which is made of a family of fictitious trainsets for which dynamic effects have been

shown to be an envelope of all current and future trainsets.

The family of HSLM load models comprises of two separate models of trains with variable

coach lengths, HSLM-A and HSLM-B. The load model HSLM-A constitutes of 10 universal

trains as shown in TABLE VII (European Committee of Standardization, 2003), and intended to

be used for continuous and complex structures as well as bridges with a span greater than 7 m

(23 ft). The load model HSLM-B is intended to be used for very short bridges with spans smaller

than 7 m (23 ft).

TABLE VII

HSLM-A HIGH SPEED TRAIN LOAD MODEL
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The HSLM-B load model (European Committee of Standardization, 2003) comprises of N

number of point forces of 170 kN (38,218 Ibf) with uniform spacing d. The parameters N and d

are obtained from Figures 2.31 and 2.32.

Figure 2.31 HSLM-B high speed train load model

It should be noted however that the HSLM load models imply running vertical point forces

representing maximum axle loads applied to the axis of the track on the bridge. Therefore, the

distribution of the wheel load by the rail and the ballast is not considered. This may be

acceptable for long span bridges but it is not acceptable for small short span bridges. Moreover,

these types of load models are not suitable for train-track-bridge interaction problems nor can

they be used for studying passenger comfort problems.
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Figure 2.32 Number of N point forces and d spacing of HSLM-B model

The HSLM universal trains are the simplest form of live load models and provide less accurate

results than the complex models, particularly for short span high speed railway bridges.

Consequently, the UIC leaflet 776-2 recommends the use of the load model shown in Figure 2.33

where the coupling between the wheel and the rail is modeled by means of a Hertzian contact

model.

Figure 2.33 Train model according to European Code
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2.4.2.2 Bridge models

The international codes and standards require that the bridge be modeled as accurately as

possible using two or three dimensional elements. In fact, the relevant codes recognize that

modeling methods that utilize beam elements are the most appropriate to evaluate the dynamic

behavior of bridges and structures mainly composed of bars. There exists some flexibility for

designers to use proven and efficient models provided in technical papers and text books.

However, regardless of whether modal analysis method or analysis by direct integration methods

are used, most international codes provide guidelines for model inputs like mass, stiffness,

damping and boundary conditions of the structure.

The mass of the bridge changes during the life of the structure. The distribution of the

mass along the bridge may also vary. The maximum acceleration of the structure at resonance is

typically proportional to its mass. Therefore, the European Norms EN1991-2 recommends that a

minimum and maximum value of the mass of the bridge be taken into account. The minimum

estimate of the mass is intended to predict the maximum deck acceleration with a minimum

likely dry clean density and minimum ballast thickness. The maximum estimate of the mass is

intended to predict the lowest resonance speeds likely to occur with maximum saturated density

of dirty ballast.

The stiffness of the bridge changes also during the life of the structure. Generally, at the

beginning of the life of the bridge, the stiffness is high and the mass is at its minimum. At the

end of the bridge’s life, the opposite is true. This implies that the natural frequency of the bridge

decreases with time and resonance may occur with proportionally lower train speeds. A

maximum stiffness corresponds to a section free of cracks, for example, or without any reduction
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of stiffness from its original design. A minimum stiffness corresponds to cracked sections, for

example, or additional effects leading to reduction in stiffness such as effects of differential

settlement, contraction and temperature. Consequently the codes recommends that a lower bound

of stiffness be considered in conjunction with a maximum value of the mass; and a upper bound

of the stiffness in conjunction with a minimum values of the mass.

The damping of the bridge is a parameter that is difficult to quantify. Yet, the peak

responses of the bridge at train speeds corresponding to resonant loading depends highly on the

damping. So, the codes adopted by most international high speed rail authorities provide some

guidance as to the damping to be used for consistency during the design. For example in Europe,

the damping values to be assumed for different types of high speed rail bridges during the design

is shown in TABLE VIII (UIC Leaflet 776-2, 2nd edition, 2009).

TABLE VIII

DAMPING VALUES FOR DESIGN PURPOSES

According to the European Norms (EN), real trains may be represented by a series of travelling

point forces and the vehicle/bridge mass interaction may be neglected. At the same time these
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codes indicate that for short bridges with spans less than 30 m (98.43 ft) the dynamic vehicle-

bridge interaction reduces the peak responses at resonance. To account for these effects a

dynamic vehicle-bridge interactive analysis may be carried, or the moving force model may be

used with an increase of the assumed bridge damping as shown in Figure 2.34. This additional

damping, however, was calibrated for the Inter-City Express 2 (ICE-2) and Eurostar real trains

only and its use may not be justified for other real trains.

Figure 2.34 Additional damping to account for effects of vehicle-bridge interaction

2.4.2.3 Track models

According to the UIC Leaflet 776-2, the track may be modeled with Timoshenko beam

elements for the rails and the rail/sleeper fastening characteristics as well as the ballast (if

applicable) may be taken into consideration. Sleepers and ballast are represented by concentrated
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masses. As shown Figure 2.35, parallel spring and damper systems are used to link the rail,

sleeper, ballast and bridge or subgrade. Any length on both sides of the bridge may be included.

This model provides better results especially for short span bridges where the stiffening effect of

the structure has to be included. However, the effects of track distribution are not added with this

model.

Figure 2.35 Dynamic train-track-bridge model

Each train vehicle is capable of absorbing the kinetic energy of the bridge. Consequently at

resonance, the bridge deflections and accelerations using this model are lower than those

obtained from the moving force model. It should be noted, however, that in cases where the

ultimate goal is not to study behavior of sleepers and ballast, this model may be modified by

replacing the track’s three layers of elastic elements in series with an equivalent spring and

damper.

2.4.3 Serviceability limit state criteria

An important code requirement for high speed rail bridges is a set of criteria related to

Serviceability Limit State (SLS). One of the critical criterions to check in a dynamic analysis is
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the bridge deck vertical acceleration. For ballasted tracks, the maximum value of bridge deck

vertical acceleration limited to 3.5 m/s2 (11.5 ft/s2). This limitation is to provide a safety factor of

2 against ballast liquefaction. For ballastless track and for track stability and wheel/rail contact,

this value is limited to 5.0 m/s2 (16.4 ft/s2).

Another important criterion in international standards and codes is to guarantee the

passenger comfort by limiting the vertical acceleration in the vehicle. It is generally stated that a

vertical acceleration in the train vehicle of 2 m/s2 (6.6 ft/s2) is acceptable and a value of 1.0 m/s2

(3.3 ft/s2) is very good as far as the passenger comfort is concerned. This criterion of passenger

comfort is directly related to the maximum allowable vertical deflection of the bridge deck. In

order to achieve the 1.0 m/s2 (3.3 ft/s2) vertical acceleration in the vehicle, the maximum

permissible deflection of the bridge deck should be according to the values given in Figure 2.36

(UIC Leaflet 776-2, 2nd edition, 2009). This limit value of L/δ depends on the bridge span and 

the train speed.

Figure 2.36 Maximum allowable vertical deflection of bridge corresponding to a vertical
acceleration in the vehicle of 1 m/s2
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CHAPTER 3

NUMERICAL MODEL OF A TRAIN-TRACK-BRIDGE INTERACTION

Parts of the material presented in this chapter are published in (Nour and Issa, 2016) and

reproduced in this dissertation with permission which is listed in Appendix B. The author of this

dissertation is a contributing co-author.

3.1 Introduction

The study of dynamic responses of a railway bridge traversed by a train has been

a topic of interest for engineers and researchers since the end of the 19th century. In earlier

studies, the moving force model was used where the vehicle inertia was believed to be small

compared to that of the bridge (Timoshenko, 1922) and the moving mass model was used where

the mass of the vehicle was significant in relation to that of the bridge (Frýba, 1999). With the

increase of train speeds and axle loads as well as expansion of high speed rail networks, the

interaction problem between the vehicles and bridge structures has gained much more attention

in the last several decades. Some previous studies have entirely excluded the effects of the track

structure (Yang et al., 1997; Cheung et al, 1999; Yang et al., 1999). Other previous research

partially accounted for the effects of the track in the interaction investigations (Wiriyachai et al,

1982; Chu et al, 1986; Yang and Yau, 1997). The dynamic response of track structures under

moving loads has been often studied by modeling the railway track system as either a beam on a

Winkler foundation (Duffy, 1990; Thambiratnam and Zhuge, 1996) or a beam supported on a
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series of discrete springs and dampers (Clark et al., 1982; Zhai and Cai, 1997; Oscarsson and

Dahlberg, 1998). Analytical methods of bridge analysis were limited to moving forces where

closed forms of the solution could be derived. Semi-analytical methods of the vehicle-track-

bridge problem were used by a number of researchers (Hutton and Cheung, 1979; Frýba, 1999)

by solving numerically the coupled second order differential equations of the system using

modal superposition for the bridge and treating the vehicle as a sprung mass. For the vehicle-

track-bridge interaction problems of higher complexities, numerical methods based on the finite

element formulation were found to be more versatile by the authors in (Lin and Trethewey, 1990;

Cheng et al., 2001; Lou, 2005; Lou and Zeng, 2005) who treated the entire system as a coupled

whole system for simply supported bridges and solved using Newmark integration scheme with

time-dependent matrices. These techniques have a drawback in computational efforts or

convergence issues requiring iterations. Furthermore, a literature review carried out by the author

of this dissertation has found that limited research studies have dealt with the train-track-bridge

interaction problem considering a train convoy or including the flexibility in the bridge supports.

The authors of (Yau et al., 2001) have studied the dynamic responses of bridges with elastic

bearings but have not taken into consideration the train vehicle interaction and track effects. The

work of (Fournol and Dieleman, 2005) consisted of calibrating a theoretical model to match the

field measured fundamental frequency of short span bridges. Their approach was to select values

of a pair of vertical spring stiffness and rotational spring stiffness inserted at the bridge ends of

their theoretical model to match the calculated fundamental frequency to the measured one. They

then performed numerical simulations without any damping of the bridge supports and without

vehicle interaction.
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In this chapter of the dissertation, a 2D train-track-bridge model is developed for use in

dynamic simulations of short span high speed rail bridges. The interaction between the train and

the track-bridge is considered as an interaction between two decoupled subsystems. A first

subsystem is assumed to be the train vehicle treated as a four-wheelset mass-spring-damper

system with two-layer of suspension systems possessing 10 degrees of freedom. The

eccentricities of the masses are ignored. A second subsystem is assumed to be the underlying

track-bridge system treated as a top rail beam and a bottom bridge beam coupled by continuous

springs and dampers representing the elastic properties of the trackbed smeared over the spacing

of the sleepers (crossties). The bridge supports are assumed to be flexible characterizing

elastomeric bearings and/or soft foundation. Linear viscoelastic elements are used to model the

boundary conditions. Two sets of equations of motion of the finite element form are derived for

each subsystem independently by means of the Newton’s second law. The dynamic interaction

between the moving vehicle of the first subsystem and the underlying stationary track-bridge

structure of the second subsystem is established by means of a no-separation constraint equation

at the contact points where the degrees of freedom of the wheels are condensed to those of the

rails. Numerical solutions of the decoupled equations of motion for both subsystems are obtained

with the step-by-step direct time integration using HHT alpha method with a special scheme at

the contact interface. The solution accuracy of the proposed method is validated at the end of the

chapter against responses obtained from a semi-analytical method of a single train car travelling

over a simply supported bridge. The numerical model thus synthesized in this chapter is used to

examine modal characteristics of bridges in Chapter 4 and to investigate the dynamic behavior of

short span high speed rail bridges through parametric studies in Chapter 5.
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3.2 Mathematical Formulation of the Train-Track-Bridge Interaction Problem

The 2D model of the train-track-bridge interaction problem of this study is shown in

Figure 3.1.

Figure 3.1 Vehicle-track-bridge interaction model

The train vehicle and the underlying track-bridge structure are treated as two separate

subsystems. The interaction between the two subsystems occurs at the contact interface between

the rails and the wheelsets. It is assumed that each wheelset of the vehicle is always in contact
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with the rails. The vehicle is modeled as a mass-spring-damper system and consists of a carbody,

two trucks (bogies) spaced at 2Lc and two wheelsets per truck (bogie) spaced at 2Lt. The carbody

is modeled as a rigid body with a mass mc and a moment of inertia Jc about the transverse

horizontal axis through its center of gravity. Similarly, each truck (bogie) is considered as a rigid

body having a mass mt and a moment of inertia Jt about the transverse horizontal axis through its

center of gravity. Each wheelset is also assumed to be a rigid body having a mass mw. The

primary suspensions between the truck (bogie) and each wheelset are characterized by a spring

stiffness kp and a damping coefficient cp respectively. Likewise, the secondary suspensions

between the carbody and the truck (bogie) are characterized by a spring stiffness ks and a

damping coefficient cs respectively. As the carbody is assumed to be rigid, its motions may be

described by the vertical displacement yc and rotation θc at its center of gravity. Similarly, the

motions of the front truck (bogie) may be described by the vertical displacement yt1 and rotation

θt1 at its center of gravity; the motions of the rear truck (bogie) may be described by the vertical

displacement yt2 and rotation θt2 at its center of gravity. The motions of the four wheelsets may

be described by the vertical displacements yw1, yw2, yw3 and yw4 respectively. Therefore, the total

number of degrees of freedom for one vehicle is 10. The vertical displacement of each wheelset

is however constrained by the displacement of rails. Consequently, the independent degrees of

freedom for one vehicle become 6. It is assumed that the upward vertical displacement and

clockwise rotation of the vehicle are taken positive and that they are measured with reference to

their respective static equilibrium positions coming onto the track-bridge subsystem. The vehicle

proceeds with a constant velocity v in the longitudinal direction from left to right.

The two rails of the typical railway track are combined into one upper beam of the same

properties in this research. An upper beam modeling the rails and an elastically supported lower
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beam modeling the bridge deck are interconnected by continuous springs and dampers

characterizing the properties of the track bed. Based on the discretization with the finite element

method, the upper beam is divided into Nr elements of equal length l, and the lower beam is

divided into Nb elements of equal length l. The beam elements are assumed to be of the Bernoulli

or Timoshenko type. It is assumed that the damping of the rails is negligible, and the lower beam

has a linear viscous damping of the Rayleigh type. The stiffness and damping coefficients of the

spring-damper system between the upper and lower beams are kbv and cbv respectively, thus

representing the effective vertical stiffness and damping of the rail support components (i.e. rail

pads, fastening system, ballast, etc.) smeared over the spacing of the crossties (sleepers). A

section of the left approach track of length Lf and a section of the right approach track of length

Lr are included in the numerical model. The mass of the crossties (sleepers) is included in the

mass per unit length of the upper beam (i.e. rails). The mass of the ballast is included in the mass

per unit length of the lower beam (i.e. bridge). Additional notations of the material and physical

parameters of the track-bridge subsystem are described in Table IX.

TABLE IX TRACK-BRIDGE SUBSYSTEM PARAMETERS NOTATIONS

Parameter Upper beam Lower beam
Mass per unit length mr mb

Modulus of Elasticity Er Eb

Cross-sectional area Ar Ab

Moment of Inertia Ir Ib

Shear modulus Gr Gb

Timoshenko shear coefficient ksr ksb

Shear deformation parameter ϕr ϕb

Bridge support vertical stiffness - ksv

Bridge support vertical damping - csv
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3.2.1 Equations of motion of the vehicle subsystem

The objective of this section is to derive the equations of motion that describe the

behavior of the train vehicle for which the degrees of freedom are shown in Figure 3.2. The

vehicle is assumed to be composed of two parts: an upper noncontact part consisting of the

carbody, suspension systems and trucks (bogies); and a lower part in contact with the rails

consisting of the wheelsets.

Figure 3.2 Ten degrees of freedom of the train vehicle

The vehicle is treated as a whole subsystem and is acted upon by the contact forces Vc1, Vc2, Vc3

and Vc4 through the four wheelsets considered to be external forces; and the additional internal

forces as shown in the free body diagram of Figure 3.3.

In relation to the free body diagram of the vehicle, all internal dynamic forces in the

spring-dampers of the suspension systems are given by the set of 12 equations (3.1.1) through

(3.1.12) where an over-dot denotes differentiation with respect to time.
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Fig.3.3 Free body diagram of train vehicle

(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)

(3.1.8)

(3.1.9)

(3.1.10)

(3.1.11)

(3.1.12)
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Balancing all external and internal forces acting on the vehicle, the equations of equilibrium

corresponding to the 10 degrees of freedom are obtained as follows.

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)

(3.2.10)

Inserting equations (3.1.1) through (3.1.12) into equations (3.2.1) through (3.2.10) and after re-

arranging, a system of 10 second order differential equations describing the dynamic behavior of

the vehicle is obtained as given by the following equations (3.3.1) through (3.3.10).

(3.3.1)

(3.3.2)



78

(3.3.3)

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)

(3.3.9)

(3.3.10)
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In the remainder of this dissertation, matrices, column vectors and row vectors are

represented by quantities enclosed in [ ], { } and respectively. Let , and denote

vectors containing the accelerations, velocities and displacements respectively of the vehicle

upper part given by the following expressions of equation (3.4),

(3.4)

where the superscript T denotes the transpose of the vector

and let , and denote vectors containing the accelerations, velocities and

displacements respectively of the wheelsets given by the following expressions of equation (3.5),

(3.5)

and let denote the vector containing the time-dependent dynamic contact forces between

the four wheelsets and the rails given by the following expression.

(3.6.1)

The constant static contact force is given by the following expression.

(3.6.2)

where the parameter is the gravitational constant.
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The resultant contact force is the sum of the static component and dynamic component, and

given by the following expression.

(3.6)

Therefore making use of equations (3.3) through (3.6), the equations of motion of the vehicle can

be assembled into a semi-compact matrix form given by the following equation (3.7).

(3.7)

The vehicle matrices in the left-hand side of equation (3.7) are summarized as follows

(3.7.1)

(3.7.2)

(3.7.3)

(3.7.4)
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(3.7.5)

(3.7.6)

(3.7.7)

(3.7.8)

Matrix is obtained by replacing with in . Matrix is obtained by replacing

with in , and keeping in mind that

3.2.2 Equations of motion of the track-bridge subsystem

In the finite element framework, the track-bridge subsystem is discretized into a number

of simple elements of equal length. The model of this interaction element consists of rail element

and bridge element connected by continuous viscoelastic supports as shown in Figure 3.4. The

track-bridge interaction element consists of two nodes i and i+1. If the longitudinal

displacements are neglected, each of the top rail element and bottom bridge element has 4

degrees of freedom.
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Figure 3.4 Finite element of track-bridge subsystem

The vertical displacement yr
e and bending rotation θr

e of the rail element at an arbitrary

point taken at x distance from the left node i can be expressed as in the following equations (3.8)

and (3.9) respectively

(3.8)

(3.9)

Similarly, the vertical displacement yb
e and bending rotation θb

e of the bridge element at an

arbitrary point taken at x distance from the left node i can be expressed as in the following

equations (3.10) and (3.11) respectively
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(3.10)

(3.11)

The quantity in equations (3.8) and (3.9) is the nodal

displacement vector of the rail element. The quantity in equations

(3.10) and (3.11) is the nodal displacement vector of the bridge element.

The matrices [Nyr], [Nθr], [Nyb] and [Nθb] in equations (3.8) through (3.11) are derived from the

general expression of matrices [Ny] = [Ny1 Ny2 Ny3 Ny4] and [Nθ] = [Nθ1 Nθ2 Nθ3 Nθ4] whose entries

are the Hermite interpolation functions given by the following set of equations (3.12.1) through

(3.12.8).

(3.12.1)

(3.12.2)

(3.12.3)

(3.12.4)

and,

(3.12.5)

(3.12.6)

(3.12.7)

(3.12.8)
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For the rail beam element, quantities [Nyr] and [Nθr] are obtained from [Ny] and [Nθ] respectively

by replacing with . Similarly, in the case of the bridge beam element, quantities [Nyb] and

[Nθb] are obtained from [Ny] and [Nθ] respectively by replacing with .

The shear deformation parameters and can be expressed as

(3.12.9a)

(3.12.9b)

It is worth noting that if the Euler-Bernoulli beam theory is adopted in the track-bridge elements,

the shear deformation parameters are zero and the interpolation functions are the same for the

rail element and the beam element.

In the track-bridge finite element model, is the local coordinate along the longitudinal axis of

the element and is given by

(3.12.10)

Making use of the mathematical expressions of equations (3.8) through (3.12.10), the equations

of motion of the track-bridge interaction element subjected to the wheels’ contact forces

resulting from equation (3.7) can now be further derived and written in a semi-compact form as
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(3.13)

When the track effects are ignored, the equations of motion of the bridge element subjected to

the wheels’ contact forces can be reduced to the expression given by

(3.14)

It is worth nothing that loading vectors and in equations (3.13) and (3.14) are directly

related to the vector of the contact force of the vehicle as will be demonstrated later. The

vectors in the left-hand side of equations (3.13) and (3.14) with a single-overdot and double-

overdot represent the velocity and acceleration vectors respectively. All matrices in the left-hand

side can be easily derived by integrating the product of the shape functions and their transposed

over the element length; and are readily available in the literature (Yang et al., 2004; Lou et al.,

2006).

3.2.3 Equations of the random vertical track irregularities

Researchers and engineers dealing with the train-track-bridge interaction problems in the

high speed rail lines commonly consider the railway track irregularities to be one of the main

factors affecting the dynamic response of the system. This section of the dissertation discusses

the mathematical models and relevant parameters of random vertical irregularities in high speed

rail tracks. Some of the causes of track irregularities are mechanical maintenance, construction



86

variations, wear, clearances, ground subsidence, or settlement. Track irregularities may be either

measured experimentally for a particular track or analytically generated using Monte-Carlo

methods. For the purposes of formulating the mathematical model of the high speed rail track

irregularities, the following assumptions are adopted in this research: i) random vertical track

irregularities are identical for both rails; ii) no consideration is made for the short wavelength,

corrugation irregularities in rail, and design geometry irregularities; and iii) the track is assumed

to be straight horizontally.

With these assumptions, vertical track irregularities having wavelengths of between 0.1

m (0.328 feet) to 70 m (229.7 feet) are considered, which, according to (Podworna, 2015) induce

vertical vibrations in the train-track-bridge system at frequencies of about 1.1 Hz to 800 Hz for

operating speeds up to 186.4 mph (300 km/h).

Track irregularities are defined by railway administrations in different countries,

depending on the operating train speeds. The U.S. Federal Railroad Administration (FRA) track

class quality and speed limits are shown in Table X (Fries and Coffey, 1990). The track class 1 is

the worst and unacceptable on high speed rail lines. The track class 6 is the best and considered

to be a very good quality track.

TABLE X TRACK CLASS QUALITY AND SPEED LIMITS

Track Class
Speed Limit

Track Quality
Passenger Freight

1 15 mph (24 km/h) 10 mph (16 km/h) Very Poor
2 30 mph (48 km/h) 25 mph (40 km/h) Poor
3 60 mph (97 km/h) 40 mph (64 km/h) Poor
4 80 mph (129 km/h) 60 mph (97 km/h) Average
5 90 mph (145 km/h) 80 mph (129 km/h) Good
6 110 mph (177 km/h) 110 mph (177 km/h) Very Good
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A common model of railway track irregularities in the vertical profile is a stationary

ergodic Gaussian process in space that is described by the random function of zero

expectance and constant variance, and for which random samples to the function are determined

from the inverse Fourier Transform (Zhang et al., 2001). The function can be written as

(3.15)

These track irregularities are characterized by one-sided Power Spectral Density (PSD) function

. In this dissertation, the PSD function of the random variable corresponds to track

class 1 to 6 according to the American Railway Standard developed by the U.S. Federal Railroad

Administration (FRA) and has the following form (Wiriyachai et al, 1982).

(3.15.1)

The units of are mm2.m/rad (in2.in/rad). The parameter A is a roughness coefficient of

the vertical track irregularity and is dependent on the quality of the track class as shown in Table

XI (Lei and Noda, 1982). The value of the coefficient k is usually taken as 0.25. The critical

frequency does not depend on the quality of the track class.
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TABLE XI TRACK CLASS ROUGHNESS PARAMETERS AND QUALITY

Track Class A [mm2.rad/m] A [in2.rad/in]
1 121.07 0.00477
2 101.81 0.00401
3 68.16 0.00268
4 53.76 0.00212
5 20.95 0.00082
6 3.39 0.00013

The variable is the frequency of the nth random sample of the PSD function and is given by

(3.15.2)

where the frequency increment is defined by

(3.15.3)

The quantities and are the lower and upper limits respectively of the spatial frequency that

defines the range in which the PSD function is included. The integer N is the total number of

frequency increments between the lower and upper frequencies. The parameter in equation

(3.15) is a random phase angle that is distributed uniformly between 0 and 2π

In order to generate vertical track irregularity profiles that are close to the actual field

conditions of the railway track, the total number of samples N should be large enough. In this

study, a total number of N = 2000 samples are considered.
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Table XII summarizes relevant parameters adopted in this dissertation for the vertical track

irregularities using the model discussed in this section.

TABLE XII TRACK IRREGULARITIES MODEL PARAMETER VALUES

k
Ωc ΩL ΩU ΔΩ N 

(rad/m) (rad/in) (rad/m) (rad/in) (rad/m) (rad/in)
0.25 0.8245 0.02094 0.08976 0.0028 62.832 1.596 0.001594 2000

As it will be shown later in this chapter, the first derivative and second derivative of the track

irregularities given by the following equations (3.16) and (3.17) also play important roles in the

dynamic behavior of the interaction between the train vehicle and the underlying track structure.

(3.16)

(3.17)

Inserting the expressions of equations (3.15.1) through (3.15.3) into equations (3.15), (3.16) and

(3.17), the amplitude function of the track vertical random irregularity, and its first and

second order derivatives with respect to the global horizontal axis of the track-bridge system may

be expressed in a more useful form as shown in the following equations.
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(3.18)

(3.19)

(3.20)

Generated random samples of vertical track irregularity profiles as well as profiles of their first

and second order derivatives for track classes 1, 4 and 6 are shown in Figures 3.5 through 3.7.

Figure 3.5. Sample of random vertical track irregularity profile, N=2000.
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Figure 3.6. 1st order derivative of random vertical track irregularity profile, N=2000.

Figure 3.7. 2nd order derivative of random vertical track irregularity profile, N=2000.

3.3 Numerical Integration Method

In this section of the dissertation, a review is made of the numerical integration method

used in this research to solve the train-track-bridge interaction problem. Consider the general

equation of motion of a damped dynamic system described by the following equation (3.21).

(3.21)
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, , and are the mass, damping, and stiffness matrices; is the time-dependent load

vector; vectors , and are vectors containing the acceleration, velocity, and

displacement responses respectively. The solutions of the equation can be obtained through a

direct step-by-step numerical integration in the time domain. For that purpose, the response of

the system within the time incremental step from t to t + ∆t can be obtained with the method

developed by Hilber, Hughes and Taylor (Hilber et al., 1977), the so-called HHT method, for

which the algorithmic form of equation (3.21) can be expressed as

(3.22)

The superscripts c and p in equation (3.22) indicate the current time step t + ∆t and the previous

time step t respectively. The HHT integration method is a generalization of the Newmark

method (Newmark, 1959) and uses the same two basic equations proposed by Newmark for

determining the displacement and velocity at the current time step as given by

(3.23.1)

(3.23.2)

The parameter  denotes the variation of acceleration during the time step. The γ parameter 

relates to the property of numerical or artificial damping introduced into the system by
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discretization in the time domain. The only combination of  and γ that leads to an 

unconditionally stable solution of a second order accuracy in the Newmark algorithm is = 1/4

and γ = 1/2 which is the trapezoidal method. However, the drawback is that the trapezoidal 

method of Newmark method does not generate any numerical damping in the solution, which

makes it impractical for problems that have high-frequency oscillations of no interest or parasitic

high-frequency oscillations that are a byproduct of the finite element discretization (Negrut et al.,

2007). The HHT method is intended to be an improvement of the Newmark method to

overcome this drawback with the introduction of the parameter. When is zero the HHT

method is the same as the Newmark method. The most numerical damping of the spurious

higher modes is obtained with a value of equal to - 1/3.

In further deriving the HHT method, the accelerations and velocities of the system at the

current time step can be solved from equations (3.23.1) and (3.23.2); and expressed as

(3.24.1)

(3.24.2)

where the coefficients b0 to b7, , γ and are given by

(3.24.3)
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Substituting equations (3.24.1) and (3.24.2) into equation (3.22) leads to the equivalent stiffness

equation given by

(3.25)

where the effective stiffness matrix and the effective load vector are defined as follows

(3.25.1)

(3.25.2)

From equation (3.25), the system displacements at the current time t + ∆t can be solved as

(3.25.3)

Finally, the accelerations and velocities for the current time t + ∆t can then be solved using

equations (3.24.1) and (3.24.2) respectively.

3.4 Solutions of the Train-Track-Bridge Interaction Problem

The approach in tackling the train-track-bridge interaction problem consists of separately

solving the decoupled equations of motion of the train vehicle subsystem and the track-bridge

subsystem in a step-by-step direct integration in the time domain using numerical integration. A

special mathematical formulation at the contact interface between wheels and rails is used to

transfer responses of one subsystem to the other as excitation inputs. In the next section 3.4.1,

methods for solving vehicle’s responses and contact forces are presented. In the subsequent

section 3.4.2, constraint equations at the contact points between the two subsystems are
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formulated describing the interaction phenomenon. To verify the efficiency of the proposed

model and solution procedure in handling rapid transient event, a validation study is presented in

section 3.4.3 with a vehicle travelling at high speed over a short bridge.

3.4.1 Solutions of the vehicle responses and contact forces

In this section of the dissertation, a general approach is developed for solving the train

vehicle’s vertical responses as well as the wheel contact forces using an algorithm similar to the

one presented in the previous section 3.3. In the same context as equation (3.22), the master

equation of motion of the vehicle as given by equation (3.7) can be algorithmically expressed

using the HHT α method as in the following equation (3.26). 

(3.26)

To formulate the solutions of the vehicle’s vertical responses, the first row of equation (3.26) is

first expanded, re-arranged and can be compacted into the following equation (3.27).

(3.27)
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The loading vector terms in the right-hand side of equation (3.27) are given by

(3.27.1)

(3.27.2)

(3.27.3)

Using the procedure of the HHT α method described in Section 3.3, vectors containing the 

displacements, velocities and accelerations of the vehicle upper part can be readily solved and

are summarized as follows after skipping the tedious algebraic intermediate steps.

(3.27.4)

(3.27.5)

(3.27.6)

The vehicle effective matrix and the vehicle’s upper part incremental displacement

are given by

(3.27.7)

(3.27.8)
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It should be noted that in all expressions of equations (3.27) through (3.27.8), the

responses of the vehicle at the end of the current time step depend on known quantities from the

previous time step and also on the unknown quantities of the wheel responses , and

at the beginning of the current time step which will be condensed to the responses of the

underlying track-bridge structure as explained in the forthcoming section 3.4.2.

In a similar way, the contact forces can be obtained by expanding the second row of

equation (3.26) which can be initially expressed as follows

(3.28)

Now, inserting the vehicle’s upper part response quantities of equations (3.27.4) through (3.27.6)

into equation (3.28) and using again the numerical integration procedure described in section 3.3,

the contact force vector at the current time step can be readily solved and is summarized in

a compact form given by equation (3.28.1) after skipping intermediate algebraic steps.

(3.28.1)
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The matrices in equation (3.28.1) depend on known vehicle matrices and are given by

(3.28.2)

(3.28.3)

(3.28.4)

(3.28.5)

The previous time step response quantities in equation (3.28.1) are also known and given by

(3.28.6)

(3.28.7)

(3.28.8)

The matrices in equation (3.28.8) are due to the HHT α method algorithm and are given by  

(3.28.9)

(3.28.10)

(3.28.11)

(3.28.12)
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It should be equally noted that in all expressions of equations (3.28) through (3.28.12),

the contact forces at the end of the current time step depend on known quantities from the

previous time step and also on the unknown quantities of the wheel responses , and

at the beginning of the current time step.

In summary, to solve for the dynamic responses of the train vehicle in equation (3.27)

and contact forces in equation (3.28.1), the only needed inputs are the wheel responses which are

obtained from the global deformations of the underlying track-bridge subsystem through

constraint equations at the contact points.

3.4.2 Constraint equations at the contact points

The key aspect in solving the train-track-bridge interaction lies in the contact interface

between the two subsystems. Figure 3.8 shows a train vehicle travelling over an underlying

structure discretized in space with some beam finite elements of length l.

Figure 3.8 Train-track-bridge interaction elements
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At any given time, wheels are assumed to be in contact with the structure. There exists

some contact elements and some non-contact elements of the underlying structure called

“interaction element” and “non-interaction element” respectively. As the train vehicle moves

across the structure, the interaction elements move with the wheels. Let denote the local

coordinate of the wheel j from the left node of the interaction element ej and let denote the

vertical deflection of the underlying structure at the contact point. The vector containing the

vertical deflections of the contact points can be written as

(3.29)

The wheel displacement can be related to the contact displacement of the underlying

structure by the following constraint equation (3.30)

(3.30)

The vector representing the effect of the railway track irregularities and usually defined

based on the power spectral density functions, is formulated in section 3.2.3 of this dissertation.

The vector contains the vertical coordinates of the track irregularities at the points of contact

between the wheels and the rails. It should be noted that the functions of the power spectral

density are some functions of the global location X of the wheel on the bridge in relation to an

origin taken as one end of the physical model. The wheel velocity and acceleration as

functions of the contact points and irregularities can be obtained with a first and second order

differentiations of equation (3.30). Before differentiating equation (3.30), it is necessary to

explain the meanings of the global coordinate X and the local coordinate x, and their effect on the
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derivation process. For any track-bridge element, a relationship can be written between x and X

making use of a constant as shown in the following equation,

(3.31)

With the chain rule, it can be shown that taking the derivative of a function of X, such as

with respect to X is the same as taking the derivative of that function with respect to x. Because

of the expression of equation (3.31), the following can be written

(3.31a)

where d(.)/d(.) is considered to be derivative operator with respect to the variable in the

denominator. By the chain rule, the following equation holds true

(3.31b)

Equation (3.31b) implies that taking the differentiation of the irregularities function with respect

to local coordinate x is the same as taking the differentiation of the irregularities with respect to

the global coordinate X, which is easier to be computed.

Taking the first derivative of equation (3.30), the wheel velocity can be obtained as follows

(3.32)
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In equation (3.32), the over-dot means differentiating with respect to time, and the prime means

differentiating with respect to local coordinate. The parameter is the speed of the train.

By taking another derivative of equation (3.32), the wheel acceleration can be obtained as

follows

(3.33)

In equation (3.33), the parameter is the change in train speed which is zero in this study since

the vehicle’s speed is assumed to be constant.

Equations (3.30), (3.32) and (3.33) relate the response of the wheels to those of the contact points

on the rails.

In the context of the step-by-step direct time integration of the numerical solution algorithms, the

vectors containing the responses of the wheels and the vectors containing the responses of the

contact points at the beginning of the current time step t + ∆t are related by the following

(3.34)

(3.35)

(3.36)

However, the contact displacement vector at the beginning of the current time step is

obtained from the nodal displacement of the underlying structure at the end of the previous time

step and is given by
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(Track-Bridge) (3.37)

(Bridge only) (3.38)

The interpolation function calculated at the contact position for the current time step is

given by

(Track-Bridge) (3.39)

(Bridge only) (3.40)

Similarly, vectors containing the velocities and accelerations of the wheels can be obtained

taking the first and second derivatives of equations (3.37) or (3.38) and expressed as follows for

the case of the track-bridge subsystem

(3.41)

(3.42)

or

as follows for the case when the track effects are ignored

(3.43)

(3.44)

The interpolation quantities with a prime or double-prime are simply first and second derivative

respectively of equations (3.12.1) through (3.12.4) taken at the contact point .
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3.4.3 Solutions of the coupled track-bridge problem

The global track-bridge subsystem can be solved by assembling the contact elements and

non-contact elements together into a master equation of motion given by

(3.45)

The bridge supports viscoelastic elements are added to the diagonal of the global stiffness

and damping matrices at their corresponding degrees of freedom at end nodes of the bridge

finite element model. The global damping matrix is based on the Rayleigh damping. It can be

obtained from the damping ratio and the first two natural frequencies of the bridge in the

conventional manner.

The quantity = 0 for the non-interaction elements and for the interaction

elements. The key in solving the train-track-bridge interaction problem is to solve for the contact

forces from equation (3.28.1) and apply them at the corresponding track-bridge interaction

elements in equation (3.45).
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3.5 Working Procedure of Dynamic Simulation

In the following, a summary procedure is provided for the time-history step-by-step

incremental analysis proposed in this dissertation:

(1) Gather the fundamental data of the train vehicle and the track-bridge structure.

(2) Construct a spatial discretization of the track-bridge subsystem using finite beam

elements, either Bernoulli or Timoshenko beam types.

(3) Assemble the global mass matrices [Mrr] and [Mbb]; and global stiffness matrices [Krr],

[Krb], [Kbr] and [Kbb] of the track-bridge system free of any traffic load. Solve the

eigenvalue problem to extract the first two natural frequencies for use in constructing the

damping matrices [Crr] and [Cbb].

(4) Set the initial conditions of the track-bridge subsystem and vehicle subsystem to zero at

time t = 0. Position the first wheel of the trainset at the beginning of the track-bridge

finite element model. Specify the dynamic analysis parameters such as time-step Δt and

constant speed v.

(5) Self-start the analysis with the first time-step t = Δt. Compute the positions of each

wheelset on the track-bridge subsystem. Assume the load to be the static force for the

first time-step with equation (3.6.2). Use interpolation functions to compute nodal forces.

Solve the global track-bridge subsystem equation (3.45) using HHT α method. Obtain all 

nodal displacement vectors , velocity vectors and acceleration

vectors .

(6) Construct all the vehicle matrices and vectors.



106

(7) For a new time t + Δt, re-calculate the global position of each wheelset and determine

the contact elements. Compute the interpolation functions at the current contact points

using equation (3.39) or (3.40). Use these interpolation functions and the track-bridge

responses from previous time-step to compute the contact point displacement using

equation (3.37) or (3.38); velocities using equation (3.41) or (3.43); and

accelerations using equation (3.42) or (3.44).

(8) With the computed contact point responses from Step (7), compute the wheel responses

at each contact point using equations (3.34), (3.35) and (3.36) for vectors , and

respectively.

(9) With the wheels’ responses for the current time-step computed in step (8), the vehicle’s

upper part incremental displacement can be obtained with equation (3.27.8). The

vehicle’s responses can be computed using equations (3.27.4), (3.27.5) and (3.27.6) for

vectors , and respectively.

(10) The contact forces are then computed using equation (3.28.1).

(11) Using interpolation functions and contact forces from Step (10), the nodal forces on the

track-bridge subsystem are computed and the global track-bridge subsystem equation

(3.45) is solve again using HHT α method to obtain new nodal displacement vectors 

, velocity vectors and acceleration vectors at

the end of the current time-step.

(12) Repeat Step 7 until the last wheel of the last vehicle of the train convoy has left the track-

bridge subsystem.
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3.6 Model Verifications by Numerical Examples

To verify the accuracy of the numerical model discussed in this chapter, two numerical

examples are evaluated. The first example is the model verification by a semi-analytical method

based on modal superposition using a simply supported short span high speed rail bridge

including the vehicle interaction and excluding the track structure. The second example is the

model verification against a finite element model available in the literature using a vehicle-track-

bridge interaction model therefore including the track contributions. Both examples use the same

bridge data for comparison purposes. Track irregularities are ignored. Tables XIII, XIV, and XV

show the properties of the vehicle, track and bridge. In the reference model (Lou and Zeng,

2005), the mass of the sleepers were not included. To use the model in this dissertation for

simply supported bridges, the values of support vertical stiffness is given a very high value (i.e.

1012 for example) and the support rotational stiffness is given a very small value (i.e. 10-5).

TABLE XIII PROPERTIES OF VEHICLE IN MODEL VERIFICATION

Parameter
Value

Metric (Units) US Customary (Units)
Mc 41750 (kg) 238.4 (Ibf-s

2/in)
Jc 2 080 000 (kg-m2) 18 409 648 (Ibf-s

2-in)
Mt 3 040 (kg) 17.36 (Ibf-s

2/in)
Jt 3 930 (kg-m2) 34 784 (Ibf-s

2-in)
Mw 1 780 (kg) 10.16 (Ibf-s

2/in)
kp 1 180 (kN/m) 6738 (Ibf/in)
cp 39.2 (kN-s/m) 224 (Ibf-s/in)
ks 530 (kN/m) 3026 (Ibf/in)
cs 90.2 (kN-s/m) 515 (Ibf-s/in)
Lc 8.75 (m) 344.5 (in)
Lt 1.25 (m) 49.21 (in)
v 27.78 (m/s) 1093.7 (in/s)
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TABLE XIV PROPERTIES OF BRIDGE IN MODEL VERIFICATION

Parameter
Value

Metric (Units) US Customary (Units)
Lb 30 (m) 1181.1 (in)
Eb 29 730 000 (kN/m2) 4 311 988 (Ibf/in

2)
νb 0.2 0.2
mb 12 000 (kg/m) 1.74 (Ibf-s

2/in)
Ib 2.80 (m4) 6 726 973 (in4)
ζ 2 % 2% 

TABLE XV PROPERTIES OF TRACK IN MODEL VERIFICATION

Parameter
Value

Metric (Units) US Customary (Units)
Er 206 000 000 (kN/m2) 4 311 988 (Ibf/in

2)
νr 0.2 0.2

mr
(1) 51.5 (kg/m) 0.00747 (Ibf-s

2/in)
Ir 0.00002037 (m4) 48.94 (in4)

kbv 131 600 (kN/m2) 19 087 (Ibf/in/in)
cbv 64.2 (kN-s/m) 9.31 (Ibf-s/in/in)

(1) Value used by reference paper does not include mass of sleepers. It is included in present
work.

3.6.1 Verification by semi-analytical method

In this first example, the finite element based method of this dissertation is compared

with a semi-analytical solution method. The semi-analytical method consists of numerically

solving the fully coupled equations of motion describing the vehicle and the bridge movements

simultaneously. The 2D vehicle model with 10 degrees of freedom is used. After condensing the

vehicle four wheels’ displacements to the bridge displacements at the contact points, the

vehicle’s remaining 6 degrees of freedom are described by equations (3.3.1) through (3.3.6).

Expressing the wheels’ displacements in terms of the bridge displacements and substituting them

into the vehicle’s upper part equations mentioned above, the equations governing the fully

coupled vehicle-bridge interaction in the time domain can be written as given in Appendix A.
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The equation of motion of the bridge is based on the first mode of a modal superposition process.

Using Matlab® program, the equations in Appendix A are solved simultaneously to obtain the

time-histories of the vehicle’s carbody vertical deflection and acceleration as well as the bridge

mid-span vertical deflection and acceleration. These semi-analytical results are compared with

results from the finite element program using the solution algorithms proposed in this

dissertation as shown in Figure 3.9 for the vehicle responses and in Figure 3.10 for bridge mid-

span vertical responses. It can be seen that there is an excellent agreement between the two

methods. This clearly shows there is good validity of the finite element model described in this

research with moving contact points that are formulated from the underlying structure based on

its previous time-step responses in the incremental solutions. One observation to note is that the

bridge’s mid-span vertical accelerations obtained with the finite element method of this

dissertation are higher than the semi-analytical method because the latter considers only one

mode while the finite element program of this study considers all the modes of vibration in the

system.

Figure 3.9 Results comparison of vehicle carbody vertical responses:
deflection (left), acceleration (right)
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Figure 3.10 Results comparison of bridge mid-span vertical responses:
deflection (left), acceleration (right)

3.6.2 Verification by finite element method with results in literature

In this second example, the solution method of this research is compared with results

available in the literature. The excellent paper of (Lou and Zeng, 2004) is used a comparison

basis. The authors of that paper performed dynamic analysis of a simply supported bridge using a

numerical model that considers a fully coupled system. Their approach consisted of treating the

vehicle, track and bridge as one whole system with a single equation of motion. Their

formulation was based on the principle of a stationary value of total potential energy which treats

the contact forces as internal forces. In their work, the entire system matrices and vectors in the

direct time integration are time-dependent and must be updated at each increment, therefore,

making the dynamic analysis computationally very expensive. In contrast, the solution method

proposed in this dissertation decouples the vehicle subsystem from the track-bridge subsystem,

therefore, considering the contact forces as external forces.
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Results of the reference model and those from the work in this dissertation are shown in

Figures 3.11 and 3.12 for the vehicle vertical deflection and acceleration respectively. The left

graph is based on the present work and the right graph is based on the reference paper. It can be

seen that the shapes of the graphs are similar and the magnitude is very close for the case with no

track. In the case of including the track, the present work seems to give a slightly higher value

but the orders of magnitude are nevertheless close.

Figure 3.11 Result comparisons of vehicle carbody vertical displacement:
present study results (left graph); reference model results (right graph) (Lou and Zeng, 2005)

Figure 3.12 Result comparisons of vehicle carbody vertical acceleration:
present study results (left graph); reference model results (right graph) (Lou and Zeng, 2005)
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Results of the reference model and those from the work in this dissertation are shown in

Figures 3.13 and 3.14 for the bridge mid-span vertical deflection and acceleration respectively.

For the bridge deflections the two set of results are practically identical. The present work has

numerical damping built into the algorithms due to the HHT α method as shown in the 

accelerations while the reference paper used Newmark β method with no numerical damping. 

Figure 3.13 Result comparisons of bridge vertical displacement:
present study results (left graph); reference model results (right graph) (Lou and Zeng, 2005)

Figure 3.14 Result comparisons of bridge vertical acceleration:
present study results (left graph); reference model results (right graph) (Lou and Zeng, 2005)

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4

V
er

ti
ca

l
d

is
p

la
ce

m
en

t
(m

m
)

t (s)

with track structure

without track structure

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.5 1 1.5 2 2.5 3 3.5 4

V
er

ti
ca

l
ac

ce
le

ra
ti

o
n

(m
/s

2
)

t (s)

with track structure

without track structure



113

Results of the reference model and those from the work in this dissertation are shown in

Figure 3.15 for the track vertical deflection. It can be seen the two methods give the same results.

The four peaks correspond to the four wheelset of the 10-DOF train vehicle used in the

examples.

Figure 3.15 Results comparison for track vertical displacement:
present study results (left graph); reference model results (right graph) (Lou and Zeng, 2005)
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CHAPTER 4

INVESTIGATION OF NATURAL FREQUENCIES

Parts of the material presented in this chapter are published in (Nour and Issa, 2015) and

reproduced in this dissertation with permission which is listed in Appendix B. The author of this

dissertation is a contributing co-author.

4.1 Introduction

A free vibration of any elastic body is called natural vibration and happens at a frequency

called natural frequency. It is the frequency at which the structure would tend to oscillate in the

absence of any driving or damping force. Natural vibrations are considered different from forced

vibrations which happen at the frequency of applied force called forcing frequency. If the forcing

frequency is equal to the natural frequency, the amplitude of vibrations increases many folds

creating a phenomenon known as resonance. It is essential to estimate accurately natural

frequencies of a structure undergoing dynamic loads.

In most international codes of railway bridge engineering (European Committee for

Standardization, 2002; European Committee for Standardization, 2003), the natural frequency of

the unloaded bridge is an important factor used in the serviceability limit check related to the

verification of structural deformations and vibrations. The requirement for bridge dynamic

analysis is a function of limits imposed on the fundamental frequency (UIC Leaflet 776-2, 2009).

In the criteria for traffic safety, frequencies up to the frequency of the third mode of vibration are
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included in the calculations of vertical bridge deck accelerations (UIC Leaflet 776-2, 2009).

Regarding the dynamic enhancement due to real trains in the European Code, the factor

representing the contribution of the track defects and vehicle imperfections is also a function of

the first natural bending frequency of the bridge. In the selection of a critical universal train for

dynamic analysis, the wavelength of excitation at the maximum design speed and the maximum

value of aggressivity both require the fundamental frequency of the bridge in their computations.

The speed at which resonance may occur is directly proportional to the first natural frequency

(UIC Leaflet 776-2, 2009). Despite its importance as stated above, natural frequencies are

however often obtained using simple basic models consisting of a simply supported bridge based

on Euler-Bernoulli beam theory (UIC Leaflet 776-2, 2009), thus ignoring effects of other

features of the structure such as boundary conditions and track properties.

Short span bridges traversed by a high speed train present a special challenge. According to

(Timoshenko, 1921; Timoshenko, 1922), the application of Euler-Bernoulli beam theory may not

be adequate for short span bridges as it neglects the effects of shear deformations and rotational

inertia. High frequency excitations also require the use of Timoshenko beam theory. This chapter

of the dissertation investigates the effects on the vibration natural frequencies of the track-bridge

system features such as the stiffness of the bridge support elements, shear deformations and

rotational inertia, and the vertical stiffness of the track structure. The combined effects of the

bridge support vertical stiffness and rotational stiffness are also examined.

4.2 Effects of Bridge Support Vertical Stiffness

The effects of the elastomeric bearings and/or soil foundation on the bridge dynamic

characteristics were studied by a number of researchers (Yang et al., 2004) with the introduction
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of elastic springs at the bridge supports. Consider the beam shown in Figure 4.1. The beam is

supported at each end by a vertical spring with a stiffness represented by the parameter .

Figure 4.1 Elastically supported beam

A non-dimensional support vertical stiffness ratio κ can be defined as the ratio of the support

vertical stiffness to bridge bending stiffness according to the following equation.

(4.1)

The parameter is the equivalent vertical stiffness of bridge supporting elements including

elastomeric bearings, abutments and soil foundation. L is the bridge span length. E is the

modulus of elasticity. The quantity I is the second moment of area.

In general, high speed rail bridges are required to be stiff in order to limit deflections and

improve the riding comfort. As a result, for short span bridges, if all other parameters of equation

(4.1) remain constant, the parameter decreases faster as the span L decreases. This may have

important implications in the retrofitting of existing short span bridges being upgraded for high

speed rail where bridge stiffening would increase the value of and therefore decreases the

parameter . The effects of changes in this parameter on the natural frequencies are being

investigated in this section.
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4.2.1 Case of simply supported Euler-Bernoulli beam

Consider the free vibration of the elastically supported uniform beam shown in Figure

4.1. Assuming shear deformations and rotational inertia are ignored, this model reduces to the

reference classic simple model of a pinned-pinned Euler-Bernoulli beam (i.e.  → +∞).   

Considering the mass per unit length of the bridge, the natural angular frequency for

this case is very easy to compute and given by

(4.2)

The subscript denotes the nth mode shape. The subscript ss denotes simply-supported and b

represents Euler-Bernoulli beam theory.

The frequency parameter associated with the nth mode shape of vibration is the solutions

of the following characteristic equation

(4.3)

Solutions are well known and can be written as in equation (4.4) where n is the mode number

(4.4)

In this chapter, this type of bridge modeling is used as a basic reference model with respect to

which results of all other investigated models are normalized. Using equations (4.2) and (4.4),

natural frequencies can be calculated without virtually any computational efforts. This model

provides good results for simply supported slender beams only.
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4.2.2 Case of elastically supported Euler-Bernoulli beam

Now consider the free vibration of the elastically supported uniform beam shown in

Figure 4.1. Still assuming that shear deformations and rotational inertia are ignored, and the

supports are flexible, this model is defined as an elastically supported Euler-Bernoulli beam. The

natural angular frequency may be expressed as

(4.5)

The subscript es denotes elastically supported.

The quantity is the frequency parameter of the nth mode shape of vibration for the

elastically supported Euler-Bernoulli beam.

Dividing equation (4.5) by equation (4.2), the frequency ratio of an elastically supported beam to

a simply supported Euler-Bernoulli beam can be written as

(4.6)

This frequency ratio depends on the parameter given by equation (4.1).

The frequency parameter is obtained by solving the following characteristic equation of

an elastically supported Euler-Bernoulli beam (Karnovsky and Lebed, 2000).

(4.7)
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The quantity is the solutions of the transcendental equation (4.7) which can only be

obtained numerically. In the present research, an initial sensitivity study was performed to

determine the relevant range of the parameter over which the frequency parameter changes

significantly. A parametric sweep was then carried out to extract the frequency parameters for a

wide range of values. The results are presented in the next section.

4.2.2.1 Development of empirical equations

Table XVI shows the normalized results of a sensitivity study for the first six

natural frequencies of bending with values of the parameter κ between 10-6 corresponding to the

free-free support condition and 106 corresponding to the simply supported condition.

TABLE XVI VALUES OF FOR FIRST SIX NATURAL FREQUENCIES OF
ELASTICALLY SUPPORTED EULER-BERNOULLI BEAM

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

10
-6

-6 0.000 0.000 0.252 0.391 0.490 0.562

10
-5

-5 0.000 0.000 0.252 0.391 0.490 0.562

10
-4

-4 0.001 0.001 0.252 0.391 0.490 0.562

10
-3

-3 0.005 0.002 0.252 0.391 0.490 0.562

10
-2

-2 0.014 0.006 0.252 0.391 0.490 0.563

10
-1

-1 0.045 0.020 0.252 0.391 0.490 0.563

1 0 0.142 0.062 0.254 0.391 0.490 0.563

10
+1

1 0.418 0.194 0.272 0.395 0.491 0.563

10
+2

2 0.839 0.551 0.416 0.434 0.504 0.568

10
+3

3 0.981 0.923 0.826 0.713 0.641 0.629

10
+4

4 0.998 0.992 0.982 0.967 0.946 0.918

10
+5

5 1.000 0.999 0.998 0.997 0.995 0.993

10
+6

6 1.000 1.000 1.000 1.000 1.000 0.999

f n (κ)κ Log 10 (κ)
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As the supports of the bridge become softer (i.e. become smaller), the first two natural

frequencies move quickly towards rigid body modes. For the free-free side of the spectrum, the

3rd mode of vibration becomes the fundamental frequency as can be seen in the above table. In

the parametric study, it was found convenient to express the parameter κ in a logarithmic form to 

facilitate a small uniform stepping in the sweep. After the initial sensitivity study, further in-

depth parametric sweep was performed to solve equation (4.7) for the frequency parameters λ to 

include all possible values of κ in the spectrum of bridge supports flexibility. As shown in Figure 

4.2, a decrease in the parameter κ leads to a decrease in the bridge natural frequencies. The 

decrease follows smooth asymptotic sigmoid curves.

Figure 4.2 Plots of for the first six natural frequencies of Euler-Bernoulli beam
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It is worth noting that actual field conditions of most bridges are such that the vertical support

stiffness ratio defined by the parameter is between 100 and 10000 which correspond to

logarithmic values of between 2 and 4 respectively.

Further processing of numerical results was performed to deduce empirical equations as

given by equations (4.8a) through (4.8f) for the first six natural frequencies of an elastically

supported beam using curve fitting techniques.

(4.8a)

(4.8b)

(4.8c)

(4.8d)

(4.8e)

(4.8f)
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4.2.3 Case of elastically supported Timoshenko beam

Consider the free vibration of the elastically supported uniform beam shown in Figure 4.1

taking into account this time the shear deformations and rotational inertia. For time harmonic

vibrations with angular frequency the two coupled dimensionless governing characteristic

differential equations of motion describing Timoshenko beam theory are (Lee and Lin, 1995).

(4.9)

and the associated boundary conditions are,

at ,

(4.10a)

at ,

(4.10b)

In equations (4.9) and (4.10), primes indicate differentiation with respect to the dimensionless

spatial variable . The variable is the dimensionless flexural displacement and the variable is

the dimensionless angular rotation due to bending.
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Additional dimensionless parameters for writing the characteristic equation of a uniform

Timoshenko beam on elastic supports are defined in the following

(4.11a)

(4.11b)

(4.11c)

(4.11d)

(4.11e)

(4.11f)

(4.11g)

(4.11h)

The quantity is the frequency parameter, is the shear modulus, is the Timoshenko shear

correction factor, and is the cross-sectional area. The parameter accounts for the rotational

inertia while the parameter accounts for the shear deformations. The parameter accounts for

the combined effects of rotational inertia and shear deformations ( = ).
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Together, equations (4.9) through (4.11) define the free vibration problem of an elastically

supported uniform Timoshenko beam of Figure 4.1. Many researchers (Lee and Lin, 1995;

Pielorz, A., 1996) have used similar formulation to solve special cases only of the boundary

conditions such as free-free, free-clamped, etc. Other researchers (Maurizi et al., 1990) have

gone as far as setting up the problem without proposing explicit form of the characteristic

equation for an elastically supported uniform Timoshenko beam.

The author of this dissertation is making an attempt to write the explicit form of the

characteristic equation for this problem and only the final result is presented in equation (4.12) as

the intermediate mathematical derivations and manipulations are long and tedious.

(4.12)
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It is interesting to note that if the effects of rotational inertia are ignored (i.e. = 0) and the shear

deformations are ignored (i.e. δ = 0), it implies that α = β and therefore equation (4.12) reduces

to equation (4.7) which is the case of an elastically supported Euler-Bernoulli beam.

In order to study the effects of the parameter on the natural frequency of the bridge using

Timoshenko beam theory, the parameter R is introduced and defined as the frequency ratio of an

elastically supported Timoshenko beam to the simply supported Euler-Bernoulli beam as

(4.13)

The subscript t denotes for Timoshenko.

Effects on the natural frequency of parameters such as the slenderness defined by equation

(4.11f), which is clearly the inverse of the rotational inertia and the parameter γ defined as the

ratio of shear deformation to rotational inertia are investigated in the following. The combined

effects of the shear deformations and rotatory inertia are also examined

4.2.3.1 Fundamental frequency of elastically supported Timoshenko beam

In this section of the dissertation, equation (4.12) is solved numerically for the frequency

parameter of the first natural frequency (i.e. fundamental frequency) and normalized with

respect to the squared of the corresponding Euler-Bernoulli frequency parameter .

The reduction R of the fundamental frequency with the support stiffness parameter κ and

bridge slenderness s is shown in Figures 4.3 through 4.7 for five different values of the shear

deformation parameter γ. These figures confirm that for slender bridges the shear deformations 

have no effects. Also, both shear deformations and slenderness effects become less significant as

the bridge supports become more flexible.
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Figure 4.3 Ratio R of fundamental frequency for
elastically supported Timoshenko beam with γ = 1

Figure 4.4 Ratio R of fundamental frequency for
elastically supported Timoshenko beam with γ = 2
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Figure 4.5 Ratio R of fundamental frequency for
elastically supported Timoshenko beam with γ = 3

Figure 4.6 Ratio R of fundamental frequency for
elastically supported Timoshenko beam with γ = 4
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Figure 4.7 Ratio R of fundamental frequency for
elastically supported Timoshenko beam with γ = 5

Another important physical parameter that can be used to trace the changes in the

fundamental frequency is the combined effects of the shear deformations and rotational inertia

( . Figure 4.8 shows the density plot of the fundamental frequency reduction R with the

parameters and . The density of this figure shows again that the effects of shear deformations

and rotational inertia become less significant as the bridge supports become more flexible.
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Figure 4.8 Density plot of ratio R as a function κ and  

The contour plots of R values for the elastically supported uniform Timoshenko beam are

shown in Figure 4.9. With the knowledge of the physical parameter and bridge support

stiffness parameter , this figure can be used directly to estimate the fundamental frequency. It

can be seen that the fundamental frequency of a simply supported bridge is always an upper

bound value. The combined effects of supports flexibility as well as shear deformations and

rotatory inertia reduce the bridge natural frequency.
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Figure 4.9 Contour plots of ratio R as a function κ and  

4.3 Natural Frequency of Ballasted Track-Bridge System

Consider the track-bridge interaction as shown in Figure 4.10. The bridge is elastically

supported with vertical springs. The track stiffness is represented by elastic springs with an

equivalent vertical stiffness accounting for contributions of rail pads, sleepers and ballast.

The mass of the bridge without any track structure is mb and the mass of the ballast materials is

mba.
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Figure 4.10 Ballasted track-bridge system with vertical flexible supports

In this case, the solutions are obtained by means of a finite element method. A two dimensional

discretization of rail and beam elements is constructed. The rail is modeled with Timoshenko

beam elements. The bridge is modeled using both Bernoulli and Timoshenko beam elements.

In addition to the vertical support stiffness parameter given in equation (4.1), a new

parameter identified as the track stiffness parameter is introduced and defined as

(4.14)

The quantity is the track vertical stiffness with units of force per unit length squared.
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In the finite element formulation, consistent mass matrices are used. For the Timoshenko case,

the mass matrix accounting for both the translational and rotational inertia is adopted. The track

stiffness is added to the stiffness matrix of the bridge.

Let be the natural frequency of the elastically supported track-bridge system without

shear deformations or rotational inertia effects (i.e. Bernoulli beam theory), and defined as

(4.15)

The quantity is the frequency parameter of the nth mode shape of vibration of the

elastically supported track-bridge system excluding shear deformations and rotational inertia

effects.

Let be the fundamental frequency ratio given by

(4.16)

The quantity is the first natural frequency of the elastically supported track-bridge system

and is the first natural frequency of the simply supported bridge without the track

structure.

Similarly, let be the natural frequency of the elastically supported track-bridge system

including shear deformations or rotational inertia effects (i.e. Timoshenko beam theory), and

given by the following equation (4.17).
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(4.17)

The quantity is the frequency parameter of the nth mode shape of vibration of the

elastically supported track-bridge system including shear deformations and rotational inertia

effects.

Let be the fundamental frequency ratio given by

(4.18)

The quantity is the first natural frequency associated with .

The ratio considering the Bernoulli beam theory for the bridge in the track-bridge system and

the ratio considering the Timoshenko beam theory for the bridge in the track-bridge system are

evaluated for different values of the track vertical stiffness ratio, bridge support vertical stiffness

ratio and mass ratio. Figure 4.11 shows the contour maps for a small mass ratio of 1.72 and a

large mass ratio of 7.22. Figure 4.12 shows the contour maps for the same two mass ratios.

Figures 4.11(a) and 4.12(a) with small mass ratio represent short span bridges while Figures

4.11(b) and 4.12(b) represent longer span bridges. It can be observed that for short span bridges

the stiffness of the ballast is significant for simply supported bridges and for bridges with very

soft supports. For longer span bridges, the ballast stiffness is only significant in bridges with very

soft supports. It is also interesting to note that including the shear deformations and rotational

inertia effects in the bridge beam is less significant as the bridge supports become more flexible.
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Figure 4.11 Fundamental frequency of elastically supported Bernoulli type of bridge:
(a) values for low mass ratio; (b) values for high mass ratio

(a)

(b)
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Figure 4.12 Fundamental frequency of elastically supported Timoshenko type of bridge:

(a) values for low mass ratio; (b) values for high mass ratio

(a)

(b)
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4.4 Vibration Mode Shapes of Elastically Supported Bridge

Figures 4.13 through 4.15 show the first three mode shapes of an Elastically Supported

(ES) bridge supported by vertical springs having equal stiffness at both ends. It can be seen

clearly that the bridge modal characteristics change with the support vertical flexibility. For

values of , mode shapes are the same as in the case of which is the Simply-

Supported (SS) bridge condition. The asymptotic limit of the first mode is the mode for a rigid

body motion

Figure 4.13 Plots of 1st mode shape for different ratios of κ  



137

Figure 4.14 Plots of 2nd mode shape for different ratios of κ  

Figure 4.15 Plots of 3rd mode shape for different ratios of κ 
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4.5 Natural Frequency of Bridge with Vertical and Rotational Springs

In this section, the natural frequency of a bridge with boundary conditions as shown in

Figure 4.16 is investigated. It is assumed that the boundary conditions are the same at both ends

of the bridge. For the free vibration analysis of this system, the supports’ damping is set to zero.

Figure 4.16 Bridge with vertical and rotational spring supports

The ratio of the bridge support’s vertical stiffness to bridge flexural stiffness can be

expressed as in equation (4.19). The ratio of the bridge support’s rotational stiffness to

bridge flexural stiffness can be expressed as in equation (4.20).

(4.19)

(4.20)

Let be the sum of the mass of the bridge itself and the mass of the track

structure. Let denote the natural angular frequency of the track-bridge system with vertical and
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rotational springs as shown in the above figure. The frequency parameter of the system can be

expressed as given by equation (4.21)

(4.21)

Let the frequency ratio be the ratio of natural frequency of system in Figure 4.16 to the

natural frequency of a simply supported bridge with no track structure. The ratio can be

expressed as given by equation (4.22).

(4.22)

The frequency equation of a bridge with the boundary conditions as shown in Figure 4.16 is

synthesized in this dissertation and can be expressed in a compact format as shown in the

following equation (4.23).

(4.23)

The solutions of the above frequency equation (4.23) are the frequency parameters and could

not be solved analytically. The fundamental frequency is rather obtained numerically. The

fundamental frequency ratio of the first natural frequency of the system is shown in Figure

4.17 for values of and as indicated. It can be observed that the solutions of the frequency
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parameter provide all possible conditions of the boundary conditions. The simply supported case

is a special case with values and as indicated by “Hinge-Hinge” in Figure

4.17. The “clamped-clamped” is another special case with fully fixed boundary conditions. The

parameter plays a relatively more important role that the parameter in that the effects of

the rotational stiffness at the supports becomes less significant as the bridge’s vertical supports

become more flexible. This means that, for modeling purposes, the bridge supports’ rotational

restraint can only be advantageous for relatively stiff vertical supports.

Figure 4.17 Frequency ratio for bridge with vertical and rotational spring supports
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4.6 Concluding Remarks

As discussed in the introductory section of this chapter, the natural frequency of the

structure is an important value used in many of the serviceability requirement checks related to

short span high speed rail bridges. Based on the analyses performed in this chapter, the following

concluding remarks can be made regarding the effects of each of the investigated parameter on

the bridge natural frequencies:

 Shear deformations and rotational inertia effects. Natural frequencies of bending

decrease when these effects are considered.

 Ratio of bridge mass to ballast mass. The shorter the bridge the more significant is the

ballast mass in altering the natural frequency of the bridge. The natural frequency

decreases with the additional mass of the ballast. For longer span bridges, the additional

mass has no significant impact.

 Vertical stiffness of the bridge supports. The ratio of the support vertical stiffness to

bridge flexural stiffness is an important parameter that determines the flexibility of the

boundary conditions. The shorter the bridge the more significant is the effect of this

parameter. The natural frequency of the bridge is reduced with a decrease of this

parameter.

 Rotational stiffness of the bridge supports. Supports’ rotational restraint increases the

natural frequency. However, this effect is insignificant for soft vertical supports.

 The ballast vertical stiffness. For short span bridges with rigid supports, this parameter

has minimal effects. However, for softer support bridges, the effects are more

significant in further reducing the natural frequencies.

 Simply supported bare Bernoulli beam always provides an upper bound of frequency.



142

CHAPTER 5

NUMERICAL STUDIES OF SHORT SPAN HIGH SPEED RAIL BRIDGES

5.1. Dynamic Simulation Methodology

In this chapter of the dissertation, the numerical model and solution algorithms developed

in Chapter 3 are used to investigate the dynamic behavior of short span high speed rail bridges. A

finite element program is coded for this purpose using a combination of standard Excel®

spreadsheet and Matlab® software. The spatial discretization of the track-bridge system is laid

out in the first row of a worksheet in an excel workbook using finite beam elements of lengths

equal or smaller than the spacing of the sleepers. The time steps are input in the first column of

the same worksheet. The intersection cells of the rows and columns are activated or de-activated

depending on the presence or absence of the train wheels on the interaction element. Matrices

and other important system data are programmed in separate worksheets. An Excel® add-on for

Matlab® is used to handle the complex matrix computations, particularly the inverse of large

equivalent stiffness matrix. The vehicle equations of motion are solved using finite difference

schemes of the numerical integration methods and the equations of the track-bridge subsystem

are solved using the HHT alpha direct time integration methods. The focus in the bridge dynamic

response is directed towards three general aspects of interest that are relevant to the behavior of

short span bridges as explained below.
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In the first part of the dynamic simulations, an examination is made regarding the effects

of shear deformations and rotational inertia in the responses of simply supported bridges. The

Timoshenko shear correction factor ks and the bridge slenderness s are two parameters that are

used to evaluate the influence of shear deformations and rotational inertia on dynamic behavior

of short span high speed rail bridges. The shear correction factor is varied between the values of

0.233 and 0.833. The slenderness is a non-dimensional parameter given by

(5.1)

In this equation, is the bridge span, is the bridge moment of inertia and is the cross-

sectional area. A total of 12 bridge models are investigated in this part of the chapter to gain a

better understanding of the effects of the shear correction factor and the slenderness on dynamic

responses of short span high speed rail bridges.

In the second part of the dynamic simulations, the bridges are assumed to be simply

supported. The effects of the vehicle interaction and track elastic properties are investigated. A

total of 4 different cases are examined. The first case ignores both the interaction and the track

(i.e. No interaction + no track) which is equivalent to the basic moving force model on a single

span simply supported bare beam. The second case considers the vehicle interaction with the

track ignored (i.e. Interaction + no track). This case is the same as the vehicle-bridge interaction

model on a single span simply supported bare beam. The third case ignores the vehicle

interaction but considers the track structure (i.e. No interaction + track). The forth case includes

both the vehicle interaction and the track structure (i.e. Interaction + track). The maximum

vertical accelerations at mid-span of the bridges are examined. Also, in this part of the study:

conditions that create resonance are examined; the effects of the track vertical stiffness are
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investigated; the impact of the types of trainset on bridge and vehicle responses is evaluated; and

the effects of the track irregularities are examined.

In the third part of the dynamic simulations, the effects of the bridge boundary conditions are

investigated in-depth. The viscoelastic elements characterizing the flexibility of the bridge

supports are chosen as linear spring-dampers representing the effective vertical stiffness and

damping provided by the elastomeric bearings and/or soil foundation. Additionally, rotational

springs are used at the ends of the bridge to account for any restraint against rotation at the

supports. For the dynamic simulations, non-dimensional parameters are chosen to study the

effects of the boundary conditions. The logarithmic expression of the ratio of support vertical

stiffness to bridge flexural stiffness is given by

(5.2)

The logarithmic expression of the ratio of bridge support rotational stiffness to bridge rotational

stiffness is given by

(5.3)

A parametric study is carried out in this part of the research within a range of values for and

given by

(5.4)

(5.5)

For simply supported bridges, these parameters are such that and .
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The damping constant provided by the support structural elements and potentially additional

external devices such as fluid viscous dampers can be related to the bridge’s critical damping by

the damping ratio defined as

(5.6)

The dynamic simulations are carried out for different values of the damping constant between

and 6.3 MN-s/in (36000 Ibf-s/in) with some combinations of stiffness ratios given

by equations (5.4) and (5.5). Result discussions are provided in sections 5.3 through 5.9.

5.2. Description of Study Cases

In this section the properties of the bridge models, track structure and train rolling stock

are described.

5.2.1 Bridge models

In this chapter, two groups of bridge models are evaluated, namely Group A and Group B

bridge models. The properties of Group A bridge models are shown in Table XVII.

TABLE XVII PROPERTIES OF LOW MASS SHORT SPAN RAILWAY BRIDGES

Group A: Open deck steel plate girder bridges designed per AREMA (1) (2)

Bridge
ID

Bridge Span
Lb

Moment of Inertia
Ib

Cross-Section Area
Ab

Bridge Mass
mb

(m) (in) (m4) (in4) (m2) (in2) (kg/m) (Ibf s2/in2)
A7 4 157.5 0.00103 2451 0.00645 10 450.0 0.065
A8 8 315.0 0.00638 15337 0.02258 35 671.5 0.097
A9 12 472.4 0.01650 39631 0.04645 72 823.8 0.119

A10 16 629.9 0.03130 75198 0.07742 120 969.2 0.14
A11 20 787.4 0.05756 138287 0.12903 200 1094 0.158
A12 30 1181.1 0.18348 440809 0.25807 400 1509 0.218

(1)Poisson ratio of 0.2 and Modulus of elasticity of 29,000,000 psi (2 x 108 kN/m2) are assumed
(2)Bridge plate-girder dimensioned per AREMA Chapter 15 to carry for E-Cooper 80 live load
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Group A is a set of 6 bridge models representing short span steel open-deck railway

bridges. Typically, they have a relatively low mass compared to concrete bridges and usually not

used for high speed lines. In this study however, these light weight bridges are included for

evaluation and comparison with heavier concrete bridges. They are supported by twin steel plate-

girders dimensioned according to AREMA Chapter 15 provisions and designed to carry a slower

moving train of the E-cooper 80 type.

Group B bridge models are based on the work performed by the ERRI D214 committee

which has carried out simulations on a set of simply supported short span high speed rail bridge

models, typically identified as the catalogue of benchmark bridges. Table XVIII shows the

physical and mechanical properties of 6 of those bridge models. The bridges are assumed to be

reinforced concrete. It is also assumed that the bridges are single span, homogenous and with no

skew at the abutments. The 6 bridge models are identified as B1 through B6 in the rest of this

dissertation.

TABLE XVIII PROPERTIES OF MODIFIED ERRI D214 BRIDGE PROTOTYPES

Bridge
ID

Bridge Span
Lb

Moment of Inertia
Ib

Cross-Section Area
Ab

(2)
Bridge Mass

mb

(m) (in) (m4) (in4) (m2) (in2) (kg/m) (Ibf s2/in2)
B1 5 196.85 0.014 33166 2.323 3600 7000 1.015
B2 10 393.7 0.079 189523 2.839 4400 10000 1.450
B3 15 590.6 0.234 562182 3.226 5000 15000 2.176
B4 20 787.4 0.631 1516180 3.871 6000 20000 2.901
B5 30 1181.1 2.246 5396951 5.032 7800 25000 3.626
B6 40 1574.8 8.520 20468432 8.710 13500 30000 4.351

(1) Poisson ratio of 0.3 and Modulus of elasticity of 4768962 psi (3.29 x 107 kN/m2)
(2) Assumed cross-sectional area

The first natural frequency of bending n0, the slenderness ratio s, the damping ratio ζ and 

the critical damping Ccr for both group A and group B bridges are shown in Table XIX.
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TABLE XIX FREQUENCY, SLENDERNESS AND DAMPING OF BRIDGE MODELS

Bridge
ID

First Frequency
n0 (Hz)

Slenderness
ratio, s

Damping ratio
ζ (%) 

Critical damping, Ccr

kN-s/m Ibf-s/in
A7 66 10 2.50 1492 8520
A8 34 15 2.00 2280 13018
A9 22 20 1.50 2706 15452
A10 16 25 1.00 3032 17315
A11 13 30 0.50 3495 19955
A12 9 36 0.50 4886 27901
B1 16 65 2.55 7036 40176
B2 8 60 2.20 10051 57395
B3 5 56 1.85 14137 80726
B4 4 50 1.50 20106 114806
B5 3 45 1.50 28275 161457
B6 3 40 1.50 45239 258319

The equations for the upper limit of the first natural frequency of bending n0 (Hz) is given by

(5.7)

The equations for the lower limit of the first natural frequency of bending n0 (Hz) is given by

(5.8)
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The first natural frequency of group A and B bridges along with the frequency’s upper and lower

limits of equations (5.7) and (5.8) are shown in the left graphs of Figures 5.1 and 5.2

respectively.

Fig.5.1 Frequency (left) and mass (right) versus span length of group A bridges

Fig.5.2 Frequency (left) and mass (right) versus span length of group B bridges
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Based on the assumption that the bridge flexural stiffness is unchanged, the lower limit of

the bridge mass in kg/m (Ibm/ft) that would guarantee that the first natural frequency of bending

would fall within the prescribed range can be computed and written as

(5.9)

Similarly, the upper limit of the bridge mass in kg/m (Ibm/ft) that would guarantee that

the first natural frequency of bending would fall within the prescribed range can be computed

and written as

(5.10)

The mass of group A and B bridges along with the mass upper and lower limits of

equations (5.9) and (5.10) are shown in the right graphs of Figures 5.1 and 5.2 respectively.
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5.2.2 Track structure

The track model is considered to be a ballasted track. The rails are assumed to be an

infinite long beam using AREMA RE141 rail profile. Concrete sleepers with 0.685m (2.25ft)

spacing are used with their mass added to the mass of rails. Vertical linear spring and dampers

connecting the rails and the bridge deck represent the elastic properties of the track components

which include the rail pads and ballast material. The track parameters are assumed to remain

constant along the track. The properties of the track in this study are shown in Table XX. The

Poisson’s ratio of the rails is assumed to be 0.3. The track represents the upper beam in the

numerical model described in Chapter 3 of this dissertation. Therefore, the mass of the sleepers

(crossties) are combined with the mass of the rails and smeared over the spacing of the sleepers

(crossties). The mass of the ballast is included in the mass of the bridge.

TABLE XX PROPERTIES OF THE AREMA RE141 RAIL AND TRACK MODEL

Item Item Values
Description Notation Metric units English units

Young’s modulus of raila Er 210 GPa 30458041 Ibf/in
2

Per unit length mass of railb mr 299.5 kg/m 0.05691 Ibf-s
2/in/in

Sectional area of rail Ar 0.007686 m2 11.91 in2

Moment of inertia of rail Ir 3.05 x 10-5 m4 73.4 in4

Vertical stiffness of track kbv 240000 kN/m/m 34809 Ibf/in/in
Vertical damping of track cbv 58.8 kN-s/m/m 8.5 Ibf-s/in/in

a with a Poisson ratio of νr = 0.3
b Including the mass of the sleeper.
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5.2.3 Real high speed train models

The chosen train models in this research are 6 high speed trainsets with a convoy of 8-car

configuration and distributed power among bogies as shown in Fig. 5.3.

Figure 5.3 Typical high speed trains with 8-car convoy configuration

The 6 trainsets are the Bombardier Zefiro 380 with a maximum speed of 380 km/h (236

mph); the Chinese CRH380A train with a maximum speed of 380 km/h (236 mph); the Japanese

series N700-I train intended for international markets with a cruising speed of 330 km/h (205

mph); the second generation of German Inter-City Express 2 (ICE-2) with a maximum speed of

280 km/h (174 mph); the third generation of German Inter-City Express 3 (ICE-3) with a

maximum service speed of 320 km/h (199 mph) and design speed of 330 km/h (205 mph); and

the American Amtrak Acela train with a maximum operating speed of 240 km/h (150 mph).

The trains are typical Electric Multiple Unit (EMU) composed of self-propelling cars

with traction motorized bogies are distributed along the trainset. Table XXI shows distribution of

Motorized and Trailer car coaches for the 6 different types of trains. The letter “M” means that

the two bogies of the car have motors and the letter “T” means the car is a trailer car type with no
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motorized bogies. With the symmetric distribution of power, the trains can move in either

direction. The German ICE-2 and the American Amtrak Acela trains have one powered car at

each end and the remainder coaches are trailer cars. The German ICE-3 and Bombardier Zefiro

380 trains have 4 powered cars positioned at the first, third, sixth and eight positions in the

convoy. The Chinese CRH380A train has all its intermediate six cars powered. All 8 cars of the

Japanese Series N700-I are powered.

TABLE XXI HIGH SPEED TRAINS DISTRIBUTED TRACTION CONFIGURATION

Car
Number

Bombardier
Zefiro 380

Chinese
CRH380A

Japanese
Series
N700-I

German
ICE-2

German
ICE-3

Amtrak
Acela

Express
1 M T M M M M
2 T M M T T T
3 M M M T M T
4 T M M T T T
5 T M M T T T
6 M M M T M T
7 T M M T T T
8 M T M M M M

Note: M stands for Motorized coach and T for Trailer coach. Trailer coaches are not powered.

The physical and mechanical properties of the powered car and trailer car of each trainset

are shown in Tables XXII and XXIII. Note that some trains have different properties of the

powered and trailer cars while other trainset have the same properties.
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TABLE XXII PROPERTIES OF HIGH SPEED TRAIN MOTORIZED COACHES

Parameter Unit
Bombardier
Zefiro 380

Chinese
CRH380A

Japanese
Series
N700-I

German
ICE-2

German
ICE-3

Amtrak
Acela

Express

Mc
kg 49000 47476 32276 60768 49595 56250

Ibf-s
2/in 279.8 274.1 184.3 347 283.2 321.2

Jc
kg-m2 2698656 2711622 2485653 1344000 2372669 1970000

Ibf-s
2-in 2.4 x 107 2.4 x 107 2.2 x 107 1.2 x 107 2.1 x 107 1.7 x 107

Mt
kg 5900 3200 3170 5600 4400 11923

Ibf-s
2/in 33.69 18.27 18.1 31.98 25.12 68.08

Jt
kg-m2 8066 7200 3930 21840 5420 1476

Ibf-s
2-in 71390 63726 34784 193301 47971 13064

Mw
kg 1800 2400 1720 2000 2400 2662

Ibf-s
2/in 10.28 13.70 9.8 11.4 13.7 15.2

kp
kN/m 2340 2080 2400 4800 1124 5200
Ibf/in 13362 11877 13704 27409 6418 29693

cp
kN-s/m 21 60 80 108 8.76 100
Ibf-s/in 120 343 457 617 50 571

ks
kN/m 886 800 600 1760 561 3000
Ibf/in 5059 4568 3426 10050 3203 17130

cs
kN-s/m 63.75 90 100 152 27 400
Ibf-s/in 364 514 571 868 154 2284

Lc
m 8.7 8.75 8.75 5.75 8.688 5.372
in 342.520 344.488 344.488 226.378 342.028 211.496

Lt
m 1.35 1.25 1.25 1.5 1.25 1.423
in 53.150 49.213 49.213 59.055 49.213 56.004

Axle
Load

kN 166.770 156.9 111.8 196.1 166.7 222.4
Ibf 37479 35273 25133 44082 37478 50000



154

TABLE XXIII PROPERTIES OF HIGH SPEED TRAIN TRAILER COACHES

Parameter Unit
Bombardier
Zefiro 380

Chinese
CRH380A

Japanese
Series
N700-I

German
ICE-2

German
ICE-3

Amtrak
Acela

Express

Mc
kg 53200 44009 32276 33922 49000 46723

Ibf-s
2/in 303.8 251.3 184.3 193.7 279.8 266.8

Jc
kg-m2 2576400 2711622 2485653 2115000 2598637 1970000

Ibf-s
2-in 2.3 x 107 2.4 x 107 2.2 x 107 1.9 x 107 2.3 x 107 1.7 x 107

Mt
kg 3800 2400 3240 2373 2700 5352

Ibf-s
2/in 21.7 13.7 18.5 13.55 15.42 30.56

Jt
kg-m2 3470 2200 3930 1832 3330 1476

Ibf-s
2-in 30712 19472 34784 16215 29473 13064

Mw
kg 1800 2400 1720 1734 2400 1856

Ibf-s
2/in 10.28 13.7 9.8 9.9 13.7 10.6

kp
kN/m 550 1400 2400 1600 690 5200
Ibf/in 3141 7994 13704 9136 3940 29693

cp
kN-s/m 12 80 80 20 5.4 100
Ibf-s/in 68.5 457 457 114 31 571

ks
kN/m 400 600 600 300 603 3000
Ibf/in 2284 3426 3426 1713 3443 17130

cs
kN-s/m 80 80 80 6 29 400
Ibf-s/in 457 457 571 34 166 2284

Lc
m 8.7 8.75 8.75 9.5 8.688 9.068
in 342.520 344.488 344.488 374.015 342.028 357.008

Lt
m 1.35 1.25 1.25 1.5 1.25 1.5
in 53.150 49.213 49.213 59.055 49.213 59.055

Axle
Load

kN 166.770 143.2 111.8 111.8 156.9 159
Ibf 37479 32185 25133 25133 35273 35750

The 8-car convoy configuration trainset have 16 bogies with 2 wheelsets per bogie for a

total of 32 wheelsets. Considering the front wheelset as the reference wheelset, the distance of

each subsequent wheelset from the front wheelset is shown in Tables XXIV and XXV for the

imperial in inches and metric units in meters respectively.
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TABLE XXIV AXLE DISTANCE FROM THE FRONT AXLE (INCHES)

Wheelset
Coordinate

Bombardier
Zefiro 380

Chinese
CRH380A

Japanese
Series
N700-I

German
ICE-2

German
ICE-3

Amtrak
Acela

Express
1 0 0 0 0 0 0
2 106 98 98 118 98 112
3 685 689 689 451 684 423
4 791 787 787 569 782 535
5 1047 984 984 760 975 791
6 1154 1083 1083 859 1074 909
7 1732 1673 1673 1508 1659 1505
8 1839 1772 1772 1607 1758 1623
9 2094 1969 1969 1800 1951 1834
10 2201 2067 2067 1898 2049 1952
11 2780 2657 2657 2548 2635 2548
12 2886 2756 2756 2646 2733 2666
13 3142 2953 2953 2839 2926 2877
14 3248 3051 3051 2937 3025 2996
15 3827 3642 3642 3587 3610 3591
16 3933 3740 3740 3685 3709 3710
17 4189 3937 3937 3878 3902 3921
18 4295 4035 4035 3977 4000 4039
19 4874 4626 4626 4626 4586 4635
20 4980 4724 4724 4725 4684 4753
21 5236 4921 4921 4918 4877 4964
22 5343 5020 5020 5016 4975 5082
23 5921 5610 5610 5666 5561 5678
24 6028 5709 5709 5764 5659 5796
25 6283 5906 5906 5957 5852 6007
26 6390 6004 6004 6056 5951 6125
27 6969 6594 6594 6705 6536 6721
28 7075 6693 6693 6804 6635 6839
29 7331 6890 6890 6994 6828 7095
30 7437 6988 6988 7113 6926 7207
31 8016 7579 7579 7446 7512 7518
32 8122 7677 7677 7564 7610 7630
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TABLE XXV AXLE DISTANCE FROM THE FRONT AXLE (METERS)

Wheelset
Coordinate

Bombardier
Zefiro 380

Chinese
CRH380A

Japanese
Series
N700-I

German
ICE-2

German
ICE-3

Amtrak
Acela

Express
1 0.0 0.0 0.0 0.0 0.0 0.0
2 2.7 2.5 2.5 3.0 2.5 2.8
3 17.4 17.5 17.5 11.5 17.4 10.7
4 20.1 20.0 20.0 14.5 19.9 13.6
5 26.6 25.0 25.0 19.3 24.8 20.1
6 29.3 27.5 27.5 21.8 27.3 23.1
7 44.0 42.5 42.5 38.3 42.2 38.2
8 46.7 45.0 45.0 40.8 44.7 41.2
9 53.2 50.0 50.0 45.7 49.6 46.6
10 55.9 52.5 52.5 48.2 52.1 49.6
11 70.6 67.5 67.5 64.7 66.9 64.7
12 73.3 70.0 70.0 67.2 69.4 67.7
13 79.8 75.0 75.0 72.1 74.3 73.1
14 82.5 77.5 77.5 74.6 76.8 76.1
15 97.2 92.5 92.5 91.1 91.7 91.2
16 99.9 95.0 95.0 93.6 94.2 94.2
17 106.4 100.0 100.0 98.5 99.1 99.6
18 109.1 102.5 102.5 101.0 101.6 102.6
19 123.8 117.5 117.5 117.5 116.5 117.7
20 126.5 120.0 120.0 120.0 119.0 120.7
21 133.0 125.0 125.0 124.9 123.9 126.1
22 135.7 127.5 127.5 127.4 126.4 129.1
23 150.4 142.5 142.5 143.9 141.3 144.2
24 153.1 145.0 145.0 146.4 143.8 147.2
25 159.6 150.0 150.0 151.3 148.7 152.6
26 162.3 152.5 152.5 153.8 151.2 155.6
27 177.0 167.5 167.5 170.3 166.0 170.7
28 179.7 170.0 170.0 172.8 168.5 173.7
29 186.2 175.0 175.0 177.7 173.4 180.2
30 188.9 177.5 177.5 180.7 175.9 183.1
31 203.6 192.5 192.5 189.1 190.8 191.0
32 206.3 195.0 195.0 192.1 193.3 193.8
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5.3. Effects of Shear Deformations and Rotational Inertia on Bridge Response

Generally, shear deformations and rotatory inertia may be neglected in many dynamic

simulations where simply supported bridge modeled according to Euler-Bernoulli theory is

enough. However, in many other situations, relying on such simplification may lead to erroneous

results. This is the case for bridges with small slenderness ratio and high frequencies. The impact

of shear deformations and rotatory inertia may be evaluated using the Timoshenko beam theory,

known as the first-order shear deformation. Formulations based on the finite element are

dependent on interpolation functions for the transverse deflection and rotation.

Figure 5.4 shows 6 graphs for the mid-span deflections of bridges A7 through A12 and 6

graphs for the mid-span deflections of bridges B1 through B6. The Timoshenko shear correction

factor is taken as ks = 0.233 and the slenderness ratio is varied from s = 10 to 65. It can be seen

that the effects of shear deformations and rotatory inertia become less significant as the

slenderness ratio increases. In terms of deflection magnitude, the shear deformations and rotatory

inertia may be neglected for slenderness ratio s greater than 40. It can also be observed that their

effects on deflections do not depend on train speed except at very high speed for very short light

weight bridges. Figure 5.5 shows 6 graphs for the mid-span vertical accelerations of bridges A7

through A12 and 6 graphs for the mid-span vertical accelerations of bridges B1 through B6.

Similarly, it can be observed that the effects of shear deformations and rotatory inertia become

less significant as the slenderness ratio increases. In addition, the graphs show that for higher

train speeds the effects of shear deformations and rotatory inertia are more significant in the low

range of slenderness ratio s. The peaks corresponding to resonance speeds are shifted slightly to

the left because the Timoshenko beam theory reduces the fundamental frequency of the bridge.
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Figure 5.4 Effects of Shear deformations and rotational inertia on mid-span deflection of simply
supported Group A (a-f) and Group B (g-l) bridge models

0 80 161 241 322 402
-4.1

-3.6

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00
0 50 100 150 200 250

Speed [km/h]

D
ef

le
ct

io
n

[m
m

]

D
ef

le
ct

io
n

[i
n

]

Speed [mph]

Bernoulli Timoshenko

(a): s = 10, n0 = 66 Hz
span = 13.1 ft (4 m)

0 80 161 241 322 402
-5.1

-4.6

-4.1

-3.6

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-0.20

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00
0 50 100 150 200 250

Speed [km/h]

D
ef

le
ct

io
n

[m
m

]

D
ef

le
ct

io
n

[i
n

]

Speed [mph]

Bernoulli Timoshenko

(b): s = 15, n0 = 34 Hz
span = 26.3 ft (8 m)

0 80 161 241 322 402
-7.6

-6.4

-5.1

-3.8

-2.5

-1.3

0.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00
0 50 100 150 200 250

Speed [km/h]

D
ef

le
ct

io
n

[m
m

]

D
ef

le
ct

io
n

[i
n

]

Speed [mph]

Bernoulli Timoshenko

(c): s = 20, n0 = 22 Hz
span = 39.4 ft (12 m)

0 80 161 241 322 402
-17.8

-15.3

-12.7

-10.2

-7.6

-5.1

-2.6

0.0

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00
0 50 100 150 200 250

Speed [km/h]

D
ef

le
ct

io
n

[m
m

]

D
ef

le
ct

io
n

[i
n

]

Speed [mph]

Bernoulli Timoshenko

(d): s = 25, n0 = 17 Hz
span = 52.5 ft (16 m)

0 80 161 241 322 402
-12.7

-11.4

-10.2

-8.9

-7.6

-6.4

-5.1

-3.8

-2.5

-1.3

0.0

-0.50

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00
0 50 100 150 200 250

Speed [km/h]

D
ef

le
ct

io
n

[m
m

]

D
ef

le
ct

io
n

[i
n

]

Speed [mph]

Bernoulli Timoshenko

(e): s = 30, n0 = 13 Hz
span = 65.6 ft (20 m)

0 80 161 241 322 402
-15.2

-12.7

-10.2

-7.6

-5.1

-2.5

0.0

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00
0 50 100 150 200 250

Speed [km/h]

D
ef

le
ct

io
n

[m
m

]

D
ef

le
ct

io
n

[i
n

]
Speed [mph]

Bernoulli Timoshenko

(f): s = 35, n0 = 9 Hz
span = 98.4 ft (30 m)

0 80 161 241 322 402
-6.4

-5.1

-3.8

-2.5

-1.3

0.0

-0.25

-0.20

-0.15

-0.10

-0.05

0.00
0 50 100 150 200 250

Speed [km/h]

D
ef

le
ct

io
n

[m
m

]

D
ef

le
ct

io
n

[i
n

]

Speed [mph]

Bernoulli Timoshenko

(g): s = 40, n0 = 3 Hz
span = 131.2 ft (40 m)

0 80 161 241 322 402
-17.8

-15.2

-12.7

-10.2

-7.6

-5.1

-2.5

0.0

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00
0 50 100 150 200 250

Speed [km/h]

D
ef

le
ct

io
n

[m
m

]

D
ef

le
ct

io
n

[i
n

]

Speed [mph]

Bernoulli Timoshenko

(h): s = 45, n0 = 3 Hz
span = 98.4 ft (30 m)

0 80 161 241 322 402
-30.5

-25.4

-20.3

-15.2

-10.2

-5.1

0.0

-1.20

-1.00

-0.80

-0.60

-0.40

-0.20

0.00
0 50 100 150 200 250

Speed [km/h]

D
ef

le
ct

io
n

[m
m

]

D
ef

le
ct

io
n

[i
n

]

Speed [mph]

Bernoulli Timoshenko

(i): s = 50, n0 = 4 Hz
span = 65.6 ft (20 m)

0 80 161 241 322 402
-22.9

-20.3

-17.8

-15.2

-12.7

-10.2

-7.6

-5.1

-2.5

0.0

-0.90

-0.80

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00
0 50 100 150 200 250

Speed [km/h]

D
ef

le
ct

io
n

[m
m

]

D
ef

le
ct

io
n

[i
n

]

Speed [mph]

Bernoulli Timoshenko

(j): s = 55, n0 = 5 Hz
span = 49.2 ft (15 m)

0 80 161 241 322 402
-10.2

-8.9

-7.6

-6.4

-5.1

-3.8

-2.5

-1.3

0.0

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00
0 50 100 150 200 250

Speed [km/h]

D
ef

le
ct

io
n

[m
m

]

D
ef

le
ct

io
n

[i
n

]

Speed [mph]

Bernoulli Timoshenko

(k): s = 60, n0 = 8 Hz
span = 32.8 ft (10 m)

0 80 161 241 322 402
-4.1

-3.6

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00
0 50 100 150 200 250

Speed [km/h]

D
ef

le
ct

io
n

[m
m

]

D
ef

le
ct

io
n

[i
n

]

Speed [mph]

Bernoulli Timoshenko

(l): s = 65, n0 = 16 Hz
span = 16.4 ft (5 m)



159

Figure 5.5 Effects of Shear deformations and rotational inertia on mid-span acceleration of
simply supported Group A (a-f) and Group B (g-l) bridge models
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(b): s = 15, n0 = 34 Hz
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(c): s = 20, n0 = 22 Hz
span = 39.4 ft (12 m)
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(d): s = 25, n0 = 17 Hz
span = 52.5 ft (16 m)
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(e): s = 30, n0 = 13 Hz
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(f): s = 35, n0 = 9 Hz
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Figure.5.6 Ratio Ry of bridge mid-span static deflection for different shear factors ks

Figure 5.6 shows the ratio Ry of Timoshenko theory to Bernoulli theory for the static

bridge mid-span deflection in the range of slenderness ratio from 10 to 65 and shear factors from

0.233 to 0.8. This ratio can be as high as 2.1 for a combined low slenderness ratio and low shear

factor. From the numerical results shown in Figure 5.6, an empirical relationship for the ratio Ry

is developed and expressed as

(5.11)
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5.4. Effects of Vehicle Interaction and Track Structure

Figures 5.7 and 5.8 show 6 graphs each corresponding to the 6 bridges B1 through B6.

The bridges are simulated as simply supported. The loading is due to the passage of the ICE-3

high speed train. Each of the 6 graphs of Figures 5.7 and 5.8 shows 4 plots of the bridge mid-

span vertical deflection and acceleration respectively for train speeds ranging from quasi-static to

a maximum of 400 km/h (250 mph). A total of 4 separate dynamic simulation scenarios are

considered, namely: (i) no interaction and no track; (ii) interaction and no track; (iii) no

interaction and track; (iv) interaction and track.

It can be seen that there exists resonance conditions for bridge spans less than 30m

(98.43ft) resulting in the bridge responses exceeding the code allowed maximum deflection or

acceleration, particularly at high speeds over 200 km/h (124 mph). It is noticeable from the

graphs that the train has the same signature on a given bridge regardless of whether the vehicle

interaction and track contribution are considered or not. This is evidenced by the similar shape of

the plots in each graph and for each bridge. Generally, the cumulative effects of the vehicle

interaction and track contributions reduce the magnitude of the bridge responses at resonance

speeds. This reduction is significant for shorter bridges. For example, for the cases in this,

reductions of about 30-50% in the vertical acceleration are observed for all bridges when

including both the vehicle interaction and the track structure compared to the model with no

interaction and no track. For very short bridges like the 5m (16.4ft) span of bridge B1, the track

contribution is more significant in reducing dynamic responses, even at lower train speeds.

Results presented in both Figures 5.7 and 5.8 also show that the curves shift slightly to

the left at resonance speeds (i.e. lower speed) when elastic properties of the vehicle suspension
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and track structure are taken into consideration, therefore implying a reduction in the speeds at

which resonance is expected. For example, for the 10 m (32.8 ft) span of bridge B2, the

resonance speed is reduced by 9% for vertical bridge deck acceleration when using an improved

model considering both the vehicle interaction and track structure compared to the model which

ignores both. Similar trend of resonance speed reduction is also noticed for other bridges as well

as for deflection responses. This is due to a reduction in the fundamental frequency of the bridge

provided by the consideration in the model of elastic elements of the vehicle suspension systems

and track elastic properties.

Figure 5.7 Mid-span vertical deflections of simply supported bridges B1 through B6
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Figure 5.8 Mid-span vertical accelerations of simply supported bridges B1 through B6

5.5. Conditions of Resonance and Effects of Service Speed

The service speed of the ICE-3 train is 320 km/h (199 mph). Graphs in Figure 5.9 show

the time-histories of mid-span vertical accelerations for simply supported bridges B1, B2, B4 and

B5. The dynamic simulations in these cases include both the vehicle interaction and track

structure. It can be seen that the resonance conditions occur at train speeds which are very close

to the service speed for bridges B1, B2 and B4 where high vertical accelerations, exceeding the

safe limit, are expected. For bridge spans less than 10 m (32.8 ft), accelerations could even

exceed the ultimate limit of 0.7g, a situation that could destabilize the track.
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Figure 5.9 Mid-span vertical acceleration time-histories of bridge models B1, B2, B4 and B5 due
to ICE-3 running at service and resonance speeds
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It is interesting also to note that resonance may even occur at running speeds smaller than the

service speed as shown in the acceleration plots for the case of 30 m (98.4 ft) span bridge B5

where resonance is predicted at a speed of 251 km/h (156 mph).

The time-histories of mid-span vertical deflection for simply supported bridges B1, B2

and B4 are shown in Figure 5.10 for the quasi-static case and resonance conditions. The solid

lines of quasi-static speed, taken as 1.61 km/h (1 mph), represent the static deflection.

Comparing the solid lines and the dashed lines it is easier to understand the components of the

train vehicle that create the conditions of resonance on the bridge. For very short bridges like the

5 m (16.4 ft) span bridge B1, it can be seen that resonance occurs under the front bogie of the

intermediate coaches. The bridge begins to vibrate freely when the front bogie leaves the bridge

and the rear has not arrived yet. Observations indicate that the arrival of the rear bogie on the

bridge creates a condition of cancellation of these free vibrations for the 5m span bridge.

In summary, the challenges with short span high speed rail bridges can be observed in

Figures 5.7 through 5.10 where high vertical bridge responses, particularly accelerations, are

problematic. For simple supported bridges with a span of 10 m (32.81 ft) to 20 m (65.62 ft), even

a refined model both the vehicle interaction and track structure predicts vertical accelerations

exceeding the safe limit. For bridges with a span of 40 m (131.23 ft) and longer, bridge vertical

responses are not an issue. A situation where the beneficial effects of the vehicle interaction and

track contributions can make a difference in the dynamic response prediction can be seen for the

bridge B5 with a span of 30 m (98.43 ft). In this case, the moving load model on a simply

supported bridge predicts vertical accelerations that exceed the safe limit of 3.5 m/s2 (11.5 ft/s2).

A model that includes the track structure however predicts values below the safe limit. In this

case therefore it would be sufficient to use a simply supported model with track contribution.
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Figure 5.10 Mid-span vertical deflection time-histories of bridges B1 (top), B2 (middle) and B4
(bottom) due to ICE-3 train running at crawling and service speeds
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5.6. Effects of Track Vertical Stiffness and Damping

The effects of the track vertical stiffness and damping on the dynamic response of the

bridge, track and vehicle is investigated in this section. A total of 4 different cases are examined,

namely: a low stiffness and low damping (LS + LD) condition; a low stiffness and a high

damping (LS + HD) scenario; a high stiffness and low damping (HS + LD) situation; and a high

stiffness and high damping (HS + HD) case. The 6 bridges B1 to B6 are simulated as simply

supported. The value of the low track vertical stiffness is taken as 270000 Ibf/in (47 MN/m) and

the value of the high track vertical stiffness is set to 2160000 Ibf/in (378 MN/m). The value of

low track vertical damping is taken as 50 Ibf-s/in (9 kN-s/m) and the value of high track vertical

damping is chosen to be 400 Ibf-s/in (70 kN-s/m). These extreme values of the track stiffness and

damping are purposely chosen to be outside the typical values found in the literature (Arvidsson,

2014) in order to investigate the significance of their impact on the bridge, track or vehicle.

The dynamic simulations are carried out using the German ICE-3 trainset. The train

speed was varied from the quasi-static speed of 1 mph (1.61 km/h) to a maximum speed of 250

mph (402 km/h) with a speed increment of 5 mph (8 km/h). The bridge mid-span vertical

deflection, the track vertical acceleration over the bridge mid-span and the leading car vertical

deflection are the chosen dynamic responses to evaluate the effects of the track vertical stiffness

and damping on short span high speed rail bridges. Results are discussed below.

5.6.1 Bridge dynamic responses

Figure 5.11 shows the effect of the track vertical stiffness and damping on the mid-span

vertical deflection of bridges B1 through B6. It can be seen that, although the consideration of

the track elastic properties reduces the dynamic responses particularly at resonance as discussed
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previously, the variations in magnitude of the track stiffness and damping within the considered

ranges have no significant effects on the dynamic responses of bridges B2 to B6, and has a small

noticeable effect with an insignificant magnitude difference on the very short 5 m (16.4ft) bridge

B1. This observation indicates that the track transfers the loads to the bridge deck regardless of

its properties notwithstanding the fact that changes in these properties can affect the responses of

the track itself and the vehicle. The results in Figure 5.11 seem counter-intuitive in that they

suggest that the magnitude of the track vertical stiffness and damping does not matter for the

bridge deflection as long as there are elastic elements between the rails and the bridge deck since

Figure 5.7 shows a reduction in deflection when taking the track into consideration. Perhaps

further research in the future is needed to reconcile results of Figures 5.7 and 5.11.

Figure 5.11 Effects of track Low Stiffness (LS), Low Damping (LD), High Stiffness (HS) and
High Damping (HD) on vertical deflections of bridges B1 through B6
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5.6.2 Track dynamic responses

Figure 5.12 shows the effects of the track vertical stiffness and damping on the vertical

acceleration of the track for simply supported bridges B1 through B6 crossed by an ICE-3 train.

Generally it can be observed that the track vertical acceleration increases with the increase in the

train speed. The effects of the variations in track stiffness and damping are more significant at

higher speeds and for shorter bridges. The damping of the track is more relevant in reducing the

response for cases with low stiffness in the track. It can be deduced that the track stiffness plays

a more important role in short span bridges. Large track stiffness can increase the dynamic

loading and therefore precipitate the track deterioration. Low track stiffness may cause

settlement of the track and create higher stress in the rails.

Figure 5.12 Effects of track Low Stiffness (LS), Low Damping (LD), High Stiffness (HS) and
High Damping (HD) on rail accelerations over mid-span of bridges B1 through B6
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5.6.3 Vehicle dynamic responses

Figure 5.13 shows the effects of the track vertical stiffness and damping on the vertical

deflection of the leading car of the ICE-3 trainset crossing simply supported bridges B1 through

B6. It can be observed that the damping value of the track has no impact on the vertical

deflection of the carbody. However, the track stiffness has a more significant impact. The

leading car deflection is greater with low track stiffness. This is because the track deflects more

with low track stiffness and therefore so is the vehicle. For bridges with a span between 10 m

(32.8ft) and 20 m (65.6ft), resonance condition with maximum vehicle deflection occurs at very

low train speeds.

Figure 5.13 Effects of track Low Stiffness (LS), Low Damping (LD), High Stiffness (HS) and
High Damping (HD) on vehicle deflections over bridges B1 through B6
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5.7. Influence of Different Trainsets on Bridge and Vehicle Responses

Figure 5.14 shows the effects of 6 different trainset types on the vertical deflection at

mid-span of simply supported bridges B1 through B6 with track structure included. The Japanese

SKS N700-I with the smallest axle load and with all motorized bogies has the least impact on

bridge responses. On the other hand, the Amtrak Acela, with the largest axle loads in the front

and rear cars, has the largest impact on bridges B1, B2, B5 and B6. However, it should be noted

that the maximum speed of the Acela train is 150 mph (240 km/h). For bridges B3 and B4, the

effects are significant only at higher speeds.

Figure 5.14 Effects of trainset type on vertical deflections of bridges B1 through B6
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(b): n0 = 8 Hz, span = 32.8 ft (10 m)
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(c): n0 = 5 Hz, span = 49.2 ft (15 m)
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(d): n0 = 4 Hz, span = 65.6 ft (20 m)
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(e): n0 = 3 Hz, span = 98.4 ft (30 m)
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Figure 5.15 shows the effects of 6 different train types on the train leading car vertical

acceleration over the mid-span of simply supported bridges B1 through B6 with track structure

included. It can be noted that the Amtrak Acela has the highest leading car acceleration and the

ICE-3 has the lowest leading car acceleration. The ICE-2 and Amtrak Acela have the heaviest

axle loads resulting in their relative effects compared to other train types to be more pronounced

in longer span bridges. The Japanese SKS N700-I, although with minimal effects on bridge

responses, experience a higher leading car vertical accelerations than other train types with

heavier axle loads such the ICE-3 train.

Figure 5.15 Effects of trainset type on leading car vertical accelerations over the mid-span of
bridges B1 through B6
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(b): n0 = 8 Hz, span = 32.8 ft (10 m)
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(c): n0 = 5 Hz, span = 42.9 ft (15 m)
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(d): n0 = 4 Hz, span = 65.6 ft (20 m)
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(e): n0 = 3 Hz, span = 98.4 ft (30 m)
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5.8. Effects of Track Irregularities on Bridge and Vehicle Responses

Track irregularities are considered to be a secondary source of bridge vibrations and a

primary source of train vibrations. In order to evaluate the effect of track irregularities on the

bridge and vehicle dynamic responses, a simply supported ballasted bridge with a span of 20 m

(65.6 ft) and crossed by the ICE-3 trainset at its service speed of 320 km/h (199 mph) is

simulated. A smooth track profile as well as FRA class 5 and class 6 track irregularities are

investigated.

Figure 5.16 shows the time-histories of bridge mid-span vertical deflection and

acceleration for the three types of track profile. It can be seen that there is a little differences in

deflection responses between a smooth and a FRA class 6 track profiles. FRA class 5 however

results in relatively more significant deflections. Track irregularities introduce higher frequency

content in the accelerations response while the train is on the bridge as shown in Figure 5.17.

Figure 5.17 shows the time-histories of the leading car vertical deflection and

acceleration for the three types of track profile. It can be observed that there is no significant

differences in the deflection values between the smooth and FRA class 6 track profiles. FRA

class 5 track profile however results in a more noticeable increase in deflection response. The

acceleration is more sensitive to the track profile and increases with the track profile class. It is

worth noting that in general the acceleration responses of both the bridge and the vehicle are

more sensitive to the changes in track irregularities profiles.
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Figure 5.16 Effects of track irregularities on the dynamic response at mid-span of bridge B4 with
ICE-3 at service speed: (a) deflection; (b) acceleration
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Figure 5.17 Effects of track irregularities on the vertical response of ICE-3 leading car over
bridge B4 with ICE-3 at service speed: (a) deflection; (b) acceleration
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5.9. Influence of Elastic Boundary Conditions on Dynamic Responses

The vertical stiffness ratio defined by equation (5.2) and the rotational stiffness ratio

defined by equation (5.3) are two significant parameters that can be used to assess the

influence of the degree of flexibility in the bridge boundary conditions. The effects of these

parameters on the bridge dynamic responses, with or without additional damping at the

supports, are evaluated in this section. The vehicle interaction and track structure contributions

are considered in the dynamic simulations. Parametric studies are performed considering 7

different scenarios for each of the bridges B1 through B6 with the following parameters.

1. = -3, = 0, = 1.5, 2, 2.5, 3

2. = 0, = 0, = 1.5, 2, 2.5, 3

3. = 3, = 0, = 1.5, 2, 2.5, 3

4. = -3, = 1.5, = 0, 9000 Ibf-s/in (1.6 MN-s/m) to 18000 Ibf-s/in (3.2 MN-s/m)

5. = 0, = 1.5, = 0, 9000 Ibf-s/in (1.6 MN-s/m) to 18000 Ibf-s/in (3.2 MN-s/m)

6. = -3, = 2, = 0, 9000 Ibf-s/in (1.6 MN-s/m) to 18000 Ibf-s/in (3.2 MN-s/m)

7. = 0, = 2, = 0, 9000 Ibf-s/in (1.6 MN-s/m) to 18000 Ibf-s/in (3.2 MN-s/m)

In the dynamic simulations, the values of the damping constant in scenarios 4 to 7 above are

taken in increments of 9000 Ibf-s/in (1.6 MN-s/m). The case of Simply Supported (SS) condition

is always considered in each scenario for comparison purposes. The ICE-3 with 8-car convoy

configuration is used with speeds ranging crawling to 402 km/h (250 mph). Results for each of

the above 7 scenarios are discussed below.
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5.9.1 Case of free end rotations with no damping at bridge supports

Graphs in Figure 5.18 show the maximum vertical mid-span deflection of bridges B1

through B6 for 4 values of the vertical stiffness ratio between 1.5 and 3 with an increment of

0.5. The supports are assumed to have no additional damping in this case. The rotational stiffness

ratio is set to = -3 representing the case of free end rotation of the bridge. Graphs also show

results of the simply supported (SS) case for comparison purposes. It is observed that for values

of deflection curves are closer to the SS case. For the value of the supports

can be considered very soft and deflection magnitudes are significantly higher, even exceeding

allowable limits at very low train speeds for short span bridges.

Figure 5.18 Mid-span vertical deflections of bridges B1 through B6 with vertical support
stiffness ratios from 1.5 to 3 and SS for cases = -3 and = 0
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It can be seen that, in all bridges except bridge B5, for a decreasing value of from 3 to 2 the

deflection magnitude increases rapidly and the resonance conditions appear at smaller speeds

than the SS case.

Graphs in Figure 5.19 show the maximum vertical accelerations of bridges B1 through

B6 for 4 values of the vertical stiffness ratio between 1.5 and 3 with an increment of 0.5. The

supports are assumed to have no additional damping in this case. The rotational stiffness ratio is

set to = -3 representing the case of free end rotation of the bridge. Graphs also show results

of the simply supported (SS) case for comparison purposes.

Figure 5.19 Maximum vertical accelerations of bridges B1 through B6 with vertical support
stiffness ratios from 1.5 to 3 and SS for cases = -3 and = 0
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Results show that for values of equal to 1.5 and 2, bridge accelerations are

significantly higher. For values of greater or equal to 2.5, there is a small noticeable

differences with a decrease in acceleration at resonance. For values of > 3, it is expected that

bridge vertical vibrations would be very close to the SS case.

5.9.2 Case of partial end rotations with no damping at bridge supports

Graphs in Figure 5.20 show the maximum vertical mid-span deflections of bridges B1

through B6 for 4 values of the vertical stiffness ratio between 1.5 and 3 with an increment of

0.5. The supports are assumed to have no additional damping in this case. The rotational stiffness

ratio is set to = 0 representing the case of partial restraint of bridge end rotations. Graphs also

show results of the simply supported (SS) case for comparison purposes.

Figure 5.20 Mid-span vertical deflections of bridges B1 through B6 with vertical support
stiffness ratios from 1.5 to 3 and SS for cases = 0 and = 0
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In this case of partial rotational restraint, it can be seen that for the mid-span

deflections are less than the SS case and the resonance speeds are greater. But for , it is

the opposite in that the mid-span deflections are greater than the SS case and the resonance

speeds are smaller. Therefore, It can be said that for , the mid-span deflections of

bridges, except Bridge B5, are the same as in the SS case for some values of the vertical support

stiffness ratio between 2 and 2.5 as can be seen in the graphs. The deflection of Bridge B5

with at resonance speed is significantly suppressed.

Graphs in Figure 5.21 show the maximum vertical accelerations of bridges B1 through

B6 for 4 values of the vertical stiffness ratio between 1.5 and 3 with an increment of 0.5. The

supports are assumed to have no additional damping in this case. The rotational stiffness ratio is

set to = 0 representing the case of partial restraint of bridge end rotations. Graphs also show

results of the simply supported (SS) case for comparison purposes.

It can be observed that there is a benefit in considering the rotational restraint of bridge

ends for values of the vertical stiffness ratio as it results in higher speeds for which

the maximum allowable acceleration is exceeded and also increases the speed at which

resonance may be expected. However, for values of the support vertical stiffness ratio

these benefits are reversed and acceleration responses are significantly higher.

Generally, comparing Figures 5.19 and 5.21, it can be seen that for values of vertical

stiffness ratio , the acceleration response curves have similar shapes and magnitudes for

values of of -3 and 0, thus indicating that the bridge end partial restraint of rotation has no

effect in the dynamic responses in that range of support vertical stiffness ratios.
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Figure 5.21 Maximum vertical accelerations of bridges B1 through B6 with vertical support
stiffness ratios from 1.5 to 3 and SS for cases = 0 and = 0

5.9.3 Case of fixed end rotations with no damping at bridge supports

Graphs in Figure 5.22 show the maximum mid-span vertical deflections of bridges B1

through B6 for 4 values of the vertical stiffness ratio between 1.5 and 3 with an increment of

0.5. The supports are assumed to have no additional damping in this case. The rotational stiffness

ratio is set to = 3 representing the case of fully restrained end rotations. Graphs also show

results of the simply supported (SS) case for comparison purposes. It can be seen that for fixed-

fixed boundary conditions where both the vertical translation and rotations at bridge ends are

zero, bridge deflections are nearly constant across all speeds and always below the serviceability

limits. For =2, deflection in short span bridges is smaller than the SS case. However, for the
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condition of < 2, rotational restraint of bridge ends do not provide any significant difference

and deflections are excessively high.

Figure 5.22 Mid-span vertical deflections of bridges B1 through B6 with vertical support
stiffness ratios from 1.5 to 3 and SS for cases = 3 and = 0

Graphs in Figure 5.23 show the maximum vertical accelerations of bridges B1 through

B6 for 4 values of the vertical stiffness ratio between 1.5 and 3 with an increment of 0.5. The

supports are assumed to have no additional damping in this case. The rotational stiffness ratio is

set to = 3 representing the case of fully restrained end rotations. Graphs also show results of

the simply supported (SS) case for comparison purposes.
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It can be noted that, even without damping at supports, restraining both translation and

rotation at bridge ends leads to significantly reduced bridge vibrations compared to the SS case.

However, even with full rotational restraint at bridge supports, the accelerations increase for

when the support vertical stiffness ratio decreases. For values accelerations are

smaller than in the case of simply supported case. For values , accelerations are

significantly increased compared to the SS case.

Figure 5.23 Maximum vertical accelerations of bridges B1 through B6 with vertical support
stiffness ratios from 1.5 to 3 and SS for cases = 3 and = 0
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5.9.4 Case of free rotation with very soft springs and damping at supports

Graphs in Figure 5.24 show the maximum mid-span vertical deflections of bridges B1

through B6 for different damping ratios (%) of the bridge supports corresponding to the

selected support damping constants ; and for values of = 1.5 representing very soft

vertical supports and = -3 representing free rotation of bridge ends. Generally, it can be seen

that damping has a significant effect in reducing the deflections. Due to the low value of the

deflections in bridges B2 and B3 exceed serviceability limits even at static loads. This is due to

excessive deflections at the supports. For bridges with spans less than 15 m (49.2 ft), it would

require a relatively high damping at supports to reduce deflections below the allowable limits.

Figure 5.24 Mid-span vertical deflection of bridges B1 through B6 with different vertical
supports damping ratios for cases = 1.5 and = -3
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Graphs in Figure 5.25 show the maximum vertical accelerations of bridges B1 through

B6 for different damping ratios (%) of the bridge supports corresponding to the selected

support damping constants ; and for values of = 1.5 representing very soft vertical

supports and = -3 representing free rotation of bridge ends. Again, generally, damping at

supports reduces significantly the bridge accelerations. The required damping to achieve this

reduction can be very high for very short bridges. For bridges with spans of 10 m (32.8 ft) or

longer, it is even possible to limit the accelerations to values below the safe limit with additional

damping at supports. The available damping in the structure or in the supports (i.e. bearings and

foundation) may not sufficient to provide the amount of damping needed to achieve the

significant reductions. For this reason, it is possible to use external dampers for this purpose.

Figure 5.25 Maximum vertical acceleration of bridges B1 through B6 with different vertical
supports damping ratios for cases = 1.5 and = -3
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5.9.5 Case of partial rotation with very soft springs and damping at supports

Graphs in Figures 5.26 and 5.27 show the maximum mid-span vertical deflections and

maximum accelerations respectively of bridges B1 through B6 for different damping ratios

(%) of the bridge supports corresponding to the selected support damping constants ; and for

values of = 1.5 representing very soft vertical supports and = 0 representing partial

restraint of bridge end rotations. It can be seen that for very soft vertical supports, reasonable

amount of damping that can be provided by external dampers can reduce deflections

significantly when taking advantage of the rotational restraints at bridge ends as shown in Figure

5.26.

Figure 5.26 Mid-span vertical deflections of bridges B1 through B6 with different vertical
supports damping ratios for cases = 1.5 and = 0
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Regarding the maximum vertical accelerations, it can be seen that support damping

suppresses significantly the vibrations as shown in Figure 5.27. In addition, damping at supports

increase the critical train speeds at which the safe limits may be exceeded. Generally,

considering the bridge end rotation restraints make damping of supports more effective in

reducing the dynamic responses.

Figure 5.27 Maximum vertical accelerations of bridges B1 through B6 with different vertical
supports damping ratios for cases = 1.5 and = 0
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5.9.6 Case of free rotation with soft springs and damping at supports

Graphs in Figures 5.28 and 5.29 show the maximum mid-span vertical deflections and

maximum accelerations respectively of bridges B1 through B6 for different damping ratios

(%) of the bridge supports corresponding to the selected support damping constants ; and for

values of = 2 representing soft vertical supports and = -3 representing free rotation of

bridge ends. It can be observed that, unlike very soft support conditions, soft supports may be

mitigated more easily because the amount of damping needed to reduce the dynamic responses

considerably are not as high as in the case of very soft supports. It appears that deflections are

easier to control than vertical bridge deck accelerations using damping at the supports.

Figure 5.28 Mid-span vertical deflection of bridges B1 through B6 with different vertical
supports damping ratios for cases = 2 and = -3
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For bridge spans less than 15m (49.2 ft), as shown in Figure 5.29, it may not possible to

successfully reduce vertical bridge accelerations to values below the safe limits. However, taking

into account the damping at the supports increase the train speed at which the safe limit is

expected to be exceeded.

Figure 5.29 Maximum vertical acceleration of bridges B1 through B6 with different vertical
supports damping ratios for cases = 2 and = -3
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5.9.7 Case of partial rotation with soft springs and damping at supports

Graphs in Figures 5.30 and 5.31 show the maximum mid-span vertical deflections and

maximum accelerations respectively of bridges B1 through B6 for different damping ratios

(%) of the bridge supports corresponding to the selected support damping constants ; and for

values of = 2 representing soft vertical supports and = 0 representing partial end restraint

of rotations at bridge ends.

Figure 5.30 Mid-span vertical deflection of bridges B1 through B6 with different vertical
supports damping ratios for cases = 2 and = 0
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Figure 5.31 Maximum vertical acceleration of bridges B1 through B6 with different vertical
supports damping ratios for cases = 2 and = 0
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CHAPTER 6

CONCLUSIONS

6.1. General Conclusions

The objective of this research has been to investigate short span bridges used in high

speed rail networks. These types of structures have been known to cause problems associated

with resonance effects resulting in excessive vibrations. Accurate predictions of responses are

particularly challenging as the behavior is affected by the bridge dynamic properties while at the

same time it is susceptible to the train and track dynamic properties. Theoretical methods used to

carry out dynamic calculations require a balance between simplicity of models and accuracy of

numerical results. Dynamic responses obtained with simple models do not correlate with

experimental results in the analysis of short span high speed rail bridges. Errors are typically

associated with simplistic assumptions in the model, geometric uncertainties, boundary

conditions, variations in the material properties and the interactions between system components.

The author of this dissertation has been motivated by the renewed interest in High Speed

Rail (HSR) in the United States where the National University Rail (NuRail) Center is currently

leading a federally funded study in railway engineering that includes research on potential

networks and possible increase of train speeds on shared corridors. Assessment of existing

bridges which were not initially designed for high speed trains and construction of new bridges

would both require proper theoretical models to predict their dynamic behavior. Within this
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context in conjunction with the ongoing challenges, this research focused on the investigation of

the dynamic behavior of short single span high speed rail bridges subjected to vertical loading

due to a train travelling at a constant speed. The emphasis was placed on the modeling aspect of

the bridge systems as well as study of its modal characteristics and dynamic simulation through

numerical examples.

Chapter 2 focused entirely on a comprehensive review of available literature in this field.

The review showed that many researchers carried out extensive studies related to dynamics of

railway bridges, particularly in Europe. Recent Chinse efforts in their development of high speed

rail networks resulted in an increase of research work related to bridges. Some of the main

findings in the literature dealing with the short span high speed rail bridges are summarized

below

 Numerical studies done by previous researchers showed that short span high speed rail

bridges are susceptible to resonance effects particularly for speeds over 200 km/h (124

mph). This phenomenon is due to high loading frequency matching a multiple of bridge

fundamental frequency. Vertical accelerations at resonance speeds are significantly

amplified and may possibly exceed safe limits of 3.5 m/s2 for short span bridges.

 Analysis and design of short span high speed rail bridges are primarily based on the

work of ERRI D214 committee who proposed a set of procedures to follow in the

determination of dynamic calculation requirements and serviceability limit checks

related to bridge deformations. However, these guidelines are limited to simply

supported bridges and simplified load models were used in the work of the committee.

 It is documented in the literature that moving load models are not well suited in the study

of short span bridges since numerical results from previous studies showed that these
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models overestimate the dynamic response at resonance regime compared to models

incorporating the vehicle interaction. International codes recommend the use of an

additional fictitious damping for the bridge to account for the effects of vehicle

interaction. However, many researchers found this to be too simplistic and not widely

applicable to most real structures.

 Recent studies incorporating the track structure in the numerical models reported some

contradicting conclusions. As discussed in Chapter 2, some authors indicated the track

has no effects on bridge responses while other authors observed the opposite. A model

including both the track and the train has unique challenges. In some short bridges, it is

believed that the track plays some role in the load distribution and therefore results in

lower dynamic responses. However, there is no widespread use of the train-track-bridge

interaction model and its effects on the overall bridge dynamic responses at resonance

speeds have not been fully studied yet.

 There is a lack of extensive work on the effects of boundary conditions on short span

high speed rail bridges. Some previous partial work concluded that flexible supports in

the vertical direction reduce bridge natural frequencies. However, there is little research

focused on the impact of bridge supports flexibility considering both the vertical

stiffness and rotational stiffness as well as the effects of damping at the supports.

Chapter 3 was dedicated to the development of a numerical model that takes into account

the interactions between the train travelling at a constant speed, the track structure and the bridge

supports. The Train-Track-Bridge Interaction (TTBI) system was treated as two separate

subsystems. The equations of motion of the train vehicle as a moving subsystem and the

equations of motion of the underlying stationary train-bridge subsystem were formulated
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independently. The interaction between the two subsystems was assumed to occur at the contact

interface where a no-separation condition between the wheels and the rails was enforced through

constraint equations. The track-bridge finite elements were assumed to consist of contact

elements impacted by the wheels and non-contact elements free of wheels. Using dynamic

condensation and Hermitian cubic interpolation functions, the wheels’ degrees of freedom at the

contact points were related to the global nodal displacement vector of the rail beam. Velocity and

acceleration vectors of the contact points were then formulated with the first and second

derivatives respectively of the displacement vector. After the wheels’ displacement, velocity and

acceleration vectors were computed using the global deformations of the underlying structure

from the previous time step the vehicle’s equations of motion were solved using modified

Newmark finite difference schemes using HHT alpha method. From the vehicle’s equations of

motion, contact forces were obtained which were then used to solve the track-bridge equations of

motion for the next time step in the direct time integration algorithms. The bridge supports

conditions have been included using vertical spring-damper elements and rotational springs. The

developed model was validated comparing results with those obtained using a semi-analytical

method in Section 3.6.1 and with results of previous researchers in Section 3.6.2. Both sets of

results showed very good agreement of results thus indicating that the formulated contact

algorithms perform well in the dynamic calculations.

Chapter 4 was dedicated to the evaluation of natural frequencies of track-bridge systems

used in high speed rail. The objective was to understand the effects of model aspects and

parameters on the free vibration responses of the structure. The bridge without the track structure

was evaluated as a simply supported beam or as a beam on vertical elastic supports. Influence of

the shear deformation and rotational inertia was examined. Effects of the track structure on a
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simply supported bridge were then investigated. The combined effects of vertical spring and

rotational spring at supports were studied. Proper estimation of natural frequencies of high speed

rail bridges is necessary since dynamic responses strongly depend on this parameter. The

following conclusions can be drawn from the work presented in Chapter 4 regarding the

influences of model characteristics on the natural frequencies.

 Natural frequencies of the bridge decrease when shear deformations and rotational inertia

effects are considered. The decrease is more significant with the decrease of the

slenderness ratio of equation (4.11f) and increase of the shear deformation parameter of

equation (4.11g). Generally the analysis using Timoshenko beam theory is more accurate

than Euler-Bernoulli beam theory, particularly at high speed and for shorter bridges.

 The vertical stiffness of supports at the two ends of the bridge, assumed to be equal, has a

significant effect on the natural frequencies of the bridge. The vertical stiffness ratio,

which is a ratio of the vertical stiffness of supports to bridge flexural stiffness, determines

the degree of flexibility in the boundary conditions. The natural frequencies of the bridge

are reduced when this ratio decreases. For a given value of this ratio, the decrease is more

significant in the frequencies of higher modes. Also, for constant support conditions, the

decrease in natural frequencies is more significant as the bridge span decreases.

 The ballast mass is usually within a narrow range of practical values. Therefore, because

short span high speed rail bridges have relatively lower total mass than longer bridges,

the additional ballast mass decreases the natural frequencies. For the logarithmic value of

the vertical stiffness ratio, equation (4.14), less than 2, the ballast mass has no significant

effect on the fundamental frequency. The mass of the ballast should be considered in the

calculation of natural frequencies for short span bridges.



197

 For short span bridges with rigid supports, the vertical stiffness of the ballast has

negligible effects on the natural frequencies. However, the effects become more

significant in decreasing the natural frequency for bridges with flexible supports.

 An increase in the rotational restraint of the bridge supports leads to an increase of the

natural frequencies. Values of the fundamental frequency for a bridge with rotational

flexible at the supports are between 1 and 1.5 times the fundamental frequency of the

simply supported bridge.

In Chapter 5, the numerical model developed in Chapter 3 was used to carry out dynamic

simulations on two sets of Group A and Group B bridges. The group A bridges were low mass

steel open-deck plate-girder short bridges designed according to AREMA specifications. Group

B bridges were reinforced concrete short span high speed rail bridges adopted from the ERRI D

214 catalogue of benchmark bridges. Group A bridges were used in conjunction with Group B

bridges in the first part of the simulations to investigate the influence of the shear deformations

and rotational inertia on short span bridges. Later, group B bridges were used to study the effects

of vehicle interaction, track structure, trainset types, track irregularities and boundary conditions.

The following general conclusions can be drawn based on the results of dynamic simulations

carried out in Chapter 5.

 Effects of shear deformations and rotational inertia can be ignored in the dynamic

analysis of short span high speed rail bridges when the slenderness ratio as defined by

equation (5.1) is greater than 50. However, the dynamic responses grow larger as the

slenderness ratio becomes smaller. Also the speed at which resonance occurs is

smaller when these effects are included because the natural frequencies are reduced.

For shorter and stocky types of bridges, the responses due to these effects are
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significantly amplified, particularly in acceleration magnitudes at higher train speeds.

The combined effects of the slenderness ratio and shear correction factors on the

static deflection of the bridge can be approximate in a preliminary design or analysis

using the proposed equation (5.11) which leads to an increase of as much as twice for

a slenderness ratio of 10.

 In General, taking into account both the vehicle interaction and track structure is

beneficial in improving accuracy of dynamic responses. Results of the numerical

simulations in short span high speed rail bridges showed that the vehicle interaction

decreases the responses at resonance speeds. Results also showed that the track

structure reduces also the peak dynamic responses at resonance. This reduction is

significant for shorter bridges. For example, for the cases of this study, reductions of

about 30-50% in the vertical acceleration were observed for all simulated bridges.

 For very short bridges less than 5 m (16.4 ft) span, resonance occurs under the front

bogie of the intermediate coaches. The bridge vibrates freely between the departure of

the front bogie and the arrival of the rear bogie.

 Resonance conditions occur at train speeds which are very close to the service speed

for the studied 5 m (16.4 ft), 10 m (32.81 ft) and 20 m (65.62 ft) bridges resulting in

high vertical accelerations exceeding the safe limit of 3.5 m/s2 (11.3 ft/s2). For bridge

spans less than 10 m (32.8ft), accelerations could even exceed the ultimate limit of

0.7g, a situation that could destabilize the track.

 The changes in magnitudes of the track vertical stiffness and damping do not have

any effects on the dynamic responses of bridges with span greater than 10 m (32.81

ft) and minimal effects on very short bridges less than 10 m (32.81 ft). Both the track
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vertical stiffness and damping have effects on the response of the track itself. A

combination of low stiffness and low damping increases the track response

particularly at higher speeds. The damping of the track has no effects on the

responses of the vehicle while a low stiffness increases the vehicle responses.

 Among the six different types of trainset that were investigated, it was found that the

Japanese SKS N700-I has the least impact on the bridge responses due to its lower

axle loads. However, the passenger comfort in its leading car is not necessarily the

best among the studied trainset since the leading car vertical acceleration is more than

some other heavier car like the ICE-3 which has the least vertical acceleration in the

leading car. This is due to the fact that, despite its higher axle load, the ICE-3 has

better suspension systems. The Amtrak Acela, with a leading car having twice the

axle load of SKS N700-I, has the most negative impact on bridge deflections except

on the 15 m (49.2 ft) and 20 m (65.62 ft) bridges. The vertical acceleration of the

leading car is also the highest for Amtrak Acela.

 Elastic properties of the boundary conditions have significant effects on bridge

dynamic responses. The logarithmic value ( ) of the support vertical stiffness to

bridge flexural stiffness given by equation (5.2) and the logarithmic value ( ) of the

support rotational stiffness to bridge rotational stiffness given by equation (5.3) are

two important non-dimensional parameters that can be used to make a rough

assessment of the degree of flexibility in the bridge boundaries. Generally dynamic

bridge responses increase when decreases; and they increase when increases.

However, The ratio is more critical than the ratio .
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 For values of , the bridge can be modeled as a simply supported structure

since there are no significant differences. For values , the fundamental

frequency is reduced and the mode shapes become a combination of rigid modes and

flexural modes. For very soft vertical supports with values , rigid mode

dominates.

 For values of dynamic responses are significantly amplified and the

consideration of the damping in the bridge supports becomes critical. It was found

that damping is more effective for smaller ratios. In flexible supports with

, the available structural damping in elastomeric bearings and soil foundation

may not be sufficient to obtain an acceptably reduced response. In that case,

additional damping in the form of external devices such as Fluid Viscous Dampers

(FVD) installed at the supports may be an efficient method in controlling the high

vertical accelerations in high speed rail short span bridges.

6.2. Practical Recommendations

Single span short bridges typically used in crossing urban roads, creeks, rivers or wildlife

trails are usually considered to have a relatively low budget compared to larger viaducts,

signature bridges or iconic structures such as cable-stayed bridges or suspension bridges.

Consequently, they are assigned a correspondingly low budget for engineering which

necessitates often times the use of simple methods of modeling to predict the dynamic responses.

Although this philosophy may be acceptable in highway bridges which are mostly governed by

the strength ultimate limit state criteria, it becomes problematic for high speed rail bridges where

high frequency loading may cause resonance with dynamic responses approaching or exceeding
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the safe limits in the serviceability limit state. Within this context the lessons learnt from this

research can be viewed in terms of the engineer’s decisions regarding the numerical modeling

approach that needs to be taken and whether this approach is adequate for the design of a new

bridge or the assessment of an existing bridge. Therefore, based on the knowledge gained in this

research, the author of this dissertation is making the following general practical

recommendations related to short span high speed rail bridges:

 The concept of “service provider” is useful to visualize the entire system of the train-

track-bridge interaction problem from the bottom up. For example, the bridge supports

consisting of the bearings and soil foundation can be viewed as providing a “service” to

the bridge; in turn, the bridge is providing a “service” to the track structure; and the track

is providing a “service” to the train. The elastic properties between these different

subsystems should not be ignored as the dynamic responses are reduced when energy

dissipation elements are included in the modeling. This is particularly necessary for the

capacity assessment of existing bridges where neither too much overestimation nor too

much underestimation of dynamic responses is acceptable.

 The boundary conditions can be considered rigid and therefore the bridge analyzed as a

simply supported structure if the ratio ηsv > 3, see equation (5.2). However, if the value of

this ratio is such that 2.5 ≤ ηsv ≤ 3, the bridge may be analyzed as a simply supported 

structure with the expectations that the peak dynamic responses would be 3% to 7%

higher than the simply supported case which should be taken into consideration. If the

ratio ηsv < 2.5, the bridge boundary conditions should be considered flexible and the

numerical model should include spring-damper elements at the bridge boundaries.
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 The considerations of rotational restraints in the bridge boundaries are always beneficial

and shall be included if refined dynamic calculations are desired.

 If the objective is to study the effects of vertical loading only, 2D numerical model is

generally sufficient.

 When dynamic responses of the bridge are above the safe limits in accelerations and

deflections, the track structure should be first considered before including the vehicle

interaction since the track-bridge finite element is easier than the analysis of the train-

track-bridge interaction problems. However, if refined dynamic calculations are required,

particularly if responses in the vehicle are needed, the effects of the train interaction

should be included.

 When the objective of the analysis includes a check for passenger comfort, both the track

structure and the train interaction should be considered.

 The assessment of existing short span bridges shall always consider the effects of

boundary conditions with at least linear viscoelastic elements as well as the track

structure and train interaction. When the boundary conditions are estimated to be soft

with ηsv < 2.5 in existing bridges, retrofit with external dampers shall be considered to

reduce excessive vibrations.

6.3. Suggestions for Further Research

The following are suggestions for future research work related to the numerical modeling

and dynamic behavior of short span high speed rail bridges.

1. Development of a 3D numerical model of the train-track-bridge interaction problems

which would encourage more research in the following :
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 Investigation of bridge torsional vibration due to train running off the center-line

of the structure.

 Effects of lateral interaction of wheels and rails on the overall bridge dynamic

responses including transverse external loadings such as cross-winds on the train

coaches.

 Impact of different random irregularity profiles on the two tracks of a double-

track bridge.

 Dynamic response of a bridge with a double-track crossed by two high speed

trains simultaneously running in opposite directions.

2. Effects of train longitudinal acceleration and deceleration on the dynamic response of

short span high speed rail bridges.

3. Bridges studied in this research were single span bridges. Similar research on the

dynamic responses of continuous bridges would be interesting.

4. It is suggested that further studies be undertaken regarding the analysis of the train-track-

bridge-support interaction problems including the non-linearity of system elastic

properties.

5. The numerical results in this research showed that increasing damping at the bridge

supports significantly reduces bridge dynamic responses. However, in short and very

short bridges the required damping could be high in some cases. This could be further

investigated with an experimental work, particularly the possibility of adding external

vertical and horizontal dampers at bridge abutments to handle both vertical vibrations due

to traffic as well as horizontal loading due to seismic events.
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Appendix A

SEMI-ANALYTICAL EQUATIONS OF VEHICLE-BRIDGE INTERACTION

A.1 Equations Relating Responses of Wheel j and Bridge at contact Points

With no-jump condition, the equations, in function of time, relating the wheels’ vertical

deflection, velocity and accelerations given by

(A.1)

(A.2)

(A.3)

The position of the wheel j is measured from the first leading wheel.

A.2 Differential Equations of Motion of the Vehicle in the Time-Domain

Substituting equations (A.1) through (A.2) into equations (3.3.1) through (3.3.6), the

following equations in the time domain describe the motion of the vehicle’s remaining 6 degrees

of freedom after condensing the wheels’ degrees of freedom to the bridge’s degree of freedom at

the contact points.
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APPENDIX (Continued)

(A.4)

(A.5)

(A.6)

(A.7)
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APPENDIX (Continued)

(A.8)

(A.9)

A.2 Differential Equations of Motion of the Bridge Mid-span in the Time-Domain

The simply supported bridge mid-span vertical motion is described by the following

modal superposition equation with the first mode considered.
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APPENDIX (Continued)

(A.10)

(A.11)

and the parameter is the gravitational constant.
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