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SUMMARY 

Between 1980 and 2013, the United States (U.S.) experienced 151 weather related disasters 

causing approximately $1 billion in overall damages with total costs exceeding $1 trillion.  

Social vulnerability (SV) is a widely used concept that aims to assess the differences in the 

susceptibility to disasters, losses, and coping and recovery abilities of communities.  The SV of 

populations at risk of disasters in the majority of cases is expressed as an index (SVI) which has 

the potential to be used for deriving proactive plans that will protect communities and assist 

them to rebound from emergency situations.  

The majority of indices aiming to assess SV are derived with a composite model based on 

principal component analysis or percentile ranks.  Only a few studies have attempted to assess 

existing SVI in terms of their relation to potential losses from disasters; these assessments found 

a limited predictive performance in terms of identifying potentially high risk areas. 

We argue and demonstrate that the current methodologies for deriving SVI may not capture 

the qualitatively differentiating nature of vulnerability of communities in geographic areas and 

do not provide a practical and reliable planning tool. Our study proposes a paradigm shift by 

considering SV to disasters as a classification issue and, consequently, by introducing 

classification modeling and performance assessment techniques which are likely to provide a 

different perspective on attributes influencing SV as well as a reliable approach to identify 

potentially high risk areas.  To demonstrate the potentials of this approach historical U.S. 

Census and hurricane loss data from the FEMA Hazus® program were used for the Houston 

metropolitan area.  
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I. INTRODUCTION AND PROBLEM STATEMENT 

Between 1980 and 2013, the United States (U.S.) experienced 151 weather related disasters 

causing approximately $1 billion in overall damages with total costs exceeding $1 trillion 

(Smith and Matthew, 2015).   There are numerous, complex interactions during a disaster which 

can have an uneven effect on vulnerable populations  (Clark et al., 1998;  Flanagan et al., 2011; 

Juntunen, 2006) with potentially devastating economic, environmental, health, mental, and 

social consequences (Flanagan et al., 2011; Sherrieb et al., 2010).  Identifying hazardous 

exposures and vulnerability involves looking at the biophysical risk in relation to a social 

response within a specific geographic domain to better understand disaster risk management and 

mitigation from a geographical and social context  (Cutter et al., 2003).   

The University of California, Los Angeles Center for Public Health and Disasters, as part of 

their Hazard Risk Assessment Instrument (2006), developed a formula as a standardized 

approach to hazard and risk assessment and public health impacts in a cooperation agreement 

S1038-19/20 from the Centers For Disease Control and Prevention (CDC) (see Equation 1 in 

Appendix A).  The definitions of the components for the formula include risk as the likelihood or 

expectation of loss; hazard as a condition posing the threat of harm; vulnerability as the extent to 

which persons or things are likely to be affected; and resources as those assets in place that will 

diminish the effects of the hazard (Flannigan et al., 2011).     

The CDC defines social vulnerability (SV) as the resilience of communities when confronted 

by external stresses on human health, stresses such as natural or human-caused disasters, or 

disease outbreaks (CDC, 2015).   Social vulnerability recognizes that individuals have different 

susceptibility to disasters creating differential loss and coping abilities ( Wu et al., 2002) and 
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measures the sensitivity and ability of a population to withstand, respond and recover from 

natural disasters (Clark et al., 1998).  

A relative vulnerability score between different groups, Census areas and geographic areas 

includes variables that are representative of a characteristic of a system to provide information 

regarding the susceptibility, coping capacity and resilience of a system that is impacted by an ill-

defined event associated with a hazard of natural origin (Birkmann, 2006).   A relative social 

vulnerability score can be a single or an aggregation of several collective variables (Birkmann, 

2006), including race or ethnicity, age, income, gender, education, language, household 

structure, house ownership, the type of social networks, and neighborhood characteristics (Clark 

et al., 1998; Cutter et al., 2003; Flanagan et al., 2011).  It is postulated that these chosen SV 

indicator variables will help with the development of preventive and mitigating strategies and 

recovery actions (Clark et al., 1998; Cutter et al., 2003).  However, estimating social 

vulnerability of a community is multifactorial, complex, and sometimes ill-defined making the 

indirect identification with indicators a necessity (Birkmann, 2006). 

According to Juntunen, Social Vulnerability Index (SVI) applications have been used in a 

disaster management context since the 1970s (2005).   Recently, the Centers for Disease Control 

and Prevention (CDC) Agency for Toxic Substances and Disease Registry (ATSDR), and 

Flannigan et al. (2011), have created a standardized SVI methodology.  This SVI uses U.S. 

Census variables at the tract level to help local officials identify communities that may need 

support in preparing for hazards, or recovering from disaster (Flannigan et al., 2011).  The SVI 

ranks each tract on 14 social factors, including poverty, lack of vehicle access, and crowded 

housing.  These variables are then grouped into 4 related themes including socioeconomic status, 

household composition, minority status/language, and housing/transportation.     
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The justification for choosing variables within the 4 SVI themes is based on previous 

research findings.  Racial disparity is often linked to social, economic and political 

marginalization (Cutter et al., 2003)  with structural conditions created by discrimination 

contributing to how minority perceive risk, prepare for disaster, and access resources (Cutter et 

al., 2003; Elliott and Pais, 2006; Thomas et al., 2013).  Families with children and elderly as 

members of their households tend to struggle more and lack resilience as a result of increased 

financial burdens and mobility restraints (Cutter et al., 2003; Thomas et al., 2013).   Linguistic 

isolation is also a concern because immigrants or foreign workers can be unfamiliar with the 

local culture and local hazards making it more difficult for them to respond to emergencies 

(Thomas et al., 2013).   Mobile homes are the dominant form of housing in rural areas and they 

have a greater potential to be damaged during a disaster when compared to other types of 

housing (Cutter et al., 2003).  In addition,  renters do not have the freedom to prepare their rental 

houses for disasters and are reliant on landlords to pay for mitigation expenses (Thomas et al., 

2013).  Wealthy people have the ability to absorb the losses and recover from disasters; 

meanwhile, greater losses and slower recovery occur in low-income and impoverished areas 

(Cutter et al., 2003). 

Aforementioned studies of social vulnerability and disaster risk management have frequently 

underlined classifying the reasons why vulnerability occurs; however few publications have 

concentrated on describing those reasons.  The need to identify those reasons within a disaster 

context is significant, especially due to frequent hazard occurrences and disaster results 

experienced by vulnerable population groups (such as low-income and minorities) (Crowder and 

Downey, 2010; Finch et al., 2010; Van Zandt et al., 2012).  As of late, climate mitigation and 

adaptation have expanded considerably because of rising public concern associated with the 
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effects of changing climate (Blanco et al., 2009).  The damage created by large scale hurricanes 

(e.g., Katrina, Ike, etc.) are the latest cases that emphasized the susceptibilities of coastal areas 

and have reintroduced demands for preventive disaster mitigation and emergency response 

planning. Large amounts of money are disbursed to reestablish the local markets affected by 

these disasters and to mitigate for further impacts of climatic change.  However, funding has not 

been devoted to the social vulnerability created by disasters.  More specifically, funding has not 

been allocated for assistance with housing and resources for the vulnerable populations.  It is 

often the case that vulnerable populations are located in highly hazardous areas exposed to such 

disasters (Mohai and Saha, 2006; Wisner et al., 2004), exacerbating, thus, the whole 

vulnerability of these areas.  A current prerequisite in this field of research is to assess the 

underlying reasons why vulnerability occurs and to recognize the reasons that make the 

vulnerable population less able to evade areas with high hazards.  

  There are limitations when using predetermined indices because they do not discern which 

theme is contributing to the overall vulnerability or variables to a particular theme (Fekete, 

2012).  There is the possibility of omitting key Census variables that are better indicators of 

vulnerability or quickly altering demographic composition of various small-area populations in 

the estimate of population instead of using official Census data.  Some of the approaches used to 

assess vulnerability tend to assign specific weights to indicators based on their relevance and 

correlation to the topic in question.  There are no reference data for weights or final vulnerability 

scores (Birkmann, 2006) and many studies tend to avoid them “…the authors simply average the 

eleven indicators of social vulnerability without imposing weights.”  (Cutter et al., 2009).  

Finally, these parameters and indicators do not occur individually but in combination leading to 

amplified vulnerability scores (Morrow, 1999; Van de Vliert, 2013). 
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SVI applied in a disaster management framework needs to refine the formula used to 

calculate risk and methodologies used to determine the index (Flanagan et al., 2011).   The two 

predominant approaches used are percentile rank (PR) and principal component analysis (PCA).  

The percentile rank approach was completed recently by Centers for Disease of Control and 

Prevention (2010) and Flannigan et al. (2011).  To derive the SVI using the percentile rank 

approach, each of the selected 15 Census variables, except per capita income, was ranked from 

highest to lowest across all Census tracts in the United States.  Per capita income was ranked 

from lowest to highest due to the fact that, unlike the other variables, a higher value indicates 

lesser vulnerability.  A percentile rank was then calculated for each Census tract over each of 

these variables.  Percentile ranks were calculated by using the formula in equation 2 in Appendix 

A.  In addition, a tract-level percentile rank was calculated for each of the 4 domains (i.e., 

socioeconomic status, household composition, minority status and language, and housing and 

transportation) based on a comprehensive sum of the percentile ranks of the variables 

constituting that domain.  Lastly, an overall percentile rank for each tract was calculated as the 

sum of the domain percentile rankings. This process of percentile ranking for all variables, for 

each domain, and for an overall SVI was then repeated. 

A fundamental supposition firmly held in this project is that indices related to vulnerability 

are, in the final analysis, a classification issue.  Review of the literature corroborates this 

supposition, since the majority of the research in this field aims to generate the spatial 

distribution of classified regions.   

To investigate the potentials and limitations of the PR and PCA approaches for studying and 

identifying social vulnerability characteristics, the current study selected the Houston 

metropolitan statistical area (MSA) which is a historically known high risk area for hurricanes, 
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tropical storms, and flooding with  racial minority and low income groups (Davidson and 

Anderton, 2000; Lopez, 2002; Perlin et al., 2001). Increasing growth of population alongside the 

United States coasts in recent decades has amplified the proportion of vulnerable populations 

exposed to weather patterns common to hurricanes (i.e., high winds, waves, and storm surge 

flooding) (Burby, 1998; Deyle et al., 2008; Godschalk et al., 1999). 

  A number of authors have identified challenges and limitations related to the applicability 

of SVI (Yoon, 2012; Wolf et al., 2013).  After a few decades of existence, it remains unknown if 

these indices are being adopted by policymakers to understand the disaster risk, vulnerability, 

and resilience of their communities and plan accordingly; though, they are becoming widely 

available (Hazards and Vulnerabilities Research Institute, 2016 and CDC, 2015). 

From the early 1970s and the introduction of the concept of the hazardousness of a place 

(Hewitt, 1971) in the, then known as, disaster research field, there was a rapid progression 

leading to many “fuzzy definitions and divergent themes” (Cutter, 1996) and the “The 

Vulnerability Paradox” (Cutter et al., 2003).  This trend is continuing at present and more 

definitions are being introduced especially in relation to the concept of vulnerability (Blaikie et 

al., 2014).  One possible explanation of this state is that the concept of vulnerability remains a 

captive to various “epistemological orientations and subsequent methodological practices” 

(Cutter, 1996); though, it is likely that the perception of “vulnerability as an inherent pre-

existing condition of human systems, irrespective of the (natural) hazard of interest” incites the 

proliferation of such definitions and themes.  The reliance of vulnerability on other concepts, 

which are discipline dependent as well, such as hazard, risk, adaptive capacity, susceptibility, 

and resilience, propagates this conceptual and methodological ambiguity (Kienberger et al., 

2009; Fekete, 2012; Brassett and Vaughan-Williams, 2015).  
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The majority of SVI studies strongly imply that the proposed indices have a relationship with 

hazard and risk (e.g., UCLA, 2008; Cutter et al., 2003).  In the disaster risk management 

literature, it is common to encounter this as depicted in the commonly applied Risk equation 

(Equation 3 Appendix A; UNISDR, 2009).  In this equation Risk “probability of an event and its 

negative consequences” (or a loss/event that occurs with a given probability) is a function of 

Hazard (H) “a potential event” and Vulnerability “the degree of susceptibility of the elements 

exposed to the event” (Cardona et al., 2012).  As previously discussed, the hazard and 

vulnerability concepts are discipline dependent.  A “hazard” is “a dangerous phenomenon, 

substance, human activity or condition (not realized yet) that may cause loss of life, injury or 

other health impacts, property damage, loss of livelihoods and services, social and economic 

disruption, or environmental damage” (UNISDR, 2009). ISDR defines vulnerability as the “set 

of conditions and processes resulting from physical, social, economic, and environmental 

factors, which increase the susceptibility of a community to the impact of hazards.” (ISDR, 

2004). This definition requires, for completeness, the concept of susceptibility (S) and indirectly 

that of adaptive capacity (AC) which can be considered as a function of social capacity and 

resilience (Kienberger et al., 2009). With these additions and for one particular place, time, and 

hazard, Equation 3 becomes Equation 4 (in Appendix A) and reveals the full extent of the 

“conceptual and methodological ambiguity” which is propagated in this field. 

Estimating the risk for one particular place, time, and hazard becomes a major challenge due 

to the data-demanding nature of the approach.  In addition, as with the majority of published 

studies, a partial estimation of one constituent of Equation 3 is demonstrated usually in the form 

of the spatial distribution of vulnerability; e.g., “classified in 10 classes ranging from low (0) to 

high (1) vulnerability” (Kienberger et al., 2009).  A number of studies postulated different 
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conceptual frameworks that consider vulnerability as a pre-existing condition, as a tempered 

response, and as a hazard of place (Cutter, 1996).  With each framework, new terms were 

introduced or familiar old ones were redefined; for example, the hazards-of-place model of 

vulnerability (Hewitt, 1971; Cutter et al., 1996 and 2003) and the hazard potential, biophysical, 

social, and place vulnerability terms (Cutter et al., 2000).  From the multitude of studies that the 

applied framework (Schmidtlein et al., 2008), focus is given to the social vulnerability 

constituent derived as a composite social vulnerability index score with (in most cases) an 

additive model which included selected principal component scores and standardized 

socioeconomic variables (e.g., Cutter, 2003).  Again, the final outcome is the spatial distribution 

of social vulnerability classified at, for example, “5 levels with the most vulnerable counties 

being those that have a standard deviation score above 1” (Cutter et al., 2003). 

From the numerous SVI studies and publications, only a few of them made an attempt to 

assess the proposed indices in terms of their relation to losses from disasters and their predictive 

performance.  This substantiates the propensity of SVI to be considered as a preexisting, almost 

esoteric, characteristic condition of communities.  The ones that made the attempt found limited 

predictive performance results as evident from the following indicative statements: 

 “we realize that the SoVI is not a perfect construct and more refinements are 

necessary. This is very clear based on the lack of correlation with presidential 

disaster declarations, which may be a function of the SoVI, but is more likely a 

function of the frequency and location of disaster events as well as the political 

process involved in the declaration process itself.” (Cutter et al., 2003)   
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 “We cannot say with certainty that an association between tract-level elderly SVI 

value and mortality exists in this example because we do not have all the data 

required to do a complete quantitative analysis.” (Flanagan et al., 2011) 

 “There were no statistically significant correlations between social vulnerability and 

disaster losses (p > 0.05), indicating the impact of disasters was also related to the 

intensity of hazards and exposure. Disaster relief funds allocated to each province of 

China depended more on its disaster severity than the regional integrated social 

vulnerability over the past decade.” (Zhou et al., 2014). 

The above review indicates the need to establish a methodology for assessing SVI in terms of 

their ability to identify actual vulnerable areas to disasters.   

A. Major Objectives and Research Foci 

The main purpose of this thesis is to establish a new path in vulnerability to disasters studies 

by considering vulnerability as a classification issue.   This paradigm shift offers a broad range 

of practical and effective tools for assessing existing models as well as developing new 

classification models with demographic variables as predictors and loses (or risk) as the target 

dependent variable.  

The present thesis is organized in four major research foci, which aim to answer the 

following questions: 

1. Is social vulnerability a classification issue?  

2. In the context of classification, is there the ability to assess the predictive performance of 

current or newly proposed SVI techniques? 

3. Are existing methodologies reliable, useful, and feasible in terms of input data-demand 

and predictive performance? 
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4. Is the proposed classification-based methodology for deriving SVI to disasters reliable, 

useful, and feasible? 

Listed below is the approach we propose to answer these questions: 

 To provide empirical evidence from published studies to substantiate the fact that current 

social vulnerability index (SVI) methodologies implicitly use the derived indices as a 

classification tool to identify vulnerable areas. 

 To focus on the measurement and assessment techniques of the social vulnerability 

research agenda and propose a methodology that has the ability to assess the predictive 

performance of these techniques and subsequently of the proposed indices.  This 

methodology will be applied in the Houston Metropolitan area and two Census data bases 

will be used (1980 and 2000) as well as two disaster events and their losses (1983 and 

2008).  

 To provide a preliminary assessment of the performance of the prevailing existing 

techniques (i.e., PR and PCA) based on the application of the proposed predictive 

performance metrics.   

 To introduce a new and practical framework for identifying classes of vulnerable areas 

based on their demographic characteristics as well as occurrences of losses related to 

disasters.  

B. Study Area 

An MSA can roughly be defined as an area with a substantial population center (a county), 

and adjacent areas (counties) having a high degree of economic homogeneity, where economic 

integration is usually measured by commuting patterns (Van Geffen, 2003).  A metropolitan area 

is called a Consolidated Metropolitan Statistical Area (CMSA) if it meets requirements of a 
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MSA, if it has a population of 1 million or more people, if the component areas are recognized as 

primary metropolitan statistical areas, and if local opinion favors this designation.  Prior to 2000, 

the Houston MSA included the following counties: Brazoria, Chambers, Fort Bend, Galveston, 

Harris, Liberty, Montgomery, and Waller.  Thus to be consistent for the time periods we used 

those counties in both the 1980 and 2000 analyses.  

C. Demographic Characteristics of Study Area 
 

The city of Houston was founded by the Allen Brothers in 1836 close to the Buffalo Bayou’s 

banks along the Gulf of Mexico (Smith, G.P., 2016).  The 2010 U.S. Census showed a 

population of approximately 2.1 million people making it the fourth largest city in the U.S. after 

New York, Los Angeles and Chicago in terms of population (City of Houston, 2014). 

        The Houston-Galveston-Brazoria consolidated metropolitan statistical area, or Houston 

CMSA, was ranked by Forbes as the tenth fastest growing city in the U.S. in the year 2013-2014. 

It was also ranked the fifth largest metropolitan area in the U.S. and the metropolitan area with 

the largest numeric increase in 2013 by the U.S. Census (City of Houston, 2014).  The Houston 

metropolitan area consists of eight counties: Brazoria, Chambers, Fort Bend, Galveston, Harris, 

Liberty, Montgomery and Waller, as shown in Figure 1 (Federal Highway Administration, 

2015).  It covers, approximately, 8,778 square miles and according to the 2010 U.S. Census, the 

total population in all eight counties that make up the Houston metropolitan area is, 

approximately, 6 million people with Harris County being the most populous one. 

 According to the U.S. Census of 2000, the city of Houston had a population density of 

3,371 per square mile which puts it fourth among Texas’ cities, after Garland, Arlington, and 

Dallas (U.S. Census, 2000).  The 2010 American Community Survey shows that the minority 
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Figure 1.  Houston Consolidated Metropolitan Statistical Area 
   
 
 
 
      
population is about one-fourth the total population of the U.S., with black Americans making up 

almost half of the minority population (Thomas et al., 2013). The percentage of whites in the city 

of Houston was 49.3% and 50.5% in the years 2000 and 2010 respectively, while the percentage 

of blacks was 25.3% and 23.7% in the years 2000 and 2010 respectively.  The percentage of 

Hispanics and Latinos has grown in the city of Houston from 37.4% to 43.8% between the years 

2000 and 2010  (U.S. Census, 2000 and 2010). According to 2014 data, there are around 50% 

non-white minorities and a high percentage of citizens born outside the United States (City of 

Houston disparities data report, 2008; City of Houston eGovernment Center, 2014). When we 

compare Houston to the national averages, Houston has a higher percentage population of blacks 

or African Americans. The percentage of Caucasians in the U.S. was 75.1% of the total 

population in the year 2000 and 72.4% in the year 2010, while the percentage of blacks and 
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African Americans was 12.3% and 12% in the years 2000 and 2010 respectively.  The 

percentage of Hispanics and Latinos was only 12.3% in 2000 and 16.3% in 2010 (U.S. Census, 

2000 and 2010). 

As shown in Table I the percentage of single female householders with children less than 18 

years in the city of Houston was 8.8% in 2000 and 8.9% in 2010, which was slightly higher than 

the national average of 7.2% for both years (U.S. Census, 2000 and 2010).  On the other hand, 

the percentage of renter occupied housing units in the city of Houston was higher than the 

national average at 54.2% in 2000 and 54.6% in 2010 compared to the national data at 33.8% in 

2000 and 34.9% in 2010 (U.S. Census, 2000 and 2010).  

In regard to vulnerable population groups in the Houston metropolitan area, a population 

analysis comparing 2000 and 2010 of the Houston-Galveston coastal area showed an overall 

population increase of 15%, while the socially vulnerable population percentage including 

elderly, low income, and Hispanic minority groups, increased from 51% to 56% (Dolan and 

Messen, 2012).    The elderly represented 9% of the total population with a 24% increase 

between the years 2000 and 2010 (Dolan and Messen, 2012).  The Hispanic population 

represented 42% of the total population, which is considerably higher than the national 

percentage of 16% (Dolan and Messen, 2012). 

People living below poverty threshold occupy 15% of the total population in Houston 

compared to the national average of 9.2% (Dolan and Messen, 2012; U.S. Census, 2000). 

D. Loss Occurrences and Sensitivity of Study Area 

Galveston was hit by the Galveston Hurricane during the first year of the 20th century with 

severe tides causing 8,000 deaths and $30 million in damages (National Hurricane Center, 2015). 
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TABLE I 

U.S. CENSUS DATA FOR THE CITY OF HOUSTON COMPARED TO THE NATIONAL 
AVERAGE FOR THE YEAR 2000 AND 2010 

Subject 
 

The city of 
Houston data in 
2000 (%) 

The city of 
Houston data in 
2010 (%) 

United States 
data in 2000 
(%) 

United States 
data in 2010 
(%) 

White 49.3 50.5 75.1 72.4 
African American 25.3 23.7 12.3 12 
Hispanic or Latino  37.4 43.8 12.5 16.3 
65 years and over 8.4 9 12.4 13 
Under 19 years old 30.39 28.67 28.59 26.96 
Female householder 
with own children 
under 18 years 

8.8 8.9 7.2 7.2 

Renter occupied 
housing units 

54.2 54.6 33.8 34.9 

  
 
 
 
 
Hurricane Alicia, a category 3 hurricane, hit the Texas coast at Galveston Island’s western end in 

1983 and caused 21 deaths and $2 billion in damages along its path (National Hurricane Center, 

2015).  In 2001, tropical storm Allison hit Freeport, Texas bringing heavy rain falls and flood 

along its path.  Heading Northwest through Louisiana, Mississippi, Alabama, Georgia, South 

Carolina and North Carolina with Houston, Texas being heavily hit by rain and flooding, the 

storm resulted in an estimated $5 billion in damages and has taken 41 lives (National Hurricane 

Center, 2015). Hurricane Rita hit southeastern Texas and southwestern Louisiana in 2005 

causing damages of around $10 billion and 7 deaths (National Hurricane Center, 2015). 

On September 1, 2008, a new tropical depression was formed off the shores of Africa and 

halfway into the Atlantic Ocean.  Later that day, Ike, the ninth tropical storm of the season, had 

formed over the Atlantic.  By September 4, 2008, the tropical storm had grown into a category 4 

hurricane (National Hurricane Center, 2015).  It ravaged several nations between September 4 
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and 13 including Turks and Caicos, the Bahamas, Cuba, Haiti and the Dominican Republic until 

the early hours of September 13 where it made landfall at Galveston, Texas as a category 2 ( as 

shown in Table II) hurricane with winds of 110 mph (National Hurricane Center, 2015; Spence 

et al., 2011).  Ike caused wide spread destruction, damage and death with an estimated $19.3 

billion in damages and 114 deaths making it the third costliest Hurricane in the United States 

history after Katrina and Andrews (Spence et al., 2011).   

According to the National Oceanic and Atmospheric Administration’s National Climatic 

Data Center, the gulf coast in the state of Texas is considered one of the contributors to the 

“billion dollar disaster list” (Dolan and Messen, 2012; U.S. department of commerce, 2014).  

The National Hurricane Center (2015) lists the following recent events in the Houston 

metropolitan area:   

 1983 Hurricane Alicia –  21 deaths and $2 billion in damages 

 2001 Tropical Storm Allison – 5 deaths and $5 billion in damages 

 2005 Hurricane Rita – 7 deaths and $10 billion in damages               

 2008 Hurricane Ike – 114 deaths and 19.3 billion in damages. 

Hurricane Ike, the latest major hurricane to hit the Texas coast has caused an estimated $19.3 

billion in total cost and damages (National Hurricane Center, 2015).  Due to the significance of 

these events, our study will focus on analyzing loss data from Hurricanes Alicia and Ike. 

E. Empirical Evidence of Vulnerability as a Classification Issue 

The first research focus of this thesis will be addressed by a critical review of the major SVI 

publications in this field.  Specifically, the review will aim to identify empirical evidence, in the 

form of the eventual and practical usage of the derived index, to corroborate the major 

supposition postulated in this study.  The majority of published studies used Geographic 
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TABLE II 

SAFFIR-SIMPSON HURRICANE WIND SCALE 

Hurricane 

category 

Sustained wind Damages 

1 74-95 mph Very dangerous winds will produce some damage 

2 96-110 mph Extremely dangerous winds will cause extensive damage 

3 111-129 mph Devastating damage 

4 130-156 Catastrophic damage 

5 ≥157 mph  Catastrophic damage 

  
   
 

 

 
Information Systems (GIS) packages, such as ESRI ArcGIS, that have a standard feature known 

as class ranges and breaks (Bunting et al., 2014).  These features define the amount of data that 

falls into each class and the appearance of the map. There are two main components in a GIS 

classification scheme: the number of classes into which the data is to be organized and the 

method by which classes are assigned. The number of classes is dependent on the objective of 

the analysis.  The rules by which the data are assigned to a class, however, require an 

explanation.  Listed below are the standard ways in which data can be assigned to classes with 

the use of GIS packages (De Smith et al., 2007): 

Manual: Create classes manually if you are looking for features that meet a specific criterion 

or if you are comparing features to specific, meaningful values.  To do this, you would manually 

specify the upper and lower limit for each class. 
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Defined Intervals: Defined interval allows you to specify an interval size used to define a 

series of classes with the same value range. 

Equal Interval: The range of possible values is divided into equal-sized intervals. Because 

there are usually fewer endpoints at the extremes, there are fewer values in the extreme classes. 

This option is useful to highlight changes in the extremes. It is probably best applied to familiar 

data ranges such as percentages or temperature. 

Quantile: The range of possible values is divided into unequal-sized intervals so that the 

number of values is the same in each class. Classes at the extremes and middle have the same 

number of values. Because the intervals are generally wider at the extremes, this option is useful 

to highlight changes in the middle values of the distribution. 

Natural Breaks (Jenks): Natural breaks classes are based on natural groupings inherent in the 

data. Class breaks are identified that best group similar values and that maximize the differences 

between classes. The features are divided into classes whose boundaries are set where there are 

relatively big differences in the data values.  Natural breaks are data-specific classifications and 

not useful for comparing multiple maps built from different underlying information. 

Standard Deviation: The standard deviation classification method shows you how much a 

feature's attribute value varies from the mean. 

Geometric Intervals: This classification scheme creates class breaks based on class intervals 

that have a geometrical series. The geometric coefficient in this classifier can change once (to its 

inverse) to optimize the class ranges.  The algorithm creates geometric intervals by minimizing 

the sum of squares of the number of elements in each class.  This ensures that each class range 

has approximately the same number of values with each class and that the change between 

intervals is fairly consistent. 
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This algorithm was specifically designed to accommodate continuous data.  It is a 

compromise method between equal interval, Natural Breaks (Jenks), and quantile.  It creates a 

balance between highlighting changes in the middle values and the extreme values, thereby 

producing a result that is visually appealing and cartographically comprehensive. 

Table III summarizes information from seven published studies, covering a span of more 

than ten years, in terms of the major SVI derivation technique and the eventual and practical 

usage of the derived index.  These studies should be considered as an indicator since many of the 

authors published other, similar methodological, studies that are not listed in Table III to avoid 

repetition (e.g., Cutter et. al., 1996, 2000, 2007, etc.).  As seen in Table III, use of the derived 

index as an implicit classification tool to visualize vulnerability is noticeable, providing, thus, 

sufficient empirical evidence to substantiate the major supposition postulated in this study.  This 

supposition is further substantiated if SVI published reports from national and international 

agencies and organizations are taken into account (e.g., McCarthy, 2001; Briguglio, 2003; Parry 

et al., 2007, etc.).  

  



19 

TABLE III 

PREVIOUS STUDIES CLASSIFICATION METHODS 

Author Derivation Methodology Map Number of 
Vulnerability Classes (and 
Type) 

 
Cutter et al. (2003) 

Principal Component 
Analysis 

Five (Standard Deviation) 

Chakraborty et al. (2005) Maximum value 
transformation (ratio of 
value) 

Five (Defined interval) 

Flanagan et al. (2011) Percentile Rank Three (Equal Interval) 

Rygel et al. (2006) Principal Component 
Analysis 

Five (Standard Deviation) 

Schmidtlein et al. (2008) Principal Component 
Analysis 

Five (Standard Deviation) 

Yoon (2012) 

 

Percentile Rank and Principal 
Component Analysis 

Five (Standard Deviation) 

Zhou et al. (2014) Principal Component 
Analysis 

Four (Standard Deviation) 
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II. METHODS AND MATERIALS 

A. Data Sources and Variable Selection   

The selection of variables, the methods of aggregation (including weighting assignment), the 

choice of the scale of analysis, and the extent of the research area all have implications on the 

derivation of the social vulnerability index and its relevance to the condition of the community it 

pertains to represent (Fekete, 2012).   The examination of social vulnerability commonly 

emphasizes political, social, economic, and institutional elements that impact various social 

groups’ vulnerability to disaster risk exposures (Tate et al., 2010).  Due, likely, to changing 

environmental, economic, and anthropogenic effects, a growing trend in the U.S. is a migration 

of humans into hazardous areas (Cutter et al., 2007), and there is little research to show how 

social vulnerability changes in time in these densely populated areas.   In, addition, previous 

studies of social vulnerability in metropolitan areas have focused, mainly, on disaster impacts 

and recovery operation outcomes (Van Zandt et al., 2012; Zhang and Peacock, 2009) or 

susceptibility to natural hazards (Maantay and Maroko, 2009; Zahran et al., 2008), however, the 

generative process and changing pattern of social vulnerability has yet to be studied.  For this 

study, U.S. Census variables for 1980 and 2000 were exported at the Census tract level for the 

Houston Metropolitan Statistical Area (MSA) using the Social Explorer® program at the Census 

tract level.  With the use of Microsoft Excel the Census variables were filtered to utilize only 

compatible variables available between the two sets of Censuses.  In addition, since the Census 

data is from different time periods, the Census tract relationships were joined in Microsoft 

Access by selecting the appropriate crosswalk files for a specific Census year from the 

Longitudinal Tract Data Base (Logan et al., 2012).  Then, by exporting the common Federal 
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Information Processing Standard (FIPS) Census tract codes and aggregating the data by weight, a 

common set of records was derived for the two periods.   

A range of approaches have been utilized to quantify social vulnerability at various 

geographic scales and with the use of a variety of variables, however, an optimum scale or a 

group of variables has yet to be defined (Fekete, 2012).  The only consensus in the scientific 

literature is on the multidimensionality and complexity of social vulnerability.  For instance, 

social vulnerability is frequently derived based on gender (Enarson and Morrow, 1998; Enarson 

et al., 2007), race and ethnicity (Fothergill et al., 1999; Peacock et al., 1997), poverty (Fothergill 

and Peek, 2004; Long, 2007), and age (Anderson, 2005; Smith et al., 2009).  In particular, 

poverty and housing are important influences in defining a household’s capability to endure 

socio-economic stresses in metropolitan settings (Moser, 1998; Sanderson, 2000).  Following a 

similar method applied by Schmidtlein et al. (2008) built environment variables were removed 

from the analysis to concentrate more explicitly on the characteristics of the populations 

themselves that contributed to vulnerability.  By taking into account all of the above and the 

prerequisite to have common 1980 and 2000 Census variables, the 15 variables listed in Table IV 

were used for the current study. 

B. Loss and Disaster Data  

In order to provide a proper answer to the research foci listed in Section A of the Introduction 

and Problem Statement, related to the vulnerability of the Houston MSA, natural hazards and 

losses are required to be introduced to serve as a target variable for the proposed performance 

assessment metrics.  Hazard mitigation reduces and/or eliminates long-term risk to people and 

property resulting from hazardous exposures and effects (Godschalk, 2003).  The elimination of 

this risk differentiates hazard mitigation from immediate activities in disaster preparedness 
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TABLE IV  

1980 AND 2000 CENSUS VARIABLES USED 

Category  Census Variables 
Housing Characteristics % Occupied Housing Units: Renter Occupied, % 

Housing Units: 5 or more,  
% Housing Units: Mobile home or trailer, etc.  

Children % Under 5 years 

Elderly % 65 years and over 
Race – African American % African American 

Race – Hispanic % Hispanic or Latino 
Female Head Household with children 
(under18 years old) 

% Households with one or more people under 18 
years: Female householder, no husband present 

Institutionalized Persons % Population in group quarters: Institutionalized 
Population 

Education - Less than High School 
Degree 

% Population 25 years and over: Less Than High 
School 

Unemployed % Population In Labor Force 16 Years And Over: 
Unemployed 

Household Income Median household income In 1979/1999 Dollars 
Below Poverty % Below Poverty 
Mobility  % No Vehicle Available 
Social Welfare Recipient % social welfare  
Housing Value Median value 
Occupation Type Bottom quantile occupation type (e.g. Manual 

material moving, etc.) 
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and response (Godschalk, 2003).  The Federal Emergency Management Agency (FEMA) 

Hazus® software package, a nationally applicable standardized methodology, is a disaster 

mitigation strategic tool that uses geographic information systems (GIS) to evaluate potential 

physical, economic, and social impacts and losses caused by earthquakes, floods, and hurricanes 

(Hazus®, 2004).  The Hazus® risk assessment approach includes five steps:   identifying 

hazards, profiling hazards, creating assets inventory, estimating losses and considering 

mitigation options ("Hazus®®-MH risk assessment" Hazus®, 2004).  It graphically illustrates 

the limits of identified high risk locations due to earthquake, hurricane, and floods.  Users can 

then visualize the spatial relationships between populations and other more permanently fixed 

geographic assets or resources for the specific hazard being modeled, a crucial function in the 

pre-disaster planning process.   

To study Hazus® applicability to SVI in the the Houston Study Area we used historical data 

from Hurricane Alicia and Ike data which struck in 1983 and 2008, respectively.  Utilizing 

Hazus® after modeled landfall of Hurricane Alicia and Ike you can generate reports that include 

economic and employment loss from various building types (residential, commercial, industrial, 

agricultural, government, education, and religious), displacement costs (rental, wage, etc), and 

debris generated (tree blow down, brick and concrete debris) which determines factors that take a 

toll on those displaced.  The three sets of Hazus data utilized for this study were: 

1. number of displaced household,  

2. number of short term shelters required, and  

3. total building loss in thousands of dollars.   

These varialbles were transformed to percent fractional ranks and a Loss Index was created 

with an additive model which will serve as the target variables. 
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C. SV Index Methodologies to be Assessed 
 

Yoon (2012) attempted to classify the methodologies used to derive SVI into two categories: 

 “a deductive approach based on a theoretical understanding of relationships”, and 

 “an inductive approach based on statistical relationships” stating that “this approach 

differs from the deductive approach in that it includes all possible variables 

mentioned by literatures to assess social vulnerability.” 

In the current study we will avoid such a categorization, since, in reality, the “theoretical 

understanding of relationships” is a sought after objective that requires variables and a statistical 

methodology in order to be assessed.  To paraphrase a classic definition of deductive logic 

(Wrenn, 2016): “deductive arguments (approaches) are usually limited to inferences that follow 

from definitions, mathematics and rules of formal logic.”  The inductive approach categorization 

is rendered invalid since it is, practically, impossible to encompass “all possible variables” 

associated with social vulnerability.  In practice, the so-called inductive approach involves 

variable selection/justification as well (Berrang-Ford et al., 2015).    

In practice, SVI are based on a range of selected variables, which are transformed and then 

aggregated (Flanagan et al., 2011).  Another common approach is the application of data analytic 

techniques (such as principle components analysis) in order to reduce dimensionality and use a 

few of the components representing the original variables to derive the SVI with an additive 

model (Demšar et al., 2013; Abson et al., 2011).  Since the original variables of any given social 

vulnerability index are often measured in different units (e.g., dollars, number of residents, etc.), 

a standardization procedure is necessary to convert the unit of measurements into a comparable 

range of values.  Percentile Rank (PR) and Min–Max rescaling techniques are commonly used to 

make the original variables unitless and comparable (see Equations 5 and 6 in Appendix A). 



25 

Principal Component Analysis (PCA) is a multivariate statistical technique that uses an 

orthogonal transformation to convert a set of observations of possibly correlated variables into a 

set of values of linearly uncorrelated variables called principal components (Jolliffe, 2014).  The 

number of principal components is less than or equal to the number of original variables.  This 

transformation is defined in such a way that the first principal component has the largest possible 

variance (that is, accounts for as much of the variability in the data as possible), and each 

succeeding component in turn has the highest variance possible under the constraint that it is 

orthogonal to (i.e., uncorrelated with) the preceding components.  The principal components are 

orthogonal because they are the eigenvectors of the covariance (or correlation) matrix, which is 

symmetric (Fukunaga, 2013).  In addition, expert judgment, is currently a critical element in the 

subjective interpretation of the components generated by these prevailing social vulnerability 

index methodologies (Fekete, 2012). 

The goal of using principal component analysis is to aggregate the original Census variables 

(e.g., nxp matrix) into a few groups, in reality the principle components (i.e., the characteristic p 

vectors).  A common practice is to select a few only components for PCA: 

“Originally, more than 250 variables were collected, but after testing for 

multicollinearity among the variables, a subset of 85 raw and computed variables was 

derived. After all the computations and normalization of data (to percentages, per capita, 

or density functions), 42 independent variables were used in the statistical analyses 

(Table II)….. The primary statistical procedure used to reduce the data was factor analysis, 

specifically, principal components analysis. The use of a reductionist technique such as 

factor analysis allows for a robust and consistent set of variables that can be monitored 

over time to assess any changes in overall vulnerability. The technique also facilitates 



26 

replication of the variables at other spatial scales, thus making data compilation more 

efficient. A total of 11 factors (i.e., principle components) was produced, which explained 

76.4 percent of the variance among all counties.” (Cutter et al., 2003). 

The normal practice is to then label – subjectively – each one of the selected principle 

component based on the magnitude of the coefficients of each component vector (e.g., the 

coefficients of each characteristic vector).  A source of confusion in these studies and 

publications is the terminology used for the transformed original variables (e.g., principle 

components) and the individual transformed original observations (e.g., principle component 

scores; pc-scores). In addition, some studies (see above quote) refer to PCA as factor analysis 

and adopt the factor analysis terminology (i.e., loadings, common factors, etc.), for the purpose 

of this study we will adopt the standard PCA terminology and avoid this confusion of these 

different techniques (Cureton and D'Agostino, 2013).  The pc-scores derived from the PCA 

model with the use of the correlation matrix (default option for most statistical packages) are 

standardized (e.g., unit variance).  In the SVI literature these pc-scores are used to derive the 

index with a simple additive model (i.e., by adding the scores of the selected principle 

components) (Yoon, 2012); or by weighing each pc-score and then adding (Inostroza et al., 

2016).  The weighing of the pc-scores is arbitrary since, in reality, alters the mathematical 

relationship between the original individual observations and the corresponding pc-scores.  

(Cutter et al., 2003; Finch et al., 2010; Fekete, 2012).  

D. Proposed Classification Methodology  

Decision Trees (DT) are considered to be a popular approach for deriving classification models 

and in this study their applicability in the social vulnerability field of research will be 

demonstrated.  To the best of our knowledge, this is the first application of the DT approach for 
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exploring the potentials of analyzing social vulnerability within a classification framework.  

Decision tree induction is a well-known and effective classification technique extensively used in 

several domains. Its major field of application is the data mining and analytics fields where it is 

used to explore data structures and induce the tree and its rules that will be used to make 

predictions.  In the context of SV studies the prediction from a classification model could be a 

vulnerability category (i.e., severity class) based on actual instances of losses which are placed in 

categories or classes.  As stated above, this study considers vulnerability as a classification issue 

and, consequently, the use of these techniques should be expected to provide valuable 

information on variables influencing vulnerability as well as a reliable mechanism to identify 

potentially high risk areas. 

The PR, PCA, and DT approaches will be implemented with the use of the computer 

program known as IBM® SPSS® Modeler 16.0 (Larose, 2014).  Modeler is an “extensive 

predictive analytics platform that is designed to bring predictive intelligence to decisions by 

providing a range of advanced algorithms and techniques that include text analytics, entity 

analytics, decision management and optimization.”  (Larose, 2014). 

E. Proposed Predictive (Classification) Performance Metrics 

The primary objective of the second research focus question is to concentrate on the 

“measurement and assessment techniques” part of the social vulnerability research agenda 

(Cutter, 1996) and propose a methodology that has the ability to assess the predictive 

performance of these techniques.  In addition to the second research focus question, this project 

will introduce an approach to generate indices that are aiming to have an optimum classification 

performance (i.e., to identify regions that are highly vulnerable avoiding underestimation and 
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overestimation of risks).  We believe that this approach will create new and more adoptable 

indices that are usable by policy makers.    

Conceptually, indices related to vulnerability are, in the final analysis, a classification issue.  

The relevant literature corroborates this supposition since the majority of the research in this 

field aims to generate the spatial distribution of regions classified in terms of vulnerability 

(Cutter and Finch, 2008); e.g., 5 levels with the “most vulnerable” counties being those that have 

a standard deviation score above 1 (Cutter et al., 2003).  Empirical evidence substantiating 

vulnerability being a classification issue was presented above (see Section E: Empirical Evidence 

of Vulnerability as a Classification Issue). 

Each record, i = 1, 2, .., N, usually a geographic area (tract, county, etc.), is characterized by a 

number, j=1, 2,.., p, of socioeconomic, built environment, environmental, etc., attributes 

(Schmidtlein et al., 2008).  The main objective of SVI studies is to derive from these p attributes 

an aggregate vulnerability index (i.e. social vulnerability, biophysical vulnerability, etc.) based 

on a transformation of the original variables (i.e. standardization, min-max, etc.),  or with the 

application of dimensionality reducing techniques such as principle components (Yoon, 2012).    

Eventually the index is converted to a class label in order to depict the severity of vulnerability 

on an ordinal scale (i.e., areas which are less or most vulnerable; see also Section E Empirical 

Evidence of Vulnerability as a Classification Issue). Flanagan et al. (2011) converted the original 

variables to a percentile rank (ordinal) scale and used an additive model to derive a summary 

index of social vulnerability.  A similar approach was adopted for the Houston MSA by Dada 

(2015).   

A major deficiency in the SVI field of research is the lack of a methodology to validate the 

predictive performance of the proposed indices. Wolf et al. (2013) used the terms “significance 
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and relevance” (i.e., “the index needs to be able to identify hotspots of vulnerability where 

evidence indicates an elevated vulnerability compared to the surrounding area.” and “the 

hotspots of vulnerability need to match with hotspots of hazard-related mortality and morbidity”) 

to signify, essentially, the predictive performance of SVIs.  In this study these terms will be 

avoided and the predictive (or classification) performance term will be used accompanied by 

relevant performance metrics.    

For one particular place, time, and hazard, hotspots of vulnerability are essentially areas 

where the risk (for loss, damage, etc.) is at the highest level compared to other areas of the 

geographic study range.  To accomplish this prerequisite of performance, i.e., reliable hotspot 

identification, an ordinal scale has to be adopted for the proposed index.  The index as a 

predictor must identify areas of vulnerability that, indeed, are vulnerable based on evidence.  For 

this context the evidence can represent “expected losses (deaths, injuries, property, livelihoods, 

economic activity disrupted or environment damaged) resulting from interactions between 

natural or human-induced hazards and vulnerable conditions” (ISDR, 2004).  Thus, a predictive 

performance metric can be derived which will compare the predicted classification of 

vulnerability to an actual target classification of losses based on realized (or estimated) disaster 

evidence. In the few studies that did an assessment of performance, this comparison takes place 

at a ratio scale (i.e., correlation coefficient and significance of regression, Yoon, 2012); what is 

proposed in this study is to use an ordinal scale for both components of the comparison.   A first 

exploratory attempt with this methodology was made by Bakhsh (2015) which used a 

coincidence matrix approach to assess the predictive performance of a heat vulnerability index 

for the state of Missouri.    
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A critical component of this approach is the transformation of the “predictor” (i.e., SV index) 

and target variables into m classes which represent the severity of the target event or incidence 

(e.g., low, mid-low, mid-high, and high mortality).  This is accomplished by using a binning 

methodology with equal counts per bin (if the total records are even) which creates m new 

nominal class fields based on the values of one or more existing continuous (numeric range) 

fields.  The equal counts approach was selected due to the lack of reliable thresholds for both 

comparison components.  The proposed binning approach (depicted in Appendix B) is in line 

with the sequential scheme of color differentiation which is typically used to represent 

differences in the severity of the SV being mapped (depicted in Appendix C).  In the majority of 

cases an ordinal scale (e.g., least vulnerable to most vulnerable) is used which is represented by 

an appropriate color gradation (i.e., usually from light to dark).  Generally, map readers will not 

be able to tell the difference between more than six or seven levels of color value, especially in 

the complicated context of the map itself (McGranahan, 1989).  

The performance comparison is achieved by using a m x m confusion (or error) matrix (Lewis and 

Brown, 2001).  A major advantage of this approach is that this performance comparison matrix can be 

used to define specific classification performance metrics.  For a given geographic scale, which defines 

the area of interest, in this case tract, we define the following classification performance metrics: The 

numbers of correctly classified areas which occur when their instance class (i.e., Target classification 

of losses) matches the predicted class (i.e., the diagonal elements of the confusion matrix) provide an 

overall classification (i.e., the diagonal elements of the confusion matrix) provide an overall 

classification performance measure.  The sum of these matching classes divided by the total number of 

areas, N, yields the Overall Classification Performance (OCP) rate.  This metric is similar to the 

overall classification accuracy, which is used in the remote sensing (Foody, 2002) and data 
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Figure 2. Error or confusion matrix (or, in this study, performance comparison matrix)  

 
 
 
 
 

mining fields (Chen et al., 1996, and Bhardwaj and Pal, 2012).  Besides the OCP, or overall 

accuracy, classification accuracy of individual classes provide valuable performance 

information.  For this purpose, we propose the following metrics:  

If the SVI is used to allocate resources, a misclassification of a highly vulnerable area into a 

non-vulnerable class is likely to have grave consequences this is known as Classification Failure 

(CF).  To quantify this failure the number of areas in the highest instance class (i.e., m) predicted 

to belong in the lowest (i.e., 1) is used (e.g., C1m). Conceptually, this failure metric can include 

selected elements of the upper triangular performance comparison matrix which represent the 

region of risk underestimation; e.g., C1m, C1m-1, C2m,  For the purpose of this study, the one 

element definition will be used (1m) in combination with all the upper triangular elements which 
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define an underestimation range. The classification failure number can be expressed as a rate by 

dividing it with the total number of areas, N to yield: 

If the SVI is used to allocate resources, a misclassification of a non-vulnerable area into a 

highly vulnerable class is likely to result in a waste of valuable recourses similar to a false alarm 

incidence this is known as False Classification (FC). To quantify this potential waste, the number 

of areas in the lowest instance class (i.e., 1) predicted to belong in the highest (i.e., m) are used 

(i.e., Cm1). Conceptually, this false alarm metric can include more elements of the lower 

triangular predictive performance matrix; which represent the region of risk overestimation, e.g., 

C m1, Cm2, Cm-1, etc.  For the purpose of this study the one element definition will be used (C m1) 

for FC.  The false classification number can be expressed as a rate by dividing it with the total 

number of areas, N. 

The two off diagonal sections of the predictive performance matrix provide overall predictive 

performance indicators of risk over/under estimation.  The sum of all the areas in the 

underestimation range divided by N provides the Overall Underestimation Rate (OUR).  In a 

similar fashion, the Overall Overestimation Rate (OOR) is derived. 

In the Hazus® Hurricane Model the hazard can be specified as either a single historical storm 

scenario, user-defined storm scenario, or as a complete probabilistic analysis (Hazus®, 2014).   

For this study we used the historical hurricane scenarios; however, future research could be 

completed utilizing user defined and complete probabilistic analysis scenarios to review effects 

on loss estimates for the region.  The creation of potential loss scenarios offers a great 

opportunity for expanded use of this predictive performance methodology since indices can be 

assessed based on the generated losses of the area of interest. 
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F. Loss Classification Model 

The previous sections demonstrated that the SV indices, in the final analysis, have been used 

to classify vulnerability and visualize its spatial distribution. In the context of a classification 

model approach for vulnerability, which is proposed in this study, the objective can be the 

assignment of a tract to a certain vulnerability class based on its features and previous manifested 

disaster losses.  A classification model can have an exploratory as well as a predictive use.  For 

example, it will be useful for an emergency management department to have a descriptive table 

Figure 3. Proposed approach for predicted classification of 
vulnerability and target classification of losses 
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of features defining the characteristics of a high risk Census tract in its jurisdiction.  This table 

can be in the form of a rule set which is a common output from many classification algorithms. 

The classification model can also be used to predict the class label (i.e., severity of loss) of a 

Census tract based on its attributes alone.    

The fourth research focus of this project was to develop a disaster loss classification 

methodology and assess its performance in comparison to the percentile rank methodology and 

that based on principal components.  The underlying criteria of this methodology proposed in 

this study are: 

The methodology needs to be reliable.  The classification methodology needs to be able to 

identify (i.e., predict) hotspots of vulnerability that correspond to actual disaster losses. In 

addition, it is vital that the methodology does not classify wrong hotspots by giving them a very 

low vulnerability classification (i.e., CF metric). The proposed classification performance 

metrics quantify this criterion since a reliable classification model must have a low OUR, OOR, 

CF, and FC, and a high OCP. 

The methodology needs to be useful.  The complexity of some methodologies places them 

out of the reach of emergency management administrators and small-scale departments.  The 

approach proposed by Flanagan (2011) offers a viable and attractive alternative for wide spread 

use; however, its reliability remains to be evaluated.    

The methodology needs to be useful.  The attributes used for the input data set “need to be 

cheap, reliable, recent, routine, and at a sufficient spatial resolution” (Wolf et al., 2013). This 

criterion is related to usefulness since small scale emergency management departments will not 

be able to perform the preliminary data collection and preparation tasks without the support of 

specialized experts.  
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The input data set is a collection of geographic area records, in this study at a tract level, i = 

1, 2, .., N. Each record is characterized by a number, j=1, 2,.., p, of socioeconomic, built 

environment, environmental, etc., attributes.  The main objective of SVI studies is to derive from 

these attributes an aggregate vulnerability index (social vulnerability, biophysical vulnerability, 

etc.) based on a transformation of the original variables (standardization, min-max, etc.,) or with 

the application of dimensionality reducing techniques such as principle components (Yoon, 

2012).  A classification model requires not only an input attribute set (e.g., socioeconomic 

attribute data) but also a target attribute that has to be in a categorical scale (nominal or ordinal). 

For the purpose of this study the target attribute set will be risk, as a class label, for each record 

representing “expected losses (deaths, injuries, property, livelihoods, economic activity disrupted 

or environment damaged) resulting from interactions between natural or human-induced 

hazards and vulnerable conditions” (ISDR, 2004; Cardona, 2005).   

To create this target attribute data for the Houston Study Area, historical Hurricane Alicia 

(1983) and Ike (2008) loss data retrieved from Hazus® listed below were used (see Material and 

Methods section):  

 The number of displaced household,  

 The number of short term shelters required, and  

 The total building loss in thousands of dollars.   

These variables were converted to Percentage Fractional Ranks (i.e., each rank is divided by 

the number of records with valid values and multiplied by 100) and a simple additive model was 

used to create the Loss Index for the two events. 

In the Hazus® Hurricane Model the hazard can be specified as either a single historical or 

user-defined storm scenario or as a complete probabilistic analysis. For this study, we used the 
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historical hurricane scenarios; however, future research could be completed utilizing user defined 

and complete probabilistic analysis scenarios to review effects on loss estimates for the region.  

G. Proposed Decision Tree Classification Approach  

Decision tree (DT) algorithms are supervised learning algorithms which recursively partition 

the input data based on its attributes, until some stopping limit is reached (Larose, 2014).  As 

shown in Figure 4, this recursive partitioning gives rise to a tree-like formation.  DT are popular 

tools for classification and prediction that are gaining popularity in many fields.  (An 

introduction of this methodology is given in the Data Mining Lecture notes taught by Dr. Cailas.)  

In this section, we will cover and discuss the modifications and methodological additions that 

were introduced in order to apply DT classification to the social vulnerability research field. A 

basic premise that makes the DT approach attractive is that “DT methods are exploratory (not 

inferential) and non-parametric since they do not require assumptions about the data 

distribution, scale, and model”; in addition, these methods can easily deal with missing data 

which is a common characteristic of real-world data sets values as well as categorical attributes.  

A decision tree starts from the root node and contains internal nodes and leaf (terminal) 

nodes, all internal nodes have two or more child nodes. The root and internal nodes contain 

splits, which are the building blocks of the tree formation.  The split at each node is described by 

a decision that depends on one selected feature of an attribute A (e.g., Income > $40,000). The 

feature for A is selected among all possible ones, and the split is selected among all possible 

splits, with the objective to minimizing the heterogeneity of the resulting subsamples forwarded 

to the child nodes.  The aim is that the final partitions (terminal leaves of the tree) are 

homogeneous with respect to the classes. 
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Figure 4. Schematic of a simple decision tree  
 
 
 
 
 

The criterion for choosing the best splitting rule varies from algorithm to algorithm and the 

measures they apply.  For this project three well-known DT algorithms will be use to explore the 

applicability of DT in the vulnerability research field and identify advantages and limitations. 

These algorithms are: 

 The CHAID (Chi-squared Automatic Interaction Detector) algorithm proposed by Kass 

(1980) and the Exhaustive CHAID by Biggs et al. (1991).  These algorithms are known to 

generate relatively small trees that are easy to interpret (Briggs et al., 1991). 

 The CART (Classification And Regression Trees) algorithm proposed by Breiman et al. 

(1984).  This algorithm will be used to explore the attributes (independent variables) that are 

likely the best predictors for the target (dependent) attribute (Sauvé, 2014).  

 The C5.0 algorithm which is the most recent version of the ID3.0/C4.5 algorithms developed 

by Quinlan (1986 and 1993); the improvements are documented by Pang and Gong (2009).  
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This algorithm will be used to explore the predictive performance of this approach for 

classifying vulnerability.  

The selected algorithms have fundamental differences since C5.0 and CART algorithms use 

impurity measures to choose the splitting attribute and the split value(s) (Pang and Gong 2009), 

whereas CHAID uses the chi-square or the F statistic for splitting. The C5.0 uses the gain ratio 

whereas the CART uses the Gini coefficient for impurity measurements (Quinlan, 1993; 

Breiman et al., 1984; Larose, 2014).       
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III. RESULTS AND DISCUSSION 

A. Results 

The three different aggregated social vulnerability scores created by the three methodologies 

were compared by using the confusion matrix.  The confusion matrix shows the pattern of 

matches between each generated field and its target field for categorical targets. A table is 

displayed with rows defined by actual (loss) values and columns defined by predicted values, 

with the number of records having that pattern in each cell.  This is useful for identifying 

systematic errors in prediction.  If there is more than one generated field related to the same 

output field but produced by different models, the cases where these fields agree and disagree are 

counted and the totals are displayed. For the cases where they agree, another set of correct/wrong 

statistics is displayed. The following comparisons were made with each type of methodology 

(PFR, PCA, and DT): 

 
 
 
 

TABLE V  

OVERALL CONFUSION MATRIX COMPARISONS  

Columns  Rows 

1980 U.S. Census SVI 1983 Loss index 

2000 U.S. Census SVI 2008 Loss index 
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1. Percentile Rank 

SVI based on Percentile (fractional) ranks in Modeler is an additive model.  Each rank is 

divided by the number of records with valid values and multiplied by 100.  Percentage fractional 

ranks fall in the range of 1–100. All percentage fractional ranks calculated for each of the 

variables were sorted from high to low with exception of the housing value and household 

income variables were sorted low to high. 

Displayed in Appendix B is the Percentile Rank Confusion Matrix outputs from Modeler for 

1980 U.S. Census SVI and 1983 Loss data total percentage.  The total percentage calculated was 

23.3% for this output.  The total percentage calculated was 23.7% for the 2000 U.S. Census SVI 

and 2008 loss data.  Adding the past 1983 hurricane Alicia loss data improved the total 

percentage calculated to a total of 25.9% (small improvement) from 23.25%.  

2. Principal Component Analysis 

Principal Component Analysis results yield PCs that can be interpreted by review of the 

Communalities and Components.  Communalities is the proportion of each variable's variance 

that can be explained by the principal components (Bruin, 2006).  Table VI lists communalities 

for both the 1980 and 2000 U.S. Census side by side. 

The values in 1980 and 2000 extraction columns indicate the proportion of each variable's 

variance that can be explained by the principal components.  Variables with high values are well 

represented in the common space, while variables with low values are not well represented.  

Tables VII and VIII contain component loadings, which are the correlations between the variable 

and the component.  Since these are correlations, possible values range from -1 to +1.  To be 

conservative when interpreting the results in Table VII and VIII correlations are taken as an 

absolute value and values that are 0.5 or less are considered low correlations that are probably  
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TABLE VI 

 1980 AND 2000 U.S. CENSUS PRINCIPAL COMPONENT ANALYSIS COMMUNALITIES 

Category  1980 U.S. Census 
Communalities 

2000 U.S. Census 
Communalities 

Housing Characteristics 0.587 0.547 
Children 0.85 0.779 
Elderly 0.695 0.764 
Race – African American 

0.734 0.809 
Race – Hispanic 0.566 0.873 
Female Head Household with 
children (under18 years old) 0.869 0.723 
Institutionalized Persons 0.628 0.779 
Education - Less than High 
School Degree 0.908 0.891 
Unemployed 0.83 0.567 
Household Income 0.88 0.839 
Below Poverty 0.936 0.903 
Mobility  0.87 0.762 
Social Welfare Recipient 0.841 0.815 
Housing Value 0.824 0.796 
Occupation Type 0.923 0.878 

 
 
 
 
 
not meaningful.  Using the 1980 U.S. Census data, the PCA led to selection of three components 

and explained 79.6% of the variance.  Using the 2000 U.S. Census data, the PCA led to selection 

of four components and explained 78.1% of the variance.  For the 1980 data set, the 

interpretation of Components 1, 2, 3, and 4 led to Socioeconomic, Wealth, Institutionalized, and 

Race interpretations, respectively.   For the 2000 data set, the interpretation of Components 1, 2, 

3, and 4 led to Socioeconomic, Wealth, Race, and Institutionalized interpretations, respectively.  

The set of components derived from both PCAs had broadly similar subject interpretations.   

 To help improve interpretation and predictability of the PCA components, a VariMax  
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TABLE VII  

1980 U.S. CENSUS PRINCIPAL COMPONENT ANALYSIS COMPONENT LOADINGS 

Component Matrixa  

 

Component 

1 2 3 4 

Housing Characteristics 0.742 0.12 0.146 0.07

Children 0.862 0.213 -0.248 0.053

Elderly 0.794 0.233 0.102 0.025

Race – African American 0.695 -0.478 0.152 -0.381

Race – Hispanic 0.601 0.099 -0.441 0.563

Female Head Household with 
children (under18 years old) 0.888 -0.234 0.162 -0.222

Institutionalized Persons 0.203 -0.009 0.766 0.568

Education - Less than High School 
Degree 0.931 -0.023 -0.203 0.146

Unemployed 0.904 -0.107 -0.039 -0.012

Household Income 0.57 0.744 0.03 -0.157

Below Poverty 0.922 -0.293 -0.016 -0.013

Mobility  0.826 -0.422 0.1 -0.003

Social Welfare Recipient 0.908 0.126 -0.003 0.019

Housing Value 0.446 0.758 0.225 -0.267

Occupation Type 0.95 -0.121 -0.077 -0.03
a) Extraction Method: Principal Component Analysis with no 
rotation  
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TABLE VIII  

2000 U.S. CENSUS PRINCIPAL COMPONENT ANALYSIS COMPONENT LOADINGS 

Component Matrixa

 

Component 

1 2 3 4 

Housing Characteristics .546 -.058 .195 .456 

Children .727 .206 .447 -.089 

Elderly .453 .687 -.277 -.097 

Race – African American .608 -.091 -.656 -.023 

Race – Hispanic .661 -.093 .653 -.003 

Female Head Household with 
children (under18 years old) 

.821 -.065 -.189 -.098 

Institutionalized Persons .050 -.022 -.168 .865 

Education - Less than High School 
Degree 

.888 -.096 .304 -.023 

Unemployed .744 -.036 -.086 .066 

Household Income -.195 .875 .166 .092 

Below Poverty .943 -.103 -.033 .040 

Mobility  .834 -.090 -.213 .116 

Social Welfare Recipient .634 .569 -.225 -.195 

Housing Value -.166 .849 .096 .194 

Occupation Type .933 -.025 .019 -.084 
a) Extraction Method: Principal Component Analysis with no rotation. 
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rotation was performed which is a rotation that tends to load each variable highly on just one 

component (Tabachnick and Fidell, 2013). 

Additionally, as proposed by Schmidtlein et al. to simplify the interpretation of the 

components, the absolute value of the pc-scores were used (2008).  Displayed in Appendix B is 

the PCA Coincidence Matrix outputs from Modeler for 1980 and 2000 U.S. Census and 2008 

Disaster.  The 1980 U.S. Census coincidence matrix total percentage calculated was 26.6% when 

compared to the 1983 loss data.  When completing a coincidence matrix with VariMax rotation 

of the PCA components the total percentage improved by one percentage point. After applying 

absolute values to the pc-scores, the total percentage improved to 35.7%. The 2000 U.S. Census 

coincidence matrix total percentage calculated was 27.1% when compared to the 2008 loss data.  

When completing a coincidence matrix with VariMax rotation of the components the total 

percentage improved by one percentage point. After applying absolute values to the pc-scores the 

total percentage improved to 33.1%.    

3. Predictive Performace of Percentile F Rank and Principal Component 
Analysis 

 

To assess the performance of the existing methodologies during the 2000 and 1980 period the 

same input data sets were used (15 Census variables). The target variable was the loss index 

created by the 3 Hazus® generated variables representing actual losses. The results are 

summarized in Table IX.   

The predictive performance of the existing methodologies seems to be problematic since in 

most of the examined cases the overall underestimation rate (OUR) is higher than the overall 

classification performance (OCP) one.  The PFR methodology is likely to be unstable since the 

uniform ranking (i.e., all variables rank the same) performs better that the logical conceptual 
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TABLE IX  

PREDICTIVE PERFORMANCE OF PRINCIPAL COMPONENT ANALYSIS AND 
PERCENTILE F RANK 

 CF OUR  FC OOR   OCP 

PFR 80 (additive/ u.rank) 6.4% 42.3% 8.9% 37.9% 19.9% 

PFR 80 (c_rank) 6.2% 43.1% 9.9% 38.2% 18.6% 

PR 00 (additive/ u.rank) 7.1% 40.4% 9.0% 38.5% 21.1% 

PFR 00 (c_rank) 8.6% 41.1% 9.9% 40.6% 18.3% 

PFR 80+ 83 losses 
Pred 08 

2.8% 37.6% 4.9% 33.2% 29.2% 

PCA 80 Vmx 4.8% 40.1% 7.6% 35.8% 24.1% 

PCA 80 Vmx (-1/1st) 3.9% 38.9% 6.2% 34.6% 26.6% 

PCA 80 NoV (-1/1st) 3.0% 32.9% 3.3% 32.0% 35.1% 

PCA 00 NoV (-1/1st) 3.4% 34.7% 4.8% 32.1% 33.1% 

PCA 00 Vmx (-1/1st) 1.9% 37.4% 4.5% 33.0% 29.7% 

PCA 00 NoV  2.6% 38.0% 4.7% 34.8% 27.1% 

 
Notes  

u.rank= uniform rank  
c.rank =conceptual rank 
Vmx= varimax rotation  
NoV= No varimax rotation 
-1/1st = -1 the 1st Principal Component 
PFR 80 + 83 losses Pred 08 = PFR model based on 1980 data with 
the addition of 1983 loss index to predict 2008 

 

  



46 

ranking (i.e., high to low or low to high based on the vulnerability contribution of each variable).   

The graph below (Figure 5) summarizes the predictive performance of the traditional SV index 

derivation approaches and underlines their relative high failure rates, especially that of the PFR 

methodology.  Underestimation is a critical performance assessment metric since it is directly 

related to potential losses of human lives.  The proposed classification failure (CF) metric 

elaborates on this aspect of performance.  In the next section, the impact of failure will be further 

highlighted by adding the potential human risk dimension.  

4. Decision Tree Approach 

To explore the applicability of DT in the vulnerability research field and identify practical 

advantages and limitations, the CHAID, CART, and C5.0 algorithms have been applied at a 

basic level without the implementation of algorithm improvement modifications (e.g., boosting, 

pruning, twoing, etc.) in order to obtain comparable results.  These applications are presented in 

Table X.  As seen, the C5.0 has the best classification performance (above 80% for the 1980 and 

2000 classification models). This performance comes at a complexity cost since this level 

requires close to 400 nodes compared to the close to 50 nodes for the CHAID and CART 

algorithms.  Overfitting is an issue with the C5.0 algorithm (see Appendix A); however, there are 

modifications that can reduce this “complexity” which are far beyond the scope of this paper 

(Pandya and Pandya, 2015).  For demonstration purposes the C5.0 algorithm was applied with 

the significant only variables (i.e., 5 and 6 variables; identified by the importance metric; SPSS-

Modeler) and not all the 15 attributes.  Even these reduced classification models have an above 

70% overall performance and low CF rates (see Table X).  A prominent finding is the 

comparison of the predictive performances between the traditional SV approaches (i.e., PCA and 

PFR) and the classification performance of the DT algorithms.  This is demonstrated in Figure 6.  
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Figure 5. Predictive performance of current techniques 
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The CF metric can be used to identify the real dimensions of failure.  For example, a 2.2% 

CF rate of the classification model derived by the CART algorithm,  which was applied to the 

1980 15 socioeconomic attributes with the 1983 loss index as a target, means that:  23 Census 

tracts experienced losses at the highest severity level (4) and the classification algorithm 

misclassified them by assigning them to the lowest level of vulnerability (1).  As shown in Table 

XI, this signifies that, approximately, 74,000 residents of Houston (4.6% of the 1980 overall 

population) were located in high losses areas, which were classified as non-vulnerable.  

5. Exploration and Attribute Selection 

Attribute selection is a major issue that, tentatively, can be resolved by relying on the 

extended literature; however, a methodology for variable selection has not yet been established. 

Reliability remains an issue and further research is warranted.  The difference in decision tree 

attribute selection is described herein.  The selected algorithms have fundamental differences 

since C5.0 and CART algorithms use impurity measures to choose the splitting attribute and the 

split value(s), whereas CHAID uses the chi-square or the F statistic for splitting (Hapfelmeier, 

2016).  The C5.0 uses the gain ratio whereas the CART uses the Gini coefficient for impurity 

measurements (Quinlan, 1993; Breiman et al., 1984). 

6. Rule Set and Decision Tree Interpretation 

Displayed in Figure 7, is an example of the CHAID two-branch decision tree.  As you can 

see this is as simplistic as you can make it for interpretation.  This CHAID two-branch decision 

tree accounts for 43.1 % of the overall classification performance.  

To explore decision tree interpretation, we expand on the branch on the housing 

characteristics branch; this represents neighbors greater than 14.67% of social welfare recipients 

have a housing characteristics   (% Occupied Housing Units: Renter Occupied, % Housing 
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Figure 6. Decision tree predictive performance comparison to current methodologies 
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TABLE X  

PREDICTIVE PERFORMANCE RESULTS FOR CLASSIFICATION MODELS 

 CF OUR FC OOR OCP 

C5.00/08 0.7% 5.6% 
0.19% 

 
5.4% 89.1% 

C5.00(5)/08 0.9% 10.5% 0.28% 14.9% 74.7% 

      

CHAID.00/08 2.8% 26.6% 0.94% 21.2% 52.3% 

CART.00/08 1.2% 24.4% 2.5% 26.9% 48.7% 

      

C5.80/83 0.6% 8.6% 0.94% 6.0% 85.4% 

C5.80(6)/83 0.6% 11.3% 0.66% 9.3% 79.4% 

      

CHAID.80/83 4.1% 28.9% 2.7% 21.8% 49.3% 

CART.80/83 2.2% 28.5% 1.5% 26.4% 45.1% 

Notes 

C5.00/08 = C5.0 algorithm/2000 Census data / 2008 loss 
C5.00 (5)/08 = C5.0 algorithm/2000 Census data model with 5 attributes/ 
2008 loss  
CHAID.00/08 = CHAID algorithm/2000 Census data / 2008 loss 
CART.00/08 = CART algorithm/2000 Census data / 2008 loss 
C5.80/83= C5.0 algorithm/1980 Census data / 1983 loss 
C5.80(6)/83= C5.0 algorithm/1980 Census data model with 5 attributes/ 
1983 loss  
CHAID.80/83= CHAID algorithm/1980 Census data / 1983 loss 
CART.80/83= CART algorithm/1980 Census data / 1983 loss 
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Units: 5 or more, % Housing Units: Mobile home or trailer, etc.) split into three categories.  The 

p value for the calculated based on the chi square value and degrees of freedom the probability is 

0.01 meaning that there is only a 1% chance that this deviation is due to chance alone and 

therefore, other factors must be involved. 

7. Validation 

A typical way to validate the performance of classification models is to apply them for 

predicting a validation set.  For demonstration purposes, the initial DT classification models 

developed (i.e., trained) with the 1980/1983 attributes were used to predict the 2008 losses as a 

worst case validation scenario.  As summarized in Table XII, the performance metrics and raises 

interesting questions about the usefulness of the C5.0 algorithm as a reliable predictive tool. 

As discussed earlier, a low classification failure and high overall classification performance is 

important in measuring predictive performance.  All three decision tree models had a 

classification failure of 6.5% or less and the overall classification performance of between 37.3% 

and 53.9%.    These results are much better than the fractional percentile rank and principal 

component analysis methodologies applied validation (results not shown).  As a reminder, as 

depicted in Table IX, the overall classification performance for fractional percentile rank and 

principal component analysis was less than 29.2% and 35.1%, respectively.  

A. Summary Discussion of Results and Findings  

Vulnerability studies is a multidisciplinary field with management of natural hazards, climate 

change, social sciences investigators working on models that have helped explain and further 

develop the field of study (Ionescu et al., 2009).  Concerning vulnerable population groups, it has 

been found that the most vulnerable counties are concentrated in the southern part of the U.S. 
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TABLE XI  

THE IDENTITY OF CLASSIFICATION FAILURE FOR 1980 DATA 

FIPS 
Total 

Population % under 5 % over 65 % no car
48039661200 516 0.5 0.3 0.2
48039661400 846 0.6 0.4 0.3
48157674502 776 6.4 5.3 11.1
48157675500 1654 16.7 16.1 0.0
48167720700 3248 7.4 7.5 7.9
48167721500 2510 6.9 6.1 1.5
48201241500 5194 28.6 16.8 7.2
48201310100 5567 20.4 22.2 73.5
48201312500 3349 7.2 9.6 40.4
48201312600 6224 11.0 14.0 44.3
48201313800 3987 8.7 10.6 26.4
48201330800 1690 24.2 25.9 7.3
48201331400 2104 13.1 5.7 43.2
48201333902 2290 7.5 3.2 0.0
48201410100 6929 10.7 10.9 59.0
48201412200 4651 4.6 19.7 8.2
48201431700 3240 3.2 19.0 1.3
48201520500 7153 28.1 19.1 21.9
48201543200 4640 10.6 8.8 0.7
48201551900 400 0.3 0.1 0.0
48201555402 3106 6.8 14.6 3.1
48339690602 125 0.2 0.1 0.0
48339692300 3837 8.5 3.9 0.6

Median CF Sample 3,240    7.5 9.6 7.2
Median (all tracts) 3,924 4.2 2.6 1.3
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Figure 7. CHAID decision tree results 
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TABLE XII  

VALIDATION OF CLASSIFICATION MODELS 

Validation of classification models 

 CF OUR FC OOR OCP 

C5.0.80.p08   2.2% 22.5% 1.3% 23.6% 53.9% 

CHAID.80.p08 6.5% 37.5% 2.1% 22.0% 40.5% 

CART.80.p08 3.0% 31.8% 1.9% 30.9% 37.3% 

 
 
 
 
  

because of racial and ethnic disparities and fast population growth (Cutter, 2006).  In the 

research of climate change for instance, vulnerability is frequently assumed to mean hazard 

exposure, susceptibility to that hazard, and the emergency response to a hazard (Parry et al., 

2007).   Risk is understood to be outside of common society structures in the prevailing versions 

of vulnerability (McLaughlin and Dietz, 2008) and can be estimated for a static area and hazard.  

However, what has not been documented well, the capability of adaptation, hazard exposure and 

long-term damages after a disaster which can vary over time (Turner et al., 2003).  

Vulnerability is always defined in relation to a specified time period, system, hazard, or 

range of hazards (IPCC, 2014).  The term hazard refers specifically to physical manifestations of 

climatic extreme events or change, such as floods, droughts, heatwaves, etc.  A disaster (e.g., 

Hurricanes Alicia and Ike) is an outcome of a hazard, facilitated by the properties of the human 

system that is exposed to and affected by the hazard.  Ideally, as stated in the Intergovernmental 

Panel on Climate Change (IPCC) Third Assessment Report in 2001, “the vulnerability of a 

human system can be determined by the nature of the physical hazard(s) to which it is exposed, 

the likelihood or frequency of occurrence of the hazard(s), the extent of human exposure to 
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hazard, and the system’s sensitivity to the impacts of the hazard(s).”  This composite 

vulnerability, which is a function of hazard, exposure, and sensitivity, is usually referred to as 

biophysical vulnerability (Based on IPCC report, 2001).  For human systems (e.g., communities, 

etc.), vulnerability is viewed as an inherent property of the system stemming from its internal 

characteristics is usually referred to as social vulnerability.  Subsequently, SVI is considered a 

pre-existing condition of human systems, irrespective of the natural hazard of interest.  The place 

vulnerability (Hazard-of-place framework) is the interaction of these two vulnerabilities.  Event 

risk (ER) as the “risk of occurrence of any particular hazard (H) or extreme event” and outcome 

risk (OR) as “the risk of a particular outcome” or “integrates both the characteristics of a system 

and the chance of the occurrence of an event that jointly results in losses.” (Sarewitz et al., 

2003).  SVI describes inherent characteristics of a system that create the potential for harm and 

independent of the probabilistic risk of occurrence (ER) of any particular hazard or extreme 

event.  Derivation of indicators and indices “quantitative measures intended to represent a 

characteristic or a parameter of a system of interest” (Cutter et al. 2008).  The objective for 

using indices is to provide a quick and consistent method for depicting vulnerability and 

recognizing issues that may need to be addressed.  In terms of the present study, SVI have to be 

reliable quantitative measures intended to represent the inherent multidimensional characteristics 

of a human system that create the potential for harm.  Issues related to the creation of a SVI: 

1. Which variables (attributes) to include as the base for the index? 

2. How should these variables be “combined” to derive the index? 

3. Is the SVI reliable? 

Variable selection (Issue 1) is a major issue that, tentatively, can be resolved by relying on 

the extended literature; however, a methodology for variable selection has not yet been 
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established.   Climate change adaptation plans tend to exaggerate future variability of weather, 

which may lead to undesirable outcomes (Macintosh, 2013).   Research specifies that exposure to 

a hazard and vulnerability, or the differences in features for example socioeconomic, race, and 

household composition (inter alia), matters when forecasting the effects of natural hazards 

(Highfield et al., 2014).  Adaptation methods that disregard the social undercurrents of a 

metropolitan area can overlook population at risk to these natural disasters.  This becomes 

increasingly difficult in a multi natural hazard metropolitan area where regulations and 

guidelines can supplementary to climate adaptation and mitigation, and the vulnerable population 

can not simply find it reasonable to dwell in places which are non-hazardous.   

This standpoint highlights the socioeconomic features that guide a community‘s capability to 

mitigate and adapt to a hazard event (Cutter et al., 2003; Laska and Morrow, 2006; Peacock et 

al., 1997) and is frequently described using individual characteristics (e.g., age, race, etc.).  This 

approach sets disasters and their impacts within a wider social contexts (Wisner et al., 2004) and 

highlights social factors that affect the proneness of various of groups to harm (Cutter et al., 

2003).  Studies of social vulnerability have comprehensively documented the inconsistent 

impacts of hazardous events on socially vulnerable population groups (Cutter, 1996; Cutter et al., 

2003; Fothergill and Peek, 2004; Highfield et al., 2014; Peacock et al., 2007; Zahran et al., 

2008).  To answer Issue 2, since areas of vulnerability differ from place to place and over time in 

the same region, the SVI was calculated for each Census tract and decadal period, separately.  

Figures located in Appendix C, show vulnerability maps for the study area using the three 

different derivation methods (i.e., PFR, PCA, and DT).   

As depicted in this study there are implications to sensitivity when changes in index 

construction to create vulnerability indices.  At present, the adequacy of the representation of 
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vulnerability produced by the index and depicted in maps can only be corroborated by local 

expert knowledge of the community.  Currently, the traditional SVI need to be coupled with 

expert guidance and additional, local, information to ensure that the representations of 

vulnerability produced are reasonable and consistent with locally based geographic knowledge of 

the study area (Flanagan et al., 2011). The importance of expert judgment in the index creation 

process is not limited to validation of vulnerability representation.  Expert judgment is also a 

critical element in the subjective interpretation of the components generated by the PCA.  These 

components must be interpreted to determine whether the pc-scores are assigned a positive, 

negative or absolute value before they are combined to create the index.  The literature suggests 

future research on the SVI algorithm could be designed to assess the impact of changes in the 

interpretation of components on the final index and provide more concrete guidance to this 

crucial element.  However, using the proposed predictive performance metrics researchers can 

begin to measure the reliability of SVI derivation methodologies in terms of their ability to 

identify vulnerable areas prone to loss; thus, limiting the reliance on expert judgement 

information.  Furthermore, the predictive performance of the new decision tree methodology for 

deriving vulnerable areas outperforms significantly the current methodologies (i.e., PR and 

PCA).       

Using the historical data, the probabilities of disaster occurrence have been found for each 

country in the world and for each kind of disaster.  These probabilities have been used to build 

the Decision tree models which will use as a forecasting tool to predict the probability of disaster 

and all the variables.  Furthermore, Decision trees are usually used to provision decision-making 

in an uncertain situation.  These forecasts are used by the various international and national 

humanitarian organizations in emergency logistics planning.  This leads to better coordination of 
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search and rescue activities and efficient evacuation of injured people.  Furthermore, overall 

health conditions of everyone in the affected area depend on the timely availability of 

commodities such as food shelter and medicine.   Issue 3 is discussed in detail in the section 

below.  

a. Responses to the Research Foci 

As mentioned previously, the following research foci were pursued: 

1. Is social vulnerability a classification issue?  

2. In the context of classification, is there the ability to assess the predictive performance of 

current or newly proposed SVI derivation techniques? 

3. Are existing SVI derivation methodologies reliable, useful, and feasible? 

4. Is the newly proposed classification based methodology reliable, useful and feasible? 

Based on the new classification framework proposed in this study and the derived 

methodologies for performance assessment and modeling these critical for the SV research field 

questions were answered. The first research focus question, as presented in the empirical 

evidence section, was answered by examining the ultimate and practical usage of the derived 

index. In the majority of cases, indeed, the derived indices were used implicitly as a 

classification tool (Cutter et al., 2003; Chakraborty et al., 2005; Flanagan et al., 2011; 

Schmidtlein et al., 2008; Yoon, 2012; see also Table III).  The relevant literature of national and 

international organizations and agencies corroborates this supposition since the majority of the 

published reports aim to generate the spatial distribution of regions classified in terms of 

vulnerability.  

In response to the second research focus question, the present study developed classification 

predictive performance metrics, which were applied for assessing the performance of the current 
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major methodologies (i.e., PR and PCA).  The proposed predictive performance metrics are able 

to identify critical misclassified hotspots (i.e., CF metric) and quantify the extent of identification 

error.  In addition, with the use of the proposed metrics a comprehensive assessment of SVI 

derivation approaches can be conducted and assessed based on quantifiable criteria (i.e.,  a 

reliable SVI model must have a low OUR, OOR, CF and FC and a high OCP).  A major 

breakthrough in this field of study is the introduction of the risk/loss estimates derived with the 

application of Hazus®.  These estimates and the proposed metrics provide a reliable tool to 

assess proposed SVI based on actual or simulated loss data.  

In response to the third research focus question, the predictive performance of the existing 

methodologies seems to be problematic since in most of the examined cases the OUR is higher 

than the OCP one.  The PFR methodology is likely to be unstable since the uniform ranking (i.e., 

all variables rank the same) performs better that the logical conceptual ranking (i.e., high to low 

or low to high based on the vulnerability contribution of each variable).   As demonstration in the 

current study the existing percentile rank methodology may be useful because it is a viable and 

attractive alternative when compared to the complexity of principal component analysis 

especially when it comes to interpretation of the results.   Lastly, since small scale emergency 

management departments will not be able to perform the preliminary data collection and the 

required data preparation tasks without the support of specialized experts they will not be able to 

derive SVI based on the principal component analysis approach.   

In response to the fourth research focus question, the new proposed decision tree approach is 

shown to be extremely reliable. As shown in Table IX, the CF is 4.1% or below and above 

45.1% or above OCP which is higher than existing methodologies.  The attributes used for the 

input data set “need to be cheap, reliable, recent, routine, and at a sufficient spatial resolution” 
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(Wolf et al., 2013). This criterion is related to usefulness since small scale emergency 

management departments will not be able to perform the preliminary data collection and 

preparation tasks without the support of specialized experts. The decision tree algorithm can be 

built into a software application so emergency departments can take disaster loss target data 

(easily exported from existing software like Hazus®) and import local Census data of their area 

of evaluation; in addition, there is no large database limitations.  

A further application of the proposed DT analysis approach is the use of the rule sets that are 

generated.  These rule sets can be applied directly with a database access language (e.g., SQL or 

by using a simple queries) so that counties falling into a particular category (i.e., hotspot) may be 

identified without the use of complicated modeling techniques and expensive experts. 
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IV. SUMMARY OF MAJOR CONCLUSIONS AND FINDINGS 

This study demonstrated that social vulnerability studies are, in the final analysis, a 

classification issue.  Conducting SV studies with the use of classification modeling techniques 

has a number of advantages and overcomes some of the limitations of traditional techniques 

especially in terms of developing classification models that offer a reliable predictive 

performance.    

The predictive performance metrics proposed in this study provide a valuable tool for 

assessing social vulnerability indices. This study demonstrated that with the use of the Hazus® 

software a loss index can be established which could be used to assess the indices with actual 

historical, or simulated, disaster losses.  The proposed predictive performance metrics in 

combination with the Hazus® derived loss index have the potential to establish a standard of 

assessing social vulnerability indices in terms of reliability and usefulness.  

The creation of potential loss scenarios with the use of the Hazus® software offers a great 

opportunity for expanded use of this predictive performance methodology since indices can be 

assessed based on the generated losses of the area of interest. 

The introduction of classification models offers an attractive venue for developing reliable 

and useful techniques to identify areas at high risk.  In addition, they are likely to offer practical 

tools to emergency management agencies for identifying and exploring vulnerable (to losses) 

sections of their cities.     
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V. LIMITATIONS 

1. The spatial dimension of the SVI was not explored. 

2. One only major urban region was used (Houston MSA).  

3. Variable selection was limited to tract level Census data and two time periods.  
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VI. FURTHER RESEARCH 

1. Optimization of C5.0 (e.g., pruning) and comparison of performance with other DT 

methodologies. 

2. Overfitting and underfitting issues in relation to CF metric. 

3. Stability and sensitivity of DT models. 

4. Usefulness of rule sets for emergency management personnel with SQL implementation. 

5. Sensitivity of binning approach.  

6. Application of the DT approach to other areas with different characteristics. 

7. Application to simulated losses. 

 

.    
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Appendix A  
EQUATIONS 

 

Risk = Hazard * (Vulnerability – Resources) 

Equation 1. Risk Equation - Retrieved from UCLA documentation (2008)  

 

Percentile Rank = (Rank-1) / (N-1) 

where N = the total number of data points, and all sequences of ties are assigned the 
smallest of the corresponding ranks 

 
Equation 2. Percentile Rank Equation - Retrieved from Flanagan et al. (2011)  

 

Risk = Hazard x Vulnerability or Risk = f (Hazard, Vulnerability)  

Equation 3. Risk Equation - Retrieved from UNISDR documentation (2009)  

 

Risk = f  [Hazard, (Vulnerability= f (S, (AC= f (SC,R))))] 

Equation 4. Risk Equation - Retrieved from UNISDR documentation (2009) 

 

 

Equation 5. Percentile Rank Equation - Retrieved from Yoon (2012) 
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Appendix A (continued) 

 

 

Where Xmax is the maximum value  
Where Xmin is the minimium value 

Equation 6. Min-Max Rescaling Equation - Retrieved from Yoon (2012) 

 

OCP ൌ ∑ ௜,௜ܥ
௡
௜ୀଵ  /N 

Equation 7. Overall Classification Performance (OCP) 

 

CF = C1,n /N 

Equation 8. Classification Failure (CF) 

 

FC = Cn,1 /N 

Equation 9. False Classification (FC) 
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Appendix B 
MODLER OUTPUTS 

   

 

 

 

 

 

Binning Approach 

PCA Coincidence of 80 data / 83 disaster 
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Appendix B (continued) 

PCA Coincidence of 80 data / 83 disaster with VariMax Rotations 

PCA Coincidence of 80 data / 83 disaster with Absolute Value 
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Appendix B (continued) 

PCA Coincidence of 00 data / 08 disaster 

PCA Coincidence of 00 data / 08 disaster with VariMax Rotations 
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Appendix B (continued) 

PCA Coincidence of 00 data / 08 disaster with Absolute Values 

Percentile Rank Coincidence of 00 data / 08 disaster 
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Appendix B (continued) 

Decision Tree Four Tile Predictive Performance 

  



72 

Appendix C 
MAPS 

 

 

1983 Loss Map 
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Appendix C (continued) 

 

 

1980 PCA Map 
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Appendix C (continued) 

 

1980 CHAID DT Map 
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Appendix C (continued) 

 

1980 C50 DT Map 
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