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SUMMARY

This thesis is a combination of two papers, (20) and (21), with the same names and almost

same contents as Chapter 1 and Chapter 2, respectively. Non-essential changes are made for

consistency.

In Chapter 1 we determine the integral cohomology ring H∗(BPUn;Z) through degree 10,

where PUn is the projective unitary group of degree n, and BPUn is its classifying space. Serre

spectral sequences of various fiber sequences play an important role.

Chapter 2 concerns the topological period-index problem, an analog of the period-index

problems in algebra and algebraic-geometry, which have been around since 1930’s. In particular,

a period-index conjecture of Colliot-Thélène was proposed in 1999 ((15)), of which most of

the interesting part remains open. In this chapter we use classical tools in homotopy theory,

including Postnikov tower, Serre spectral sequence, and Eilenberg-Moore spectral sequence to

extend a theorem by Antieau and Williams, shedding light on the correct form of the topological

version of the period-index conjecture.
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CHAPTER 0

INTRODUCTION

In this introductory chapter we explain relevant concepts and the necessary background

knowledge, and outline the structure of this thesis.

Chapter 1 concerns the integral cohomology ring H∗(BPUn;Z), where PUn is the projective

unitary group of degree n and BPUn is its classifying space. An easy computation shows that

the rational cohomology ring of BPUn is canonically isomorphic to that of BSUn, the classifying

space of the special unitary group of degree n. However the torsion subgroup of H∗(BPUn;Z)

remains surprisingly elusive. In (1), Antieau and Williams calculated H∗(BPUn;Z) through

dimension 5. The cohomology of BPUn is also considered by Kameko and Yagita ((23), (24)),

as well as Kono and Mimura ((25)). In all the cases that they considered, n is either a prime p

or of the form 4k + 2 for some integer k, and the cohomology theories considered reveal little

about the integral cohomology. In Chapter 1 we compute the ring H∗(BPUn;Z) through degree

10. The main theorem of this chapter is the following:

Theorem 0.0.1. For an integer n > 1, the graded ring H∗(BPUn;Z), in degrees ≤ 10, is

isomorphic to the following graded ring:

Z[e2, · · · , ejn , x1, y3,0, y2,1, z1, z2]/In.

1
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Here ei is of degree 2i, jn = min{5, n}; the degrees of x1, y3,0, y2,1 are 3, 8, 10, respectively; and

the degrees of z1, z2 are 9, 10, respectively. In is the ideal generated by

nx1, ε2(n)x2
1, ε3(n)y3,0, ε2(n)y2,1, ε3(n)z1, ε3(n)z2,

δ(n)e2x1, (δ(n)− 1)(y2,1 − e2x
2
1), e3x1,

where

δ(n) =


2, if n = 4l + 2 for some integer l,

1, otherwise.

and

εp(n) = gcd(p, n).

Chapter 2 is a succession of (1) and (2), in which Antieau and Williams initiated the study of

the topological period-index problem. Given a topological space X, let Br(X) be the topological

Brauer group defined in (2), whose underlying set is the Azumaya algebras modulo the Brauer

equivalence: A0 and A1 are called Brauer equivalent if there are vector bundles E0 and E1 such

that

A0 ⊗ E0
∼= A1 ⊗ E1.

The multiplication is given by taking tensor product.
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Azumaya algebras over X of degree r are classified by the collection of PUr-torsors over X,

i.e., the cohomology set H1(X;PUr), where PUr is the projective unitary group of degree r.

Consider the short exact sequences of Lie groups

1→ S1 → Ur → PUr → 1 (0.0.1)

and

0→ Z→ C exp−−→ S1 → 1 (0.0.2)

where the arrow S1 → Un is the inclusion of scalars. Then the composition of Bockstein

homomorphisms

H1(X;PUr)→ H2(X;S1)→ H3(X;Z) (0.0.3)

associates an Azumaya algebra A to a class α ∈ H3(X;Z). The exactness of the sequences

above implies that

1. α ∈ H3(X;Z)tor, the subgroup of torsion elements of H3(X;Z), and

2. the class α only depends on the Brauer equivalence class of A.

Therefore, we established a function H3(X;Z)tor → Br(X). It is not hard to show ((19)) that

this function is in fact an inclusion of subgroup. For this reason, H3(X;Z)tor is also called the

cohomological Brauer group of X, and is sometimes denoted by Br′(X).

Serre showed ((19)) that when X is a finite CW complex, the inclusion is also surjective.

Hence, for any α ∈ H3(X;Z)tor, there is some r such that a PUr-torsor over X is associated to
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α via the homomorphism (Equation 1.6.2). Let per(α) denote the order of α as an element of

the group H3(X;Z), then Serre also showed ((19)) that per(α)|r, for all r such that there is a

PUr-torsor over X associated to α in the way described above. Let ind(α) denote the greatest

common divisor of all such r, then in particular we have

per(α)| ind(α). (0.0.4)

Furthermore, Antieau and Williams showed ((2)) the following

Proposition 0.0.2. The integers per(α) and ind(α) have the same set of prime divisors when

X is a finite CW complex.

Therefore, for a sufficiently large integer e we have

ind(α)|per(α)e. (0.0.5)

The topological period-index problem can be stated as follows:

For a given class C of finite CW complexes, find the sharp lower bound of e such that

Equation 0.0.5 holds for all finite CW complex X in C and all elements in Br(X).

The topological period-index problem is motivated by its analog in algebraic geometry,

where the topological Brauer group of a CW complex is replaced by the usual Brauer group of

a scheme, and where the period and index are defined similarly. We have the following
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Conjecture 0.0.3 (Colliot-Thélène). Let k be either a Cd-field or the function field of a d-

dimensional variety over an algebraically closed field. Let α ∈ Br(k), and suppose that per(α)

is prime to the characteristic of k. Then

ind(α)|per(α)d−1.

The conjecture has been proved in a few low dimensional cases, which are summarized in

(2). Very little is know in high dimensions.

There is an obvious topological analog of Conjecture 0.0.3, which is proposed by Antieau

and Williams in (1) and referred to as “straw man”, or the topological period-index conjecture:

Conjecture 0.0.4 (Antieau-Williams). If X is a 2d-dimensional finite CW complex, and α ∈

Br(X), then

ind(α)|per(α)d−1.

Notice that, if X is a complex algebraic variety of dimension d, then its underlying topo-

logical space has a 2d-dimensional cell decomposition, hence the 2d in the conjecture.

Antieau and Williams disproved Conjecture 0.0.4 in (1). To state their results in consistency

with this thesis, we denote by εp(n) the greatest common divisor of p and n. Typically p will

be a prime number. The notations in the following theorem are altered accordingly.

Theorem 0.0.5 (Antieau-Williams,(1)). Let n be a positive integer. There exists a connected

finite CW complex X of dimension 6 equipped with a class α ∈ Br(X) for which per(α) = n

and ind(α) = ε2(n)n2.
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Furthermore, they established an upper bound of the index of an element of the Brauer

group in terms of its period:

Theorem 0.0.6 (Antieau-Williams, (3)). Let X be a finite 2d-dimensional CW complex, and

let α ∈ Br′(X) have period pr11 · · · p
rk
k . Then,

ind(α)|md−1
k∏
i=1

p
vpi ((d−1)!)
i ,

where vpi is the pi-adic evaluation.

Furthermore, they made the following

Conjecture 0.0.7. The upper bound established in Theorem 0.0.6 is sharp.

In this thesis, we show that the topological period-index conjecture fails again for 8-

dimensional CW complexes. The main result is the following

Theorem 0.0.8. Let X be a topological space of homotopy type of an 8-dimensional CW-

complex, and let α ∈ H3(X;Z)tor be a topological Brauer class of period n. Then

ind(α)|ε2(n)ε3(n)n3. (0.0.6)
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In addition, if X is the 8-th skeleton of K(Z/n, 2), and α is the restriction of the fundamental

class βn ∈ H3(K(Z/n, 2),Z), then


ind(α) = ε2(n)ε3(n)n3, 4 - n,

ε3(n)n3| ind(α), 4|n.

In particular, the sharp lower bound of e such that ind(α)|ne for all X and α is 4.

The theorem implies that Conjecture 0.0.7 is true for 8-complexes. In particular, it shows

that the topological version of the period-index conjecture fails in degree 8, as it does in degree

6.



CHAPTER 1

ON THE COHOMOLOGY OF THE CLASSIFYING SPACES OF

PROJECTIVE UNITARY GROUPS

1.1 Introduction to Chapter 1

Let Un be the unitary group of order n, and consider the unit circle group S1 of complex

numbers as the normal subgroup of scalars of Un. The quotient group, denoted hereafter

by PUn, is called the projective unitary group of order n. Its classifying space BPUn is

a topological space determined by PUn up to homotopy type, with a canonical base point,

characterised by the fact that for a well behaved topological space X with a base point, the

set of pointed homotopy classes of maps, [X,BPUn], has a natural one-to-one correspondence

with the isomorphism classes of PUn bundles, also known as topological Azumaya algebras of

degree n, over X.

The space BPUn is related to a number of interesting questions. For example, in the study

of the topological period-index problem we need to consider classes of Azumaya algebras of

various degrees, which are in some sense related to a certain torsion class in H3(X;Z). For

more details see (1). The cohomology of BPUn is a useful tool to detect non-trivial elements

in the Chow ring of BGLn, which has been drawing attention in recent years. More on that

can be found in (32). Furthermore, the accessibility and non-triviality of the cohomology of

BPUn make it possible to shed light on the understanding of cohomology of classifying space of

8



9

exceptional Lie groups. The author owes this idea to M. Kameko. More about it can be found

in (23).

The integral cohomology Hk(BPUn;Z), was known for k = 0, . . . , 5, of which section 3 of

(1) is a good reference. More results on Hk(BPUn;Z/p) and their applications are discussed

in, for example, (32). In this chapter we consider a version of the Leray-Serre spectral sequence

converging to H∗(BPUn;Z), of which many differentials can be found fairly easily. We use this

spectral sequence to compute Hk(BPUn;Z) for k ≤ 10, the ring structure of H∗(BPUn;Z)

in this range, and some cohomological operations. The torsion free components can be easily

described in terms of Chern classes, via the quotient map P : BUn → BPUn, which are

discussed in details in Remark 1.6.2. For readers’ convenience we restate Theorem 0.0.1 as

follows:

Theorem 0.0.1. For an integer n > 1, the graded ring H∗(BPUn;Z), in degrees ≤ 10, is

isomorphic to the following graded ring:

Z[e2, · · · , ejn , x1, y3,0, y2,1, z1, z2]/In.

Here ei is of degree 2i, jn = min{5, n}; the degrees of x1, y3,0, y2,1 are 3, 8, 10, respectively; and

the degrees of z1, z2 are 9, 10, respectively. In is the ideal generated by

nx1, ε2(n)x2
1, ε3(n)y3,0, ε2(n)y2,1, ε3(n)z1, ε3(n)z2,

δ(n)e2x1, (δ(n)− 1)(y2,1 − e2x
2
1), e3x1,
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where

δ(n) =


2, if n = 4l + 2 for some integer l,

1, otherwise.

and

εp(n) = gcd(p, n).

For easier reference, especially in the proof, we break down the statement above into the following

assertions:

1. Hk(BPUn;Z) = 0 for k = 1, 2. H3(BPUn;Z) ∼= Z/n is generated by x1 of order n. x2
1 is

of order 2 if n is even and is 0 otherwise.

2. H4(BPUn;Z) ∼= Z is generated by e2, such that P ∗(e2) = 2nc2− (n− 1)c2
1 when n is even

and P ∗(e2) = nc2 − n−1
2 c2

1 when n is odd.

3. H5(BPUn;Z) = 0.

4. Let n > 2. If n is even, H6(BPUn;Z) ∼= Z ⊕ Z/2 is generated by e3 of order infinity

and x2
1 of order 2. If n is odd, H6(BPUn;Z) ∼= Z is generated by e3, and x2

1 = 0. In the

exceptional case n = 2, the assertion holds with the absence of e3 and its corresponding

direct summand Z.

5. If n = 4l + 2, H7(BPUn;Z) ∼= Z/2 is generated by e2x1. Otherwise H7(BPUn;Z) = 0

and in particular e2x1 = 0.

6. Let n ≥ 4. If 3|n, H8(BPUn;Z) ∼= Z ⊕ Z ⊕ Z/3 generated by e4 and e2
2 of order infinity

and y3,0 of order 3. Otherwise H8(BPUn;Z) ∼= Z ⊕ Z is generated by e2
2 and e4. In the
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exceptional cases n = 2, 3, this assertion holds as well, with e4 and its corresponding direct

summand Z absent.

7. H9(BPUn;Z) ∼= Z/ε2(n)⊕Z/ε3(n) is generated by x3
1 of order ε2(n) and z1 of order ε3(n).

8. e3x1 = 0.

9. If n ≥ 5, H10(BPUn;Z) ∼= Z⊕Z⊕Z/ε2(n)⊕Z/ε3(n) is generated by e2e3, e5 of order infin-

ity, y2,1 of order ε2(n) and z2 of order ε3(n). In the exceptional cases n < 5, the assertion

holds, with the absence of monomials involving ei for i > n and their corresponding direct

summands Z.

10. e2x
2
1 = y2,1 when n = 4l + 2, and e2x

2
1 = 0 otherwise.

Theorem 0.0.1 provides enough information for the study of the topological period-index

problem, for CW-complexes of dimension less than or equal to 8, which is the subject of Chapter

2. For those of dimension 6, the problem was solved by B. Antieau and B. Williams in (1).

As can be easily read from Theorem 0.0.1, in degrees ≤ 5, where the computation is done

degree-wise in (1), there is no non-trivial cup product, whereas in degree 6, non-trivial cup

products begin to occur. Another way to verify this fact is through the (11), section 4.

In the case n = 4l + 2, The Z/2-module structure of H∗(BPUn;Z/2) was studied by A.

Kono and M. Mimura in their paper (25). We compare their results with Theorem 0.0.1 and

show that they agree, as they ought to.

Consider the short exact sequence of Lie groups as follows

1→ S1 → Un → PUn → 1.
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Applying the classifying space functor B to it, we obtain the following fiber sequence

BS1 → BUn → BPUn.

Notice that BS1 is a model for the Eilenberg-Mac Lane space K(Z, 2), which is homotopy

equivalent to ΩK(Z, 3). This fiber sequence can be shifted to the following one:

BUn → BPUn → K(Z, 3). (1.1.1)

Let UE∗,∗∗ be the integral cohomological Serre Spectral Sequences induced by (1.1). This is

the main object of interest in this chapter.

We compare UE∗,∗∗ with two other Serre spectral sequences KE∗,∗∗ and TE∗,∗∗ , which are

induced by the well known fiber sequence K(Z, 2) → ∗ → K(Z, 3), and BTn → BPTn →

K(Z, 3), respectively. Here ∗ is a contractible space; Tn and PTn are the maximal tori of Un

and PUn respectively.

Section 2 contains an outline and a summary of main results of exp. 2 to exp. 11 of (14),

which completely determined the homology, and consequently the cohomology of Eilenberg-Mac

Lane spaces of Abelian groups of integral and mod p coefficients for any prime p. This is the

cornerstone of the study of the differentials of the Serre spectral sequences considered in this

chapter.

In Section 3, we follow (14), or Section 2, to construct an analog of the first fiber sequence

mentioned above in the category of chain complexes of Abelian groups. In particular, we obtain
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algebraic models for K(Z, 3), denoted by A(3), and a spectral sequence Ẽ∗,∗∗ such that Ẽs,t2
∼=

Hs(A(3);Ht(K(Z, 2);Z)). In Section 4, we apply an argument on homology suspension to prove

that this spectral sequence is isomorphic to KE∗,∗∗ , the Serre spectral sequence associated to

K(Z, 2)→ ∗ → K(Z, 3), after E2-page.

In Section 5 we compare UE∗,∗∗ , TE∗,∗∗ with KE∗,∗∗ to give all the differentials of TE∗,∗∗ and

consequently a considerable amount of the differentials of UE∗,∗∗ , which enable one to compute

Hk(BPUn;Z), at least in the range relevant to Theorem 0.0.1.

In Section 6 we make some remarks on the Theorem 0.0.1, in particular compare it with the

result of A. Kono and M. Mimura, and consider the Z/2-algebra structure of H∗(BPUn;Z/2).

We also consider the p-local cohomology of BPUn.

In the last three sections we apply the apparatus set up in Section 5 to prove Theorem 0.0.1.

1.2 Preliminary on Multiplicative Constructions

This section is a condensed and slightly verified version of exp. 2-11 of (14). The author

makes no claim of originality to materials in this section. As in the introduction, all DGA’s

involved are graded-commutative and augmented over the base ring R, which is either Z or Z/p

for some prime p. These conditions are slightly stronger then that in Cartan’s original work,

but do no harm to our application and make considerable simplification.

Definition 1.2.1. A multiplicative construction is a triple (A,N,M) of DGA’s over a base ring

R such that

1. As a graded A-module, M = A⊗R N .

2. The DGA structure of N is given by N = R⊗AM where A acts on R by augmentation.
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An acyclic multiplicative construction is one such that M is acyclic.

Remark 1.2.2. A (resp. N) is a sub-DGA of M via a 7→ a⊗ 1 (resp. n 7→ 1⊗ n). We will use

this fact implicitly.

Example 1.2.3. Let A be a DGA, and η be its augmentation. The bar construction of A is

a multiplicative construction (A,B(A),B(A)) where the DGA’s B(A) and B(A) are defined as

follows:

1.

B(A) =
∑
k≥0

A⊗R A⊗k;B(A) =
∑
k≥0

A⊗k.

By convention A⊗0 = R. For simplicity the element a⊗ a1 ⊗ · · · ⊗ ak of B(A) is denoted

by

a[a1| · · · |ak]

and

1 · [a1| · · · |ak] = [a1| · · · |ak].

2. The degree is defined by

deg(a[a1| · · · |ak]) = k + deg(a) + deg(a1) + · · ·+ deg(k)

and the length of a[a1| · · · |ak] is defined to be deg([a1| · · · |ak]). We define a bi-degree on

B(A) by saying that a[a1| · · · |ak] has bi-degree (s, t) if deg(a) = s, deg([a1| · · · |ak]) = t.
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The degree of a[a1| · · · |ak] is obviously s+ t. Let FB be the filtration induced by the first

entry s of this bi-degree.

3. A chain map s : B(A)→ B(A) of degree one is defined as follows:

s(a[a1| · · · |ak]) = [a|a1| · · · |ak]s(1) = 0

4. The differential of B(A) is defined by induction on k as follows:


d([a]) = a · 1− [d(a)]− η(a) · 1

d([a1| · · · |ak]) = a1[a2| · · · |ak]− sd(a1[a2| · · · |ak]), k ≥ 2

and the differential of B(A) is induced by the above.

5. B(A) has a product structure induced by that of A, sometimes called the shuffle product,

which makes B(A) a DGA with respect to the differential defined above.

It is obvious and proved in Exp.3 of (14) that s is a chain homotopy between the identity of B(A)

and the augmentation η. We can iterate this procedure to construct inductively Bn+1(A) =

B(B
n
(A) and B

n+1
(A) = B(B

n
(A)) In the case A = R[Π](concentrated in degree 0) where Π

is an Abelian group, (22) implies H∗(B
n
(R[Π])) ∼= H∗(K(Π, n)).
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Remark 1.2.4. By (22) H∗(B
n
(R[Π])) ∼= H∗(K(Π, n);R). Later we will define a filtration on

B(B
n
(R[Π]) such that its associated (cohomological) spectral sequence coincides with the one

associated to the Serre Spectral sequence associated to the fiber sequence

K(Π, n− 1)→ ∗ → K(Π, n)

We proceed to introduce the operations on an acyclic multiplicative construction (A,N,M)

with base ring R, following section 6 to 12 of (14). Let dA, dN , dM be the differentials of A,N

and M respectively. Furthermore, we assume that there are augmentations εA, εN , εM from

A,N,M respectively, to the base ring R. The subscripts will be omitted whenever there is no

risk of ambiguity.

Definition 1.2.5. Assume that the homomorphism A → M : a 7→ a ⊗ 1 is injective. Let

α ∈ Hk(A) be represented by a ∈ KerdA. Since M is acyclic, there is some x ∈ M such that

dM (x) = a. Passing to N , we obtain an element x̄ = 1⊗ x ∈ A⊗RM ∼= N . x̄ is easily verified

to be a cycle in N . The homology class {x̄} ∈ Hk+1(N) is therefore called the suspension of

the homology class α ∈ Hk(A), denoted by σ(α). It is easy to verify that [x̄] is independent

of the choice of a or x and σ : Hk(A) → Hk+1(N) is a well defined homomorphism of graded

Abelian groups of degree 1.

Example 1.2.6. Let (A,N,M) = (A,B(A),B(A)), then the suspension can be realized by the

homomorphism A→ B(A), a 7→ [a]. Notice that the presence of the bracket lifts the degree by

1.
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Remark 1.2.7. This example gives an alternative description of the homology suspension which

is a homomorphism Hk(ΩX)→ Hk+1(X) for a topological space X, which will be discussed in

section 4.

Definition 1.2.8. Let A,N,M have characteristic a prime number p. Define the following

R-submodule of degree 2q of A by

pA2q = {a ∈ A2q|dA(a) = 0, ap = (ε(a))p, or equivalently (a− ε(a))p = 0}.

Take x ∈M2q+1 such that dM (x) = a−ε(a). Then we have dM ((a−ε(a))p−1x) = (a−ε(a))p = 0.

Now take y ∈M2pq+2 such that d(y) = (a− ε(a))p−1x. Passing to N we define the transpotence

ψ(a) = ȳ ∈ H2pq+2(N).

Notice that ψ : pA2q → H2pq+2(N) is not necessarily a homomorphism, even of Abelian

groups, and does not necessarily pass to homology. However we have the following

Proposition 1.2.9. (H. Cartan, Proposition 5, exp. 6, (14)) All notations are as in definition

1.2.8. Suppose that

1. ap = 0, for all a ∈ A2q, and

2. b · dA(bp−1) is in the image of dA, for all b ∈ A2q+1.

Then ψ passes to homology to define a map ϕ : H2q(A)→ H2pq+2(N).

This ψ is is again not necessarily additive. But in the case that interests us, we have the

following
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Proposition 1.2.10. (H. Cartan, Theorem 3, exp. 6, (14)) Let A be a commutative DGA

concentrated in degree 0, over a base ring R of characteristic p, a prime number. Then ψ :

pA → H2(B(A)) is additive when p is odd. For all n ≥ 1 and q ≥ 1, the transpotence

ϕ : H2q(B
n
(A))→ H2pq+2(B

n+1
(A)) induced by ψ is well defined, and if p is odd, it is additive

with kernel containing all the decomposable elements of H2q(B
n
(A)).

Definition 1.2.11. For A a graded commutative, a divided power operation on A is a collection

of maps γk : A→ A for all integers k ≥ 0, such that for any x, y ∈ A they satisfy the following:

1. γ0(a) = 1, γ1(a) = a,degγk(a) = kdega.

2. γk(x)γl(x) =
(
k+l
k

)
γk+l(x).

3. (Leibniz rule) γk(x+ y) =
∑

i+j=k γi(x)γj(y).

4.

γk(xy) =


0,deg(x), deg(y) are odd, k ≥ 2,

xkγk(y), deg(x), deg(y) are even,deg(y) ≥ 2.

When the characteristic of R is 2, we have in addition, for k ≥ 2,

γk(xy) =


0,deg(x),deg(y) > 0,

xkγk(y), deg(x) = 0.

5. γk(γl(x)) =
(

2l−1
l−1

)(
3l−1
l−1

)
· · ·
(
kl−1
l−1

)
γkl(x). If in addition, A is a DGA with differential d,

then we require
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6. d(γk(x)) = γk−1(x)d(x) for k ≥ 1.

A graded commutative algebra with a divided power operation is called a divided power algebra.

A map of divided power algebras is a homomorphism of graded algebras compatible with the

divided power operation.

Remark 1.2.12. We do not require A to have a differential, since we often wish to define a

divided power operator on homology of a DGA, rather than the DGA itself.

Example 1.2.13. The prototype of a divided power algebra is PR(y), which, as a graded R-

algebra, is generated by element γk(y) for all k ≥ 1 modulo the relations imposed by definition

1.2.11. Here y is of degree 2q for any positive integer q. By (4) of definition 1.2.11, we have

k!γk(y) = yk. In fact, when R is torsion free, PR(y) is isomorphic to the polynomial algebra

R[y] adjoining all yk

k! = γk(y).

On the other hand, if R = Z/p where p is a prime number, then (4) of definition 1.2.11

implies that yp = p!γp(y) = 0. Furthermore, for k = k0 + k1p + k2p
2 + · · · + krp

r, where

0 ≤ ki < p − 1, i = 0, 1, · · · , r, we have γk(y) =
∏

0≤i<r γki(γpi(y)) = γpi(y)/ki!. In fact, as a

graded Z/p algebra

PZ/p(y) ∼=
⊗
k≥0

Z/p[γpk(y)]. (1.2.1)

A detailed discussion on divided power algebras over Z/p, including the proofs of the state-

ments above, can be found in section 7, exp. 7 of (14).

Example 1.2.14.



20

1. Let M be a free graded R-module generated by elements in odd degrees. Then we can

form the free exterior E(M) over a given set of generators and take the trivial divided

power operations such that γ0 is the constant map on to 1 ∈ R, γ1 is the identity, and γk

is zero for all k > 1.

2. Let M be a free graded R-module generated by a set {ei} of elements. If R has character-

istic other than 2, we require ei to have even degree. Then we can form the the universal

symmetric algebra S(M) which has the underlying graded R-module
∑

i≥0M
⊗i, with

M⊗0 = R in degree 0, and with a structure of DGA such that for any divided power

algebra A, an R-linear map M → A can be extended uniquely to a map of divided power

algebra S(M)→ A.

The product on S(M) is shuffle product similar to that of the reduced bar construction.

In particular eki = k!ei⊗· · ·⊗ei with k copies of ei’s on the righthand side of the equation.

There is a power operation {γk}k on S(M) determined by γk(ei) = ei ⊗ · · · ⊗ ei with k

copies of ei and the axioms in Definition 1.2.11.

3. Let A be a DGA and a ∈ A. Then [a] ∈ B(A), and the shuffle product [a]k = k![a| · · · |a]

with k copies of a on the righthand side of the equation. We can define a divided power

operation on B(A) similar to that of S(M), by requiring γk([a]) = [a| · · · |a] with k copies

of a in the bracket. For more details see section 4, exp. 8 of (14).

Example 1.2.15. Let A and A′ be DGA’s with divided power operations. Then (3) and (4) of

Definition 1.2.11 gives a unique way to extend the divided power operations to A⊗A′, a DGA
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with differential determined by those of A and A′ via the Leibniz rule. For details see Theorem

2, exp. 7 of (14).

Based on Example 1.2.14 and Example 1.2.15 we have the following

Theorem 1.2.16 (H. Cartan, Theorem 2, exp. 8, (14)). Let A be a graded commutative algebra

with a divided power operation as in Definition 1.2.11 and M a free graded module. Then there

is a divided power algebra U(M) such that any homomorphism of graded R-modules f : M → A

is can be extended uniquely to a map of divided power algebras U(M)→ A.

The three operations, the suspension, the transpose, and the divided power operation, as

described above, are enough to describe the homology of K(Π, n) with coefficients in Z or Z/p,

at least when Π is a finitely generated Abelian group. We start with the definitions of words

and their heights and degrees. From now on we fix a prime number p.

Definition 1.2.17. We give parallel definitions in the cases when p is odd and p = 2.

1. By a word we mean a sequence consists of the three symbols σ, ϕp, and γp when p is odd,

or σ, γ2 when p = 2, where repetition is allowed. The height of a word α is the total

number of σ and ϕp in α, counting repetition. We take the degree of the empty word to

be 0 and inductively define the degree of the words σα, ϕpα and γpα as follows:



deg(σα) = deg(α) + 2,

deg(ϕpα) = 2pdeg(α) + 2,

deg(γpα) = pdeg(α).

(1.2.2)
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2. When p is odd, an admissible word, is a word α such that (i) α is non-empty and starts

and ends with σ or ϕp, and (ii) for every ϕp and γp appeared in α, there are even number

of copies of σ on its righthand side. An admissible word is of type 1 if it ends with σ, and

type 2 if it ends with ϕp.

3. When p = 2, an admissible word, is a word α that starts and ends with σ. α is of type 2

if it ends with γ2σ, and of type 1 otherwise.

The words consisting of σ, ϕp and γp are also called p-words.

A word can be regarded as the compose of the sequence of operations σ, ϕp and γp, in the

obvious manner. Let Z[Π] be the group ring of a finitely generated Abelian group Π, viewed

as a DGA concentrated in degree 0 and with a trivial differential. Then H∗(Z[Π]) ∼= Z[Π]. The

alert reader will find that, an admissible word α is a well defined compose of operations on

Z[Π], with image in Hdeg(α)(Bn(Z[Π])) ∼= Hdeg(α)(K(Π, n)), where n is the height of α. In fact

all homology classes are generated this way, as we will see soon.

Definition 1.2.18. Let Π be a finitely generated Abelian group, and let pΠ be the subgroup

of Π of elements of order infinity or a power of p. We write Π/(pΠ) =
∏
i Π′i and pΠ =

∏
j Π′′j

as the decomposition of Π/(pΠ) and pΠ into direct products of cyclic groups of order infinity

or a power of p.

Fix a positive integer n. Let M (n) be the free graded R-module generated by αi of degree

deg(α) for every admissible word α of type 1 with height n and Π′i, and α′j of degree deg(α′)
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for every admissible word α′ with height n of type 2. Let U(M (n)) be as in Theorem 1.2.16.

Notice in particular that U(M (0)) ∼= Z/p[Π].

In the following theorem we do not distinguish a word and the compose of operations that

it represents.

Theorem 1.2.19 (H. Cartan, Théorème fondamental, exp. 9, (14)). With the notations as

above, let w′i, w
′′
j be generators of Π′i,Π

′′
j respectively. Take R = Z/p, where p is an odd prime

number. Let f (n) : M (n) → H∗(K(Π, n);Z/p) be the homomorphism of Z/p-modules taking αi

(resp. α′j) to α(w′i) (resp. α(w′′j )). Its unique extension to U(M (n)), f̃ (n) given by Theorem

1.2.16, is an isomorphism of divided power algebras.

We will give a sketch of proof of Theorem 1.2.19 since the idea is relevant to our application.

To do so we need the following theorems.

Theorem 1.2.20 (H. Cartan, Theorem 2, exp.2, (14)). Let f : A→ A′ be a morphism of DGA’s

over R. Let M (resp. M ′) be an acyclic chain complex over R with a graded A (resp.A′)-module

structure. Let I (resp. I ′) be the kernel of the augmentation of A (resp. A′). Then there is a

morphism of chain complexes g : M/IM → M ′/I ′M ′ compatible with f in the obvious sense.

The induced morphism H∗(g) is independent of the choice of g. Moreover, if f is a weak

equivalence, then so is g.

Theorem 1.2.21 (H. Cartan, Theorem 5, exp.4, (14)). Let (A,N,M) and (A′, N ′,M ′) be two

multiplicative constructions. Let Ñ ′ be a R-subalgebra of M containing N such that d : Ñ ′k+1 →

Ker(dk) is a degree-wise isomorphism of R-modules for all k ≥ 0. Here d0 = η. In particular,
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M ′ is acyclic. Let f : A→ A′ be a map of DGA’s. Then there is a unique map g : M →M ′ of

DGA’s restricting to f , such that g(N) ⊂ Ñ ′.

Sketch of proof of Theorem 1.2.19. By Künneth formula it suffice to consider the case that Π is

a cyclic group with a generator w. We proceed to show that there is a multiplicative construction

(U(M (n)), U(M (n+1)), L) with L acyclic.

One can easily show that an admissible word α of height n+ 1 is of the form

1. σα′ where α′ is of height n and odd degree, or

2. σγpkα
′ or ϕpγpkα

′ where k ≥ 0 and α′ is of height n and even degree.

The base case where n = 0 is easy. Let L = U(M (n))⊗Z/p U(M (n+1)) as a graded Z/p-algebra,

and consider U(M (n)) and U(M (n+1)) as its subalgebras in the obvious manner.

In the first case as above, let x = α′(w) ∈ U(M (n)). Then the free exterior algebra EZ/p(x)

is a subalgebra of U(M (n). Let y = α(w) = σα′(w) ∈ U(M (n+1)), and we have the subalgebra

PZ/p(y) of U(M (n+1)). Define the differentials of x and y in L by dL(x) = 0 and dL(y) = x

together with the axioms in Definition 1.2.11. Then the EZ/p(x)⊗ PZ/p(y) is acyclic.

In the second case, let x = α′(w) ∈ U(M (n)), yk = σγpk(w) and zk = φpγpk(w) for all k ≥ 0.

Define their differentials in L by dL(x) = 0, dL(yk) = x and dL(zk) = xp−1yk. Then one can

show that

PZ/p(x)⊗
⊗
k≥0

EZ/p(yk)⊗
⊗
k≥0

PZ/p(zk)

is acyclic.
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By Theorem 1.2.20 and Theorem 1.2.21 one can inductively prove the statement, the base

case where n = 1 being standard homological algebra.

Remark 1.2.22. This argument fails for p = 2, in which case ϕ is not additive.

For a free graded R-module M , recall the graded R-algebra S(M) introduced in Example

1.2.14, (2). We take M (n) as in Definition 1.2.18. and f (n) as in Theorem 1.2.19. Notice that

the constructions apply to p = 2. The analog of Theorem 1.2.19 in the case where p = 2 is the

following:

Theorem 1.2.23 (H. Cartan, Théorème fondamental, exp. 9, (14)). f (n) : M (n) → H∗(K(Π, n);Z/2)

extends to f̃ (n) : S(M (n))→ H∗(K(Π, n);Z/2) which is an isomorphism of divided power alge-

bras.

The proof is similar to that of Theorem 1.2.19.

We proceed to consider integral homology of K(Π, n). Recall the transpotence ψ de-

fined in Definition 1.2.8. For an arbitrary integer l, we have a similar operation ψl : lΠ →

H2(K(Π, 1);Z/l) where lΠ is the subgroup of Π of l-torsion elements. ψl satisfies the following

condition.

Proposition 1.2.24. Let δl : H2(K(Π, 1);Z/l)→ H1(K(Π, 1);Z) be the Bockstein homomor-

phism and σ : lΠ→ H1(K(Π, 1);Z) be the suspension. Then σ = δlψl.

For details see section 1, exp. 11 of (14). In the case of integral cohomology, we extend the

definition of an admissible p-word as follows.
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Definition 1.2.25. A p-word is a sequence consists of the symbols σ, ϕp, γp, and ψpλ , for some

positive integer λ. An admissible p-word is a word satisfying (2) of Definition 1.2.17 except

that it can end with ψpλ . ψpλ is of height 1 and degree 2. The degree of a p-word is therefore

given as in (1) of 1.2.17. Notice we do not make the exception when p = 2.

In what follows we abuse notations to let words denote elements of a DGA rather then

homology classes, as we did earlier. Let Π =
∏
k Πk be the decomposition of Π into cyclic

groups of order infinity or a power of a prime, and let wk be a generator of Πk. Also we recall

the the decompositions Π/(pΠ) =
∏
i Π′i and pΠ =

∏
j Π′′j as well as the generators {w′i}, {w′′j }

as in Definition 1.2.18 and Theorem 1.2.19. We let E(a; k) or P (; k) denote exterior algebras

or divided power algebras over Z generated by a single element a of degree k, suppressing the

ring of coefficients, and consider them as graded Z-algebras. We fix a positive integer n, and

construct a collection of DGA’s.

1. For each wk of order infinity, take the DGA E(σn(wk);n) with trivial differential when n

is odd, or P (σn(wk);n) when n is even. We denote this DGA by A(n)0.

2. For each wk of order pλ for some prime p and positive integer λ, If n is odd take

E(σn(wk);n)⊗ P (σn−1(ψpλ)(wk);n+ 1), or P (σn(wk), n)⊗E(σn−1(ψpλ)(wk), n+ 1). In

either case we define differential

d(σn−1ψpλ)(wk)) = (−1)n−1pλσn(k), d(σn(wk)) = 0

when n is even.
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3. Let α′ be an admissible p-word of height n − l − 1 and degree q. Consider the pair of

p-words σlϕpα
′ and σl+1γpα

′. If n is odd, for each w′i take E(σl+1γpα
′(w′i); pq + l + 1)⊗

P (σlϕpα
′(w′i); pq + l + 2). If n is even, for each w′i take P (σl+1γpα

′(w′i); pq + l + 1) ⊗

E(σlϕpα
′(w′i), pq + l + 2). In both cases we take differential

d(σlϕpα
′(w′i)) = (−1)n−1p(σl+1γpα

′(w′i)), d(σl+1γpα
′(w′i)) = 0.

4. Let α′, σlϕpα
′ and σl+1γpα

′ be as above. If n is odd, for each w′′j take E(σl+1γpα
′(w′′j ); pq+

l+ 1)⊗P (σlϕpα
′(w′′j ); pq+ l+ 2). If n is even, for each w′′j take P (σl+1γpα

′(w′′j ), pq+ l+

1)⊗ E(σlϕpα
′(w′′j ); pq + l + 2). In both cases we take differential

d(σlϕpα
′(w′′j )) = (−1)n−1p(σl+1γpα

′(w′′j )), d(σl+1γpα
′(w′′j )) = 0.

We take all the DGA’s constructed in (2), (3), (4) and denote their tensor product by A(n)p.

Finally we take A(n) = A(n)0 ⊗Z
⊗
A(n)p. It is easily seem that there is a homomorphism of

divided power algebra f : H∗(A(n))→ H∗(K(Π, n);Z) taking the class represented by the word

α(k) (resp. α(i), α(j) to the homology class given by the operations α(wk), (resp. α(w′i, α(w′′j ).

The following theorem from (14) is stated in a more modern form than the original.

Theorem 1.2.26 (H. Cartan, Theorem 1, exp. 11, (14)). f : H∗(A(n)) → H∗(K(Π, n);Z) is

an epimorphism. For any prime p, the restriction f : H∗(A(n)0 ⊗A(n)p)→ H∗(K(Π, n);Z) is

a p-local isomorphism.
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Remark 1.2.27. The kernel of f is not always trivial. Indeed, when n = 2 and Π = Z/2 with a

generator w1, we take xk = ϕ2γ2kψ2(w1) for k ≥ 1, yk = σγ2kψ2(w1) for k ≥ 0, and z = σ2(w1).

Consider the DGA over Z

A =
⊗
k≥1

P (xk; 2k+1 + 2)⊗
⊗
k≥0

E(yk; 2k+1 + 1)⊗ P (z; 2)

with d(xk) = −2yk, d(yk) = 0 for k ≥ 1, d(y0) = −2z and d(z) = 0. In particular we have

d(y0γ2(z)) = −2zγ2(z) = −6γ3(z),

which implies that the homology class γ3(z) is of order 6, but by Theorem 1.2.19, H∗(K(Z/2, 2);Z)

has only 2-primary elements. Hence 2γ3z 6= 0 is in the kernel of f since it is a 3-torsion. How-

ever, as we see in the next section, when Π = Z we do have A(3) ∼= H∗(K(Z, n);Z).

1.3 A Chain Complex Model for K(Z, 3)

The previous section provides a method to calculate the integral homology of K(Π, n)

for any positive integer n and Π a finitely generated Abelian group, in particular K(Z, 3).

However, for the purpose of this chapter we need information on the level of chain com-

plex which is not necessarily revealed by homology. Therefore we proceed to construct an

acyclic multiplicative construction (A(2), A(3),M(3)) from which there is an isomorphism to

(B
2
(Z[Π]),B

3
(Z[Π]),B3(Z[Π])), where Π = Z. In particular, we have

H∗(A(3);Z) ∼= H∗(K(Π, 3);Z), H∗(A(3);Z) ∼= H∗(K(Π, 3);Z).
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Throughout the rest of this section, we write ER(x; k), PR(y; l), E(x; k), PR(y; l) for exterior

algebras and divided power algebras with coefficients in a ring R, or Z, and with one generator

in a specified degree. Other than this, no attempt is made to keep notations in

consistency with those in Section 2. All tensor products are with respect to the base ring

Z unless otherwise specified.

By Theorem 1.2.26 we see that we should take A(2) = P (u, 2) where u corresponds to the

operation σ2, and A(3) to be the following

A(3) =
⊗
p

[⊗
k≥0

P (ap,k; 2pk+1 + 2)⊗
⊗
k≥1

E(bp,k; 2pk + 1)
]
⊗ E(b1; 3)

where ap,k = ϕpγpkσ
2(w), bp,k = σγp,kσ

2(w), and b1 = σ3(w) for a generator w of Z, and p

ranges over all prime numbers. The differential is defined by

d̄(ap,k) = pbp,k+1, d̄(bp,k) = 0, d̄(b1) = 0.

Notice that A(2) is torsion free, and that for each p,
⊗

k≥0 P (ap,k; 2pk+1+2)⊗
⊗

k≥1E(bp,k; 2pk+

1) has no p′-torsion for any prime p′ 6= p. Therefore the epimorphism in Theorem 1.2.26 is an

isomorphism, for n = 2, 3.

We proceed to take M(3) = A(2)⊗Z A(3) as a graded algebra, and define its differential d

in such a way that it makes M(3) acyclic, and when pass to A(3) = Z ⊗A(2) M(3), it induces

d̄, the differential of A(3). We will use the sketch of proof of Theorem 1.2.19 as our guide.

Then we define a filtration on M(3) and in Section 4 we prove that the spectral sequence
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induced by this differential is the Serre spectral sequence associated to the fiber sequence

K(Z, 2)→ ∗ → K(Z, 3).

Lemma 1.3.1 (Lucas’ Theorem). Let p be a prime number, k =
∑n

r=0 krp
r, and l =

∑n
r=0 lrp

r

such that 0 ≤ kr, lr ≤ p− 1 are integers, and kn 6= 0. Then

(
k

l

)
≡

n∏
r=0

(
kr
lr

)
mod p.

Here
(
i
j

)
= 0 for i < j.

Proof. For an independent variable w we have

(1 + w)k =
n∏
r=0

(1 + w)krp
r ≡

n∏
r=0

(1 + wp
r
)kr mod p.

The result is verified by comparing the coefficient of wl on both sides of the equation above.

As will be made clear in Section 4, for a prime p and an integer k ≥ 0, γpk+1(u) as an

element of the E2 page of the Serre spectral sequence mentioned above, is in the image of

the transgression, i.e., differentials with domain in the bottom row and image in the leftmost

column. We write γpk+1(u) = up
k+1

/pk+1! = up
k+1

/[(pk+1 − 1)!pk+1]. The following lemma

says, that in the Serre spectral sequence up
k+1/[(pk+1 − 1)!pi is killed by the differential of

bp,iγpk+1−pi(u) successively as i ranges over 1, 2, · · · , k + 1.
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Lemma 1.3.2. For a prime p and 1 ≤ i ≤ k+ 1 the greatest common divisor of (pk+1−1)!
(pk+1−pi)! and

pi!
pi−1 is (pi − 1)!. In particular there are integers {λp,k+1

i , µp,k+1
i }ki=0 such that

1

(pk+1 − 1)!pi
= λp,k+1

i

1

(pk+1 − 1)!pi−1
+ µp,k+1

i

1

(pk+1 − pi)!pi!
.

Proof. We have

pi!

pi−1
=

pi

pi−1
[(pi − 1)!] = p[(pi − 1)!];

(pk+1 − 1)!

(pk+1 − pi)!
=

(
pk+1 − 1

pi − 1

)
[(pi − 1)!]

So

(pi − 1)!|gcd{ p
i!

pi−1
,

(pk+1 − 1)!

(pk+1 − pi)!
}

On the other hand, pk+1 − 1 = (p− 1)(1 + p+ · · ·+ pk), pi = (p− 1)(1 + p+ · · ·+ pi−1). By

Lemma 1.3.1, we have (
pk+1 − 1

pi − 1

)
≡
(
p− 1

p− 1

)i−1

= 1 mod p,

in particular

gcd{
(
pk+1 − 1

pi − 1

)
, p} = 1,

Hence

gcd{ p
i!

pi−1
,

(pk+1 − 1)!

(pk+1 − pi)!
}|(pi − 1)!,

and the proof is completed.

Definition 1.3.3. We define M(3) as follows:
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1. Let M(3)k be the kth level of

A(2)⊗Z A(3). (1.3.1)

2. By Definition 1.2.11 it is enough to define the differential of M(3) by the following:

d(u) = 0; d(b1) = u; d(bp,k) = γpk(u);

d(ap,k) = (pbp,k+1 − Λp,k+1
0 b1γpk+1−1(u))−

k∑
i=1

Λp,k+1
i bp,iγpk+1−pi(u)

where {Λp,k+1
i }ki=0 ⊂ Z are defined as follows.

3. Fix a set of integers {λp,k+1
i , µp,k+1

i }ki=0 as in 1.3.2. Define

(a)

Λp,k+1
i = λp,k+1

1 · · ·λp,k+1
k , if i = 0.

(b)

Λp,k+1
i = µp,k+1

i λp,k+
i+1 · · ·λ

p,k+1
k , if i = 1, · · · , k − 1.

(c)

Λp,k+1
i = Λp,k+1

k = µp,k+1
k , if i = k.

1.3.2 ensures that d is indeed a differential.
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4. We define a bi-degree on M(3) as follows. Let B ⊗ C be a monomial in M(3) such that

B ∈ A(3); C ∈ A(2).

Then the bi-degree of B ⊗ C is (s, t) = (deg(B), deg(C)). Clearly the total degree agree

with the usual degrees, and s induces a filtration FK on M(3).

Remark 1.3.4. Here is a word about the unfortunate coefficients appeared in (2) and (3) as

above. To obtain the correct spectral sequence with respect to the filtration FK , we have to take

d(ap,k) = pbp,k+1mod F2pk+1+1
K M(3). To ensure d2 = 0, the differential of the remaining terms

in F2pk+1+1
K M(3) has to be −d(pbp,k+1) = up

k+1
/[(pk+1 − 1)!pk]. The coefficients Λp,k+1

k , µp,k+1
k

are designed so that up
k+1

/[(pk+1−1)!pi] is killed by successive terms as i ranges over 1, 2, · · · , k.

The following result plays a central role in this section.

Theorem 1.3.5. M(3) is acyclic.

The following lemma is from (14), which were used in the proof of Theorem 1.2.19.

Lemma 1.3.6. For any integer q and a prime number p the following DGA over Z/p is acyclic:

Pp(a; 2pq + 2)⊗ Ep(b; 2q + 1)⊗ Z/p[c; 2q]/cp

with differential given by

d(c) = 0; d(b) = c; d(γl(a)) = cp−1bγl−1(a), l ≥ 1.
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Proof. In fact, a chain homotopy can be defined on linear generators as follows:

c→ b; cp−1bγl−1(a)→ γl(a), l ≥ 1

and all the other linear generators are sent to 0.

Lemma 1.3.6 immediately generalize to the following

Lemma 1.3.7. Let M(3)[p] be the DGA

⊗
k≥0

P (ap,k; 2pk+1 + 2)⊗
⊗
k≥1

E(bp,k; 2pk + 1)⊗ E(b1; 3)⊗ P (u; 2)⊗ Z/p

with differential d[p] defined as follows:

d[p](u) = 0; d[p](b1) = u; d[p](bp,k) = γpk(u);

d[p](γl(ap,k)) = −Λp,k+1
k bp,kγpk+1−pk(u) if k > 0,

d[p](γl(ap,0)) = −Λp,1k b1γp−1(u).

Then M(3)[p] is acyclic.

Proof.

M(3)[p] =
⊗
k≥0

P (ap,k; 2pk+1 + 2)⊗ E(bp,k; 2pk + 1)⊗ Z[γpk(u)]/(γpk(u)p)⊗ Z/p,
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where bp,0 = b1. It is a tensor product of DGA’s of the form in Lemma 1.3.6 indexed by k, and

the result follows.

Proof of Theorem 1.3.5. We proceed to show that M(3)⊗Z/p is acyclic for all primes p. Since

M(3) is a degree-wise finitely generated free Abelian group, this, together with the Künneth

formula porves the theorem.

Let (Ẽrs,t[p], d
r
s,t) be the spectral sequence associated to the filtration FK on M(3) ⊗ Z/p.

Then obviously E0
s,t[p] = E1

s,t[p] and d1
∗,∗ is as follows:

d(u) = 0; d(b1) = 0; d(bp,k) = 0;

d(γl(ap′,k)) =


p′γl−1(ap′,k)bp′,k+1, if p′ 6= p

0, if p′ = p

for any prime p′. Therefore we have

Ẽ2
∗,∗[p]

∼=
⊗
k≥0

Pp(ap,k; 2pk+1 + 2)⊗
⊗
k≥1

Ep(bp,k; 2pk + 1)⊗ Ep(b1; 3)⊗ Pp(u; 2)

∼=
⊗
k≥0

[
Pp(ap,k; 2pk+1 + 2)⊗ Ep(bp,k; 2pk + 1)⊗ Z/p[γpk(u)]/γpk(u)p

] (1.3.2)
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where bp,0 = b1. We proceed to consider all the higher differentials on Ẽ2
∗,∗[p]. Notice that all

the non-trivial differentials on Pp(ap,k; 2pk+1 + 2)⊗Ep(bp,k; 2pk + 1)⊗ Z/p[γpk(u)]/γpk(u)p are

the following:

d2(pk+1−pk)+1(ap,k) = Λp,k+1
k bp,kγpk(u);

d2(pk+1−pk)+1(bp,k) = γpk(u);

d2(pk+1−pk)+1(γpk(u)) = 0.

By definition Λp,k+1
k = µp,k+1

k . By Lemma 1.3.2, pλp,k+1
i + µp,k+1

i

(pk+1−1
pi−1

)
= 1, which shows

that Λp,k+1
k = µp,k+1

k is invertible mod p.

Notice that exact same statement of the definition of the filtration FK in (4) of Definition

1.3.3 can be applied to define a filtration on M(3)[p]. A direct comparison shows that this

filtration induces a spectral sequence which is identical to Ẽ2
∗,∗[p] after the E2-page. The

theorem then follows from Lemma 1.3.7.

Remark 1.3.8. The construction of M(3) and the proof of Theorem 1.3.5 are inspired by exp.9

and exp.11 of (14).

Several corollaries can be deduced almost immediately.

Corollary 1.3.9. Let Π = Z with a generator w. There is a morphism of DGA’s g : M(3)→

B3(Z[Π]) that restricts to the weak equivalence f2 : A(2)→ B
2
(Z[Π]) and f3 : A(3)→ B

3
(Z[Π]).

Moreover, g preserves the filtrations FK and FB, where the filtration FB is defined in (2) of

Example 1.2.3. In particular, when passing to homology H∗(f3)(bp,k) = σγkσ
2(w).
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Proof. Notice that as a graded divided power algebra over Z, A(2) = P (u; 2) ∼= H∗(A(2)) ∼=

H∗(B
2
(Z[Π]). Let [x] ∈ B

2
(Z[Π] represent a generator of H2(B

2
(Z[Π]). Then let f2(γk(u)) =

[x| · · · |x] with k copies of x. It follows from (3) of Example 1.2.14 that f : A(2) → B
2
(Z[Π]

is a weak equivalence. The rest follows immediately from 1.2.20 and 1.2.21. In particular the

statement about the filtrations follows from the fact that the restriction of g on A(i) is fi for

i = 2, 3. Therefore g preserves bi-degrees. The last statement about homology follows from

Theorem 1.2.26.

Corollary 1.3.10. Let Ẽ∗∗,∗ be the spectral sequence associated to the filtration FK on M(3).

Then all the higher differentials are identified by

d3(b1) = u;

d2pk+1(bp,k) = γpk(u), k ≥ 1;

dr(γi(u)) = 0, for all r, i

together with the Leibniz rule.

Proof. By Lemma 1.3.9, H∗(A(3)) is generated as an Z-algebra by bp,k for all p and k. Thus

Ẽ∗∗,∗ is generated as a Z-algebra by bp,k and γk(u). Hence the Leibniz rule applies to give all

differentials.

Figure 1 indicates several non-trivial differentials of this spectral sequence.
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Figure 1. Some non-trivial differentials of Ẽ∗∗,∗.
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We proceed to study the dual complex of M(3), namely W (3)i = Hom(M(3)i,Z). It is a

cochain complex with a Z-module structure dual to M(3). W (3) has the following Z-algebra

structure:

W (3) =
⊗
p

[⊗
k≥0

Z[yp,k; 2pk+1 + 2]⊗
⊗
k≥1

E(xp,k; 2pk + 1)
]
⊗ Z[x1; 3]⊗ Z[v; 2]/(x2

1 − y2,0),

where yp,k, xp,k, x1, v are the dual of ap,k, bp,k, b1, u, respectively.

Remark 1.3.11. It is well known and was brought to the author’s attention by B. Antieau that

W (3) cannot be an anti-commutative DGA. We can verify this by checking that the differential

d∗ does not satisfy the Leibniz rule. We slightly abuse the notations to let d denote the

differential of both M(3) and W (3). Consider v2, the dual of γ2(u). More precisely, the pairing

〈v2, ξ〉 is characterized by

〈v2, ξ〉 =


k, ξ = kγ2(u)

0, otherwise.

To find d(v2), notice that M(3)5 is generated as an Abelian group by b2,1 and b1u, on which

the differential acts as d(b2,1) = γ2(u) and d(b1u) = u2 = 2γ2(u). Since b1 and u are elements

in terms of the coproduct on M(3), the dual of b1u is x1v. Thus, the relation 〈v2, d(−)〉 =

〈d(v2),−〉 implies d(v2) = 2vx1 + x2,1 6= 2vx1, which disproves the Leibniz formula. However

the Leibniz formula is well known to hold for cohomological Serre Spectral sequences in general.
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Consider the spectral sequence Ẽ∗,∗∗ associated to the dual filtration of FK on W (3), denoted

by F. Dualization immediately gives d∗,∗1 and therefore Ẽ∗,∗2 . In particular, we have

d1(xp,k+1) = pyp,k; d1(yp,k) = d1(x1) = d1(v) = 0, k ≥ 0.

Again, these together with the Leibniz rule determine d1. Hence, Ẽ∗,∗2 is generated as a graded

commutative Z-algebra by v, x1, yp,k, k ≥ 0 modulo the relations pyp,k = 0. Dualizing 1.3.10

immediately gives us a good understanding of the higher differentials.

Corollary 1.3.12. The higher differentials of Ẽ∗,∗∗ satisfy

d3(v) = x1

dr(γi(u)) = 0, for all r, i

d2pk+1−1(pkx1v
lpe−1) = vlp

e−1−(pk+1−1)yp,k, k ≥ e, gcd(l, p) = 1

and the Leibniz rule. Here Ẽ
3,2(lpe−1)

2pk+1−1
is generated by pkvlp

e−1x1.

Figure 2 shows a low dimensional picture.

Remark 1.3.13. Corollary 1.3.12 does not exhaust the higher differentials of Ẽ∗,∗∗ . For example,

it can be shown that y2,1v
2 is a 4-cocycle such that d5(y2,1v

2) is non-trivial, whereas v2 is not

a 4-cocycle.

At this point the Z-module structure of H∗(K(Z, 3);Z) becomes manageable. In low degrees

we can even obtain the ring structure:
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Figure 2. Some non-trivial differentials of Ẽ∗,∗∗ .



42

Corollary 1.3.14. In degree less then 15, H∗(K(Z, 3);Z) is isomorphic to the following ring:

H∗(K(Z, 3)) ∼= E(x1; 3)⊗
⊗
k≥0;p

Z/p[yp,k; 2pk+1 + 2]/(x2
1 − y2,0)

where p runs over all prime numbers.

The corollary fails in higher degrees. For example, in degree 15, we have the dual of b2,2b2,3,

which is not a product of any yp,k’s. The author owes the following remark to A. Bousfield.

Remark 1.3.15. The ring structure of H∗(K(Z, 3);Z) can be understood in the following way.

It follows from the previous computation that H∗(K(Z, 3);Z) contains no element of order p2,

where p is a prime number, and it is a torsion group in degree greater then 3. Therefore,

for each prime p the p-primary component of H∗(K(Z, 3);Z) above degree 3 is image of the

Bockstein homomorphism from H∗(K(Z, 3);Z/p), a well understood Z/p-algebra.

The following technical result will prove useful in section 4.

Corollary 1.3.16. When s > 3, Ẽs,t2 is isomorphic to the direct sum
∑

r≥2B
s,t
r , where Bs,t

r =

Im{ds−r,t−r+1
r : Ẽs−r,t−r+1

2 → Ẽs,t2 }. In particular, Bs,t
r contains no nonzero element of Imd∗,∗r′

if r′ < r. Notice that there are only finitely many nonzero components of the direct sum.

Proof. The first statement is as indicated in Figure 2, which also proves the second statement

in the case s = 3.

This corollary, in plain words, asserts that in Ẽ∗,∗∗ , a subgroup generated by a monomial in

v, x1 and some yp,j is hit exactly once by the differential, which kills this subgroup.
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It is hardly a surprise to say that the spectral sequence Ẽ∗,∗∗ is the same as KE∗,∗∗ , the one

induced by the fiber sequence K(Z, 2)→ ∗ → K(Z, 3). But we cannot make the identification

just yet. This is the subject of the next section.

1.4 The Spectral Sequence and Homology Suspension

In this section we study the homology suspension to prove the following

Theorem 1.4.1. KE∗,∗∗ and Ẽ∗,∗∗ are isomorphic starting at E2-pages.

The reader interested only in the calculation of H∗(BPUn;Z) can safely skip the rest of

this section. Let Σ and Ω be the pointed suspension and loopspace functor, respectively. For

a pointed topological space X, there is a canonical map ΣΩX → X since Σ and Ω are a pair

of adjoint functors. The induced map σ : Hk(ΩX;R) ∼= Hk+1(ΣΩX;R)→ Hk+1(X;R) for any

natural number k and ring R is called the homology suspension. If X is an Abelian H-space,

then we follow (27) and consider the classifying space B(X) of X (denoted by B∞(X) in (27)),

with a canonical map X → ΩB(X), and we also use the term homology suspension to refer to

the following homomorphism:

Hk(X;R)→ Hk+1(ΣX;R)→ Hk+1(ΣΩB(X);R)→ Hk+1(B(X);R) (1.4.1)

where the last homomorphism is induced by the evaluation map ΣΩB(X) → B(X), (s, ω) 7→

ω(1 − s) where ω is a loop in B(X). The rest of the homomorphisms above are the obvious

ones from the context.
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By the discussion in Section 2 of (27), if X is an Abelian H-space with a CW-complex

structure, then so is B(X). Furthermore, By the proof of Theorem 2.3 of (27) The CW-complex

of B(X) contains ΣX as a sub-complex, and by first and second paragraph of Section 5 of (27),

the homology suspension defined by Theorem Equation 1.4.1 is identical to the following

Hk(X;R)→ Hk+1(ΣX;R)→ Hk+1(B(X);R) (1.4.2)

where the last arrow Hk+1(ΣX;R) → Hk+1(B(X);R) is induced by the composition of the

following

ΣX → ΣX, (s, x) 7→ (1− s, x),

and the inclusion ΣX ↪→ B(X).

TakeX = K(Π, n−1) for a finitely generated Abelian group Π, and take the cell-decomposition

of X such that the corresponding cellular chain complex is B
n−1

(Z[Π]). By Theorem 2.3 of

(27) there is a quasi-isomorphism

B
n
(Z[Π])→ C∗(B(X);Z),

where C∗(B(X)) is the cellular chain complex of B(X) ' K(Π, n), such that when passing

to homology, the homology suspension Equation 1.4.2 is compatible with the suspension σ :

Hk(B
n
(Z)[Π])→ Hk+1(B

n+1
(Z)[Π]). Therefore we have proved the following
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Proposition 1.4.2. Let x ∈ Hk(B
n
(Z)[Π];R), then σ(x) as in Definition 1.2.5 is the homology

suspension of x in the sense of the formula Equation 1.4.1.

We turn to the study of Serre spectral sequences. Let X → EX → BX be a fiber sequence

where X is a connected Abelian H-space, EX is contractible, and BX is the classifying space

of X. Consider the corresponding homological Serre spectral sequence with coefficients in R,

E∗∗,∗, with E2
s,t
∼= Hs(BX;Ht(X;R)). α ∈ Hs(BX;R) ∼= Es,02 is calledtransgressive if it is an

r−1 cycle, or in other workds, α ∈ Ess,0. Therefore ds(α) ∈ Es0,s−1. The differential dss,0 is called

a transgression. The following proposition follows from the section named the transgression of

Chapter 8, (28). For more details see (29).

Proposition 1.4.3. In the Serre spectral sequence above, α ∈ E2
s,0 is transgressive if and only

if it is the image of the homology suspension. Moreover, ds(α) as an element in a quotient of

Hs−1(X;R), contains the pre-image of α via the homology suspension.

It is clear from Theorem 1.2.26 that H∗(K(Z, 3);Z)) is generated as a Z-DGA by σ3(w)

and σγpkσ
2(w) for all primes p and positive integers k, where w is a generator of Π = Z. By

Proposition 1.4.3 and the Leibniz rule, they determine all the differentials of integral homological

Serre spectral sequence associated to K(Z, 2)→ ∗ → K(Z, 3). On the other hand, it is easy to

check that this spectral sequence is identical to the one induced by the filtration F on the chain

complex M(3). Therefore, the filtration F is the one associated to the Serre spectral sequence.

Hence Theorem 1.4.1 is proved.

Remark 1.4.4. The alert reader may wonder why we do not apply the cohomological version of

Proposition 1.4.3 directly to prove Theorem 1.4.1 and therefore avoid all the trouble in Section
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3. It is because the “dual” differentials of the transgressions in the cohomological Serre spectral

sequences are not transgressions anymore, and the author, unfortunately, did not find a way to

handle them in the same way as the transgressions are.

1.5 The Higher Differentials of UE∗,∗∗

In this section we identify some higher differentials of the spectral sequence UE∗,∗∗ which

make it possible to prove Theorem 0.0.1. To do so, we compare it with KE∗,∗∗ , via the following

commutative diagram:

BS1 '−−−−→ K(Z, 2) −−−−→ ∗ −−−−→ K(Z, 3)

Φ :
yBϕ

y ∥∥∥
BTn −−−−→ BPTn −−−−→ K(Z, 3)

Ψ :
yBψ

yBψ′
∥∥∥

BUn −−−−→ BPUn −−−−→ K(Z, 3)

(1.5.1)

Here ϕ : S1 → Tn is the diagonal, and ψ and ψ′ are the inclusions of the maximal tori. Then

for any compact Lie group G and its maximal torus T , H∗(BG;Q) is the sub-Q-algebra of

H∗(BT ;Q) stable under the action of the Weyl group. In our case, we have

H∗(BPUn;Q) ∼= Q[{vi − vj}]W ∼= H∗(BPTn;Q)W, (1.5.2)

where W is the Weyl group, acting on {vi} by permutation. (See (18).)

Let v be the multiplicative generator ofH∗(BS1;Z), vi be the ith copy of v inH∗(B(S1)n;Z) ∼=

H∗((BTn;Z), and ck ∈ H∗(BUn;Z) be the kth universal Chern class. Moreover let σk ∈

H∗(BTn;Z) be the kth elementary polynomial in v1, · · · , vn. In this case we have the splitting
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principal, which asserts that the above argument applies to integral cohomology ((30)). More

precisely, it says that Bψ∗ is the inclusion taking ck to σk, or in other words,

Bψ∗(
n∑
k=0

ckw
k) =

n∏
i=1

(1 + viw)

where w is a polynomial generator.

We consider the morphisms of spectral sequences induced by Φ and Ψ. Our first result is

the following

Proposition 1.5.1. The differential Td∗,∗r , is partially determined as follows:

Td∗,2tr (vtiΞ) = (Bρi)
∗K(d∗,2tr (vtΞ)), (1.5.3)

where Ξ ∈ TE
0,∗
r , a quotient group of H∗(K(Z, 3);Z), and ρi : Tn → S1 is the projection of

the ith diagonal entry. In plain words, Td∗,2tr (vtiΞ) is simply Td∗,2tr (vtΞ) with v replaced by vi.

The proof is straightforward since the Serre spectral sequence is functorial.

We proceed to study the differentials Td0,∗
∗ with domain in the leftmost column.

Proposition 1.5.2. 1. The differential Td0,2t
3 is given by the “formal divergence”

∇ =

n∑
i=1

(∂/∂vi) : Ht(BTn)→ Ht−2(BTn),

in such a way that Td∗,∗3 = ∇(−)·x1. This remains true when the ground ring Z is replaced

by Z/m for any integer m.
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2. The spectral sequence degenerates at TE
0,∗
4 , or in other words, Ker(d0,∗

3 ) = Z[v1 −

vn, · · · , vn−1 − vn]. In particular, TE0,∗
∞ = TE4

0,∗
= Kerd0,∗

3 .

Proof. (1) is an immediate consequence of the Leibniz rule, chain rule, and Proposition 1.5.1.

Given a polynomial θ(v1, · · · , vn), we change variables to rewrite it as θ̃(v1− vn, · · · , vn−1−

vn, vn). Equation 1.5.2 then tells us that H∗(BPUn;Q) is the free commutative ring generated

by {ti − tn}n−1
i=1 . The equations

d3(θ(v1, · · · , vn))

=
n∑
i=1

∂

∂vi
θ̃(v1 − vn, · · · , vn−1 − vn, vn)

=
∂

∂vn
θ̃(v1 − vn, · · · , vn−1 − vn, vn)

then imply that d3(θ(v1, · · · , vn)) = 0 if and only if θ̃(v1− vn, · · · , vn−1− vn, vn) is independent

of vn, which proves (2).

Corollary 1.5.3. Ud3(ck) = (n− k + 1)ck−1x1.

Proof.

Ud3(ck) = Td3(σk) =

n∑
i=1

∂σk
∂vi

= (n− k + 1)ck−1x1.

Next we study Td∗,∗∗ in general.
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Proposition 1.5.4. Let θ(v1, · · · , vn) ∈ Ht(BTn) be an element in TE0,2t
2 . As in the proof of

Proposition1.5.2 we apply the change of variable (v1 − vn, . . . , vn−1 − vn, vn) and rewrite θ as

θ =

t∑
i=0

θiv
i
n

such that θi ∈ Ker∇, i = 0, · · · , t. If θ(v1, · · · , vn) ∈ H2t(BTn) represent an element in TE0,2t
2 ,

ξ being an element of Hs(K(Z, 3)) for some s. If θξ ∈ TE
s,∗
r for r > 3, then there are mi ∈ Z

and θ′i ∈ Ker∇, i = 0, · · · , t such that miv
i
nξ ∈ TE

∗,∗
r for all i and that

θ =
t∑
i=0

miv
i
nθ
′
i

Therefore

Tdr(θξ) = Tdr(

t∑
i=0

miv
i
nθ
′
i) =

t∑
i=0

Tdr(miv
i
n)θ′i

Proof. In this proof everything in sight is localized at a prime number p.

Case 1: s is even. Then

Td3(θξ) = ∇(θ)x1ξ =
t∑
i=0

∂

∂vn
(vin)θix1ξ = 0.

Comparing the exponents of vn of each term, we have θi = 0 unless p|i, in which case vinξ is in

the image of some Tdr, by 1.3.12.
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Case 2: s is odd. It suffice to consider the special case of ξ = x1, from which the general

one can be obtained from the Leibniz rule. Since everything is localized at p, vtn = 0 unless

p|t+ 1.

Consider a map κ : Tn → PTn × S1 defined as follows:


λ1 0 . . .

0 λ2 . . .

...
... λn

 7→
(

λ1 0 . . .

0 λ2 . . .

...
... λn

 , λn
)

where the matrix in the square bracket denotes its class in PTn. Then κ is a homeomorphism,

its inverse being the following:

(

λ1 0 . . .

0 λ2 . . .

...
... λn

 , λ
)
7→


λλ1/λn 0 . . .

0 λλ2/λn . . .

...
... λ

 .

Passing to classifying spaces, we have Bκ : BTn ' BPTn ×BS1.

Proposition 1.5.5. Let θ(v1, · · · , vn) ∈ Ht(BTn) be an element in TE0,2t
2 . As in the proof of

1.5.2 we apply the change of variable (v1 − vn, . . . , vn−1 − vn, vn) and rewrite θ as

θ =
t∑
i=0

θiv
i
n
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such that θi ∈ Ker∇, i = 0, · · · , t. Then

(Bκ−1)∗(θ) =
∑

θi ⊗ vin

.

Consider the fiber sequence BPTn → BPTn → ∗ and let PE∗,∗∗ be its cohomological Serre

Spectral sequence. We take the product of fiber sequences

(BPTn → BPTn → ∗)× (BS1 → ∗ → K(Z, 3))

or equivalently

BPTn ×BS1 → BPTn → K(Z, 3).

Then we have the following morphism between fiber sequences:

BTn −−−−→ BPTn −−−−→ K(Z, 3)yBκ

∥∥∥ ∥∥∥
BPTn ×BS1 −−−−→ BPTn −−−−→ K(Z, 3)

with the unspecified maps being the obvious ones. This diagram is easily seen to be commutative

by the discussion above.

Proposition 1.5.6. Let PE∗,∗∗ be the cohomological Serre Spectral sequence associated to

BPTn → BPTn → ∗. Then the commutative diagram above induces an isomorphism of

spectral sequences TE∗,∗r ∼= PE
∗,∗
r ⊗ KE

∗,∗
r for r ≥ 2.
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Proof. By Proposition 1.5.5 the commutative diagram above induces an isomorphism of E3

pages, and the statement follows from Theorem 3.4 in (26).

Remark 1.5.7. PE
∗,∗
∗ is stabilized as Ker∇ ∼= H∗(BPTn) concentrating in the 0th column. Let

θ(v1, · · · , vn) ∈ H2t(BTn) represent an element in TE0,2t
2 , ξ be an element of Hs(K(Z, 3)) for

some s. If θξ ∈ TE
s,∗
r , then 1.5.5 and 1.5.6 tell as that there are mi ∈ Z and θ′i ∈ Ker∇,

i = 0, · · · , t such that miv
i
nξ ∈ TE

∗,∗
r for all i and that

θ =

t∑
i=0

miv
i
nθ
′
i

Comparing this with 1.5.5 we have θi = miθ
′
i. The differential Td

3,∗
r is hence determined by

Tdr(θξ) = Tdr(
t∑
i=0

miv
i
nθ
′
iξ) =

t∑
i=0

Tdr(miv
i
nξ)θ

′
i

where Tdr(miv
i
jξ) is determined as in 1.5.1. This is how we determine the differentials in

practice. This idea is explained more concretely in 1.5.9.

Finally we are at the place to state our main theorem of this section, of which the proof is

already clear.

Theorem 1.5.8. 1.5.1, 1.5.2 and 1.5.6 determine all of the differentials of TE∗,∗∗ . Restricted

to symmetric polynomials in v1, · · · , vn, they determine all of the differentials Uds−r,t+r−1
r of

UE∗,∗∗ such that for any r′ < r, Td
s−r′,t−r′+1
r′ = 0.



53

With enough patience or perhaps a computer program one can apply this apparatus to

calculate Hk(BPUn;Z) for many k and n up to group extension. The interested readers are

invited to take the following example as an exercise.

Example 1.5.9. Let n = 3. Show that Ud3(2c3x1) = 0 but 2c3x1 is not a permanent cocycle.

Proof. In TE∗,∗∗ we have

2v1v2v3 = 2(v1 − v2)(v2 − v3) + 2[(v1 − v3) + (v2 − v3)]v2
3 + 2v3

3,

the first two terms on the right side being easily checked to be permanent cocycles. It remains

to check

Td3(2v3
3x1) = 6v2

3y2,1 = 0

since 2y2,1 = 0. This verifies the first statement. For the second one, we have

Td5(2v3
3x1) = 0

since v3
3 has order 4 in TE∗,∗4 but y3,1 is of order 3. However

Td7(2v3
3x1) = y2,2 6= 0,

hence the second statement.
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We end this section by several useful corollaries. Let ∇, ξ be the same as earlier, and let

ρ = ρ(c1, · · · , cn) ∈ H∗(BUn).

Corollary 1.5.10. Ud3(ρξ) = Ud3(ρ)ξ = ∇(ρ)x1ξ.

This is immediate from the Leibniz rule and 1.5.2. One can certainly use 1.5.6 to study

Ud3, but one will find 1.5.10 much more convenient.

Corollary 1.5.11. If ρξ ∈ UE
s,r−1
r , or in other words, the image of ρξ of Udr lies in bottom

row, then

Udr(ρξ) = Kdr(B(ψ · φ)∗(ρ)ξ),

where φ and ψ are as in Equation 1.5.1. In particular,

Udr(ckξ) =

(
n

k

)
Kdr(v

kξ).

Proof. Consider the commutative diagram Equation 1.5.1 at the beginning of this section. The

result is immediate upon passing to the diagram of Serre spectral sequences: Ψ · Φ induces

ck 7→
(
n
k

)
vk on the leftmost column and the identity on the rightmost one, the latter implying

that the induced morphism of spectral sequences is the identity on H∗(K(Z, 3)) when restricted

to the bottom rows of the E2 pages.

The following two corollaries are immediate from 1.5.6.

Corollary 1.5.12. Let Z(p) be the p-local ring for a prime number p. If (Kds,t
′

r ⊗Z(p)) = 0 for

all t′ ≤ t, then so is (Uds,tr ⊗ Z(p)). In particular, if Kds,t
′

r = 0 for all t′ ≤ t, then so is Uds,tr .
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Corollary 1.5.13. For any s > 3 and any r, t, if Td3,t
r = 0 (resp. Kd3,t

r = 0), then so is Tds,tr

(resp. Kds,tr = 0).

In the next section we will apply the apparatus developed in this section to compute

Hk(BPUn;Z) in interesting cases.

1.6 Some Remarks on the Integral Cohomology of BPUn

In this section we make some remarks on the main theorem, including a comparison of the

main theorem with the computation by A. Kono and M. Mimura, in their paper (25). It turns

out that one can use the apparatus developed in Section 5 almost exclusively throughout, but

H∗(BPUn;Z) has some nice general properties that simplify the calculation considerably.

Lemma 1.6.1. Let P̄ : BSUn → BPUn be the map induced by the obvious quotient map

SUn → PUn.

1. P̄ induces an isomorphism H∗(BPUn;Q)
∼=−→ H∗(BSUn;Q). In particular, P̄ ∗ : H∗(BPUn;Z)

∼=−→

H∗(BSUn;Z) is a monomorphism modulo torsion, such that Im(P ∗) has the same rank

as H∗(BPUn;Z) in each dimension.

2. Let m be an integer such that gcd{m,n} = 1, then H∗(BPUn;Z) has no non-trivial m-

torsion.

Proof. Let SUn be the special unitary group of degree n. The short exact sequence of Lie

groups

1→ Z/n→ SUn
P−→ PUn → 1
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induces a fiber sequence

K(Z/n, 1)→ BSUn → BPUn.

We shift it to obtain another fiber sequence

BSUn → BPUn → K(Z/n, 2),

and consider the cohomological Serre spectral sequence with coefficients in Q and Z/m. The first

and second statement follows respectively from the vanishing ofHk(K(Z/n;Q) andHk(K(Z/n;Z/m) =

0, for all k > 0.

Remark 1.6.2. The map P̄ factors as BSUn → BUn
P−→ BPUn, where P is induced by the

quotient map Un → PUn. By (1) of Lemma 1.6.1, P ∗ : H∗(BPUn;Z) → H∗(BUn;Z) is a

monomorphism modulo torsions. Furthermore, (1) of Lemma 1.6.1 shows that the torsion free

component of Hk(BPUn;Z) is 0 if k is odd, and is a finitely generated free Abelian group of

the same rank as the Abelian group of homogenous polynomials in Z[c2, c3, · · · , cn] of degree

k/2, if k is even. Therefore the group structure of the torsion free component of H∗(BPUn;Z)

is determined, though it is not at all obvious what the generators of P ∗(H∗(BPUn;Z)) are, in

terms of the universal Chern classes. The calculation of the torsion free components is hence-

forth omitted unless we need some particular generators. An alternative method to calculate

the torsion free component is via representation theory. Examples can be found in (6).
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We proceed to compare the main theorem with the result of Kono and Mimura. In the case

that n = 4l + 2 for some integer l, we apply the Künneth formula to obtain Hk(BPUn;Z/2)

from Hk(BPUn;Z). When l > 0, we have the following:

H1(BPU4l+2;Z/2) = 0,

Hk(BPU4l+2;Z/2) = Z/2, for k = 2, 3, 4, 5, 7,

Hk(BPU4l+2;Z/2) = Z/2⊕ Z/2⊕ Z/2, for k = 6, 8,

H9(BPU4l+2;Z/2) = Z/2⊕ Z/2.

This is in accordance with the result by A. Kono and M. Mimura:

Theorem 1.6.3 (A. Kono and M. Mimura, Theorem 4.12, (25)). As a Z/2-module

H∗(BPU(4l + 2);Z/2) ∼= Z/2[a2, a3, x
′
8m+8, y(I)]/R

where x′8m+8 = {b24m+4}, (for some b4m+4 not relevant to our business), 1 ≤ m ≤ 2l, and

I runs over all sequences satisfying 1 ≤ r ≤ 2l and 1 ≤ i1 < · · · < ir ≤ 2l. y(I) has degree

(
∑r

j=1(4ij+4))−2. (The degree of a generator is equal to its subscript.) The ideal R is generated

by a3y(I), y(I)2 +
∑r

j=1 x
′
8i1+8 · · · a2

4ij+2 · · ·x8ir+8 and y(I)y(J) +
∑

i fiy(Ii), (for fi ∈ Z/2).

The notations in the theorem above are slightly adjusted from the original, for consistency.

The explanations in the parentheses are added by the author. In view of this theorem, the

generator(s) of each Hk(BPU4l+2;Z/2) where 1 ≤ k ≤ 9 are given in the following table:



58

TABLE I

GENERATORS OF HK(BPU4L+2;Z/2), FOR L > 0.

k 2 3 4 5 6 7 8 9

generator(s) a2 a3 a2
2 a2a3 a3

2, a
2
3, y(1) a2

2a3 a2y(1), a4
2, a

2
3a2 a3

2a3, a
3
3

As the reader can easily see, this agrees with the result obtain earlier by Theorem 0.0.1 and

Künneth formula. In the exceptional case of l = 0, the element y(1) does not exist, accounting

for the absence of Chern classes c3, c4, which would contribute a direct sum component Z/2

when k = 6 and 8, respectively.

Remark 1.6.4. In the statement of Theorem 1.6.3,whether “As a Z/2-module” can be strength-

ened to “As a Z/2-algebra” is an open question. However, we have a positive answer in degree

≤ 9.

Let Sqi be ith Steenrod operation. Let β : H∗(−;Z/2) → H∗+1(−;Z) be the Bockstein

homomorphism induced by short exact sequence 0 → Z ×2−−→ Z → Z/2 → 0. Recall that Sq1 is

the following composition

Sq1 : H∗(−;Z/2)→ H∗+1(−;Z)→ H∗+1(−;Z/2), (1.6.1)

where the second arrow is the mod 2 reduction.
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Lemma 1.6.5. In H∗(BPU(4l + 2);Z/2), we have:

1. Sq1(a2) = a3.

2. The mod 2 reduction of reduction of e2 (resp. e3) is a2
2 (resp. y(1)).

Proof. The short exact sequence 0→ Z 2−→ Z→ Z/2→ 0 induces an exact sequence

0 = H2(BPU4l+2;Z/2)
β−→ H3(BPU4l+2;Z)

×2−−→ H3(BPU4l+2;Z). (1.6.2)

Notice that there is a unique 2-torsion (2l + 1)x1 in H3(BPU4l+2;Z), and the exactness of

(Equation 1.6.2) implies that β(a2) = (2l + 1)x1. Since H3(BPU4l+2;Z/2) is generated by a

single element a3, a3 is the mod 2 reduction of x1. Therefore, by (Equation 1.6.1) we have

Sq1(a2) = (2l + 1)a3 = a3. Hence we proved (1).

By Corollary 1.5.3, Ld3(c1) = (4l + 2)x1 = 0 mod 2, which means that c1 is a permanent

cocycle in the mod 2 version of LE
∗,∗
∗ . Hence a2 is represented by c1. Then (2) of Theorem 0.0.1

implies that a2
2 is the mod 2 reduction of (4l+1)c2

1−2(4l+2)c2 ∈ H4(BPU4l+2;Z). Hence a2
2 is

the mod 2 reduction of e2. Notice that y(1) is the only non-zero element in H6(BPU4l+2;Z/2)

that annihilates a3. Comparing this with (8) of Theorem 0.0.1, we see that y(1) is the mod 2

reduction of e3.

The rest of the ring structure of H∗(BPU4l+2;Z/2) in degrees ≤ 9 follows from Lemma

Equation 1.6.2 and the Leibniz rule of the Bockstein homomorphism. For example, a2a3 6= 0

since β(a2a3) = β(a2)a3 + a2β(a3) = a2
3 6= 0.
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In the statement of Theorem 0.0.1, we see that for some k and n, some components of

Hk(BPUn;Z) are generated by elements in the image of the homomorphism Hk(K(Z, 3);Z)→

Hk(BPUn;Z), which is induced by the map BPUn → K(Z, 3) as in the fiber sequence Equa-

tion 1.1.1. In view of this we have the following

Corollary 1.6.6. 1. When n is even, the 2-torsion subgroup ofHk(BPUn;Z) for k = 6, 9, 10

are generated by the cohomology operations y2,0, y2,0x1, and y2,1 respectively, applied to

a generator of H3(BPUn;Z).

2. When 3|n, and k = 8, the 3-torsion subgroup of H8(BPUn;Z) is generated by the coho-

mology operation y3,0 applied to a generator of H3(BPUn;Z).

Proof. In the statement of Theorem 0.0.1, we see that for the k’s and n’s in the lemma, the

corresponding torsion subgroups of Hk(BPUn;Z) are generated by the images of elements

y2,0, y2,0x1, y2,1 and y3,0 respectively, under the homomorphismHk(K(Z, 3);Z)→ Hk(BPUn;Z),

which is induced by the map BPUn → K(Z, 3) as in the fiber sequence Equation 1.1.1, and the

proof is completed.

We proceed to study the p-local components of H∗(BPUn;Z), for any prime number p.

Lemma 1.6.7. If t+ 1 < p, then

UE3,2t
∞ ⊗ Z(p)

∼= UE
3,2t
3 /Im(Ud

0,2t+2
3 )⊗ Z(p)

.
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Proof. In view of 1.5.12, we consider the differentials out of KE3,2t′
r for r ≥ 3, which are

subgroups of KE3,2t′

3 /Imd3(KE
0,2t′+2
3 ) ∼= Z/(t′ + 1). Since t + 1 < p, gcd(t′ + 1, p) = 1 for all

t′ ≤ t, and the images of Kd3,2t′
r therefore always have order relatively prime to p, for t′ ≤ t. In

other words, Kd3,t′
r ⊗ Z(p) = 0. Hence by 1.5.12, Ud3,2t

r ⊗ Z(p) = 0, and the result follows.

Theorem 1.6.8. If 3 < k < 2p+ 1 then Hk(BPUn;Z)⊗ Z(p)

∼=


KerUd

0,k
3 ⊗ Z(p), k is even,

Hk−3(BUn)/∇Hk−1(BUn)⊗ Z(p), k is odd.

Proof. Recall that for s < 2p + 2, Hs(K(Z, 3)) contains no element of order p. Thus, for

3 < k < 2p+ 1, we have

Hk(BPUn;Z)⊗ Z(p)
∼= UE

3,k−3
∞ ⊗ Z(p).

The case that k is even follows immediately. The other case is an immediate corollary of

1.6.7.

We break the proof of Theorem 0.0.1 into several sections. The readers could refer to Figure

Figure 3 for the spectral sequence UE
∗,∗
∗ .

1.7 Hk(BPUn;Z) for 1 ≤ k ≤ 6

For 1 ≤ r ≤ 5 the results are given in (1). The interested readers can compare it to our

computation.
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3 6 8

2

4

6

s

t

Z

Z

Z⊕ Z

Z

Z

Z⊕ Z

Z/2

Z/2

Z/2⊕ Z/2

Z/3

Z/3

×n ×n

Figure 3. Some non-trivial differentials of UE∗,∗∗ . A node with coordinate (s, t) is unmarked if

UEs,t2 = 0.
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Proof of (1) to (4) of Theorem 0.0.1. First notice UE
s,t
2 = 0 for s = 1, 2, 4, 5, 7 or t odd. By

Proposition 1.5.6, Ud3(c1) = Td3(
∑n

i=1 vi) = nx1. This immediately proves (1) of Theorem

0.0.1. See Figure 3 for a picture in low dimensions. By Corollary 1.5.3 we have

Ud3(c2) = (n− 1)c1x1,
Ud3(c2

1) = 2nc1x1,
Ud3(c1x1) = nx2

1. (1.7.1)

So UE0,4
4
∼= UE

0,4
∞
∼= H4(BPUn;Z) is easily verified as Z. Interested readers can refer to Lemma

3.2 of (1) to identify H4(BPUn;Z) as a subgroup of H4(BUn;Z), or compute it directly. Either

way, we proved (2) of Theorem 0.0.1.

Notice UE
0,6
∞
∼= Z, by Remark 1.6.2.

1. If n is even, by (Equation 1.7.1), Ud0,4
3 is a surjection and therefore Ud3,2

3 = 0. Hence

H5(BPUn;Z) ∼= UE
3,2
4 = 0, and H6(BPUn;Z) ∼= Z ⊕ UE

6,0
∞
∼= UE

0,6
∞ ⊕ UE

6,0
4
∼= UE

0,6
∞ ⊕

UE
6,0
3
∼= Z⊕ Z/2, with UE

6,0
3 generated by x2

1.

2. If n is odd, again by (Equation 1.7.1), the image of Ud0,4
3 is 2c1x1 which happens to

be KerUd3,2
3 . By Proposition 1.5.6 Ud3,2

3 (c1x1) = nx2
1 = ny2,0 since n is odd and y2,0

is of order 2, which implies that UE
6,0
4 = 0. Hence H5(BPUn;Z) ∼= UE

3,2
4 = 0, and

H6(BPUn;Z) ∼= UE
0,6
∞ ⊕ UE

6,0
4 = Z.

In both cases we take e3 ∈ H6(BPUn;Z) generating UE
0,6
∞ . Therefore, (3) and (4) of Theorem

0.0.1 follows. Notice that e3 is determined by this argument modulo torsion. In fact, there is

a unique choice of e3 that fits the statement of Theorem 0.0.1. This choice will be specified in

Section 9, where we discuss the cup products in H9(BPUn;Z).
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1.8 Hk(BPUn;Z) for k = 7, 8

Proof of (5) of Theorem 0.0.1. Notice that the only bi-degree (s, t) such that s+t = 7 and UEs,t2

is nontrivial is (3, 4). Therefore H7(BPUn;Z) ∼= UE
3,4
∞ . We consider the p-local cohomology of

H7(BPUn;Z)(p) for each prime p separately. We consider the following relevant differentials:

1. Ud
0,6
3 : UE

0,6
3 → UE

3,4
3

c3 7→ (n− 2)c2x1, c1c2 7→ [nc2 + (n− 1)c2
1]x1, c3

1 7→ 3nc2
1x1.

2. When localized at 2, The only nontrivial differential from UE
3,4
∗ is

Ud
3,4
3 : UE

3,4
3 → UE

6,2
3 ,

c2
1x1 7→ 2nc1y2,0 = 0, c2x1 7→ (n− 1)c1y2,0.

3. When localized at 3, The only nontrivial differential from UE
3,4
∗ is

Ud
3,4
5 : UE

3,4
5 → UE

8,0
5 ,

c2
1x1 7→ n2y3,0, c2x1 7→

n(n− 1)

2
y3,0

In what follows we compute the localization H7(BPUn;Z)(p) for each prime p separately.

The spectral sequence is tacitly assumed to be localized at the specified prime p in each case.
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Case 1. p = 2. In this case UE
3,4
∞ = KerUd

3,4
3 /ImUd

0,6
3 . By (2) of Lemma 1.6.1 we only need

to consider the case that n is even,

in which, assuming n > 2 we have Z-basis {c3
1, c1c2, c3} and {c2

1x1, 2c2x1} of UE
0,6
3 and

KerUd
3,4
3 , respectively. The corresponding matrix for Ud

0,6
3 is

 3n n− 1 0

0 n
2

n−2
2

 . (1.8.1)

We apply invertible row and column operations to it and obtain

 1 0

− n/2
n−1 1

 ·
 3n n− 1 0

0 n
2

n−2
2

 ·


1 0 0

− 3n
n−1 1 0

0 0 1

 =

 0 n− 1 0

− 3
n−1 ·

n2

2 0 n−2
2

 ,
(1.8.2)

with the row operation corresponding to the change of basis

[
c2

1x1 2c2x1

]
·

 1 0

− n/2
n−1 1


−1

=

[
c2

1x1 + n
n−1c2x1 2c2x1

]
. (1.8.3)

By (Equation 1.8.2) and (Equation 1.8.3), ImUd
0,6
3 is generated by c2

1x1 + n/2
n−1c2x1 and

gcd{n2

2 ,
n−2

2 } · 2c2x1 = gcd{2, n−2
2 } · 2c2x1. Where gcd{2, n−2

2 } = 2 if n = 4l + 2 for some

integer l and 1 otherwise. Hence UE
3,4
4
∼= UE

3,4
∞ is isomorphic to Z and is generated by 2c2x1

if n = 4l + 2, and is 0 otherwise.
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In the exceptional case n = 2, (Equation 1.8.1) is reduced to

 6 1

0 1

 ,

and (Equation 1.8.2) is reduced to

 1 0

− n/2
n−1 1

 ·
 6 1

0 1

 ·
 1 0

− 3n
n−1 1

 =

 0 1

6 0

 , (1.8.4)

which yields the same argument as above.

The above discussion shows that H7(BPUn;Z)(2)
∼= Z/2 is generated by 2c2x1 if n = 4l+ 2

for some integer l, and is 0 if 4|n.

By (2) of Theorem 0.0.1, we know that for n even, H4(BPUn;Z) ∼= Z is generated by

e2, which is detected by 2nc2 − (n − 1)c2
1 ∈ UE

0,4
∞ . Furthermore, when n = 4l + 2, in

H7(BPUn;Z)(2)
∼= Z/2 we have

2c2x1 = 3(4l + 2)c2x1 = 3nc2x1

=[(n− 1)c2
1 + nc2]x1 − [(n− 1)c2

1 − 2nc2]x1

=[2nc2 − (n− 1)c2
1]x1 ∈ UE

3,4
4 ,

(1.8.5)

since by (Equation 1.8.4) and (Equation 1.8.3), [(n − 1)c2
1 + nc2]x1 is in the image of Ud

0,6
3 .

Therefore, (Equation 1.8.5) shows that 2c2x1 = [2nc2− (n−1)c2
1]x1 yields a non-trivial product

in UE
3,4
∞ that detects e2x1.
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Case 2. p = 3. In this case UE
3,4
∞ = KerUd

3,4
5 /ImUd

0,6
3 and by (2) of Lemma 1.6.1 we

only care about the case that 3|n. Notice that Ud
3,4
3 = 0 since its target is a 2-torsion group

and we are working 3-locally. A direct computation shows that KerUd
3,4
5 = UE

3,4
3 has a basis

{c2
1x1, c2x1}. Again taking the basis {c3

1, c1c2, c3} for UE
0,6
3 , we obtain the matrix

 3n n− 1 0

0 n n− 2

 (1.8.6)

for Ud
0,6
3 . We apply an invertible column operation to it and obtain

 3n n− 1 0

0 n n− 2

 ·


1 0 0

0 1 0

0 − n
n−2 1

 =

 3n n− 1 0

0 0 n− 2

 . (1.8.7)

Therefore Ud
0,6
3 is surjective, and H7(BPUn;Z)(3) = 0 when 3|n.

Case 3. p > 3. If n > 2, then UE
3,4
∞ = UE

3,4
3 /ImUd

0,6
3 . We take the basis {c2

1x1, c2x1}

for UE
3,4
3 and the matrix for Ud

0,6
3 is again Equation 1.8.1. Since p > 3, either 3n or n − 2 is

invertible, so it is easy to show that Ud
0,6
3 is surjective. So H7(BPUn;Z)(p) = 0 when n > 2.

In the exceptional case n = 2, the same assertion follows easily from (2) of Lemma 1.6.1.

Summarizing the three cases above, (5) of Theorem 0.0.1 follows.
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Proof of (6) Theorem 0.0.1. It suffice to consider the torsion component. Therefore the relevant

entries in UE
∗,∗
2 are UE

8,0
2 and UE

6,2
2 . The relevant differentials are Ud

3,4
3 and Ud

3,4
5 , as given in

(2) and (3) in the proof for k = 7, together with the following one:

Ud
6,2
3 : UE

6,2
3 → UE

9,0
3 , c1y2,0 7→ nx1y2,0 = nx3

1. (1.8.8)

Again we consider H8(BPUn;Z)(p) for each prime p separately. Remember that in each of the

following cases we assume that UE
∗,∗
∗ is localized at the specified prime p.

Case 1. p = 2. In this case the torsion component of H8(BPUn;Z)(2) is isomorphic to

UE
6,2
∞ = KerUd

6,2
3 /ImUd

3,4
3 . And by (2) of Lemma 1.6.1 we consider only the case that n is

even. By (Equation 1.8.8), KerUd
6,2
3 = Z{c1y2,0}. By the differentials given in (2) in the proof

for (5) of Theorem 0.0.1, ImUd
3,4
3 = Z{c1y2,0}. Therefore the torsion of H8(BPUn;Z)(2) is 0

when n is even.

Case 2. p = 3. In this case the torsion component of H8(BPUn;Z)(3) is isomorphic to

UE
8,0
2 /ImUd

3,4
5 , where UE

8,0
2
∼= Z/3 is generated by a single element y3,0. By the differentials

given in (3) of the proof for k = 7, ImUd
3,4
5 = 0 when 3|n. Therefore the torsion component of

H8(BPUn;Z)(3) is isomorphic to Z/3 and generated by y3,0.

For p > 3 there is no p-torsion in the relevant range of UE
∗,∗
∗ . Hence (6) of Theorem 0.0.1

follows.
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1.9 Hk(BPUn;Z) for k = 9, 10

The study of H9(BPUn;Z) requires extra work when n is even, since the differential Ud0,8
9

cannot be determined by Theorem 1.5.8. Indeed, the differential Td6,2
3 : TE6,2

3 → TE9,0
3 is not

trivial when n is even. We consider the exceptional isomorphism of Lie groups PU2
∼= SO3.

The following result is due to E. Brown. For more general cases see (13).

Proposition 1.9.1. H∗(BPU2;Z) ∼= H∗(BSO3;Z) ∼= Z[e2] ⊗Z Z/2[x1], where e2 is of degree

4, and we abuse the notation x1 to let it denote the image of x1 ∈ H3(K(Z, 3);Z) under the

homomorphism induced by the second arrow of the fiber sequence BU2 → BPU2 → K(Z, 3).

Recall that in Theorem 0.0.1 we let e2 denote the generator of H4(BPUn;Z) ∼= Z for all

n > 1. Part (1) of the following lemma is due to A. Bousfield.

Lemma 1.9.2. For n > 0 even, let ∆ : BU2 → BUn denote the inclusion of block diagonal

matrices, and ∆′ : BPU2 → BPUn be its induced homomorphism on quotients. Then we have

the following assertions.

1. (∆′)∗(x1) = x1. In particular, x3
1 ∈ H9(BPUn;Z) is non-zero.

2. (∆′)∗(e2) = (n2 )2e2. In particular, when n = 4l+2 for some integer l, ex2
1 ∈ H10(BPUn;Z)

is non-zero.

Proof. Consider the following commutative diagram:

BS1 BU2 BPU2

BS1 BUn BPUn

= ∆ ∆′
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which induces another commutative diagram as follows:

BU2 BPU2 K(Z, 3)

BUn BPUn K(Z, 3)

∆ ∆′ = (1.9.1)

This diagram induces a homomorphism of Serre spectral sequences, such that its restriction

on the bottom row of the E2 pages is the identity. In particular it takes x1 to itself. Moreover, it

follows from Proposition 1.9.1 that (∆′)∗(x3
1) = x3

1 ∈ H9(BPU2;Z) is non-zero, which completes

the proof of (1).

It is well known that the Un-bundle over BU2 induced by ∆ is the Whitney sum of n
2 copies

of the universal U2-bundle, of which the total Chern class is

(1 + c1 + c2)
n
2 = 1 +

n

2
c1 + (

n

2
c2 +

(
n/2

2

)
c2

1) + (terms of higher degrees).

Therefore we have

∆∗ : H2(BUn;Z)→ H2(BU2;Z),

c1 7→
n

2
c1, c2 7→

n

2
c2 +

(
n/2

2

)
c2

1 =
n

2
c2 +

n(n− 2)

8
c2

1.

(1.9.2)

In particular,

∆∗((n− 1)c2
1 − 2nc2) = (n− 1)(

n

2
)2c2

1 − 2n[
n

2
c2 +

n(n− 2)

8
c2

1] = (
n

2
)2(c2

1 − 4c2).
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Notice that when n = 2, P ∗(e2) = c2
1 − 4c2, and the equation above implies (∆′)∗(e2) = (n2 )2e.

When n = 4l+2, we have (∆′)∗(e2x
2
1) = (2l+1)2e2x

2
1 = e2x

2
1 ∈ H10(BPU2;Z) which is non-zero

by Proposition 1.9.1, and (2) follows.

Proof of (7), (8) of Theorem 0.0.1. The relevant entries in UE
∗,∗
2 are UE

3,6
2 and UE

9,0
2 . We

study the localization of UE
∗,∗
∗ at each prime p separately.

Case 1. p = 2. Again we only consider the case that n is even. When n > 2, with

respect to the basis {c3
1x1, c1c2x1, c3x1} for UE

3,6
2 and {c2

1y2,0, c2y2,0} for UE
6,4
2 , the differential

Ud
3,6
3 : UE

3,6
2 → UE

6,4
2 is represented by the following matrix:

 3n n− 1 0

0 n n− 2

 . (1.9.3)

Since y2,0 is of order 2, and that n is even, (Equation 1.9.3) implies that KerUd
3,6
3 has a basis

{c3
1x1, 2c1c2x1, c3x1}. Taking {y2,1} as a basis for UE

10,0
2 , Ud

3,6
7 is represented by the matrix

[
n3

2
n2(n−1)

2
n(n−1)(n−2)

12

]
. (1.9.4)

A closer inspect shows that all three entries are even. Therefore KerUd
3,6
3 = KerUd

3,6
7 =

{c3
1x1, 2c1c2x1, c3x1}. With this basis and {c4

1, c
2
1c2, c1c3, c

2
2, c4} as a basis for UE

0,8
2 , Ud

0,8
3 :

UE
0,8
2 → KerUd

3,6
7 ⊂ UE

3,6
7 is represented by the following matrix:
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4n n− 1 0 0 0

0 n n−2
2 n− 1 0

0 0 n 0 n− 3

 (1.9.5)

We apply an invertible column operation on it as follows:


4n n− 1 0 0 0

0 n n−2
2 n− 1 0

0 0 n 0 n− 3

 ·



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 − n
n−1 − n−2

2(n−1) 1 0

0 0 0 0 1



=


4n n− 1 0 0 0

0 0 0 n− 1 0

0 0 n 0 n− 3

 .

(1.9.6)

Therefore Ud
0,8
3 : UE

0,8
2 → KerUd

3,6
7 is onto. So UE

3,6
∞ = 0.

In the exceptional case n = 2, we have c3, c4 = 0, and (Equation 1.9.4), (Equation 1.9.5),

are respectively reduced to

[
4 2

]
,

 8 1 0

0 2 1

 .
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Consequently, Ud
0,8
3 : UE

0,8
2 → KerUd

3,6
7 is onto as well. It remains to consider

Ud
0,8
9 : UE

0,8
9 → UE

9,0
9
∼= UE

9,0
2 = Z/2{x3

1},

Since UE
9,0
9
∼= Z/2 is generated by x3

1, Ud
0,8
9 is either surjective or 0, depending on whether x3

1

is 0 or not. By Lemma 1.9.2, x3
1 6= 0 when n is even. Therefore Ud

0,8
9 = 0.

Summarising all above, when n is even, H9(BPUn;Z)(2) = Z/2 is generated by x3
1. We

proceed to study the cup products in H9(BPUn;Z)(2). Since UE
3,6
∞ = 0, x1e3 = x3

1 or x1e3 = 0.

This merely depends on a choice of e3: if the former case is true, then we simply replace e3 by

e3 + x2
1 to obtain the latter case. Therefore the 2-local case of (8) of Theorem 0.0.1 follows.

Case 2. p = 3. The only non-trivial target of differentials with domain UE
3,6
2 is UE

8,2
2 . By

Theorem 1.5.8, Ud
3,6
5 : UE

3,6
2 → UE

8,2
2 is trivial, since Td

3,6
5 is so. Hence UE

3,6
∞
∼= UE

3,6
2 /ImUd

0,8
3 .

When n > 3, We take basis {c4
1, c

2
1c2, c1c3, c

2
2, c4} for UE

0,8
3 and {c3

1x1, c1c2x1, c3x1} for UE
3,6
2 .

Then the matrix representing Ud
0,8
3 is the following:


4n n− 1 0 0 0

0 2n n− 2 2(n− 1) 0

0 0 n 0 n− 3

 . (1.9.7)
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We only consider the case 3|n, in which we apply an invertible column operation to Equa-

tion 1.9.7 and obtain


4n n− 1 0 0 0

0 2n n− 2 2(n− 1) 0

0 0 n 0 n− 3

 ·



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 − n
n−1 − n−2

2(n−1) 1 0

0 0 0 0 1



=


4n n− 1 0 0 0

0 0 0 2(n− 1) 0

0 0 n 0 n− 3

 ,

(1.9.8)

which shows that for n > 3 we have H9(BPUn;Z)(3)
∼= UE

3,6
∞
∼= UE

3,6
2 /ImUd

0,8
3
∼= Z/3, and

that it is generated by c3x1. We denote this cohomology by z1.

In the exceptional case n = 3, the vanishing of c4 makes the matrices (Equation 1.9.7) and

(Equation 1.9.8) reduce to


4n n− 1 0 0

0 2n n− 2 2(n− 1)

0 0 n 0

 and


4n n− 1 0 0

0 0 0 2(n− 1)

0 0 n 0

 ,
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respectively, from which the same assertion follows easily. Next, we consider the product

e3x1. The matrix (Equation 1.9.3) shows that for n > 2, UE
0,6
∞ is generated by c3

1 − 3n
n−1c1c2 +

3n2

(n−1)(n−2)c3. On the other hand UE
3,6
∞
∼= Z/3 is generated by c3x1, as we just proved. Therefore,

[c3
1 −

3n

n− 1
c1c2 +

3n2

(n− 1)(n− 2)
c3]x1 =

3n2

(n− 1)(n− 2)
c3]x1 = 0 ∈ UE

3,6
∞ ,

which proves the 3-local case of (8) of Theorem 0.0.1.

Case 3. p > 3. (Equation 1.9.5) clearly represents a surjection, even when the 3rd and 5th

columns, corresponding to the image of c1c3 and c4, are removed. This completes the proof of

(7) and (8) of Theorem 0.0.1.

Proof of (9), (10) of Theorem 0.0.1. Case 1. p = 2. In this case the relevant entries are UE
6,4
2

and UE
10,0
2 . First suppose that n > 2. Fix a basis {c2

1y2,0, c2y2,0} for UE
6,4
2 and {c1x1y2,0} =

{c1x
3
1} for UE

9,2
2 , and Ud

6,4
3 : UE

6,4
2 → UE

9,2
2 is represented by the matrix

[
2n n− 1

]
, (1.9.9)

which shows that KerUd
6,4
3 is generated by {c2

1y2,0}. On the other hand, by (Equation 1.9.3),

ImUd
3,6
3 is also generated by {c2

1y2,0}. Therefore

UE
6,4
∞
∼= UE

6,4
5
∼= KerUd

6,4
3 /ImUd

3,6
3 = 0. (1.9.10)
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By (Equation 1.9.4) Ud
3,6
7 = 0. Hence

UE
10,0
∞
∼= UE

10,0
2 /ImUd

3,6
7
∼= UE

10,0
2
∼= Z/2. (1.9.11)

is generated by x1y2,0. In the exceptional case n = 2, c3 = 0 and all the arguments above hold

as well, since all the differentials of c3x1 are 0 anyway.

Therefore, the torsion component of H10(BPUn;Z)(2) is isomorphic to Z/2, generated by

y2,1 when n is even.

Case 2. p = 3. We take 3|n. In this case the only relevant entry is UE
8,2
2 . By Theorem 1.5.8

no non-trivial differential lands in this entry, since it is the case in TE
∗,∗
∗ . On the other hand

UE
8,2
2 is generated by c1y3,0, such that Ud3(c1y3,0) = nx1y3,0 = 0 ∈ UE

11,0
2
∼= Z/3. Therefore

the torsion component of H10(BPUn;Z)(3)
∼= Z/3, generated by {x1y3,0} when 3|n. We denote

this class by z2.

Case 3. p > 3. There is no (s, t) such that s+ t = 10 and that UE
s,t
2 is p-locally non-trivial,

except for UE
0,10
2 which accounts for the well understood torsion free component.

(9) of Theorem 0.0.1 follows from the discussion above.

We proceed to study cup products inH10(BPUn;Z). Recall that when n is even, H4(BPUn;Z) ∼=

Z is generated by an element e2 such that P ∗(e) = 2nc2 − (n− 1)c2
1 ∈ H4(BUn;Z). By (Equa-

tion 1.9.10), e2x
2
1 ∈ UE

6,4
∞ is a coboundary. Therefore, either ex2

1 = 0, or ex2
1 = y2,0. By Lemma

1.9.2, the former is not true. Therefore we have the latter, and we proved (10) of Theorem

0.0.1.



CHAPTER 2

THE TOPOLOGICAL PERIOD-INDEX PROBLEM OVER

8-COMPLEXES

2.1 Introduction to Chapter 2

The goal of this chapter is to prove Theorem 0.0.8 given in the introduction. Recall the

following theorem from the introduction:

Theorem 0.0.8. Let X be a topological space of homotopy type of an 8-dimensional CW-

complex, and let α ∈ H3(X;Z)tor be a topological Brauer class of period n. Then

ind(α)|ε2(n)ε3(n)n3. (2.1.1)

In addition, if X is the 8-th skeleton of K(Z/n, 2), and α is the restriction of the fundamental

class βn ∈ H3(K(Z/n, 2),Z), then


ind(α) = ε3(n)n3, 4 - n,

ε3(n)n3| ind(α), 4|n.

In particular, the sharp lower bound of e such that ind(α)|ne for all X and α is 4.

We decompose Theorem 0.0.8 into two sub-theorems as follows, since the proof of the second

sub-theorem requires special attention.
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Theorem 2.1.0.1. Let X be a topological space of homotopy type of an 8-dimensional CW-

complex, and let α ∈ H3(X;Z)tor be a topological Brauer class of period n. Then

ind(α)|ε2(n)ε3(n)n3. (2.1.2)

In addition, if X is the 8-th skeleton of K(Z/n, 2), and α is the restriction of the fundamental

class βn ∈ H3(K(Z/n, 2),Z), then


ind(α) = ε3(n)n3, n odd,

ε3(n)n3| ind(α), n even.

Theorem 2.1.0.2. Let n = 2l for some odd integer l and let X and α be as above. Then

ind(α) - ε3(n)n3.

Part of the proof relies on twisted complex K-theory, which shows (Equation 2.1.1) for any

8-dimensional CW complex X and any α ∈ Br(X). Details are discussed in Section 2. We

prove the second paragraph of the theorem with classical obstruction theory, which is outlined

as follows.

Let m,n be integers. Then Z/n is a closed normal subgroup of SUmn in the sense of the

following monomorphism of Lie groups:

Z/n ↪→ SUmn : t 7→ e2π
√
−1t/nImn,
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where Ir is the identity matrix of degree r. We define the quotient group to be P (n,mn). In

particular, P (n, n) is the projective unitary group PUn, and we have the following short exact

sequence of Lie groups:

1→ Z/n→ P (n,mn)
ϕ−→ PUmn → 1.

The homotopy groups of P (n,mn) in low degrees relative to mn are well known:

πi(P (n,mn)) ∼=



Z/n, if i = 1,

Z, if 1 < n < 2mn, and n is odd,

0, if 1 < n < 2mn, and n is even,

Z/(mn)!, if i = 2mn.

(2.1.3)

This follows since P (n,mn) has SUmn as a simply connected n-cover, whose homotopy groups

in low dimensions follows from Bott periodicity ((8)). Consider its classifying space BP (n,mn),

and we have a map BP (n,mn) → K(Z/n, 2) which is the projection of BP (n,mn) onto

the first non-trivial stage of its Postnikov tower. This map also classifies the generator of

H2(BP (n,mn);Z/n).

Given a connected CW-complex X such that H2(X;Z) = 0, and α ∈ Br′(X) of period

n, there is a unique class α′ ∈ H2(X;Z/n) such that B(α′) = α, where B is the Bockstein
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homomorphism. Then α′ is classified by a map X → K(Z/n, 2). Therefore we have a lifting

problem as shown by the following diagram:

BP (n,mn)

X K(Z/2, n)α′

(2.1.4)

It can be shown, as we do in later sections, that α is classified by a PUmn-torsor over X if and

only if the lifting problem above has a solution. If X is a finite CW complex, then it suffices to

study maps from X into successive stages of the Posnikov tower of BP (n,mn), which occupies

most of this paper.

Theorem 1.5.8, in addition to Theorem 0.0.5 of Antieau and Williams, provides evidence

for the following

Conjecture 2.1.1 (Antieau-Williams, (6)). Let X be a finite 2d-dimensional CW-complex,

and let α ∈ Br(X) have period m = pr11 · · · p
rk
k . Then,

ind(α) = md−1
k∏
i=1

p
vpi ((d−1)!)
i ,

where vpi is the pi-adic evaluation.

In (6), Antieau and Williams proved ind(α) = md−1
∏k
i=1 p

vpi ((d−1)!)
i .

In Section 2 we recapture the cohomology of Eilenberg-Mac Lane spaces necessary for our

purpose; in Section 3 we introduce the twisted K-theory and the associated Atiyah-Hirzebruch

spectral sequence; Sections 4, 5, and 6 are devoted to the study of the classifying spaces
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BP (n,mn), in particular their Postnikov towers, which is the technical core of this paper.

In section 7 an Eilenberg-Moore spectral sequence is introduced to prove Theorem 2.1.0.2

2.2 Preliminary on the Cohomology of Eilenberg-Mac Lane Spaces

As mentioned in the introduction, the objects of interest are various stages of the Postnikov

tower of the space BP (n,mn). It follows from (Equation 2.1.3) that the relevant Eilenberg-Mac

Lane spaces are of the forms K(Z/n, 2) and K(Z, n). All the assertions made in this section

are essentially consequences of (14).

Consider the Eilenberg-Mac Lane space K(Z, n) for n ≥ 3. By (14), the integral cohomology

ring H∗(K(Z, n);Z) in degree ≤ n+ 3 is isomorphic to the following graded ring:

Z[ιn,Γn]/(2Γn), (2.2.1)

where ιn, of degree n, is the so-called fundamental class, and Γn, of degree n+3, is a class of order

2. We denote by ῑn, Γ̄n the mod 2 reduction of ιn and Γn in H∗(K(Z, n);Z/2), respectively.

Either by (14) or by the Künneth Theorem, there is a class Γ′n ∈ Hn+2(K(Z, n);Z/2) such

that B(Γ′n) = Γn, where B denotes the Bockstein homomorphism. Moreover, we consider the

Steenrod square Sqr and write Sqr for the following composition:

H∗(−;Z)
mod 2−−−−→ H∗(−;Z/2)

Sqr−−→ H∗+r(−;Z/2),

where the first arrow denotes the mod 2 reduction.
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Lemma 2.2.1. If n > 3, then Γ′n = Sq2(ῑn). In terms of cohomology operations, this means

Γn = B ◦ Sq2 : Hn(−;Z)→ Hn+3(−;Z).

Then the Adem relation Sq3 = Sq1 Sq2 implies Γn = Sq3(ιn).

Proof. First we consider the case n = 3. The path fibration K(Z, 2) → ∗ → K(Z, 3) in-

duces a cohomological Serre spectral sequence 3E∗,∗∗ with coefficients in Z/2, such that 3E3,0
2
∼=

H3(K(Z, 3);Z/2) ∼= Z/2 is generated by ῑ3; 3E0,2
2
∼= H2(K(Z, 2);Z/2) ∼= Z/2 is generated by

ῑ2; 3E5,0
2
∼= H5(K(Z, 3);Z/2) ∼= Z/2 is generated by Γ′3; and 3E0,4

2
∼= H4(K(Z, 2);Z/2) ∼= Z/2

is generated by ῑ22. The vanishing of the E∞ page in positive total degrees implies

d2(ῑ2) = ῑ3, (2.2.2)

and

d4(ῑ22) = Γ′3. (2.2.3)

Notice that ῑ22 = Sq2(ῑ2). Moreover, by Corollary 6.9 of (26), Steenrod squares commute with

transgressions in Serre spectral sequences. The following equation then follows from (Equa-

tion 2.2.2) and (Equation 2.2.3):

Γ′3 = d4(ῑ22) = d4(Sq2(ῑ2)) = Sq2 d2((ῑ2)) = Sq2(ῑ3). (2.2.4)
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n n+ 2

n− 1

n+ 1

ῑn−1

Γ′n−1

ῑn Γ′n

Figure 4. Low dimensional trasgressions in the mod 2 cohomological Serre spectral sequence

induced by K(Z, n− 1)→ ∗ → K(Z, n).

This proves lemma in the case n = 3. We verify the general case by induction on n. Consider

the path fibration K(Z, n − 1) → ∗ → K(Z, n). Again, by the vanishing of the E∞ page in

positive total degrees, we have dn(ῑn−1) = ῑn and dn+2(Γ′n−1) = Γ′n. See Figure Figure 4 for an

indication of the relevant differentials. Since all the differentials in sight are transgressions, the

induction is complete.

We proceed to consider K(Z/n, 2), for any positive integer n. By (14), the integral coho-

mology of K(Z/n, 2) in degree ≤ 8 is isomorphic to the following graded commutative ring:

Z[βn, Qn, Rn, ρn]/(nβn, ε2(n)β2
n, ε2(n)nQn, ε3(n)nRn, ε3(n)ρn), (2.2.5)
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where deg(βn) = 3, deg(Qn) = 5,deg(Rn) = 7, and deg(ρn) = 8. In other words, there is

exactly one generator in each of the degrees 3, 5, 6, 7, which are, respectively, βn, Qn, β
2
n, Rn, of

order

n, ε2(n)n, ε2(n), ε3(n)n,

and 2 generators in degree 8, βnQn and ρn, of order ε2(n) and ε3(n), respectively. Notice that

when n is odd, the generators ε2(n)β2
n and βnQn are trivial. When n is coprime to 3, ρn = 0.

Consider the canonical inclusion gm,n : Z/n→ Z/mn, which induces a map g
(i)
m,n : K(Z/n, i)→

K(Z/mn, i) for any integer i > 0.

For any prime number p such that p|r, a straight forward computation of homology of

groups shows that we have the isomorphism

(g(1)
m,n)∗ : H2(K(Z/n, 1);Z/p) ∼= H2(K(Z/mn, r);Z/p) ∼= Z/p. (2.2.6)

See, for example, Section 6.2 of (33). On the other hand, recall “la transpotence”

ψp : H2q(K(Z/r, i);Z/p)→ H2pq+2(K(Z/r, i+ 1);Z/p)

defined in Section 6 of (14), which, by the example on page 6-08, (14), is Z/p-linear when p is

odd. We adopt the notations in Section 11 of (14). Let Ar be the group ring of Z/r generated by
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a single element ur. Then, it is an easy consequence of Section 9 of (14) that H2(K(Z/r, 1);Z/p)

is generated by ψp(ur). It then follows from (Equation 2.2.6) that we have

(g(1)
m,n)∗(ψp(un)) = µψp(unm).

For some µ ∈ (Z/p)∗. When p is odd, since ψp is functorial and Z/p-linear, we have

(g(2)
m,n)∗((ψp)

2(un)) = µ(ψp)
2(unm), (2.2.7)

an equation of elements of H8(K(Z/mn, 2);Z/p). When p = 3, the discussion above leads to

the following

Lemma 2.2.2. The induced homomorphism H8(gm,n) is a 3-local isomorphism if 3|n and 0

otherwise.

Proof. When 3 - n, we have H8(K(Z/n, 2);Z) = 0, and there is nothing to prove. When 3|n,

by the universal coefficient theorem, it suffices to show that

(g(2)
m,n)∗ : H7(K(Z/n, 2);Z)→ H7(K(Z/mn, 2);Z)

is an isomorphism. It follows from Section 11 of (14) that

H7(K(Z/r, 2);Z) ∼= Z/3
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is generated by the Bockstein of (ψ3)2(ur), when 3|r. The lemma then follows from (Equa-

tion 2.2.7).

Consider the short exact sequence

0→ Z/n→ Z/mn→ Z/m→ 0

which induces the following fiber sequence of spaces:

K(Z/m, 1)→ K(Z/n, 2)→ K(Z/mn, 2).

We denote the induced cohomological Serre spectral sequence in integral coefficients by HE∗,∗∗ .

Lemma 2.2.3. Let HE∗,∗∗ be as above. If ε2(n)n|m, then

H5(K(Z/n, 2);Z) ∼= HE
3,2
∞ =

ε2(m)

ε2(n)
HE

3,2
3 / ImHd

0,4
3 ,

and if ε3(n)n|m, then

H7(K(Z/n, 2);Z) ∼= HE
3,4
∞ =

ε3(m)

ε3(n)
HE

3,4
3 / ImHd

0,6
3 .

Remark 2.2.4. In particular, we have

H5(K(Z/n, 2);Z) ∼= Z/ε2(n)n,
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and

H7(K(Z/n, 2);Z) ∼= Z/ε3(n)n.

Proof. Consider the E2-page

HEs,t2
∼= Hs(K(Z/mn, 2);Ht(K(Z/m, 1);Z)) ∼=

Hs(K(Z/mn, 2);Z), if t = 0.

Hs(K(Z/mn, 2);Z/m), if t > 0 and t is even,

0, if t is odd.

This follows from the fact that, as a ring,

H∗(K(Z/m, 2);Z) ∼= Z[v]/(mv), (2.2.8)

where v is of degree 2. For obvious degree reasons, we have

Hd0,2
3 : HE

0,2
3
∼= Z/m→ HE

3,0
3
∼= Z/mn, v 7→ nβmn, (2.2.9)

i.e., the canonical inclusion Z/m → Z/mn. Since the spectral sequence is multiplicative, it

follows from (Equation 2.2.9) that

Hd3,2
3 : HE

3,2
3
∼= Z/m→ HE

6,0
3
∼= Z/2, vβmn 7→ nβ2

mn, (2.2.10)
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which is surjective if n is odd, and 0 if n is even. By Leibniz rule, we have

Hd0,4
3 : HE

0,4
3
∼= Z/m→ HE

3,2
3
∼= Z/m, v2 7→ 2nvβmn. (2.2.11)

It follows from obvious degree reasons that HE3,2
∞ = KerHd

3,2
3 / ImHd

0,4
3 . Therefore, by (Equa-

tion 2.2.10), (Equation 2.2.11) and ε2(n)n|m, we have

HE3,2
∞ = 〈 2

ε2(n)
vβmn〉/〈2nvβmn〉 =

ε2(m)

ε2(n)
HE

3,2
3 / ImHd

0,4
3
∼= Z/ε2(n)n, (2.2.12)

which is isomorphic to H5(K(Z/n, 2);Z), and the first equation follows.

We proceed to prove the second equation in the lemma. By Leibniz rule and (Equa-

tion 2.2.9), we have

d0,6
3 (v3) = 3nv2βmn, and d3,4

3 (v2βmn) = 2vβ2
mn = 0

since 2βmn = 0, from which it follows that

HE3,4
4 = HE

3,4
3 / Im d0,6

3 = HE
3,4
3 /3nHE

3,4
3
∼= Z/ε3(m)n. (2.2.13)

For degree reasons the only potentially nontrivial differential into or out of HE3,4
4 is

Hd3,4
5 : HE

3,4
4 → HE

8,0
4 ,
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where the codomain HE
8,0
4 is a quotient group of H8(K(Z/mn, 2);Z) in which ρmn is nontrivial.

It follows from Lemma 2.2.2 that

Hd3,4
5


= 0, if 3|n,

onto ρmn, otherwise.

(2.2.14)

Hence, when ε3(n)n|m, we have

HE
3,4
∞ = KerHd5

3,4
=
ε3(m)

ε3(n)
HE

3,4
3 / Im d0,6

3
∼= Z/ε3(n)n, (2.2.15)

which is isomorphic to H7(K(Z/n, 2);Z), and the desired equation follows.

The cohomology of K(Z/n, 2) with coefficients in Z/2 is of particular interest to us. In

fact, we have a beautiful description of the cohomology ring H∗(K(Z/2, q);Z/2) for any q > 0.

We denote the fundamental class of Hq(K(Z/2, q);Z/2) by b. Recall that a finite sequence of

positive integers I = (i1, i2, · · · , ir) is called admissible if ik ≥ 2ik+1, for k = 1, · · · , r − 1. The

excess of I is defined as

e(I) = i1 − i2 − · · · − ir.

The following well-known theorem can be found, for example, in (28), in a slightly different

form.
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Theorem 2.2.5 (Theorem 4, Chapter 9, (28)). When n is even, the ring H∗(K(Z/n, q);Z/2)

is the polynomial ring with generators

SqI(b) = Sqi1 Sqi2 · · · Sqir(b)

where I runs through admissible sequences of excess e(I) < q, with the exception, in the case

4|n, and ir = 1, SqI(b) is replaced by

Sqi1 Sqi2 · · · Sqir−1(b′),

where b′ is the mod 2 reduction of the generator of Hq+1(K(Z/n, q);Z), and Sq1(b) = 0.

In the special case of q = 2, we have

Corollary 2.2.6. When n is even, we have the isomorphism

H∗(K(Z/n, 2);Z/2) = Z/2[b2, b3, b5]

where b2 = b is the fundamental class, Sq1 b2 = 0 when 4|n and Sq1 b2 = b3 otherwise, and

b5 = Sq2 b3.

We conclude this section with the following.

Proposition 2.2.7. The mod 2 reduction ofR2 ∈ H7(K(Z/2, 2);Z) is b22b3 ∈ H7(K(Z/2, 2);Z/2).

In particular, it is nontrivial.
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Proof. It is well known ((28), for example) that Sq1 is the composition of the Bockstein homo-

morphism followed by the mod 2 reduction. It follows from (Equation 2.2.5) thatH8(K(Z/2, 2);Z)

is a 2-torsion group, from which it follows that the mod 2 reduction

H8(K(Z/2, 2);Z)→ H8(K(Z/2, 2);Z/2)

is injective. Therefore, it suffices to show Sq1(b22b3) = 0, which implies the Bockstein homomor-

phism sends b22b3 to 0. Indeed, by Cartan’s formula, we have

Sq1(b22b3)

= Sq1(b2)b2b3 + b2 Sq1(b2)b3 + b22 Sq1(b3)

=2 Sq1(b2)b2b3 + b22 Sq1 Sq1(b2)

=0,

where the last equation follows from the Adem relation Sq1 Sq1 = 0.

2.3 Twisted K-Theory and Atiyah-Hirzebruch Spectral Sequence

For a connected topological space X and a class α ∈ Br′(X) = H3(X;Z)Tor, Donovan-

Karoubi ((17)) and Atiyah-Segal ((9))defined the twisted complex K-theory of X with respect

to α, which we denote by KU(X)α, following the convention in (2).
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Similar to the usual, untwisted complex K-Theory, there is a twisted version of the Atiyah-

Hirzebruch spectral sequence, Ẽ∗,∗∗ , such that

Ẽs,t2
∼=


Hs(X;Z), if t is even,

0, if t is odd,

and converges to KU(X)α when X is a finite CW complex. For more details, see (9) and (10).

The spectral sequence is closely related to the index of α, as shown in the following

Theorem 2.3.1. Let X be a finite CW complex and let α ∈ Br(X). Consider Ẽ∗,∗∗ , the

twisted Atiyah-Hirzebruch spectral sequence with respect to α with differentials d̃s,tr with bi-

degree (r,−r + 1). In particular, Ẽ0,0
2
∼= Z, and any Ẽ0,0

r with r > 2 is a subgroup of Z and

therefore generated by a positive integer. The subgroup Ẽ0,0
3 (resp. Ẽ0,0

∞ ) is generated by per(α)

(resp. ind(α)).

Moreover, we have a rank map KU0(X)α → Z (See Section 2.5 of (2)) of which the image

is generated by ind(α). Theorem 2.3.1 is an immediate consequence of Proposition 2.21 and

Lemma 2.23 of (2). It has the following consequence:

Corollary 2.3.2. Let X be a connected 8-dimensional CW-complex, and let α ∈ Br′(X) =

H3(X;Z)tor be such that per(α) = n. Then ind(α)|ε2(n)ε3(n)n3.

Proof. First we fix a CW-complex structure on the Eilenberg-Mac Lane space K(Z/n, 2) and

take X to be sk8(K(Z/n, 2)), the 8th skeleton of K(Z/n, 2). Then the corresponding twisted

Atiyah-Hirzebruch spectral sequence is shown in Figure Figure 5, where one readily sees that
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the only differentials out of Ẽ0,0
∗ with non-trivial codomains are d̃0,0

3 , d̃0,0
5 and d̃0,0

7 , whose

codomains are, respectively, subquotients of Ẽ3,−2
2
∼= H3(K(Z/n);Z), Ẽ5,−4

2
∼= H5(K(Z/n);Z)

and Ẽ7,−6
2

∼= H7(K(Z/n);Z). As discussed in Section 1, the three groups above are all cyclic,

of order n, ε2(n)n, and ε3(n)n respectively, from which the desired result follows for X =

sk8(K(Z/n, 2)).

For a general X and α, choose α′ ∈ H2(X;Z/n) such that B(α′) = α, where B is the

Bockstein homomorphism. then α′ is classified by a cell map f : X → K(Z/n, 2) such that

f∗(βn) = α, where βn is the canonical generator of H2(K(Z/n, 2);Z) as discussed in Section

2. The corollary then follows from the functoriality of the twisted Atiyah-Hirzebruch spectral

sequence. The idea of the proof is indicated in Figure Figure 5.

2.4 The Space BP (n,mn) and Its Low Dimensional Postnikov Decomposition

Let m,n be integers. Recall that in Section 1 we defined a Lie group P (n,mn) which fits

in the following exact sequence:

1→ Z/m→ P (n,mn)
ϕ−→ PUmn → 1.

Applying the classifying space functor, we obtain a fiber sequence

BZ/m→ BP (n,mn)
Bϕ−−→ BPUmn. (2.4.1)
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3 5 7

−2

−4

−6

Z Z/n Z/ε2(n)n Z/ε3(n)n

Figure 5. The twisted Atiyah-Hirzebruch spectral sequence associated to the 8th skeleton of

K(Z/n, 2).

The space BP (n,mn) plays an important role in the study of topological period-index problem.

As we mentioned in the introduction, π1(P (n,mn)) ∼= Z/n, and consequently BP (n,mn) is a

simply connected space with π2(BP (n,mn)) ∼= Z/n. Therefore we have a projection onto the

2nd stage of Postnikov Tower BP (n,mn)→ K(Z/n, 2). In particular, P (n, n) = PUn, and we

have the following commutative diagram

BP (n,mn) BPUmn

K(Z/n, 2) K(Z/mn, 2)

(2.4.2)
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where the vertical arrows are the projections to the 2nd stages of the respective Postnikov

towers.

Proposition 2.4.1. The bottom arrow in the diagram Equation 2.4.2 is induced by the canon-

ical inclusion Z/n ↪→ Z/mn.

In fact, this follows from the fact that Bψ induces a morphism on the 2nd homotopy groups

which is the inclusion described above.

Delooping the first term of the fiber sequence Equation 2.4.1, we obtain another fiber se-

quence

BP (n,mn)
Bϕ−−→ BPUmn

η−→ K(Z/m, 2), (2.4.3)

which leads to the following

Proposition 2.4.2. The second arrow η in the fiber sequence (Equation 2.4.3) fits in the

following commutative diagram:

BP (n,mn) BPUmn

K(Z/n, 2) K(Z/mn, 2) K(Z/m, 2)

η

in which the square is diagram (Equation 2.4.2) and the bottom row is a fiber sequence induced

by delooping twice the canonical short exact sequence

0→ Z/n→ Z/mn→ Z/m→ 0.
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Let X be a finite CW complex and let α ∈ Br(X) = H3(X;Z)tor be of order n. Recall

the lifting problem (Equation 2.1.4) discussed in the introduction, as shown by the following

diagram.

BP (n,mn)

X K(Z/2, n)α′

(2.4.4)

We have the following

Proposition 2.4.3. Let X, α be as above. Furthermore, suppose that H2(X;Z) = 0. Then α

is classified by an Azumaya algebra of degree mn if and only if the lifting in diagram (Equa-

tion 2.4.4) exists.

Proof. The “if” part follows easily by post-composing a lift X → BP (n,mn) with Bψ. To prove

the “only if” part, suppose that α is classified by a map f : X → BPUmn. Since H2(X;Z) = 0,

there is a unique α′ ∈ H2(X;Z) such that B(α′) = α, where B is the Bockstein homomorphism.

Moreover, let α′′ be the image of α′ under the canonical map K(Z/n, 2) → K(Z/mn, 2), then

α′′ is the unique class in H2(X;Z/mn) such that B(α′′) = α. The uniqueness of α′′ indicates

that the map f above fits in the following commutative diagram

BP (n,mn) BPUmn K(Z/m, 2)

X K(Z/n, 2) K(Z/mn, 2) K(Z/m, 2)

η

=f

α′

(2.4.5)

where the square in the middle is the one in Proposition Equation 2.4.2, and both the top and

bottom rows of the 3 by 2 rectangular diagram are fiber sequences. The bottom row being
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a contractible map, a simple diagram chasing shows that the lifting indicated by the dashed

arrow exists.

We denote integral cohomological Serre spectral sequence associated to (Equation 2.4.1) by

(E∗,∗∗ , d∗,∗∗ ), of which the E2 page is

Es,t2
∼= Hs(BPUmn;Ht(BZ/m)) ∼=



Hs(BPUmn;Z), if t = 0;

Hs(BPUmn;Z/m), if t > 0 is even;

0, if t is odd.

(2.4.6)

This follows from the fact that, as a ring,

H∗(BZ/m) ∼= Z[v]/(mv), (2.4.7)

where v is of degree 2. As for the cohomology of BPUmn, we have the following

Theorem 2.4.4 ((20), Theorem 1.1). For an integer n > 1, the graded ring H∗(BPUn;Z), in

degrees ≤ 10, is isomorphic to the following graded ring:

Z[e2, · · · , ejn , x1, y3,0, y2,1, z1, z2]/In.
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Here ei is of degree 2i, jn = min{5, n}; the degrees of x1, y3,0, y2,1 are 3, 8, 10, respectively; and

the degrees of z1, z2 are 9, 10, respectively. In is the ideal generated by

nx1, ε2(n)x2
1, ε3(n)y3,0, ε2(n)y2,1, ε3(n)z1, ε3(n)z2,

δ(n)e2x1, (δ(n)− 1)(y2,1 − e2x
2
1), e3x1,

where

δ(n) =


2, if n = 4l + 2 for some integer l,

1, otherwise.

The degreewise cohomology groups with coefficients in an arbitrary ring follow immediately

from the theorem above, together with the Künneth theorem. We will simply refer to Theorem

0.0.1 for them.

Consider the quotient map SUmn → P (n,mn), which is a simply connected cover with Deck

transformation group Z/n. Therefore, we have


H1(BP (n,mn;Z)) ∼= H2(BP (n,mn);Z) = 0,

H3(BP (n,mn);Z) ∼= H2(BP (n,mn);Z) ∼= π2(BP (n,mn)) ∼= π1(P (n,mn)) ∼= Z/n,
(2.4.8)

which leads to the following

Lemma 2.4.5. In the spectral sequence (E∗,∗∗ , d∗,∗∗ ), the differential d0,2
3 is a monomorphism.

By choosing the generator of E0,2
2
∼= Z/m correctly, d0,2

3 can be taken as the canonical inclusion
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Z/m ↪→ Z/mn. In particular, H3(BP (n,mn);Z) is generated by x′1, the image of x1 under the

homomorphism H3(BPUmn;Z)→ H3(BP (n,mn);Z) induced by the quotient map.

Lemma 2.4.5 has the following consequence:

Proposition 2.4.6. Let m,n be positive integers. Then ε2(n)n|m if and only if

H5(BP (n,mn);Z) ∼= Z/ε2(n)n.

Proof. See Figure Figure 6 for the spectral sequence discussed here. Notice E5,0
2 = 0 from

Theorem 0.0.1. Then for obvious degree reasons the only nontrivial entry of the E2-page of

total degree 5 is E3,2
2
∼= Z/m, from which it follows that

H5(BP (n,mn);Z) ∼= E3,2
∞ .

The proposition then follows from the same computation as in the proof of the first statement

of Lemma 2.2.3, only with βmn replaced by x1.

Remark 2.4.7. Indeed, we have the commutative diagram

K(Z/m, 1) BP (n,mn) BPUmn

K(Z/m, 1) K(Z/n, 2) K(Z/mn, 2)

=

which induces a morphism of Serre spectral sequences taking the generatorQn ofH5(K(Z/n, 2);Z)

to the generator of H5(BP (n,mn);Z) when ε2(n)n|m.
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2 3 4 5 6

2

4

6

Z/m

Z/m

Z/mnZ

Z/m

Z/m

0 Z⊕ Z/2

Z/2

×n

×2n

×3n

×n

Figure 6. The E3-page of the spectral sequence E∗,∗∗ .

In the proof of Proposition 2.4.6, we observe that when n is odd and m is even, the differ-

entials d0,2
3 and d3,2

3 annihilate the 2-torsion elements in E∗,03
∼= H∗(BP (n,mn);Z). This is a

special case of a more general argument. By the definition of P (n,mn), we have the following

fiber sequence

BSUmn → BP (n,mn)→ K(Z/n, 2).

We consider the associated cohomological Serre spectral sequence with integral coefficients, of

which the E2-page has no p-torsion for any prime p not dividing n, from which we deduce

Lemma 2.4.8. For a prime p, H∗(BP (n,mn);Z) has no nontrivial p-torsion if p - n.
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Lemma 2.4.8 has the following immediate

Corollary 2.4.9. Let p be a prime such that p|m and p - n. Then all p-torsion element of E∗,02

vanish in the E∞-page.

Recall from Theorem 0.0.1 that the torsion subgroup of E8,0
2
∼= H8(BPUr;Z) is Z/3 if 3|r

and 0 otherwise.

Corollary 2.4.10. If 3|m and 3 - n, then the differential

d3,4
5 : E3,4

5 → E8,0
5 = E8,0

2

is a surjection onto its subgroup Z/3.

Proof. It follows for degree reasons that d3,4
5 is the only possibly nontrivial differential towards

E8,0
∗ , and in particular, it follows that E8,0

5 = E8,0
2 . The fact that d3,4

5 is onto Z/3 follows from

Corollary 2.4.9.

We proceed to consider the Postnikov tower of BP (n,mn). Recall the low-dimensional

homotopy groups of BP (n,mn):

πi(BP (n,mn) ∼=



Z/n, i = 2,

Z, 2 < i < 2mn, i even,

0, 0 < i < 2mn, i odd.

(2.4.9)
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We denote the ith stage of the Postnikov tower of a simply connected topological space X by

X[i], and the ith k-invariant by κi. Then we have part of the Postnikov system of BP (n,mn)

as follows:
K(Z, 4) BP (n,mn)[4] = BP (n,mn)[5]

BP (n,mn)[3] = K(Z/n, 2) K(Z, 5)
κ3

(2.4.10)

In general we have BP (n,mn)[2i] = BP (n,mn)[2i + 1] for all n > 0 even and i < n, since in

such cases we have π2i+1(BP (n,mn)) = 0. By (Equation 2.2.5) and Proposition 2.4.6, we have

H5(BP (n,mn);Z) ∼= H5(K(Z/n, 2);Z) ∼= Z/ε2(n)n ∼= H5(K(Z/n, 2)×K(Z, 4);Z)

if and only if ε2(n)n|m, which implies the following

Proposition 2.4.11. Let m,n be positive integers. Then ε2(n)n|m if and only if in the Post-

nikov tower of BP (n,mn), we have κ3 = 0. or equivalently, we have

BP (n,mn)[5] = BP (n,mn)[4] ' K(Z/n, 2)×K(Z, 4).

Remark 2.4.12. This is essentially the main result of (1).

The integral cohomology groups of BP (n,mn) in degree ≤ 5 are immediate from the propo-

sition above. In particular, we have

Corollary 2.4.13. As in Proposition 2.4.11, we assume that ε2(n)n|m.

1. H4(BP (n,mn);Z) ∼= Z. We denote its generator by e′2.
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2. Recall the map Bϕ : BP (n,mn)→ BPUmn induced by the quotient map ϕ. The induced

homomorphism

(Bϕ)∗ : H4(BPUmn;Z) ∼= Z→ H4(BP (n,mn);Z) ∼= Z

is the multiplication by ε2(n)mn.

Proof. The statement (1) follows immediately from Proposition 2.4.11. To prove (2), consider

the spectral sequence E∗,∗∗ as in (Equation 2.4.6). Notice E5,0
2
∼= H5(BPUmn;Z) = 0, from

which it follows that

E2,2
∞ = E2,2

2
∼= H2(BPUmn;Z/m) ∼= Z/m. (2.4.11)

For the same reason we have E0,4
∞ ∼= Kerd0,4

3 . By the Leibniz rule we have d3(v2) = 2vd3(v) =

2nvx1, which implies that E0,4
∞ is the subgroup of E0,4

2 of ε2(n)n-torsion elements, i.e.,

E0,4
∞
∼= Kerd0,4

3 = E0,4
4
∼= Z/ε2(n)n. (2.4.12)

The equations (Equation 2.4.11) and (Equation 2.4.12), together with (1) of the corollary imply

(2).

We proceed to make a similar assertion on H6(BP (n,mn);Z). To do so we need the

following
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Lemma 2.4.14. When ε2(n)n|m, the Abelian group H7(BP (n,mn);Z) is isomorphic to Z/ε3(n)n×

Z/n × Z/2 modulo a cyclic subgroup. In particular, H7(BP (n,mn);Z) is not a cyclic group

when n is even.

Proof. It follows from 2.4.11 that

H7(BP (n,mn)[5];Z) ∼= H7(K(Z/n, 2)×K(Z, 4);Z) ∼= Z/ε3(n)n× Z/n× Z/2.

Therefore

H7(BP (n,mn);Z) ∼= H7(BP (n,mn)[6];Z) ∼= Z/ε3(n)n× Z/n× Z/2/(κ5),

and the result follows.

Corollary 2.4.15. Suppose ε2(n)n|m.

1. We have

H6(BP (n,mn);Z) ∼=


Z⊕ Z/2, if n is even,

Z, if n is odd.

2. When n is even, the subgroup Z/2 of H6(BP (n,mn);Z) is generated by (x′1)2, where

x′1 = Bϕ∗(x1). Furthermore, Bϕ induces a homomorphism

H6(BPUmn;Z)/(x2
1) ∼= Z→ H6(BP (n,mn);Z)/(Bϕ(x2

1)) ∼= Z
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which is the multiplication by



ε3(mn )nm2, if n is even, or m,n are both odd,

ε3(mn )nm2/2, if n is odd, and 4|m,

ε3(mn )nm2/4, if n is odd, and m = 2(2l + 1) for some integer l.

Proof. Consider the 6th stage of the Postnikov tower of BP (n,mn) as described by the following

diagram:

K(Z, 6) BP (n,mn)[6]

BP (n,mn)[5] = K(Z/n, 2)×K(Z, 4) K(Z, 7)
κ5

from which it follows that

H6(BP (n,mn);Z) ∼= Z⊕H6(K(Z/n, 2)×K(Z, 4);Z) ∼=


Z⊕ Z/2, if n is even,

Z, if n is odd.

from which (1) follows.

Consider the spectral sequence E∗,∗∗ . When n is even, we have

E6,0
2
∼= H6(BPUmn;Z) ∼= Z⊕ Z/2,
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of which the 2-torsion subgroup is generated by x2
1. By Lemma 2.4.5, the image of d3,2

3 is

generated by nx2
1 = 0, since n is even. Therefore we have

d3,2
3 = 0. (2.4.13)

For obvious degree reasons there is no other nontrivial differential hitting the entry (6, 0). Hence

the first half of (2) follows.

To prove the second half of (2), it suffice to show that Es,t∞ such that s + t = 6, t > 0 are

all finite, of which the product of the cardinality is equal to the number given in each case. On

the E2-page, the nontrivial entries Es,t2 such that s+ t = 6, t > 1 are E4,2
2
∼= Z/m, E2,4

2
∼= Z/m

and E0,6
2
∼= Z/m.

For E0,6
2 , we have

d0,6
3 : E0,6

2
∼= Z/m→ E3,4

2
∼= Z/m

the multiplication by 3n, by the Leibniz rule. Hence we have

E0,6
4 = Ker d0,6

3
∼= Z/ε3(

m

n
)n. (2.4.14)

We argue case by case, as follows.
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Case 1: n is even, or m,n are both odd. In this case, either 4|mn, or mn is odd. Then it

follows from Theorem 0.0.1 that

E7,0
2
∼= H7(BPUmn;Z) = 0.

Then for degree reasons there is no nontrivial differential into or out of E4,2
2 . Hence we have

E4,2
∞
∼= E4,2

2
∼= Z/m. (2.4.15)

Next we consider the entry E2,4
∗ . For degree reasons the only possibly nontrivial differential

into or out of it is d2,4
3 , of which the codomain, according to the Künneth’s theorem and Theorem

0.0.1, is

E5,2
3
∼= H5(BPUmn;Z/m) ∼=


0, if n is odd, and consequentely so is m,

Z/2, if n is even.

We proceed to show d2,4
3 = 0 in both cases. When n is odd this is obvious. When n is even,

it follows from Lemma 2.4.14 that E5,2
∞ 6= 0, for otherwise H5(BP (m,n);Z) would be cyclic, a

contradiction. Therefore, E5,2
∞ = E5,2

2
∼= Z/2, from which it follows that d2,4

3 = 0. Hence, we

have

E2,4
∞
∼= E2,4

2
∼= Z/m. (2.4.16)
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Again for degree reasons, the only potentially nontrivial differential out of E0,6
4 is into E5,2

4
∼=

Z/2. It follows from Lemma 2.4.14 that this differential is 0. Therefore we have

E0,6
∞
∼= E0,6

4
∼= Z/ε3(

m

n
)n. (2.4.17)

Case 1 now follow from (Equation 2.4.15), (Equation 2.4.16) and (Equation 2.4.17).

Case 2: n is odd, and 4|m. In this case it again follows from Theorem 0.0.1 that

H7(BPmn;Z) = 0. Then for the same reason as in Case 1 we have

E4,2
∞
∼= E4,2

2
∼= Z/m. (2.4.18)

Consider E2,4
∗ . The only potentially nontrivial differential into or out of E2,4

∗ is

d2,4
3 : E2,4

3
∼= Z/m→ E5,2

3
∼= Z/2,

where E5,2
3
∼= H5(BPmn;Z/m) ∼= Z/2 follows from Künneth’s theorem. Since n is odd, it

follows from Corollary 2.4.9 that E5,2
∞ = 0. However, for degree reasons there is no nontrivial

differential into or out of E5,2
∗ except for possibly d2,4

3 . (Notice that E8,0
2 has no 2-torsion, by

Theorem 0.0.1.) Therefore, d2,4
3 is surjective and it follows that

E2,4
∞
∼= Z/

m

2
. (2.4.19)
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For degree reasons there is no nontrivial entry of total degree 7 on the E4-page. Hence it

follows that

E0,6
∞
∼= E0,6

4
∼= Z/ε3(

m

n
)n. (2.4.20)

Case 2 then follows from (Equation 2.4.18), (Equation 2.4.19) and (Equation 2.4.20).

Case 3: n is odd, and m = 2(2l+1) for some integer l. In this case it follows from Theorem

0.0.1 that

E7,0
2
∼= H7(BPUmn;Z) ∼= Z/2,

and moreover, the differential

d4,2
3 : E4,2

3
∼= Z/m→ E8,0

2
∼= Z/2

is onto, since, due to Theorem 0.0.1, H7(BPUmn;Z) is generated by the cup product e2x1. For

degree reasons there is no other nontrivial differentials into or out of E4,2
3 . Hence we have

E4,2
∞
∼= Z/

m

2
. (2.4.21)

For E2,4
∞ and E0,6

∞ the same arguments as in Case 2 applies and we have

E4,2
∞
∼= Z/

m

2
(2.4.22)
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and

E0,6
∞
∼= Z/ε3(

m

n
)n. (2.4.23)

Therefore, Case 3 follows.

The study of the next non-trivial stage of the Postnikov tower requires some auxiliary results

on the cohomology of the classifying spaces of some Lie groups, which is the topic of the next

section.

2.5 The Cohomology of Classifying Spaces of Some Lie Groups

Recall the integral cohomological Serre spectral sequence associated to the fiber sequence

BUr → BPUr → K(Z, 3), which we denote by UE∗,∗∗ , and the formula for the differential Ud3

described in Corollary 1.5.3

UEs,t3
∼= UE

s,t
2
∼= Hs(K(Z, 3);Ht(BUr;Z)).

Let ck ∈ H2k(BUr;Z) be the kth Chern class, and x1 be the generator of H3(K(Z, 3);Z).

In low dimensions, for example, UE0,4
3 and UE0,6

3 , Ud3 is the only non-trivial differential out

of them. Therefore, the kernel of Ud0,∗
3 gives the image of the homomorphism H∗(BPUr;Z)→

H∗(BUr;Z) induced by the quotient map BUr → BPUr. A straightforward calculation gives

the following
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Lemma 2.5.1. The image of the homomorphism H∗(BPUr;Z)→ H∗(BUr;Z) in degree 4 and

6 are generated respectively by

ε2(r)(rc2 −
r − 1

2
c2

1)

and

ε3(r)

ε2(r)ε2( r−2
ε2(r−2))

[
r2c3 − r(r − 2)c1c2 +

(r − 1)(r − 2)

3
c3

1

]
.

By pre-composing the quotient map with the inclusion SUr ↪→ Ur, we obtain another quo-

tient map SUr → PUr. Applying the classifying space functor and taking integral cohomology,

we obtain the homomorphism

H∗(BPUr;Z)→ H∗(BSUr;Z).

Recall that the inclusion SUr ↪→ Ur induces a homomorphism

H∗(BUr;Z) ∼= Z[c1, · · · , cn]→ H∗(BSUr;Z) ∼= Z[c2, · · · , cn]

which annihilates c1 and takes ci to itself, for i > 1. Therefore, Lemma 2.5.1 immediately

implies the following

Lemma 2.5.2. The image of the homomorphism

H∗(BPUr;Z)→ H∗(BSUr;Z)
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in degree 4 and 6 are generated respectively by ε2(r)rc2 and

ε3(r)r2

ε2(r)ε2( r−2
ε2(r−2))

c3.

We conclude this section with the following

Proposition 2.5.3. Let n and m be such that ε2(n)n|m. Consider the quotient map SUmn →

P (n,mn). The induced homomorphism

H6(BP (n,mn);Z)→ H6(BSUmn;Z) = Z[c3]

has image generated by

ε3(mn)

ε3(m/n)ε2(n)
nc3.

Proof. Notice that the quotient map SUmn → PUmn can be factorized as SUmn → P (n,mn)→

PUmn, and the proposition follows from Lemma 2.5.2 and Corollary 2.4.15, once we notice the

following equation:

ε3(mn)m2n2

ε2(mn)ε2( mn−2
ε2(mn−2))

=



ε3(mn)m2n2

ε2(n) , n is even(hence so is m), or m,n are odd,

ε3(mn)m2n2

2ε2(n) , n is odd, and 4|m,

ε3(mn)m2n2

4ε2(n) , n is odd, and m = 2(2l + 1) for some l.
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2.6 Proof of Theorem 2.1.0.1

We proceed to consider H7(BP (n,mn);Z). Considered the fiber sequence

BSUmn → BP (n,mn)→ K(Z/n, 2)

and the associated integral cohomological Serre spectral sequence SE
∗,∗
∗ with

SE
s,t
2
∼= Hs(K(Z/n, 2);Ht(BSUmn;Z)).

We have the following

Lemma 2.6.1. Suppose that ε2(n)n|m. Recall that H3(K(Z/n, 2);Z)) ∼= Z/n is generated by

an element βn, and that H7(K(Z/n, 2);Z)) ∼= Z/ε3(n)n is generated by Rn. In the spectral

sequence SE
∗,∗
∗ , we have Sd

0,6
3 (c3) = 2c2βn with kernel generated by

n

ε2(n)
c3,

and

Sd
0,6
7 (

n

ε2(n)
c3) =

ε3(n)ε3(m/n)

ε3(mn)
nRn.

All the other differentials out of SE
0,6
∗ are trivial.

In particular Sd
0,6
3 is the only non-trivial differential out of SE

0,6
∗ when ε3(n)n|m.
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Proof. See Figure Figure 7 for the differentials of the spectral sequence SE
∗,∗
∗ discussed here. For

degree reason the only potentially non-trivial differential out of SE
0,4
2 is Sd

0,4
5 . By Proposition

2.4.6 we have

SE
5,0
∞
∼= Z/ε2(n)n ∼= SE

5,0
2 ,

from which it follows that Sd
0,4
5 = 0. The statement about Sd

0,6
3 follows from an easy comparison

of the cohomological Serre spectral sequences between the fiber sequences

BSUmn → BP (n,mn)→ K(Z/n, 2)

and

BUmn → BPUmn → K(Z, 3),

the E3-page of the latter of which is well understood in Chapter 1. Therefore, the statement

about Sd
0,6
7 follows from Proposition 2.5.3.

For future convenience we introduce the following notation:

I(m,n) =
ε3(m/n)ε3(n)

ε3(mn)
n. (2.6.1)

Lemma 2.6.1 has the following immediate consequence:

Corollary 2.6.2. Assume that n is odd, and n|m. Then we have

H7(BP (n,mn);Z) ∼= Z/I(m,n),
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3 5 7

4

6

Z

Z

Z/n Z/ε2(n)n Z/ε3(n)n

×2

Figure 7. Low dimensional differentials of the spectral sequence SE∗,∗∗ , when ε3(n)n|m. The

dashed arrows represent trivial differentials.

which is generated by Rn(x′′1). Here x′′1 generates H2(BP (n,mn);Z/n). Moreover, B(x′′1) = x′1

where B is the Bockstein homomorphism.

The general case is more complicated. Recall Lemma 2.4.14, which says thatH7(BP (n,mn);Z)

is not a cyclic group when n is even. With a little more work we can impose a strong restriction

on the k-invariant κ5.

Remark 2.6.3. Since we have the homotopy equivalence

BP (n,mn)[4] = BP (n,mn)[5] ' K(Z/n, 2)×K(Z, 4),
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the cohomology rings H∗(BP (n,mn);Z) and H∗(K(Z/n, 2) × K(Z, 4);Z) are isomorphic in

degree ≤ 6. In view of this, in what follows we do not explicitly distinguish the elements

x′1, Rn(x′′1), e′2 with βn, Rn, ι4.

Lemma 2.6.4. Assume ε2(n)n|m. Then we have

κ5 = λ1Rn × 1 + λ2βn × ι4 + 1× Γ4

where λ1 ∈ Z/ε3(n)n, λ2 ∈ Z/n. Furthermore, the subgroups of Z/n generated by 2λ2 contains

2.

In particular, if n is odd, then, up to a scalar multiple, we have

κ5 = λ1Rn × 1 + βn × ι4 + 1× Γ4

Proof. Suppose

κ5 = λ1Rn × 1 + λ2βn × ι4 + λ3 × Γ4,

where λ1 ∈ Z/ε3(n)n, λ2 ∈ Z/n, λ3 ∈ Z/2. Lemma 2.6.1 implies that H7(BP (n,mn);Z)

is generated by Rn × 1 and βn × ι4, since they generate SE3,4
2 and SE7,0

2 , the only non-trivial

entries on the E2-page with total degree 7. In particular, the class 1×Γ4 is a linear combination

of them, from which it follows that λ3 = 1.
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Let 〈κ5〉 be the subgroup of H7(BP (n,mn);Z) generated by κ5. Lemma 2.6.1 implies that

2βn × ι4 is in the subgroup generated by Rn × 1, since SE3,4
∞ , generated by βn × ι4, has order

2. Hence, there is some scalar Λ ∈ Z/ε3(n)n such that

2βn × ι4 + ΛRn × 1 ∈ 〈κ5〉. (2.6.2)

Let 〈βn× ι4, Rn×1〉 be the subgroup of H7(BP (n,mn);Z) generated by βn× ι4 and Rn×1.

Then (Equation 2.6.2) implies

2βn × ι4 + ΛRn × 1 ∈ 〈κ5〉 ∩ 〈βn × ι4, Rn × 1〉 = 〈2κ5〉,

where the identification of subgroups follows from the fact

2κ5 ∈ 〈κ5〉 ∩ 〈βn × ι4, Rn × 1〉

and that 2 is a prime number.

From the above, it follows that 2βn × ι4 + ΛRn × 1 is a multiple of

2κ5 = 2(λ1Rn × 1 + λ2βn × ι4 + λ3 × Γ4) = 2(λ1Rn × 1 + λ2βn × ι4),

which implies that the ideal of Z/n generated by 2λ2 contains 2, and the lemma follows.

We make the following important observation:
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Lemma 2.6.5. Let X be the 8-skeleton of K(Z/n, 2), with a Brauer class

α ∈ H3(X;Z)tor = Br(X)

the restriction of the fundamental class βn ∈ H3(K(Z/n, 2);Z). If α is classified by a PUmn-

torsor, then ε2(n)ε3(n)n|m.

Proof. For the obvious reason we do not distinguish cohomology classes of X and K(Z/n, 2)

in degree ≤ 7. It follows from Proposition 2.4.11 that ε2(n)n|m. It remains to prove that

ε3(n)n|m. Assume ε3(n)n - m for a contradiction. Since we already have ε2(n)n|m, it follows

that 3|n and 3 - mn . Hence we have

I(m,n) = n. (2.6.3)

Since H2(X;Z) = 0, there is a unique element α′ ∈ H2(X;Z/n) such that B(α′) = α,

where B is the Bockstein homomorphism. Therefore, the lifting problem shown by the following

diagram

BP (n,mn)[5] = K(Z, 4)×K(Z/n, 2) K(Z, 7)

X BP (n,mn)[3] = K(Z/n, 2)

κ5

α′

f5

has a unique solution f5 since H4(X;Z) = 0, and for the same reason, the composition κ5 · f5

is λ1Rn ∈ H7(X;Z), for some λ1 ∈ Z/ε3(n)n, according to Lemma 2.6.4. On the other hand,
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it follows from Lemma 2.6.1 and (Equation 2.6.3) that in H7(BP (n,mn);Z) we have nRn = 0,

whereas Rn is of degree 3n in H7(BP (n,mn)[5];Z). Therefore, we have

0 6= nRn ∈ 〈κ5〉 ∈ H7(BP (n,mn)[5];Z).

This implies that nRn is a multiple of λ1Rn, and in particular, κ5 · f5 = λ1Rn 6= 0. Hence f5

does not lift to BP (n,mn)[6], a contradiction.

We proceed to study the next non-trivial stage of the Postnikov tower of BP (n,mn), namely

BP (n,mn)[6]. Recall from Lemma 2.4.14 that when n is even, we have

H7(BP (n,mn);Z) ∼= H7(BP (n,mn)[6];Z)

∼=H7(K(Z, 4)×K(Z/n, 2);Z)/(κ5) ∼= Z/ε3(n)n⊕ Z/n⊕ Z/2/(κ5),

where the components Z/ε3(n)n, Z/n and Z/2 are generated by Rn × 1, βn × ι4 and 1× Γ4.

Lemma 2.6.6. Suppose ε3(n)n|m. Then we have E3,4
∞ ∼= Z/ε3(n)n. Moreover, as a direct sum

component of H7(BP (n,mn);Z), E3,4
∞ is generated by Rn.

Proof. Consider the following commutative diagram

K(Z/m, 1) BP (n,mn) BPUmn

K(Z/m, 1) K(Z/n, 2) K(Z/mn, 2)

= (2.6.4)
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It follows from the proof of Lemma 2.2.3 that the morphism of spectral sequences induced by

(Equation 2.6.4) restricts to an isomorphism

HE3,4
4
∼= E3,4

4 .

We proceed to show that it restricts to an isomorphism

HE3,4
∞
∼= E3,4

∞ . (2.6.5)

For degree reasons, d0,6
3 is the only non-trivial differential reaching the entry E3,4

∗ . By the

Leibniz rule, we have

E3,4
3 / Im d0,6

3
∼= (Z/m)/3n ∼= Z/ε3(m)n,

where the last equation follows from the fact that ε3(n)n|m. On the other hand, it follows from

Leibniz rule that d3,4
3 (v2x1) = 2nvx1 = 0. Therefore we have d3,4

3 = 0 and

E3,4
4 = E3,4

4
∼= Z/ε3(m)n.

For degree reasons, the only potentially nontrivial differential into or out of E3,4
4 is

d3,4
5 : E3,4

5 → E8,0
5 .
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It then follows from (Equation 2.2.14) in the proof of Lemma 2.2.3 that d3,4
5 = 0 when 3|n. On

the other hand, it follows from Corollary 2.4.10 that

d3,4
5 : E3,4

5
∼= Z/ε3(m)n→ E8,0

5
∼= H8(BPUmn;Z)

is onto the subgroup of E8,0
5 of order 3 when 3 - n and 3|m. Therefore, (Equation 2.6.5) holds,

and the desired assertion follows from Lemma 2.2.3.

The next lemma concerns βn × ι4, which, as an element of H7(BP (n,mn);Z), is identified

with e′2x
′
1. Recall that E0,4

2
∼= Z/m is generated by v2.

Lemma 2.6.7. The group E0,4
∞ ∼= Z/ε2(m)n is the subgroup of E0,4

2 generated by m
ε2(m)nv

2.As a

quotient of H4(BP (n,mn);Z), E0,4
∞ is generated by the element represented by e′2, the generator

of H4(BP (n,mn);Z). Moreover, suppose that ε2(n)ε3(n)n|m. Then we can choose v, up to an

invertible scalar coefficient, so that in E0,4
∞ there is a relation e′2 = m

ε2(m)nv
2.

Proof. The fact that E0,4
∞ ∼= Z/ε2(m)n and that it is generated by m

ε2(n)nv
2 follows from Lemma

2.4.5 and the Leibniz rule. The rest follows from Corollary 2.4.13.

Theorem 2.6.8. Suppose that ε2(n)ε3(n)n|m. Then

H7(BP (n,mn);Z) ∼=


Z/ε3(n)n, n odd,

Z/2⊕ Z/ε3(n)n, n even.

(2.6.6)

Furthermore,
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1. if n is odd, then, up to an invertible scalar,

κ5 =
ε3(n)m

ε3(m)n
λRn × 1 + βn × ι4 + 1× Γ4

2. if n is even, then, up to an invertible scalar,

κ5 =
ε3(n)m

ε2(m)ε3(m)n
λRn × 1 + λ2βn × ι4 + 1× Γ4 mod 2− torsion.

where λ ∈ Z/ε3(n)n is invertible and λ2 is as in Lemma 2.6.4.

Proof. The first case of (Equation 2.6.6) is just Corollary 2.6.2. For the other case, it follows

from Lemma 2.6.6 and Corollary 2.6.2 that we have a short exact sequence

0→ Z/ε3(n)n→ H7(BP (n,mn);Z)→ Z/2→ 0.

By Lemma 2.4.14, the group H7(BP (n,mn);Z) is not cyclic. Therefore we have

H7(BP (n,mn);Z) ∼= Z/2⊕ Z/ε3(n)n,

for n even.

To prove (1) and (2) we need to find the coefficient λ1 as in Lemma 2.6.4. This is accom-

plished by studying the element e′2x
′
1 ∈ H7(BP (n,mn);Z). In particular, we locate it in the

spectral sequence E∗,∗∗ .
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It follows from Lemma 2.6.7 that in E3,4
3 we have the relation e′2x

′
1 = m

ε2(m)nv
2x1. On the

other hand, it follows from Lemma 2.6.6 that E3,4
∞ is generated by ε3(m)

ε3(n) v
2x1 which is identified

with λRn for some invertible element λ ∈ Z/ε3(n)n. Hence, in E3,4
∞ we have the relation

e′2x
′
1 =

ε3(n)m

ε2(m)ε3(m)n
λRn (2.6.7)

Since we have

H7(BP (n,mn);Z) ∼=


E3,4
∞ , n odd,

E3,4
∞ ⊕ E5,2

∞ ∼= E3,4
∞ ⊕ Z/2, n even,

The desired statement (1),(2) then follows immediately from (Equation 2.6.7).

Proof of Theorem 2.1.0.1. Let X be an 8-complex and α ∈ Br(X). The first paragraph of the

theorem, that ind(α)|ε2(n)ε3(n)n3 follows immediately from Corollary 2.3.2.

We proceed to prove the second paragraph. Let X, α and α′ be as in Lemma 2.6.5. Consider

α′ as a map X → K(Z/n, 2). Then it follows from Proposition 2.4.11, that α′ has a lift to

BP (n,mn)[4] if and only if ε2(n)n|m, in which case

BP (n,mn)[4] ' K(Z/n, 2)×K(Z, 4)
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and we have a unique lift f5 as in the following diagram

BP (n,mn)[5] = K(Z, 4)×K(Z/n, 2) K(Z, 7)

X BP (n,mn)[3] = K(Z/n, 2)

κ5

α′

f5 (2.6.8)

as discussed in Lemma 2.6.5. Therefore, a lift of α′n to BP (n,mn)[5] exists if and only if

κ5 · f5 = 0 ∈ H7(X;Z) ∼= H7(K(Z/n, 2);Z).

On the other hand, the projection

BP (n,mn)[4] ' K(Z/n, 2)×K(Z, 4)→ K(Z/n, 2)

splits, from which it follows that the homomorphism H∗(f5) is a quotient homomorphism

sending exactly all classes in H∗(K(Z, 4);Z) to 0. Recall from Proposition 2.4.11 and Lemma

2.6.5 that we only need to consider m and n such that ε2(n)ε3(n)n|m. Therefore, it follows

from Theorem 2.6.8 that

κ5 · f5 = f∗5 (κ5) =


ε3(n)m
ε3(m)nλRn, n odd,

ε3(n)m
ε2(m)ε3(m)nλRn mod 2−torsion, n even.

(2.6.9)

When n is odd, κ5 · f5 = 0 if and only if ε3(n)n| ε3(n)m
ε3(m)n , i.e., ε3(m)n3|mn. Since n|m, we

have ε3(n)|ε3(m), hence ε3(n)n3|mn, for all m,n such that the lift of α′ to BP (n,mn)[6] exists,
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which, according to Proposition 2.4.3, is true if and only if α can be classified by a PUmn-torsor.

Therefore, ε3(n)n3| ind(α). Then it follows that ε3(n)n3 = ind(α), as desired.

When n is even, the same argument can be made with the indeterminacy of 2-torsions:

κ5 · f5 =
ε3(n)m

ε2(m)ε3(m)n
λRn = 0 mod 2−torsions,

where λ ∈ Z/ε3(n)n is invertible. In other words, we have ε3(n)n
2 | ε3(n)m

ε2(m)ε3(m)n , i.e., ε3(m)n3|mn.

Since n|m, we have ε3(n)n3|mn for all m,n such that α is classified by a PUmn-torsor. Hence

ε3(n)n3| ind(α).

2.7 Proof of Theorem 2.1.0.2

It follows from Proposition 2.4.11 that BP (n,mn)[5] ' K(Z/n, 2)×K((Z, 4) when ε2(n)n|m.

As will be shown later, the essential case of this section is n = 2, which we treat first. Consider

the diagonal inclusion

∆0 : SU2 ↪→ SU2m.

Passing to the quotient spaces of the respective Z/2 actions given by the scaler multiplication

of eπ
√
−1, we have another inclusion

∆1 : PU2 ↪→ P (2, 2m).
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Passing to classifying spaces, we have

B∆1 : BPU2 ↪→ BP (2, 2m)

Lemma 2.7.1. B∆1 induces an isomorphism on H3(−;Z).

Proof. By the Hurewicz theorem, it suffices to show that ∆1 : PU2 ↪→ P (2, 2m) induces an

isomorphism of fundamental groups, which follows from the fact that the Z/2 actions on their

respective simply connected covers SU2 and SU2m commute with the diagonal inclusion.

Recall the well-known exceptional isomorphism PU2
∼= SO3, from which it follows

BPU2
∼= BSO3,

and in particular,

H∗(BPU2;Z/2) ∼= H∗(BSO3;Z/2) ∼= Z/2[w2, w3],

where w2, w3 are the Stiefel-Whitney classes of the universal SO3-bundle over BSO3.

Lemma 2.7.2. In the setting above, we have

Sq1(w2) = w3.

Proof. The first nontrivial stage of the Postnikov tower of BSO3 is K(Z/2, 2) ' BSO3[2],

and w2 is the Postnikov map. It follows from π3(BSO3) = 0 that we have K(Z/2, 2) '
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BSO3[3], from which it follows that w2 induces an isomorphism over mod 2 cohomology groups

in dimensions less than 4. The lemma then follows from Corollary 2.2.6.

Recall that we denote the generator of H3(BP (n,mn);Z) by x′1. Also recall the element

R2(x′1) ∈ H7(BP (2, 2m);Z), or R2 for short. Let overhead bars indicate the mod 2 reduction

of integral cohomology classes. We have the following

Corollary 2.7.3. In mod 2 cohomology we have (B∆1)∗(R̄2) = w2
2w3. In particular (B∆1)∗(R̄2)

is nontrivial.

Proof. It follows from Lemma 2.7.1 and Lemma 2.7.2 that (B∆1)∗(x̄′1) = w3 and (B∆1)∗(x′′1) =

w2, where x′′1 is the generator of H2(BP (2, 2m);Z/2). The rest follows from Proposition 2.2.7.

Recall from Proposition 2.4.13 that H4(BP (2, 2m);Z) is generated by e′2.

Lemma 2.7.4. Let 4|m, and (B∆1)∗ be the homomorphism induced by B∆1 between integral

cohomology groups. Then

(B∆1)∗(e′2) =
m

4
e2,

where e2 and e′2 are the generators of H4(BPU2;Z) and H4(BP (2, 2m);Z), respectively.

Proof. Consider the following composition

BPU2
B∆1−−−→ BP (2, 2m)→ BPU2m,
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where the second arrow is induced by the quotient homomorphism. By Theorem 0.0.1 and

Proposition 2.4.13, H4(−;Z) of all 3 spaces involved are isomorphic to Z. It follows from

Lemma 1.9.2 that H4(−;Z) of the composition is multiplication by m2, and from Proposition

2.4.13 that H4(−;Z) of the second arrow is multiplication by 4m. Therefore H4(B∆1;Z) is

multiplication by

m2/4m =
m

4
.

Corollary 2.7.5. Let m = 4 and ē′2 be the mod 2 reduction of e′2. Then in the mod 2

cohomology, we have

(B∆1)∗(ē′2) = w2
2.

Proof. Notice that

H4(BPU2;Z/2) ∼= H4(BSO3;Z/2)

is generated by w2
2. Therefore w2

2 is the mod 2 reduction of e2. The rest follows from Lemma

2.7.4.

The author owes the following lemma to A. Bousfield.

Lemma 2.7.6. Let 4|m, and recall the definition of ē′2 from Corollary 2.7.5. We have

Sq3(ē′2) 6= 0.
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Proof. Consider the following fiber sequence:

BP (2, 2m)→ BPU2m → K(Z/m, 2),

and denote its associate Serre spectral sequence in Z/2 coefficients by 2E∗,∗∗ . Recall that

H2(BP (2, 2m);Z/2) is generated by x′′1, and H3(BP (2, 2m);Z/2) by x̄′1. Also recall from

Corollary 2.2.6 which asserts

H∗(K(Z/n, 2);Z/2) = Z/2[b2, b3, b5]

where b5 = Sq2(b3) and Sq1(b2) = 0. For obvious degree reasons, the differential

2d0,2
3 : 2E

0,2
3
∼= H2(BP (2, 2m);Z/2)→ 2E

3,0
3
∼= H3(BP (2, 2m);Z/2), x′′1 7→ b3 (2.7.1)

is an isomorphism. Therefore, the element x′′1 is transgressive and we have

2d0,3
4 : 2E

0,3
4
∼= H3(BP (2, 2m);Z/2)→ 2E

4,0
4
∼= H3(BP (2, 2m);Z/2),

x̄′1 = Sq1(x′′1) 7→ Sq1(b3) = 0,

from which it follows that

2d2,3
4 (b2 ⊗ x̄′1) = 0. (2.7.2)
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It follows from Proposition 2.4.11 that

H4(BP (2, 2m);Z/2) ∼= Z/2⊕ Z/2,

and moreover, it is generated by (x′′1)2 and ē′2. Since x′′1 ∈ 2E
0,2
3 is transgressive, so is (x′′1)2 =

Sq2(x′′1). Furthermore, we have

2d0,4
5 ((x′′1)2) = Sq2(2d0,4

5 (x′′1)) = Sq2(b3) = b5. (2.7.3)

For obvious degree reasons, this is the only nontrivial differential reaching 2E5,0
∗ . Hence, we

have

2E5,0
∞
∼= Z/2. (2.7.4)

On the other hand, it follows from (Equation 2.7.2) that b2 ⊗ x̄′1 ∈2 E2,3
3 is a permanent

cocycle, whereas

H5(BPU2m;Z/2) ∼= Z/2,

a consequence of Theorem 0.0.1. Therefore, it follows from (Equation 2.7.4) that b2 ⊗ x̄′1 is a

coboundary. For degree reasons and (Equation 2.7.3), we have

2d0,4
2 (ē′2) = b2 ⊗ x̄′1. (2.7.5)
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We recall a theorem regarding Steenrod operations in spectral sequences, proved independently

by Araki ((7)) and Vázquez ((31)). We quote this theorem from (26) as follows:

Theorem 2.7.7 (Theorem 6.15, (26)). On the mod p cohomology spectral sequence associated

to a fibration F → E → B, there are operations

for p odd


F Ps : Ea,br → E

a,b+2s(p−1)
r , 1 ≤ r ≤ ∞,

B Ps : Ea,br → E
a+(2s−b)(p−1),pb
r , 2 ≤ r ≤ ∞,

for p = 2


F Sqi : Ea,br → Ea,b+ir , 1 ≤ r ≤ ∞,

B Sqi : Ea,br → Ea+i−b,2b
r , 2 ≤ r ≤ ∞,

that converge to the action of Ap on H∗(E;Z/p), commute with the differentials in the spectral

sequence, satisfy analogues of Cartan’s formula and the Adem relations and reduce to the Ap-

action on H∗(F ;Z/p) and H∗(B;Z/p). when r = 2 and a = 0 or b = 0 (that is, on E∗,02 and

E0,∗
2 ). Here Ap denotes the mod p Steenrod algebra.

Furthermore, these operations satisfy a list of axioms similar to those characterizing Steen-

rod operations. In particular, we have

F Sqi = 0 : Ea,br → Ea,b+ir , i < 0 or i > b. (2.7.6)

For the complete list of the axioms, see, for example, (7).



132

It follows from (Equation 2.7.5) that

2d0,7
2 (Sq3(ē′2)) =F Sq3(b2 ⊗ x̄′1) = b2 ⊗ (x̄′1)2 6= 0.

In particular, Sq3(ē′2) 6= 0.

In order to reduce the proof of Theorem 2.1.0.2 to the case that n = 2, we need the following

Theorem 2.7.8 (Theorem 1.3, (3)). Let (X,OX) be a connected locally ringed topos, and let

α = α1 + · · · + αt be the prime decomposition of a Brauer class α ∈ Brtop(X) so that each

per(αi) = paii for distinct primes p1, · · · , pt. Then

ind(α) = ind(α1) · · · ind(αt).

Proof of Theorem 2.1.0.2. Suppose n = 2l where l is an odd number. Write α = α1 +α2, where

α1 and α2 are of order 2 and l respectively. It follows from Theorem 2.1.0.1 that indα2|ε3(l)l3.

By Theorem 2.7.8, it suffices to show that indα1 - 23. Hence, it suffices to prove the theorem

for n = 2.

Recall that any n

κ5 = λ1Rn × 1 + λ2βn × ι4 + 1× Γ4.
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In the case n = 2, this means that λ1 and λ2 are either 0 or 1. Therefore, it suffices to determine

λ1 and λ2 in the mod 2 cohomology group. It follows from Corollary 2.7.3 and Corollary 2.7.5

that in H7(BPU2;Z/2), we have

0 =(B∆)∗(λ1R2 + x̄′1ē
′
2 + Sq3(ē′2))

=(B∆)∗(λ1R2) + w2
2w3 + Sq3(w2

2)

=λ1w
2
2w3 + λw2

2w3 + [Sq2(w2)w2 + w2 Sq(w2)]

=(λ1 + λ2)w2
2w3

which implies λ1 + λ2 = 0. On the other hand, it follows from Lemma 2.7.6 that λ1 and λ2

cannot be both 0. So we have

λ1 = λ2 = 1.

Therefore, when m = 4, we have

κ5 = R2 × 1 + β2 × ι4 + 1× Γ4.

Hence, the obstruction class for lifting β2 to BP (2, 8)[5] is R2 6= 0, and the desired result

follows.

We conclude this paper with the following immediate corollary of Theorem 2.1.0.2:

Corollary 2.7.9. Let X = sk(K(Z/n, 2)). Then in the twisted Atiyah-Hirzebruch spectral

sequence (Ẽ∗,∗∗ , d̃∗,∗∗ ), the differential d̃0,0
7 is an epimorphism if 4 - n.
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Proof. Theorem 0.0.5 implies that d̃0,0
5 is an epimorphism for all n, thus has kernel generated

by ε2(n)n. The corollary then follows from Theorem 1.5.8 and Theorem 2.3.1.
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seign. Math. (2) 48 (2002), no. 1-2, 127-146. With an appendix by Ofer Gabber.

17. P. Donovan and M. Karoubi, Graded Brauer Groups and K-Theory with Local Coefficients,

Inst. Hautes Études Sci. Publ. Math. (1970), no. 38, 5-25.



137

18. W. G. Dwyer and C. W. Wilkerson, The Elementary Geometric Structure of Compact Lie

Groups, unpublished.

19. A. Grothendieck, Le groupe de Brauer. I. Algébres d’Azumaya et Interprétations Diverses,
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