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SUMMARY

One of the most promising technologies for next-generation spectrally efficient wireless com-

munications is cognitive radio. Cognitive radios are artificially intelligent devices that are aware

of their environment and can coexist with licensed users in the same frequency band, thus revo-

lutionizing the way spectrum is allocated and alleviating the problem of underutilized frequency

spectrum.

The cognitive radio theory is still in the early stages of development, it is thus important to

understand the fundamental limits of communication possible when certain nodes use cognitive

radio technology. In particular, we are interested characterizing the limits of communication

when cognitive transmitters have side information (messages) of other transmitters and to

understand how to optimally use the available resources (power) when a cognitive transmitter

is in a fading environment. Our main interest is characterizing the information theoretic limits

of communication for a multi-user cognitive network and the optimal resource allocation policy

for maximizing the sum-capacity in a fading environment.

To further address the problem of spectrum scarcity and to fulfill the need for increased

bandwidth, millimeter wave bands between 30 and 300 GHz have been considered for future

wireless mobile networks. Until relatively recently, it was presumed that these ultra high

frequency bands are unreliable for cellular communications since signals cannot penetrate as

far as those at lower frequency bands, thus resulting in signal outages. With the advancement

in CMOS and the ability to pack large arrays of antennas, this problem can be alleviated.
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SUMMARY (Continued)

Moreover, with the anticipated vision that mmWave networks would have a dense deployment

of base stations, interference from strong line-of-sight base stations increases too, thus further

increasing the probability of outage. Motivated by this challenge, this thesis addresses the

problem of base station cooperation in millimeter wave networks as a way to decrease signal

outage with the increase in the number of signal paths. The main emphasis is characterizing

the coverage probability for a millimeter wave downlink heterogenous network with coordinated

multipoint joint transmission.

This thesis is organized into 5 chapters: Chapter 1 presents the main contributions of our

work with a detailed list of prior related work. Chapter 2 is devoted to demonstrating the opti-

mal resource allocation (power allocation policy) for maximizing the sum-capacity of an ergodic

fading Gaussian cognitive interference channel consisting of a primary user and a cognitive user

communicating over the same frequency band. Chapter 3 contains the information theoretic

limits for a multi-user cognitive interference network consisting of one primary and an arbitrary

number of cognitive users with a “hierarchal” message knowledge structure and its relationship

with a network with only one cognitive user. Chapter 4 focuses on characterizing the coverage

probability for a downlink millimeter wave heterogenous network with base station cooperation,

while Chapter 5 includes a summary of the results.

xii



CHAPTER 1

INTRODUCTION

Part of this chapter has been previously published in [1], [2], [3], [4], [5], [6]. c© [2014]

IEEE. Reprinted, with permission, from [1], [3]. c© [2013] IEEE. Reprinted, with permission,

from [2], [4], [5]. c© [2012] IEEE. Reprinted, with permission from [6].

Almost all of the prime frequency bands have already been assigned to various wireless

services, leading to the scarcity of available frequency spectrum for emerging wireless applica-

tions and products. However reports and statistics show that the wireless spectrum is in fact

underutilized. These two facts suggest that if one is able to exploit the underutilized spectrum

using advanced software radio, then this would help solve the problem of spectrum gridlock.

Cognitive radios are proposed as a potential solution to alleviate the problem of spectrum

scarcity currently faced by the increasing demand for wireless broadband. Having cognitive

radios that can dynamically access the spectrum will allow new wireless devices to intelligently

use the available licensed wireless channels and coexist with users that hold the priority access

to the spectrum.

The cognitive radios are classified according to the type of side information they acquire.

Cognitive radios can sense white spaces (time, space or frequency void) and adjust their trans-

missions to fill the sensed voids, this approach has been referred to as interweave and has the

advantage of interference avoidance. Contrary to keeping its transmission orthogonal to the

primary user’s transmissions, as is the case in the interweave paradigm, the underlay paradigm

1
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allows a cognitive radio to simultaneously transmit with primary user(s), if the interference

caused at the primary receiver(s) is kept below a certain threshold commonly referred to as the

interference temperature

A cognitive radio with even a higher level of cognition would have additional information

of codebooks, messages and/or channel gains. When simultaneously transmitting with primary

license holders it is referred to as the overlay cognitive interference channel [7]. We focus on the

latter form of cognition where secondary users have a-priori non-causal message knowledge of

primary license holders. Intuitively, this idealized assumption of message knowledge allows the

cognitive radio to either cooperate in sending this message of the primary user and/or transmit

its own message using some interference mitigating method.

Our main focus of interest is characterizing the information theoretic limits of communica-

tion of overlay cognitive networks with arbitrary number of secondary / cognitive users (having

non-causal message knowledge) coexisting with a primary user in the same frequency band and

thus interfering with one another; moreover additive white Gaussian noise is included in the

channel model to account for the natural random processes that occur in nature.

The basic limit of communication for any channel is the channel capacity. The channel

capacity is the maximum rate of communication for which arbitrary small probability of error

can be achieved. In this work, we are interested in finding the highest sum of rates (sum-

capacity) that can be simultaneously achieved at the receivers with small probability of decoding

error. In many cases finding the sum-capacity of a network is not an easy problem; therefore it

is helpful to study first the asymptotic approximations of the sum-capacity for example finding
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the generalized degrees of freedom. The generalized degrees of freedom is a useful metric that

approximates the interference-limited sum-capacity performance at high SNR and is a metric

we seek to derive for the multi-user cognitive interference channel.

Moreover we are interested in understanding the behavior of a cognitive transmitter in a

time-varying fading environment. The ergodic channel capacity is the capacity at which reliable

communication is possible while averaging out the time variation of the channel and is the

performance metric we seek to derive.

To further address the possibility of breaking the spectrum gridlock, millimeter wave com-

munication has been proposed for next generation cellular networks. It was presumed that these

ultra high frequency bands between 30 and 300 GHz are unreliable for cellular communication,

since signals are susceptible to blockage, absorption, diffraction and penetration resulting in

outages and thus unreliable communication. Therefore, it is expected that mmWave networks

would likely be dense to attain reliable coverage. However, a dense mmWave network further

increases the number of interfering base stations too thus counteracting its initial purpose. To

address this issue, we explore the benefits of base station cooperation in the downlink of a

mmWave heterogenous network. Using tools from stochastic geometry, we show that cooper-

ation from randomly located base stations within different tiers can decrease the probability

of outage by increasing the number of signal paths (and hence diversity) a receiver sees. For

this problem, we are interested in characterizing the coverage probability, in other words, the

probability of having the received power above a target minimum for which performance is

acceptable.
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1.1 Contributions

The single antenna overlay two-user cognitive radio channel, the 2-CIFC, first introduced

in [8], models the communication in a network between a licensed user (has the exclusive

right to transmit) and a secondary user that has a-priori the primary user’s codebook as well

as its message. The cognitive transmitter is able to transmit simultaneously over the same

channel as apposed to limiting its transmissions to white spaces. With these idealized side

information assumptions, the secondary transmitter can act selfishly and pre-cancel the effect

of the primary’s interference and transmit its own independent message (dirty paper coding)

or it can act selflessly and behave as a relay (beam forming).

Ever since its introduction in [8], this two-user channel has been extensively studied. In

particular [9] and [10] determine the sum-capacity in weak interference, while [11] characterizes

the capacity under strong interference conditions. The most comprehensive results on the two-

user cognitive interference channel (2-CIFC) can be found in [12,13], where [12] gives the largest

achievable rate region and [13] gives capacity results for the Gaussian Noise channel.

We remove the assumption of constant channel gains and consider a more realistic fading

(time varying) cognitive interference channel. To the best of our knowledge, there has been no

work regarding a fading cognitive interference channel. For this time varying channel model,

we are interested in characterizing the power allocation policy that maximizes its sum-capacity.

The literature on the fundamental performance of multi-user cognitive interference chan-

nels is limited, in part due to the fact that the two-user counterpart is not yet fully under-

stood [12, 13]. Several 3-user extensions of the 2-CIFC model have been studied in the lit-
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erature. For the 3-user case, the 3-CIFC, the work [14] proposed different overlay cognitive

interference channel models that differ by the cognitive abilities at the transmitters. Achiev-

able rate regions have been proposed in [15]. The work in [16, 17] considered the three user

cognitive interference channel with one cognitive transmitter and provided the capacity region

under strong interference conditions. To the best of our knowledge, capacity results for the

fully connected multi-user cognitive networks have not yet been reported.

In this work, we are interested in characterizing the capacity for one particular message

knowledge structure for a multi-user setting which consists of a primary user sharing the spec-

trum with arbitrary number of cognitive users with cumulative message sharing. Surprisingly,

we show - by deriving fundamental information theoretic limits - that under certain channel gain

conditions having “distributed cognition” or having a cumulative message knowledge structure

at nodes may not be worth the overhead as (approximately) the same sum-capacity can be

achieved by having only one “global cognitive” user whose role is to manage all the interference

in the network.

In the following section we list the main contributions regarding the EGCIFC and the K-user

cognitive interference channel with cumulative message sharing.

1.1.1 Contributions: Ergodic Fading Gaussian Cognitive Interference Channels

We study a time varying two user cognitive interference channel - ergodic fading Gaussian

cognitive interference channel (EGCIFC). The main contributions regarding this time varying

channel are:
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1. Sum-capacity genie-aided outer bound for the EGCIFC. This genie-aided outer bound

consists of giving side-information to the cognitive receiver. The side information consists

of primary user’s message and output. We then provide a matching achievability scheme,

thus completely characterizing the sum-capacity under the assumption of perfect CSI at

all transmitters and receivers.

2. When the primary receiver experiences strong interference, the sum-capacity achieving

scheme is that of MISO channel with PerPC and perfect CSI at the transmitter and

receiver. As a result of independent interest, we thus also characterize the sum-capacity

of a MISO channel with full CSI at all terminals, and with an arbitrary number of transmit

antennas.

3. The power allocation policy that maximizes the sum-capacity for the EGCIFC is derived

which depends on the relative channel gains for a given fading state.

1.1.2 Contributions: Multi-user Cognitive Interference Channels

In the second part of this work, we are interested in the information theoretic limits of com-

munication when arbitrary number of cognitive users - with different amount of side information

(messages) of other transmitters - communicate over the same frequency band with a primary

user, thus interfering with one another. We term this network the K user cognitive interference

channel with cumulative message sharing and we are interested in understanding the minimum

message knowledge needed at the transmitters that is sufficient for optimal sum-capacity per-

formance. The assumption made for this channel is that cognitive transmitter i ∈ [2 : K] has
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non-causal knowledge of the messages of users with index less than i. The main contributions

for the K-user cognitive interference channel with cumulative message sharing are:

1. A novel and general outer bound region. The bound is valid for any memoryless channel

and any number of users. The bound does not contain auxiliary random variables and is

therefore computable for many channels of interest, including the Gaussian channel.

2. The sum-capacity the 3-user Linear Deterministic Approximation of the Gaussian noise

channel at high-SNR for any channel parameters is characterized. This optimal scheme

inspires a scheme for the K-user symmetric channel. This latter scheme only requires

cognition of all messages at one transmitter; all the others need only knowledge of their

own message.

3. The sum-capacity for the symmetric Gaussian noise channel with K users to within a

constant additive and multiplicative gap is derived. The additive gap is a function of

the number of users and grows as (K − 2) log2(K − 2). The proposed achievable scheme

is based on Dirty Paper Coding (DPC) and may be thought of as a Gaussian MIMO-

broadcast channel scheme where only one encoding order is possible due to the cumulative

message sharing mechanism. As opposed to other multi-user interference channel models,

a single scheme suffices for both the weak and strong interference regimes. Moreover, no

interference alignment of structured coding seems to be needed. Numerical evaluations

show that the actual gap is less than the analytical one; this is so because of necessary

crude bounding steps needed to obtain analytically tractable sum-rate expressions. The

multiplicative gap is K and is achieved by having all users beam form to the primary user.
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4. The normalized generalized degrees of freedom (gDoF), defined as the pre-log of the sum-

capacity as a function of SNR, is shown to be a function of K. This is in contrast with

other channel models, like the non-cognitive case or the broadcast channel, where the

gDoF are the same for any K. Interestingly, it is shown that as the number of users grows

to infinity the gDoF of the K-user cognitive interference channel with CMS tends to the

gDoF of a broadcast channel with a K-antenna transmitter and K single-antenna receivers.

We then consider a K-user cognitive interference channel with two different message shar-

ing structures in strong interference. In addition to the cumulative message sharing

(CMS) network we consider the cognitive only message sharing (CoMS) cognitive inter-

ference channel - which consists of K−1 primary users and only one cognitive transmitter

that has all the messages of the primary users. The contributions regarding these two

channels models experiencing strong interference are:

5. A sum-rate outer bound valid for any number of users under a certain strong interference

condition, which amounts to having one receiver that can decode all transmitted signals

without loss of optimality. The bound takes the same form for both CoMS and CMS mod-

els, but over different sets of input distributions. The bound does not contain auxiliary

random variables and is therefore computable for many channels of interest, including the

Gaussian channel. The bound is not the classical compound MAC result of similar strong

interference capacity results.

6. We present coding schemes that achieve the sum-rate outer bound for both CoMS and

CMS in strong interference.
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7. For the Gaussian noise channel, we explicitly characterize the set of channel gains satis-

fying the strong interference condition and compare our results with [18] (for the 2-user

case) and [16, 17] (for the 3-user case). Since we only focus on sum-capacity, our outer

bound holds under more relaxed conditions than [16,17]. Moreover, our approach extends

beyond the 3-user Gaussian case to any number of users and to any memoryless channel.

8. For the Gaussian noise channel, we show that under weak channel gain conditions, it

is sufficient to have one global cognitive user in a K-user network, which knows all the

message of the network, to achieve an upper bound of a network derived initially for the

network with cumulative message sharing.

1.1.3 Contributions: Coverage for Base station Cooperation in Millimeter Wave

Heterogenous Networks with Blockage

Characterizing coverage and capacity in mmWave cellular systems and in coordinated mul-

tipoint (CoMP) networks have been extensively studied. In [19] the authors compared the

performance, in terms of coverage and capacity, of a stochastic geometry based mmWave net-

work (without CoMP) to a microwave cellular network, at a single antenna receiver (typical

user). In [19], directionality at the transmitters, intra-cell and inter-cell interference were ac-

counted for but blockage was not included in the analysis. The authors show that coverage in

mmWave systems increases with the decrease in the half-power beam width of the radiation

pattern. In fact, having narrower beams decreases beam overlap, thus decreasing intra-cell and

inter-cell interference and increasing coverage probability. We propose to study the problem of

base station cooperation in the downlink of dense mmWave heterogenous network as a mean to
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combat blockage and decrease signal outage. Our derivations of the coverage probability, simi-

larly to [19], account for interference experienced at the typical user, but in addition blockage

is incorporated in the analysis.

In [20] (see also journal version in [21]) the authors proposed a stochastic geometry frame-

work to evaluate the performance of mmWave cellular networks (without CoMP) with blockage.

The authors incorporate blockage by modeling the probability of a communication link - being

either a line-of-sight (LOS) or non-LOS (NLOS) link - as function of the length of the commu-

nication link from the serving base station. Different pathloss laws were applied to the LOS and

NLOS links. Interestingly, it was shown in [21] that the LOS region (a region where a user does

not experience blockage) was approximated by an equivalent LOS ball whose radius is chosen

such that the average number of base stations observed in the LOS ball is the same as that

observed in the mmWave network. Numerical results in [21] suggest that higher data rates can

be achieved when compared to microwave cellular networks. One of the interesting observations

made in [20] is that mmWave networks should be dense but not too dense - since the number

of LOS interfering base stations increases when the density of base stations increases. We willl

leverage results from [21] to incorporate blockage and differentiate between having LOS links

and NLOS links from the cooperating base stations in the analysis of the problem of joint

transmission in mmWave networks.

In [22] (see also journal version in [23]) the authors used stochastic geometry for studying

microwave joint transmission CoMP where single antenna base stations transmit the same data

to single antenna users. Different performance metrics (including coverage probability) were
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considered, to evaluate the performance at the typical user located at an arbitrary location

(general user) and receiving data from base stations with the strongest average received power.

The authors showed that in the interference-limited regime, the coverage probability for the

typical user becomes independent of the number, density and respective power levels of the tiers

present in a CoMP network since a variation in any of the listed parameters causes a change

in both desired signal power as well as a change in the interference power in such a way that

their ratio remains constant in the absence of noise.

The derivation of the coverage probability for a mmWave network with base station co-

operation in this work is similar to that in [22] for the general user, except that key factors

specific to the mmWave channel model have to incorporated, some of which are the high di-

rectional transmission at the base stations, blockage and improved fading distribution due to

beamsteering and sparse scattering.

We propose to study the benefits of base station cooperation in the downlink of a het-

erogenous mmWave cellular system as a mean to address the problem of signal outage due to

blockage. We anticipate that the probability of a user being in outage due to blockage and

interference will decrease with the increase in diversity / number of signal paths from different

cooperating base stations. Our extensive numerical examples show that this is in fact the case

for the following scenarios, Case 1) for dense mmWave networks where the number of interfering

LOS base stations increases and Case 2) when the mmWave network experiences no blockage

but beam steering is still accounted for at the base stations. We also provide examples when

cooperation does not provide substantial increase in coverage probability.
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Our numerical results account for different number of transmit antennas, different tier in-

tensities (cell radius) and different blockage parameters. We compare the derived coverage

probabilities under different scenarios. The case with and without base station cooperation is

considered in the numerical examples. Moreover, we consider the case when there is no cooper-

ation but the base station has a transmit power equal to the sum of individual transmit power

if n base stations were to jointly transmit. We also compare a mmWave network with blockage

when the typical user is subject to interference versus the case when there is no interference.

The case when the fading distribution from the cooperating base stations is Nakagami fading

is also considered and two upper bounds on the coverage probability are derived.

1.2 Motivation

Before proceeding with the chapters, we list some of the many network topologies which

can be modeled as an overlay cognitive interference channel:

1. Channels with Retransmission: Consider a network of primary and cognitive users in

which a fixed-rate, i.e., not a function of the channel gains, primary user’s message was

sent but was not decoded at the intended receiver. The primary receiver informs the

primary transmitter by sending a NACK, and a retransmission takes place. If the cogni-

tive transmitter overheard the primary’s initial transmission and was able to successfully

decode the message in the first round then, in the retransmission phase, the cognitive

transmitter would have non-causal primary message knowledge and could transmit to-

gether with the primary in the ARQ round(s) [24].
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2. Coordinated Multipoint Transmission: Consider a network in which multiple transmit-

ters (may be thought of as base-stations) are connected by high capacity back-haul links,

allowing them to perfectly exchange messages to be transmitted to the receivers (may

be thought of as mobile users). This model may include the cognitive interference chan-

nel model with asymmetric non-causal message knowledge as a special case; studying

such networks with high-capacity backhaul may reveal what type of message knowledge

structure is useful [25].

3. Overlay Networks: This model is inspired by the idea of layered cognitive networks: the

first layer consists of primary users and each additional layer consists of cognitive users

that share the same spectrum. Each additional layer is given the codebook(s) of all

previous layers. This hierarchical codebook knowledge enables them to causally learn

the lower layers’ messages and aid in their transmission. Thus studying the non-causal

message knowledge setting provides an upper bound to the more realistic case where the

messages are causally learned by the cognitive transmitter(s) [2].

1.3 Notations

Throughout Chapter 2 and Chapter 3 we adopt the following notation convention:

• A† Transpose and complex-conjugate of the matrix A

• A? Optimal solution for a given optimization problem

• AN Vector of random variables Ai with i ∈ [1 : N]

• E [.] Expectation operator
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• log(.) Logarithm in base 2

• I(.; .) Mutual information

• h(.) Differential entropy

• P(A) Probability of event A

• N (m,σ2) Additive white Gaussian Noise with mean m and variance σ2.

• Ij Identity matrix of dimension j

• [n1 : n2] Set of integers from n1 to n2

Notations used in Chapter 4 are summarized in tables and are in given in Chapter 4.



CHAPTER 2

ERGODIC FADING COGNITIVE INTERFERENCE CHANNEL

All this chapter has been previously published in [1]; while parts of it have been published

in [3]. c© [2014] IEEE. Reprinted, with permission, from [1], [3].

There are two important aspects that make wireless communication challenging. The first

is fading, that is, the time variation of the channel gains due to small scale effects, such as those

due to multi-path, and large-scale effects, such as those due to path loss and shadowing. The

second is interference between wireless users communicating over the same frequency band. In

this work, we focus on the two-user fading interference channel where one of the transmitters

is cognitive, or knows the message of the other independent transmitter. This channel model

thus experiences both fading and interference, as well as a third phenomena seen in wireless

communications: the ability of transmit nodes to cooperate. We aim to characterize the sum-

capacity / throughput of this channel so as to highlight the impact of fading, interference and

asymmetric cooperation between transmitters.

Cognitive networks are wireless networks in which certain nodes are cognitive radios, or

artificially intelligent devices, and have been the subject of intensive investigation by the wireless

communication community in the past decade. In a cognitive network, cognitive / secondary

transmitters share the spectrum with primary / licensed users. The cognitive devices exploit

side information about their environment to improve spectral management. Depending on the

15
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nature of the side information [7], cognitive users either search for unused spectrum (interweave),

or operate simultaneously with non-cognitive transmitters as long as the interference produced

is within an acceptable threshold (underlay), or relay part of the primary user’s message and

cancel interference through advanced encoding schemes (overlay). We consider the overlay

paradigm where a primary transmitter-receiver (Tx-Rx) pair share the same spectrum with a

cognitive Tx-Rx pair. According to the overlay paradigm [7], the secondary Tx is assumed to

have non-causal knowledge of the message of the primary Tx.

The channel between the Txs and the Rxs is assumed to experience ergodic fading (i.e., time

average of every sufficiently long fading realization equals the statistical average). All nodes

in the network are assumed to have perfect instantaneous knowledge of the channel fading

coefficients, or full channel state information (CSI). Although the full CSI assumption might

be impractical even in the presence of a dedicated feedback channel from the Rxs to the Txs,

the resulting model serves as the customary first step towards understanding the performance

of more realistic models. Under these assumptions, we seek to determine the sum-capacity of

the network and the corresponding optimal power allocation policy under a long-term average

transmit power constraint at the Txs. In doing so, we also seek to answer the question of

whether coding separately across fading states is optimal [26].

2.1 Prior Work

In [27] the two-user Gaussian interference channel with ergodic fading was introduced and

the optimal power allocation policy that maximizes the outer bound was investigated. In [26]

the authors also considered the same model and showed that in general joint encoding and
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decoding across fading states is necessary to achieve capacity when perfect CSI at all nodes is

assumed (note that fading is an example of the more general result that parallel interference

channels are not separable [28]). However, [26] showed that in some parameter regimes, such

as very strong or very weak interference, separate encoding and decoding across fading states

is optimal. In other words, in interference channels separability may hold for certain channel

states but not for all channel states. While interference channels are not separable in general,

it is known that multi-access [29] and broadcast [30] channels with the same CSI assumption

are separable. Since the EGCIFC has elements of both an interference channel and a broadcast

channel, it is not a priori obvious that a separable scheme is capacity achieving. A formal proof

of the optimality of separability for the EGCIFC is shown in this work.

In [31] the authors also consider a fading cognitive network under the underlay paradigm.

The primary user in this case is completely oblivious to the existence of the cognitive user.

The relationship between the achievable capacity of the secondary channel and the interference

caused at the primary receiver was quantified. Instantaneous and average interference power

constraints were both considered and the optimal power allocation policy for the secondary

user in each case was derived. In this work, we consider the overlay paradigm with long-term

average power constraints at the primary and secondary transmitters. Moreover, our primary

user is not oblivious to the existence of the secondary user.

In [32] the authors consider a cognitive radio network under the underlay paradigm where

primary and secondary users are subject to block fading. The primary user is not capable of

adapting its power allocation while the secondary user is able to do so. The authors derive the
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optimal power allocation strategies for the cognitive user to maximize its ergodic and outage

capacity. In our work both users are capable of adapting their transmit power over the different

fading states based on the channel state information, and we consider the overlay paradigm.

In [33] the authors consider the fading cognitive single input single output (SISO) MAC

channel for the underlay paradigm, where the secondary users are subject to both a transmit

power constraint and interference power constraint to primary users. It is shown that the sum-

capacity achieving power allocation policy is a water filling type of solution. The key difference

between the EGCIFC and the model in [33] is the message structure; in [33] each sender

only knows its own message and thus the transmit signals are independent; in the EGCIFC

the transmit signals are correlated due to the non-causal primary message knowledge at the

secondary transmitter. Because of this, the sum-capacity achieving power allocation policy for

the EGCIFC will not be a water filling type.

As a byproduct of our analysis and as a result of independent interest, we shall show that the

optimal power policy for the EGCIFC in some regimes requires both transmitters to beam-form

to the primary receiver; in this case the model reduces to a point-to-point multiple input single

output (MISO) channel with per-antenna power constraints (PerPC). In [34] the author finds

the capacity for the point-to-point MISO channel with PerPC with two different assumptions of

CSI. The capacity for a constant channel with CSI at both terminals and with the assumption

that Rayleigh is the fading distribution channel with CSI at the receiver only were derived. The

author compares the result with the capacity of a MISO channel with sum power constraints

(SumPC) through numerical examples. In both cases the capacity with PerPC is, as expected,
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Figure 1. Ergodic Fading Gaussian Cognitive Interference Channel (EGCIFC).

less than that with SumPC. Here we characterize the sum-capacity of the EGCIFC with CSI

at the transmitters and receivers and find the optimal signaling scheme, which is thus different

from the solutions found in [34].

In [8] the authors first introduced the information theoretic study of the cognitive radio

channel (same as the cognitive interference channel) which falls into the overlay paradigm. In

that work, the channel gains were constant and achievable rate regions and outer bounds were

derived. In [9] the authors found the capacity of the cognitive interference channel in the weak

interference regime. In particular, the power split which ensures that the primary receiver rate

continues to be the same as that without interference from the cognitive user. For the state-of-

the-art on the two-user cognitive interference channel with constant channel gains (known to

all nodes) we refer the reader to [12,13]. We remove the assumption of constant channel gains

and consider the fading (time varying) cognitive interference channel.
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2.2 Channel Model

The cognitive interference channel consists of two transmit-receive pairs Tx1 to Rx1 and

Tx2 to Rx2 representing the cognitive and primary users, respectively, as shown in Figure 1.

Each transmitter Txk wishes to convey to its destination Rxk an independent message Wk,

which is uniformly distributed over the set [1 : 2NRk ], where Rk is the rate in bits per channel

use, and N represents the codeword length, for k ∈ [1 : 2]. Tx1 is cognitive in the sense that

it has non-causal message knowledge of the primary user’s (Tx2) message W2. A rate vector

(R1, R2) is said to be achievable if there exists a family of codes indexed by N such that the

probability of decoding error can be made arbitrarily small [35]. The sum-capacity is defined

as the maximum achievable R1 + R2.

In Gaussian noise and with ergodic fading, the ECIFC input-output relationship at every

time instant (time index is omitted for easier notation) is given by

Y1 = h11X1 + h12X2 + Z1, Z1 ∼ N (0, 1), (2.1)

Y2 = h22X2 + h21X1 + Z2, Z2 ∼ N (0, 1), (2.2)

where H :=

h11 h12

h21 h22

 denotes the random channel gain matrix (with complex entries gen-

erated randomly at each time instant / channel use according to a known, stationary and

ergodic random process), with [H]i,j = hij ∈ C, i, j ∈ [1 : 2] representing the fading channel

gain between Txj and Rxi. A realization of H is indicated as h. Txj, with channel input

Xj is subject to the long-term average power constraint E[|Xj|2] ≤ Pj, j ∈ [1 : 2]. With CSI
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at all terminals, the transmitters can perform dynamic power allocation, and transmit with

power Pj(h) ≥ 0, j ∈ [1 : 2], at a channel use with fading state h. We seek to determine the

sum-capacity optimal power allocation for each user such that E[Pj(h)] ≤ Pj, j ∈ [1 : 2].

Thanks to cognition, the channel inputs can be correlated; the input covariance matrix in

fading state h is denoted by

Σx(h) :=

 P1(h) ρ†(h)
√
P1(h)P2(h)

ρ(h)
√
P1(h)P2(h) P2(h)

 , (2.3)

where the correlation coefficient must satisfy |ρ(h)| ≤ 1.

2.3 Main Results

This section includes the main results for the EGCIFC. A sum-capacity outer bound is

presented as a maximization problem over three constraints: the two long-term average power

constraints at the transmitters and the constraint on the correlation coefficient. We then

prove that the outer bound with the optimal power allocation policy is achievable through a

variation of the achievability scheme of [9] proposed for the constant channel gain cognitive

interference channel in weak interference. The achievability scheme, unlike that for certain

parameter regimes of the interference channel, is separable, that is, encoding need not be done

across fading states. For a certain parameter regime (relative channel gains), the sum-capacity

achieving power allocation corresponds to the optimal power allocation scheme for a point-to-

point MISO channel with a PerPC. Thus as a topic of independent interest we characterize
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the power allocation policy and the capacity of the fading point-to-point MISO channel with

PerPC and an arbitrary number of antennas.

The sum-capacity of the EGCIFC is presented next and is shown to be the solution of a

maximization problem in the variables (P1(h), P2(h), ρ(h)) in (Equation 2.3).

Theorem 2.3.1. The ergodic sum-capacity of the EGCIFC is

CEGCIFC,sum = maxE
[
log

(
1+ |h21|

2P1(h) + |h22|
2P2(h) + 2|ρ(h)|

√
|h21|2P1(h) |h22|2P2(h)

)
+ log

(
1+ (1− |ρ(h)|2)max{|h11|

2, |h21|
2}P1(h)

1+ (1− |ρ(h)|2)|h21|2P1(h)

)]
, (2.4)

where the maximization is over Pi(h) ≥ 0 : E[Pi(h)] ≤ Pi, i ∈ [1 : 2], and |ρ(h)| ≤ 1.

Proof. As a generalization of the outer bound technique of [12, 13] to the fading case, the

sum-capacity is upper-bounded by

N(R1 + R2 − 2εN)
(a)

≤ I(W1; Y
N
1 |h

N) + I(W2; Y
N
2 |h

N)
(b)

≤ I(W1; Y
N
1 , Y

N
2 |h

N,W2) + I(W2; Y
N
2 |h

N)

(c)
= I(W1, Y

N
1 |h

N,W2, Y
N
2 ) + I(W1; Y

N
2 |W2,h

N) + I(W2; Y
N
2 |h

N)

(d)
= I(W1; Y

N
1 |h

N,W2, Y
N
2 ) + I(W1,W2; Y

N
2 |h

N)

(e)

≤ I(XN1 ; YN1 |hN, XN2 , YN2 ) + I(XN1 , XN2 ; YN2 |hN)

(f)
= h(YN1 |h

N, XN2 , Y
N
2 ) − h(Y

N
1 |h

N, XN2 , Y
N
2 , X

N
1 ) + h(Y

N
2 |h

N) − h(YN2 |h
N, XN1 , X

N
2 )

(g)
=

N∑
i=1

h(Y1i|h
N, XN2 , Y

N
2 , (Y1)

i−1
1 ) − h(Y1i|h

N, XN2 , Y
N
2 , X

N
1 , (Y1)

i−1
1 )
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+h(Y2i|h
N, (Y2)

i−1
1 ) − h(Y2i|h

N, XN1 , X
N
2 , (Y2)

i−1
1 )

(h)

≤
N∑
i=1

h(Y1i|hi, X2i, Y2i) − h(Y1i|hi, X2i, Y2i, X1i) + h(Y2i|hi) − h(Y2i|hi, X1i, X2i)

(i)
=

N∑
i=1

I(X1i; Y1i|X2i, Y2i,hi) + I(X1i, X2i; Y2i|hi)

(j)

≤
N∑
i=1

I(X1Gi; Y1i|Y2i, X2Gi,hi) + I(X1Gi, X2Gi; Y2i|hi),

where the different inequalities follow from: (a) Fano’s inequality (here εN → 0 as N → ∞),

(b) a genie provides side information (YN2 ,W2) to Rx1 and independence of messages, (c) chain

rule for mutual information, (d) recombining mutual information terms, (e) data processing

inequality and definition of encoding functions, (f) definition of mutual information, (g) chain

rule for entropy, (h) conditioning reduces entropy and memoryless channel, (i) definition of

mutual information, and (j) Gaussian maximizes entropy, where X1Gi, X2Gi are jointly Gaussian

with the same covariance matrix as X1i, X2i. The dependence on the time index i can be

eliminated by taking the appropriate limit over N as done in [26]. We note that in (g) we can

choose the correlation coefficient among Z1 and Z2 since the Rxs do not cooperate and hence

the capacity region only depends on the noise marginal distributions (i.e., we can choose the

worst noise correlation as long as the marginal distributions are preserved). From the results on

the static channel [13] we know that the worst noise correlation is min
{

|h11|
|h21|

,
|h21|
|h11|

}
. With this

worst noise correlation and with the input covariance as in (Equation 2.3), the sum-capacity

outer bound in (g) for the EGCIFC can be expressed as in (Equation 2.4).
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We now demonstrate that the derived outer bound is achievable. A variable rate coding

scheme is used: in this case at each channel use (each coordinate of the codewords XN1 and XN2 ),

the optimal powers for that particular fading state are used P?1(h) and P?2(h) by the secondary

and primary nodes, respectively with an optimal ρ?(h). The cognitive transmitter assigns part

of its power to relay W2 and uses the remaining power to send its own message by Dirty Paper

Coding (DPC) [36] against W2, which it knows non-causally. This is similar to the scheme

for the static channel [9] with the difference that at each channel use, the optimal parameters

P?1(h), P
?
2(h) and ρ?(h) for that particular fading state that maximize (Equation 2.4) are used.

In particular, let U1 and U2 be independent Gaussian random variables with zero mean and

unit variance, and

• Primary user sends

X2 =
√
P?2(h)U2, (2.5a)

• Cognitive user sends X1 = X2R + X1DPC where

X2R =
√
|ρ?(h)|2P?1(h)e

j(−∠h21+∠h22)U2, (2.5b)

X1DPC =
√
(1− |ρ?(h)|2)P?1(h)U1, (2.5c)
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and where X1DPC is DPC against the ‘non-causally known state’

S =

(
h12

√
P?2(h) + h11

√
|ρ?(h)|2P?1(h)e

j(−∠h21+∠h22)
)
U2. (2.5d)

• The received signals are

Y1 = h11

√
(1− |ρ?(h)|2)P?1(h)U1 + S+ Z1, (2.5e)

Y2 = e
j∠h22

(√
|ρ?(h)|2P?1(h)|h21|+

√
P∗2(h)|h22|

)
U2 + h21

√
(1− |ρ?(h)|2)P?1(h)U1 + Z2.

(2.5f)

• Since Tx1 used DPC we have

R1 = log
(
1+ |h11|

2(1− |ρ?(h)|2)P?1(h)
)
, (2.5g)

and if Rx2 treats U1 as noise we have

R2 = log

1+ (
√

|h21|2|ρ?(h)|2P
?
1(h) +

√
|h22|2P

?
2(h))

2

1+ |h21|2(1− |ρ?(h)|2)P?1(h)

 . (2.5h)

By summing (Equation 2.5g) and (Equation 2.5h), re-arranging and taking the expectation

yields the sum-rate in (Equation 2.4) when |h11|
2 ≥ |h21|

2. When |h11|
2 < |h21|

2 the sum-rate

in (Equation 2.4) in maximized by |ρ?(h)| = 1 and is again achievable by (Equation 2.5g)

and (Equation 2.5h).
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Remark 1: One can think of parallel Gaussian cognitive interference channels (PGCIFC)

as an EGCIFC in which each sub-channel occurs with equal probability and so the sum-capacity

result described in this work gives also the sum-capacity for PGCIFC.

While Theorem 2.3.1 expresses the ergodic sum-capacity as an optimization problem, we

now proceed to determine the optimal power allocation policy. To do so, we first investigate

a topic of independent interest: the ergodic capacity of the point-to-point MISO channel with

PerPC, which gives the sum-capacity of the EGCIFC when |h11|
2 < |h21|

2.

2.3.1 The ergodic capacity of the point-to-point MISO channel with per-antenna

power constraints and perfect CSI at all terminals

The MISO channel with n transmit antennas with PerPC has output

Y = [H1 H2 · · ·Hn] X + Z ∈ C, Z ∼ N (0, 1),

where each entry of the input vector X := [X1, · · · , Xn]T has a separate long-term average

transmit power constraint E[|Xi|2] ≤ Pi, for i ∈ [1 : n]. The channel vector [H1 H2 · · ·Hn] has

complex-valued entries representing the channel gain coefficient from each transmit antenna to

the receive antenna and is generated from an ergodic process whose instantaneous realization is

known to the transmitter and the receiver. We aim to characterize the ergodic capacity of this

channel, where capacity is defined as usual [35]. In the following, we denote the instantaneous

realization of the channel vector as h := [h1 · · · hn] ∈ Cn and the power allocated on antenna

i in fading realization h as Pi(h), i ∈ [1 : n].
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Theorem 2.3.2. The ergodic capacity of the Gaussian fading MISO channel with PerPC is

CMISOPerPC = max E

log
(
1+

( ∑
i∈[1:n]

|hi|
√
Pi(h)

)2) (2.6)

where the maximization in (Equation 2.6) is over Pi(h) ≥ 0 : E[Pi(h)] ≤ Pi, i ∈ [1 : n]. The

optimal power allocation policy is given by

P?j (h) =

[∑
i∈[1:n]

|hi|
2

λi
− 1
]+

(∑
i∈[1:n]

|hi|2

λi

)2 |hj|
2

λ2j
, (2.7)

where the Lagrange multipliers {λi, i ∈ [1 : n]} solve the non-linear system of equations

E[P?j (h)] = Pj, j ∈ [1 : n], and attains

CMISOPerPC = E

log+

∑
i∈[1:n]

|hi|
2

λi

 . (2.8)

Proof. The proof is based on solving the dual problem to (Equation 2.6) and is provided in

Appendix B.

The capacity in (Equation 2.8) can be obtained by beamforming: each antenna transmits

Xi = exp{−j∠hi}
√
P?i (h) U, U ∼ N (0, 1), i ∈ [1 : n]

where P?i (h) is the optimal power allocation given by (Equation 2.7). By taking the average

over all fading states, the capacity can be expressed as (Equation 2.8).
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Remark 2: If Lagrange multipliers in (Equation 2.7) are all equal to λ, then the power

allocation becomes

P?i (h) =

[
1

λ
−

1

‖h‖2

]+
|hi|

2

‖h‖2
, (2.9)

with ‖h‖2 =:
∑
∈[1:n] |hi|

2. The expression in (Equation 2.9) corresponds to the water-filling

power allocation optimal under SumPC, in which case the Lagrange multiplier would satisfy

E
[∑

i∈[1:n] P
?
i (h)

]
= E

[[
1
λ −

1
‖h‖2

]+]
=
∑
i∈[1:n] Pj. This can happen if the power constraint on

each antenna is the same and the distribution of the fading vector does not change by permuting

its components, such as with identical and independent distributed fading.

Remark 3: In [34] the capacity of the fading MISO channel with PerPC was derived

analytically under the assumption of CSI at the receiver only — in Theorem 2.3.2 we consider

the case of CSI at both the transmitter and receiver, and obtain the capacity with PerPC in

closed-form.

Remark 4: The capacity of the fading MISO point-to-point channel with PerPC can not

be deduced from capacity results for the fading SISO MAC [37]. Although one could think of

a user in the fading SISO MAC as an antenna in the fading MISO point-to-point channel, the

analogy stops there; the reason is that in the fading SISO MAC the users send independent

inputs while in the fading MISO point-to-point channel the signals sent by the antennas can
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be correlated. As a result, the sum-capacity achieving power policy for the fading SISO MAC

is the following water-filling solution

P?i (h) =

[
1

λi
−

1

|hi|2

]+
if

|hi|
2

λi
= max
k=1,...,K

{
|hk|

2

λk

}
. (2.10)

which does not correspond to (Equation 2.7) — for example, under (Equation 2.7) either all

the antennas send with a strictly positive power or all stay silent, while under (Equation 2.10)

at most one user/antenna sends at any give time.

2.3.2 Fading Cognitive Interference Channel

The sum-capacity of the EGCIFC in (Equation 2.4) involves a maximization over the power

allocation policy of both transmitters and a correlation coefficient between the inputs over

different fading states. We now seek to solve this optimization problem, which in turn depends

on the relative strengths of the channel gains between the transmitters and receivers in the

channel. We have the following theorems that describe the optimal solution.

Theorem 2.3.3 (Strong interference at the cognitive receiver / Rx2). When |h21|
2 ≥ |h11|

2,

the optimal power allocation policy for the EGCIFC in Theorem 2.3.1 corresponds to that of

point-to-point MISO with PerPC in Theorem 2.3.2.

Proof. Given that channel gain relationship |h21|
2 ≥ |h11|

2 is satisfied, then it is clear that

ρ?(h) = 1 is optimal in (Equation 2.4). We are then left with solving for the optimal power

allocation. Setting ρ?(h) = 1 reduces the optimization problem in (Equation 2.4) to that

in (Equation 2.6) and hence the optimal power allocation strategy is given by Theorem 2.3.2.
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TABLE I. OPTIMAL POWER POLICY WHEN |h21|
2 < |h11|

2.

Channel Gain Conditions P?1(h) P?2(h) ρ?(h)

R1 :=
{

|h11|
2

λ1
≤ 1, |h22|

2

λ2
≤ 1
}

0 0 0

R2 :=

{
|h11|

2

λ1
> 1,

|h22|
2

λ2

1+
|h21|

2

λ1
−

|h21|
2

|h11|
2

≤ 1

} [
1
λ1

− 1
|h11|2

]+
0 0

R3 :=

{
|h22|

2

λ2
> 1,

|h21|
2

λ1
|h22|

2

λ2

+ |h11|
2

λ1
− |h21|

2

λ1
≤ 1

}
0

[
1
λ2

− 1
|h22|2

]+
0

R4 :=

{
|h11|

2

λ1
≤ |h21|

2

λ1
+

|h22|
2

λ2
|h21|

2

λ1
+

|h22|
2

λ2

,
|h21|

2

λ1
+ |h22|

2

λ2
> 1

}
|h21|

2

λ1
+

|h22|
2

λ2
−1(

|h21|
2

λ1
+

|h22|
2

λ2

)2 |h21|
2

λ21

|h21|
2

λ1
+

|h22|
2

λ2
−1(

|h21|
2

λ1
+

|h22|
2

λ2

)2 |h22|
2

λ21
1

R5 :=
{(
R1 ∪R2 ∪R3 ∪R4

)c}
numerically numerically numerically

Therefore, setting R1 = 0 turns out to be optimal for the EGCIFC in this regime, i.e., the best

use of cognitive user’s ability is to broadcast the primary’s message.

Theorem 2.3.4 (Weak interference at the cognitive receiver / Rx2). When |h21|
2 < |h11|

2, the

optimal power allocation policy for the EGCIFC is summarized in Table I and is one of either

of the following policies: (1) both users refrain from transmitting, (2) cognitive transmitter

water-fills over |h11|, (3) primary transmitter water-fills over |h22|, (4) MISO with SumPC type

of power allocation, or (5) both user transmits to their intended receivers with non-zero powers

(in this case the optimal policy must be determined numerically).

Proof. The proof, based on solving the Lagrangian dual problem of (Equation 2.4), is provided

in Appendix C.

One may interpret the policies in Table I as the following. For R1 both direct link channel

gains are “weak” (smaller than the corresponding optimal Lagrange multiplier) and so the
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optimal scheme for both transmitters is to refrain from allocating power, saving the power

for better channel states. In R2 the cognitive transmitter water-fills over its direct link |h11|

while the primary user refrains from allocating any power because in this regime |h11| is “not

weak” while |h22| is “weak”. One can interpret R3 similarly to R2 but with the roles of the

users swapped. The channel gain condition in R4 implies that |h11|
2

λ1
≤ |h21|

2

λ1
+ |h22|

2

λ2
(given

that |h21|
2

λ1
+ |h22|

2

λ2
> 1); in this case the sum of the channel gains to the primary receiver is

“stronger” than that of the direct gain to the cognitive receiver and performing a point-to-point

MISO-type power allocation is optimal. In R5 both transmitters send with non-zero power; in

this case a closed-form solution for the optimal power allocation policy is not available.

Remark 5: The above analysis showed that a separable achievable scheme is sum-capacity

optimal. In order to characterize the whole capacity region one needs bounds on R1 and R2 too;

the cut-set approach gives such bounds. Therefore the capacity region of the EGCIFC is outer

bounded by

R1 − εN ≤
1

N

N∑
i=1

I(X1Gi; Y1i|X2Gi,hi)

R2 − εN ≤
1

N

N∑
i=1

I(Y2Gi;X1i, X2Gi|hi)

R1 + R2 − 2εN ≤
1

N

N∑
i=1

I(Y2i;X1Gi, X2Gi|hi) + I(X1Gi; Y1i|X2Gi, Y
′
2i,hi),

where the last bound is from Theorem 2.3.1 and the single rate bounds are cut-set bounds,

similarly to [13, eq.(8)]. As for the sum-capacity, the whole region is exhausted by considering

jointly Gaussian inputs and where the region can be tighten by choosing any Y′2 ∼ Y2. By further
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taking the appropriate limit over N as done in [26] and by considering the input covariance as

in (Equation 2.3), the upper bound region can be expressed as

R1 ≤ E
[
log
(
1+ |h11|

2P1(h)(1− |ρ(h)|2)
)]
, (2.11a)

R2 ≤ E
[
log

(
1+ |h21|

2P1(h) + |h22|
2P2(h) + 2|ρ(h)|

√
|h21|2P1(h) |h22|2P2(h)

)]
, (2.11b)

R1 + R2 ≤ E
[
log

(
1+ |h21|

2P1(h) + |h22|
2P2(h) + 2|ρ(h)|

√
|h21|2P1(h) |h22|2P2(h)

)]
+ E

[[
log
(
1+ |h11|

2P1(h)(1− |ρ(h)|2)
)
− log

(
1+ |h21|

2P1(h)(1− |ρ(h)|2)
) ]+]

.

(2.11c)

By considering the achievable scheme in [13, eqs.(22)-(23)], which was shown to be at most

to within 1 bit per channel use per user of the capacity region outer bound for the static /

non-fading case, the outer bound in (Equation 2.11) can be shown to be achievable to within

1 bit per channel use per user as well as in the EGCIFC. We note that this achievable scheme

involves two DPC steps, one per user (while the scheme in (Equation 2.5) that only has one

DPC step) and it is only approximately optimal to within a constant gap (while the scheme

in (Equation 2.5) is exactly sum-rate optimal).

We therefore conclude that, in order to characterize the whole capacity region of the

EGCIFC to within a gap, it suffices to characterize the closure of the outer bound in (Equation 2.11),
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which can be done by solving the following family of convex optimization problems: for each

λ ∈ [0, 1]

CEGCIFC,region(λ) := max{λR1 + (1− λ)R2}, (2.12)

where the maximization is over the rate pairs (R1, R2) in (Equation 2.11). Solving the optimiza-

tion problem in (Equation 2.12) is not a trivial extension of the sum-capacity results presented

in Theorems 2.3.3 and 2.3.4 and is beyond the scope of this work. This is so because one

needs to consider which bounds are active in (Equation 2.11) in order to determine the optimal

‘corner point’ as a function of λ ∈ [0, 1]; the coordinate of such a point must be plugged in

the optimization problem in (Equation 2.12) and the corresponding KKT conditions must be

worked out similarly to Appendix C. We expect that there will be parameters regimes in which

the KKT conditions must be solved numerically as for the sum-capacity.

2.4 Numerical Results

In this section we numerically evaluate Theorems 2.3.1 and 2.3.2 for the case where the

channel gains are independent Rayleigh random variables, not necessarily with the same mean

parameter.

2.4.1 The point-to-point MISO channel with PerPC

We first consider a 2 × 1 point-to-point MISO channel. The channel vector [h1, h2] at

each channel use has independent and exponentially distributed components with means γ1 =

E[|h1|2] = 5 and γ2 = E[|h2|2] = 2. The transmit antennas are subject to the average power
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Figure 2. The capacity of the point-to-point MISO channel with PerPC (surface in green,
from (Equation 2.13)) is upper bounded by that of a MISO channel with SumPC (surface in
red, from (Equation 2.16)) and and lower by that of a MISO channel with constant power

allocation and dependent inputs (surface in yellow, from (Equation 2.14)) and with constant
power allocation and independent inputs (surface in blue, from (Equation 2.15)).
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constraints P1 and P2. In Figure 2 four surfaces representing the capacities of different MISO

channels are plotted as functions of the average transmit antenna power constraints P1 and P2.

The surfaces correspond to:

1) the MISO channel with PerPC

CMISOPerPC = E

[
log

(
1+

(√
|h1|2P

?
1(h) +

√
|h2|2P

?
2(h)

)2)]
(2.13)

where P?1(h) and P?2(h) are given in (Equation 2.7) for j ∈ [1 : 2];

2) the MISO channel with constant power allocation and beam-forming (where the instanta-

neous phases are known to the transmitters to allow for coherent beam-forming)

Cdep,cte = E

[
log

(
1+

(√
|h1|2P1 +

√
|h2|2P2)

)2)]
; (2.14)

3) the MISO channel with constant power allocation and independent signaling (instantaneous

phases are not known at the transmitter and they are independent and uniformly distributed

in [0, 2π] as in [34])

Cindep,cte = E
[
log
(
1+ |h1|

2P1 + |h2|
2P2

)]
; (2.15)

and 4) the MISO channel with a SumPC

CMISOSumPC = E

[
log

(
1+

(√
|h1|2P

?
1(h) +

√
|h2|2P

?
2(h)

)2)]
(2.16)
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where P?1(h) and P?2(h) are given in (Equation 2.9) for i ∈ [1 : 2].

Numerical evaluations show that the capacity of the point-to-point MISO with PerPC is

upper and lower bounded by that of the MISO with SumPC and that of constant power alloca-

tion respectively (as expected). Also as expected, dependent constant inputs in (Equation 2.14)

outperform independent constant inputs in (Equation 2.15).

Remark 6: In [34] the point-to-point MISO channel with PerPC with Rayleigh fading

with no CSI at the transmitters was compared to that with SumPC and with independent

signaling; the author noted that CMISOPerPC = Cindep,cte because of the phase being independent

and uniformly distributed in [0, 2π]. Since here we assume the transmitter has CSI we have

CMISOPerPC ≥ Cindep,cte.

Remark 7: In the case of dependent inputs and beam-forming, the channel is assumed to

have CSI at the transmitter to account for the channel gain phases and the ability to coherently

beam-form. This explains why CMISOPerPC is almost the same as Cdep,cte, which may have

practical implications.

2.4.2 The EGCIFC Sum-Capacity

We now consider two different scenarios for the EGCIFC corresponding again to Rayleigh

fading channels with different means: Case 1) the means are chosen such that the channel

experiences strong interference with high probability, and Case 2) the means are chosen to

experience weak interference with high probability. Monte Carlo simulations were used to

evaluate the capacities.
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In Figure 3 the sum-capacity for the EGCIFC having |h11|
2, |h21|

2 and |h22|
2 exponentially

distributed with γ0 = E[|h11|2] = 1, γ1 = E[|h21|2] = 5 and γ2 = E[|h22|2] = 2 (skewed with high

probability to be in strong interference since P
[
|h21|

2 ≥ |h11|
2
]
= γ1

γ1+γ0
= 5

6) is plotted along

with the sum-capacity of the system using the MISO with PerPC transmit strategy. The latter

is not optimal in general when the channel experiences weak interference states. The surface

representing the sum-capacity CMISOPerPC approaches that of CEGCIFC (as expected since we are

skewed to be in strong interference where the scheme corresponding to a MISO channel with

PerPC is optimal).

In Figure 4 the sum-capacity for the EGCIFC having mean parameters γ0 = 5, γ1 = 1 and

γ2 = 2 is plotted (skewed with high probability to be in weak interference P
[
|h21|

2 < |h11|
2
]
= 5

6)

along with the sum-capacity achieved by using the power allocation corresponding to that of a

MISO channel with PerPC. As expected, the MISO scheme with PerPC (not optimal for weak

interference) does not perform as well as in the regime where the channel is skewed to be in

strong interference with high probability.

In Figure 5 we choose the channel gains to be identically distributed with mean parameter

γ0 = γ1 = γ2 = 1 and plot the sum-capacity of the EGCIFC and an achievability scheme

corresponding to constant power allocation, but with the optimal correlation coefficient which

changes with each fading state, i.e. the solution of

Csum = E
[

max
|ρ(h)|≤1

log

(
1+ |h21|

2P1 + |h22|
2P2 + 2|ρ(h)|

√
|h21|2P1 |h22|2P2

)
+

+ log

(
1+ (1− |ρ(h)|2)max{|h11|

2, |h21|
2}P1

1+ (1− |ρ(h)|2)|h21|2P1

)]
. (2.17)
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Figure 3. The sum-capacity of the EGCIFC which is skewed to be in strong interference with
high probability (surface in red) is plotted with the sum-capacity achieved when considering a

MISO achievability with PerPC (surface in blue). The MISO power allocation is almost
sum-capacity achieving as the two surfaces almost overlap. The constant power allocation

scheme with dependent inputs (surface in yellow) is again a lower bound on the sum-capacity
of EGCIFC. Note that perfect CSI at both transmitters is needed for coherent beam-forming.

Note that (Equation 2.17) is solved for the optimal correlation coefficient numerically. It is inter-

esting to note that by optimizing the correlation coefficient only (and not the power allocation,

i.e., keeping the power constant) one can approach (a difference of around 0.23 bits/channel

use), at least for these channel conditions, the sum-capacity of the EGCIFC. This may have
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Figure 4. The sum-capacity of EGCIFC which is skewed to be in weak interference with high
probability (surface in green) is plotted with the sum-capacity achieved when considering a
MISO achievability scheme with PerPC. The power allocation as in the MISO with PerPC
(surface in green) is not optimal as in the case when the channel is skewed to be in strong

interference.

implications in practice – i.e, constant power may be good enough if one optimally finds the

correlation coefficient.
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optimized correlation coefficient at each fading state (blue). Although the optimal power

allocation was not utilized, the blue surface is almost capacity achieving.



CHAPTER 3

K USER COGNITIVE INTERFERENCE CHANNEL WITH

CUMULATIVE MESSAGE SHARING

All this chapter has been previously published in [2]; while parts of it has been published

in [4], [5], [6]. c© [2013] IEEE. Reprinted, with permission, from [2], [4], [5]. c© [2012] IEEE.

Reprinted, with permission from [6].

The K-user cognitive interference channel with cumulative message sharing is a wireless

channel consisting of one primary and K − 1 secondary/cognitive transmitters with cognitive

transmitter i ∈ [2 : K] having non-causal knowledge of the messages of users with index less

than i. For this channel we are interested in understanding the information theoretic limits of

communication and amount of side information that is sufficient for optimal communication.

In order to accomplish this, a computable outer bound valid for any memoryless channel is

proposed. The sum-rate outer bound is evaluated first for the high-SNR linear deterministic

approximation of the Gaussian noise channel. This is shown to be both the sum-capacity for

the 3-user channel with arbitrary channel gains, and the sum-capacity for the symmetric K-user

channel. Interestingly, for the K user channel, we observe that cognition at transmitters 2 to

K− 1 is not needed, and knowledge of all messages at the K-th transmitter only is sufficient to

achieve the sum-capacity. Next, the sum-capacity of the symmetric Gaussian noise channel is

characterized to within a constant additive and multiplicative gap, both of which are functions

41
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of K. As opposed to other multi-user interference channel models, a single scheme (in this case

based on dirty-paper coding) suffices for both the weak and strong interference regimes. The

generalized degrees of freedom (gDoF) are then derived and are shown, unlike interference and

broadcast channels, to be a function of K. Interestingly, it is shown that as the number of users

grows to infinity the gDoF of the K-user cognitive interference channel with cumulative message

sharing tends to the gDoF of a broadcast channel with a K-antenna transmitter and K single-

antenna receivers. Numerical evaluations show that the actual gaps between the presented

inner and outer bounds are significantly smaller than the analytically derived gaps.

3.1 Prior Work

While not much work on K > 3 channels exists, in [14, 15, 17, 38, 39] different three-user

cognitive channels are considered; we note that the models differ from the one considered here

either in the number of transmitter/receivers, or in the message sharing/cognition structure in

all but [14, 15]. In the more comprehensive [14], several types of 3-user cognitive interference

channels are proposed: that with “cumulative message sharing” (CMS) as considered here, that

with “primary message sharing” where the message of the single primary user is known at both

cognitive transmitters (who do not know each others’ messages), and finally “cognitive only

message sharing” (CoMS) where there are two primary users who do not know each others’

message and a single cognitive user which knows both primary messages. Achievable rate regions

are obtained which are evaluated in Gaussian noise. The CoMS mechanism yields almost the

same message structure as in the interference channel with a cognitive relay – identical if the

relay were to further have a message of its own (see [40, 41] and references therein for the
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interference channel with a cognitive relay). In [38] the CoMS was first introduced where an

achievable rate region was obtained which employs a combination of superposition coding and

Gel’fand-Pinsker’s binning, which was numerically evaluated for the Gaussian noise channel.

In [39] the CoMS structure is assumed and the cognitive user is furthermore assumed not to

interfere with the primary users; an inner and an outer bound are obtained. In [16,17] capacity

under “strong interference” for the CoMS is obtained. We thus emphasize that the channel

considered here is more general than others studied as we consider K users, a fully connected

interference channel, and consider the less studied CMS sharing structure. In [25], the authors

characterized the Degrees of Freedom (DoF) of a K-user interference channel in which each

transmitter, in addition to its own message, has access to a subset of the other users’ messages,

was obtained; in particular, it was shown that the DoF=K (maximum possible) if the sum of

the number of jointly cooperating transmitters and the number of jointly decoding receivers

is greater than or equal to K + 1. An outer bound on the DOF region and the sum DOF is

presented.

3.2 Channel Model

The general memoryless K-user cognitive interference channel with cumulative message shar-

ing (K-CIFC-CMS) consists of K source-destination pairs sharing the same physical channel,

where some transmitters have non-causal knowledge of the messages of other transmitters. Here

transmitter 1 is referred to as the primary user and is assumed to have no cognitive abilities.

Transmitter i, i ∈ [2 : K], is non-causally cognizant of the messages of the users with index

smaller than i. More formally, the K-CIFC-CMS channel consists of
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• Channel inputs Xi ∈ Xi, i ∈ [1 : K],

• Channel outputs Yi ∈ Yi, i ∈ [1 : K],

• A memoryless channel with joint transition probability

P(Y1, . . . , YK|X1, . . . , XK),

• Messages Wi known to users 1, 2, . . . , i, i ∈ [1 : K].

A code with non-negative rate vector (R1, . . . , RK) and blocklength N is defined by

• Messages Wi, i ∈ [1 : K], uniformly distributed over [1 : 2NRi ] and independent of every-

thing else,

• Encoding functions f
(N)
i : [1 : 2NR1 ]×. . .×[1 : 2NRi ]→ XNi such that XNi := f

(N)
i (W1, . . . ,Wi),

i ∈ [1 : K],

• Decoding functions g
(N)
i : YNi → [1 : 2NRi ] such that Ŵi = g

(N)
i (YNi ), i ∈ [1 : K],

• Probability of error P
(N)
e := maxi∈[1:K] P[Ŵi 6=Wi].

The capacity of the K-CIFC-CMS channel consists of all non-negative rate tuples (R1, . . . , RK)

for which there exist a sequence of codes indexed by the block length N such that P
(N)
e → 0

as N → ∞. Since the decoders cannot cooperate and the channel is used without feedback,

the capacity may be shown to depend only on the marginal noise distributions rather than

the joint noise distribution by an argument similar to that used for the broadcast channel

(BC) [42]. In this work we focus on two channel models, the Gaussian noise channel and its

linear deterministic approximation at high SNR.
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Figure 6. The Gaussian 3-CIFC-CMS.

3.2.1 The Gaussian noise channel

The single-antenna complex-valued K-CIFC-CMS with Additive White Gaussian Noise

(AWGN), shown in Figure 6 for K = 3, has input-output relationship

Y` =
∑
i∈[1:K]

h`iXi + Z`, ` ∈ [1 : K], (3.1a)

where, without loss of generality, the inputs are subject to the power constraint

E[|Xi|2] ≤ 1, i ∈ [1 : K], (3.1b)

and the noises are marginally proper-complex Gaussian random variables with parameters

Z` ∼ N (0, 1), ` ∈ [1 : K]. (3.1c)
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The channel gains hij, (i, j) ∈ [1 : K]2, are constant. Without loss of generality we may assume

the direct links hii, i ∈ [1 : K] to be real-valued and non-negative. The Generalized Degrees-of-

Freedom (gDoF) of the symmetric Gaussian channel is a performance metric that characterizes

the high-SNR behavior of the sum-capacity and is defined as follows: Let SNR be a non-negative

number and parameterize

|hii|
2 := SNR, i ∈ [1 : K], (3.2a)

|h`i|
2 := SNRα, (`, i) ∈ [1 : K]2, ` 6= i, (3.2b)

for some non-negative α. The gDoF is

d(α) := lim
SNR→+∞ CΣ

log(1+ SNR)
, (3.3)

where CΣ := max{R1 + . . . + RK} and where the maximization is over all achievable rates. The

sum-capacity is said to be known to within a constant gap of b bits if one can show rates R
(in)
Σ

and R
(out)
Σ such that

R
(in)
Σ ≤ CΣ ≤ R

(out)
Σ ≤ R(in)Σ + b log(2). (3.4)

The gDoF and constant gap characterization of the symmetric sum capacity imply that

CΣ = d(α) log(1+ SNR) + o(1),
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where o(1) indicates a quantity that is finite at all SNR.

3.2.2 Linear deterministic approximation of the Gaussian noise channel at high

SNR

The Linear Deterministic approximation of the Gaussian Noise Channel at high SNR (LDC)

was first introduced in [43] to allow focusing on the effect of signal interactions between users

rather than on the effect of additive noise. The proposed framework has been powerful in

revealing key issues for the problem of communicating over interfering networks. The insights

gained from the LDC have often translated into Gaussian capacity results to within a constant

gap for any finite SNR [13,44,45]. In light of these success stories we also start our investigation

from the LDC. The LDC has input-output relationship

Y` =
∑
i∈[1:K]

Sm−n`iXi, ` ∈ [1 : K], (3.5)

where m := max{nij}, S is the binary shift matrix of dimension m, all inputs and outputs are

binary column vectors of dimension m, the summation is bit-wise over of the binary field, and

the channel gains n`i for (`, i) ∈ [1 : K]2, are positive integers. In a symmetric LDC all direct

links have the same strength nii = nd ≥ 0, i ∈ [1 : K], and all the interfering links have the

same strength n`i = ni = α nd ≥ 0, (`, i) ∈ [1 : K]2, ` 6= i. Note that the subscript i (roman

font) of ni stands for “interference” and is not an index; as such it should not be confused with

index i (italic font).
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The channel in (Equation 3.5) can be thought of as the high SNR approximation of the

channel in (Equation 3.1) with their parameters related as nij = blog(1+ |hij|
2)c, (i, j) ∈ [1 : K]2.

3.3 Outer Bound

In this section we derive an outer-bound region for the general memoryless K-CIFC-CMS.

We start with the case of K = 3 users to highlight the main proof techniques and ease the reader

into the extension to any number of users.

Theorem 3.3.1. The capacity region of the general memoryless 3-CIFC-CMS is contained in

the region defined by

R1 ≤ I(Y1;X1, X2, X3), (3.6a)

R2 ≤ I(Y2;X2, X3|X1), (3.6b)

R3 ≤ I(Y3;X3|X1, X2), (3.6c)

R2 + R3 ≤ I(Y2;X2, X3|X1) + I(Y3;X3|X1, X2, Y2), (3.6d)

R1 + R2 + R3 ≤ I(Y1;X1, X2, X3) + I(Y2;X2, X3|X1, Y1) + I(Y3;X3|X1, Y1, X2, Y2), (3.6e)

for some input distribution PX1,X2,X3. The joint conditional distribution PY1,Y2,Y3|X1,X2,X3 can be

chosen so as to tighten the different bounds as long as the conditional marginal distributions

PYi|X1,X2,X3, i ∈ [1 : 3], are preserved.

Proof. The proof is found in Appendix D.

Remarks:
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1. The region in Th. 3.3.1 reduces to the outer bound in [12, Th. 6] by setting X3 = Y3 = ∅.

2. The outer bound region in (Equation 3.6) does not contain auxiliary random variables.

Moreover, every mutual information term contains all the inputs. These two facts imply

that the outer bound region in Th. 3.3.1 can be easily evaluated for many channels of

interest. For example, for the Gaussian noise channel in Section 3.2.1, the “Gaussian

maximizes entropy” principle suffices to show that jointly Gaussian inputs exhaust the

outer bound.

3. The sum-capacity bound in (Equation 3.6e) is obtained by giving Si as side information

to receiver i, i ∈ [1 : K], where Si = [Si−1,Wi−1, Y
N
i−1] starting with S1 = ∅. With

this “nested” side information, the mutual information terms can be expressed in terms

of entropies which may be recombined in ways that can be easily single-letterized. This

form of side information allows us to extend the result from the 3-user case to any number

of users.

4. The mutual information terms in (Equation 3.6e) have the form

I(Yi;Xi, . . . , XK|X1, Y1, . . . , Xi−1, Yi−1), 1 ≤ i ≤ K

which can be given the following interpretation: Since message Wi is available at trans-

mitters i through K, inputs (Xi, . . . , XK) are “informative” for receiver i, while inputs

(X1, . . . , Xi−1) are independent of Wi; receiver i decodes from Yi the information carried
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in (Xi, . . . , XK) that could not be recovered by users with lesser index as represented by

(X1, Y1, . . . , Xi−1, Yi−1).

Th. 3.3.1 can be extended to any K as follows.

Theorem 3.3.2. The capacity region of the general memoryless K-CIFC-CMS is contained in

the region defined by

Ri ≤ I(Yi;X[i:K]|X[1:i−1]), (3.7a)

K∑
j=i

Rj ≤
K∑
j=i

I(Yj;X[j:K]|X[1:j−1], Y[1:j−1]), (3.7b)

for some input distribution PX1,...,XK. Moreover, each rate bound in may be tightened with respect

to the channel conditional distribution as long as the channel conditional marginal distributions

are preserved.

Proof. The proof is found in Appendix E.

In the following section we shall derive achievable schemes matching the sum-capacity outer

bound in Th. 3.3.2 for the LDC in (Equation 3.5) and schemes that achieve the sum-capacity

outer bound to within a constant bounded gap regardless of the channel parameters for the

Gaussian channel in (Equation 3.1).

3.4 Sum-capacity for the Linear Deterministic K-CIFC-CMS

In Sections 3.4.1 and 3.4.2 we determine the sum-capacity of the LDC with K = 3 users and

any value of the channel gains. In Sections 3.4.4 and 3.4.5 we derive the sum-capacity for any

K but for symmetric channel gains only. The main results of this section are
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Theorem 3.4.1. The sum-capacity bound in (Equation 3.6e) is achievable for the LDC 3-

CIFC-CMS with generic channel gains.

Theorem 3.4.2. The sum-capacity bound in (Equation 3.7b) is achievable for the LDC K-

CIFC-CMS with symmetric channel gains. The capacity achieving scheme only requires cogni-

tion of all messages at one single transmitter.

The rest of the section is devoted to their proofs.

3.4.1 Sum-capacity outer bound for the 3-user case and generic channel gains

The sum-capacity outer bound in Th. 3.3.1 specialized to a deterministic 3-CIFC-CMS (i.e.,

H(Yi|X1, X2, X3) = 0, i ∈ [1 : 3]) gives the following sum-capacity upper-bound

R1 + R2 + R3 ≤ max
{
H(Y1) +H(Y2|X1, Y1) +H(Y3|X1, Y1, X2, Y2)

}
,

where the maximization is over all possible joint distributions PX1,X2,X3 . For the LDC in (Equation 3.5)

with K = 3 we obtain

R1 + R2 + R3 ≤ max{n11, n12, n13}+ f(n22, n23|n12, n13) + [n33 − max{n13, n23}]
+, (3.8a)

where f(c, d|a, b) follows from [46, eq.(5)] and is defined as

f(c, d|a, b) :=


max{c+ b, a+ d}− max{a, b} if c− d 6= a− b,

max{a, b, c, d}− max{a, b} if c− d = a− b.
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The bound in (Equation 3.8) follows by maximizing each mutual information term individually

and is as follows

H(Y1) = H(S
m−n11X1 + Sm−n12X2 + Sm−n13X3) ≤ max{n11, n12, n13},

H(Y2|X1, Y1) = H(S
m−n22X2 + Sm−n23X3|X1,S

m−n12X2 + Sm−n13X3)

≤ H(Sm−n22X2 + Sm−n23X3|S
m−n12X2 + Sm−n13X3) ≤ f(n22, n23|n12, n13),

H(Y3|X1, Y1, X2, Y2) = H(S
m−n33X3|X1, X2,S

m−n13X3,S
m−n23X3) ≤ H(Sm−n33X3|S

m−max{n13,n23}X3)

≤ [n33 − max{n13, n23}]
+,

where [x]+ := max{0, x}. Notice that i.i.d. Bernoulli(1/2) input bits simultaneously maximize

each of the above entropy terms.

3.4.2 Achievability of the sum-capacity outer bound for the 3-user case and generic

channel gains

In the following, depending on whether [n33 − max{n13, n23}]
+ in (Equation 3.8a) is zero or

positive, different interference scenarios are identified and transmission schemes that are capable

of achieving the sum-capacity outer bound in (Equation 3.8) are proposed. In particular:

Case 1: If the signal sent by the most cognitive transmitter is received the weakest at the

intended destination, that is, if

n33 ≤ max{n13, n23}, (3.9)
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the sum-capacity in (Equation 3.8) becomes

R1 + R2 + R3 ≤ max{n11, n12, n13}+ f(n22, n23|n12, n13).

The condition in (Equation 3.9) corresponds to H(Y3|X1, Y1, X2, Y2) = 0, i.e., conditioned on

(X1, X2) the signal received at the most cognitive receiver is a degraded version of the signal

received at the other two receivers. Recall that user 3 may send information to all receivers as

it knows all messages. The condition in (Equation 3.9) implies that the signal X3 may convey

more information to receivers 1 and 2 than it can to receiver 3. In this case, one might thus

suspect that R3 = 0 is optimal and that the best use of the cognitive capabilities of user 3 is to

broadcast to the receivers. We will next show that this is indeed the case.

We set R3 = 0 and we therefore convert the LCD 3-CIFC-CMS into a deterministic 2-CIFC-

CMS where user 1 is the primary user (with input X1 and output Y1) and the cognitive user has

vector input [X2, X3] and output Y2. The capacity of a general deterministic 2-user cognitive

interference channel is [12, Th. 12]

R1 ≤ H(Y1), R2 ≤ H(Y2|X1),

R1 + R2 ≤ H(Y1) +H(Y2|X1, Y1),



54

for some input distribution PX1,[X2,X3]. Hence the sum-capacity is

R1 + R2 = max
PX1,[X2,X3]

{
H(Y1) +H(Y2|X1, Y1)

}
= max{n11, n12, n13}+ f(n22, n23|n12, n13),

Case 2: In the regime not covered by the condition in (Equation 3.9), that is, for

n33 > max{n13, n23}, (3.10)

the sum-capacity in (Equation 3.8) becomes

R1 + R2 + R3 ≤ max{n11, n12, n13}+ f(n22, n23|n12, n13) + n33 − max{n13, n23}.

In this case, the condition in (Equation 3.10) suggests that the intended signal at receiver 3 is

sufficiently strong to be able to support a non-zero rate. The form of the sum-capacity also

suggests that a plausible strategy is to use the optimal strategy for Case 1 and “sneak in” extra

bits for user 3 in such a way that they do not appear at the other receivers. We next show that

this is optimal. The signal of transmitter 3 in two parts

X3 := X3a + X3b,
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where X3a is intended to mimic the scheme for Case 1 (i.e., as if user 2 had input [X2, X3a]) and

X3b carries the information to Y3, possibly “pre-coded” against the interference of (X1, X2, X3a),

and such that X3b is not received at receivers 1 and 2. We define

X3b := Smax{n13,n23}V3,

for some vector V3 defined in the following. Note that the shift caused by Smax{n13,n23} is such

that V3 is not received at Y1 and at Y2. We note that V3 is “private information” for receiver 3

that is dirty paper coded against the interference caused by [X1, X2, X3a] at receiver 3; with this

receiver 3 is virtually interference-free. We then implement the optimal strategy for Case 1 with

[X1, X2, X3a] and with the remaining bits in X3b we transmit to receiver 3 thereby achieving the

sum-capacity in (Equation 3.8).

3.4.3 Example of sum-capacity optimal schemes for the 3-user case and symmetric

channel gains

We now present several concrete examples of the achievability scheme presented in Sec-

tion 3.4.2. We consider nd > 0, ni = nd α, α ≥ 0. Define the normalized sum-capacity

as

dΣ(α; 3) :=
max{R1 + R2 + R3}

nd
.

Note that when nd = 0 the channel reduces to a broadcast channel from transmitter [X2, X3]

to receivers Y1 and Y2 (receiver 3 cannot be reached by its transmitter and hence R3 = 0 is
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Figure 7. LDC 3-CIFC-CMS in weak interference with α = 1/2. The achievable rates are
R1/nd = R2/nd = 1, R3/nd = 1− α thereby achieving the sum-capacity outer bound

in (Equation 3.8) under the condition in (Equation 3.10). Dark black bits are intended to
Rx1, gray bits are intended to Rx2 and white bits are intended to Rx3.

optimal; similarly the primary user cannot reach its intended destination and cannot deliver

any information to the other destinations, hence X1 = 0 is optimal); the capacity region of

a deterministic broadcast channel is known [47] and for the symmetric LDC with nd = 0 it

reduces to R1 + R2 = 2ni.

When nd > 0 the sum-capacity can be expressed as

dΣ(α; 3) = max{1, α}+
f(nd, nd α;nd α,nd α)

nd
+ [1− α]+

=


3max{1, α}− α for α 6= 1,

1 for α = 1.
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Figure 7 shows an example of the achievable strategy for weak interference defined as α < 1

(corresponding to Case 2 in Section 3.4.1). The case α = 1 corresponds to a channel where all

received signals are statistically equivalent and therefore its capacity region is that of a 3-user

Multiple Access Channel. The strong interference regime defined as α > 1 (corresponding to

Case 1 in Section 3.4.1) is not explicitly considered as the achievable strategy is the same as

for the weak interference regime except for the fact that the most cognitive user sends at zero

rate, as its bits would create interference at the non-intended receivers. Notice the important

role of cognition in Figure 7: the third transmitter (cognitive of all 3 messages) sends a linear

combination of the messages of users 1 and 2 in such a way that the effect of the aggregate

interference is neutralized at all receivers, i.e., leaving the receivers of 1 and 2 interference-free.

The third transmitters also sends some “private” information bits in such a way that these

bits do not appear at the other receivers. It is important also to observe that user 2, who is

cognizant of the message of user 1, does not use this message knowledge. In other words, user 2

need not be cognizant in order to achieve the sum-capacity in the symmetric case.

3.4.4 Sum-capacity outer bound for the K-user case and symmetric channel gains

For the K-user symmetric LDC the sum-capacity is upper bounded by

dΣ(α,K) =≤


Kmax{1, α}− α for α 6= 1,

1 for α = 1.

(3.11)
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The proof that the sum-capacity upper bound in Th. 3.3.2 evaluates to the expression

in (Equation 3.11) is provided next. For the K-user symmetric LDC with m = nd max{1, α} the

sum-capacity is upper bounded by

K∑
k=1

Rk ≤
K∑
k=1

H (Yk|X1, . . . , Xk−1, Y1, . . . , Yk−1)

=

K−1∑
k=1

H

(
Sm−ndXk + Sm−ni

(
K∑

i=k+1

Xi

)∣∣∣X1, . . . , XK−1,Sm−ni

(
K∑
i=k

Xi

))

+H
(
Sm−ndXK|X1, . . . , XK−1,S

m−niXK

)
≤
K−1∑
k=1

H
(
(Sm−nd + Sm−ni)Xk

)
+H

(
Sm−ndXK|S

m−niXK

)
≤ (K− 1)max{nd, ni}+ [nd − ni]

+

= nd

(
Kmax{1, α}− α

)
.

The discontinuity at α = 1 in (Equation 3.11) is because when nd = ni all received signal

are equivalent, i.e., Y1 = . . . = YK =
∑K
i=1 Xi, and the channel reduces to a K-user MAC with

sum-capacity maxH(Y1) = nd.

3.4.5 Achievability of the sum-capacity outer bound for the K-user case and symmetric

channel gains

The schemes which were shown to be optimal for the LCD 3-CIFC-CMS in Section 3.4.3

may be extended to any arbitrary number of users. Let Uj, j ∈ [1 : K], be the signal intended
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for receiver j, that is, Uj is only a function of message Wj, and composed of i.i.d. Bernoulli(1/2)

bits. Let the transmit signals be

Xj = Uj, j ∈ [1 : K− 1],

XK =

 Ini 0ni×[nd−ni]+

0[nd−ni]+×ni
0[nd−ni]+×[nd−ni]+


K−1∑
j=1

Uj

+

 0ni×ni 0ni×[nd−ni]+

0[nd−ni]+×ni
I[nd−ni]+

UK,

K∑
j=1

Xj =

 0ni×ni 0ni×[nd−ni]+

0[nd−ni]+×ni
I[nd−ni]+


 K∑
j=1

Uj

 ,

where 0n×m indicates the all zero matrix of dimension n × m and In the identity matrix of

dimension n. With these choices, the signal at receiver `, ` ∈ [1 : K], is

Y` = (Sm−nd + Sm−ni)X` + Sm−ni

 K∑
j=1

Xj


= (Sm−nd + Sm−ni)X`, m = max{nd, ni}.

Since the matrix Sm−nd +Sm−ni is full rank for nd 6= ni, receiver `, ` ∈ [1 : K], decodes U` from

(Sm−nd +Sm−ni)−1Y` = X`. Hence receiver `, ` ∈ [1 : K− 1], decodes m = max{nd, ni} bits since

X` = U`, while receiver K can decodes the lower [nd − ni]
+ bits of UK from XK.

Interestingly, receivers from 1 to K−1 are interference free, while receiver K decodes ni bits

of the “interference function”
∑K−1
j=1 Uj. Notice that cognition is only needed at one transmitter
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in all interference regimes. This implies that this sum-capacity result holds for all cognitive

channels where user i is cognizant of any subset (including the empty set) of the messages of

users with index less than i. We suspect that the fact that only the last user need cognition

of all the other messages is a consequence of: 1) the extreme symmetry in the channel model

(which is needed for analytical tractability), which naturally aligns the interfering signals at

all users. Thus, if the most cognitive user cancels interference at one receiver, it essentially

cancels it at all receivers by symmetry. 2) the LDA channel model in which “coherent” gains

often seen in Gaussian channels, when two users have the same message may beam form that

message to a particular receiver at higher rates, is not possible. That is, the modulo 2 addition

at a bit-wise level prohibits such coherent gains and as such it may not be useful to share

the messages with other transmitters since the last fully cognitive user is already eliminating

interference and additional gains are not possible. We note that these are heuristic rather than

rigorous statements, and we do not expect this to hold for Gaussian channels where coherent

gains are possible.

3.4.6 Sum-capacity comparison between different channel models

We compare the symmetric sum-capacity of channels with different levels of cognition. Our

base line for comparison is the K-user interference channel without any cognition, whose sum-

capacity is [48]

d
(IFC)
Σ (α;K) =

K

2
d
(IFC)
Σ (α; 2) (3.12)
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and where d
(IFC)
Σ (α; 2) is the so-called W-curve of [44] except for a discontinuity at α = 1

where d
(IFC)
Σ (α;K) = 1 for all K [48]. Note that, except at α = 1, the normalized sum-capacity

1
Kd

(IFC)
Σ (α;K) does not depend on K.

At the other extreme of message cognition, consider the case where all users are cognitive

of all messages. In this case the channel is equivalent to a MIMO-BC with K transmit antennas

and K single-antenna receivers. The system may zero-force the interference to obtain

d
(BC)
Σ (α;K) = Kmax{1, α}, (3.13)

except for a discontinuity at α = 1 where d
(BC)
Σ (α;K) = 1, since in this case all the receivers

are statistically equivalent and TDMA is optimal. Also in this case, except at α = 1, the

normalized sum-capacity 1
Kd

(BC)
Σ (α;K) does not depend on K.

The sum-capacity of the symmetric LDC K-CIFC-CMS is given by (Equation 3.11), which

is a function of K even after normalization by K, i.e.,

1

K
d
(CIFC−CMS)
Σ (α;K) = max{1, α}−

α

K
. (3.14)

This has the interesting interpretation that CMS looses α/K with respect to d
(BC)
Σ (α;K)/K. In

other words, as the number of cognitive users increases the CMS sum-capacity approaches the

sum-capacity of a fully coordinated broadcast channel, which is intuitive.

Figure 8 shows the sum-capacity normalized by the number of users for different channel

models; we do not show the discontinuity at α = 1. We note the increase in performance in all



62

Figure 8. Normalized Generalized Degrees of Freedom of the K-user MIMO broadcast,
interference, CIFC-CMS channels (normalized by the number of transmitters).
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interference regimes when compared to that of the 2-user CIFC-CMS and the K-user interference

channel, but a loss with respect to the K-user broadcast channel (BC) with K transmit antennas

and K single antenna receivers.

3.5 Sum-Capacity for the Gaussian K-CIFC-CMS to within a constant gap

In this section we derive the sum-capacity for the symmetric Gaussian channel with an

arbitrary number of users to within a constant gap. For notational convenience we denote the

direct link gains as |hd| and the interference link gains as hi, so that the channel in (Equation 3.1)

can be rewritten as

Y` =
(
|hd|− hi

)
X` + hi

( K∑
j=1

Xj

)
+ Z`, ` ∈ [1 : K].

The main results of this section are

Theorem 3.5.1. The generalized Degrees-of-Freedom of the symmetric K-user Gaussian noise

channel are

d(α) = Kmax{1, α}− α,

with a discontinuity at α = 1 in the special case where all channel gains are the same (in modulo

and phase), in which case d(1) = 1.

Theorem 3.5.2. The sum-capacity bound for i = 1 in (Equation 3.7b) is achievable for the

symmetric Gaussian K-CIFC-CMS to within 6 bits per channel use for K = 3 and to within

(K− 2) log2(K− 2) + 3.88 bits per channel use for K ≥ 4.
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Theorem 3.5.3. The sum-capacity bound for i = 1 in (Equation 3.7b) is achievable to within

a factor K by beamforming to the primary user.

3.5.1 Sum-capacity outer bound for the K-user case and symmetric channel gains

For the K-user symmetric Gaussian channel with |hd| 6= hi the bound for i = 1 in (Equation 3.7b)

can be further bounded as follows. We note that we may tighten the bound by choosing the

“worst noise covariance matrix”, but for simplicity, here we use independent noises.

K∑
k=1

Rk ≤
K∑
u=1

I
(
Xu, · · · , XK; Yu

∣∣∣X1, Y1, · · · , Xu−1, Yu−1) = I
(
X1, · · · , XK; |hd|X1 + hi

K∑
i=2

Xi + Z1

)
+

K−1∑
u=2

I
(
Xu, · · · , XK; |hd|Xu + hi

K∑
i=u+1

Xi + Zu

∣∣∣X`, hi

K∑
i=u

Xi + Z`, ` ∈ [1 : u− 1]
)

+ I
(
XK; |hd|XK + ZK

∣∣∣X`, hiXK + Z`, ` ∈ [1 : K− 1]
)

≤ h
(
|hd|X1 + hi

K∑
i=2

Xi + Z1

)
− h(Z1) +

K−1∑
u=2

h
(
[|hd|− hi]Xu + Zu − Zu−1) − h(Zu)

+ h
(
|hd|XK + ZK

∣∣∣hiXK +
1

K− 1

K−1∑
`=1

Z`

)
− h(ZK).

Finally, by the “Gaussian maximizes entropy” principle, we obtain

K∑
k=1

Rk ≤ log

(
1+

(
|hd|+ (K− 1)|hi|

)2)
(3.15a)

+ (K− 2) log(2) + (K− 2) log

(
1+

∣∣|hd|− hi

∣∣2
2

)
(3.15b)

+ log

(
1+

|hd|
2

1+ (K− 1)|hi|2

)
. (3.15c)
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For hi = |hd| all received signals are statistically equivalent, therefore the K-CIFC-CMS is

equivalent to a K-user Multiple Access Channel, whose sum-capacity is

K∑
k=1

Rk ≤ I(X1, . . . , XK; |hd|

K∑
i=1

Xi + Z1) ≤ log(1+ K2|hd|
2).

In the limit for high SNR and with the channel parameterization as in (Equation 3.2), the

above outer bound can be further bounded

K∑
k=1

Rk ≤ log(K2) + (K− 1) log(2) + (K− 1) log
(
1+ max{|hd|

2, |hi|
2}
)

+ log

(
1+

|hd|
2

1+ (K− 1)|hi|2

)
,

to obtain the following gDoF outer bound

d(α) ≤ (K− 1)max{1, α}+ [1− α]+ = Kmax{1, α}− α.

This gDoF remains valid for α = 1 as long as hi = |hd| exp(jθ) for exp(jθ) 6= 1; when exp(jθ) = 1

the K-user MAC sum-capacity gives d(α = 1) = 1. This proves the converse part of Th. 3.5.1.

3.5.2 Achievable Rate Region K-CIFC with CMS

We now present a scheme which will be used in Section 3.5.3 to show that the symmetric

outer bound derived in Section 3.5.1 is achievable to within a constant gap. Inspired by the

capacity achieving strategy for the Gaussian MIMO-BC, we introduce a scheme that uses Dirty

Paper Coding (DPC) with encoding order 1→ 2→ 3→ · · ·K. We denote by Σ` the covariance
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matrix corresponding to the message intended for decoder `, ` ∈ [1 : K], as transmitted across

the K antennas/transmitters. The overall input covariance matrix is

Cov[X1, . . . , XK] =

K∑
`=1

Σ` :

[
K∑
`=1

Σ`

]
k,k

≤ 1, k ∈ [1 : K], (3.16a)

where the constraints on the diagonal elements correspond to the input power constraints.

Moreover, since message ` can only be broadcasted by transmitters with index larger than `,

we further impose

[
Σ`
]
k,k

= 0 for all 1 ≤ k < ` ≤ K. (3.16b)

The achievable rate region is then the set of non-negative rates (R1, . . . , RK) that satisfy

R` ≤ log

1+ h†`Σ`h`

h†`

(∑K
k=`+1 Σk

)
h`

 , h†` := [h`,1h`,2 . . . h`,K], ` ∈ [1 : K], (3.17)

for all possible Cov[X1, . . . , XK] complying with (Equation 3.16), with the convention that∑K
k=K+1 Σk = 0.

In particular we consider the transmit signals

X1 = α1U1,

Xj = γjUj + βjU
(ZF)
j + αjU1, j ∈ [2 : K− 1],

XK = γKUK − βK

K−1∑
j=2

U
(ZF)
j + αKU1,



67

where U`, U
(ZF)
` are i.i.d. N (0, 1), ` ∈ [1 : K], and the coefficients {α1, αj, βj, γj}j∈[2:K] satisfy

|α1|
2 ≤ 1,

|γj|
2 + |βj|

2 + |αj|
2 ≤ 1, j ∈ [2 : K− 1],

|γK|
2 + |βK|

2(K− 2) + |αK|
2 ≤ 1,

in order to satisfy the power constraints. Notice the negative sign for βK, which we shall use

to implement zero-forcing of the aggregate interference
∑K−1
j=2 U

(ZF)
j . Moreover, all transmitters

cooperate in beam forming U1 to receiver 1. These two facts can be easily seen by observing

that for β1 = . . . = βK := β

K∑
`=1

X`

∣∣∣∣∣
β1=...=βK

=

K∑
`=1

γ`U`, γ1 :=

K∑
`=1

α`.

With these choices the message covariance matrices are

Σ1 = aa†, a := [α1, . . . , αK]
T ,

Σj = |γj|
2 eje

†
j + |β|2 (ej − eK)(ej − eK)

†, j ∈ [2 : K],

where ej indicates a length-K vector of all zeros except for a one in position j, j ∈ [1 : K], †

indicates the Hermitian transpose, and where β = β1 = . . . = βK.
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We next express the channel vectors h` for the symmetric Gaussian channel as

h` = (|hd|− hi) e` + hi

(
K∑
k=1

ek

)
, ` ∈ [1 : K].

By noticing that

h`e
†
j = δ[`− j](|hd|− hi) + hi, ` ∈ [1 : K],

where δ[k] is the Kronecker’s delta function, the following rates are achievable

R1 = log

1+
∣∣∣|hd|+ |hi|

∑K
j=2 αj

∣∣∣2
1+ |hi|2

∑K
k=2 |γk|

2

 , (3.18a)

Rj = log

1+
∣∣∣|hd|− hi

∣∣∣2 |β|2 + |hd|
2 |γj|

2

1+ |hi|2
∑K
k=j+1 |γk|

2

 , j ∈ [2 : K− 1], (3.18b)

RK = log
(
1+ |hd|

2 |γK|
2
)
, (3.18c)

where we chose α1 = exp(j∠hi) to allow coherent combining at receiver 1 of the different signals

carrying U1, i.e., all users beamform to the primary receiver.

3.5.3 Additive Constant Gap Results for the symmetric Gaussian Channel

We now choose the parameters in (Equation 3.18) so as to match the outer bound given

in (Equation 3.15). Due to the presence of the term (K−1)|hi|
2 in the denominator of the equiv-

alent SNR for receiver K, one might be tempted to suggest that the bound in (Equation 3.15c)

would mean that the most cognitive user should treat all the other signals as noise. However we

recall that user K is the most cognitive user and can therefore “pre-code” the whole interference
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seen at its receiver using DPC; by doing so, receiver K would not have anything to treat as

noise besides the Gaussian noise itself. We therefore interpret the term 1
1+(K−1)|hi|2

≤ 1 as the

fraction of power transmitter K dedicates to the transmission of its own signal. This amounts

to setting

|γK|
2 =

1

1+ (K− 1)|hi|2

in (Equation 3.18c). This choice guarantees that the achievable rate for user K exactly matches

the term in (Equation 3.15c) in the upper bound.

Next we would like to match the upper bound term in (Equation 3.15b) to the achievable

rates in (Equation 3.18b) by setting

γj = 0, j ∈ [2, K− 1],
1

2
=

|β|2

1+ |hi|2|γK|2
.

However, from the power constraint for user K, we must satisfy

|β|2 ≤ 1− |γK|
2

K− 2
,

which imposes the following condition

K− 4

K− 2
+

(
|hi|

2 +
2

K− 2

)
|γK|

2 ≤ 0.
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The above condition cannot be satisfied for K ≥ 4; for K = 3 it requires that

|γ3|
2 =

1

1+ 2|hi|2
≤ 1

|hi|2 + 2

which can be satisfied by |hi|
2 ≥ 1. Therefore, in the following we shall assume |hi|

2 ≥ 1 and

set γj = 0, j ∈ [2, K− 1] and

|β|2 = |β|2 =


1−|γK|

2

K−2 = 1
K−2

(
1− 1

1+(K−1)|hi|2

)
K ≥ 4

1+|hi|
2|γ3|

2

2 = 1+3|hi|
2

2(1+2|hi|2)
K = 3

,

which implies

|αK|
2 =


0 K ≥ 4

1− |β|2 − |γK|
2 = −1+|hi|

2

2(1+2|hi|2)
K = 3

.

Finally, for j ∈ [2 : K− 1]

|αj|
2 = 1− |βj|

2 =


K−3
K−2 +

1
K−2

1
1+(K−1)|hi|2

K ≥ 4

1+|hi|
2

2(1+2|hi|2)
K = 3

.

The rates then become: for K ≥ 4 and for j ∈ [2 : K− 1]

RK = log

(
1+

|hd|
2

1+ (K− 1)|hi|2

)

Rj = log

1+ ∣∣|hd|− hi

∣∣2 1
K−2

(K−1)|hi|
2

1+(K−1)|hi|2

1+ |hi|2

1+(K−1)|hi|2

 ≥ log

(
1+

∣∣|hd|− hi

∣∣2
K− 2

K− 1

K+ 1

)
, since |hi|

2 ≥ 1,
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R1 = log

1+
∣∣∣|hd|+ |hi|

√
(K− 3)(K− 2) + K−2

1+(K−1)|hi|2

∣∣∣2
1+ |hi|2

1+(K−1)|hi|2


≥ log

(
1+

∣∣|hd|+ |hi|
√
(K− 3)(K− 2)

∣∣2
2

)
, since |hi|

2 ≥ 1,

and for K=3, the rates are

R3 = log

(
1+

|hd|
2

1+ 2|hi|2

)
R2 = log

(
1+

∣∣|hd|− hi

∣∣2 1
2

)

R1 = log

1+
∣∣∣|hd|+ |hi|

(√
1+|hi|2

2(1+2|hi|2)
+
√

−1+|hi|2

2(1+2|hi|2)

)∣∣∣2
1+ |hi|2

1+2|hi|2


≥ log

(
1+

∣∣|hd|+ |hi|
1
2

∣∣2
2

)
, since |hi|

2 ≥ 1.

By taking the difference between the outer bound in (Equation 3.15) and the lower bounds

on the derived achievable rates we find that the gap is upper bounded by: for K ≥ 4

GAP ≤ (K− 2) log(2) + (K− 2)

(
log

(
1+

∣∣|hd|− hi

∣∣2
2

)
− log

(
1+

∣∣|hd|− hi

∣∣2
K− 2

K− 1

K+ 1

))

+ log

(
1+

(
|hd|+ (K− 1)|hi|

)2)
− log

(
1+

∣∣|hd|+ |hi|
√
(K− 3)(K− 2)

∣∣2
2

)

≤ (K− 2) log(2) + (K− 2) log

(
(K+ 1)(K− 2)

2(K− 1)

)
+ log

(
2(K− 3)(K− 2)

(K− 1)2

)
≤ (K− 2) log (K− 2) + log(2 exp(2)),
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(where we used K loge(1+ 1/K) ≤ 1) and for K ≥ 3

GAP ≤ log(2) + log

(
1+

(
|hd|+ 2|hi|

)2)
− log

(
1+

∣∣|hd|+ |hi|
1
2

∣∣2
2

)

≤ 6 log(2).

For |hi|
2 < 1, we set βj = αj = 0, γj = 1 for j ∈ [2 : K] to obtain

K∑
`=1

R` =

K∑
`=1

log

(
1+

|hd|
2

1+ (K− `)|hi|2

)
.

The gap to the upper bound is at most

GAP ≤ (K− 2) log(2) + 2 log(K− 1) +

K−1∑
`=2

log

(
K− `

2

)
,

which is smaller than the gap previously obtained for |hi|
2 ≥ 1. This proves Th. 3.5.2 and

implies the direct part of Th. 3.5.1.

3.5.4 Multiplicative Constant Gap for the symmetric Gaussian Channel

In order to provide a complete characterization of the sum-capacity of the symmetric Gaus-

sian channel we next consider approximating the sum-capacity to within a multiplicative gap,

which is more relevant at low SNR than an additive gaps. To this end, note that the rate of

user j is upper bounded by Cj := log(1+ (|hd|+ (K− j)|hi|)
2), j ∈ [1 : K] which in turn is upper

bounded by K × C1. Consider an achievability scheme in which all users beamform to user 1:
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Figure 9. Comparison of the numerically optimized inner and outer bounds for K = 3 users at
SNR= 20dB as a function of α = log(|hd|)

log(|hi|)
; notice a smaller gap than the worst case predicted 6

bits per channel use.

this achieves the sum-rate R1 + · · ·RK = C1. This is to within a factor K of the upper bound,

proving Th. 3.5.3.

3.6 Numerical optimization of inner and outer bounds

Figure 9 shows the proposed upper and lower bounds for the symmetric channel with K = 3

users at SNR= 20dB. In this case the outer and lower bounds where optimized numerically so as

to obtain a larger achievable rate and a tighter outer bound than those used for the analytical

evaluation of the gap. We notice that the gap between the bounds is much less than the

theoretical gap of 6 bits. In particular, for strong interference the bounds are extremely close to

one another, showing again that the analytically provable gap of 6 bits is a worst case scenario,
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Figure 10. Analytical and numerical additive gaps for K = 3 users at SNR= 50dB.

which is the result of crude bounding techniques rather than a poor achievability scheme.

Figure 10 shows the additive gap for K = 3 users at SNR= 50dB; notice the gap between the

analytical upper and lower bounds (curve labeled ‘th’) converging to 6 bits for large α while the

gap between the numerically optimized upper and lower bounds (curve labeled ‘num’) going to

zero in the same regime; the largest gap is at α = 1 where the channel matrix becomes rank

deficient; overall the gap is at most around 1 bit, 5 bits smaller than the analytically provable

gap.

3.7 K user Cognitive Interference Channel in Strong Interference

In this section we consider - in addition to the (K-CIFC-CMS) - the cognitive interference

channel with cognitive only message sharing (K-CIFC-CoMS) consisting of K− 1 primary users
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(b) K-CIFC-CMS with K = 4.

and one cognitive user that has non-causal message knowledge of the all the primary users. The

two message assignments (M1, . . . ,MK) can be described as follows:

1. CoMS: Mi = {i}, i ∈ [1 : K− 1], and MK = [1 : K],

2. CMS: Mi = [1 : i], i ∈ [1 : K].

The general memoryless (K-CIFC-CoMS) is formally defined by

• channel inputs Xi ∈ Xi,

• channel outputs Yi ∈ Yi, i ∈ [1 : K],

• and a memoryless channel P(Y1, . . . , YK|X1, . . . , XK).

• Messages Wi which are known to user K non causally.

A code with non-negative rate vector (R1, . . . , RK) and block-length N is defined by:

• messages Wi, uniformly distributed over [1 : 2NRi ] and independent of all other random

variables, where N ∈ N+ is the codeword length and Ri ∈ R+ is the rate expressed in bits

per channel use.
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• encoding functions XNi
(
WMi

)
with Mi ⊆ [1 : K], f

(N)
i : [1 : 2NRi ] → XNi such that

XNi := f
(N)
i (Wi), i ∈ [1 : K− 1],

• and decoding functions Ŵi

(
YNi
)
, for i ∈ [1 : K]. g

(N)
i : YNi → [1 : 2NRi ] such that

Ŵi = g
(N)
i (YNi ), i ∈ [1 : K],

The capacity region is the set of all rate tuples (R1, . . . , RK) for which there exists a sequence of

codes indexed by the block-length N such that P
(N)
e := maxi∈[1:K] P[Ŵi 6=Wi]→ 0 as N→ +∞.

The CoMS and CMS channels are shown in Fig. 11(a) and Fig. 11(b), respectively, for the

case of K = 4 users.

3.7.1 Outer Bound under strong interference conditions

Our first result is a sum-capacity outer bound under a set of strong interference conditions:

Theorem 3.7.1. For the K-CIFC-CoMS and the K-CIFC-CMS satisfying the following condi-

tion ∀j ∈ [2 : K]

I(X[j:K]; Yj|X[1:j−1]) ≤ I(X[j:K]; Yj−1|X[1:j−1]), (3.19)

the sum-capacity is upper bounded by

K∑
j=1

Rj ≤ I(X[1:K]; Y1), (3.20)

for all input distributions PX1,...,XK that factor as

1. CoMS:
∏K−1
j=1 PXj PXK|X1,...,XK−1,
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2. CMS: PX1,...,XK.

Proof. The proof can be found in the Appendix F.

Remarks:

1. The condition in (Equation 3.19) intuitively says that for all j ∈ [2 : K], given that the

signals (X1, . . . , Xj−1) have been removed, receiver j can decode the remaining signals

(Xj, . . . , XK) at a lower rate than receiver j− 1, which somehow implies that receiver j− 1

can ‘better decode’ signal Xj than the indented receiver j. Of all the receivers, receiver 1 is

the ‘most powerful’ and the sum-capacity in (Equation 3.20) can be interpreted as ‘joint

decoding’ of all transmit signals at receiver 1.

2. For K = 2 the CoMS and the CMS models coincide and the condition in (Equation 3.19)

reduces to [18, Eq. (93)], that is, I(X2; Y2|X1) ≤ I(X2; Y1|X1) for all PX1,X2 .

3. In [2] we derived the following sum-capacity upper bound for CMS case without any

restriction

K∑
j=1

Rj ≤
K∑
j=1

I(Yj;X[j:K]|X[1:j−1], Y[1:j−1]). (3.21)

We notice that (Equation 3.21) and Theorem 3.7.1 coincide for channels that satisfy the

following degradedness condition

X[j:K] → Yj−1 → Yj given X[1:j−1]∀j ∈ [2 : K] and for all possible PX1,...,XK . (3.22)
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For the 3-user Gaussian channel, we shall see that the condition in (Equation 3.19) is less

restrictive than (Equation 3.22).

3.7.2 Inner Bounds

3.7.2.1 Achievability scheme for K-CIFC-CMS

With CMS, message W1 is known to all users. Thus all users may cooperate in sending

message W1 to receiver 1. In order to achieve the sum-outer bound, all users beam form to

receiver 1 as in a MISO channel to achieve

R1 = I(X[1:K]; Y1),

R2 = . . . RK = 0,

for some PX1,...,XK . Hence, when the condition in (Equation 3.19) is satisfied for all input dis-

tributions, the sum-capacity of the K-CIFC-CMS is given by (Equation 3.20).

3.7.2.2 Achievability scheme for K-CIFC-CoMS

With CoMS, messages W1 through WK−1 are known at transmitter K. Here we propose

a simple achievable scheme where users 1 through K− 1 use independent i.i.d coding (like in

point-to-point channels) and user K superposes its own message to the codewords generated

by the other users. All destinations are required to decode all messages, where non-intended

messages are decoded non-uniquely. The achievable region is therefore the intersection of K
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multiple access channels (with the difference that XK can be correlated to all other mutually

independent inputs) given by

RS + RK ≤ min
j∈[1:K]

I(XS ; Yj|XSc),

for all S ⊆ [1 : K− 1]\∅ and

RK ≤ I(XK; YK|X[1:K−1]).

The achievable sum-rate is therefore obtained by S = [1 : K − 1]. To meet the sum-rate outer

bound in (Equation 3.20) we need to impose the extra condition that

I(X[1:K]; Y1) ≤ I(X[1:K]; Yj), j ∈ [2 : K], (3.23)

for the distribution that attains the largest value in the sum-rate upper bound. Hence, when in

addition to the condition in (Equation 3.19) being satisfied for the set of input distributions with

the prescribed factorization, also the condition in (Equation 3.23) is satisfied, the sum-capacity

of K-CIFC-CoMS is given by (Equation 3.20).
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3.7.3 The Gaussian noise case

The power-constrained complex-valued single-antenna K-user Gaussian noise channel is de-

scribed by the following input/output relationship

Yj =
∑
k∈[1:K]

hjkXk + Zj, j ∈ [1 : K], (3.24)

where the channel gains hjk ∈ C, (i, j) ∈ [1 : K]2, are constant and known to all terminals, the

noises are without loss of generality zero mean, unit variance proper-complex Gaussian random

variables (their correlation does not matter as the receivers do not cooperate), and the inputs

are subject to power constraint E[|Xk|2] ≤ 1, k ∈ [1 : K].

3.7.3.1 Evaluation of the Outer bound for the Gaussian Noise Channel

In the next subsections we aim to evaluate Theorem 3.7.1 for the channel in (Equation 3.24).

To do so, we need to identify the channels for which the strong interference condition which are

given in (Equation 3.19) holds for all input distributions with the proper factorization depending

on the message sharing mechanism. Next we argue that for the power-constrained Gaussian

channel, the strong interference condition must be verified only for those input distributions that

meet the power constraint with equality for each user. The idea is that all other distributions are

suboptimal in the sense that one can find another distribution with provably better performance.

The proof is by contradiction. Assume that there is an optimal input distribution for which

user k ∈ [1 : K] uses E[|Xk|2] = Pk ≤ 1 with a user k∗ such that Pk∗ < 1. Consider now a new

communication scheme in which user k∗ sends Xk∗,new = Xk∗ +X
′
k∗ where Xk∗ is the signal that
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was assumed optimal with power Pk∗ < 1 and X′k∗ ∼ N (0, 1 − Pk) is independent of everything

else and has rate

R′k∗ = log

(
1+ min

j∈[1:K]

|hjk∗ |
2(1− Pk∗)

1+ (
∑
`∈[1:K]

√
|hj`|P`)2

)
> 0

Now, the rate of the new message is such that X′k∗ can be decoded by all users by treating

the signals assumed optimal as noise (no matter what their correlation structure is); after

that, X′k∗ is removed for the received signal and the system is equivalent to the one assumed

optimal. Now, since the rate of user k∗ can be increased by R′k∗ > 0 we reached a contradiction.

This shows that all users must use their full power. Therefore, for the power constrained

Gaussian channel, one can repeat the same steps of the converse by considering only those

input distributions that meet the power constraint with equality for all users. This implies that

the strong interference condition must be verified only by these distributions (rather than all

possible input distributions).

3.7.3.2 Sum-Capacity for the K-CIFC-CMS

The sum-capacity upper bound in (Equation 3.20), by the ‘Gaussian maximizes entropy’ the-

orem, yields

K∑
k=1

Rk ≤ max
Σx

log
(
1+ hH1 Σxh1

)
= log

(
1+

( ∑
k∈[1:K]

|h1k|
)2)

, (3.25)
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since we can consider any input covariance matrix Σx. The sum-capacity in (Equation 3.25) is

valid under the condition in (Equation 3.19), which amounts to verifying

h(Yj|X[1:j−1]) ≤ h(Yj−1|X[1:j−1]) j ∈ [2 : K], (3.26)

over all proper-complex Gaussian distribution that meet the power constraint with equality

[16–18]. The sum-capacity is achieved by beam forming (see Section 3.7.2.1) with

Xk = exp{−j∠h1k} U, k ∈ [1 : K], U ∼ N (0, 1). (3.27)

3.7.3.3 Sum-Capacity for the K-CIFC-CoMS

Consider an input covariance matrix:

Σx =

IK−1 ρ

ρH 1

 : ‖ρ‖2 ≤ 1 (3.28)

where ρ ∈ CK−1×1 is a vector of correlation coefficients. The sum-capacity upper bound

in (Equation 3.20), by the ‘Gaussian maximizes entropy’ theorem [49], is maximized by a



83

jointly Gaussian input with covariance (Equation 3.28). We therefore obtain the following

sum-capacity upper bound, for hH1 = [h11, h12, . . . , h1K],

K∑
j=1

Rj ≤ max
Σx in eq.(Equation 3.28)

log
(
1+ hH1 Σxh1

)
= log

1+
|h1K|+

√ ∑
j∈[1:K−1]

|h1j|2

2

(3.29)

attained by ρj = λh∗1j for λ : ‖ρ‖2 = 1. This optimal choice of correlation coefficients implies

RK = 0. The sum-capacity in (Equation 3.29) is valid under condition (Equation 3.19), which

amounts to verifying

h(Yj|X[1:j−1]) ≤ h(Yj−1|X[1:j−1]) j ∈ [2 : K], (3.30)

for all proper-complex Gaussian distributions with covariance matrix as in (Equation 3.28)

[16–18]. The sum-rate in (Equation 3.29) is achievable by (see also Section 3.7.2.2)

Xj = Tj i.i.d. N (0, 1), j ∈ [1 : K− 1], (3.31a)

XK =

K−1∑
j=1

Tjρj : |ρj| ∝ |h1j|, j ∈ [1 : K− 1], (3.31b)

under the condition in (Equation 3.23), that is,

hH1 Σxh1 ≤ hHj Σxhj, ∀j ∈ [2 : K− 1], (3.32)

hHj := [hj1, hj2, . . . , hjK] (3.33)
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for the choice of correlation coefficients implied by (Equation 3.31). Since RK = 0, the condition

in (Equation 3.32) need not to hold for j = K as receiver K does not have anything to decode.

3.7.3.4 The case K = 2

For the 2-user case CMS and CoMS coincide. The sum-capacity is given by (Equation 3.25),

i.e., R1 = log(1+(|h11|+|h12|)
2) and R2 = 0, under the condition in (Equation 3.26) for K = j = 2,

which is equivalent to

log(1+ |h22|
2) ≤ log(1+ |h12|

2)⇐⇒ |h22|
2 ≤ |h12|

2.

The achievability condition in (Equation 3.32) does not play a role for K = 2 because R2 = 0.

Remark: The strong interference condition |h22|
2 ≤ |h12|

2 is equivalent to [18, eq.(87)].

However, the strong interference capacity region in [18, Theorem 5] also requires [18, eq.(88)].

This is the case since in order to determine the sum-capacity only less restrictive conditions are

needed compared to the case where the whole capacity region must be characterized.
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3.7.3.5 The case K = 3 with CMS

For CMS and K = 3 we consider all jointly Gaussian inputs with covariance matrix given

by the following

Cov


X1

X2

X3

 =


1 ρ1 ρ2

ρ∗1 1 ρ3

ρ∗2 ρ∗3 1

 : |ρi| ≤ 1, i = 1, 2, 3,

|ρ3 − ρ1ρ
∗
2 |
2 ≤ (1− |ρ1|

2)(1− |ρ2|
2).

For CMS the optimal sum-rate in (Equation 3.25) is obtained for R1 = log(1 + (|h11| + |h12| +

|h13|)
2), R2 = R3 = 0 by beam forming. The condition in (Equation 3.26) is: for j = 3, by

proceeding similarly to the case K = j = 2 discussed previously in Section 3.7.3.4, we have

|h33|
2 ≤ |h23|

2, (3.34)

and for j = 2 we must find the channel gains that satisfy

log(1+ hH2 Sh2) ≤ log(1+ hH1 Sh1)

h∗2 :=

h22
h23

 ,h∗1 :=
h12
h13

 ,S :=

 1− |ρ1|
2 ρ3 − ρ1ρ

∗
2

ρ∗3 − ρ
∗
1ρ2 1− |ρ2|

2

 ,
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which is equivalent to

h22
h23

 = ξ

h12
h13

 : |ξ| ≤ 1. (3.35)

Remark: The condition in (Equation 3.35) corresponds to the ‘degraded channel condition

when conditioning on X1’ in (Equation 3.22). Given the message structure of CMS, there

are so many coding possibilities at the transmitters that the channel conditions under which

joint decoding of all messages at the least cognitive receiver is optimal only includes a form

of ‘degraded channel’. This suggests that for CMS and generic channel gains, other decoding

strategies are sum-capacity optimal, see for example the symmetric sum-capacity result in [2].

Notice that here we did not ask for the conditions under which joint decoding of all messages at

all receivers is optimal, i.e., when the channel reduces to compound MAC. If we were to ask for

which channel gains joint decoding of all messages at a ‘more cognitive receiver’ than receiver 1

is optimal, we would generally find different conditions than the one in (Equation 3.35).

3.7.3.6 The case K = 3 with CoMS

For CoMS and K = 3 we consider all jointly Gaussian inputs with covariance matrix given

by the following

Cov


X1

X2

X3

 =


1 0 ρ2

0 1 ρ3

ρ∗2 ρ∗3 1

 : |ρ2|
2 + |ρ3|

2 ≤ 1.
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For CoMS the optimal sum-rate is obtained when R1+R2 = log(1+(|h13|+
√
|h11|2 + |h12|2)

2), R3 =

0. The condition in (Equation 3.26) for j = 3 is as (Equation 3.34), while for j = 2 is

|h22|
2 + |h23|

2 + 2|h22h
∗
23 − h12h

∗
13| ≤ |h12|

2 + |h13|
2 (3.36)

which includes the ‘degraded condition’ in (Equation 3.35).

The condition for achievability in (Equation 3.32) evaluated for j = 2 imposes that the

channel gains satisfy

hH1 Sh1 ≤ hH2 Sh2, h∗1 :=


h11

h12

h13

 ,h
∗
2 :=


h21

h22

h23

 ,

S := Cov


X1

X2

X3

with
ρ2 =

h∗11√
|h11|2+|h12|2

,

ρ3 =
h∗12√

|h11|2+|h12|2
.

(3.37)

Remark: Interestingly, the condition in (Equation 3.36) is equivalent to [18, eq.(88)].
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3.8 K user Cognitive Interference Channel in Weak Interference

The K-CIFC-CoMS consists of K− 1 primary (each have an independent message) and one

cognitive (with knowledge of all messages) transmitters and K receivers (each interested in one

message only). The Gaussian channel is described by the following input-output relationship

Yj =
∑
k∈[1:K]

hjkXk + Zj, j ∈ [1 : K], (3.38)

with the usual assumptions: the complex-valued channel gains are constant and known to all

terminals, the inputs are subject to power constraints E[|Xi|2] ≤ 1, i ∈ [1 : K], the outputs are

subject to Gaussian noise Zi ∼ N (0, 1), i ∈ [1 : K].

Since the general model in (Equation 3.38) is described by K2 parameters, in the following

we shall focus on the symmetric case defined by: for j ∈ [1 : K− 1],

hjj = |hd|, (primary direct links), (3.39a)

hjK = hc, (secondary→primary links), (3.39b)

hjk = hi, k 6∈ {j, K} (primary interfering links). (3.39c)

Note that our “symmetric setting” in (Equation 3.39) makes the primary users completely

equivalent but does not impose any restriction on the channel gains of the cognitive receiver

(i.e., hKi, i ∈ [1 : K]) which are kept general.
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The 3-CIFC-CoMS is shown in Fig. 11(a) and the 3-CIFC-CMS in Fig. 11(b). Notice the

different message structure at the transmitters, clearly the capacity of the 3-CIFC-CMS is an

outer bound to the capacity of the 3-CIFC-CoMS.

R1 + R2 + R3 ≤ 2 log
(
1+ (|hd|+ |hc|)

2
)
+ log

(
1+

|h33|
2

1+ |hc|2

)
, (3.40a)

R1 + R2 + R3 ≤ log
(
1+ (|hd|+ |hi|+ |hc|)

2
)
+ log(2) + log

(
1+

∣∣|hd|− hi

∣∣2
2

)

+ log

(
1+

|h33|
2

1+ 2|hc|2

)
. (3.40b)

For the 3-user case, the condition in (Equation 3.39) means that the two primary direct

links are equal and are denoted by |hd| (real valued without loss of generality), the interference

cross gains are equal and denoted by hi, and the “cooperative” cross channel gains from the

cognitive transmitter are equal and denoted by hc.

3.8.1 K = 3 user case

For the 3-user case, the outer bound in (Equation 3.7b) gives the sum-rate in (Equation 3.40).

Note that although the channel model imposes an input distribution that factors as PX2,X1,X3 =

PX1PX2PX3|X2,X1 , our bound has to be evaluated over all possible joint input distributions. For

the Gaussian noise channel, the outer bound in (Equation 3.7b) is exhausted by jointly Gaussian

inputs – by the “Gaussian maximizes entropy” principle – and can be further upper bounded

as in (Equation 3.40) at the top of the page, as shown in [2]. Note that in the symmetric
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case, the bound in (Equation 3.40b) is to within a constant gap from the sum-capacity of the

3-CIFC-CMS. Our main result is as follows

Theorem 3.8.1. For the 3-CIFC-CoMS, let

Case 1: |h33|
2 ≤ |hc|

2, 2|hi|
2 ≤ |hc|

2 ≤ |hd|
2, (3.41)

Case 2: |h33|
2 > |hc|

2, 2|hi|
2 ≤ |hc|

2 ≤ |hd|
2. (3.42)

The sum-capacity bound in (Equation 3.40b) is achievable to within 8.4 bits when (Equation 3.41)

is satisfied, and to within 13 bits when (Equation 3.42) is satisfied.

Proof. We consider the following transmit signals

X1 = α1T1ZF + γ1T1p, (3.43a)

X2 = β2T2ZF + γ2T2p, (3.43b)

X3 = −α3T1ZF − β3T2ZF + 0 · T3ZF + γ3T3p, (3.43c)

where TiZF, Tip are independent N (0, 1) random variables for i ∈ [1 : 3] and the coefficients

should satisfy the following conditions

|α1|
2 + |γ1|

2 ≤ 1, (3.43d)

|β2|
2 + |γ2|

2 ≤ 1, (3.43e)

|α3|
2 + |β3|

2 + |γ3|
2 ≤ 1, (3.43f)
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in order to satisfy the power constraints. With (Equation 3.43), the received signals are

Yj = (hj1α1 − hj3α3)T1ZF + hj1γ1T1p + (hj2β2 − hj3β3)T2ZF + hj2γ2T2p + hj3γ3T3p + Zj

j ∈ [1 : 3].

When |h33|
2 ≤ |hc|

2, the terms in (Equation 3.40) depending on h33, which give the rate for

the cognitive user, are bounded by log
(
1+ |h33|

2

1+2|hc|2

)
≤ log

(
1+ |h33|

2

1+|hc|2

)
≤ log(2). This seems to

suggest that it is optimal, to within a constant gap, to have R3 = 0 when |h33|
2 ≤ |hc|

2, that is,

to have the cognitive user use all its resources to help the primary users / behave as a cognitive

relay. The symmetric capacity region of a 2-user interference channel with cognitive relay was

recently characterized to within a constant gap in [50] for almost all parameter regimes. The

power splits are chosen to be

γ1 = γ2 = γ3 = 0, (3.44a)

α1 = β2 = α3 = β3 =
hi

hc
. (3.44b)

Having the interference completely neutralized, the following rates are achievable

R1 ≥ log
(
1+

∣∣|hd|− hi

∣∣2) , (3.45a)

R2 ≥ log
(
1+

∣∣|hd|− hi

∣∣2) . (3.45b)
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Note that we can further lower bound R1 using (Equation 3.41) by

R1 ≥ log
(
1+

(
|hd|− |hi|

)2) ≥ log

(
1+ (1−

1√
2
)2|hd|

2

)
.

We next use the condition in (Equation 3.41) to further upper bound the first expression of the

sum-capacity upper bound in (Equation 3.40b) as

log
(
1+ (|hd|+ |hi|+ |hc|)

2)
)
≤ log

(
1+ (2+

1√
2
)2|hd|

2

)
.

Finally, by taking the difference between upper and lower bounds we get (note that R3 ≤ log2(2))

gap ≤ log

(
1+ (2+

1√
2
)2|hd|

2

)
+ log

(
1+

∣∣|hd|− hi

∣∣2
2

)

− log

(
1+ (1−

1√
2
)2|hd|

2

)
− log

(
1+

∣∣|hd|− hi

∣∣2)
+ 2 log(2) ≤ log

(
4
(2+ 1√

2
)2

(1− 1√
2
)2

)
≈ 8.4 bits.

When |h33|
2 > |hc|

2, the outer bound in (Equation 3.40) suggests that the intended signal

at the cognitive receiver is strong enough to support R3 > 0. We focus on the regime identified

by (Equation 3.42). User i ∈ [1 : 2] splits its message into two parts: private information (to be

kept below the noise floor at the non-intended primary receiver) and zero-forced information (to

be zero-forced by the cognitive transmitter at the non-intended primary receiver). The cognitive

transmitter pre-codes against the whole interference seen at its receiver by using Dirty Paper

Coding (DPC) so that its receiver does not experience interference from the primary users.
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Next we choose the power splits so as to match the upper bound. In order to zero-force

/ neutralize the interference of a primary user at the non-intended primary receiver we set

h21α1 = h23α3 and h12β2 = h13β3. Moreover, since the interfering Tjp’s are considered as noise

at the primary receivers we set |h12γ2| ≤ 1, |h13γ3| ≤ 1, |h21γ1| ≤ 1, |h23γ3| ≤ 1. For the

symmetric channel, under the condition in (Equation 3.42) this can be accomplished by setting

|γ1|
2 = 1− |α1|

2 = |γ2|
2 = 1− |β2|

2 = |γ3|
2 =

1

1+ 2|hc|2
, (3.46a)

α3 = β3 =
hi

hc

√
1−

1

1+ 2|hc|2
. (3.46b)

With (Equation 3.46) and under the condition in (Equation 3.42), the variance of the overall

noise (i.e., actual noise plus the interfering signals treated as noise) is upper bounded as

1+
|hc|

2 + |hi|
2

1+ 2|hc|2
≤ 1+ (1+ 1/2)|hc|

2

1+ 2|hc|2
≤ 1.75. (3.47)

With (Equation 3.47), we see that the rate of the primary users satisfy

R1 = R2

≥ log

1+ (1− 1
1+2|hc|2

)
∣∣|hd|− hi

∣∣2 + |hd|
2

1+2|hc|2

1.75


≥ log

(
1+

(1− 1√
2
)2

1.75
|hd|

2

)
, (3.48)
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while for the cognitive user, who DPCs against the whole interference due to the primary users,

we have

R3 = log

(
1+

|h33|
2

2|hc|2 + 1

)
. (3.49)

We next use the condition in (Equation 3.42) to further upper bound the first two expres-

sions of the sum-capacity outer bound in (Equation 3.40b) as

log
(
1+ (|hd|+ |hi|+ |hc|)

2)
)
≤ log

(
1+ (2+

1√
2
)2|hd|

2

)
,

log
(
1+

∣∣|hd|− hi

∣∣2) ≤ log

(
(1+

1√
2
)2
|hd|

2

2

)

Finally, by taking the difference between upper and lower bounds we get (note that the terms

depending on |h33|
2 match exactly)

gap ≤ log

(
1+ (2+

1√
2
)2|hd|

2

)
+ log

(
(1+

1√
2
)2
|hd|

2

2

)
− 2 log

(
1+

(1− 1√
2
)2

1.75
|hd|

2

)
+ log(2)

≤ log(2) + log

 (2+ 1√
2
)2(

(1− 1√
2
)2

1.75

)
+ log

 (1+ 1√
2
)2

2

(
(1− 1√

2
)2

1.75

)


≈ 13 bits.



CHAPTER 4

COVERAGE ANALYSIS FOR BASE STATION COOPERATION IN

MILLIMETER WAVE CELLULAR NETWORKS

One of the fundamental goals for 5G is a radical increase in data rates [51]. It is an-

ticipated that higher data rates will be achieved by extreme densification of base stations,

massive multiple-input-multiple-output (MIMO), increased data rate and/or base station co-

operation [51]. However, prime microwave wireless spectrum has become severely limited, with

little unassigned bandwidth available for emerging wireless products and services. Therefore, to

fulfill the need for increased bandwidth, millimeter wave (mmWave) spectrum between 30 and

300 GHz have been considered for future 5G wireless mobile networks. Until recently, mmWave

frequency bands were presumed to be unreliable for cellular communication due to blockage,

absorption, diffraction, and penetration, resulting in outages and unreliable cellular commu-

nications [52]. However, the advances in CMOS radio-frequency circuits, along with the very

small wavelength of mmWave signals, allows for the packing of large antenna arrays at both the

transmit and receive ends, thus providing highly directional beam forming gains and acceptable

signal-to-noise ratio (SNR) [52], [53]. This directionality will also lead to reduced interference

when compared to microwave networks [52]. It is thus anticipated that mmWave spectrum

holds tremendous potential for increasing spectral efficiency in upcoming cellular systems [54].

To further address the demand for higher data rates, cooperation between macro, pico and

femto base stations has been proposed to enable a uniform broadband user experience across the

95
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network. The dynamic coordination across several base stations - known as coordinated multi-

point (CoMP) - will limit the intercell interference thus increasing throughput and enhancing

performance at cell borders [55].

We consider a stochastic geometry based model is considered as in [19–23, 56], to study

coverage in CoMP heterogenous mmWave network. To do so we need to incorporate key factors

specific to a mmWave channel model. These specific mmWave characteristics are: a realistic

mmWave channel model, highly directional channel gains and sensitivity to blockages. This is

accomplished as follows:

The base stations are assumed to have a uniform linear array and we account for the

corresponding directionality accordingly. The receivers are equipped with a uniform linear

array. Coverage probabilities are derived for the case of a single antenna receiver (typical

user). We use concepts from [19–21] to incorporate blockage, interference and different fading

distributions (Rayleigh and Nakagami) in our analysis. The joint distribution of the cooperating

base stations to the typical user in the presence of blockage is also derived.

The downlink CoMP mmWave heterogenous network model, the beamsteering at the base

stations and the decoding at the typical user are explained in Section 4.1. The coverage prob-

ability in the absence of blockage, and with Rayleigh fading is derived in Section 4.1.8. In

Section 4.2, we consider the heterogenous CoMP with Rayleigh fading mmWave network with

a blockage parameter at each tier, and the coverage probability is derived accordingly. In Sec-

tion 4.3, we derive the coverage probability for the same network model with blockage but

consider a different fading distribution on the direct links, more precisely, Nakagami fading is
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used to model the fading distribution on the direct links of the cooperating base stations while

keeping the Rayleigh fading assumption for the interfering channel gains. Each section has

numerical examples of the corresponding coverage probability. Proofs may be found in the Ap-

pendices. Table II, Table III, Table IV, Table V summarize all the notations used throughout

this chapter.

TABLE II. POISSON POINT PROCESS VARIABLES
Notation Description

K Total number of tiers

Φmmw,k Homogenous Poisson Point Process (PPP) indexed by k ∈ [1 : K]

λk Intensity of the PPP Φmmw,k

Pk Available power at each base station that belongs to tier k ∈ [1 : K]

v Points on 2D plane representing location of base stations

‖v‖ Distance from point v to the typical user located at the origin

α Pathloss exponent assumed equal for all tiers

Θk = {
‖v‖α
Pk
, v ∈ Φmmw,k} Normalized pathloss between each base station in Φmmw,k and the typical user

λk(v) Intensity of Θk
Θ = ∪Kk=1Θk Process representing the union of non-homogenous PPP, elements are indexed in increasing order WLOG

λ(v) =
∑K
k=1 λk(v) Intensity of Θ

γ ′i =
‖vi‖α
Pk

Normalized pathloss

γ ′ = {γ ′1, · · · , γ ′n} Set of normalized pathloss of the cooperating base stations

fΓ ′(γ
′) Joint distribution of γ ′
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TABLE III. GENERAL CHANNEL MODEL VARIABLES
Notation Description

Nt, Nr Number of antennas at each base station and at the receiver

Hv MIMO channel from base station at location v to typical user

hv Small scale fading

Lv Number of channel clusters

φtv Path angle at the transmitter

φrv Path angle at the receiver

f(v) Function that returns the index to which a base station at v belongs to

γv =
Pf(v)
‖v‖α Pathloss

at(r)(.) Uniform linear array vector representation at the transmitter (receiver)

∆t(r) Normalized transmit (receive) antenna separation

Lt Normalized length of the transmit antenna array

n Noise vector of i.i.d CN (0, σ2n)

TABLE IV. CHANNEL VARIABLES FROM COOPERATING BASE STATIONS
Notation Description

T Set of cooperating base stations with cardinality |T | = n
vi, i ∈ [1 : |T |] Points on the 2D plane corresponding to cooperating base stations location (sometimes indexed by j instead of i)

Hvi MIMO channel from the cooperating base stations

hvi , φ
t
vi
, φrvi , γvi Channel parameters of the interfering links as defined in Table III

Ωφrvi
Directional cosine given by cos(φrvi)

Xvi Transmit signal from cooperating base stations

4.1 Coverage Probability with no Blockage

4.1.1 Network Model

Consider a K tier heterogenous network where each tier is an independent two-dimensional

homogenous Poisson point process (PPP). We denote the base station location process of tier

k ∈ [1 : K] by Φmmw,k with density λk. The mmWave base stations that belong to the same

tier k transmit with the same power Pk for k ∈ [1 : K]. We consider performance metrics as
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TABLE V. CHANNEL VARIABLES FROM INTERFERING BASE STATIONS
Notation Description

li, i ∈ [1 : |T c|] Points on the 2D plane corresponding to interfering base stations locations

Hli MIMO channel from the interfering base stations

hli , φ
t
li
, φrli , γli Channel parameters of the interfering links as defined in Table III

Ωφrli
Directional cosine given by cos(φrli)

θtli Angle used by interfering base station at position li to beamsteer to a user other than typical user

Ωθtli
Directional cosine given by cos(θtli)

Xli Transmit signal from interfering base stations

experiences by the typical user located at the origin, and denote the set of cooperating base

stations, which jointly transmit to the typical user, by T ∈ ∪Kk=1Φmmw,k. We assume that

|T | = n, and that these n base-stations correspond to those with the strongest received power

at the typical user receiver. In the rest of the section, we first describe the channel model and

then derive the output signal at the typical user receiver.

4.1.2 Simplified Clustered Channel Model

A clustered channel model, [53], [57], is used to model the wireless channel between the base

stations and the typical user. We assume all base stations have the same number of transmit

antennas Nt, while the receiver has Nr receive antennas. The Nr × Nt channel matrix Hv,

between a base station located at v ∈ R2 and the typical user is the sum of Lv clusters and is

expressed as

Hv =

√
NtNr

Lv

Lv∑
l=1

√
γv,lhv,lar(φ

r
v,l) at(φ

t
v,l)
∗, (4.1)

where
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• γv,l =
Pf(v)
‖v‖α is the pathloss,

• f(v) is a function that returns the index k of the tier to which the base station at location

v belongs to,

• α is the pathloss exponent,

• ‖v‖ is the distance from the base station at location v to the user at the origin,

• hv,l is the complex fading channel gain.

• The vectors at(r)(φ
t(r)
v ) are the normalized uniform linear array (ULA) transmit and re-

ceive array response and are given by [58, Eq. (7.21), Eq. (7.25)]

at(r)(φ
t(r)
v ) =

1√
Nt(r)

[1, e−jA, e−j2A, · · · , e−j(Nt(r)−1)A]T (4.2)

where A = 2π∆t(r) cos(φ
t(r)
v ) and ∆t(r) is the normalized transmit (receive) antenna sepa-

ration (normalized to the unit of the carrier wavelength), at a path angle φ
t(r)
v of departure

(arrival) from the base station v.

In the following, for simplicity, we shall consider the case Lv = 1.

4.1.3 Received Signal at the Typical User

In this section we will further divide the points v ∈ R2 into a set of points vi and li to

differentiate between the location of the cooperating and interfering base stations respectively.

The Nr×Nt desired channel matrices are denoted by Hvi for i ∈ [1 : |T | = n], where n is a non-

negative constant, while the interfering channel matrices are denoted by Hli for i ∈ [1 : |T c|].
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Figure 11. A typical user is served by two cooperating base stations at locations v1 and v2,
while being interfered by base station at location l1.
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Figure 11 shows an example of a network model, where two base stations at locations

v1 and v2, jointly transmit to the typical receiver located at the origin (indicated as Rx0) in

the presence of a single interfering base station at location l1. The MIMO channel matrices

between the cooperating base stations and the typical user are given by Hv1 and Hv2 . The

channel matrix between the interfering base station and the typical user is denoted by Hl1 .

The angles, φtvi and φrvi , are the cluster’s angle of departure and arrival respectively from the

base station vi, i ∈ [1 : 2], to the typical receiver. The angle φtl1 is the angle of departure of

the cluster from the interfering base station. The base station at l1 uses a beamsteering angle

θl1 to transmit data to some other user (not the typical user) indicated as Rx1. The received

signal at the typical user can be expressed as

y =

|T |=n∑
i=1

HviXvi +

|T c|∑
i=1

HliXli + n

=

|T |=n∑
i=1

√
NtNr

√
γvihvi ar(φ

r
vi
) at(φ

t
vi
)∗Xvi +

|T c|∑
i=1

√
NtNr

√
γlihli ar(φ

r
li
) at(φ

t
li
)∗Xli + n

(4.3)

where the first sum in (Equation 4.3) is the desired signal from the mmWave cooperating base

stations, while the second sum contains the signals from the interfering base stations.

The user associates with a set of cooperating base stations T , that provide the strongest

average received power as in [23]. Specifically,

T = arg max
{v1···vn}⊂∪Kk=1Φmmw,k

n∑
i=1

Pf(vi)

‖vi‖α
(4.4)
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and T c := ∪Kk=1 Φ mmw,k\ T .

The path angles, φtvi , i ∈ [1 : |T |], and φtli , i ∈ [1 : |T c|], represent the angle of departure

of the desired and interfering paths respectively, while φrvi , i ∈ [1 : |T |], and φrli , i ∈ [1 : |T c|],

represent the angle of arrival of the received path from the cooperating and interfering base

stations respectively. The transmit signals, Xvi , i ∈ [1 : |T |] and Xli , i ∈ [1 : |T c|], represent

the signal from the cooperating and interfering base stations within T and T c respectively. n

is the noise vector of i.i.d CN (0, σ2) components.

4.1.4 Beamsteering

The base stations in T jointly send the same data to the receiver. Each base station

beamsteers to the typical user, therefore the transmitted signal is

Xvi = at(φ
t
vi
)s (4.5)

for i ∈ [1 : |T | = n], where s is channel input symbol transmitted by the cooperating base

stations to the typical receiver. The signals transmitted by the interfering base stations are

Xli = at(θ
t
li
)sli (4.6)

for i ∈ [1 : |T c|], where sli is the channel input symbol transmitted by the interfering base

stations, while the angle θtli is the angle used by base station li to beamsteer to a user other

than the typical user, and is different from φtli . We assume that s and sli are independent zero

mean and unit variance random variables.
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Assumption 1: We assume that the cooperating base stations have perfectly beamsteered

to the typical receiver: notice that the angles in (Equation 4.5), used by the base station to

beamsteer, are equal to the clusters’ angles of departure in the desired channel in (Equation 4.3).

Remark 1: The beamsteering used is compliant with analog beam forming and requires

no digital base band processing [53].

4.1.5 Decoding

The receiver uses a single vector w ∈ CNr×1 to detect the scalar transmit symbol, that is,

the processed received signal is given by

ŷ = w∗y (4.7)

w =

n∑
j=1

ar(φ
r
vj
) (4.8)

Remark 2: The choice of w in (Equation 4.8) is one choice of a decoder that can be

implemented readily using phase shifters in the RF domain (analog processing), in fact if one

wants to consider a near optimal performance, then the work in [53], which finds a hybrid MIMO

receiver combining algorithm and minimizes the mean-square-error between the transmitted and

received signals under a set of RF hardware constraints for the resulting point-to-point channel

should be generalized to finding a suitable algorithm for the downlink cooperative channel.

Assumption 2: We assume perfect CSI of the path angles at the decoders since these angles

vary slowly. However, we assume that the phases of the complex channel gains, hvi , i ∈ [1 : |T |],

are not available at the terminals as they change very quickly on the order of a wavelength and
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thus cannot be tracked. Because of the perfect CSI assumption, the performance here should

be considered as an upper bound on the performance of the more realistic case with imperfect

CSI.

4.1.6 Output Signal

The output signal at the typical user under the previously stated assumptions is given by

ŷ = w∗y = w ∗ n+

 n∑
j=1

ar(φ
r
vj
)∗

×
(√

NtNr

n∑
i=1

√
γvihviar(φ

r
vi
)at(φ

t
vi
)∗at(φ

t
vi
)s+

√
NtNr

|T c|∑
i=1

√
γlihliar(φ

r
li
)at(φ

t
li
)∗at(θ

t
li
)sli

)
(4.9a)

=
√
NtNr

n∑
j=1

n∑
i=1

√
γvihviGr(Ωφrvj

−Ωφrvi
)Gt(Ωφtvi

−Ωφtvi
)s (4.9b)

+
√
NtNr

n∑
j=1

|T c|∑
i=1

√
γlihliGr(Ωφrvj

−Ωφrli
)Gt(Ωφtli

−Ωθtli
)sli + z (4.9c)

where z := w∗n ∼ CN(0, σ2n), and where we introduced the antenna-array-gain functions

Gx(y) := ejπ∆x(Nx−1)y
sin(π∆xNxy)

Nx sin(π∆xy)
: |Gx(y)| ≤ 1, x ∈ {t, r}, (4.10)

ax(φ1)
∗ax(φ2) = Gx(Ωφ1 −Ωφ2), x ∈ {t, r}, (4.11)

with Ωφ := cos(φ) and ∆x being the antenna separation.
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4.1.7 SINR Expression

Based on (Equation 4.9c), the instantaneous SINR is then given by

SINR =

∣∣ n∑
i=1

√
γvihviCvi |

2

σ2n
NtNr

+
|T c|∑
i=1

γli |hli |
2|Dli |

2
∣∣Gt(Ωφtli −Ωθtli )|2

, (4.12a)

Cvi : =

n∑
j=1

Gr(Ωφrvj
−Ωφrvi

), (4.12b)

Dli : =

n∑
j=1

Gr(Ωφrvj
−Ωφrli

). (4.12c)

Assuming a single antenna receiver with Nr = 1 (Cvi = Dli = n and σ2n = n2σ2), the SINR

in (Equation 4.12a) simplifies to

SINR =

∣∣ n∑
i=1

√
γvihvi |

2

σ2

Nt
+

|T c|∑
i=1

γli |hli |
2
∣∣Gt(Ωφtli −Ωθtli )|2

, (4.13)

In the following section, we will derive the coverage probability for the typical user with

SINR as in (Equation 4.13) under the assumption that all angles are independent and uniformly

distributed between [−π,+π]. We will first assume that the receiver is present in a rich scat-

tering environment (Rayleigh fading assumption), coverage probability is given in Th. 4.1.1.

The case where each tier experiences blockage is then considered and the coverage probability

is derived accordingly and is given in Th. 4.2.1. Keeping the assumption of blockage, the Nak-

agami fading distribution is then used to model the improved fading distribution on the direct

cooperating links due to beamsteering and two upper bounds on the coverage probability are
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then derived and are given in Th. 4.3.1 and Th. 4.3.2, and shown to be numerically tight when

the network experiences high blockage. Future work includes deriving the coverage probability

for all the different cases described above using (Equation 4.12a), i.e, multiple antennas at the

receivers.

4.1.8 Performance Analysis

Theorem 4.1.1. sec:performance analysis no blockage ULA analysis The coverage probability

for the typical user, with a single antenna, in a downlink mmWave heterogenous network with

K tiers, with base stations having ULA with Nt antennas, of which n jointly transmit to it is,

given by

P(SINR > T) =

∫
0<γ ′1<···<γ ′n<+∞

LI
(

T∑
i≤n γ

′−1
i

)
LN
(

T∑
i≤n γ

′−1
i

)
fΓ ′(γ

′)dγ ′ (4.14)

where γ ′i =
‖vi‖α
Pf(vi)

for i ∈ [1 : n], and the Laplace transform of the interference and the noise are

given by

LI(s) = exp

(
−

∫∞
γ ′n

[
1−

∫+2
−2

(
1

1+ s|Gt(ε)|2v−1

)
fΥ(ε) dε

]
λ(v)dv

)
, (4.15)

LN(s) = e−sσ
2/Nt , (4.16)
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where the antenna array gain Gt(ε) is given by (Equation 4.10) and the probability density

function of Υi = Ωφtli
−Ωθtli

is

fΥ(ε) =

∫min{1,1−ε}

max{−1,−1−ε}

(
1

π2
√
1− (ε+ y)2

1√
1− y2

)
dy, (4.17)

and fΓ ′(γ
′) is the joint distribution of γ ′ = [γ ′1, · · · , γ ′n] and is given by

fΓ ′(γ
′) =

n∏
i=1

λ(γ ′i)e
−Λ(γ ′n) (4.18)

while the intensity and intensity measure are given by

λ(v) =

K∑
k=1

λk
2π

α
P
2
α

k v
2
α
−1, (4.19)

Λ(γ ′n) =

K∑
k=1

πλkPkγ
′ 2
α
n (4.20)

Proof. Please refer to Appendix G for the proof.

4.1.9 Numerical Results

In this section we numerically evaluate Th. 4.1.1. We compute the coverage probability for

the typical user in a mmWave CoMP heterogenous network and compare it to the case with

no base station cooperation. We consider a two tier network, K = 2 with parameters given

in Table VI. The noise is given by σ2(dBm) = −174 + 10 log10(BW) + NF (dB). In Figure 12

the coverage probability in (Equation 4.14) for n = 2 and n = 1 is plotted. In the absence of
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blockage, the numerical results show that the coverage probability with cooperation for the case

of Nt = 16 antennas exceeds that for the case with no cooperation by almost 11 percent. A

smaller increase is recognized for the case when Nt = 64 antennas and for the same threshold.

As expected an increase in the number of antennas at the base stations increases the coverage

probability. For example, for the same threshold T = 0 dB, the coverage probability with

cooperation and with Nt = 32 is approximately 0.92 while that for Nt = 16 is 0.8. Thus

numerical results suggest when mmWave networks do not experience blockage, a substantial

increase in coverage probability is still attained with cooperation.

TABLE VI. TIER 1 and TIER 2 PARAMETERS
Parameter Value

Intensity λ1 = (1502π)−1, λ2 = (502π)−1

Power P1 = 1 W (30 dBm) and P2 = 0.25 W

Path Loss α = 3

Antennas Nt = 8, 16, 32, 64

Noise Figure (NF) 10 dB

Bandwidth (BW) 1 GHz

4.2 Coverage probability with Blockage

4.2.1 Network model

In this section we again consider a K-tier heterogenous network where each tier is an inde-

pendent two-dimensional homogenous Poisson point process (PPP). The base station location

process of each tier is denoted by Φmmw,k with density λk for k ∈ [1 : K]. Each tier is charac-
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Figure 12. Coverage probability in (Equation 4.14) for a two-tier network with parameters
in Table VI with two cooperating base stations (n = 2) and without base station cooperation

(n = 1) and for different number of antennas.

terized by a non-negative blockage constant βk for k ∈ [1 : K] (determined by the density and

average size of objects within the tier) as used in [20], [21]. Consequently, after defining the pa-

rameter βk for k ∈ [1 : K], we have that the probability of the communication link being a LOS

link (no blockage on the link) within tier k is P(LOSk) = e
−βkr, where r represents the length of

the communication link, while the probability of a link being NLOS is P(NLOSk) = 1−P(LOSk).

The LOS and NLOS links will have different pathloss exponents, α1 and α2, respectively and

same for all k ∈ [1 : K]. The mmWave base stations that belong to the same tier k transmit
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with the same power Pk for k ∈ [1 : K]. With the assumption of blockage the following have to

be re-derived (when compared to those in Th. 4.1.1).

• The Laplace transform of the interference has to be re-derived given the fact that the

density of each tier is a function of two pathloss exponents and of the blockage parameter.

• The joint distribution of the base stations with the strongest received power at the typical

user has to be re-derived for the same reason mentioned above.

In the following section we give the coverage probability for a multi-tier mmWave network

with blockage when base stations cooperate in sending the same message to the typical receiver.

The numerical results suggest that joint transmission increases the probability of coverage due

to the increase in the number of signal path a receiver experiences.

4.2.2 Performance Analysis

Theorem 4.2.1. The coverage probability for the typical user, with a single antenna, in a

downlink mmWave heterogenous network with K tiers, and where each tier has a blockage pa-

rameter βk, with n base stations having ULA with Nt antennas, jointly transmitting to it is

given by (Equation 4.14), (Equation 4.15), (Equation 4.16) but where now the intensity λ(v)

in (Equation 4.15) is given by

λ(v) =

K∑
k=1

Akv
δ1−1e−akv

δ1
2 + Bkv

δ2−1(1− e−bkv
δ2
2 ) (4.21)
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where Ak = πλkδ1P
δ1
k , ak = βkP

δ1
2

k , bk = βkP
δ2
2

k , Bk = πλkδ2P
δ2
k , δ1 = 2/α1, δ2 = 2/α2 and the

distribution of the distance of n closest base stations is given by (Equation 4.18) but where

Λ(γ ′n) =

K∑
k=1

2πλk

β2k

(
1− e−βk(γ

′
nPk)

δ1/2(1+ βk(γ
′
nPk)

δ1
2 )
)

+ πλk(γ
′
nPk)

δ2 −
2πλk

β2k

(
1− e−βk(γ

′
nPk)

δ2
2 (1+ βk(γ

′
nPk)

δ2
2 )

)
(4.22)

Proof. Please refer to Appendix H for detailed proof.

4.2.3 Numerical Results

In this section we numerically evaluate Th. 4.2.1. We compute the coverage probability

for the typical user in a mmWave CoMP heterogenous network in the presence of blockage.

In this example, we compare the coverage probability in Th. 4.2.1 for a one tier mmWave

network with parameters given in Table VII with and without joint transmission. The examples

provided illustrate scenarios when cooperation is beneficial (in terms of increasing the coverage

probability) and examples when the increase is not substantial. Numerical results suggest that

the former is in fact the case when the mmWave network is dense (captured by the tier radius

and consequently its intensity) - a feature expected in millimeter wave networks [51], [20]. This

can be interpreted as follows, with extreme densification, the number of LOS interfering base

stations increases and thus interference increases, a remark also noted in [20]. Therefore, the

increase in coverage with base station cooperation is substantial. In Figure 13 we consider the

example with parameters given in Table VII. A tier of radius 80 meters is considered with
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blockage parameters β = 0.003, 0.006. The increase in coverage probability for both cases is

approximately an increase of 0.11 in probability for a threshold T = 5, 10, 15, 20 dB. Moreover, it

is interesting to note that a tier blockage parameter β = 0.006 would result in higher coverage

probability than that of β = 0.003. This can be interpreted as follows: an increase in the

blockage parameter increases the probability of blockage of the interfering LOS base stations,

resulting in higher coverage probabilities.
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Figure 13. Coverage probability in Th. 4.2.1 for a one-tier network with parameters
in Table VII with two cooperating base stations (n = 2) and without base station cooperation

(n = 1) and for different blockage parameters.
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A tier with a larger radius of 250 meters and with tier parameters given in Table VIII and

with a blockage parameter β = 0.025 (high probability of blockage) is plotted in Figure 14.

The coverage probability for this one tier CoMP mmWave network with n = 2 and with

base station power available P = 1W is compared with the following cases, Case 1) a one tier

mmWave network with no base station cooperation (n = 1), with a base station transmit power

P = 1 W, Case 2) a one tier mmWave network with no base station cooperation n = 1, but

with base station transmit power equal to the sum of transmit power if two base stations were

to cooperate P = 2 W. The increase in coverage probability due to cooperation in this case is

minimal and is approximately 0.05 for threshold T = −10,−5 dB. This can be interpreted as

follows: 1) a tier with dense blockages will also block interfering signals and 2) when the density

of base stations is not too dense, the n strongest base stations are not too strong to cause a

substantial increase due to the fact that distance at which these cooperating base stations are

located increases too (thus received power decreases). As seen in Figure 14, increasing the

power at the base station (but with no cooperation) provides higher coverage probability than

the case with base station cooperation.

4.3 Coverage Probability with Nakagami fading and blockage

4.3.1 Network Model

In this section we consider the same network model as in Section 4.2.1 but choose a different

fading distribution on the channel gains from the strongest cooperating base stations, similar

to [19]. In particular we consider Nakagami fading with parameter m, while keeping the same

assumption of Rayleigh fading for the interfering channel gains.
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Figure 14. Coverage probability in Th. 4.2.1 for a one-tier network with parameters
in Table VIII with two cooperating base stations (n = 2) and without base station

cooperation (n = 1).

Using the coverage probability expression for a general fading distribution [59, Eq. 2.11],

we are then able to derive an upper bound on the coverage probability for this network. We

then consider another upper bound by evaluating the network in the absence of interference.

The coverage probability is then defined as the probability that the signal-to-noise-ratio (SNR)

is greater than a certain threshold. Using complex analysis methods of integration we give a

closed form expression of the integral which reduces the time for numerical execution.
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TABLE VII. TIER PARAMETERS WITH BLOCKAGE FOR NUMERICAL EXAMPLE 1
Parameter Value

Intensity λ = (802π)−1

Power P1 = 1 W

Path Loss α1 = 2, α2 = 4

Antennas Nt = 16

Noise Figure 5 dB

Blockage β = 0.006, 0.003

Bandwidth 1 GHz

TABLE VIII. TIER PARAMETERS WITH BLOCKAGE FOR NUMERICAL EXAMPLE 2
Parameter Value

Intensity λ = (2502π)−1

Power P1 = 1 W

Path Loss α1 = 2, α2 = 4

Antennas Nt = 16

Noise Figure 5 dB

Blockage β = 0.025

Bandwidth 1 GHz

4.3.2 Performance Analysis

Theorem 4.3.1. An upper bound on the coverage probability for the typical user, in a down-

link mmWave heterogenous network with blockage with K tiers, where each tier has a blockage
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parameter βk, and with n base stations having ULA with Nt antennas jointly transmitting to

it, with the assumption of Nakagami fading on the cooperating channel gains is given by

P(SINR > T) =

∫
0<γ ′1<···<γ ′n<+∞

fΓ ′(γ
′)

∫∞
−∞ LI(2jπT ′s)LN(2jπT ′s)

LUP
S (−2jπs) − 1

2jπs
ds dγ ′

(4.23)

where γ ′i = ‖vi‖α
Pf(vi)

for i ∈ [1 : n] and T ′ = T∑
i≤n γ

′−1
i

while the joint distribution of γ ′ =

[γ ′1, · · · , γ ′n] is given by (Equation 4.18) and where

λ(γ ′i) =

K∑
k=1

Akγ
′δ1−1
i e−akγ

′ δ1
2

i + Bkγ
′δ2−1
i (1− e−bkγ

′ δ2
2

i ) (4.24)

and

Λ(γ ′n) =

K∑
k=1

2πλk

β2k

(
1− e−βk(γ

′
nPk)

δ1/2(1+ βk(γ
′
nPk)

δ1
2 )
)

+ πλk(γ
′
nPk)

δ2 −
2πλk

β2k

(
1− e−βk(γ

′
nPk)

δ2
2 (1+ βk(γ

′
nPk)

δ2
2 )

)
(4.25)

where Ak = πλkδ1P
δ1
k , ak = βkP

δ1
2

k , bk = βkP
δ2
2

k , Bk = πλkδ2P
δ2
k , δ1 = 2/α1, and δ2 = 2/α2, and

where the Laplace transform of I (assuming Rayleigh fading on the interfering links) is given by

LI(s) = exp

(
−

∫∞
γ ′n

[
1−

∫+2
−2

(
1

1+ s|Gt(ε)|2v−1

)
fΥ(ε) dε

]
λ(v) dv

)
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where

λ(v) =

K∑
k=1

Akv
δ1−1e−akv

δ1
2 + Bkv

δ2−1(1− e−bkv
δ2
2 ) (4.26)

and where

LUP
S (s) =

1

(1+ s/m)nm
(4.27)

LN(s) = e−sσ
2/Nt . (4.28)

Proof. Please refer to Appendix I for detailed proof.

Remark 3: A lower bound on the coverage probability would be given by that in Th. 4.2.1

with the Rayleigh fading assumption on the direct links.

Remark 4: For the case of no base station cooperation n = 1, the coverage probability

in (Equation 4.23) above is exact and is not an upper bound.

4.3.3 Performance Analysis in the Absence of Interference

Theorem 4.3.2. An upper bound on the coverage probability in the absence of interference for

the typical user, in a downlink mmWave heterogenous network with blockage with K tiers, where

each tier has a blockage parameter βk, and with n base stations having ULA with Nt antennas
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jointly transmitting to it, with the assumption of Nakagami fading on the cooperating channel

gains is given by

P(SNR > T) =

∫
0<γ ′1<···<γ ′n<+∞

fΓ ′(γ
′)

(
g(nm−1)(z∗)

(nm− 1)!

)
dγ ′. (4.29)

where z∗ = m
2πj , γ

′
i =

‖vi‖α
Pf(vi)

for i ∈ [1 : n] and T ′ = T∑
i≤n γ

′−1
i

while the joint distribution of

γ ′ = [γ ′1, · · · , γ ′n] is given by (Equation 4.18) and where

g(z) = (−1)nm
1− (1− 2πjz

m )nm

( 2πjm )nm(2πjz)
e
−2πjz T

′σ2
Nt (4.30)

and where gnm−1(z) is the (nm− 1) derivative of the function g(z).

Proof. Please refer to Appendix I for the proof.

A similar remark to that made in Remark 4 can be made for the coverage probability (in

absence of interference) in (Equation 4.29), i.e., the probability of the SNR being greater than

a certain threshold is exact for the case of no base station cooperation.

4.3.4 Numerical Results

We consider a one tier network, K = 1, with two cooperating base stations n = 2 and with

tier parameters given in Table IX. The coverage probability in (Equation 4.23) for the case of

m = 1, 3 (corresponding to Rayleigh, Nakagami) with and without base station cooperation are

plotted. The purpose of this numerical example is to show that for tiers with high probability of

blockage, in this case taken to be β = 0.025, evaluation of the coverage probability of the network
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TABLE IX. TIER PARAMETERS WITH NAKAGAMI FADING
Parameter Value

Intensity λ1 = (2002π)−1

Power P1 = 1 W (30 dBm)

Path Loss α1 = 2 and α2 = 4

Antennas Nt = 16

Noise Figure 5 dB

Bandwidth 1 GHz

Blockage 0.025

with and with the absence of interference yields almost exact numerical results. Therefore, we

fix n = 2 and we plot the coverage probability in (Equation 4.23) and (Equation 4.29) for Case

1) m = 3 and n = 2. While we use Th. 4.2.1 to plot the coverage probability for the Rayleigh

fading Case 2) m = 1 and n = 2 (exact lower bound). The two curves shown in Figure 15 for

each of the cases corresponding to the Rayleigh and Nakagami fading almost exactly overlap.
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Figure 15. Upperbounds on coverage probability in Th. 4.3.1 and Th. 4.3.2 for a one tier
network with parameters in Table IX and for n = 2. The lower bounds are plotted using from

Th. 4.2.1
.



CHAPTER 5

CONCLUSIONS

We have studied the EGCIFC and developed the sum-capacity of a fading cognitive inter-

ference channel. A separable scheme (i.e. power allocation depends only on the current fading

state and must not be done across states) was shown to be optimal. This is in contrast to

the classical interference where considering a separable scheme is proved to be sub-optimal.

It is known that encoding separately is optimal for a one-sided fading Gaussian interference

channel (Z-IC) in which one of the receivers experiences no interference. One can think of

the EGCIFC as a (Z-IC) since the cognitive transmitter is capable of precoding against the

interference caused by the primary transmitter given that it has non-causal knowledge of its

message. In developing the ergodic sum-capacity we have derived a new outer bound, provided

the optimal separable achievability scheme along with the optimal power allocation policy, and

developed a result of independent interest: the ergodic capacity of the MISO channel with per

antenna power constraints.

As for the K-user cognitive interference channel with cumulative message sharing; a com-

putable, general outer bound valid for any number of users and any memoryless channel is

obtained. For the linear deterministic approximation of the Gaussian channel at high SNR we

obtained the sum-capacity for all channel gains in the case of three users, and the symmetric

sum-capacity for any K. For the Gaussian channel, we provided a unified achievability scheme

which achieves the sum-capacity to within a constant additive and multiplicative gap. In the

122
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linear deterministic channel, the sum-capacity was achieved by a scheme which only required

cognition at one single user.

We have also considered the problem of base station cooperation in mmWave heterogenous

networks. Using stochastic geometry, coverage probabilities were derived at the typical user,

accounting for directionality at the base stations, blockage, interference and different fading dis-

tributions (Rayleigh and Nakagami). Numerical results suggest that coverage with cooperation

rival that with no cooperation especially in dense mmWave networks. Future work includes

deriving the coverage probability at a multi-antenna typical receiver, accounting for possible

errors due to beam steering at the base stations and providing a comparison between achievable

rates with and without cooperation.



APPENDICES

124



125

Appendix A

COPYRIGHT PERMISSION
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Appendix B

PROOF OF THEOREM 2.3.2

The MISO capacity with PerPC and arbitrary number of transmit antennas i ∈ [1 : n] is

the solution of the following optimization problem:

max
Pi(h)≥0:E[Pi(h)]≤P̄i,i∈[1:n]

E

[
log

(
1+

(∑
i

|hi|
√
Pi(h)

)2)]
. (B.1)

By Lagrange duality for λi ≥ 0,

L = log

(
1+

(∑
i

|hi|
√
Pi(h)

)2)
−

(∑
i

λiPi(h)

)
(B.2)

∂L
∂Pi(h)

=
θ

1+ θ2
|hi|√
Pi

− λi = 0, θ :=
∑
i

|hi|
√
Pi(h), ∀i (B.3)

⇐⇒√
Pi(h) =

θ

1+ θ2
|hi|

λi
, ∀i (B.4)

θ =
∑
i

|hi|
√
Pi(h) =

θ

1+ θ2

∑
i

|hi|
2

λi
(B.5)

⇐⇒ 1+ θ2 =
∑
i

|hi|
2

λi
≥ 1 (B.6)

⇐⇒√
Pj(h) =

√(∑
i
|hi|2

λi
− 1
)+

∑
i
|hi|2

λi

|hj|

λj
(B.7)

⇐⇒ λjPj(h) =

1− 1∑
i
|hi|2

λi

+ |hj|
2

λj∑
i
|hi|2

λi

. (B.8)



128

Appendix B (Continued)

The rate becomes

E

[
log

(
1+

[∑
i

|hi|
2

λi
− 1

]+)]
= E

[
log+

(∑
i

|hi|
2

λi

)]
(B.9)

and the Lagrange multipliers solve the non-linear system of equations

λjPj = E

1− 1∑
i
|hi|2

λi

+

1∑
i
|hi|2

λi

|hj|
2

λj

 . (B.10)
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Appendix C

PROOF OF THEOREM 2.3.4

The sum-capacity of the EGCIFC in (Equation 2.4) can be re-written as the following

optimization problem:

max
Pi(h)≥0:E[Pi(h)]≤Pi,|ρ(h)|≤1,i∈[1:2]

{ E
[
log

(
1+ |h21|

2P1(h) + |h22|
2P2(h) + 2|ρ(h)|

√
|h21|2P1(h) |h22|2P2(h)

)
+ log+

(
1+ (1− |ρ(h)|2)max{|h11|

2, |h21|
2}P1(h)

1+ (1− |ρ(h)|2)|h21|2P1(h)

)
}

]
(C.1)

When the EGCIFC is in strong interference (|h21|
2 ≥ |h11|

2), then the sum-capacity in (Equation C.1)

is maximized by |ρ?(h)| = 1. In this case the sum-capacity becomes the solution of the following

optimization problem:

max
Pi≥0:E[Pi(h)]≤P̄i

E

[
log

(
1+

(∑
i

|hi|
√
Pi(h)

)2)]
. (C.2)

This is the same problem as that of finding the optimal power allocation for a point to point

MISO with PerPC and the solution presented in Appendix B.

When the EGCIFC satisfies

|h11|
2 > |h21|

2, (C.3)
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then the sum-capacity (Equation C.1) reduces to the following optimization problem:

max
Pi(h)≥0:E[Pi(h)]≤P̄i,|ρ(h)|≤1

E
[
log

(
1+ |h21|

2P1(h) + |h22|
2P2(h) + 2|ρ(h)|

√
|h21|2P1(h) |h22|2P2(h)

)
+ log

(
1+ (1− |ρ(h)|2)|h11|

2P1(h)

1+ (1− |ρ(h)|2)|h21|2P1(h)

)]
. (C.4)

When (Equation C.3) holds, we will determine when the following P1(h), P2(h), |ρ(h)| assign-

ments are optimal by substituting them back into the KKT conditions for the following La-

grangian problem:

max
Pi(h)≥0,|ρ(h)|≤1,i∈[1:2]

L = E
[
log

(
1+ |h21|

2P1(h) + |h22|
2P2(h) + 2|ρ(h)|

√
|h21|2P1(h) |h22|2P2(h)

)
+ log

(
1+ (1− |ρ(h)|2)|h11|

2P1(h)

1+ (1− |ρ(h)|2)|h21|2P1(h)

)]
−λ1

(
E [P1(h)] − P̄1

)
− λ2

(
E [P2(h)] − P̄2

)
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The KKT conditions for i ∈ {1, 2} are then

µi(h)Pi(h) = 0 (C.5a)

γ1(h)|ρ(h)| = 0 (C.5b)

γ2(h)(1− |ρ(h)|) = 0 (C.5c)

Pi(h) ≥ 0 (C.5d)

|ρ(h)| ≤ 1 (C.5e)

|ρ(h)| ≥ 0 (C.5f)

γi, µi, λi ≥ 0 (C.5g)

∂L
∂P1(h)

=
|h21|

2 + |ρ(h)|
√
|h21|2|h22|2

√
P2(h)
P1(h)

1+ |h21|2P1(h) + |h22|2P2(h) + 2|ρ(h)|
√
|h21|2P1(h)‖h22|2P2(h)

+

(
|h11|

2 − |h21|
2
) (

1− |ρ(h)|2
)

(1+ (1− |ρ(h)|2)|h21|2P1(h)) (1+ (1− |ρ(h)|2)|h11|2P1(h))
− (λ1 − µ1(h)) = 0 (C.5h)

∂L
∂P2(h)

=
|h22|

2 + |ρ(h)|
√

|h21|2|h22|2
√

P1(h)
P2(h)

1+ |h21|2P1(h) + |h22|2P2(h) + 2|ρ(h)|
√
|h21|2P1(h)|h22|2P2(h)

− (λ2 − µ2(h)) = 0

(C.5i)

∂L
∂|ρ(h)|

=

√
|h21|2P1(h)|h22|2P2(h)

1+ |h21|2P1(h) + |h22|2P2(h) + 2|ρ(h)|
√

|h21|2P1(h)|h22|2P2(h)

−

(
|h11|

2 − |h21|
2
)
|ρ(h)|P1

(1+ (1− |ρ(h)|2)|h21|2P1(h)) (1+ (1− |ρ(h)|2)|h11|2P1(h))
+ (γ1(h) − γ2(h)) = 0

(C.5j)
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C.0.5 On the optimality of |ρ?(h)| = 0 (i.e., independent inputs):

|ρ?(h)| = 0 is an optimal solution if
(
with γ2(h) = 0 and γ1(h) ≥ 0 from (Equation C.5e)

and (Equation C.5f) the following KKT conditions (evaluated at |ρ?(h)| = 0) are satisfied:

From (Equation C.5h)
|h21|

2

1+ |h21|2P1(h) + |h22|2P2(h)
+

(
|h11|

2 − |h21|
2
)

(1+ |h21|2P1(h)) (1+ |h11|2P1(h))

= λ1 − µ1(h), (C.6a)

From (Equation C.5i)
|h22|

2

1+ |h21|2P1(h) + |h22|2P2(h)
= λ2 − µ2(h) (C.6b)

From (Equation C.5j)

√
|h21|2P1(h)|h22|2P2(h)

1+ |h21|2P1(h) + |h22|2P2(h)
= −γ1(h) ≤ 0 (C.6c)

Notice that from (Equation C.6c) we have that P1(h) ·P2(h) = 0, that is, the powers cannot be

simultaneously strictly positive. We now proceed by finding the optimal power allocation.

Subcase 1: P1(h) = 0 and P2(h) = 0

From (Equation C.5a) if P1(h) = 0→ µ1(h) ≥ 0 and P2(h) = 0→ µ2(h) ≥ 0 (C.7)

From (Equation C.6a)
∂L

∂P2(h)
= |h22|

2 − (λ2 − µ2(h)) = 0→ |h22|
2

λ2
≤ 1 (C.8)

From (Equation C.6b)
∂L

∂P1(h)
= |h11|

2 − (λ1 − µ1(h)) = 0→ |h11|
2

λ1
≤ 1 (C.9)

Conclusion 1: then P?1(h) = 0 and P?2(h) = 0 and |ρ?(h)| = 0 are optimal when:

R1 :=
{
|h11|

2

λ1
,
|h21|

2

λ1
,
|h22|

2

λ2
> 0 : eq. (Equation C.3) holds,

|h11|
2

λ1
≤ 1, |h22|

2

λ2
≤ 1
}
.
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This can be interpreted as follows: since both direct channel gains are weak, the optimal scheme

is to have the transmitters refrain from using any power and use power only when the channel

gains are stronger.

Subcase 2: P1(h) > 0 and P2(h) = 0

From (Equation C.5a) if P1(h) > 0→ µ1(h) = 0 and P2(h) > 0→ µ2(h) ≥ 0 (C.10)

From (Equation C.6a)
∂L

∂P1(h)
=

|h21|
2

1+ |h21|2P1(h)
+

|h11|
2 − |h21|

2

(1+ |h21|2P1(h))(1+ |h11|2P1(h))
− λ1 = 0

(C.11)

→ P1a(h) =
1

λ1
−

1

|h11|2

From (Equation C.6b)
∂L

∂P2(h)
=

|h22|
2

1+ |h21|2P1(h)
− (λ2 − µ2(h)) = 0

→ P1b(h) =
|h22|

2

(λ2 − µ2(h))|h21|2
−

1

|h21|2
(C.12)

Evaluating P1a(h) = P1b(h) then we obtain

|h22|
2

λ2

1+ |h21|2

λ1
− |h21|2

|h11|2

≤ 1

Conclusion 2: then P?1(h) = P1WF(h11) = [ 1λ1 − 1
|h11|2

]+ and P?2(h) = 0 and |ρ?(h)| = 0 are

optimal when

R2 :=

 |h11|
2

λ1
,
|h21|

2

λ1
,
|h22|

2

λ2
> 0 : eq. (Equation C.3) holds,

|h11|
2

λ1
> 1,

|h22|
2

λ2

1+ |h21|2

λ1
− |h21|2

|h11|2

≤ 1

 .
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One can interpret this region as follows: since |h11|
2 is strong enough the cognitive user water-

fills over its direct link, while the primary transmitter refrains until it sees better channel gain

conditions.

Subcase 3: P1(h) = 0 and P2(h) > 0

From (Equation C.5a) if P1(h) = 0→ µ1(h) ≥ 0 and P2(h) > 0→ µ2(h) = 0 (C.13)

From (Equation C.6a)
∂L

∂P1(h)
=

|h21|
2

1+ |h22|2P2(h)
+
(
|h11|

2 − |h21|
2
)
= (λ1 − µ1(h)) ≤ λ1

(C.14)

From (Equation C.6b)
∂L

∂P2(h)
=

|h22|
2

1+ |h22|2P2(h)
− λ2 = 0→ P?2(h) =

1

λ2
−

1

|h22|2
> 0

→ |h22|
2

λ2
> 1 (C.15)

Evaluating (Equation C.14) for P?2(h) gives

|h21|
2

λ1
|h22|2

λ2

+
|h11|

2

λ1
−

|h21|
2

λ1
≤ 1

Conclusion 3: then P?1(h) = 0 and P?2(h) = P2WF(h22) = [ 1λ2 − 1
|h22|2

]+ and |ρ?(h)| = 0 are

optimal when

R3 :=

 |h11|
2

λ1
,
|h21|

2

λ1
,
|h22|

2

λ2
> 0 : eq. (Equation C.3) holds,

|h22|
2

λ2
> 1,

|h21|
2

λ1
|h22|2

λ2

+
|h11|

2

λ1
−

|h21|
2

λ1
≤ 1}

 .
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One can interpret this region as follows: since |h22|
2 is strong enough the primary user water-fills

over its direct link, while the cognitive transmitter refrains until it sees better channel gains.

C.0.6 On the optimality of |ρ?(h)| = 1 (i.e., identical inputs up to affine transformation):

|ρ(h)| = 1 is an optimal solution if γ1(h) = 0 and γ2(h) ≥ 0.

From (Equation C.5h)
|h21|

2 +
√
|h21|2|h22|2

√
P2(h)
P1(h)

1+ |h21|2P1(h) + |h22|2P2(h) + 2
√
|h21|2P1(h)|h22|2P2(h)

= λ1 − µ1(h)

(C.16a)

From (Equation C.5i)
|h22|

2 +
√
|h21|2|h22|2

√
P1(h)
P2(h)

1+ |h21|2P1(h) + |h22|2P2(h) + 2
√
|h21|2P1(h)|h22|2P2(h)

= λ2 − µ2(h)

(C.16b)

From (Equation C.5j)

√
|h21|2P1(h)|h22|2P2(h)

1+ |h21|2P1 + |h22|2P2(h) + 2
√
|h21|2P1(h)|h22|2P2(h)

≥
(
|h11|

2 − |h21|
2
)
P1(h) (C.16c)

Subcase 4: P1(h) > 0, P2(h) > 0
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If both powers are strictly positive we further have that µ1(h) = µ2(h) = 0; this implies

that we need to solve

From (Equation C.16a)
√

|h21|2P1(h)

√
|h21|2P1(h) +

√
|h22|2P2(h)

1+ (
√
|h21|2P1(h) +

√
|h22|2P2(h))2

= λ1P1(h),

P1(h) > 0, (C.17a)

From (Equation C.16b)
√

|h22|2P2(h)

√
|h21|2P1(h) +

√
|h22|2P2(h)

1+ (
√
|h21|2P1(h) +

√
|h22|2P2(h))2

= λ2P2(h),

P2(h) > 0, (C.17b)

From (Equation C.16c)

√
|h21|2P1(h) |h22|2P2(h)

1+ (
√
|h21|2P1(h) +

√
|h22|2P2(h))2

≥
(
|h11|

2

λ1
−

|h21|
2

λ1

)
λ1P1(h).

(C.17c)

This is the same optimization problem as that in the MISO channel with PerPC. The optimal

powers in this case are given by:

P?1(h) =

 |h21|
2

λ1
+ |h22|

2

λ2
− 1(

|h21|2

λ1
+ |h22|2

λ2

)2
 |h21|

2

λ21
(C.18)

P?2(h) =

 |h21|
2

λ1
+ |h22|

2

λ2
− 1(

|h21|2

λ1
+ |h22|2

λ2

)2
 |h22|

2

λ21
(C.19)
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We next need to verify that, for these optimizing powers, we satisfy (Equation C.17c); by doing

so, we conclude that if

|h11|
2

λ1
≤ |h21|

2

λ1
+

|h22|
2

λ2
|h21|2

λ1
+ |h22|2

λ2

(C.20)

|h21|
2

λ1
+

|h22|
2

λ2
> 1, (C.21)

Conclusion 4: then P?1(h) = eq. (Equation C.18) and P?2(h) = eq. (Equation C.19) and |ρ?(h)| =

1 are optimal when

R4 :

 |h22|
2

λ1
,
|h21|

2

λ1
,
|h22|

2

λ2
> 0 : eq. (Equation C.3) holds,

|h11|
2

λ1
≤ |h21|

2

λ1
+

|h22|
2

λ2
|h21|2

λ1
+ |h22|2

λ2

 .

The channel gain condition inR4 implies that |h11|
2

λ1
≤ |h21|

2

λ1
+ |h22|

2

λ2
(given that |h21|

2

λ1
+ |h22|

2

λ2
> 1).

In this case the sum of the channel gains to the primary receiver is stronger than that of the

direct gain to the cognitive receiver and so one would suspect that performing a MISO type of

scheme is optimal which is in fact the case.

C.0.7 On the optimality 0 < |ρ(h)| < 1 with P1(h) > 0 and P2(h) > 0:

When 0 < |ρ(h)| < 1 is optimal (with γ1(h) = 0 and γ2(h) = 0 from (Equation C.5e)

and (Equation C.5f)
)
, we show that P?1(h) > 0 and P?2(h) > 0 are optimal by contradiction

(whose exact values are to be find numerically).
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Suppose that P1(h) = 0 and P2(h) = 0 is optimal when

R5 :
{
|h11|

2

λ1
,
|h21|

2

λ1
,
|h22|

2

λ2
> 0 : eq. (Equation C.3) holds,

(
R1 ∪R2 ∪R3 ∪R4 ∪R5

)c}
(C.22)

Substituting this assumption back in the KKT conditions, gives the region defined by R1 which

contradicts the presumption of the region.

Suppose that P1(h) > 0 and P2(h) = 0 is optimal when (Equation C.22). Substituting this

assumption back in the KKT conditions, gives the region defined by R2 which contradicts the

presumption of the region.

Suppose that P1(h) = 0 and P2(h) > 0 is optimal when (Equation C.22). Substituting this

assumption back in the KKT conditions, gives the region defined by R3 which contradicts the

presumption of the region.

Suppose that P1(h) > 0 and P2(h) > 0 and |ρ?(h)| = 1 is optimal when (Equation C.22).

Substituting this assumption back in the KKT conditions, gives the region defined by R4 which

contradicts the presumption of the region.

Conclusion 6: Thus, P?1(h) > 0 and P?2(h) > 0 and 0 < |ρ?(h)| < 1 whose values are to be

found numerically are optimal when

R5 :=
{
|h11|

2

λ1
,
|h21|

2

λ1
,
|h22|

2

λ2
> 0 : eq. (Equation C.3) holds,

(
R1,R2,R3,R4,R5

)c}
.
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PROOF OF THEOREM 3.3.1

By Fano’s inequality H(Wi|Y
N
i ) ≤ NεN with εN → 0 as N → ∞ for all i ∈ [1 : 3]. The

bounds in equation (Equation 3.6a) through (Equation 3.6c) are a simple application of the

cut-set bound. The bound in (Equation 3.6d) is obtained as follows:

N(R2 + R3 − 2εN)
(a)

≤ I(YN2 ;W2) + I(Y
N
3 ;W3)

(b)

≤ I(YN2 ,W1;W2) + I(Y
N
3 , Y

N
2 ,W1,W2;W3)

(c)
= I(YN2 ;W2|W1) + I(Y

N
3 , Y

N
2 ;W3|W1,W2)

(d)
= I(YN2 ;W2|W1) + I(Y

N
2 ;W3|W1,W2) + I(Y

N
3 ;W3|W1,W2, Y

N
2 )

(e)
= I(YN2 ;W2,W3|W1) + I(Y

N
3 ;W3|W1,W2, Y

N
2 )

(f)
= I(YN2 ;W2,W3|W1, X

N
1 ) + I(Y

N
3 ;W3|W1,W2, Y

N
2 , X

N
1 , X

N
2 )

(g)

≤
N∑
t=1

H(Y2,t|X1,t) −H(Y2,t|X1,t, X2,t, X3,t) +H(Y3,t|X1,t, X2,t) −H(Y3,t|X1,t, X2,t, X3,t)

(h)
=

N∑
t=1

I(Y2,t;X2,t, X3,t|X1,t) + I(Y3,t;X3,t|X1,t, X2,t),

where (a) follows from Fano’s inequality, (b) the non-negativity of mutual information, (c)

from the independence of the messages, (d) and (e) from the chain rule (note the side informa-

tion allows one to recombine different entropy terms), (f) because the inputs are deterministic

functions of the messages, (g) follows since conditioning reduces entropy, and (h) definition of

mutual information. Using similar steps (give enough messages to reconstruct the inputs, and
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give outputs to recombine terms by using the chain rule of mutual information) we obtain the

bound in (Equation 3.6e). The main steps are:

N(R1 + R2 + R3 − 3εN)

≤ I(YN1 ;W1) + I(Y
N
2 ;W2) + I(Y

N
3 ;W3)

≤ I(YN1 ;W1) + I(Y
N
2 , Y

N
1 ,W1;W2) + I(Y

N
3 , Y

N
1 ,W1, Y

N
2 ,W2;W3)

≤ I(YN1 ;W1,W2,W3) + I(Y
N
2 ;W2,W3|Y

N
1 ,W1) + I(Y

N
3 ;W3|Y

N
1 ,W1, Y

N
2 ,W2)

≤
N∑
t=1

I(Y1,t;X1,t, X2,t, X3,t) + I(Y2,t;X2,t, X3,t|X1,t, Y1,t) + I(Y3,t;X3,t|X1,t, X2,t, Y1,t, Y2,t).
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PROOF OF THEOREM 3.3.2

By Fano’s inequality H(Wi|Y
N
i ) ≤ NεN with εN → 0 as N → ∞ for all i ∈ [1 : K].

For (Equation 3.7a) we have

N(Ri − εN)

≤ I(YNi ;Wi)

≤ I(YNi ;Wi|W1, . . . ,Wi−1)

=

N∑
t=1

h(Yi,t|W1, . . . ,Wi−1, Y
t−1
i ) − h(Yi,t|W1, . . . ,Wi, Y

t−1
i )

≤
N∑
t=1

h(Yi,t|W1, . . . ,Wi−1) − h(Yi,t|W1, . . . ,WK, Y
t−1
i )

≤
N∑
t=1

h(Yi,t|X1,t, . . . , Xi−1,t) − h(Yi,t|X1,t, . . . , XK,t)

=

N∑
t=1

I(Yi,t;Xi,t, . . . , XK,t|X1,t, . . . , Xi−1,t).
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For (Equation 3.7b) we have

N

K∑
j=i

(Rj − εN) ≤
K∑
j=i

I(YNj ;Wj) ≤
K∑
j=i

I(YNj , W1, . . . ,Wi−1︸ ︷︷ ︸
=∅ for i = 1

, YNi ,Wi, . . . Y
N
j−1,Wj−1︸ ︷︷ ︸

=∅ for j = i

;Wj)

=

K∑
j=i

I(YNi , . . . Y
N
j ;Wj|W1, . . . ,Wj−1)

=

K∑
j=i

j∑
k=i

I(YNk ;Wj|W1, . . . ,Wj−1, Y
N
i , . . . , Y

N
k−1)

=

K∑
k=i

K∑
j=k

I(YNk ;Wj|W1, . . . ,Wj−1, Y
N
i , . . . , Y

N
k−1)

=

K∑
k=i

I(YNk ;Wk, . . . ,WK|W1, . . . ,Wi−1︸ ︷︷ ︸
=∅ for i = 1

, Wi, Y
N
i , . . . ,Wk−1, Y

N
k−1︸ ︷︷ ︸

=∅ for k = i

)

≤
K∑
k=i

N∑
t=1

I(Yk,t;Xk,t, . . . , XK,t|X1,t, . . . , Xk−1,t, Yi,t, . . . , Yk−1,t).
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PROOF OF THEOREM 3.7.1

In order to obtain the sum-rate upper bound in (Equation 3.20) we first present the following

Lemma, which is an extension to any K of [18, Lemma 5] (for CMS) and [16, Lemma 1] (for

CoMS):

Lemma F.0.3. If per-letter condition in (Equation 3.19) is satisfied for all prescribed input

distributions then

I(XN[j:K]; Y
N
j |X

N
[1:j−1]) ≤ I(X

N
[j:K]; Y

N
j−1|X

N
[1:j−1]), (F.1)

for all input distributions PXN1 ,...,X
N
K

, N ∈ N, that factor as

1. PMS:
∏K−1
j=1 PXNj

PXNK |XN1 ,...,X
N
K−1

,

2. CMS: PXN1 ,...,X
N
K

.
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We are now ready to present the proof of Theorem 3.7.1: For εN > 0 : εN → 0 as N→ +∞
N

K∑
j=1

(Rj − εN)
(a)

≤
K∑
j=1

I(Wj; Y
N
j )

(b)

≤
K∑
j=1

I(Wj; Y
N
j |W[1:j−1]) ≤

K∑
j=1

I(XNj ; Y
N
j |X

N
[1:j−1])

(c)
=

K−1∑
j=1

I(XNj ; Y
N
j |X

N
[1:j−1]) + I(X

N
K ; Y

N
K |X

N
[1:K−1])

(d)

≤
K−1∑
j=1

I(XNj ; Y
N
j |X

N
[1:j−1]) + I(X

N
K ; Y

N
K−1|X

N
[1:K−1])

(e)
=

K−2∑
j=1

I(XNj ; Y
N
j |X

N
[1:j−1]) + I(X

N
[K−1:K]; Y

N
K−1|X

N
[1:K−2])

(f)

≤
K−2∑
j=1

I(XNj ; Y
N
j |X

N
[1:j−1]) + I(X

N
[K−1:K]; Y

N
K−2|X

N
[1:K−2])

. . .
(g)

≤ I(XN[1:K]; Y
N
1 )

(h)

≤
N∑
t=1

I(X1t, . . . , XKt; Y1t)
(i)

≤ NI(X[1:K]; Y1|Q)
(j)

≤ NI(X[1:K]; Y1),

where: (a) follows from Fano’s inequalities H(Wj|Y
N
j ) ≤ NεN, ∀j ∈ [1 : K], (c) from the

independence of messages, the definition of encoding functions (for all Mj ⊆ [1 : j], j ∈ [1 : K])

and data processing inequality, (d), (f) and (g) from the condition in (Equation 3.19) for j = K,

j = K − 1, up to j = 2 and Lemma F.0.3, (h) from the chain rule of entropy and from the fact

that conditioning reduces entropy, (i) by introducing a time-sharing random variable that is

uniformly distributed Q ∼ Unif[1 : N], and (j) by conditioning reduces entropy.
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PROOF OF THEOREM 4.1.1

The analysis of the coverage probability for the mmWave heterogeneous network is similar

to that in [22, Appendix A] with two major differences. The first difference is the presence of

multiple antennas at the transmitter. The second difference is that the interference is a function

of i.i.d uniformly distributed random variables, assuming that the path angles are independent

and uniformly distributed over [−π,+π].

Let Θk = {
‖v‖α
Pk
, v ∈ Φmmw,k} for k ∈ [1 : K]. Its density can be derived using the Mapping

theorem [60, Thm. 2.34] and is given by

λk(v) = λk
2π

α
P
2
α

k v
2
α
−1, k ∈ [1 : K]. (G.1)

The process Θ = ∪Kk=1Θk has a density

λ(v) =

K∑
k=1

λk(v). (G.2)

G.1 Distribution of closest base stations

We assume that the elements in the process Θ are indexed in increasing order. Let

γ ′i =
‖vi‖α

Pf(vi)
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then γ ′ = {γ ′1, · · · , γ ′n} denotes the set of normalized pathloss of the cooperating base stations.

We first present the distribution of the two nearest base stations by following similar steps as

done in [61], then derive the distribution of n closest base stations. The distribution of the

closest two base stations (assuming two cooperating base stations) is given by

fΓ ′(γ
′
1, γ
′
2) = fΓ ′2 |Γ

′
1
(γ ′2|γ

′
1)fΓ ′1(γ

′
1) (G.3)

where the distribution of the first closest base station from the null probability of a 2-D Poisson

point process is

fΓ ′1(γ
′
1) =λ(γ

′
1)e

−Λ(γ ′1) (G.4)

while the conditional distribution is given by

fΓ ′2 |Γ
′
1
(γ ′2|γ

′
1) =λ(γ

′
2)e

−Λ(γ ′2)+Λ(γ
′
1) (G.5)

The joint distribution for the case of n = 2 base stations is obtained by substituting (Equation G.4)

and (Equation G.5) in (Equation G.3). The result can be generalized to any number n of co-

operating base stations

fΓ ′(γ
′) =

n∏
i=1

λ(γ ′i)e
−Λ(γ ′n). (G.6)
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G.2 Derivation of Coverage Probability

The SINR expression at the typical user with omnidirectional reception is given by (Equation 4.13)

and is reported next for convenience

SINR =

∣∣ n∑
i=1

√
γvihvi |

2

σ2

Nt
+

|T c|∑
i=1

γli |hli |
2
∣∣Gt(Ωφtli −Ωθtli )∣∣2

. (G.7)

We have assumed that the cooperating base stations have normalized pathloss γ ′i by i ≤ n,

then the desired signal power at the numerator of (Equation G.7) can be re-written (after

dropping the index vi and replacing it with just i) as

S =
∣∣ n∑
i=1

√
γvihvi |

2 =
∣∣∑
i≤n

γ
′−1/2
i hi

∣∣2.
We have that the interfering base stations are indexed with i > n, then the power of the

interference I can be expressed (by replacing the index li with just i) as

I =

|T |c∑
i=1

γli |hli |
2|Gt(Ωφtli

−Ωθtli
)|2

=
∑
i>n

γ ′−1i |hi|
2
∣∣Gt(Υi)∣∣2 (G.8)
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The coverage probability for a threshold T , can be re-written as

P(SINR > T) = P
(
S > T(I+

σ2

Nt
)

)

= Eγ ′,I

[
P

∣∣∑
i≤n

γ
′−1/2
i hi

∣∣2 > T(I+ σ2

Nt
)

∣∣∣∣∣γ ′, I
]

(a)
= Eγ ′,I

[
exp

(
−T(I+ σ2

Nt
)∑

i≤n γ
′−1
i

)]
(b)
= Eγ ′

[
LI

(
T∑

i≤n γ
′−1
i

)
LN

(
T∑

i≤n γ
′−1
i

)
(c)
=

∫
0<γ ′1<···<γ ′n<+∞

LI
(

T∑
i≤n γ

′−1
i

)
LN

(
T∑

i≤n γ
′−1
i

)

where (a) follows from the cumulative density function of the exponentially distributed

random variable S (due to Rayleigh fading assumption) with mean
∑
i≤n

γ ′−1i ; (b) follows from

the definition of the Laplace transform of I, LI(s) = E[e−sI] and the Laplace transform of the

noise, LN(s) = E[e−sσ2/Nt ]; (c) by definition of the expectation with respect to the distribution

of γ ′.

Next we evaluate the Laplace transform of the interference I, but before going into the details

of the derivation we need to find the distribution of Υi := Ωφtli
−Ωθtli

, since the interference

in (Equation G.8) is a function of the beam forming gain function which in turn is a function

of Υi. The beam forming gain is given by (Equation 4.10).
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With the assumption that the interfering path angles of departure and the beamsteering

angle used by the interfering base stations are i.i.d ∼ U([−π,+π]), then the directional cosine

Ωφtli
and Ωθtli

are random variables with the following common probability density function

fΩ(ω) =


1

π
√
1−ω2

if −1 ≤ ω ≤ 1;

0 otherwise.

then the distribution of Υi = Ωφtli
−Ωθtli

is the result of the convolution of the probability

density functions of Ωφtli
and Ωθtli

and is given by

fΥi(εi) =

∫min{1,1−εi}

max{−1,−1−εi}

(
1

π2
√
1− (εi +ω)2

1√
1−ω2

)
dy (G.9)

Then the Laplace transform of the interference can be derived

LI(s) = E

[
e
−s

∑
i>n

γ ′−1i |hi|
2|Gt(Υi)|

2
]

= E

[∏
i>n

(
e−sγ

′−1
i |hi|

2|Gt(Υi)|
2

)]
(a)
= E{Υi},Θ

[∏
i>n

E|h|2

(
e−sγ

′−1
i |h|2|Gt(Υi)|

2

)]
(b)
= E{Υi},Θ

[∏
i>n

(
1

1+ s|Gt(Υi)|2γ
′−1
i

)]
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(c)
= EΘ

[∏
i>n

EΥ

(
1

1+ s|Gt(Υ)|2γ
′−1
i

)]
(G.10)

(d)
= EΘ

[∏
i>n

(∫+2
−2

(
1

1+ s|Gt(ε)|2γ
′−1
i

)
fΥ(ε) dε

)]
(e)
= exp

(
−

∫∞
γ ′n

[
1−

∫+2
−2

(
1

1+ s|Gt(ε)|2v−1

)
fΥ(ε) dε

]
λ(v)dv

)
(G.11)

where (a) follows from the i.i.d distribution of |hi|
2 and their independence from Θ and Υi;

where (b) follows from the Rayleigh fading assumption and the moment generating function

of an exponential random variable; where (c) follows from the i.i.d distribution of Υi and their

independence from Θ; (d) from the taking the expectation with respect to the random variable

Υi whose distribution is given by (Equation G.9); (e) follows from the probability generating

function of poisson point process [60, Thm. 4.9] (as used in [23, Eq. (38)]) and where λ(v) is

given by (Equation G.1).

Next we give an approximation of the Laplace transform of the interference for easier nu-

merical evaluations (by approximating the beam forming gain function by a piecewise linear
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function) and to compare our results with [23], the Laplace transform of the interference is then

given by

LI(s)
(d)
= EΘ

[∏
i>n

(∫+2
−2

(
1

1+ s|Gt(ε)|2γ
′−1
i

)
fΥ(ε) dε

)]
(e)
≈ EΘ

[∏
i>n

(∫−1/Lt
−2

fΥ(ε) dε+

∫ 1/Lt
−1/Lt

1

1+ sγ ′−1i

fΥ(ε) dε+

∫ 2
1/Lt

fΥ(ε) dε

)]
(f)
= EΘ

[∏
i>n

(
1−

c sγ−1i
1+ sγ−1i

)]
(g)
= exp

(
−

∫∞
γ ′n

[
c sv−1

1+ sv−1

]
λ(v)dv

)

where in (e) an approximation of the gain function was used which is given

Gt(ε) =


1 if − 1

Lt
≤ ε ≤ 1

Lt
, Lt = Nt∆t

0 if otherwise.

(f) defining c :=
∫+1/Lt
−1/Lt

fΥ(ε) dε.

If c = 1 then the Laplace transform in step (g) simplifies to that in [23, Eq. (38)].
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PROOF OF THEOREM 4.2.1

H.1 Intensity and Intensity Measure

Let Θk = {
‖v‖α
Pk
, v ∈ Φmmw,k} for k ∈ [1 : K] with intensity λk(v) given in (Equation G.1).

The pathloss α is a random variable that takes on values α1 and α2 with probability e−βkv

and 1 − e−βkv respectively (note that we have dropped the ‖.‖ of v for easier notation). Then

the process Θ = ∪Kk=1Θk is a non-homogenous PPP with density λ(v) =
∑K
k=1 λk(v). In the

following we compute the intensity and intensity measure of Θk for k ∈ [1 : K]. By using

the Mapping Theorem [60, Thm. 2.34] the intensity measure and the intensity of each tier k,

k ∈ [1 : K], are given by

Λk([0, r]) =

∫ (rPk) δ12
0

2πλkve
−βkvdv+

∫ (rPk) δ22
0

2πλkv(1− e
−βkv)dv

=
2πλk

β2k

(
1− e−βk(rPk)

δ1
2 (1+ βk(rPk)

δ1
2 )

)
+ πλk(rPk)

δ2
2

−
2πλk

β2k

(
1− e−βk(rPk)

δ2
2 (1+ βk(rPk)

δ2
2 )

)
(H.1)

λk(v) =
dΛk([0, v])

dv
= Akv

δ1−1e−akv
δ1
2 + Bkv

δ2−1(1− e−bkv
δ2
2 ) (H.2)

with δ1 =
2
α1

, δ2 =
2
α2

, Ak = πλkδ1P
δ1
k , ak = βkP

δ1
2

k , bk = βkP
δ2
2

k andBk = πλkδ2P
δ2
k .
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The process Θ = ∪Kk=1Θk has the following intensity measure and intensity

Λ(v) =

K∑
k=1

Λk(v) (H.3)

λ(v) =

K∑
k=1

λk(v) =

K∑
k=1

Akv
δ1−1e−akv

δ1
2 + Bkv

δ2−1(1− e−bkv
δ2
2 ). (H.4)
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PROOF OF THEOREM 4.3.1 AND THEOREM 4.3.2

I.1 Proof of Theorem 4.3.1

Let us re-consider a different distribution on the direct links - while keeping the same

Rayleigh fading assumption on the interfering links - in particular let us consider that the

fading is Nakagami with shape parameter m and scale parameter θ = 1. In this case we will

derive the distribution of an upper bound on the desired signal in particular the distribution of

the following

S =
∣∣∑
i≤n

γ
′−1/2
i hi

∣∣2 ≤∑
i≤n

γ ′−1i

∑
i≤n

|hi|
2 = SUP

But we have that

P
(
SUP ≥ T(I+ σ2

Nt
)

)
= P

∑
i≤n

|hi|
2 ≥

T(I+ σ2

Nt
)∑

i γ
−1
i

] = P
(
SUP ≥ T ′(I+

σ2

Nt
)

) ∣∣
T ′= T∑

i γ
−1
i

,SUP=
∑
i |hi|

2

We have that

hi ∼ Nakagami(m, 1)

|hi|
2 ∼ Gamma(1, 1/m)

∑
i

|hi|
2 ∼ Gamma(nm, 1/m)
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Then the Laplace transform is

LSUP(s) =
1

(1+ s/m)nm
.

We then have from [59, Eq. 2.11] that the coverage probability is

P (SINR > T) = P
(
S > T ′(I+

σ2

Nt
)

)
=

∫
0<γ ′1<···<γ ′n<+∞

fΓ ′(γ
′)P
(
S > T ′(I+

σ2

Nt
)

)
dγ ′

=

∫
0<γ ′1<···<γ ′n<+∞

fΓ ′(γ
′)

∫∞
−∞ LI(2jπT ′s)LN(2jπT ′s)

LSUP(−2jπs) − 1
2jπs

ds dγ ′

(I.1)

where the joint distribution of γ ′ is given by

fΓ ′(γ
′) =

n∏
i=1

λ(γ ′i)e
−Λ(γ ′n) (I.2)

Next we have from (Equation G.11) the Laplace transform of the interference LI(s) with an

intensity λ(v) given by (Equation H.4) while the Laplace transform of the noise is given by

LN(s) = E[e−s
σ2

Nt ] = e
−s σ

2

Nt . (I.3)

This concludes the proof.
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I.2 Proof of Theorem 4.3.2

The coverage probability in the absence of interference is given by (Equation 4.23) with

LI(s) = 1 and is

P(SNR > T) =

∫
0<γ ′1<···<γ ′n<+∞

fΓ ′(γ
′)

∫∞
−∞
LUP
S (−2jπs) − 1

2jπs
LN(2jπT ′s)ds dγ ′ (I.4a)

=

∫
0<γ ′1<···<γ ′n<+∞

fΓ ′(γ
′)

∫∞
−∞

1

(1− 2jπs
m

)nm
− 1

2jπs
e
−2jπs T

′σ2
Nt ds dγ ′ (I.4b)

=

∫
0<γ ′1<···<γ ′n<+∞

fΓ ′(γ
′)

∫∞
−∞ f(s)ds︸ ︷︷ ︸

Q

dγ ′. (I.4c)

In the following we seek to solve Q. Note that a pole of order nm exists in the integrand thus

the integral Q can be solved using contour integration and is as follows

Q = Resz∗= m
2πj

[f(z)] = lim
z→z∗ 1

(nm− 1)!

(
d

dz

)nm−1

(z− z∗)nmf(z). (I.5)

The function f(z) can be re-written in the following form

f(z) =
g(z)

(z− z∗)nm
(I.6)
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with

f(z) =

1

(1− 2πjz
m

)nm
− 1

2πjz
e
−2πjz T

′σ2
Nt =

(−1)nm
1−(1− 2πjz

m
)nm

(2πj)nm(2πjz) e
−2πjz T

′σ2
Nt(

z− m
2πj

)nm , (I.7a)

g(z) = (−1)nm
1− (1− 2πjz)nm

(2πj)nm(2πjz)
e
−2πjz T

′σ2
Nt . (I.7b)

Then after substituting the functions in (Equation I.5), we can express the integral I as

Q =
g(nm−1)(z∗)

(nm− 1)!
. (I.8)

This concludes the proof.
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