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SUMMARY

Loopy belief propagation (LBP) is a probability inference algorithm on Graphical Models.

It has been successfully applied in low-density parity-check codes, turbo codes, computer vision

problems such as stereo matching, image segmentation and image impainting. Belief propaga-

tion was first proposed by Judea Pearl (1) in 1982 for tree-structured graphs, and was extended

to polytrees (2) in 1983, and later applied to general graphs with empirical success. Since LBP

ignores the loopy structure of graphs and blindly propagates messages, many researchers have

focused in analyzing its performance of convergence and accuracy, and presented variations of

message passing algorithm. In this thesis, we focus on the performance analysis of LBP with

respect to error bound and convergence. We present novel results that show the relationship

between the performance of LBP and the strength of potential functions as well as topol-

ogy structure of graphical models. Specifically, we first present lower-bound and upper-bound

on multiplicative message errors. Then we present uniform and non-uniform distance bound

on beliefs, which can improve an existing accuracy bound between beliefs and true marginals.

Thereafter, we present our non-uniform sufficient convergence condition for LBP, which is shown

to be better than existing conditions. We also show our error bound is related with the rate of

convergence of LBP. Furthermore, we analyze fixed points of completely uniform binary graph,

and present tight distance bound between beliefs. Finally, we implement LBP algorithm for

an image segmentation application, and show how the segmentation performance is affected by

some parameters in potential functions.

viii



CHAPTER 1

GRAPHICAL MODEL AND LOOPY BELIEF PROPAGATION

1.1 Introduction to Graphical Model and Loopy Belief Propagation

Graphical models, which are widely used in pattern recognition and machine learning, are

a marriage between graph theory and probability theory for multivariate statistical modelling.

They are used to intuitively provide conditional independency between random variables. Uti-

lizing the structure of graphical models, computation complexity of inference and learning on

random variables will be greatly reduced.

Recent years have seen a dramatic increase of publication about graphical models used in

labelling problems for computer vision, because of the overwhelmingly large number of states of

labels for those problems. Graphical model was presented in (3) to solve the labelling problems

of super-resolution and color demosaicing. (4) presented graphical models unifying motion in-

formation, boundary information and spatial connectivity for spatiotemporal segmentation of

video sequences. A general object detection framework using Hidden Markov Model and Dis-

criminative Random Fields was presented in (5) for text detection. (6) modeled image denoising

and inpainting problems using stochastic factor graphs and used variational expectation max-

imization algorithms to local distribution functions. Layered graphical models were proposed

by (7) to track partially-occluded objects using an image plane representation of object motion.

1
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(8) used conditional random fields and implicit deformable models to solve a joint Maximum a

Posteriori problem for 3D image segmentation.

However, probabilistic inference for large-scale multivariate random variables, such as image

labeling variables, is very expensive computationally. Belief propagation (BP) algorithms are

designed to reduce the computational burden by exploiting the factorization of joint density

functions captured by the topological structure of graphical models (9; 10; 11; 12). BP is known

to converge to the exact inference on acyclic graphs (i.e. trees) or graphs that contain a single

loop. In the case of graphs with multiple loops, BP results in an iterative method referred

to as loopy belief propagation (LBP). The use of LBP generally provides remarkably good

approximations in real-world applications; e.g., turbo decoding and stereo matching (13; 14).

Because LBP does not always converge, sufficient conditions for its convergence have been

extensively investigated in the past using various approaches (15; 16; 17; 18). Necessary con-

ditions for convergence of LBP, however, remain unknown. (15) related convergence of LBP

to the uniqueness of a sequence of Gibbs measures defined on the associated computation tree.

He subsequently developed a testable sufficient condition for convergence of LBP by applying

Simon’s condition (19). (16) presented sufficient conditions for uniqueness of fixed points in

LBP by relying on the uniqueness of minima of the Bethe free energy. He related the strength

of the potentials with the convergence of the LBP algorithm, which leads to milder sufficient

conditions than those obtained by exclusively relying on the structure of the graph.

Recently, several papers have investigated the message updating functions of the LBP al-

gorithm as contractive mappings. (17) analyzed the contractive effect of message-error prop-
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agation in belief networks using the dynamic-range measure as a metric, and obtained error

bounds and sufficient conditions for convergence of LBP message passing. (18) derived suf-

ficient conditions for convergence of LBP based on quotient norms of contractive mappings,

which are invariant to scaling and shown to be valid for potential functions containing zeros.

Although the beliefs may not be true marginal probabilities when the LBP algorithm con-

verges, they have been shown to provide good approximations by (20). When the LBP algorithm

does not converge, however, beliefs are not good approximations of true marginals because the

Bethe free energy does not provide a good approximation of the Gibbs-Helmholtz free en-

ergy (21). Exactness and accuracy of the LBP algorithm has consequently gained interest in

recent years. (22) derived bounds on exact marginals by relying on the girth of the graph

(i.e. the number of edges in the shortest cycle in the graph) and the properties of Dobrushin’s

interdependence matrix (23). (24) used Dobrushin’s theorem to present a distance bound on

the marginal probabilities. (25) introduced a distance bound on the error between beliefs and

marginals based on recent results for computing marginal probabilities for pairwise Markov

random fields using Self-Avoiding Walk (SAW) trees (26). (27) propagate bounds on marginal

probabilities over a subtree or the SAW tree of the factor graph, and demonstrate that their

bounds perform well in terms of accuracy and computation time of LBP.

Several investigators have explored the consequence of scheduling on the convergence of BP.

(28) discussed the impatient and lazy belief propagation algorithms and showed that the former

is expected to converge faster than the latter. (29) proposed a residual belief propagation

algorithm, which schedules messages in an informed manner thus significantly reducing the
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running time needed for convergence of LBP. Inspired by (29)’s work, (30) further increased

the rate of convergence by estimating the residual rather than computing it directly.

In this thesis, we derive uniform and non-uniform error bounds on LBP, which are tighter

than existing ones in literature, and use these bounds to study the dynamic behavior of the

sum-product algorithm. We subsequently use these bounds to derive sufficient conditions for

the convergence of the sum-product algorithm, and analyze the relation between convergence

of LBP and sparsity and walk-summability of graphical models. We finally use the bounds

derived to investigate the accuracy of LBP, as well as the scheduling priority in asynchronous

LBP. A preliminary version of some of the error bounds in this thesis has appeared in (31).

1.2 Basics of Graphical Model

In this section, we will introduce the basics of graphical model. Readers are kindly suggested

to refer to (9)(10)(12)(32) for more details.

A graph is composed of nodes connected by edges. In a probabilistic graphical model,

nodes correspond to random variables and edges represent probability relationship between

them. The joint distribution over all the random variables can be decomposed into a product

of factors according to the Markov property. When edges are directed, graphical models are

generally referred to as belief networks or Bayesian networks; when undirected, graphical models

are referred to as Markov random fields(MRFs). Directed graphs express causal relationships

between random variables, while undirected graphs impose compliance constraints between

random variables. In this thesis, we will mainly discuss MRFs.
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Figure 2. An Example of Markov Random Field
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Figure 3. Directed Graph Transformed to Undirected Graph

1.2.1 Conditional Independency on Directed and Undirected Graph

Directed edges in Bayesian networks interpret parent-children relationship, whereas undi-

rected edges in Markov random field show an interaction between neighboring nodes. For a

Bayesian network, each variable is only dependent on its parents. Let {S} represent the set

of random variables corresponding to the N nodes of the graph. Let pa{Si} denote the set

of parents of nodes Si. Then P (S) =
∏

i P (Si|pa(Si)). For example, in Figure 1, the global

probability P(A,B,C,D,E,F) can be factorized into product of the local probabilities

P (XA, XB , XC , XD, XE , XF )

= P (XA)P (XB)P (XC |XA, XB)P (XD|XC)P (XE |XC)P (XF |XD, XE).
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Similarly, for a Markov random field, each node is only dependent on its neighbors. In

Figure 2(a), A is independent of D given C. Each edge in the graph indicates a compli-

ance relation between two nodes, which is expressed by a potential function over the cor-

responding random variables. Thus, joint distribution over a graph can be factorized into

product of potential functions. For instance, φA,C(XA, XC), φB,C(XB, XC), φC,D(XD, XC),

φC,E(XC , XE),φD,E(XD, XE), φD,F (XD, XF ), φE,F (XE , XF ) are the potential functions on

edges AC, BC, CD, CE, DE, DF and EF . Then

P (X) =
1
Z

φA,C(XA, XC)φB,C(XB, XC)φC,D(XD, XC)φC,E(XC , XE)

×φD,E(XD, XE)φD,F (XD, XF )φE,F (XE , XF ),

where Z is the normalization constant.

Undirected graphs can also be expressed using clique graphs. Thus, global distribution can

be factorized into product of potential functions on cliques. Let us denote a clique by C and the

set of variables in that clique by XC . Then the joint distribution can be written as a product

of potential functions by ψC(XC) over the maximal cliques of the graph

P (X) =
1
Z

∏

C

ψC(XC),
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where Z is called partition function,which is a normalization constant given by Z =
∑

x

∏
C ψC(XC).

For Figure 2 (a), the corresponding clique graph is shown in Figure 2 (b). Thus the joint dis-

tribution can be expressed as

P (X) =
1
Z

ψA,C(XA, XC)ψB,C(XB, XC)ψC,D,E(XC , XD, XE)ψD,E,F (XD, XE , XF ).

Directed graphical model in Figure 1 can be transformed into undirected graphical model

by removing the arrows on the edge and moralizing the parents of each node, which is shown in

Figure 3 (a) and (b). The corresponding clique graph which contains the parents information

is shown in figure Figure 3(c).

1.2.2 Factor Graphs

Both directed and undirected graphs can be represented by a factor graph. Factor graph

allows the global function to be expressed by a product of factors over subsets of variables. For

the graph in Figure 4, the global distribution over x1, x2, x3 is

P (X) = αφ(x1, x2)φ(x1, x3)φ(x2, x3)ϕ(x2, x3).

Undirected graph in Figure 4(a) can be expressed by factor graph in Figure 4(b) with factor

f(x1, x2, x3) = φ(x1, x2)φ(x1, x3)φ(x2, x3)ϕ(x2, x3).
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It can also be expressed by factor graph in Figure 4(c) with factor

fa(x1, x2, x3) = φ(x1, x2)φ(x1, x3)φ(x2, x3),

fb(x2, x3) = ϕ(x2, x3).

For the directed graph in Figure 5 (a), the global distribution is P (X) = p(x1)p(x2)p(x3|x1, x2).

The factor graph representing the same distribution is shown in Figure 5(b) with factor

f(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2).

Otherwise, a different factor graph for the same distribution is shown in Figure 5 (c) with factor

fa(x1) = p(x1), fb(x3) = p(x3),

fc(x1, x2, x3) = p(x3|x1, x2).

We can see that factor graph is not unique for directed or undirected graphs.

In the following, we will work on undirected graphs with pairwise potential functions. In

other words, in the corresponding factor graph, each factor will control at most two random

variables.

1.3 Efficient Inference and Belief Propagation

Probability inference for large scale multivariate random variables will be very computa-

tional complex. Efficient inference algorithm(33) can be obtained based on the structure of
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Figure 6. (a)A Tree Example (b)Graph With One Loop

the graphical model. In this section, we will introduce several probability inference algorithms:

belief propagation, tree reweighted message passing, generalized belief propagation and norm-

product belief propagation.

1.3.1 Belief Propagation

Belief propagation is essentially a dynamic programming algorithm, which utilizes the the

intermediate values in order to reduce the number of calculations. Let us use the undirected

tree in Figure 6 (a) to introduce this inference algorithm. The probability distribution for this

tree can be factorized as

P (X) =
1
Z

ψ(x1, x2)ψ(x1, x3)ψ(x2, x4)ψ(x2, x5)ψ(x2, x6).
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Assuming discrete random variables, we calculate a marginal probability by summing over the

remaining variables:

P (x1) =
∑

x2,x3,x4,x5,x6

1
Z

ψ(x1, x2)ψ(x1, x3)ψ(x2, x4)ψ(x2, x5)ψ(x2, x6).

When each variable has r values, the computation cost will scale to r6. If the number of random

variables and the number of states are huge, the computation cost will explode exponentially.

However, using the distribution law of multiplication and addition, we have the following:

P (x1) =
1
Z

∑
x2

ψ(x1, x2)
∑
x3

ψ(x1, x3)

︸ ︷︷ ︸
m3(x1)

∑
x4

ψ(x2, x4)

︸ ︷︷ ︸
m4(x2)

∑
x5

ψ(x2, x5)

︸ ︷︷ ︸
m5(x2)

∑
x6

ψ(x2, x6)

︸ ︷︷ ︸
m6(x2)

=
1
Z

∑
x2

ψ(x1, x2)m3(x1)m4(x2)m5(x2)m6(x2)

=
1
Z

m3(x1)
∑
x2

ψ(x1, x2)m4(x2)m5(x2)m6(x2)

︸ ︷︷ ︸
m2(x1)

=
1
Z

m2(x1)m3(x1),

Z =
∑
x1

P (x1).

The intermediate factors m(x) in the equation are called messages passing through the

edges. Some of those messages will be used when we calculate other marginal probabilities.

For example, when we calculate P (x3), we will use m2(x1) again. Thus, by calculating the

messages each node sending to its neighbors and reusing those calculated messages for new
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round of messages, we can obtain marginals efficiently. This message passing algorithm is

called belief propagation.

The previous belief propagation algorithm is also called sum-product algorithm, since sum-

mation and product are used in calculating marginals. If we want to compute maximum a

posteriori (MAP) probabilities, the message passing algorithm will be called max-product al-

gorithm. For the graph in Figure 6 (a), to obtain the MAP of P (x1), we compute:

g(x1)
.= max

x2,x3,x4,x5,x6

P (x1, x2, x3, x4, x5, x6)

=
1
Z

max
x2

ψ(x1, x2)max
x3

ψ(x1, x3)
︸ ︷︷ ︸

m3(x1)

max
x4

ψ(x2, x4)
︸ ︷︷ ︸

m4(x2)

max
x5

ψ(x2, x5)
︸ ︷︷ ︸

m5(x2)

max
x6

ψ(x2, x6)
︸ ︷︷ ︸

m6(x2)

=
1
Z

max
x2

ψ(x1, x2)m3(x1)m4(x2)m5(x2)m6(x2)

=
1
Z

m3(x1)max
x2

ψ(x1, x2)m4(x2)m5(x2)m6(x2)
︸ ︷︷ ︸

m2(x1)

=
1
Z

m2(x1)m3(x1),

Z = max
x1

g(x1).

1.3.1.1 Loopy Belief Propagation and Exact Inference

However, for graphs with loops, belief propagation will not give exact inference, since the

message sent from a node will go back to itself. As in Figure 6 (b),the message sent from

node 2 to node 1 will flow back into node 2 after it goes through the loop 2 − 1 − 3 − 2.

Nevertheless, belief propagation algorithm can still be applied on this graph and messages
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Figure 7. Illustration of Local Message Updating Rule

propagate ”shortsightedly”. In such cases, belief propagation is an approximation algorithm

which is called loopy belief propagation. The general updating rules for messages are as follows:

mij(xj) =
∑
xi

ψij(xi, xj)
∏

k∈Γi\j
mki(xi),∀(i, j) ∈ E,

where E is the set of edges, Γi is the set of neighbors of i, mij(xj) is the message on edge (i, j),

and ψij(xi, xj) is the potential function between xi and xj . The belief on each node, which is

an approximation for marginal probability is computed as:

bi(xi) = α
∏

k∈Γi

mki(xi),

where α is a normalization constant.
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For instance, in Figure 7, the potential function between x1, x2 is ψ12(x1, x2). Thus, the

message sent from node 2 to node 1 is m21(x1) =
∑

x2
ψ12(x1, x2)m32(x2)m42(x2) and the belief

at node 2 is b(x2) = αm12(x2)m32(x2)m42(x2).

1.3.1.2 Sufficient Convergence Condition for Sum Product Algorithm

Since in graphs with cycles, information can flow many times around the graph, loopy belief

propagation will not always converge. Here, we will briefly discuss the convergence condition

for loopy belief propagation.

For convenience, we confine our discussion to graphical models with at most pairwise po-

tential functions, so that the distribution factors as follows:

p(X) =
∏

(s,t)∈E

ψst(xs, xt)
∏
s

ψs(xs).

For tree structured graphs, belief propagation will converge in a finite number of iterations (

at most the length of the diameter of the graph) to the correct marginals. For an arbitrary

graph, convergence is not guaranteed. The algorithm may converge to one fixed point, several

fixed points or oscillate. Though convergence is not guaranteed for loopy belief propagation

algorithm, when it converges, it usually gives good approximations to the exact marginals (34).

Many people presented sufficient conditions for loopy belief propagation algorithm based on

different methodology. The sufficient condition given by (35)(17) is as follows:

max
(s,t)∈E

∑

u∈Γt\s

d(ψut)2 − 1
d(ψut)2 + 1

< 1,
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Figure 8. Comparison of Various Uniqueness Bounds in (17).

where ψut are potential functions between node u and node t, and d(·) is dynamic range measure

defined as follows: d(ψut) = supa,b,c,d

√
ψ(a, b)/ψ(c, d). From the previous condition, we can

easily see that sum product algorithm on simple loops will always converge, since we always

have max(s,t)∈E
d(ψut)2−1
d(ψut)2+1

< 1.

(35)(17) proved their sufficient condition on binary belief networks shown in Figure 8(a-

c),whose potentials are parameterized by a scaler η > 0.5 namely ψ = [η 1 − η; 1 − η η], so

that d(ψ)2 = η
1−η . Their convergence condition almost gives the empirical values of parameters

of potential functions for those graphical models, which is shown in the table of Figure 8 for η.

Sufficient condition for loopy belief propagation is our focus. We have worked on

max
(t,s)∈E

ets

as a different error measure from (35)(17)’s dynamic range error measure in order to obtain

tighter sufficient condition.
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(20) and (36) have derived an analytical relationship between beliefs and correct marginals

for graphical models with single loops. They correspondingly proposed belief revision algorithm

(37) in networks with a single loop, which achieves better exactness.

1.3.2 Tree-reweighted Message Passing

(38) presents a new message passing algorithm called tree-reweighted message passing to

efficiently compute optimal values of upper bounds on log partition functions, as well as asso-

ciated pseudo-marginals. The upper bounds can be used to derive a concave lower bound on

log likelihood. The message passing rule is as follows:

Mts(xs) = κ max
x′t∈χt

{exp [
θst(xs, x

′
t)

ρst
+ θt(x′t)]

∏
v∈Γt\s[Mvt(x′t)]ρvt

[Mst(x′t)](1−ρts)
},

where θst(xs, xt) and θt(xt) are log partition functions, ρst ∈ [0, 1] re-weights messages and

re-scales partition function on edge (s, t), . When ρst = 1 for all edges, it recovers standard

message passing (belief propagation).

1.3.3 Bethe Free Energy and Generalized belief propagation

Let us first introduce the Bethe free energy here:

Fβ(bij , bi) =
∑

ij

∑
xi,xj

bij(xi, xj)[ln bij(xi, xj)− lnψij(xi, xj)]

−
∑

i

(qi − 1)
∑
xi

bi(xi)[ln bi(xi)− lnψi(xi)],

where bij and bi are beliefs, ψij and ψi are potential functions, qi is the number of neighbors of

node i. (39)and (40) have shown that stable fixed point of loopy belief propagation is the local
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minima of Bethe free energy. However, for some graphical models, loopy belief propagation

algorithm cannot reach a stable fixed point. Thus, more accurate free energy approximation

algorithms have been proposed such as generalized belief propagation (40) based on Kikuchi

free energy and unified propagation and scaling (41).

Kikuchi free energy gives better free energy approximation to Gibbs free energy. Kikuchi

free energy is defined as follows:

FK =
∑

r∈R

cr(
∑
xr

br(xr)(− lnψr(xr)) +
∑
xr

br(xr) ln br(xr)),

where r is a region on the graph, ψr is the product of potential functions in region r, br is the

belief on region r, and cr = 1−∑
s∈super(r) cs. super(r) is the set of all super-regions of r.

Based on Kikuchi free energy, (40) presents general belief propagation algorithm:

mrs = α[
∑
xr\s

ψr\s(xr\s)
∏

mr′′s′′∈M(r)\M(s)

mr′′s′′ ]/
∏

mr′s′∈M(r,s)

mr′s′ ,

br = αψr(xr)
∏

mr′s′∈M(r)

mr′s′ ,

where mrs(xs) are the messages between region r and its direct sub-region s, M(r) is the set

of messages in region r, M(r, s) is the set of messages that start in sub-regions of r and also

belong to M(s).

1.3.4 Norm-Product Belief Propagation

Recently, (42) presents a unified message passing architecture which generalizes sum-product

algorithm, max-product algorithm, and tree-reweighted sum-product and max-product algo-
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Figure 9. Norm-Product belief propagation in (24).

rithms. They present a set of convergent algorithms called norm-product belief propagation

based on convex-free energy and linear programming. The norm product belief propagation is

shown in Figure 9.

1.4 Conclusion

Graphical models are a useful tool to visualize the relationship between random variables.

Utilizing the structure of graphs, efficient inference algorithms are proposed. For tree structured

graph, all inference algorithms will give exact marginal probabilities, whereas for graphs with

loops, some algorithms fail to obtain exact values. However, various approximation algorithms

are proposed for loopy graphs and provide good results. Loopy belief propagation is such an

approximation algorithm which empirically demonstrated good performance.
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Since loopy belief propagation algorithm is an iterative method, convergence should be

guaranteed for it to work properly. However, for some graphs,it is not the case. Some papers

have presents sufficient conditions for the convergence of belief propagation algorithm. Though

loopy belief propagation will obtain convergent beliefs, the exactness of the beliefs compared

with the true marginal probabilities is not ensured. (40) has proved that stable fixed point

of belief propagation corresponds to the local minimal value of Bethe free energy. In order

to guarantee the algorithm to search toward minimal points of the free energy function, some

gradient descent based approximation algorithms are proposed.



CHAPTER 2

MESSAGE ERROR ANALYSIS OF LOOPY BELIEF PROPAGATION

FOR THE SUM-PRODUCT ALGORITHM

2.1 Introduction

Belief propagation is known to perform extremely well in many practical statistical infer-

ence and learning problems using graphical models, even in the presence of multiple loops.

The use of the belief propagation algorithm on graphical models with loops is referred to as

Loopy Belief Propagation (LBP). Various sufficient conditions for convergence of LBP have

been presented; however, general necessary conditions for its convergence to a unique fixed

point remain unknown. Because the approximation of beliefs to true marginal probabilities

has been shown to relate to the convergence of LBP, various methods have been explored

whose aim is to obtain distance bounds on beliefs when LBP fails to converge. People pre-

sented their performance analysis of LBP with respect to convergence and accuracy in litera-

tures (40)(36)(22)(17)(25)(18)(27)(31).

In this chapter, we derive tight error bounds on LBP and use these bounds to study

the dynamics—error, convergence, accuracy, and scheduling—of the sum-product algorithm.

Specifically, in Section 2.2 and Section 2.3, we rely on the contractive mapping property of

message errors to present novel uniform and non-uniform distance bounds between multiple

fixed-point solutions. Several graphical networks are investigated and used to demonstrate that

21
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the proposed distance bounds are tighter than existing bounds. We subsequently use these

bounds to derive uniform and non-uniform sufficient conditions for convergence of the sum-

product algorithm. Moreover, in Section 2.4, we analyze the relation between convergence and

sparsity of graphs, and extend the convergence perspective of walk-summability from Gaussian

graphical models to general graphical models. In Section 2.5, we present bounds on the distance

between beliefs and true marginals by applying SAW trees and show that the proposed bounds

can be used to improve existing bounds. Furthermore, we explore the use of the upper-bound

on message errors as a criterion to rank the priority of message passing for scheduling in asyn-

chronous LBP. We then present a case study of LBP by studying its dynamics on completely

uniform graphs and analyzing its true fixed points and message-error functions in Section 2.6.

Finally, we discuss the extension of the proposed message error analysis to the max-product

algorithm in Section 2.7. We conclude the paper in Section 2.8.

2.2 Message-Error Propagation for the Sum-Product Algorithm

Belief propagation originated from exact inference on tree structured graphical models,

though for graphs with loops it shows remarkable performance of approximate inference. BP is

synonymously called sum-product algorithm for marginalization of global distribution or max-

product algorithm to compute Maximum-A-Posteriori (MAP). In this paper, we will mainly

talk about sum-product algorithm for graphs with loops.
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Figure 10. Graphical models: (a) message passing in a portion of a belief network; (b) a
simple graph; and (c) Bethe tree (all nodes and edges) and Self-Avoiding Walk tree (black

solid only) of (b).

2.2.1 Loopy Belief Propagation Updates

Let us consider a general graphical model G = (V,E) whose distribution factors as follows:

p(X) =
1
Z

∏

(s,t)∈E
ψst(xs, xt)

∏

s∈V
ψs(xs), (2.1)

where Z is a normalization factor, ψst(xs, xt) is the pairwise potential function between random

variables xs and xt, and ψs(xs) is the single node potential function on xs. (s, t) denotes an

undirected edge, V is the set of nodes, and E is the set of edges. We assume that all the

potential functions are positive.
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Figure 10(a) illustrates the message passing mechanism used in BP. The updating rule of

the sum-product algorithm for the message sent by node t to its neighbor node s at iteration i

is:

mi
ts(xs) ∝

∫
ψts(xt, xs)ψt(xt)

∏

u∈Γt\s
mi−1

ut (xt)dxt, (2.2)

where Γt is the set of neighbors of node t. The belief, or pseudo-marginal probability of xt, on

node t at iteration i, is:

Bi
t(xt) ∝ ψt(xt)

∏

u∈Γt

mi
ut(xt). (2.3)

A stable fixed point has been reached if mi
ts(xs) = mi+1

ts (xs), ∀s ∈ V. The pairwise belief of

random variables xs, xt at iteration i is defined as:

Bi
ts(xt, xs) ∝ ψts(xt, xs)ψt(xt)ψs(xs)

∏

u∈Γt\s
mi

ut(xt)
∏

p∈Γs\t
mi

ps(xs). (2.4)

The computation tree first introduced in (43) is always applied in the analysis of LBP. Bethe

tree and SAW tree are two types of computation trees used in (25), which will also be used

in the rest of the paper. Both Bethe tree and SAW tree are tree-structured unwrappings of a

graph G from some node v. The Bethe tree, denoted as TB(G, v, n), contains all paths of length

n from v that do not backtrack, while the SAW tree, denoted as TSAW (G, v, n), contains all

paths of length n ≤ |V|+ 1 that do not backtrack and have all nodes on the path unique. The

belief on node v at iteration n in synchronous LBP is equivalent to the exact marginal of the

root v in the n-level Bethe tree.
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Figure 10(c) illustrates the Bethe tree and the SAW tree for the graphical model in Fig-

ure 10(b). For synchronous BP, each iteration of (Equation 2.2), (Equation 2.3) and (Equation 2.4)

corresponds to a level in the Bethe tree.

2.2.2 Message-Error Measures

Various approaches have been presented to derive convergence conditions for the sum-

product algorithm, including analyzing contraction property of message errors on belief net-

works. Define message error as a multiplicative function ei
ts(xs) that perturbs the fixed-point

message mts(xs). The perturbed message at iteration i is hence

m̂i
ts(xs) = mts(xs)ei

ts(xs).

Dealing with normalized messages, we define fixed-point incoming message products as

Mts(xt) ∝ ψt(xt)
∏

u∈Γt\s
mut(xt),

and perturbed incoming message products as

M i
ts(xt) ∝ ψt(xt)

∏

u∈Γt\s
mi

ut(xt),

and incoming error products as

Ei
ts(xt) =

∏

u∈Γt\s
ei
ut(xt).
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We have

M i
ts(xt) ∝ Mts(xt)Ei

ts(xt).

Thus, the outgoing message error from node t to node s at iteration i + 1 is:

ei+1
ts (xs) =

m̂i+1
ts (xs)

mts(xs)
=

∫
ψts(xt, xs)Mts(xt)Ei

ts(xt)dxt∫
ψts(xt, xs)Mts(xt)Ei

ts(xt)dxtdxs
×

∫
ψts(xt, xs)Mts(xt)dxtdxs∫

ψts(xt, xs)Mts(xt)dxt
.

In the following, we will introduce two measures on message errors.

2.2.2.1 Dynamic-Range Measure

The dynamic-range measure of error introduced by (17) is defined as:

d(ei
ts) = max

a,b

√
ei
ts(a)

ei
ts(b)

. (2.5)

We have d(ei
ts) → 1 when ei

ts(x) → 1. In (17) [Th.8] it was shown that when d(ψts) =

maxa,b,c,d

√
ψts(a,b)
ψts(c,d) is finite, the dynamic-range measure satisfies the following contraction:

d(ei+1
ts ) ≤ d(ψts)2d(Ei

ts) + 1
d(ψts)2 + d(Ei

ts)
, (2.6)

in other words, based on the dynamic-range measure, the outgoing message error is bounded

by a non-linear function of the potential function and the incoming error product.



27

2.2.2.2 Maximum-Error Measure

To study the dynamics of message error propagation, dealing directly with errors is more

interesting than dealing with dynamic range. We thus introduce the following maximum mul-

tiplicative error function as an error measure:

max
xs

ei+1
ts (xs) = max

xs

∫
ψts(xt, xs)Mts(xt)Ei

ts(xt)dxt∫
ψt?(xt)Mts(xt)Ei

ts(xt)dxt
×

∫
ψt?(xt)Mts(xt)dxt∫

ψts(xt, xs)Mts(xt)dxt
, (2.7)

where ψt?(xt) =
∫

ψts(xt, xs)dxs. It is immediate that the maximum-error measure approaches

one when multiplicative errors vanish. We will show later that this error measure satisfies the

following contraction:

max
xs

ei+1
ts (xs) ≤

(
d(ψts)d(ψt?)d(Ei

ts) + 1
d(ψts)d(ψt?) + d(Ei

ts)

)2

. (2.8)

Dynamic-range measure and maximum-error measure are equivalent when the maximum

and minimum of an error function are reciprocal. By comparison, maximum-error measure

gives an absolute error, while dynamic-range measure gives a relative error which is invariant

to scaling. We will show in the following of the paper that maximum-error measure should be

used, when we are interested in absolute errors. Furthermore, both defined in dynamic-range

measure, d(ψts) and d(ψt?) correspond to two types of matrix norms on ψts. d(ψt?) in the RHS of

Inequality in (Equation 2.8) characterizes the effect of normalization factor on maxxs ei+1
ts (xs).

We will discuss the influence of d(ψt?) on error bounds in Section 2.2.4.
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2.2.3 Strength of Potential Functions

(16), (17) and (18) have defined measures of strength of potential functions respectively,

which help to obtain milder convergence conditions than those only related with topology of

graphical models. In the following, we will show the relationship between beliefs and strength

of pairwise potential functions.

2.2.3.1 Strength of Potential functions in (16)

(16) defined σt,s as the strength of a pairwise potential function ψts(xt, xs) meeting the

following equation:

1
1− σt,s

= max
xt,xs,x̂t,x̂s

ψts(xt, xs)ψts(x̂t, x̂s)
ψts(xt, x̂s)ψts(x̂t, xs)

.

This strength is related with the correlation of LBP marginals as follows:

Bts(xt, x̂s)
Bt(xt)Bs(x̂s)

≤ 1
1− σt,s

,

which was then utilized to give a milder convergence condition than the one only depending on

graph topology.
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2.2.3.2 Strength of Potential functions in (17)

(17) proposed the dynamic-range measure d(ψts) as the strength of potential functions

ψts(xt, xs). Let us restate the definition of the strength of potential functions and its relationship

with message errors in Section 2.2.1 as follows:

d(ψts) = maxxt,xs,x̂t,x̂s

√
ψts(xt,xs)
ψts(x̂t,x̂s)

,

d(ets) ≤ d(ψts)2d(Ets)+1
d(ψts)2+d(Ets)

.

2.2.3.3 Strength of Potential functions in (18)

(18) mentioned a measure of the strength of potential function ψts(xt, xs), which is defined

as:

N(ψts) = max
xt 6=x̂t,xs 6=x̂s

√
ψts(xt,xs)ψts(x̂t,x̂s)
ψts(x̂t,xs)ψts(xt,x̂s)

− 1
√

ψts(xt,xs)ψts(x̂t,x̂s)
ψts(x̂t,xs)ψts(xt,x̂s)

+ 1
=

1−√
1− σt,s

1 +
√

1− σt,s
. (2.9)

They defined log dynamic range measure as metric of errors. Let λts be the log message

reparameterization of message mts. That is,

λts(xs) = log mts(xs).

Denote ∆λ as the difference of log messages. Thus, we have

∆λts(xs) = log m̂ts(xs)− log mts(xs) = log ets(xs).
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By the quotient norm and Equation (41) in (18), we have the following metric of error

‖∆λts‖ =
1
2

sup
xs,x′s

|∆λts(xs)−∆λts(x′s)| = log d(ets). (2.10)

Using the quotient mapping approach of parallel LBP update in (18), we will find the

relationship between the strength of potential functions in (Equation 2.9) and the metric of

message errors in (Equation 2.10) in the following.

Because ‖∆λts‖ ≤
∑

u∈Γt\s ‖ ∂λts
∂λut

‖‖∆λut‖ and ‖ ∂λts
∂λut

‖ ≤ N(ψts) by Equation (36-45) in (18),

we have

log d(ets) ≤ N(ψts)
∑

u∈Γt\s log d(eut) ≤ N(ψts) log d(Ets),

or, d(ets) ≤ d(Ets)N(ψts).

We can observe that the smaller N(ψts) is, the smaller is d(ets); therefore, the faster is the

contraction of errors. The previous inequality reveals another result on contractive property of

message errors beside the one in (Equation 2.6).

In the following, we use the maximum-error measure in (Equation 2.7) to explore upper

and lower bounds on message errors, and derive upper bounds on the distances between beliefs.

2.2.4 Upper- and Lower-Bounds on Message Errors

Let us first introduce a lemma that will be used to prove our following theorem.
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Lemma 1. For f1, f2, g1, g2 all positive,

f1 + f2

g1 + g2
≤ max[

f1

g1
,
f2

g2
],

f1 + f2

g1 + g2
≥ min[

f1

g1
,
f2

g2
].

Proof. The left inequality is proved in (17). For the right inequality assume without loss of

generality that f1/g1 ≤ f2/g2 so that f1g2 ≤ f2g1 ⇒ f1g2+f1g1 ≤ f2g1+f1g1 ⇒ f1

g1
≤ f1+f2

g1+g2
.

In the following, we shall omit reference to the iteration number of the messages and errors

for simplicity and clarity of the presentation.

Theorem 2. Multiplicative outgoing errors are bounded as:

(
d(ψts)d(ψt?) + d(Ets)
d(ψts)d(ψt?)d(Ets) + 1

)2

≤ min
xs

ets(xs) ≤ ets(xs) ≤ max
xs

ets(xs) ≤
(

d(ψts)d(ψt?)d(Ets) + 1
d(ψts)d(ψt?) + d(Ets)

)2

.

Proof. Similar to the analysis in (17, Lemma 26), for (Equation 2.7), max ets(xs) reaches its

maximum when ψts(xt, xs) = 1 + (d(ψts)2 − 1)χψ(xt), ψt?(xt) = 1 + (d(ψt?)2 − 1)χ?(xt) and

Ets(xt) = 1 + (d(Ets)2 − 1)χE(xt), where χψ, χ? and χE are indicator functions. Define the

quantities:

MA =
∫

Mts(xt)χψ(xt)dxt, MB =
∫

Mts(xt)χ?(xt)dxt, ME =
∫

Mts(xt)χE(xt)dxt,

MAE =
∫

Mts(xt)χψ(xt)χE(xt)dxt, MBE =
∫

Mts(xt)χ?(xt)χE(xt)dxt,

α1 = d(ψts)2 − 1, α2 = d(ψt?)2 − 1, β = d(Ets)2 − 1.
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The maximum multiplicative error is upper-bounded by maxxs ets(xs) ≤ ∆1 where

∆1 = max
M

1 + α1MA + βME + α1βMAE

1 + α2MB + βME + α2βMBE

1 + α2MB

1 + α1MA
.

The maximum is obtained when MAE = MA = ME = 1−MB and MBE = 0, which gives

∆1 = max
ME

1 + (α1 + β + α1β)ME

1 + α2 + (β − α2)ME

1 + α2 − α2ME

1 + α1ME
.

Taking the derivative wrt ME and setting it to zero, we obtain

max
xs

ets(xs) ≤ ∆1 =
(

d(ψts)d(ψt?)d(Ets) + 1
d(ψts)d(ψt?) + d(Ets)

)2

. (2.11)

Similarly to what we have done so far, by our Lemma 1, we can lower-bound minxs ets(xs)

with respect to ψts(xt, xs), ψt?(xt) and Ets(xt), to obtain

min
xs

ets(xs) ≥
(

d(ψts)d(ψt?) + d(Ets)
d(ψts)d(ψt?)d(Ets) + 1

)2

=
1

∆1
. (2.12)

Theorem 3. The upper bound on the multiplicative error provided in Theorem 2 is tighter than

the following upper bound from (17, Th.2 and Th.8):

max
xs

ets(xs) ≤ d(ets)2 ≤
(

d(ψts)2d(Ets) + 1
d(ψts)2 + d(Ets)

)2

= ∆2. (2.13)
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Proof. Because ∆1 in (Equation 2.11) is increasing in d(ψt?) we conclude that (Equation 2.11)

implies (Equation 2.13), i.e., ∆1 ≤ ∆2, because

d(ψt?) = max
a,b

√
ψt?(a)
ψt?(b)

= max
a,b

√∫
ψts(a, xs)dxs∫
ψts(b, xs)dxs

≤ max
a,b

√
max
c,d

ψts(a, c)
ψts(b, d)

= max
a,b,c,d

√
ψts(a, c)
ψts(b, d)

= d(ψts).

We can see how d(ψt?) tightens the upper-bound by analyzing the log-distance between ∆1

and ∆2. Let d(ψt?) = Kd(ψts), where 1/d(ψts) ≤ K ≤ 1. Therefore, the log-distance between

∆1 and ∆2 is denoted as

D(K) = log ∆1 − log ∆2 = 2× log {Kd(ψts)2d(Ets) + 1
Kd(ψts)2 + d(Ets)

× d(ψts)2 + d(Ets)
d(ψts)2d(Ets) + 1

}.

We can easily find that the first gradient D(1)(K) > 0 when d(Ets) > 1. Thus, the maximum

log-distance between ∆1 and ∆2 is obtained at K = 1/d(ψts). In other words, when d(ψt?) = 1,

our upper-bound ∆1 is tighter than ∆2 at farthest.

2.3 Distance Bounds on Beliefs

In the study of convergence, we are interested to know how beliefs will vary at each iteration,

when LBP fails to converge. We will show that beliefs are bounded given the strength of

potential functions and the structure of the graph. In the following, we will present our uniform

distance bound and non-uniform distance bound on beliefs. Based on those bounds, we further
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present uniform convergence condition and non-uniform convergence condition for synchronous

LBP.

2.3.1 Uniform Distance Bound

Corollary 4. (Uniform Distance Bound)

The log-distance bound of fixed points on belief at node s is

∑

t∈Γs

log(
d(ψts)d(ψt?)ε + 1
d(ψts)d(ψt?) + ε

)2,

where ε should satisfy

log ε = max
(s,p)∈E

∑

t∈Γs\p
log(

d(ψts)d(ψt?)ε + 1
d(ψts)d(ψt?) + ε

)2.

Proof. Let ∆ut(x) = (d(ψut)d(ψu?)x+1
d(ψut)d(ψu?)+x )2, x ≥ 1, ut ∈ E. Therefore,

d(Ei
ts) ≤

∏

u∈Γt\s
d(ei

ut) =
∏

u∈Γt\s

max
√

ei
ut(xt)

min
√

ei
ut(xt)

≤ εi
ts =

∏

u∈Γt\s
∆ut(d(Ei−1

ut )).

Thus, we have

max
xs

Ei+1
sp (xs) ≤

∏

t∈Γs\p
max

xs

ei+1
ts (xs) ≤ εi+1

sp =
∏

t∈Γs\p
∆ts(d(Ei

ts))

≤
∏

t∈Γs\p
∆ts(εi

ts) ≤
∏

t∈Γs\p
∆ts( max

t∈Γs\p
εi
ts) = ∆3( max

t∈Γs\p
εi
ts).
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The term εi+1
sp is an upper-bound on the incoming error product Ei+1

sp (xs) at iteration

i + 1, while maxt∈Γs\p εi
ts is the maximum of the upper-bounds on the incoming error products

{Ei
ts(xt), t ∈ Γs\p} at iteration i. We hope to achieve that εi+1

sp < maxt∈Γs\p εi
ts. Denoting

ε = maxt∈Γs\p εi
ts, let us introduce an error bound-variation function:

Gsp(log ε) = log ∆3(ε)− log ε ≥ log εi+1
sp − log max

t∈Γs\p
εi
ts, ε ≥ 1, (2.14)

which describes variation of error bound after each iteration. When Gsp(log ε) = 0, the log-

distance bound log ε will reach a fixed point, which is the maximal distance between message

products at various iterations. Because G
(2)
sp (log ε) < 0 for log ε > 0 and G

(1)
sp (∞) = −1/2,

G
(1)
sp (log ε) will decrease until it is equal to −1/2. Therefore, it only has one crossing point

besides log ε = 0 (zero crossing point). This nonzero crossing point is a stable fixed point of

function Gsp(log ε). In other words, once log ε leaves the zero crossing point, it will stay at this

stable crossing point, log ε∗, which corresponds to the upper bound on error products.

Because the distance between fixed points of Bs(xs) is

log Es(xs) = log
∏

t∈Γs

ets(xs) ≤ log
∏

t∈Γs

∆ts(ε∗),

we can obtain the log-distance bound on Bs(xs) by taking the maximum ε∗.
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Adopting the upper-bound ∆2 in (Equation 2.13), the error bound-variation function is:

GI
sp(log ε) = log

∏

t∈Γs\p
(
d(ψts)2ε + 1
d(ψts)2 + ε

)2 − log ε. (2.15)

Let us denote our error bound-variation function in (Equation 2.14) as GO
sp(log ε). We can see

that GO
sp(log ε) < GI

sp(log ε). In other words, the uniform distance bound using our upper-

bound ∆1 is tighter than that using (17)’s upper-bound ∆2, which is illustrated in Figure 11.

Figure 11. Error bound-variation functions versus true error-variation function for the local
graph of node s. Potential functions on edges (t1, s), (t2, s), (t3, s) are the same. We also

impose the same incoming error product Ets on nodes t1, t2, t3. The dotted curves depict the
true error variation functions, {log maxx Esp(x)− log maxx Ets(x), t ∈ Γs\p}, which are

enveloped by our error bound-variation function GO
sp(log ε).
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Figure 12. Four simple graphical models: (a) a four-node fully connected graph; (b) a partial
graph that has one less edge than (a); (c) a nine-node fully connected graph ; and (d) a 3× 3

grid that is a partial graph of (c).

When the error bound-variation function is always less than zero, the maximum of error

bounds decreases after each iteration of LBP. In other words, LBP will converge. Therefore,

our uniform distance bound in Corollary 4 will lead to a sufficient condition for convergence of

LBP.

Theorem 5. (Uniform Convergence Condition)

Based on maximum-error measure, the sufficient condition for the convergence of sum-product

algorithm is

max
(s,p)∈E

∑

t∈Γs\p

d(ψts)d(ψt?)− 1
d(ψts)d(ψt?) + 1

<
1
2
.



38

Proof. Let us revisit the error bound-variation function in (Equation 2.14):

Gsp(log ε) = log
∏

t∈Γs\p
(
d(ψts)d(ψt?)ε + 1
d(ψts)d(ψt?) + ε

)2 − log ε,

which describes the variation of the error bound after each iteration. To guarantee that LBP

converges, it is sufficient to require Gsp(log ε) < 0,∀ log ε > 0. Let z = log ε. The second

derivative of Gsp(z) is

G(2)
sp (z) = 2×

∑

t∈Γs\p

d(ψts)d(ψt?)ez((d(ψts)d(ψt?))2 − 1)(1− e2z)
(d(ψts)d(ψt?)ez + 1)2(d(ψts)d(ψt?) + ez)2

≤ 0,

when d(ψts)d(ψt?) > 1 and z ≥ 0. When z > 0, Gsp(z) is strictly concave.

The first derivation of Gsp(z) is

G(1)
sp (z) = 2×

∑

t∈Γs\p

ez((d(ψts)d(ψt?))2 − 1)
(d(ψts)d(ψt?)ez + 1)(d(ψts)d(ψt?) + ez)

− 1.

Because Gsp(z = 0) = 0, if the first derivative G
(1)
sp (z = 0) < 0, we will have Gsp(z > 0) < 0.

Therefore,

G(1)
sp (0) = 2×

∑

t∈Γs\p

((d(ψts)d(ψt?))2 − 1)
(d(ψts)d(ψt?) + 1)(d(ψts)d(ψt?) + 1)

− 1 < 0

⇒
∑

t∈Γs\p

d(ψts)d(ψt?)− 1
d(ψts)d(ψt?) + 1

<
1
2
.
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Lemma 6. Our sufficient condition
∑

t∈Γs\p
d(ψts)d(ψt?)−1
d(ψts)d(ψt?)+1 < 1

2 is worse than the sufficient

condition in (17), which is
∑

t∈Γs\p
d(ψts)2−1
d(ψts)2+1

< 1.

Proof. 2(d(ψts)d(ψt?)−1
d(ψts)d(ψt?)+1) > d(ψts)2−1

d(ψts)2+1
.

This shows that dynamic-range measure is better than maximum-error measure with respect

to the sensitivity of the measure to convergence. Nevertheless, as for the upper bound on a

multiplicative message error ets(x), maximum-error measure gives a tighter result, which is

shown in Theorem 3.

Inspired by the sensitivity of dynamic-range measure to convergence, we present the fol-

lowing improved uniform distance bound, which first calculates the fixed-point values of er-

ror bounds in dynamic-range measure, and then computes the error bounds among beliefs in

maximum-error measure.

Corollary 7. (Improved Uniform Distance Bound)

The log-distance bound of fixed points on belief at node s is

∑

t∈Γs

log(
d(ψts)d(ψt?)ε + 1
d(ψts)d(ψt?) + ε

)2,

where ε should satisfy

log ε = max
(s,p)∈E

∑

t∈Γs\p
log

d(ψts)2ε + 1
d(ψts)2 + ε

.

Proof. Using the approach in (17, Theorem 12) to obtain distance bounds on incoming error

products in dynamic-range measure and applying our Theorem 2, we obtain our corollary.
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Figure 13. True distance, uniform distance bounds and non-uniform distance bounds for the
graph in Figure 12(a) with various η’s. The empirical critical value of η for LBP to converge

is η < 0.75.

Let see how our uniform distance bound and improved uniform distance bound perform for

graphical models in Figure 12 by comparison to the Fixed-point distance bound in (17). Let



41

0 5 10
0

0.2

0.4

0.6

0.8

node index

lo
g 

di
st

an
ce

 b
ou

nd
η=0.665

0 5 10

0.8

1

1.2

1.4

node index

lo
g 

di
st

an
ce

 b
ou

nd

η=0.67

0 5 10
2

3

4

5

node index

lo
g 

di
st

an
ce

 b
ou

nd

η=0.70

0 5 10
2

4

6

8

node index

lo
g 

di
st

an
ce

 b
ou

nd

η=0.75

0 5 10
4

6

8

10

12

node index

lo
g 

di
st

an
ce

 b
ou

nd

η=0.80

true error
UDB
Ihler−UDB
Improved−UDB
NUDB
Ihler−NUDB
Improved−NUDB

Figure 14. True distance, uniform distance bounds and non-uniform distance bounds for the
graph in Figure 12(c) with various η’s. The empirical critical value of η for LBP to converge

is η < 0.67.

all the pairwise potential functions be




η 1− η

1− η η


 where η > 0.5 and all the single node

potentials be




1

1


. Therefore, d(ψts) =

√
η/(1− η) and d(ψt?) = 1 for ∀ (t, s) ∈ E.
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Figure 15. True distance, uniform distance bounds and non-uniform distance bounds for the
graph in Figure 12(b) with various η’s. The empirical critical value of η for LBP to converge

is η < 0.83.

We compare the following bounds in our simulations: UDB, our uniform distance bound

in Corollary 4; Improved-UDB, our improved uniform distance bound in Corollary 7; Ihler-

UDB, Fixed-point distance bound in (17, Theorem 13). Figure 13 - Figure 16 illustrate the

performances of those bounds for graphs in Figure 12(a), (c), (b) and (d), respectively.
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Figure 16. True distance, uniform distance bounds and non-uniform distance bounds for the
graph in Figure 12(d) with various η’s. The empirical critical value of η for LBP to converge

is η < 0.79.

Graphs in Figure 12(a) and (c) are uniform (uniform degrees, uniform potential functions).

Given a specific η, all nodes have the same distance bound. For those two graphs, the empirical

critical values of η with respect to the convergence of LBP are 0.75 and 0.67 respectively. We can

see that, for various η’s, our Improved-UDBs are very close to the true errors between beliefs.

Our UDBs become tighter when η increases, while Ihler-UDBs become looser. From Figure 13
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and Figure 14, we can see that, compared to Ihler-UDB, our UDB requires stricter critical values

of η to ensure error bounds to be zeros. Specifically, for Figure 13, when η = 0.745, our UDBs

are non-zeros and Ihler-UDBs are zeros; hence, our UDB requires η < 0.745 for the convergence

of LBP, while Ihler-UDB only requires η < 0.75. Nevertheless, the critical values by our UDB

are 0.735 for Figure 12(a) and 0.66 for Figure 12(c), which are close to the empirical critical

values. Based on our UDB and Ihler-UDB, our Improved-UDBs will approximate zeros when

η approaches 0.75 and give tightest distance bounds for any η.

2.3.2 Non-Uniform Distance Bound

Figure 12(b) and Figure 12 (d) are non-uniform graphs. Because uniform distance bounds

are computed locally, beliefs on the nodes with different topologies will have different error

bounds, which can be observed from Figure 15 and Figure 16. We can also find that when

the true errors are zeros, uniform bounds are not all zeros. In other words, η must be smaller

than the empirical critical value to ensure the largest uniform distance bounds to be zero.

Furthermore, in such cases, uniform convergence conditions derived from uniform distance

bounds will not perform well as for uniform graphs. Therefore, when every loop contains

potentials with various strengths and each node has different topology, we present the following

non-uniform distance bound and improved non-uniform distance bound.

Corollary 8. (Non-uniform Distance Bound)

The non-uniform log-distance bound of fixed points on belief at node s after n ≥ 1 iterations is

∑

t∈Γs

log(
d(ψts)d(ψt?)εn

ts + 1
d(ψts)d(ψt?) + εn

ts

)2,
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where εi
ts is updated by

log εi
ts =

∑

u∈Γt\s
log(

d(ψut)d(ψu?)εi−1
ut + 1

d(ψut)d(ψu?) + εi−1
ut

)2

with initial condition

log ε1
ut =

∑

v∈Γu\t
log(d(ψvu)d(ψv?))2.

Proof. The result can be easily proved from Corollary 4, by defining the error bound-variation

function in (Equation 2.14) as follows:

Gts(log εi
ts) = log

∏

u∈Γt\s
∆ut(εi−1

ut )− log εi
ts =

∑

u∈Γt\s
log(

d(ψut)d(ψu?)εi−1
ut + 1

d(ψut)d(ψu?) + εi−1
ut

)2 − log εi
ts.

Similarly, based on the fact that the dynamic-range measure gives better convergence con-

dition than the maximum-error measure, we improve the previous non-uniform distance bound

in the following.

Corollary 9. (Improved Non-uniform Distance Bound)

The improved non-uniform log-distance bound of fixed points on belief at node s after n ≥ 1

iterations is

∑

t∈Γs

log(
d(ψts)d(ψt?)εn

ts + 1
d(ψts)d(ψt?) + εn

ts

)2,



46

where εi
ts is updated by

log εi
ts =

∑

u∈Γt\s
log

d(ψut)2εi−1
ut + 1

d(ψut)2 + εi−1
ut

with initial condition log ε1
ut =

∑
v∈Γu\t log d(ψvu)2.

Proof. The proof is similar to that for Corollary 7.

Let see the performaces of our non-uniform distance bound and improved non-uniform dis-

tance bound for the graphs in Figure 12 compared with the non-uniform distance bound in (17,

Thm. 14). We denote the bounds in our simulation as follows: NUDB, our non-uniform dis-

tance bound in Corollary 8; Improved-NUDB, our improved non-uniform distance bound in

Corollary 9; Ihler-NUDB, non-uniform distance bound in (17, Theorem 13).

For uniform graphs in Figure 12(a) and (c), NUDB performs exactly the same as UDB.

However, for non-uniform graphs in Figure 12(b) and (d), because NUDB propagates error

bounds throughout the whole graph rather than on a local neighborhood, NUDBs are tighter

than UDBs, which can be observed from Figure 15 and Figure 16. For various η’s, our

Improved-NUDBs always approach the true errors. Therefore, when our Improved-NUDB is

zero, η almost equals the empirical critical value to ensure convergence of LBP. Though worse

than Improved-NUDB, our NUDB performs better than Ihler-NUDB when η is far way from

the area of convergence.

2.3.2.1 Non-Uniform Convergence

Based on our Improved-NUDB or Ihler-NUDB, a sufficient convergence condition of LBP

can be derived, which is based on the dynamic-range measure of propagating errors.
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For each cycle-involved vertex v, TB(G, v, n) is the corresponding Bethe tree. Let VB be the

set of vertices in the Bethe tree. For wi ∈ VB, i = 0, ..., |VB| − 1, l(wi) is the labelling function

which maps wi to the original vertex in G. Let l(w0) = v.

Theorem 10. (Non-Uniform Convergence Condition)

For a graphical model G(V,E), {TB(G, v, n), v ∈ V} is the set of n-th level Bethe trees. The

non-uniform sufficient condition for the convergence of sum-product algorithm is:

max
l(w0)=v∈V

∑

wi∈Γw0

d(ψl(wi)l(w0))2 − 1
d(ψl(wi)l(w0))2 + 1

∑

wj∈Γwi\w0

d(ψl(wj)l(wi))
2 − 1

d(ψl(wj)l(wi))2 + 1
...

∑

wr∈Γwq\wp

d(ψl(wr)l(wq))2 − 1
d(ψl(wr)l(wq))2 + 1

< 1,

(2.16)

where Γwi is the set of neighbors of wi.

Proof. Recall that in the proof of uniform convergence condition, we use an error bound-

variation function Gsp(log ε), which is originally to describe (log εi+1
sp − log εi

ts), for ∀(s, p) ∈ E.

For each TB(G, v, n), let us introduce the following error bound-variation function:

Gv({log εwiw0}, log ε) =
∑

wi∈Γw0
log

d(ψl(wi)l(w0))
2εwiw0+1

d(ψl(wi)l(w0))
2+εwiw0

− log ε,

log εwiw0 =
∑

wj∈Γwi\w0
log

d(ψl(wj)l(wi)
)2εwjwi+1

d(ψl(wj)l(wi)
)2+εwjwi

,

...

log εwqwp =
∑

wr∈Γwq\wp
log

d(ψl(wr)l(wq))
2ε+1

d(ψl(wr)l(wq))
2+ε

,

where {wr} is the set of leaf nodes of TB(G, v, n).
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To guarantee LBP to converge, it is sufficient to have Gv(log ε) < 0 for ∀ log ε > 0. Because

Gv(log ε = 0) = 0, when G′
v(log ε = 0) < 0, we will definitely have Gv(0 < log ε < δ) < 0, where

δ is a small positive value. When Gv(log ε) is concave, δ can be infinity so that the convergence

of LBP is true for ∀ log ε > 0. However, because Gv(log ε) is not guaranteed to be concave, we

will only obtain local convergence for an infinitesimal δ.

Define fwjwi(εwjwi) = log
d(ψl(wj)l(wi)

)2εwjwi+1

d(ψl(wj)l(wi)
)2+εwjwi

. Thus, we have the first derivative of

Gv({log εwiw0}, log ε) as follows:

∂Gv({log εwiw0}, log ε)
∂ log ε

=
∑

wi∈Γw0

f ′wiw0

∑

wj∈Γwi\w0

f ′wjwi
....

∑

wr∈Γwq\wp

f ′wrwq
− 1,

where f ′ = ∂f(log ε)
∂ log ε = (d(ψ)4−1)ε

(d(ψ)2ε+1)(d(ψ)2+ε)
. Plugging log ε = 0 into the previous equation, we

obtain our non-uniform convergence condition.

When we derive our non-uniform convergence condition based on the SAW tree, we will have

the following corollary. For each cycle-involved vertex v, TSAW (G, v, n) is the corresponding

SAW tree. Let VSAW be the set of vertexes in the SAW tree. For wi ∈ VSAW , i = 0, ..., |VSAW |−

1, l(wi) is the labelling function which maps wi to the original vertex in G. Let l(w0) = v.

Corollary 11. Non-uniform convergence condition (SAW tree)

For a graphical model G(V,E), {TSAW (G, v, n), v ∈ V} is the set of SAW trees. The non-

uniform sufficient condition for the convergence of sum-product algorithm is:

max
l(w0)=v∈V

∑

wi∈Γw0

d(ψl(wi)l(w0))2 − 1
d(ψl(wi)l(w0))2 + 1

∑

wj∈Γwi\w0

d(ψl(wj)l(wi))
2 − 1

d(ψl(wj)l(wi))2 + 1
...

∑

wr∈Γwq\wp

d(ψl(wr)l(wq))2 − 1
d(ψl(wr)l(wq))2 + 1

< 1,
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where Γwi is the set of neighbors of wi.

When a graph has uniform potential functions with strength d(ψ), to ensure convergence,

it is sufficient to have

max
l(w0)=v∈V

∑

wi∈Γw0

d(ψ)2 − 1
d(ψ)2 + 1

∑

wj∈Γwi\w0

d(ψ)2 − 1
d(ψ)2 + 1

...
∑

wr∈Γwq\wp

d(ψ)2 − 1
d(ψ)2 + 1

< 1. (2.17)

Let us apply our non-uniform convergence condition to the graphs in Figure 12(b) and (d)

with uniform potential functions as in the previous simulations. For the graph in Figure 12(b),

we obtain the critical value η < 0.78 for convergence of LBP, which is closer to the empirical

value η < 0.83, compared to η < 0.75 obtained by uniform convergence condition. For the graph

in Figure 12(d), we obtain the critical value η < 0.77, while the empirical value is η < 0.79

and the critical value obtained by uniform convergence condition is η < 0.67.

2.4 Convergence of Loopy Belief Propagation

2.4.1 Sparsity and Convergence

To compute our non-uniform convergence condition is not easy, when the graph is not sparse

or not symmetric. Nevertheless, our Theorem 10 can be used to deduce convergence properties

of sparse graphs.

It lacks theoretical verification that the more sparse a graph is, the less stricter is its con-

vergence condition. However, the definition of sparse graphs is vague; therefore, to be confined,

we would relate sparsity with partial graphs. Let us define partial graphs and introduce the

convergence property of such graphs in the following.



50

Definition 1. (Reduction)

A path composed of two edges (v1, v2) and (v2, v3) can be reduced to a path composed of one edge

(v1, v3), where ψv1v3(xv1 , xv3) =
∫
xv2

ψv1v2(xv1 , xv2)ψv2v3(xv2 , xv3)dxv2, when there is no branch

on the path.

Definition 2. (Extension)

A path composed of one edge (v1, v3) can be extended to a path composed of two edges (v1, v2)

and (v2, v3), where
∫
xv2

ψv1v2(xv1 , xv2)ψv2v3(xv2 , xv3)dxv2 = ψv1v3(xv1 , xv3).

Definition 3. (Partial Graphs)

For two graphical models G1(V1,E1) and G2(V2,E2) after reduction and extension, there exists

an isomorphism between graphs G1(V1,E1) and G2(V∗2,E∗2), when V∗2 ⊆ V2 and E∗2 ⊂ E2. When

E2 − E∗2 is cycle-involved, we call G1 a partial graph of G2 and denote it as G1 ⊂ G2.

Theorem 12. (Strictness of Convergence Condition for Two Partial Graphs)

Given G1 and G2 as defined in Definition 3, assume that G1 ⊂ G2. Assume the dynamic-range

measures of potential functions for edges in E1 are not greater than those of potential functions

for corresponding edges in E∗2. Then, when LBP for G2(V2,E2) converges, LBP for G1(V1,E1)

must converge; however, the reverse implication is not true in general.

Proof. Because G1 ⊂ G2 and E2−E∗2 are cycle-involved, TB(G1, v, n) ⊂ TB(G2, v, n). Therefore,

LHS of Inequality (Equation 2.16) for G2 has more summands than the corresponding quantity

for G1. When G2 satisfies the convergence condition, G1 must satisfy it. However, when G1

satisfies the convergence condition, G2 may not satisfy it.
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When the potential functions of a graph are uniform, we have the following corollary.

Corollary 13. (Critical Values of Convergence for Two Partial Graphs)

Given G1 ⊂ G2, G1 and G2 have uniform potential functions ψi =




ηi 1− ηi

1− ηi ηi


 , i = 1, 2

on all edges. Then, the critical values for convergence of LBP satisfy η2 < η1.

Proof. Because LHS of (Equation 2.17) for G2 has more summands than the corresponding

quantity for G1, we easily have d(ψ2) < d(ψ1) to satisfy the inequality. Because d(ψi) =

√
ηi/(1− ηi), we get η2 < η1.

Our Theorem 12 and Corollary 13 can be easily extended to strictness of convergence con-

dition of LBP for a set of partial graphs, and for those with uniform potential functions.

Corollary 14. (Strictness of Convergence Condition for Set of Partial Graphs)

Given G1 ⊂ G2... ⊂ Gk, assuming the dynamic-range measures of potential functions on iso-

morphous edges of those graphs are correspondingly non-decreasing in the previous partial order,

LBP convergence for Gm implies LBP convergence for Gn, where m > n and m,n = 1, ..., k.

However, the reverse implication is not true in general.

Corollary 15. (Critical Value of Convergence for Set of Partial Graphs)

Given G1 ⊂ G2... ⊂ Gk, G1,..., Gk have uniform potential functions




ηi 1− ηi

1− ηi ηi


 , 1 ≤ i ≤

k on all edges. Then, the critical values for convergence of LBP satisfy ηk < ηk−1... < η1.

By our Corollary 14 on partially ordered graphs, we can conclude that graphs with less cycle-

induced edges are more sparse and thus have weaker convergence condition. It is intuitively
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true that the strength of potential functions for Figure 12(a) or Figure 12(c) should be weaker

than that for Figure 12(b) or Figure 12(d) to ensure convergence of LBP. However, it can be

soundly verified by our previous corollaries.

2.4.2 Walk-Summability and Convergence

Figure 17. Diagram summarizing mildness of convergence conditions. The SAW tree is a
partial tree of the N -level Bethe tree, therefore, convergence condition based on the SAW tree

is stronger.

When a model is related to a Gaussian Distribution, the analysis of its properties becomes

comparatively simple. Proposition 21 in (44) states that “If a model on a (Gaussian) graph

G is walk-summable, then LBP is well-posed, the means converge to the true means and the
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LBP variances converge to walk-sums over the backtracking self-return walks at each node”.

Enlightened by the analysis for Gaussian graphical model, we will extend its walk-summability

perspective to general graphical models and relate the convergence property of LBP with walk-

sums in the following.

Let R be the correlation matrix of a Gaussian graphical model. When
∑

l R̄
l converges,

where R̄ij = |Rij | and l is the length of walk, the Gaussian graphical model is walk-summable.

Let ρ(R̄) be the spectral radius of R̄. The previous definition of walk-summability is equivalent

to the spectral radius satisfying ρ(R̄) < 1. For a Gaussian graphical model, the interaction

between two random variables is the correlation coefficient. However, for a general graphical

model, we have multi-dimensional potential functions. We hope to find a scaler quantity to

represent the interaction between two random variables as well. In Theorem 10, we add up

all the n-th step walks from a root node, where a walk on edge (t, s) is the quantity d(ψts)2−1
d(ψts)2+1

.

Similarly to the correlation coefficient, we can treat this quantity as the strength of the inter-

action. Let W be the strength matrix with entry wts = d(ψts)2−1
d(ψts)2+1

. When a general graphical

model satisfies ρ(W ) < 1, we say it as walk-summable, which has also been shown to be re-

lated with the convergence of LBP. (18) present a convergence condition for general graphical

model: spectral radius ρ(Ŵ ) < 1, by using a different strength matrix ŵts = d̂(ψts)2−1

d̂(ψts)2+1
, where

d̂(ψts)2 = maxxt,xs,x̂t,x̂s

ψts(xtxs)ψts(x̂tx̂s)
ψts(x̂txs)ψts(xtx̂s)

. This convergence condition is equivalent to the walk-

summability of the graphical model with the strength matrix Ŵ .

Let us compare the walk-summability of a general graph with our non-uniform convergence

condition in Theorem 10. Because ρ(W ) < 1 is equivalent to ‖WN‖1 < 1, N → ∞ (18), and
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the walk-sum in the LHS of (Equation 2.16) for a N -level Bethe tree is smaller than ‖WN‖1, we

can derive that our non-uniform convergence condition in Theorem 10 is milder than ρ(W ) < 1,

which is illustrated in Figure 17(a).

When the convergence condition based on N -level Bethe tree is satisfied, the convergence

condition based on infinite Bethe tree must be satisfied, because the error bounds are guaranteed

to decrease after N iterations of error propagation. Similarly, convergence condition based on

N -level Bethe tree is milder than that based on SAW tree. Mildness of convergence conditions

is shown in Figure 17(b).

2.5 Accuracy and Convergence Rate of Loopy Belief Propagation

In the following, we will analyze the performance of LBP with respect to accuracy and

convergence rate.

2.5.1 Accuracy Bounds for Loopy Belief Propagation

Recently, (25) presented an accuracy bound for LBP which relates the belief of a random

variable to its true marginal. He showed that there exists a configuration on some nodes of the

SAW tree rooted at certain node s of the original graph, such that the true maginal at node s is

equal to the belief at root s of the SAW tree. Therefore, given certain external force functions

on a subset of nodes, he adopted the non-uniform distance bound in (17, Thm. 14) to obtain

an accuracy bound between beliefs and true marginals.

Given d(p(x)/b(x)) ≤ δ, his accuracy bound is as follows:

b(x)
δ2 + (1− δ2)b(x)

≤ p(x) ≤ δ2b(x)
1− (1− δ2)b(x)

, (2.18)
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where δ is an error bound in dynamic-range measure, p(x) is the normalized true marginal and

b(x) is the normalized belief. Note that δ in (25, Lemma 5) should be δ2.

Because our improved non-uniform distance bound has been shown tighter than his non-

uniform bound, we can improve his accuracy bound between the belief and the true marginal.

Let maxx | log p(x)/b(x)| ≤ log ε, where ε is an error bound in maximum-error measure applying

our Corollary 8, under certain external force functions on a subset of nodes of the SAW tree.

Therefore, we have the accuracy bound as b(x)/ε ≤ p(x) ≤ εb(x), where ε < δ2. Combining

our accuracy bound with the bound in (Equation 2.18), we have the improved bound

max{b(x)/ε,
b(x)

δ2 + (1− δ2)b(x)
} ≤ p(x) ≤ min{εb(x),

δ2b(x)
1− (1− δ2)b(x)

}.

2.5.2 Rate of Convergence and Residual Scheduling

For an iterative algorithm such as LBP, the rate of convergence is an important crite-

ria of performance. We will analyze the convergence rate of LBP by looking into the de-

creasing gradient of error bounds on messages. The error bound-variation function Gsp(log ε)

in (Equation 2.14) is a measure of the variation of error bounds between successive iterations;

on the other hand, it reflects how fast LBP converges, because the smaller Gsp(log ε) is, the

faster error bounds decrease. Because dynamic-range measure is better than maximum-error

measure in terms of convergence of LBP, we will use the error bound-variation function as

follows:

Gsp(log ε) = log
∏

t∈Γs\p

d(ψts)2ε + 1
d(ψts)2 + ε

− log ε,
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where ε is an error bound in dynamic-range measure on incoming error product. We will use

the first derivative of the function as a metric on the rate of convergence:

G(1)
sp (log ε) =

∑

t∈Γs\p

ε((d(ψts)4 − 1)
(d(ψts)2ε + 1)(d(ψts)2 + ε)

− 1.

Recall that G
(1)
sp (log ε) should be less than zero to ensure convergence. When we have infinites-

imal error disturbance, |G(1)
sp (0)| will be used as the local rate of convergence. Because our rate

of convergence varies with each direction of message passing, messages on the direction with

the greatest rate will be updated prior to others in dynamic scheduling.

Some works have been done to utilize message residuals as a way of priority in dynamic

scheduling by (29) and (30). Rather than calculating future message residuals, (30) utilized

their upper-bounds as estimates of message residuals in their scheduling algorithm RBP0L. They

adopted maximum-error measure as a metric of message residuals, which was defined by them as

r(mts) = maxxs | log ets(xs)|. They showed that by the contraction property of maximum-error

measure it can be upper-bounded as r(mts) ≤
∑

u∈Γt\s r(mut). However, their upper-bound is

not theoretically sound, because they ignored the normalization factor in their proof. Therefore,

we can modify their RBP0L by utilizing our upper-bound in (Equation 2.8). However, from

some simulation results, the rate of convergence of their original heuristic algorithm is not

substantially improved.
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2.6 Message Errors for Completely Uniform Binary Graphs

In Section 2.3, we discussed uniform and non-uniform distance bounds on beliefs. An error

bound-variation function was introduced to study the variation between error bounds at one

level and those at its upper-level in the Bethe tree. However, to study the mechanism behind

message passing, we are more interested to know the variation of true errors. Because it is

usually hard to identify the true error-variation function except for binary graphs, in this

section, we will explore fixed points and true error variation functions for binary graphs.

Let us first introduce a well-studied binary graph – Ising model. The probability measure

of Ising model can be expressed as:

P (x) =
1
Z

exp (
∑

(s,t)∈E
Jstxsxt +

∑

s∈V
θsxs), (2.19)

corresponding to ψst(xs, xt) = exp (Jstxsxt) and ψs(xs) = exp (θsxs) in (Equation 2.1). Because

{xs} are ±1-valued, potential functions can also be expressed as




exp (Jst) exp (−Jst)

exp (−Jst) exp (Jst)


 and




exp (θs)

exp (−θs)


. However, rather than working on the Ising model, we will study a completely uni-

form model (uniform connectivity, uniform potential functions) in the following, which has the

pairwise potential functions




a b

b a


 and single-node potential functions




c

d


, where a, b, c, d

are positive. Similar to (Equation 2.3), we will multiply single-node potentials in beliefs and

only discuss the influence of pairwise potential functions on message errors.
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We can easily obtain that a completely uniform graph has uniform messages.

Property 1. For a completely uniform graphical model, when synchronous LBP reaches a

steady state, all messages are the same.

Proof. Completely uniform graphs are topologically invariant for each node. In other words,

each message has the same LBP update equation. If some messages are different, for the

symmetric network, LBP will not reach a steady state.

Because messages have the same LBP update equation, we can calculate the fixed-point

messages exactly and discuss the distances between them.

2.6.1 Fixed Points and Quasi-Fixed Points

Let us first discuss fixed-point messages for completely uniform graphs. Assume the degree

of each node is k. Let mout =




y

1− y


 denote the outgoing message and min =




x

1− x




denote each incoming message. Therefore, we have the following LBP updating function:

y = F (x) =
axk + b(1− x)k

(a + b)(xk + (1− x)k)
. (2.20)

We can easily find that (Equation 2.20) is symmetric with respect to the point (x = 0.5, y = 0.5).

Synchronous LBP update corresponds to the fixed-point iteration function xn+1 = F (xn), where

n is the iteration number. When xn+1 = xn, LBP message reaches a fixed point. However, we

sometimes have xn+k = xn or F k(x) = x, where F k(x) is the composition function of F (x) with

itself k times, which shows kth-order periodicity. We define the solutions to F k(x) = x, k > 1
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as quasi-fixed points, among which a belief network will oscillate. In the following, we will show

that LBP for completely uniform binary graphs will have at most second order periodicity.

Property 2. LBP updating function in (Equation 2.20) has at most three real fixed points.

Proof. The second derivative of F (x) is as follows: when a > b

F (2)(x) = ((2x−k−1)xk+(2x+k−1)(1−x)k)×k(a− b)xk−2(1− x)k−2

(a + b)(xk + (1− x)k)3
=





> 0, x ∈ (0, 0.5)

< 0, x ∈ (0.5, 1)

= 0, x = 0, 1, 0.5

.

We can see that F (x) is strictly convex when 0 < x < 0.5 and strictly concave when 0.5 < x < 1.

Similarly, for a < b, F (x) is strictly concave when 0 < x < 0.5 and strictly convex when

0.5 < x < 1. When this function intersects with an arbitrary line, there must be at most three

crossing points. As shown in Figure 18(a), it must have at most three crossings with y = x;

similarly with y = 1− x in Figure 18(b).

We will show the symmetry of fixed-point messages for uniform binary graphs as follows.

Property 3. For a completely uniform binary graph, synchronous LBP will either converge to

the unique fixed point




0.5

0.5


, or converge to one of




x∗

1− x∗


 and




1− x∗

x∗


 when a > b (fer-

romagnetic), or oscillate between




x∗

1− x∗


 and




1− x∗

x∗


 when a < b (anti-ferromagnetic).

When a > b, x∗ is the solution to x∗ = F (x∗); otherwise, x∗ is the solution to 1− x∗ = F (x∗).
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Figure 18. LBP updating function in (Equation 2.20) for a > b and a < b.

Proof. Let us analyze the fixed points by solving the set of equations

y = F (x) (2.21a)

x = F (y) (2.21b)

which corresponds to second order periodicity x = F 2(x). The set of equations is depicted

in Figure 18 for a > b and a < b respectively. We can easily find that F (x) and F (y)

are symmetric with respect to y = x. Moreover, because F (x) is symmetric about the point

(0.5, 0.5), we have F (1−x) = 1−F (x). Therefore, it is easy to see that F (x) and F (y) are also

symmetric with respect to y = 1 − x. Let us check whether the two functions are symmetric

with respect to other lines such as y = β + αx. Substitute y = β + αx and x = 1
α(y − β)

in (Equation 2.21a). We have β +αx = a(y−β)k+b(α−(y−β))k

(a+b)((y−β)k+(α−(y−β))k)
. For this equation to be always
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equivalent to (Equation 2.21b), we have (α = 1, β = 0) or (α = −1, β = 1). Thus, the set of

equations is only symmetric with respect to y = x and y = 1− x.

When y = F (x) and x = F (y) intersect, they must have crossing points on y = x or y = 1−x.

In the following, we will show that they do not cross elsewhere. When a > b, let us assume

these two functions have one crossing point A not on y = x and y = 1− x, which is illustrated

in Figure 18 (a). Due to the symmetry between F (x) and F (y), they must have the other three

crossing points B,C and D shown in Figure 18 (a) respectively. Both functions must go through

those points. The first derivative of F (x) is F (1)(x) = k(a−b)xk−1(1−x)k−1

(a+b)((1−x)k+xk)2
=





> 0, a > b

< 0, a < b

, which

shows that function F (x) is either monotonic increasing or monotonic decreasing. Because

yB < yA, when xB > xA, we arrive at a contradiction with the monotonic increasing property

under the condition a > b. Similar result is for a < b. According to Property 2, y = F (x) and

x = F (y) have at most three real crossings points with an arbitrary line. Therefore, we can see

that the set of equations will have at most three crossing points with either y = x or y = 1−x.

The set of equations in (Equation 2.21a) and (Equation 2.21b) has a naive fixed point

(0.5, 0.5). However, it is only stable when the set of equations in (Equation 2.21a) and (Equation 2.21b)

crosses nowhere else on y = x and y = 1 − x. When a > b and F (1)(1
2) = k(a−b)

(a+b) > 1, we can

see that the belief network will either converge at fixed point E or at fixed point F on y = x.

In this case, the fixed point at x = 0.5 is an unstable point. When a < b and F (1)(1
2) < −1,

the belief network will eventually oscillate between E and F on y = 1 − x, which is shown in

Figure 18 (b). The fixed point at x = 0.5 is again an unstable fixed point. Because F (x) is
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symmetric with respect to (x = 0.5, y = 0.5), points E and F are symmetric with respect to

(x = 0.5, y = 0.5).

From the previous property, we can conclude that completely uniform binary graphs will

have at most second order periodicity. In other words, F 2n(x) = x ⇔ F 2(x) = x and

F 2n−1(x) = x ⇔ F (x) = x.

Let us calculate the fixed points and quasi-fixed points for the uniform graph in Figure 12(c)

with a = η and b = 1 − η. Solving x = ηx3+(1−η)(1−x)3

x3+(1−x)3
and 1 − x = ηx3+(1−η)(1−x)3

x3+(1−x)3
yields the

fixed points and quasi-fixed points respectively, for the graph in Figure 12(c). Specifically,

we can obtain four solutions of fixed points {1
2 , 1

2 ,
−2+η−

√
−4+8η−3η2

2(−2+η) ,
−2+η+

√
−4+8η−3η2

2(−2+η) } and

four solutions of quasi-fixed points {1
2 , 1

2 ,
1+η−

√
1−2η−3η2

2(1+η) ,
1+η+

√
1−2η−3η2

2(1+η) }. When η > 2/3, the

graph has two real fixed points except 0.5; when η < 1/3, the graph has two real quasi-fixed

points except 0.5; when 1/3 < η < 2/3, the graph has one real fixed point 0.5. For instance,

when η = 0.7, we have two stable fixed points (0.9071, 0.0929) and (0.0929, 0.9071); when

η = 0.3, we have two quasi-fixed points (0.9071, 0.0929) and (0.0929, 0.9071). We observe that

both cases have the same strength of potential function d(ψ)2 = 0.7/0.3, though their dynamic

characteristics are different.

Based on Property 3, we find that for completely uniform graphs, the maximum multi-

plicative error and the minimum multiplicative error between two fixed-point messages are

reciprocal. In other words, d(e(x)) = max e(x). Therefore, compared to our uniform distance

bound in Corollary 4, we have a tighter distance bound as follows.
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Corollary 16. (Uniform Distance Bound for Completely Uniform Binary Graph)

G(V,E) is a completely uniform binary graphical model. The log-distance bound on beliefs at

node s is

∑

t∈Γs

log
d(ψts)2ε + 1
d(ψts)2 + ε

,

where ε should satisfy

log ε = max
(s,p)∈E

∑

t∈Γs\p
log

d(ψts)2ε + 1
d(ψts)2 + ε

.

Proof. log max Es = log d(Es) ≤
∑

t∈Γs
log d(ets) ≤

∑
t∈Γs

log d(ψts)2ε+1
d(ψts)2+ε

.

For the uniform graph in Figure 12(c), when η = 0.7, we have the true log-distance equal to

2.2785, while our previous log-distance bound in Corollary 16 obtains 2.2785, which is exactly

equal to the true value, and our Improved-UDB in Corollary 7 obtains 2.3318.

2.6.2 True Error-Variation Function

In this section, we characterize the true error-variation function for a completely uniform

binary graph. We have the following message updating equation:




meout
1

(1−m)eout
2


 =

1
a + b




a b

b a







MEin
1

(1−M)Ein
2


 ,
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where M is the product of fixed-point incoming messages, m is the fixed-point outgoing message,

Ein represents the product of incoming errors and eout represents the outgoing error. Assuming

Ein is the same for each node at a level on the Bethe tree, we have the following error equation:




Eout
1

Eout
2


 =

(aM + b(1−M))k + (bM + a(1−M))k

(aMEin
1 + b(1−M)Ein

2 )k + (bMEin
1 + a(1−M)Ein

2 )k




(aMEin
1 +b(1−M)Ein

2 )k

(aM+b(1−M))k

(bMEin
1 +a(1−M)Ein

2 )k

(bM+a(1−M))k


 ,

where Eout is the product of outgoing errors flowing into a node at the upper level. When
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M=(0.8467, 0.1533)
or

M=(0.1533, 0.8467)

Figure 19. True error variation function when Ms are fixed-point messages for the completely
uniform graph in Figure 12(c). a = 0.7, b = 0.3. The fixed-point messages are:

M = (0.8467, 0.1533), M = (0.1533, 0.8467) and M = (0.5, 0.5).
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Ein
1 > Ein

2 and a > b, we have Eout
1 > Eout

2 . Therefore, letting E denote Ein
1 , we obtain the

true error variation function:

G(log(E)) = log maxEout − log max Ein

= log (
(aME + b(1−ME))k

(aM + b(1−M))k
· (aM + b(1−M))k + (bM + a(1−M))k

(aME + b(1−ME))k + (bME + a(1−ME))k
)− log E,

(2.22)

when 1 < E < 1/M and a > b.

An example of the true error variation function is illustrated in Figure 19. The curve of

G(log E) varies with the choice of M . When G(log E) does not cross the horizontal axis except

log E = 0, log E will eventually decrease to zero. In such a case, LBP converges to a unique

fixed point. However, when G(log E) crosses the horizontal axis besides log E = 0, log E will

decrease to stable points of solutions of G(log E) = 0, which implies that the product of the

incoming errors at one level equals the product of the incoming errors at its upper level. In other

words, errors will not decrease after one LBP update. From the example in Figure 19, we can

observe that the zero-crossing points of log E correspond to the exact log distances between two

fixed-point messages. Therefore, our true error function in (Equation 2.22) characterizes the

true distance between fixed points, when LBP does not converge. Furthermore, from the curve

corresponding to the unstable message M = (0.5, 0.5) in Figure 19, we can find that a small

perturbation on the message will easily change it to a stable one. On the other hand, as observed
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from curves corresponding to M = (0.8467, 0.1533) or M = (0.1533, 0.8467) in Figure 19, the

stable message can still be perturbed into other stable message by a big perturbation.

2.7 Error Bound for the Max-Product Algorithm

Our goal is to apply message error analysis on the max-product algorithm, which is the

LBP algorithm for MAP estimation. We present here an upper-bound on max-message errors.

Max-product algorithm works well for MAP estimation, which aims to obtain a configuration

that maximizes (Equation 2.1). We can formulate the MAP problem as follows: x̂MAP =

arg maxx P (x).

For a tree-structured graph, when the MAP configuration is unique, max-product algorithm

in (45) can provide max-marginals which correspond to the MAP configuration. However, for

graphs with cycles, max-product algorithm can still provide remarkable good approximations.

The max-product update rules are:

mi
ts(xs) ∝ maxxt ψts(xt, xs)ψt(xt)

∏
u∈Γt\s mi−1

ut (xt), (2.23)

Bi
t(xt) ∝ ψt(xt)

∏
u∈Γt

mi
ut(xt). (2.24)

Bi
ts(xt, xs) ∝ ψts(xt, xs)ψt(xt)ψs(xs)

∏
u∈Γt\s mi

ut(xt)
∏

p∈Γs\t mi
ps(xs). (2.25)

Similarly to sum-product algorithm, we can define message errors and analyze the error prop-

agation of max-product algorithm. By way of p-norm-product belief propagation in (42), we

present the following contraction property of max-product message errors.

Corollary 17. maxxs ets(xs) ≤ min((d(ψts)d(ψt?))2, d(Ets)2), where ψt?(xt) = maxxs ψts(xt, xs).
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Proof. Max norm is equivalent to the p-norm when p tends to ∞, which is defined in the

following for an arbitrary function f(x):

max
x

f(x) = ‖f(x)‖p =
(∫

f(x)pdx

)1/p

, p →∞.

Therefore, the message error for p-norm-product message passing is

ets(xs) =
(
∫

(ψts(xt, xs)Mts(xt)Ets(xt))pdxt)1/p

(
∫

(ψts(xt, xs)Mts(xt)Ets(xt))pdxtdxs)1/p
× (

∫
(ψts(xt, xs)Mts(xt))pdxtdxs)1/p

(
∫

(ψts(xt, xs)Mts(xt))pdxt)1/p
.

Let us denote ψt?(xt) = (
∫

(ψts(xt, xs))pdxs)1/p. The maximum-error measure is thus as follows:

max
xs

ets(xs) = max
xs

(∫
(ψts(xt, xs)Mts(xt)Ets(xt))pdxt∫

(ψt?(xt)Mts(xt)Ets(xt))pdxt
×

∫
(ψt?(xt)Mts(xt))pdxt∫

(ψts(xt, xs)Mts(xt))pdxt

)1/p

.

By similar approach to the proof for Theorem 2, we have

max
xs

ets(xs) ≤
(

d(ψts)pd(ψt?)pd(Ets)p + 1
d(ψts)pd(ψt?)p + d(Ets)p

)2/p

.

When p →∞, we have maxxs ets(xs) ≤ min(d(ψts)2d(ψt?)2, d(Ets)2), where ψt?(xt) = maxxs ψts(xt, xs).

However, we have not yet obtained distance bounds on beliefs (pseudo-max-marginals) for

the max-product algorithm, which remains an open problem and the focus of our future work.
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2.8 Conclusion

In this paper, we presented tighter error bounds on Loopy Belief Propagation (LBP) and

used these bounds to study the dynamics—error, convergence, accuracy, and scheduling—of

the sum-product algorithm. Specifically, we derived tight upper- and lower-bounds on error

propagation in synchronous belief networks. We subsequently relied on these bounds to provide

uniform and non-uniform distance bounds for the sum-product algorithm. We then used the

distance bounds to obtain uniform and non-uniform sufficient conditions for convergence of the

sum-product algorithm. We investigated the relation between convergence of LBP with sparsity

and walk-summability of graphical models. We also showed that upper-bounds on message

errors can be utilized to determine a priority for scheduling in sequential belief propagation.

Moreover, we studied the accuracy of the bounds on the sum-product algorithm based on our

error bounds. We also presented a case study of LBP by characterizing the dynamics of the

sum-product algorithm for completely uniform graphs and analyzed its fixed and quasi-fixed

(oscillatory) points. Finally, we provided an upper-bound on the message error in the max-

product algorithm, and presented the extension of our approach to deriving distance bounds

on beliefs for the max-product algorithm as an open problem.



CHAPTER 3

BELIEF PROPAGATION AND COMPUTER VISION PROBLEMS

In this chapter, we will introduce some applications of belief propagation algorithm on

computer vision problems, such as stereo matching and image segmentation. Those problems

are usually called labelling problem and modelled by Markov Random Fields (MRFs).

3.1 Introduction to Labelling Problem

Let us first introduce the general MRFs for labelling problems. One MRF model is shown in

Figure 20, where white nodes correspond to observed variables, and shadowed nodes correspond

to latent variables for labelling. We want to obtain the Maximum A Posteriori (MAP) of the

states of latent variables given the states of observations. The MRF model is usually defined

as follows:

P (X|Y ) ∝
∏
s

ψs(xs, ys)
∏

(s,t)∈E
ψst(xs, xt),

where X is the set of labelling variables, Y is the set of observed variables, and E is the set of

edges.

The MRF model can also be expressed using energy function, when the joint probability is

defined as P (X|Y ) ∝ exp{−E(X, Y )}, where:

E(X|Y ) ∝
∑

s

Es(xs, ys) +
∑

(s,t)∈E
Est(xs, xt).

69
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Figure 20. MRF model for image labelling problem.

Specifically, the general framework for labelling problems is summarized as follows:

Objective:f = arg minf∈L E(f),

E(f) =
∑

p∈P Dp(fp) +
∑

(p,q)∈EW (fp, fq).

P : the set of pixels,

E: the set of edges,

L: the set of labels, for instance, disparity, intensity, segment,

f : the labelling function,

E(f): energy function of labelling problem,

Dp(fp): the cost of assigning certain label to pixel p, called data cost,
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W (fp, fq): the cost of assigning label to two neighboring pixels, called discontinuity cost.

To solve the energy minimization problem, we will use the min-sum algorithm of belief

propagation, which is given as follows:

Message Updates: mi+1
st (xt) = κ + minxs(Est(xs, xt) + Es(xs, ys) +

∑
k∈Γs\t mi

ks(xs)),

Beliefs: bs(xs) = κ + Es(xs, ys) +
∑

k∈Γs
mT

ks(xs),

where κ is a constant, and T is the final iteration. After the algorithm converges, we have

xs = arg minx̂s bs(x̂s),.

3.2 Stereo Matching

We will introduce the application of belief propagation to stereo matching problem using

the MRF model in (14). For stereo matching problem, given the left image and right image of

one scene captured by a stereo camera, we want to calculate the depth map of the objects in

the scene. In other words, given the number of depth levels, we want to label each pixel with a

certain level. To accomplish this labelling problem, we usually model the energy function based

on several penalty functions. The MRF model presented in (14) is as follows:

Objective: min
ds∈D

∑
s

ρd(ds) + min
ds,dt

∑

(s,t)

ρp(ds, dt),

ρd(ds) = min
os∈O

F (s, ds, I)(1− os) + ηc(os)os,

ρp(ds, dt) = min
ls,t∈L

φ(ds, dt)(1− ls,t) + γ(ls,t),



72

Figure 21. Stereo matching result from (14).
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where

D: smooth disparity field of a view,

L: line process to represent the presence of depth discontinuity,

O: binary process to indicate occlusion region,

F (s, ds, I): matching cost function,

ηc(os): penalty function for occlusion,

φ(ds, dt): penalty function for non-smoothness when no discontinuity,

γ(ls,t):penalty function for discontinuity.

For detailed definition of penalty functions, readers are kindly referred to (14). We show

some results in Figure 21 using the previous MRF model from (14). We find that both sum-

product algorithm and max-product algorithm were implemented, and the former performs

better for the Map image in (g). More cues, such as region similarity, motion estimation,

help to make the stereo matching model better. (46) added motion cues from stereo video to

augment the disparity estimation model.

3.3 Image Segmentation

Image segmentation is a hot topic, on which people presented a great number of algorithms

using various approaches. Among image segmentation problems, the simplest case is to sepa-

rate one object from the background, which is called binary image segmentation. Graph cut

works well for this problem. However, to segment several objects, some algorithms are either

computationally expensive or fail to give good results. Belief propagation is one of the suc-
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Figure 22. Results of three examples with multi-labels from (47).

cessful algorithms which provide good performance of segmentation. Recently, some interactive

segmentation methods have been presented. In this section, we will use (47) to illustrate image

segmentation as a labelling problem.

The MRF model used in (47) is as follows:

E(l) =
∑

(p,q)∈E
V (lp, lq) +

∑

p∈P

Dp(lp),

Dp(lp) =





minj ‖C(p)−KO
lp

(j)‖, lp = 1, ..., n

minj ‖C(p)−KB(j)‖, lp = n + 1

V (lp, lq) =





0, if lp = lq

d, otherwise
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O: point set of foreground object,

B: point set of background object,

Dp(lp): minimum color distance,

C(p): color of p,

KO
lp

(j): mean color of the lp cluster by K-means,

KB(j): mean color of the background by K-means,

V (lp, lq): penalty function for label jumping,

d: standard deviation of all the color distance.

Min-sum algorithm was used to solve this energy minimization problem. We show the results

from (47) in Figure 22. We also implement an interactive image segmentation application and

apply sum-product belief propagation to solve the labelling problem. We will discuss the affect

of V (lp, lq) on the convergence of belief propagation in 3.5.1.

3.4 Speed-up Methods for Belief Propagation

Though belief propagation has reduced the computation cost of labelling problem, for large

image size, it is still very time consuming. The computation cost is O(nk2T ), where n is the

number of pixels, k is the number of labels, and T is the unit processing cost. Some works have

been done to speed up belief propagation. (48) presented efficient belief propagation based on

some special models. We will introduce some techniques used in (48) here.

Let us recall the energy function.

E(f) =
∑

p∈P

Dp(fp) +
∑

(p,q)∈E
V (fp, fq).



76

Figure 23. Hierarchical level for multi-grid belief propagation in (48).

Usually, we have V (fp, fq) = V (fp − fq). In such a case, the message update is as follows:

mt
pq(fq) = min

fp

(V (fp − fq) + h(fp)),

h(fp) = Dp(fp) +
∑

mt−1
sp (fp).

When we assume Potts model for V (fp − fq) as follows:

V (x) =







0, if x = 0

d, otherwise

,

message passing can be simplified as follows:

mt
pq(fq) = min(h(fq),min

fp

h(fp) + d).
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Since {h(fp)} only need to be calculated once, the computation cost reduces to O(nkT ). Linear

model and quadratic model are also presented in (48).

Another technique is to use multi-grid (hierarchical) belief propagation. (48) used the

hierarchy to initialize messages at successively finer levels to reduce message passing iterations.

For instance, after messages propagate on Level 1 in Figure 23, they are passed to level 0 and

propagate on that level. Reader can refer to (48) for more detail.

3.5 Performance Analysis of Belief Propagation for Image Segmentation

In this chapter, we will illustrate our theoretical results on convergence of sum-product

algorithm for binary graph, using an image segmentation application.

3.5.1 An Image Segmentation Application

Our segmentation application is shown in Figure 24. We implemented binary segmentation,

which separates one object from the background. We used a simple Markov Random Field model

for label random variables and used sum-product algorithm to obtain marginal probabilities.
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Specifically, we want to calculate P (X|Y ), where X represents label variable and Y represents

color feature. We have the following model:

Objective: max P (X|Y )

P (X|Y ) ∝ P (Y |X)P (X)

P (Y |X) =
∏

y∈Y

(
∑

i

λi(2π)
−3
2 |Σi,x|

−1
2 exp{−1

2
(y − µi,x)′Σ−1

i,x (y − µi,x)}),

P (X) =
∏

xi,xj∈X

exp{f(xi, xj)},

f(xi, xj) =





α, if xi = xj

βd(yi, yj), otherwise

where X is the set of label variables, x = 0 for foreground, x = 1 for background, Y is the set

of color feature variables, α is the parameter to emphasize uniformity, β is the parameter to

emphasize color difference, d(yi, yj) is the color difference between pixel i and pixel j, µi,x and

Σi,x are the mean color and variance for the foreground when x = 0 or the background when

x = 1.

We use Gaussian Mixture Model for data cost function P (Y |X) to model color feature given

certain label. In the smoothness function P (X) of our MRF model, parameter α is to make

neighbor labelling locally homogeneous, and parameter β is to flip neighbor labelling when the

neighboring pixels have big color difference.
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After sum-product belief propagation algorithm converges and gives pseudo-marginal prob-

abilities, we assign the label with bigger posterior to each pixel. For example, if P (xi = 0|yi) >

P (xi = 1|yi), we label pixel i as foreground. We also implemented max-product belief propa-

gation to solve this MRF model, and found that it gave quite similar results as sum-product

algorithm. The authors in (14) implemented both sum-product algorithm and max-product

algorithm for stereo matching application. They observed that in most cases sum-product al-

gorithm gave overly smooth results. But they showed one result for which sum-product gave

better results, which is shown in Figure 21 in the thesis. Here, we show segmentation results

by sum-product algorithm and verify the theoretical results we have derived in 2.6.

Recall the uniform binary graph in 2.6 of Chapter 2, which has potential function

ψxi,xj (xi, xj) =




a b

b a


. We have proved in Property 3 that for a completely uniform bi-

nary graph, when a > b, LBP will converge to certain fixed point; when a < b, LBP will

oscillate between two quasi-fixed points which have reverse states. Our smoothness functions

Pxi,xj (xi, xj) =




exp{α} exp{β ∗ d(yi, yj)}

exp{β ∗ d(yi, yj)} exp{α}


, are not uniform over the graph be-

cause of the color difference. However, they are usually distinctly different only for the pixels

on edges. Therefore, we will still have segmentation results complying with Property 3, when

we choose various α and β

Using our interactive image segmentation application (49), we first need to draw an area

that includes the interested object, and enter α and β to set the MRF model, and then we run

sum-product algorithm or max-product algorithm to obtain segmentation. From our simulation
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results, we observe that for our MRF model when α > β ∗ d(yi, yj), the segmentation result

will converge; otherwise, the segmentation result will oscillate. In other words, when labelling

homogeneous is dominant, segmentation will converge to a certain result, see the results in

Figure 25 (c), and Figure 26 (c); when color difference is emphasized, the segmentation will

oscillate between two reverse labelling results, see Figure 25 (d) and (e), and Figure 26 (d) and

(e).

3.6 Conclusion

Belief propagation has been widely used in solving image labelling problems such as im-

age segmentation and stereo matching. In literature, people usually use max-product belief

propagation to obtain maximum a posteriori (MAP) estimation based on a Markov Random

Fields (MRF) model. We have both implemented sum-product belief propagation algorithm

and max-product belief propagation algorithm to solve MAP of labelling variables for image

segmentation. We found both algorithms give similar results for our specific MRF model. Fur-

thermore, through our interactive image segmentation application, we verify our theoretical

results on pseudo-marginal probabilities for binary graphs.
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Figure 24. Image segmentation application.
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Figure 25. Image segmentation example: bird.(a) Original Image; (b) Selected Area; (c)
Segmentation Result for α = 4 and β = 1; (d) Segmentation Result for α = 0 and β = 1 at

some iteration i; (e) Segmentation Result for α = 0 and β = 1 at some iteration i+ 1.

Figure 26. Image segmentation example: flower.(a) Original Image; (b) Selected Area; (c)
Segmentation Result for α = 4 and β = 1; (d) Segmentation Result for α = 0 and β = 2 at

some iteration i; (e) Segmentation Result for α = 0 and β = 2 at some iteration i+ 1.
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camera based trajectories.

Discrete Wavelet Transform Approach for Blind Adaptive Filtering (DWT-
BAF) of Image from Unknown Noise Spring 2007
- Enhanced non-stationarity and SNR of images with unknown noises by utilizing
DWT-BAF.

Video Classification Based on Cross-Correlation Analysis 08/2006 -
12/2007
- Presented a novel statistical cross-correlation analysis for video classification by

88



89

VITA (Continued)

modeling time-variant cross correlation as random process.
- Reduced dramatically the search time for the maximum cross correlation by ran-
domly sampling the correlation function and monitoring the likelihood of a higher
value using sequential hypothesis testing.

Shanghai Jiao Tong University

Deadlock Free Scheduling for Flexible Manufacturing Systems (FMSs)
09/2003 - 02/2006
- Solved the NP-hard deadlock-free scheduling problems by a filtered beam search
method and used siphon technology to prevent deadlock.

Improvements on Simulation Software for FMSs 09/2002 - 06/2003
- Improved the graphical user interface (GUI) and database design of FMSs simu-
lation software.

PUBLICATIONS Journal Papers

- Xiangqiong Shi, Dan Schonfeld and Daniela Tuninetti, ”Performance Analysis
of Loopy Belief Propagation”, submitted to Journal of Machine Learning Research,
http://arxiv.org/abs/1009.2305.

- Xiangqiong Shi and Dan Schonfeld, ”Cross-Correlation Analysis for Video Clas-
sification and Mining Based on Statistical Methods”, submitted to IEEE Transac-
tions on Image Processing.

Conference Papers

- Qun Li, Xiangqiong Shi and Dan Schonfeld, ”A GENERAL FRAMEWORK
FOR ROBUST HOSVD-BASED INDEXING AND RETRIEVAL WITH HIGH-
ORDER TENSOR DATA”, to appear in ICASSP 2011.

- Qun Li, Xiangqiong Shi and Dan Schonfeld, ”Robust HOSVD-based multi-
camera motion trajectory indexing and retrieval”, to appear in IS&T SPIE Elec-
tronic Imaging 2011.

- Xiangqiong Shi, Dan Schonfeld and Daniela Tuninetti, ”Message Error Analysis
of Loopy Belief Propagation”, IEEE International Conference on Acoustics Speech
and Signal Processing, 2010, Page(s): 2078 - 2081.
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- Xiangqiong Shi and Dan Schonfeld, ”Video Classification and Mining Based on
Statistical Methods for Cross-Correlation Analysis”, IEEE/SP Workshop on Sta-
tistical Signal Processing, 2007, Page(s):586 - 590.

- Xiangqiong Shi and Zhiming Wu, ”Deadlock-Free Scheduling Method for FMSs
Using Beam Search”, 2005 IEEE International Conference on Systems, Man and
Cybernetics,Volume: 2, Page(s): 1188- 1193.

EXPERIENCE Visual Computing and Ubiquitous Imaging Team, Research Intern 10/2010 -
05/2011
- Improved performance of 2D image stitching for mobile Panorama application
and Robust Instant Cloning application on Nokia smartphone.

Technicolor, 3D Video Compression Group, Summer Intern 05/2010 - 08/2010
- Improved the subjective quality of 3D video with high motion, blur, or coding
artifacts by adding comfort noise to decoder.

Motorola Inc., Image and Video Communication Group, Summer Intern 05/2008 -
08/2008
- Implemented real-time view synthesis based on Bumble Bee camera (Tool: OpenCV
and OpenGL).

Gelber Group, LLC, Research Assistant 09/2006-08/2007
- Realized real-time financial forecasting based on statistical signal processing.

SKILL Programming Languages: Matlab, C/C++, VB, MASM, SQL, Qt.
Operating System: Windows, Mac OS, Linux.

AWARDS Student Travel Award, UIC, 2010
University Fellowship, (offered up to 15% of total fall enrollment), University of
Illinois at Chicago, 2006-2007, 2009-2010 Academic Years
National Excellence Scholarship, Shanghai Committee of Education, 2004-2005
Academic Year
Shanghai Excellent Graduate, Shanghai Committee of Education, June 2003


