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SUMMARY

Let M be a compact, orientable 3-manifold with torus boundary. An essential surface in

M is a nonempty, properly embedded, orientable surface S such that i∗ : π1(S) → π1(M) is

injective, and no component of S is boundary parallel or a 2-sphere. If an essential surface S

has nonempty boundary, then it must consists of pairwise disjoint, nonseparating closed curves

on the boundary torus. Therefore, the components of ∂S are pairwise isotopic, essential closed

curves on the boundary torus of M . We call the unoriented isotopy class of the components of

∂S the boundary slope of the essential surface S.

Let M be a compact, orientable 3-manifold with torus boundary and S be an essential

surface in M . Take a basis µ,λ for H1(∂M ;Z). Let γ be a component of ∂S, and give γ an

orientation. Then [γ] = pµ + qλ ∈ H1(∂M ;Z) for some p, q ∈ Z. Now the boundary slope

of S can be represented by p/q ∈ Q ∪ {∞}. Notice that the ratio p/q is consistent with both

orientations of γ.

We denote the set of boundary slopes of essential surfaces in M by bs(M). The set bs(M)

is an important object. The relationship between bs(M) and Dehn fillings of M has produced

several fundamental results (1; 2). Furthermore, bs(M) gives insight into which surfaces are

essential in M . Characterizing the essential surfaces in a 3-manifold is the first step in finding a

hierarchy of the manifold, a decomposition which is the basis for many classification theorems.

A. Hatcher (3) showed that if M is a compact, orientable 3-manifold with torus boundary,

then the set bs(M) is finite. There have also been many papers which classify this finite set

viii



SUMMARY (Continued)

bs(M) for certain classes of 3-manifolds with torus boundary. A. Hatcher and W. Thurston (4)

gave an algorithm for finding bs(M) when M is a 2-bridge knot complement. M. Culler, W.

Jaco and J. Rubinstein (5), as well as W. Floyd and A. Hatcher (6) both gave algorithms to

find bs(M) for once-punctured torus bundles. A. Hatcher and U. Oertel (7) did the same for

Montesinos knot complements with N. Dunfield (8) implementing this algorithm in a computer

program.

For general knot complements, W. Jaco and E. Sedgewick (9) have given an algorithm

for computing bs(M) for any knot complement M using a standard triangulation of M . M.

Culler has used the result that boundary slopes of the Newton polytope of the A-polynomial

are boundary slopes in bs(M), which was proven by D. Cooper, M. Culler, H. Gillet, D. Long

and P. Shalen (10), to find boundary slopes by computing the A-polynomial for many knot

complements. However, both of these processes often involve huge calculations, and there are

still relatively simple knot complements where bs(M) is unknown.

Therefore, it is still of interest to give simple criteria for a rational number to be a boundary

slope of a knot complement. The main result in this thesis gives simple, sufficient conditions

for a surface with nonempty boundary to be essential in a compact, orientable 3-manifold with

torus boundary. These criteria are then used to list boundary slopes of essential surfaces in

several knot complements. Some of these boundary slopes have not previously been calculated

to the author’s knowledge.

The main result of this thesis is largely based on the ideas of N. Dunfield and S. Garoufalidis

(11). Let (M, T ) be an ideal triangulation of a compact, orientable 3-manifold with torus

ix



SUMMARY (Continued)

boundary. It was shown by N. Dunfield and S. Garoufalidis using a result from Y. Kabaya

(12), that any vertex surface in M with a normal quad in each tetrahedron of T is essential.

These are easily checked sufficient conditions for a spunnormal surface to be essential in M .

In this thesis we will show any vertex surface that is contained in an isolated ray of the set of

spunnormal surfaces is essential in M . This removes the previous requirement that there be a

normal quad in every tetrahedron.

Chapter 1 gives some basic definitions.

Chapter 2 introduces ideal triangulations of compact, orientable 3-manifolds with torus

boundary and cell decompositions of 3-manifolds in general.

We then develop the theory of spunnormal surfaces with respect to an ideal triangulation,

which are surfaces that intersect the tetrahedra of the ideal triangulation in such a way that the

surfaces can be represented combinatorially. The theory of spunnormal surfaces was introduced

by W. Thurston (13) and is presented in Chapter 3.

In Chapter 4 the deformation variety is introduced. The deformation variety is a complex

variety which parametrizes hyperbolic structures on the 3-manifold, and was also introduced

by W. Thurston (13). . There is a map from the deformation variety to the character variety

of the manifold. The character variety of a 3-manifold was developed in work by M. Culler and

P. Shalen (14). They used Bass-Serre theory to associate ideal points of the character variety

to essential surfaces in the 3-manifold. Therefore, we are interested in finding the ideal points

of the deformation variety.
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SUMMARY (Continued)

Chapter 5 works towards this end by introducing concepts from tropical geometry. The

Fundamental Theorem of Tropical Geometry associates vectors in a set called the tropical

variety to ideal points of the deformation variety. A result of B. Osserman and S. Payne (15) is

then presented which gives criteria for a vector to be in the tropical variety of the deformation

variety.

The main result is then presented in Chapter 6 which shows that any spunnormal surface

in an isolated ray of the set of spunnormal surfaces is essential in the 3-manifold. As previously

stated, this result generalizes a result of N. Dunfield and S. Groufalidis (11).

The final chapter gives examples of boundary slopes of essential surfaces found using this

result.
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CHAPTER 1

INTRODUCTION

Definition 1.1 (Embedded manifold) Let M be an orientable m-manifold with boundary

and N be an n-manifold with boundary where n ≤ m. An embedding of N into M is a map

ϕ : N → M which is a homeomorphism onto its image ϕ(N) with the inherited subspace

topology from M . We abuse notation and denote the image ϕ(N) as N ⊆ M . We say that N

is embedded in M .

Definition 1.2 (Properly embedded manifold) Let M be an orientable m-manifold with

boundary and N be an n-manifold with boundary where n ≤ m. Then N is properly embedded

in M if N is embedded in M , ∂N ⊆ ∂M and Int(N) ⊆ Int(M).

Definition 1.3 (Two-sided surface) Let M be an orientable 3-manifold with boundary. A

properly embedded connected surface S ⊆ M is two-sided if the complement of S in a sufficiently

small neighborhood of S is disconnected. If S in not connected, then S is two-sided if every

component of S in two-sided.

If M is an orientable 3-manifold with boundary, then a properly embedded surface S is

two-sided if and only if every component of S is orientable.

Definition 1.4 (Incompressible surface) Let M be a compact, orientable 3-manifold with

boundary. Then a two-sided, properly embedded surface S is incompressible if the following

hold:
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1. The inclusion homomorphism π1(S�) → π1(M) is injective for every component S� of S;

2. each component of S is distinct from a 2-sphere;

3. the surface S is nonempty.

A non-orientable, properly embedded surface S is incompressible if for any regular neighborhood

N of S, the two-sided, properly embedded surface ∂N is incompressible.

Let M be an orientable 3-manifold with boundary. Let S be a two-sided, properly embedded

surface. Due to the Loop Theorem proven by Papakyriakopoulos, if π1(S�) → π1(M) is not

injective for every component S
� of S, then there is an embedded disk D ⊆ M with ∂D ⊆ S

where ∂D is an essential closed curve in S. Such a disk is called a compressing disk of S.

Definition 1.5 (Boundary-parallel surface) Let M be an orientable 3-manifold with bound-

ary. A properly embedded surface S is boundary-parallel if there exists a set P such that S is

the frontier of P and the pair (S, P ) is homeomorphic to the pair (S × {0}, S × [0, 1]).

Here the frontier of a subset P in an orientable 3-manifold with boundary, M , is the

intersection of the closure of P with the closure of M \ P .

Definition 1.6 (Essential surface) Let M be a compact, orientable 3-manifold with torus

boundary. A properly embedded surface S is essential in M if S is incompressible, and has no

boundary-parallel components.

Let M be a compact, orientable 3-manifold with torus boundary and S be an essential

surface in M with nonempty boundary. Then the components of ∂S must be pairwise disjoint,



3

nonseparating closed curves on the boundary torus of M . Therefore, the components of ∂S

must be pairwise isotopic, essential closed curves in ∂M .

Definition 1.7 (Boundary slope) Let M be a compact, orientable 3-manifold with torus

boundary. If S is an essential surface with nonempty boundary, then the unoriented isotopy

class of the components of ∂S is the boundary slope of S.

Let M be a compact, orientable 3-manifold with torus boundary and S be an essential

surface in M with nonempty boundary. Take a basis µ,λ for H1(∂M,Z). Let γ be a component

of ∂S and give γ an orientation. Then [γ] = pµ+ qλ ∈ H1(∂M,Z) for some integers p, q. The

boundary slope of S can be represented by p/q ∈ Q ∪ {∞}. Notice that the ratio p/q will be

the same regardless of which of the two orientations we choose for γ.

Definition 1.8 (Set of boundary slopes) Let M be a compact, orientable 3-manifold with

torus boundary and choose a basis for H1(∂M,Z). Then we denote the set of all boundary slopes

of essential surfaces in M with respect to this basis by

bs(M) = {p/q ∈ Q ∪ {∞} | p/q is the boundary slope of an essential surface}

One fundamental result concerning boundary slopes of essential surfaces is due to A. Hatcher

(3). He showed that if M is a compact, orientable 3-manifold with torus boundary, then bs(M)

is finite. There has been extensive work done to classify this finite set of boundary slopes of

essential surfaces for certain classes of 3-manifolds with torus boundary. A. Hatcher and W.

Thurston (4) gave an algorithm for finding bs(M) when M is a 2-bridge knot complement. M.
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Culler, W. Jaco and H. Rubinstein (5), and also W. Floyd and A. Hatcher (6) gave algorithms

to find bs(M) for M a once-punctured torus bundle. A. Hatcher and U. Oertel (7) did the

same for Montesinos knot complements. This algorithm was implemented in a program by N.

Dunfield (8). Still there are relatively simple knot complements where the set of boundary

slopes of essential surfaces is unknown.



CHAPTER 2

IDEAL TRIANGULATIONS AND CELL DECOMPOSITIONS

Throughout our development of ideal triangulations and spunnormal surfaces we will follow

the thorough exposition of Stephan Tillmann (16).

2.1 Pseudo-Manifolds

Let �∆ be a (possibly countably infinite) collection of oriented, polyhedral 3-cells. An orien-

tation on a polyhedral 3-cell is an ordering of its vertices. We also consider the set of subfaces

of each �∆i ∈ �∆ as being contained in �∆. All subfaces are taken to be closed. Now let Φ be

a collection of orientation reversing linear homeomorphisms between 2-dimensional faces of �∆

such that each face is the domain or range of at most one map φ ∈ Φ.

Definition 2.1 (Pseudo-manifold) Using the notation in the above paragraph, T is a pseudo-

manifold if it is the space obtained by the quotient of �∆ by the maps in Φ denoted T = �∆/Φ.

The quotient of a polyhedral 3-cell �∆i ∈ �∆ will be denoted by ∆i ⊆ T . The quotient of any

subface �σ ∈ �∆ will be denoted by σ ⊆ T .

Notice that the only possible non-manifold points of such a quotient space are the vertices.

The d-skeleton of a psuedo-manifold T , denoted T (d) ⊆ T , is the image of the d-dimensional

subfaces in �∆ for 0 ≤ d ≤ 3.

5
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2.2 Ideal Triangulations and Cell Decompositions

Definition 2.2 (Ideal triangulation) Let M be a compact, oriented 3-manifold with torus

boundary. An ideal triangulation of M is a pseudo-manifold, T = �∆/Φ, together with a home-

omorphism

p : T \ T (0) → Int(M).

We require that �∆ = {�∆1, ...,
�∆n} is a finite set, and that each 3-cell �∆i ∈ �∆ is a tetrahedron

for 1 ≤ i ≤ n. We will say the pair (M, T ) is an ideal triangulation of a compact, oriented

3-manifold with torus boundary.

Notice that tetrahedra of �∆ are not necessarily embedded in Int(M) as they may intersect

themselves. This allows the tetrahedra and subsets of the tetrahedra to take on very interesting

shapes after identification. For interesting examples see the introduction to W. Jaco and J.

Rubinstein’s paper (17).

Since M is taken to have only one boundary component, T has only one vertex, and T is

homeomorphic to M with ∂M collapsed to a point. If {∆1, ...,∆n} are the tetrahedra in T ,

then T must have n edges since χ(Int(M)) = 0. Due to work by W. Jaco and J. Rubinstein

(17) every compact, orientable 3-manifold with torus boundary admits an ideal triangulation.

The program SnapPy (18) developed by M. Culler, J. Weeks and N. Dunfield computes ideal

triangulations for compact, orientable 3-manifolds with torus boundary.

For convenience, we will give each tetrahedron an orientation (or labeling of its vertices)

using the convention of the program SnapPy (18). See Figure 1 below.
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Figure 1. SnapPy orientation on a tetrahedron.

Definition 2.3 (Cell Decomposition) Let M be an oriented 3-manifold with boundary. A

cell decomposition of M is a pseudo-manifold T together with a homeomorphism

p : T → M.

We say that the pair (M, T ) is a cell decomposition of an oriented 3-manifold with boundary.

Let (M, T ) be a cell decomposition of an oriented 3-manifold with boundary. Then every

vertex of T must be a manifold point. Also, if M is noncompact, then T must consist of

infinitely many 3-cells.

2.3 Polyhedral Complexes

Pseudo-manifolds are examples of more general spaces called polyhedral complexes. Polyhe-

dral complexes play a key role throughout this thesis. Our development of polyhedral complexes,
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which will be done as needed throughout the thesis, will follow the exceptional presentation in

D. Maclagan and B. Sturmfels’ book (19). Here polyhedra can be of any dimension.

Definition 2.4 (Polyhedral complex) Let �Σ be a collection of convex polyhedra, which are

not necessarily compact. We consider faces of elements in �Σ as being in �Σ. Let Φ be a collection

of linear homeomorphisms between faces of �Σ. Then the quotient space Σ = �Σ/Φ is a polyhedral

complex. The image of any face �σ ∈ �Σ will be denoted by σ ⊆ Σ.

We consider polyhedral complexes in the category of piecewise linear spaces, and say that

two polyhedral complexes are isomorphic if there is a piecewise linear homeomorphism between

them.



CHAPTER 3

SPUNNORMAL SURFACES

Throughout this chapter we will continue to follow the development in S. Tillmann’s paper

(16).

3.1 Normal Disks

Definition 3.1 (Normal arcs and normal disks)

1. A normal arc is a properly embedded arc in the face of a polyhedral 3-cell which has end

points in the interiors of distinct edges.

2. A normal disk is a properly embedded disk in a polyhedral 3-cell whose boundary consists

of normal arcs and intersects each edge of the polyhedral 3-cell at most once.

Definition 3.2 (Normal isotopy of a polyhedral 3-cell) A normal isotopy of a polyhedral

3-cell Σ is an isotopy of Σ which leaves all of the subcells of Σ fixed.

Most of the development of normal disks in this thesis involves normal disks in the tetrahedra

of an ideal triangulation. Therefore, we introduce a few more definitions for normal disks in

tetrahedra.

9
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Definition 3.3 (Normal triangles, normal quads and quad-types)

1. A normal disk in a tetrahedron which meets three faces of the tetrahedron is a normal

triangle.

2. A normal disk in a tetrahedron which meets four faces of the tetrahedron is a normal

quad.

3. In any tetrahedron there are three normal isotopy classes of normal quads called the quad-

types. We will denote these quad-types by Q1, Q2, and Q3. See Figure 2.

Notice there are four normal isotopy classes of normal triangles.

Figure 2. The quad-types from left to right: Q1, Q2, Q3.
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3.2 Normal Surfaces and Spunnormal Surfaces

Definition 3.4 (Normal surface with respect to a cell decomposition) Let (M, T ) be

a cell decomposition of an oriented 3-manifold with boundary, and S be a properly embedded

surface in T . Then S is a normal surface with respect to T if S intersects each polyhedral 3-cell

of T in a collection of normal disks.

Remark 3.5 The normalization process consisting of eight moves introduced in the third chap-

ter of Matveev’s book (20) can be used to show that if M is a compact, orientable 3-manifold

with boundary, then any essential surface in M is isotopic to a normal surface with respect

to any cell decomposition (M, T ). A property of this normalization process, which will be used

later, is that the process never increases the number of intersections of a surface with an edge

of T .

Definition 3.6 (Spunnormal surface with respect to an ideal triangulation) Let (M, T )

be an ideal triangulation of a compact, oriented 3-manifold with torus boundary. Let S be a

properly embedded surface in T \T (0). Then S is a spunnormal surface with respect to T if S in-

tersects every tetrahedron of T in infinitely many normal disks. See Figure 3 for the intersection

of a spunnormal surface with a single tetrahedron.

Remark 3.7 Since normal quads of any two distinct quad-types in a single tetrahedron must

intersect, the normal quads of a spunnormal surface must be of the same quad-type in any given

tetrahedron.
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Figure 3. A possible intersection between a spunnormal surface and a single tetrahedron.
There are infinitely many normal triangles, but only finitely many normal quads.

The following is Lemma 1.16 from Tillmann’s paper (16), but we give a proof here to help

conceptualize ideal triangulations and spunnormal surfaces.

Lemma 3.8 Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus

boundary. Let S be a spunnormal surface with respect to T . Then S intersects each tetrahedron

in T in finitely many normal quads.

Proof : Assume S intersects the tetrahedron ∆ ⊆ T in infinitely many normal quads. Let

�T be the universal cover of T with the lifted cell decomposition. Then the lift of S, �S, is a

properly embedded surface in �T \ �T (0). Let �∆ be the lift of ∆ in T .

By Remark 3.7, all of the infinitely many normal quads of �S must have the same quad-type

Q in �∆. Let α be the line segment connecting the midpoints of the edges of �∆ which normal
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quads of quad-type Q do not intersect. Then α must intersect every normal quad of �S in ∆.

Therefore the normal quads must have an accumulation point on α. This contradicts that �S is

a properly embedded surface in �T \ �T (0). �

Definition 3.9 (Vertex linking surface) Let (M, T ) be an ideal triangulation of a compact,

oriented 3-manifold with torus boundary. A vertex linking surface is an embedded torus in

T \T (0) which consists of one normal triangle from each normal isotopy class of normal triangles

in each tetrahedron of T .

Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus boundary.

Let S be a vertex linking surface in T \T (0). Then p(S) ⊆ M is a boundary-parallel torus where

p : T \ T (0) → Int(M) is the homeomorphism from Definition 2.2.

Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus bound-

ary. Tillmann’s Lemma 1.15 (16) shows that any embedded surface in T that intersects the

tetrahedra of T in only normal triangles is a collection of vertex linking components. By this

and Lemma 3.8, a spunnormal surface either has a noncompact component which intersects

every neighborhood of the vertex of T ; or is a closed, compact surface together with infinitely

many vertex linking components. A closed surface in T with a finite number of components is

not considered a spunnormal surface by Definition 3.6.

3.3 Associated Properly Embedded Surfaces

Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus boundary,

and S be a spunnormal surface with respect to T . By 2.3 of N. Dunfield and S. Garoufalidis’s
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paper (11), we can associate to S a properly embedded surface in M , �S, with every component

distinct from a boundary parallel torus. A result of this association is that if �S has nonempty

boundary, then it has a well-defined boundary slope whether �S is essential or not. We call the

boundary slope of �S the boundary slope of S. We also say that S is essential if �S is essential in

M .

G. Walsh (21) has proven that if M is a compact, oriented, hyperbolic 3-manifold with

boundary the union of tori, then every essential surface in M which is not a virtual fiber is

associated to a spunnormal surface with respect to any ideal triangulation T with essential

edges. This statement was first conjectured by W. Thurston (13). An embedded surface S in

a oriented, 3-manifold with boundary, M , is a virtual fiber if S is either a fiber of a fibration of

M over the circle, or a generic fiber of an orbifold-fibration of M over an interval with mirrored

endpoints.

Definition 3.10 (End of an ideal triangulation) Let (M, T ) be an ideal triangulation of

a compact, oriented 3-manifold with torus boundary. Let v be the vertex of T . Let N• be any

neighborhood of v with ∂N• a vertex linking surface. Then N = N
• \{v} is an end of T . Every

time we take an end of an ideal triangulation N , N• will represent N ∪ {v}.

Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus boundary.

Then any end, N , has a product structure of the form T× R where T is the torus.
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Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus boundary.

If N is an end of T , then there is a homeomorphism pN : (T \ N•) → M which defines a cell

decomposition (M, T \N•) by truncated tetrahedra.

Remark 3.11 Let (M, T ) be an ideal triangulation of a compact, orientable 3-manifold with

torus boundary. Let S be a spunnormal surface with respect to T and N be an end of T . For

any homeomorphism, pN : (T \N•) → M , S can be isotoped so that pN (S∩(T \N•)) = �S. This

follows directly from the construction of �S in 2.3 of N. Dunfield and S. Garoufalidis’s paper

(11).

3.4 Q-Coordinates

The next proposition is Lemma 1.19 in S. Tillmann’s paper (16). We still provide a proof

to help understand how spunnormal surfaces are glued together between tetrahedra.

Proposition 3.12 Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with

torus boundary. Every spunnormal surface with respect to T is specified by its normal quads in

each tetrahedron of T .

The proof of this proposition will use a few definitions involving normal arcs on a face of a

tetrahedron.

Let F be a triangular face of a tetrahedron. There are three normal isotopy classes of normal

arcs in F . Let {v1, v2, v3} = F
(0) be the vertices of F . The vertex vi for 1 ≤ i ≤ 3 is dual to

the normal arc α if one component of F \ α contains vi and the other component contains the
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other two vertices. Every representative of a normal isotopy class of normal arcs is dual to the

same vertex. See Figure 4.

Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus bound-

ary. Let S be a spunnormal surface with respect to T . Consider the normal disks of S in

the tetrahedra of �∆ = {�∆1, ...,
�∆n} before taking the quotient. Focus on one face, F , of a

tetrahedron �∆i for 1 ≤ i ≤ n. The normal disks of S meet F in a countably infinite collection

of normal arcs. A normal arc α of S dual to a vertex v is innermost if the component of F \ α

not containing v does not contain any normal arcs of S from the same normal isotopy class as

α. Up to normal isotopy, there is a well-ordering of the normal arcs of S in each isotopy class

on F . This well-ordering starts with the innermost normal arc for that normal isotopy class,

and the successor αn of a normal arc αn−1 only has αn−1 and the preceding normal arcs in the

component of F \ αn not containing the dual vertex. See Figure 4.

Let F � be the face identified to F by a map in Φ where T = �∆/Φ. The normal arcs of one

normal isotopy class on F must be glued to the normal arcs of a corresponding normal isotopy

class on F
� agreeing with the well-ordering from above.

Proof of Proposition 3.12 : Let S and S
� be two spunnormal surfaces with respect to T

such that S and S
� have the same number of normal quads of the same quad-types in each

tetrahedron of T . For any face F of �∆ and any normal isotopy class of normal arcs on F ,

the normal arcs which are on the boundary of normal quads of S must come first in the well-

ordering of normal arcs from this normal isotopy class discussed above. See Figure 3 and Figure

4. Then by the above discussion, the gluing of S and S
� must agree on the innermost arcs in
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Figure 4. A well-ordering of the normal arcs dual to v. The well-ordering continues ad
infinitum.

each normal isotopy class and continue through the well-ordering of each normal isotopy class

of normal arcs. Therefore, the gluing of S and S
� is the same on each face in T . Therefore, S

and S
� are isotopic. �

Definition 3.13 (Q-coordinate vector) Let (M, T ) be an ideal triangulation of a compact,

oriented 3-manifold with torus boundary. Let {∆1, ...,∆n} be the tetrahedra of T . For any

spunnormal surface S the Q-coordinate vector of S is a 3n-tuple given by

(q1,1, q2,1, q3,1, q1,2, ..., q1,n, q2,n, q3,n) ∈ Z
3n
≥0

where each qi,j corresponds to the number of normal quads of S of type Qi for 1 ≤ i ≤ 3 in the

tetrahedron ∆j for 1 ≤ j ≤ n.
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By Proposition 3.12 a spunnormal surface is completely determined by its Q-coordinate

vector. Also by Remark 3.7, if (q1,1, q2,1, q3,1, q1,2, ..., q3,n) is the Q-coordinate vector for a

spunnormal surface at most one of q1,j , q2,j , q3,j can be nonzero for 1 ≤ j ≤ n. All 3n-tuples in

R
3n
≥0 satisfying this last condition are called admissible.

3.5 Q-Matching Equations

Before we get started, we will need some definitions for general polyhedral complexes.

Definition 3.14 (Relative interior of a face) Let Σ be a polyhedral complex and σ be an

n-dimensional face of Σ. The relative interior of σ, rInt(σ), is the interior of σ as an n-

dimensional space, not with the subspace topology.

Definition 3.15 (Star neighborhood, and closed star neighborhood)

1. Let Σ be a polyhedral complex and P be a subset of Σ. The star neighborhood of P , Str(P ),

is the union of the relative interiors of every face τ in Σ such that P ∩ τ �= ∅.

2. The closed star neighborhood of P , Str(P ), is the closure of Str(P ).

Definition 3.16 (Abstract neighborhood, equator and hemispheres) Let (M, T ) be an

ideal triangulation of a compact, oriented 3-manifold with torus boundary. Consider �T the

universal cover of T with the lifted cell decomposition. An abstract neighborhood of an edge

e ⊆ T , B(e) ⊆ �T , is the closed star neighborhood of the relative interior of a lifting �e ⊆ �T of e,

B(e) = Str(rInt(�e)).
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The abstract neighborhood B(e) is given a cell decomposition by restricting the cell decomposition

of �T . The edges in each tetrahedron of B(e) opposite to �e form a closed curve in ∂B(e) which

we call the equator of B(e). The complement of the equator in ∂B(e) is separated into two

components called hemispheres. See Figure 5.

Figure 5. A picture of the abstract neighborhood, B(e).

Remark 3.17 Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus

boundary. Take an edge e in T and consider the abstract neighborhood B(e) in the universal

cover �T of T . Notice that normal triangles in any tetrahedron of B(e) which intersect �e do not

cross the equator. The only normal disks which intersect �e and cross the equator are normal

quads.
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Definition 3.18 (Edge pairings) Consider a tetrahedron with its vertices labeled as in Fig-

ure 2. The edge pairings are the three sets of opposite edges, P1 = {(0, 1), (2, 3)}, P2 =

{(0, 2), (1, 3)}, and P3 = {(1, 2), (0, 3)} where (a, b) is the edge connecting the vertex labeled

a to the vertex labeled b.

Definition 3.19 (Slope of a quad-type) Consider a tetrahedron with its vertices labeled as

in Figure 2. For each edge pairing Pi for i ∈ {1, 2, 3} we assign a slope to each quad-type by

defining the slope function si : {Q1, Q2, Q3} → {−, 0,+} as follows:

si(Qj) =






+ if j = i

− if j ≡ i+ 1 mod 3

0 if j ≡ i+ 2 mod 3

See Figure 6.

The output of the slope function si(Qj) represents the “slope” of a normal quad of quad-

type Qj at an edge from the edge pairing Pi when using the right-hand rule. Figure 2 can be

used to check that the slope function is consistent for all edge pairings and all quad-types (you

may need to tilt you head to check some of them).

Remark 3.20 Let (M, T ) be an ideal triangulation of a compact, orientable 3-manifold with

torus boundary. Consider an edge e ⊆ T and an abstract neighborhood B(e) in the universal

cover �T . Using the slope function for the edge pairing in which �e is contained for each tetra-

hedron, we see that normal quads from quad-types with + slope cross the equator from one
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Figure 6. When e is in the edge pairing Pi and q is of quad-type Qj , si(Qj) = +. This
represents the slope of q when using the right-hand rule at e.

hemisphere to the other when using the right-hand rule at �e. Call the former hemisphere the

southern hemisphere and the latter the northern hemisphere. Then any normal quads from

quad-types with − slope cross the equator from the northern hemisphere to the southern hemi-

sphere when using the right-hand rule at �e.

Let D be a disk properly embedded in B(e) which meets every tetrahedron of B(e) in a

normal disk and intersects �e. Then ∂D is a closed curve in ∂B(e). Let x ∈ ∂D. Then a path

starting at x and following ∂D must eventually come back to x. Therefore, by Remark 3.17
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and Remark 3.20, if the path intersects k normal quads from quad-types with + slope, then it

must intersect k normal quads from quad-types with − slope, using the slope function for the

edge pairing containing �e in each tetrahedron. Since the lift of any spunnormal surface with

respect to (M, T ) intersects the abstract neighborhood of some edge in such disks, we get a

requirement on normal quads for them to glue up to form a spunnormal surface with respect

to T which is reflected in the following equations.

Definition 3.21 (Q-matching equations) Let (M, T ) be an ideal triangulation of a com-

pact, oriented 3-manifold with torus boundary where {∆1, ...,∆n} are the tetrahedra in T . Let

{e1, ..., en} be the edges of T . For each edge ek with 1 ≤ k ≤ n, we get an equation:

Qk =
n�

j=1

�
(ak,j − ck,j)q1,j + (bk,j − ak,j)q2,j + (ck,j − bk,j)q3,j

�
= 0

where ak,j is the number of edges in the tetrahedron �∆j from the edge pairing P1 identified to

ek, bk,j is the number of edges in the tetrahedron �∆j from the edge pairing P2 identified to ek,

and ck,j is the number of edges in the tetrahedron �∆j from the edge pairing P3 identified to ek.

These n equations are called the Q-matching equations.

Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus boundary.

Every spunnormal surface with respect to T has a Q-coordinate vector which is an integral

admissible solution to the Q-matching equations.



23

Definition 3.22 (The admissible solutions to the Q-matching equations, Q (T )) Let

(M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus boundary. The

admissible solutions to the Q-matching equations form a polyhedral complex Q (T ) ⊆ R
3n
≥0.

Remark 3.23 Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus

boundary. For any vector q ∈ Q (T ), the entire ray R≥0 ·q is contained in Q (T ). It is sometimes

convenient to consider the polyhedral complex PQ (T ) = Q (T )∩{(x1, ..., x3n) | x1+· · ·+x3n = 1}.

This is a polyhedral complex consisting of rational, compact polytopes. A polytope in R
m is

rational if the coordinates of every vertex are rational.

Definition 3.24 (Vertex surface) Let (M, T ) be an ideal triangulation of a compact, oriented

3-manifold with torus boundary. Let q ∈ R
3n
+ be a vertex of PQ (T ). Then the spunnormal

surface with the primitive representative of R+ ·q as its Q-coordinate vector is a vertex surface.

Remark 3.25 Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus

boundary. Consider the Q-matching equations as linear polynomials in R[q1,1, q2,1, q3,1, q2,1, ..., q3,n].

Now choose n coordinates of the form {qi1,1, qi2,2, ..., qin,n} where each ij ∈ {1, 2, 3} for all

1 ≤ j ≤ n. Then Q (T ) restricted to these n coordinates forms a convex polyhedral complex

since any solution in the restricted coordinates is automatically admissible, and so, the solution

set is only defined by linear equations.
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3.6 Geometric Sum

Definition 3.26 (Compatible spunnormal surfaces) Let (M, T ) be an ideal triangulation

of a compact, oriented 3-manifold with torus boundary. Two spunnormal surfaces are compatible

if they do not have normal quads of different quad-types in any tetrahedron of T .

Definition 3.27 (Geometric sum) Let (M, T ) be an ideal triangulation of a compact, ori-

ented 3-manifold with torus boundary. Let S and S
� be two compatible spunnormal surfaces

with Q-coordinate vectors q and q� ∈ Q (T ). The geometric sum of S and S
� is the surface

S � S
� whose Q-coordinate vector is q+ q� ∈ Q (T ).

This geometric sum operation is well-defined. The geometric sum operation adds a great

deal of structure to the theory of spunnormal surfaces. However, we will just need what has

been stated for the main result in this thesis. For a thorough presentation see S. Tillmann’s

paper (16).



CHAPTER 4

THE DEFORMATION VARIETY

4.1 Ideal Tetrahedra

Definition 4.1 (Ideal tetrahedron in �H3) Let �H3 = H
3 ∪ S

2
∞ where S

2
∞ is the sphere at

infinity. An ideal tetrahedron in �H3 is a tetrahedron contained in �H3 with vertices on S
2
∞.

Let ∆ ⊆ �H3 be an ideal tetrahedron with the SnapPy orientation (see Figure 1) in the upper

half-space model of H3 with S
2
∞ identified to �C = C ∪ {∞}. Apply an orientation preserving

isometry to H
3 such that the vertex labeled 0 in the SnapPy orientation is sent to 0 ∈ �C, the

vertex labeled 1 in the SnapPy orientation is sent to ∞ ∈ �C, and the vertex labeled 3 in the

SnapPy orientation is sent to 1 ∈ �C. The vertex labeled 2 in the SnapPy orientation must then

be mapped to some complex number z ∈ C \ {0, 1}.

Definition 4.2 (Shape parameters) Let ∆ be an ideal tetrahedron in �H3 with the above

identification of vertices. Shape parameters are assigned to the edges of ∆ as follows. Assign

the shape parameter z to the edge (0,∞) of ∆, assign the shape parameter 1/(1− z) to the edge

(1,∞), and assign the shape parameter (z − 1)/z to the edge (z,∞). Opposite edges in ∆ are

assigned the same shape parameter. In terms of the edge pairings of Definition 3.18, the edges

of P1 are assigned the shape parameter z, the edges of P2 are assigned the shape parameter

1/(1− z), and the edges of P3 are assigned the shape parameter (z − 1)/z. See Figure 7.

25
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These shape parameters are the cross-ratios for the dihedral angles of each edge. Opposite

edges of ∆ are assigned the same shape parameter since the dihedral angles of opposite edges

of an ideal tetrahedron in �H3 are equal. Figure 7 shows an ideal tetrahedron in �H3 with the

vertices labeled and shape parameters given to one edge from each edge pair.

Figure 7. An ideal tetrahedron in �H3 with labeling.

4.2 Gluing Equations and the Deformation Variety

Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus boundary

where {∆1, ...,∆n} are the tetrahedra in T with the SnapPy orientation, see Figure 1. Each
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tetrahedron ∆i for 1 ≤ i ≤ n can be identified with an ideal tetrahedron in �H3 by an orientation

preserving isometry as above, and so be assigned shape parameters for its edges:

zi,
1

1− zi
,
zi − 1

zi
.

See Figure 7.

Let {e1, ..., en} be the edges of T . Take an edge ek for 1 ≤ k ≤ n. Consider the abstract

neighborhood of e, B(e), with the lifted hyperbolic structure. The tetrahedra of B(e) must

glue up around �ek. Therefore, the product of the shape parameters assigned to �ek from each

tetrahedron in B(e) must be 1. These equations are made explicit in the next definition.

Definition 4.3 (Gluing equations) Let (M, T ) be an ideal triangulation of a compact, ori-

ented 3-manifold with torus boundary where {∆1, ...,∆n} are the tetrahedra in T . Let {e1, ..., en}

be the edges of T . For each edge ek with 1 ≤ k ≤ n we get an equation:

Rk =
n�

i=1

z
ak,j
i

�
1

1− zi

�bk,j�
zi − 1

zi

�ck,j

= 1

where ak,j is the number of edges in the tetrahedron �∆j from the edge pairing P1 identified to

ek, bk,j is the number of edges in the tetrahedron �∆j from the edge pairing P2 identified to ek,

and ck,j is the number of edges in the tetrahedron �∆j from the edge pairing P3 identified to ek.

Because the product R1 · · ·Rn = 1 for all (z1, ..., zn) ∈ (C \ {0, 1})n, we omit the nth equation

and consider {R1, ..., Rn−1} the gluing equations for (M, T ).
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Notice that the gluing equations could be defined with any edge pair receiving the shape

parameter zi. However, the result proven in this thesis is better presented when this convention

is set.

Definition 4.4 (Augmented Gluing Equations) Let (M, T ) be an ideal triangulation of a

compact, oriented 3-manifold with torus boundary where {∆1, ...,∆n} are the tetrahedra in T .

Let {e1, ..., en} be the edges of T . The augmented gluing equations are the gluing equations with

the substitution wi = 1− zi. Again we get one equation for each edge ek where 1 ≤ k ≤ n− 1:

Rk =
n�

i=1

(−1)ck,jz
ak,j−ck,j
i w

ck,j−bk,j
i = 1

where ak,j is the number of edges in the tetrahedron �∆j from the edge pairing P1 identified to

ek, bk,j is the number of edges in the tetrahedron �∆j from the edge pairing P2 identified to ek,

and ck,j is the number of edges in the tetrahedron �∆j from the edge pairing P3 identified to ek.

The following example gives the augmented gluing equations for the 52-knot complement.

This will be a running example throughout the remainder of the thesis.
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Example 4.5 (52-knot complement) The ideal triangulation from SnapPy for the 52-knot

complement uses three tetrahedra. The augmented gluing equations for the 52-knot complement

are the following:

R1 = w1 · z−1
2 · z3 · w−2

3 = 1,

R2 = (−1) · z−1
1 · z2 · w−1

2 · z−2
3 · w2

3 = 1.

(4.1)

Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus boundary

where {∆1, ...,∆n} are the tetrahedra of T . Notice that the augmented gluing equations can

only have a zero in the denominator if zi or wi is zero for some i ∈ {1, ..., n}. However, any ideal

tetrahedron cannot have a shape parameter with zi = 1 or zi = 0. Therefore, the augmented

gluing equations can be expressed as polynomial equations. For 1 ≤ k ≤ n − 1, let R�
k = 0 be

the polynomial equations coming from the equation Rk = 1.

Example 4.6 (52-knot complement) The polynomial augmented gluing equations for the

52-knot complement are:

R
�
1 = w1z3 − z2w

2
3 = 0,

R
�
2 = z2w

2
3 + z1w2z

2
3 = 0.
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Definition 4.7 (Deformation Variety) Let (M, T ) be an ideal triangulation of a compact,

oriented 3-manifold with torus boundary where {∆1, ...,∆n} are the tetrahedra in T . Let

AG = {R�
1, ...R

�
n−1, z1 + w1 − 1, z2 + w2 − 1, ..., zn + wn − 1} ⊆ C[z1, ..., zn, w1, ..., wn]

be the set of polynomial augmented gluing equations together with the linear equations wi = 1−zi

for 1 ≤ i ≤ n. Then the deformation variety, D(T ) is given by

D(T ) = V (�AG�) ⊆ (C \ {0, 1})2n

where V (�AG�) is the zero set of the ideal generated by AG.

Notice that the deformation variety from an ideal triangulation of a compact, oriented

3-manifold with torus boundary is not necessarily irreducible.

Remark 4.8 Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus

boundary. For the main result of this thesis we will need to assume every irreducible component

of D(T ) is 1-dimensional. This is true in examples, and is thought to be true in general for

such an (M, T ).

4.3 The Character Variety

Definition 4.9 (Character variety) Let M be a compact, oriented 3-manifold with torus

boundary. The character variety of M , X(M), is the SL2(C) character variety of π1(M).

The following is shown in N. Dunfield and S. Garoufalidis’s paper as Lemma 3.5 (11).
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Proposition 4.10 Let (M, T ) be an ideal triangulation of a compact, orientable 3-manifold

with torus boundary. There is a regular map from D(T ) to X(M) where X(M) is the PSL2(C)

character variety of π1(M).

This regular map is usually called the pseudo-developing map and is not surjective.

Definition 4.11 (Ideal points of a variety) Let V be an affine variety and �V be the pro-

jective completion of V . Then �V \ V is the set of ideal points of V .

Let (M, T ) be an ideal triangulation of a compact, orientable 3-manifold with boundary.

M. Culler and P. Shalen (14) have shown that ideal points of the character variety X(M)

correspond to essential surfaces in M . Also, ideal points of X(M) can be associated to ideal

points of X(M). However, not every ideal point of D(T ) maps to an ideal point of X(M) using

this association and the map from Proposition 4.11.

4.4 Associated Spunnormal Surfaces

Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus boundary

where {∆1, ...,∆n} are the tetrahedra in T . Let D be an irreducible curve of D(T ). For an ideal

point ξ of D we can associate a spunnormal surface S(ξ) with Q-coordinate vector (q1,1, ..., q3,n)

as follows. For each tetrahedron ∆i for 1 ≤ i ≤ n define the entries (q1,i, q2,i, q3,i) as follows.

Let zi be the shape parameter of the edge (0,∞) in ∆i. The projective completion of D, �D,

is a Riemannian surface, and zi is a function of this surface. Let vξ be the discrete valuation
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defined by ξ on the function field of �D. Then the coordinates (q1,i, q2,i, q3,i) are assigned using

the following:

(q1,i, q2,i, q3,i) =






(vξ(zi), 0, 0) if vξ(zi) > 0

(0,−vξ(zi), 0) if vξ(zi) < 0

(0, 0, vξ(1− zi)) if vξ(zi) = 0 and zi(ξ) /∈ C \ {0, 1}

(0, 0, 0) if zi(ξ) ∈ C \ {0, 1}.

The fact that the shape parameters around an edge in T must multiply to 1, means that the

valuation of the shape parameters at ξ must sum to zero around the edge. This gives exactly

that the Q-coordinate vector for S(ξ) satisfies the Q-matching equations, and that S(ξ) glues

up on the faces to give a spunnormal surface. We say S(ξ) is the spunnormal surface associated

to the ideal point ξ.

Definition 4.12 (Reduction of a properly embedded surface) Let M be a 3-manifold

with boundary. A properly embedded surface S in M is said to reduce to S
� if there is a sequence

of compressions along compressing disks, boundary compressions, elimination of 2-spheres, and

elimination of boundary parallel components which turns S into S
�. We then say that S� is a

reduction of S.

This next result can be found in N. Dunfield and S. Garoufalidis’s paper as Theorem 3.8

(11) and S. Tillmann’s paper as Proposition 4.3 (22). This result uses the pseudo-developing

map between the deformation variety and the PSL2(C) character variety of the fundamental

group of the manifold.
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Proposition 4.13 Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with

torus boundary. Let ξ be an ideal point of an irreducible curve D ⊆ D(T ). Suppose S is the

spunnormal surface with respect to T which is associated to ξ. Also assume the associated

properly embedded surface in M , �S, is two-sided and has nonempty boundary with boundary

slope α. Then any reduction of �S has nonempty boundary with boundary slope α. In particular,

�S can be reduced to a nonempty essential surface in M with boundary slope α.

Let (M, T ) be an ideal triangulation of a compact, orientable 3-manifold with torus bound-

ary. Proposition 4.14 tells us the boundary slope of a spunnormal surface associated to an ideal

point of D(T ) is a boundary slope in bs(M).



CHAPTER 5

TROPICAL GEOMETRY

This chapter follows the presentation of concepts in tropical geometry in the paper by T.

Bogart, A. Jensen, D. Speyer, B. Sturmfels and R. Thomas (23). Please see their paper for

details.

5.1 Tropical Varieties

Definition 5.1 (w-weight, and initial form) Let f ∈ C[x1, ..., xn] be a polynomial.

1. Let w ∈ R
n be a vector. Then the w-weight of a term cx

a1
1 x

a2
2 · · ·xann in f , where ai ∈ Z≥0

for 1 ≤ i ≤ n, is defined as w · (a1, ..., an) ∈ R.

2. Let w ∈ R
n be a vector. The initial form of f with respect to w denoted inw(f) is the

sum of all terms in f of lowest w-weight.

Example 5.2 (52-knot complement) Take the first polynomial augmented gluing equation

from the 52-knot complement,

R
�
1 = w1z3 − z2w

2
3 = 0.

Consider R
�
1 ∈ C[z1, w1, z2, w2, z3, w3]. Let w1 = (0, 1, 1, 2, 2, 1). Then the w1-weight of the

term w1z3 is 3. The w1-weight of the term −z2w
2
3 is also 3. Therefore, the initial form of R�

1

with respect to w1 is

inw1(R
�
1) = w1z3 − z2w

2
3.

34
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Now let w2 = (−2,−2,−1,−1, 1, 0). Then the w2-weight of the term w1z3 is −1. The

w2-weight of the term −z2w
2
3 is also −1. So

inw2(R
�
1) = w1z3 − z2w

2
3.

Finally, let w3 = (4, 1,−1, 0,−2, 3). Then the w3-weight of the term w1z3 is −1. The

w3-weight of the term −z2w
2
3 is 5. So

inw3(R
�
1) = w1z3.

Definition 5.3 (Tropical hypersurface of a polynomial) Let f ∈ C[x1, ..., xn]. The trop-

ical hypersurface of f is the set

Trop(f) = {w ∈ R
n | inw(f) is not a monomial}.

A tropical hypersurface can be thought of as the solutions to a tropical linear equation,

where addition is defined by a� b = min({a, b}), and multiplication is defined by a� b = a+ b.

Example 5.4 (52-knot complement) Take the first polynomial augmented gluing equation

from the 52-knot complement,

R
�
1 = w1z3 − z2w

2
3 = 0.
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Consider R
�
1 ∈ C[z1, w1, z2, w2, z3, w3]. Let w1 = (0, 1, 1, 0, 2, 1), w2 = (1, 0, 1, 0,−1,−1), and

w3 = (4, 1,−1, 0,−2, 3) as in Example 5.2. Then, by Example 5.2, w1 ∈ Trop(R�
1), and

w2 ∈ Trop(R�
1), however w3 /∈ Trop(R�

1).

Definition 5.5 (Newton polytope of a polynomial) Let f ∈ C[x1, ..., xn] where

f =
m�

i=1

cix
a1,i
1 x

a2,i
2 · · ·xan,i

n .

Let V = {(a1,i, a2,i, ..., an,i) ∈ R
n | 1 ≤ i ≤ m} be the set of exponent vectors for each term of

f . Then the Newton polytope of f , N(f), is the polyhedron formed by the convex hall of V in

R
n.

Remark 5.6 Let f ∈ C[x1, ..., xn]. Then the tropical hypersurface of f , Trop(f), is the inner

pointing normal vectors of each nonvertex subcell of the Newton polytope N(f). A vector w ∈

Trop(f) must be normal to a nonvertex subcell of N(f) since this guarantees that two or more

terms of f have the same w-weight. A vector w ∈ Trop(f) which is normal to a nonvertex

subcell of N(f) must also be inner pointing since this guarantees that the terms corresponding

to the vertices of the subcell to which w is normal are of lowest w-weight.

Remark 5.7 Let f ∈ C[x1, ..., xn]. The tropical hypersurface Trop(f) is a polyhedral complex

such that, if w ∈ Trop(f) then R+ ·w ⊆ Trop(f). Therefore, it is often convenient to consider

the projection of Trop(f) onto the unit sphere S
n−1 ⊆ R

n.
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Example 5.8 (52-knot complement) Consider the first polynomial augmented gluing equa-

tion for the 52-knot complement,

R
�
1 = w1z3 − z2w

2
3 = 0.

In order to get a picture of a Newton polytope and tropical hypersurface we make the substitution

1− zi = wi. We get the polynomial gluing equation,

R
�
1 = (1− z1)z3 − z2(1− z3)

2 = 0.

⇒ R
�
1 = z3 − z1z3 − z2 + 2z2z3 − z2z

2
3 = 0.

Then the set V from Definition 5.5 is given by

V = {(0, 0, 1), (1, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, 2)}.

The Newton polytope N(R
�
1) ⊆ R

3 is pictured in Figure 8 by the bold lines. Then we can

compute the inner pointing normals for each edge and face of N(R
�
1). This gives us Trop(R

�
1).

The tropical hypersurface Trop(R
�
1) projected onto the unit sphere is pictured in Figure 9 by

the bold arcs. The vertices are labeled by the primitive integral vectors of the rays which they

represents.

By Remark 5.7, tropical hypersurfaces fall into a special category of polyhedral complexes

called fans which we define now.
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Figure 8. A picture of N(R
�
1) represented by the bold lines.

Definition 5.9 (Fan) A fan is a polyhedral complex where every face is a cone emanating

from a common vertex. We use the terms either face or cone to refer to faces of a fan. The

term ray may be used to refer to a 1-dimensional cone.

Remark 5.10 Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with

torus boundary. Then, by Remark 3.23, the set of admissible solutions to the Q-matching

equations, Q (T ), is a fan emanating from the origin in R
3n with the origin represented by a

union of infinitely many vertex linking tori.
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Figure 9. A picture of Trop(R
�
1) projected onto the unit sphere represented by the bold arcs

with vertices labeled by primitive integral representatives of the ray.

Definition 5.11 (Tropical prevariety) Let {f1, ..., fm} ⊆ C[x1, ..., xn] be a finite collection

of polynomials. Then the tropical prevariety of {f1, ..., fm}, PreTrop({f1, ..., fm}), is the inter-

section of the tropical hypersurfaces of each fi for 1 ≤ i ≤ m. That is,

PreTrop({f1, ..., fm}) = Trop(f1) ∩ · · · ∩ Trop(fm).
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The finite intersection of fans emanating from the same point is again a fan emanating that

point. Therefore, if {f1, ..., fm} ⊆ C[x1, ..., xn], then the tropical prevariety, PreTrop({f1, ..., fm}),

is a fan.

Example 5.12 (52-knot complement) Let

R
�
2 = z2 − 2z2z3 + z2z

2
3 + z1z

2
3 − z1z2z

2
3 = 0

be second polynomial gluing equation for the 52-knot complement with the terms expanded. The

Newton polytope for R
�
2 is given in Figure 10 by the bold lines. The tropical hypersurface for

R
�
2 projected onto the unit sphere is then given in Figure 11 by the bold arcs. If we consider the

intersection of Trop(R
�
1) with Trop(R

�
2), we see that the tropical prevariety, PreTrop({R�

1, R
�
2})

projected onto the unit sphere, is given by the bold arc and four points in Figure 12.

Definition 5.13 (Tropical Variety) Let I ⊆ C[x1, ..., xn] be an ideal. The tropical variety of

I denoted Trop(I) is the intersection of the tropical hypersurfaces Trop(f) as f runs over all

polynomials in I.

Notice that for f ∈ C[x1, .., xn], the tropical hypersurface Trop(f) is equal to the tropical

variety Trop(�f�).

Example 5.14 (52-knot complement) A. Jensen has written a program that utilizes the

algorithm created by T. Bogart, A. Jensen, D. Speyer, B. Sturmfels and R. Thomas (23) to
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Figure 10. A picture of N(R
�
2) represented by the bold lines.

compute tropical varieties called gfan (24). Using gfan, we find that the vectors (1, 1,−1),

(1,−1, 0), (0, 2, 1), (−1, 0,−1) and (−2,−1, 1) are in Trop(�R�
1, R

�
2�). See Figure 13.

5.2 Tropical Bases

Theorem 5.15 For every ideal I ⊆ C[x1, ..., xn], the tropical variety of I is the tropical preva-

riety of some finite set {f1, ..., fm} ⊆ C[x1, ..., xn].

T. Bogart, A. Jensen, D. Speyer, B. Sturmfels and R. Thomas give an algorithm for com-

puting such a set for any ideal (23).
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Figure 11. A picture of Trop(R
�
2) projected onto the unit sphere represented by the bold arcs

with vertices labeled by primitive integral representatives of the ray.

Definition 5.16 (Tropical basis) Let I ⊆ C[x1, ..., xn]. If {f1, ..., fm} ⊆ C[x1, ..., xn] is a set

such that Trop(I) = PreTrop({f1, ..., fm}) and I = �f1, ..., fm�, then {f1, ..., fm} is a tropical

basis for I.

Remark 5.17 By Theorem 5.15, every ideal has a tropical basis. Every tropical variety is then

the intersection of finitely many fans and is therefore a fan itself.

.
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Figure 12. A picture of PreTrop({R�
1, R

�
2}) projected onto the unit sphere represented by the

bold arcs and dots with vertices labeled by primitive integral representatives of the ray.

Example 5.18 (52-knot complement) The tropical basis found by gfan for �R�
1, R

�
2� is

{−z2z
2
3 − z1z3 + 2z2z3 − z2 + z3,

−z1z2z
2
3 + z1z

2
3 + z2z

2
3 − 2z2z3 + z2,

z1z2z
2
3 − z1z

2
3 + z1z3 − z3}
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Figure 13. A picture of Trop(�R�
1, R

�
2�) projected onto the unit sphere represented by dots

labeled by primitive integral representatives of the ray.

5.3 The Fundamental Theorem of Tropical Geometry

Definition 5.19 (Puiseux series) A Puiseux series is a series of the form

p(t) = c1t
a1 + c2t

a2 + ...
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where ci ∈ C, c1 �= 0 unless p is identically 0, ai ∈ Q, ai ≤ ai+1, and the ai have a common

denominator. All conditions are for all i ≥ 1. The set of Puiseux series creates an algebraically

closed field C{{t}}. This field comes with a valuation

v : C{{t}}∗ → Q

given by

c1t
a1 + c2t

a2 + ... �→ a1.

Theorem 5.20 (Fundamental Theorem of Tropical Geometry) Let I ⊆ C[x1, ..., xn] be

an ideal. Then

Trop(I) = {(v(p1), v(p2), ..., v(pn)) ∈ Qn | (p1, ..., pn) ∈ P (I)}

where P(I) is the set of all n-tuples of Puiseux series, (p1, ..., pn) ∈ (C{{t}}∗)n such that

(p1(t), p2(t), ..., pn(t)) ∈ V (I) for every t where the pi(t) are defined.

5.4 Proper Intersections

Definition 5.21 (Dimension of a fan) Let Σ be a fan. The dimension of Σ, dim(Σ), is the

maximum of the dimensions of the cones in Σ.

Definition 5.22 (Proper intersection) Let I and I
� be two ideals in C[x1, ..., xn]. We say

Trop(I) and Trop(I �) intersect properly at a point w ∈ R
n if Trop(I)∩Trop(I �) has codimension

equal to codim(V (I)) + codim(V (I �)) in a neighborhood of w.
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The following is shown by B. Osserman and S. Payne as Theorem 1.1 (15).

Theorem 5.23 (Osserman and Payne) Let I and I
� be two ideals in C[x1, ..., xn]. Suppose

Trop(I) and Trop(I �) intersect properly at w. Then w is in Trop(I + I
�).

Definition 5.24 (Isolated ray) Let Σ be a fan and R be a 1-dimensional cone of Σ. Then R

is an isolated ray if R is not a subcone of any higher dimensional cones.

The following is a consequence of Theorem 5.23.

Proposition 5.25 Let {P1, ..., Pm−1} ⊆ C[x1, ..., xm] where every irreducible component of

V (�P1, ..., Pm−1�) ⊆ C
m is 1-dimensional. Then if w ∈ R

m is contained in an isolated ray of

PreTrop({P1, ..., Pm−1}), then w ∈ Trop(�P1, ..., Pm−1�).

Proof : If w is the origin, then w is clearly in Trop(�P1, ..., Pm−1�). So assume w is not the

origin. We will show for every 1 ≤ j ≤ m − 1, the open star neighborhood of w, Strj(w) ⊆

PreTrop({Pi, ..., Pj}) is contained in Trop(�P1, ..., Pj�) by induction on j. The base case triv-

ial. Now assume Strj−1(w) ⊆ PreTrop({P1, ..., Pj−1}) is also contained in Trop(�P1, ..., Pj−1�).

Now,

Strj(w) ⊆ Strj−1(w) ⊆ Trop(�P1, ..., Pj−1�)

and

Strj(w) ⊆ Trop(Pj).

Therefore, Strj(w) is in the intersection of these two tropical varieties. Also, Strj(w) has

codimension m − j since we must cut down the dimension of Stri−1(w) by one each time
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we intersect with Trop(Pi) for 1 < i ≤ m − 1 in order to end with Strm−1(w) equal to an

isolated ray. Therefore, every point of Strj(w) is a proper intersection of Trop(�P1, ..., Pj−1�)

and Trop(Pj) since we must cut down the dimension of V (�P1, ..., Pi−1�) by one each time we

intersect with V (�Pi�) for 1 < i ≤ m − 1 in order to end with every irreducible component

of V (�P1, ..., Pm−1) being 1-dimendsional. Then Strj(w) ⊆ Trop(�P1, ..., Pj−1� + �Pj�) by the

theorem of Osserman and Payne (15), Theorem 5.23 in this thesis. Finally Trop(�P1, ..., Pj−1�+

�Pj�) = Trop(�P1, ..., Pj�). �

Example 5.26 (52-knot complement) Just by looking at the tropical prevariety PreTrop({R�
1, R

�
2})

(see Figure 12), Proposition 5.25 shows that

{(−2,−1, 1), (0, 2, 1), (1, 1,−1), (−1, 0,−1)} ⊆ Trop(�R�
1, R

�
2�)

Therefore, by the Fundamental Theorem of Tropical Geometry (Theorem 5.20), these vectors

correspond to ideal points of D(T ). However, there are some difficulties with using the regular

gluing equations and not the augmented gluing equations.

For example, Let ξ be the ideal point of D(T ) corresponding to the the vector (0, 2, 1), and vξ

be the associated valuation. We know that vξ(z2) = 2 and vξ(z3) = 1. Therefore, the associated

surface should have 2 normal quads of quad-type Q1 in the tetrahedron ∆2, and 1 normal quad

of quad-type Q1 in the tetrahedron ∆3. However, the zero in the first coordinate only tells

vξ(z1) = 0. This could represent z1 → 1 as we approach the ideal point, and we should be
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assigning some number of normal quads of type Q3 to ∆1; or z1 → x ∈ C \ {0, 1} in which case

no quads should be assigned to ∆1.

Even if a spunnormal surface can be assigned to an ideal point, then it still is unknown

whether that spunnormal surface is actually essential. Proposition 4.14 does tell us that its

boundary slope is the boundary slope of an essential surface. The main theorem of this thesis

will give sufficient conditions for a spunnormal surface corresponding to an ideal point to be

essential.



CHAPTER 6

MAIN RESULT

In this chapter we prove the main theorem of the thesis. However, before the main theorem,

we prove a result which is in S. Tillmann’s paper (22) as Proposition 3.1.

Proposition 6.1 Let (M, T ) be an ideal triangulation of a compact, orientable 3-manifold with

torus boundary where {∆1, ...,∆n} are the tetrahedra of T . Let

AG = {R�
1, ..., R

�
n−1, z1 + w1 − 1, ..., zn + wn − 1} ⊆ C[z1, w1, . . . , zn, wn]

where {R�
1, ..., R

�
n−1} are from the polynomial augmented gluing equations for (M, T ). Then

PreTrop(AG) and Q (T ) are isomorphic as piecewise linear spaces.

Proof : We define a map ϕ : Q (T ) → PreTrop(AG) given by

ϕ((q1,1, q2,1, q3,1, ..., q1,n, q2,n, q3,n)) = (x1, y1, ..., xn, yn)

where

(xi, yi) =






(q1,i, 0) if q1,i > 0

(−q2,i,−q2,i) if q2,i > 0

(0, q3,i) if q3,i > 0

(0, 0) if q1,i = q2,i = q3,i = 0

49
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Then ϕ is well-defined since any q ∈ Q (T ) must be admissible.

Also, for each (xi, yi) from a vector in the range of ϕ for 1 ≤ i ≤ n, either

1. xi = yi, and xi, yi ≤ 0,

2. xi > 0 and yi = 0, or

3. xi = 0 and yi > 0.

In any case, ϕ(q) ∈ PreTrop({zi + wi − 1}ni=1) for every q ∈ Q (T ).

Recall from Definition 4.4 and Definition 3.21, the augmented gluing equations are of the

form

Rk =
n�

i=1

(−1)ck,jz
ak,j−ck,j
i w

ck,j−bk,j
i = 1 (6.1)

and the Q-matching equations are of the form

Qk =
n�

j=1

�
(ak,j − ck,j)q1,j + (bk,j − ak,j)q2,j + (ck,j − bk,j)q3,j

�
= 0

for edges ek in T for 1 ≤ k ≤ n − 1. The form of Rk in equation 6.1 makes it clear that for a

vector (x1, y1, ..., xn, yn) ∈ R
2n to be in PreTrop(R�

k) for 1 ≤ k ≤ n− 1 it must satisfy:

�
x1, y1, ..., xn, yn

�
·
�
(ak,1 − ck,1), (ck,1 − bk,1), ..., (ak,n − ck,n), (ck,n − bk,n)

�
= 0. (6.2)
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When each case is considered in the definition of ϕ, we see that if q ∈ Q (T ), then ϕ(q) ∈

PreTrop({R�
1, ..., R

�
n−1}).

For example, consider q = (q1,1, q2,1, q3,1, ..., q1,n, q2,n, q3,n) ∈ Q (T ). Let i ∈ {1, ..., n}.

Assume q2,i > 0. Then (xi, yi) = (−q2,i,−q2,i) in ϕ(q). Then the contribution of xi and yi to

the inner product of equation 6.2 is

−q2,i(ak,i − ck,i)− q2,i(ck,i − bk,i) = (bk,i − ak,i)q2,i.

This is exactly the contribution from q1,i, q2,i, q3,i in the gluing equation Qk = 0. Therefore, if

q ∈ Q (T ), then ϕ(q) ∈ PreTrop(AG).

This argument works backwards and so an inverse function can be defined.

The restriction that only one of qi,1, qi,2, qi,3 are nonzero for every q ∈ Q (T ) implies that ϕ

is linear on each face of Q (T ). Therefore ϕ is a piecewise linear homeomorphism from Q (T ) to

the tropical prevariety PreTrop(AG). �

We now prove the main result of the thesis. Our proof follows the structure of the proof of

Theorem 1.1 in N. Dunfield and S. Garoufalidis’s paper (11).

Theorem 6.2 Let (M, T ) be an ideal triangulation of a compact, oriented 3-manifold with torus

boundary where {∆1, ...,∆n} are the tetrahedra of T . Assume every irreducible component of

D(T ) is 1-dimensional. Assume further q ∈ Z
3n
≥0 is the Q-coordinate vector of the surface S,

and is contained in the relative interior of an isolated ray of Q (T ). If the associated properly

embedded surface, �S, has nonempty boundary, then �S is an essential surface in M .
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Proof of main theorem: Since ϕ : Q (T ) → PreTrop(AG) in the proof of Proposition 6.1 is

a piecewise linear isomorphism, ϕ(q) is contained in an isolated ray of the tropical prevariety

PreTrop(AG). Now every irreducible component of D(T ) is assumed to be 1-dimensional, and

so, by Proposition 5.25, ϕ(q) ∈ Trop(�AG�). Then by the Fundamental Theorem of Tropical Ge-

ometry (Theorem 5.20), there exist Puiseux series p1, ..., pn such that ϕ(q) = (v(p1), ..., v(pn)).

Notice, since q is not the origin, v(pi) �= 0 for some i ∈ {1, ..., n}.

Therefore, S is associated to some ideal point ξ of D(T ). By assumption, �S ⊆ M has

nonempty boundary. Let α be the boundary slope of �S. By Proposition 4.14, if �S is two-sided,

then any reduction of �S has nonempty boundary with boundary slope α. Therefore, if �S is

two-sided, then �S can be reduced to an essential surface in M which also has boundary slope

α.

Still, we want to show that �S itself is essential. First, we reduce to the case that S is a vertex

surface, and �S is two-sided and connected. If S is not a vertex surface, then it is some number

of copies of the vertex surface for the isolated ray in which it is contained. A spunnormal

surface is essential if and only if any number of copies of that spunnormal surface is essential.

So we can assume S is a vertex surface. The definition of an essential non-orientable surface,

Definition 1.6, allows us to reduce to the case where �S is two-sided.

As for connectivity, assume �S is not connected, then S would be the geometric sum of disjoint

spunnormal surfaces associated to the components of �S. Let SC be one of these spunnormal

surfaces associated to a component C of �S. Then SC is compatible with S. Now Q (T ) is convex

when restricted to the n coordinates representing compatible quad-types of S and SC , and q is
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contained in an isolated ray of Q (T ). Therefore, the Q-coordinate vector qC ∈ Z
3n
≥0 of SC must

be in this isolated ray, R+ ·q. However, qC +w = q for some vector w ∈ Z
3n
≥0. This contradicts

that S is the primitive representative of R+ · q. So �S is connected.

If �S is not essential as claimed, there are two possibilities:

1. There is a compressing disk for �S.

2. �S is boundary parallel.

The second case is ruled out since �S can be reduced to an essential surface.

So we focus on the first case, and proceed by contradiction.

Before starting, let N be an end of T such that S∩(T \N•) maps to �S by a homeomorphism

pN : (T \ N
•) → M where N

• is the end N with the vertex of T . To simplify notation, let

M
� = T \ N

• and �S� = S ∩ M
�. Then M

� is homeomorphic to M and �S� maps to �S by this

homeomorphism.

Now let D be a compressing disk for �S. Then there is a compressing disk D
� for �S� which

maps to D by pN . Compress S along D
� in M

� to obtain a surface S1. Now isotope S1 off of S.

Which can be done, because S was assumed to be two-sided.

Cut T \ T (0) open along S to obtain a noncompact, orientable 3-manifold with boundary

PS . Here, PS is a homeomorphic to M
� cut along �S� with annuli corresponding to components

of ∂M � \ ∂ �S� removed. Consider the cell decomposition (PS , TS) where TS consists of infinitely

many cells formed by cutting the tetrahedra of T by the normal disks of S. Notice that S1 is
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disjoint from the boundary of PS which consists of two copies of S. Let NS ⊆ PS be N cut

along S. Then each component of NS is homeomorphic to A× I where A is an open annulus,

and cells of TS completely contained in NS are homeomorphic to δ × I where δ is a triangle.

Therefore, S1 intersects each of these cells in normal triangles parallel to the two triangular

faces of each cell. See Figure 14.

To simplify notation, let M �
S = TS \NS . Then M

�
S is M � cut along S. Let S�

1 = S1 ∩M
�
S .

Now reduce S�
1 inside ofM

�
S by compressing along compressing disks and removing boundary

parallel annuli to obtain an essential surface S�
2. Any reduction in M

�
S is a reduction in M

�, and

so, by Proposition 4.14, S�
2 is a nonempty, essential surface in M

�
S with nonempty boundary. If

S
�
2 is not connected, replace it by a connected component with nonempty boundary.

Then we can construct an embedded surface S2 in PS by attaching the closed boundary

curves of half-open annuli to the components of ∂S�
2. We require that these attached annuli

do not intersect the boundary of NS . Notice that S2 meets each cell of TS contained in NS in

triangles parallel to the two triangular faces of the cell. Then S2 is disjoint from the boundary

PS . See Figure 14.

Now take every cell of TS which is not completely contained in NS . These form a cell

decomposition of a compact, oriented 3-manifold with boundary which is isotopic to M
�
S . Now

by Remark 3.5, we can normalize S2 in this compact cell decomposition. Notice, that since S
�
2

does not contain any boundary parallel annuli, the normalization process does not push any

annuli outside of M �
S . The normalization then produces a surface S3 which is normal with
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respect to (PS , TS). It could be that S3 is not isotopic to S2 if M is not irreducilbe. Still, S3 is

topologically the same as S2, and is normal with respect to (PS , TS). Also, S3 and the boundary

of PS are still disjoint since the normalization process does not increase the intersection with

edges of TS . The possibilities for normal disks of S3 in TS , shown in Figure 14, forces S3 to

be spunnormal with respect to (M, T ) and disjoint from S when the two copies of S in the

boundary of PS are glued back together.

Figure 14. The possible cells of TS . Dark faces represent normal disks of S. Light normal
disks are the possible normal disks for S3 which cannot intersect dark faces.
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Then S3 is a spunnormal surface with respect to (M, T ) and is compatible with S. Now

Q (T ) is convex when restricted to n coordinates representing compatible quad-types of S and

S3, and the Q-coordinate vector of S is contained in an isolated ray of Q (T ). Therefore, the

Q-coordinate vector of S3 must be in the same isolated ray of Q (T ). Now S3 was constructed to

be two-sided, and therefore must be some number of copies of the two-sided connected surface

S. However, S3 was also constructed to be connected, and therefore, must be isotopic to S.

This contradicts that we compressed along D and further reduced S to obtain S3. Therefore,

the first case is ruled out and S is essential. �



CHAPTER 7

EXAMPLES

In this chapter, we give sample Python code which defines a function, the A function,

that finds examples of spunnormal surfaces that satisfy the hypotheses of the main theorem,

Theorem 6.2. The function takes in a compact, orientable 3-manifold with torus boundary,

M , and outputs vertex surfaces which are in an isolated ray of Q (T ) where T is the ideal

triangulation used by SnapPy for M . Theorem 6.2 then shows that these surfaces are essential

and their boundary slopes are in bs(M).

The following is the Python code for the A function discussed above. It requires the bound-

ary slopes module from the t3m package, and the cypari module. Everything can be down-

loaded, or easily found, on the website, http://www.math.uic.edu/t3m/.

from boundary_slopes import *

from cypari.gen import pari

def A(x):

M=OneCuspedManifold(x)

M.find_normal_surfaces ()

count =0

for idx in range(len(M.NormalSurfaces)):

print ’Spun�surface�’, idx

57
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S=M.NormalSurfaces[idx]

print ’Coefficients:�’,S.Coefficients

isBad =0

if 0 in S.Coefficients:

z=list(S.Coefficients).count (0)

if z>=9:

isBad=isBad+1

print ’�����Not�Computed ’

else:

L=list(S.Coefficients)

p=[ ]

for i in range(z):

p=p+[L.index (0)+i]

L.remove (0)

for i in range(len(f(z))):

for j in range(z):

S.Quadtypes[p[j

]]=f(z)[i][j]
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if isGood(S,M)==0:

isBad=isBad +1

break

else:

if isGood(S,M)==0:

isBad=isBad+1

if isBad ==0:

print S.info(M)

count=count +1

print ’Count�=�’, count

print ’Manifold:�’, x

The following function is used in the A function to check the dimension of Q (T ) for some

choice of n coordinates.

def isGood(S, M):

cols =[3*m+n for m,n in enumerate(S.Quadtypes)]

T=M.QuadMatrix.rows

mymatrix =[M.QuadMatrix[i,j] for i in range(T) for j in

cols]

Z=pari.matrix(T,T,mymatrix)

Z.matsnf ()
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if list(Z.matsnf ()).count (0) ==1:

return 1

else:

return 0

This final function is used in the A function when generating all of the 3m coordinates that

must be checked when m is the number of tetrahedra in which the surface does not have a

normal quad.

def f(m):

if m<=1:

return [[0] ,[1] ,[2]]

previous=f(m-1)

result =[ ]

for vector in previous:

result = result +[ vector + [0], vector + [1],

vector +[2]]

return result

The boundary slopes produced from the A function have been checked for consistency with

N. Dunfield’s list of boundary slopes for Montesinos knots up to 10 crossings (8).
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Example 7.1 (52-knot complement) The following is the output from the A function for

the 52-knot complement. The quad-types match up with those of Definition 3.2 as follows: Q13

is Q1, Q03 is Q2, and Q23 is Q3.

>>> A(’5_2’)

slice 0 : 3 positive 3 negative 3 zero

slice 1 : 6 positive 3 negative 0 zero

slice 2 : 0 positive 0 negative 6 zero

DONE. 15 vertices were filtered; 0 were interior.

Spun surface 0

Coefficients: [2 2 1]

SpunSurface.

Slope: (-10, -1); Boundary components: 1; Euler characteristic:

-2

Incompressible: None

Tet 0: Quad Type Q13 , weight 2

Tet 1: Quad Type Q03 , weight 2

Tet 2: Quad Type Q23 , weight 1

None
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Spun surface 1

Coefficients: [1 1 1]

SpunSurface.

Slope: (-4, -1); Boundary components: 1; Euler characteristic:

-1

Incompressible: None

Tet 0: Quad Type Q13 , weight 1

Tet 1: Quad Type Q13 , weight 1

Tet 2: Quad Type Q03 , weight 1

None

Spun surface 2

Coefficients: [2 2 1]

SpunSurface.

Slope: (10, 1); Boundary components: 1; Euler characteristic: -2

Incompressible: None

Tet 0: Quad Type Q23 , weight 2

Tet 1: Quad Type Q23 , weight 2

Tet 2: Quad Type Q23 , weight 1

None



63

Spun surface 3

Coefficients: [1 1 1]

SpunSurface.

Slope: (4, 1); Boundary components: 1; Euler characteristic: -1

Incompressible: None

Tet 0: Quad Type Q03 , weight 1

Tet 1: Quad Type Q23 , weight 1

Tet 2: Quad Type Q03 , weight 1

None

Spun surface 4

Coefficients: [1 2 1]

SpunSurface.

Slope: (0, -1); Boundary components: 1; Euler characteristic: -1

Incompressible: None

Tet 0: Quad Type Q23 , weight 1

Tet 1: Quad Type Q13 , weight 2

Tet 2: Quad Type Q13 , weight 1

None

Spun surface 5
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Coefficients: [2 1 1]

SpunSurface.

Slope: (0, 1); Boundary components: 1; Euler characteristic: -1

Incompressible: None

Tet 0: Quad Type Q03 , weight 2

Tet 1: Quad Type Q03 , weight 1

Tet 2: Quad Type Q13 , weight 1

None

Count = 6

Manifold: 5_2

Notice that the vectors (1, 1,−1) and (−2,−1, 1) found to be in Trop(�R�
1, R

�
2�), see Figure

8 and Proposition 5.22, correspond to ‘Spun surface 1’ and ‘Spun surface 5’ respectively from

the output of A(‘5 2’).

The main theorem of this thesis, Theorem 6.2, shows that the six spunnormal surfaces in

the output of A(‘5 2’) are essential, and therefore their boundary slopes are in bs(M) for M

the 52-knot complement. Then we see from the output that {0, 4, 10} ⊆ bs(M). From N.

Dunfield’s table of boundary slopes for Montesinos knots (8), {0, 4, 10} = bs(M). In this case

the A function actually found all of bs(M) which is rather rare for Montesinos knots up to 10

crossings.
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All of these spunnormal surfaces have a normal quad in every tetrahedron, and so these

spunnormal surfaces are already know to be essential by N. Dunfield and S. Garoufalidis (11).

Table I gives examples of non-Montesinos knots for which the A function finds boundary

slopes of essential spunnormal surfaces with no normal quads in some tetrahedron. As far as

the author knows, these boundary slopes are not previously known. These slopes are marked

with an asterisks (*) and do not satisfy the criteria of N. Dunfield and S. Garoufalidis (11), but

do satisfy the criteria of the main theorem in this thesis, Theorem 6.2. That is, the essential

spunnormal surface or spunnormal surfaces with that boundary slope do not have a normal

quad in some tetrahedron of the ideal triangulation used by SnapPy.
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TABLE I

A LIST OF BOUNDARY SLOPES OF NON-MONTESINOS KNOTS.
947 4* 16
1085 -20 -15 -14 -6* -2
1087 -14* -10 -9 0 4
1090 -7 -6* 12 18
1093 -16* -8* -6* 2
1094 6 18* 28
10102 -14* -10* -1 12 18
10103 -20 -14 -12 -6 8*
10104 -12* 6 10 14 16
10106 -14 -8 -6 -4/3 6 14* 18*
10108 -2 0 11 16*
10110 -18 -4* 3 14
10112 -28 -18* -13 6 8 14
10114 -30 -18 -12 6* 7 14
10116 -18 -14* -13 -12 -9 8 14
10117 -14 7 8* 12 18
10118 -26 -16 -12* 0 12* 16 26
10119 -30 -7 -6* -4 12 18 24
10123 -12* 12*

* boundary slopes from essential spunnormal surfaces with no normal quads in a tetrahedron
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