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SUMMARY

Two DGAs are said to be topologically equivalent when the corresponding Eilenberg–Mac

Lane ring spectra are weakly equivalent as ring spectra. Quasi-isomorphic DGAs are topo-

logically equivalent but the converse is not necessarily true. As a counter-example, Dugger

and Shipley showed that there are DGAs that are non-trivially topologically equivalent, ie

topologically equivalent but not quasi-isomorphic.

In this work, we define E∞ topological equivalences and utilize the obstruction theories devel-

oped by Goerss, Hopkins and Miller to construct first examples of non-trivially E∞ topologically

equivalent E∞ DGAs. Also, we show using these obstruction theories that for co-connective

E∞ Fp–DGAs, E∞ topological equivalences and quasi-isomorphisms agree. For E∞ Fp–DGAs

with trivial first homology, we show that an E∞ topological equivalence induces an isomor-

phism in homology that preserves the Dyer–Lashof operations and therefore induces an H∞
Fp–equivalence.

This work is published in:

Haldun Özgür Bayındır. Topological equivalences of E-infinity differential graded algebras.

Algebr. Geom. Topol., 18(2):11151146, 2018.
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CHAPTER 1

INTRODUCTION

This chapter is previously published as: Haldun Özgür Bayındır. Topological equivalences

of E-infinity differential graded algebras. Algebr. Geom. Topol., 18(2):11151146, 2018.

Dugger and Shipley defined a new equivalence relation between associative differential

graded algebras (which we call DGAs) that they call topological equivalences (1). To define

topological equivalences, they use the Quillen equivalence between R–DGAs and HR–algebras

where R denotes a discrete commutative ring, see Shipley (2). Two R–DGAs X and Y are said

to be topologically equivalent if the corresponding HR–algebras HX and HY are weakly

equivalent as S–algebras where S denotes the sphere spectrum. Using Quillen equivalences in

(2), it is easy to see that topologically equivalent DGAs are Morita equivalent. Furthermore,

topological equivalences appear in one of the equivalent definitions of Morita equivalences of

DGAs, see Theorem 1.4 of (1).

By the Quillen equivalence between R–DGAs and HR–algebras, two R–DGAs are quasi

isomorphic if and only if the corresponding HR–algebras are weakly equivalent as HR–algebras.

Because the forgetful functor from HR–algebras to S–algebras preserves weak equivalences, it is

clear that quasi-isomorphic DGAs are always topologically equivalent. One of the main results of

(1) is that there are DGAs that are not quasi-isomorphic but are topologically equivalent. Such

DGAs are called non-trivially topologically equivalent. On the other hand, another theorem

1
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in (1) states that there are no examples of non-trivial topological equivalences in Q–DGAs, ie

topologically equivalent Q–DGAs are quasi-isomorphic. See Theorem 1.9 below.

Because there is also a Quillen equivalence between E∞ R–DGAs and commutative HR–

algebras, see Richter and Shipley (3), topological equivalences for E∞ DGAs can also be con-

sidered. Now we explain what we mean by topological equivalences for DGAs and E∞ DGAs.

For DGAs we have the following definition of topological equivalence.

Definition 1.1. Two R–DGAs X and Y are topologically equivalent if the corresponding HR–

algebras HX and HY are weakly equivalent as S–algebras. This is same as the definition of

topological equivalence in (1).

The definition for topological equivalence of E∞ DGAs is the following.

Definition 1.2. Two E∞ R–DGAs X and Y are E∞ topologically equivalent if the corresponding

commutative HR–algebras HX and HY are weakly equivalent as commutative S–algebras.

Our methods make use of obstruction theories for ring spectra. In (4), Robinson develops an

obstruction theory for showing existence of ring structures on spectra. This obstruction theory

is generalized for commutative ring spectra by Robinson in (5). Based on the obstruction

spectral sequence of Bousfield (6), Hopkins and Miller developed another obstruction theory

(7). Their obstruction theory provides an obstruction spectral sequence for calculating mapping

spaces of ring spectra and also an obstruction theory for showing the existence of ring structures

on spectra. This obstruction theory is generalized to commutative ring spectra by Goerss and

Hopkins (8). In this work, we use the T–algebra spectral sequence of Johnson and Noel (9),
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which is a generalization of the obstruction spectral sequence of Hopkins and Miller, to calculate

mapping spaces of commutative ring spectra.

In this work, we construct the first examples of non-trivially E∞ topologically equivalent E∞
DGAs. One of these examples is in E∞ Fp–DGAs. This is particularly interesting because one of

the open questions in (1) asks if there are any examples of non-trivial topological equivalences

of k–DGAs for a field k. Our example provides a positive answer to this question in E∞
DGAs. Although there is an example of non-trivial E∞ topological equivalences over Fp, our

non-existence results for E∞ topological equivalences hint that such examples are not common.

Before stating our non-existence results, we note that topologically equivalent DGAs have

isomorphic homology rings. This is because the Quillen equivalence between R–DGAs and HR–

algebras gives an isomorphism between the homology ring of an R–DGA and the homotopy

ring of the corresponding ring spectra. Therefore if X and Y are topologically equivalent DGAs,

then H∗(X) ∼= π∗(HX) ∼= π∗(HY) ∼= H∗(Y) where the isomorphisms are ring isomorphisms and

the isomorphism in the middle is induced by the topological equivalence. The same is true

for E∞ topological equivalences, but as Example 4.1 indicates, the isomorphism of homology

rings may not preserve Dyer–Lashof operations. However, by Theorem 1.7, if X and Y are

E∞ topologically equivalent E∞ Fp–DGAs with trivial first homology, then the isomorphism of

homology rings induced by the E∞ topological equivalence preserves Dyer–Lashof operations,

ie it is an isomorphism of algebras over the Dyer–Lashof algebra.



4

For co-connective E∞ Z/(m)–DGAs, we prove that there are no non-trivial E∞ topological

equivalences where m is a non-unital integer (ie m ∈ Z with m 6= ±1). This in particular

implies that there are no non-trivial E∞ topological equivalences of co-connective E∞ Z–DGAs.

Theorem 1.3. If two co-connective E∞ Z/(m)–DGAs are E∞ Topologically equivalent then

they are quasi-isomorphic as E∞ Z/(m)–DGAs. In other words, E∞ topological equivalences

and quasi-isomorphisms agree for co-connective E∞ Z/(m)–DGAs.

Remark 1.4. We actually show that this theorem is true for co-connective E∞ R–DGAs for any

commutative solid ring R, ie for any commutative ring where the multiplication map R⊗R→ R

is an isomorphism. Note that Z/(m) is a solid ring.

There is an important class of examples for this theorem, namely the cochain complex of a

topological space with coefficients in Z/(m); this is the function spectrum F(Σ∞X+, HZ/(m))

for a topological space X. Note that since we use homological grading, the cochain complex of

a space is co-connective. Moreover, Mandell’s result states that “finite type nilpotent spaces

are weakly equivalent if and only if their cochain complexes with integer coefficients are quasi-

isomorphic as E∞ Z–DGAs” (10). Combining Mandell’s result with Theorem 1.3, we obtain

the following corollary.

Corollary 1.5. Finite type nilpotent spaces are weakly equivalent if and only if their cochain

complexes with integer coefficients are E∞ topologically equivalent.

Remark 1.6. It is also interesting to consider the following consequence of Theorem 1.3. For a

co-connective commutative S–algebra X, we use the E∞ connective cover Hπ0X→ X to obtain a
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map HZ → X which gives X a commutative HZ–algebra structure. This says that there is an E∞
Z–DGA corresponding to a co-connective commutative S–algebra. By this and Theorem 1.3,

we deduce that weak equivalence classes of co-connective commutative S–algebras are uniquely

determined by the quasi-isomorphism classes of the corresponding E∞ Z–DGAs.

In Example 4.1, we construct E∞ Fp–DGAs that are non-trivially E∞ topologically equiva-

lent. Therefore it is not possible to generalize Theorem 1.3 to all E∞ Fp–DGAs. However, for

E∞ Fp–DGAs with trivial first homology we have the following result.

Theorem 1.7. Let X and Y be E∞ Fp–DGAs with trivial first homology group. If X and Y are

E∞ topologically equivalent, then they are H∞ Fp–algebra equivalent. Furthermore, an S–algebra

equivalence between HX and HY induces an isomorphism of the homology rings that preserves

Dyer–Lashof operations.

We actually prove a stronger result. Theorem 6.1 states that for H∞ HFp–algebras with

trivial first homotopy, H∞ S–algebra equivalence implies H∞ HFp–algebra equivalence.

The condition of trivial first homology is due to the fact that the dual Steenrod algebra

is generated by an element of degree one as a ring with Dyer–Lashof operations. Again by

Example 4.1, this condition cannot be removed from this theorem.

Remark 1.8. In (11), Lawson produces examples of H∞ S–algebras whose H∞ S–algebra

structures do not lift to commutative S–algebra structures. One of the intermediate results

of (11) states that Theorem 6.1 is still true without the restriction on the first homotopy but
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Example 4.1 contradicts this. The examples of spectra constructed in (11) are co-connective.

Therefore, Theorem 6.1 recovers the main result of (11). We elaborate on this in Chapter 6.

The proof of the non-existence theorem in (1) for Q–DGAs also works for E∞ Q–DGAs.

We obtain the following.

Theorem 1.9. (E∞) topologically equivalent (E∞) Q–DGAs are quasi-isomorphic. That is,

(E∞) topological equivalences and (E∞) quasi-isomorphisms agree in (E∞) Q–DGAs.

In the next chapter, we explain the examples of non-trivial topological equivalences given

in (1) and in the appendix, we make a correction to a mistake in the construction of these

examples. Chapter 2 discusses the obstruction spectral sequences that we will use for calculating

mapping spaces of ring spectra and Chapter 3 describes the dual Steenrod algebra and the Dyer–

Lashof operations on it. Chapter 4 is devoted to our examples of non-trivial E∞ topological

equivalences. Chapter 5 contains the proof of Theorem 1.3 and Chapter 6 contains the proof

of Theorem 1.7.

Notation As noted earlier, for a commutative ring R, when we say R–DGAs we mean asso-

ciative R–DGAs. Similarly for a commutative ring spectrum R, R–algebras denote associative

R–algebras. A smash product without a subscript ∧ denotes the smash product over the sphere

spectrum. The category of spectra we use is symmetric spectra in topological spaces with the

positive model structure as in Mandell, May, Schwede and Shipley (12).

1.1 Previous examples of topological equivalences

In this chapter we discuss the examples of non-trivial topological equivalences in (1).
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Example 1.10. There are exactly two non quasi-isomorphic DGAs with homology ΛFp(x2p−2),

the exterior algebra over Fp with a single generator in degree 2p − 2, and these DGAs are

topologically equivalent. Therefore they are non-trivially topologically equivalent. For p = 2,

one of these DGAs is the formal one and the other one is given by

Z[e1;de1 = 2]/(e41) where |e1| = 1.

This example is constructed by classifying weak equivalence classes of Postnikov extensions

which are obtained using topological Hochschild cohomology. However, this construction in (1)

contains a gap. The weak equivalences classes calculated in (1) are weak equivalence classes

of Postnikov extensions. This in general may not correspond to weak equivalence classes that

should be considered here, namely the weak equivalence classes of HZ–algebras. In the ap-

pendix, we explain this in detail and correct the mistake in (1) by showing that these two

equivalence classes agree for this particular example.

Example 1.11. The second example of Dugger and Shipley has a simpler construction. They

start with HZ∧HF2 and give this S–algebra two HZ–algebra structures using the maps HZ ∼=

HZ∧ S → HZ∧HF2 and HZ ∼= S∧HZ → HZ∧HF2. These two HZ–algebras are not weakly

equivalent but their underlying S–algebras are the same. This means that we have two DGAs

that are not quasi-isomorphic but are topologically equivalent. In Theorem 4.3, we provide a

generalization of this example in E∞ DGAs.



CHAPTER 2

OBSTRUCTION THEORIES FOR RING SPECTRA

This chapter is previously published as: Haldun Özgür Bayındır. Topological equivalences

of E-infinity differential graded algebras. Algebr. Geom. Topol., 18(2):11151146, 2018.

For a commutative S–algebra X, a commutative HZ–algebra structure on X is given by a

map HZ → X of commutative S–algebras. In other words, the category of commutative HZ–

algebras is the category commutative S–algebras under HZ. Therefore it is natural to consider

the maps from HZ to a commutative S–algebra X for the purpose of studying E∞ topological

equivalences. For this, we employ an obstruction spectral sequence to calculate homotopy class

of maps in commutative ring spectra.

The obstruction spectral sequence we use relies on Bousfield’s obstruction spectral sequence

(6). The first application of Bousfield’s obstruction theory to ring spectra was in the Hopkins–

Miller theorem, see (7). The obstruction theory of Hopkins and Miller is for associative ring

spectra. It is used for showing existence of ring structures on spectra and for calculating

mapping spaces of ring spectra. Hopkins and Miller use this obstruction theory to show that

the Morava stabilizer group acts on the Morava E–theory spectrum En. Later, Goerss and

Hopkins generalized this theory to commutative ring spectra (8).

Johnson and Noel generalized the obstruction theory of the Hopkins Miller theorem to

calculate mapping spaces of algebras over a general monad in a model category in (9). This is

called the T–algebra spectral sequence.

8
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Generalizing the obstruction theory of the Hopkins–Miller theorem to commutative ring

spectra is not trivial because of the following problem. For a spectrum X and a homology theory

E∗ corresponding to another spectrum E, if E∗X is flat over E∗, then E∗T(X) is the free associative

E∗–algebra over E∗X where T(X) is the free associative ring spectrum over X. For commutative

ring spectra, one uses the free commutative ring spectra functor PS but E∗PS(X) may not have

a nice description, even under the above flatness assumption. However, for calculating mapping

spaces of commutative HFp–algebras one uses the fact that PHFp(X)∗ is the free unstable algebra

over the Dyer–Lashof algebra generated by X∗. Noel uses this with the results of (9) and

constructs a spectral sequence that calculates mapping spaces of commutative HFp–algebras,

see Proposition 2.2 of (13). More generally, his spectral sequence calculates mapping spaces

of commutative Hk–algebras for any field k. Using the adjunction between commutative S–

algebras and commutative HFp–algebras we obtain the following spectral sequence from Noel’s

spectral sequence.

Theorem 2.1. (13, Proposition 2.2) Let X be a commutative S–algebra and let Y be a com-

mutative HFp–algebra. Given a map φ : X → Y of commutative S–algebras, there is a spectral

sequence abutting to πt−smapS-cAlg(X, Y) where S-cAlg denotes commutative S–algebras. The

E2 term of this spectral sequence is given by

E0,02 = HomR-alg(HFp∗X, Y∗)
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and for t > 0,

Es,t2 = DersR-alg(HFp∗X, Y
St

∗ )

where DersR-alg(−,−) denotes the sth André–Quillen cohomology for unstable algebras with

Dyer–Lashof operations (14), YS
t

denotes the mapping spectrum from the t–sphere to Y and

HomR-alg(HFp∗X, Y∗) denotes morphisms preserving Dyer–Lashof operations.

Obstructions to lifting a morphism in E0,02 to a morphism of commutative S–algebras lie in

DertR-alg(HFp∗X, Y
St−1

∗ ) for t ≥ 2.

Obstructions to up-to homotopy uniqueness of a lift lie in

DertR-alg(HFp∗X, Y
St
∗ ) for t ≥ 1.

Proof. The adjunction between commutative S–algebras and commutative HFp–algebras gives

mapS-cAlg(X, Y)
∼= mapHFp-cAlg(HFp ∧ X, Y).

Therefore the setting of Noel’s spectral sequence that calculates the homotopy groups of

mapHFp-cAlg(HFp ∧ X, Y) provides us the spectral sequence above.

Noel’s spectral sequence is a special case of the T–algebra spectral sequence of (9). Therefore

Theorem 4.5 of (9) gives us the obstruction theoretical results.



CHAPTER 3

DYER–LASHOF OPERATIONS AND THE DUAL

STEENROD ALGEBRA

This chapter is previously published as: Haldun Özgür Bayındır. Topological equivalences

of E-infinity differential graded algebras. Algebr. Geom. Topol., 18(2):11151146, 2018.

For a commutative ring spectrum R we denote the free commutative algebra functor from

R–modules to commutative R–algebras by PR. This functor is homotopically well behaved and

induces a monad on Ho(R-mod) and the algebras over this monad are called H∞ R–algebras.

Therefore, an E∞ algebra is an H∞ algebra. The converse to this is shown to be false by

counter-examples in (15) and (11).

Dyer–Lashof operations are power operations, just like the Steenrod operations, that are

constructed in a way to act on the homotopy ring of H∞ HFp–algebras in (16). Equivalently,

they act on the homology ring of H∞ Fp–DGAs. Indeed the category of H∞ HFp–algebras is

equivalent to the category of graded commutative rings over Fp with Dyer–Lashof operations

satisfying the allowability and pth power conditions, which are called unstable algebras over

the Dyer–Lashof algebra, see the discussion in Section 3 of (11).

For each integer s, there is a Dyer–Lashof operation denoted by Qs. These operations

are preserved under H∞ HFp–algebra morphisms and hence E∞ HFp–algebra morphisms. The

operation Qs increases the degree by 2s(p−1) for odd primes and by s for p = 2. For an element

11
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x in the homotopy ring of a commutative HFp–algebra, the unstable Dyer–Lashof operations

satisfy the following properties (the properties for p = 2 are given in parentheses).

Qsx = 0 for 2s < |x| (for s < |x|)

Qsx = xp for 2s = |x| (for s = |x|)

Qs1 = 0 for s 6= 0

Also, these operations satisfy the Cartan formula and the Adem relations as in Chapter III

Theorem 1.1 of (16).

As mentioned earlier, for a commutative HFp–algebra X, PHFp(X)∗ is the free unstable

algebra over the Dyer–Lashof algebra generated by X∗.

Theorem 3.1. (17) PHFp(X)∗ is the free commutative graded Fp–algebra generated by QIxj

where xj’s form a basis for X∗ and I = (ε1, i1, ε2, ..., εn, in) is admissible and satisfies excess(I)+

ε1 > |xj|.

The definition of admissibility and excess can be found in (18).

Dual Steenrod Algebra. Now we discuss the dual Steenrod algebra and the Dyer–Lashof

operations on it. The dual Steenrod algebra is first described by Milnor in (19) and the Dyer–

Lashof operations on it are first studied in Chapter III of (16). We also recommend (20). The
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dual Steenrod algebra A∗ ∼= HFp∗HFp is a free graded commutative Fp–algebra. For p = 2, it

is given by two different standard sets of generators

A∗ = F2[ξr | r ≥ 1] = F2[ζr | r ≥ 1]

where |ξr| = |ζr| = 2r − 1. The transpose map of the smash product applied to HFp ∧ HFp

induces an automorphism of the dual Steenrod algebra denoted by χ. The reason we have two

different set of generators above is to keep track of the action of χ. We have χ(ξr) = ζr. The

generating series ξ(t) = t + Σr≤1ξrt
2r and ζ(t) = t + Σr≤1ζrt

2r are composition inverses in the

sense that ζ(ξ(t)) = t = ξ(ζ(t)). This in particular shows that ξ1 = ζ1.

Since commutative HFp–algebras form the category of commutative S–algebras under HFp,

HFp ∧ HFp can be given two different commutative HFp–algebra structures using the maps

HFp = HFp ∧ S → HFp ∧HFp and HFp = S∧HFp → HFp ∧HFp. We call these maps g1 and

g2 respectively. We denote the Dyer–Lashof operations induced on A∗ from the first structure

map by Qs and the second structure map by Q̃s.

Since the transpose map induces an isomorphism of commutative HFp–algebras, χ preserves

the corresponding Dyer–Lashof operations ie χ(Qsx) = Q̃sχ(x). For p = 2, A∗ is generated as

an algebra over the Dyer–Lashof algebra by ξ1, and we have

Q2s−2ξ1 = ζs for s ≥ 1.
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By using the fact that χ preserves Dyer–Lashof operations, one obtains

Q̃2s−2ξ1 = ξs for s ≥ 1.

For an odd prime p, the dual Steenrod algebra is given by the following.

A∗ = Fp[ξr | r ≥ 1]⊗Λ(τs | s ≥ 0) = Fp[ζr | r ≥ 1]⊗Λ(τs | s ≥ 0)

Where |ξr| = |ζr| = 2(p
r − 1) and |τs| = |τs| = 2p

s − 1. The action of the antipode map is given

by χ(ξr) = ζr and χ(τr) = τr. We use the following formula to relate the two set of generators

for the dual Steenrod Algebra, see Section 7 of (19) and the proof of Lemma 4.7 in (20).

τ̄s + τ̄s−1ξ
ps−1

1 + τ̄s−2ξ
ps−2

2 + · · ·+ τ̄0ξs + τs = 0 (3.1)

The dual Steenrod algebra is generated by τ0 as an algebra over the Dyer–Lashof algebra.

We have the following formulae for the Dyer–Lashof operations for s ≥ 1

Q(ps−1)/(p−1)τ0 = (−1)sτs

βQ(ps−1)/(p−1)τ0 = (−1)sζs.

More can be found on the Dyer–Lashof operations on the dual Steenrod algebra in (20) and in

Chapter III of (16).



CHAPTER 4

EXAMPLES OF NON-TRIVIAL E∞ TOPOLOGICAL EQUIVALENCES

This chapter is previously published as: Haldun Özgür Bayındır. Topological equivalences

of E-infinity differential graded algebras. Algebr. Geom. Topol., 18(2):11151146, 2018.

4.1 Examples in E∞ Fp–DGAs

Here, we discuss the first examples of E∞ DGAs that are not quasi-isomorphic but are E∞
topologically equivalent, ie non-trivially E∞ topologically equivalent.

The first examples we construct is in E∞ Fp–DGAs. Namely, we construct examples of E∞
topologically equivalent E∞ Fp–DGAs that are not quasi-isomorphic as E∞ Z–DGAs. Note that

if they were only distinct as E∞ Fp–DGAs but equivalent as E∞ Z–DGAs, this would defeat the

purpose of using commutative S–algebras to study E∞ DGAs. By the equivalence of E∞ Fp–

DGAs and commutative HFp–algebras, constructing such examples is the same as constructing

commutative HFp–algebras that are not weakly equivalent as commutative HZ–algebras but

are weakly equivalent as commutative S–algebras.

As we noted earlier, commutative HFp–algebras form the category of commutative S–

algebras under HFp. There is a model structure induced on the under-category where the weak

equivalences, cofibrations and fibrations are precisely the same as for commutative S–algebras.

In our example, we start with a commutative S–algebra X and induce two different commu-

tative HFp–algebra structures on this object by providing two different commutative S–algebra

15
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maps from HFp to X. Clearly these two commutative HFp–algebras are weakly equivalent (even

isomorphic) as commutative S–algebras. We show that these two commutative HFp–algebras

are not weakly equivalent as commutative HFp–algebras by showing that their homotopy rings

are not isomorphic as algebras over the Dyer–Lashof algebra. By the discussion of Chapter 3

this shows that these commutative HFp–algebras are not equivalent as H∞ HFp–algebras. Using

this, we show in Corollary 6.3 that they are furthermore not quasi-isomorphic as commutative

HZ-algebras, this is a corollary to the proof of Theorem 6.1.

Example 4.1. For an odd prime p, the E∞ Fp–DGAs we produce have the same homology ring

given by ΛFp [τ0, ξ1, τ1]/(τ0τ1, τ1ξ1, τ0ξ1 − τ1) where the degrees of the generators are those of

the dual Steenrod algebra ie |τ0| = 1, |ξ1| = 2(p− 1) and |τ1| = 2p− 1. However, the homology

groups of these E∞ Fp–DGAs are not isomorphic as algebras over the Dyer–Lashof algebra. In

one of them, Q1(τ0) = τ1 and in the other, Q1(τ0) = 0. Therefore these two E∞ Fp–DGAs are

not equivalent as H∞ Fp–DGAs and therefore they are not quasi-isomorphic as E∞ Fp-DGAs.

For p = 2 the homology ring of the two E∞ topologically equivalent E∞ F2–DGAs are

F2[ξ1]/(ξ41) where |ξ1| = 1 as in the dual Steenrod algebra. In the homology of the first E∞
F2–DGA, Q2(ξ1) = ξ31 and in the other one, Q2(ξ1) = 0. Again, these two E∞ F2–DGAs

are not quasi-isomorphic because their homology rings are not isomorphic as algebras over the

Dyer–Lashof algebra and therefore they are not equivalent as H∞ F2–DGAs.

First, we discuss our example for p = 2. For this, we are going to use Postnikov sections

for commutative ring spectra. These were first introduced in Section 8 of (21) for studying

Postnikov towers of commutative ring spectra. The nth Postnikov section of a connected
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commutative ring spectrum Z is a map Z → PnZ that induces an isomorphism on πi(Z) →
πi(PnZ) for i ≤ n and for which πiPnZ = 0 for i > n. Let HF2∧HF2 → P3(HF2∧HF2) be the

third Postnikov section of HF2∧HF2 as a commutative S–algebra, we have π∗(P3(HF2∧HF2)) =

F2[ξ1, ξ2]/(ξ41, ξ22, ξ1ξ2) with |ξ1| = 1 and |ξ2| = 3 ie the dual Steenrod algebra quotiented out by

the ideal of elements of degree 4 and higher. By using Lemma 4.2 we kill the element ξ31+ξ2 in

π∗(P3(HF2∧HF2)) and then taking the third Postnikov section, we obtain another commutative

S–algebra X with π∗(X) = F2[ξ1, ξ2]/(ξ41, ξ22, ξ1ξ2, ξ31 + ξ2) = F2[ξ1]/(ξ41). The reason we kill

ξ31+ξ2 is because it is equal to ζ2 in the dual Steenrod algebra, this follows from the generating

series we discuss in Chapter 3. Note that for Lemma 4.2, one can use the commutative HF2–

algebra structure on P3(HF2∧HF2) induced by the map HF2∧S → HF2∧HF2 → P3(HF2∧HF2).

Furthermore, we have a map P3(HF2 ∧HF2) → X with the induced map on the homotopy

rings being the canonical one. By pre-composing this map with the map into the Postnikov

section HF2 ∧ HF2 → P3(HF2 ∧ HF2), we obtain a map of commutative S–algebras f : HF2 ∧

HF2 → X. We construct two commutative S–algebra maps from HF2 to X as shown in the

diagram below.

HF2 ∼= HF2 ∧ S

HF2 ∧HF2 X

HF2 ∼= S∧HF2

g1

f

g2

(4.1)

The maps g1 and g2 induce two commutative HF2–algebra structures on X. The commutative

HF2–algebra with unit f ◦ g1 is denoted by X1 and with unit f ◦ g2 by X2.
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As we discuss in Chapter 3, HF2∧HF2 can be given two commutativeHF2–algebra structures

through the maps g1 and g2 and we call the two associated commutative HF2–algebras Y1 and

Y2. The Dyer–Lashof operations on π∗(Y1) are denoted by Qs and the Dyer–Lashof operations

on π∗(Y2) are denoted by Q̃s as in Chapter 3.

Because morphisms in commutativeHF2–algebras are morphisms of commutative S–algebras

under HF2, from the map f alone we obtain two HF2–algebra maps g : Y1 → X1 and h : Y2 → X2.

These maps induce maps that preserve Dyer–Lashof operations in the homotopy rings and we

use this to understand the Dyer–Lashof operations on π∗(X1) and π∗(X2). On π∗(X1),

Q2(ξ1) = Q2(g∗(ξ1)) = g∗(Q
2(ξ1)) = g∗(ζ2) = ζ2 = ξ

3
1 + ξ2 = 0.

On π∗(X2),

Q2(ζ1) = Q2(h∗(ζ1)) = h∗(Q̃
2(ζ1)) = h∗(ξ2) = ξ2 6= 0.

Therefore, π∗(X1) and π∗(X2) are not isomorphic as algebras over the Dyer–Lashof algebra

as desired.

For odd primes p, the construction of an example is similar. By Equation (3.1) in Chapter

3, τ̄1 = τ0ξ1 − τ1. Therefore one can use Lemma 4.2 to kill τ0ξ− τ1 which kills Q1τ0. The rest

of the arguments follow similarly.

Lemma 4.2. Let X be a connective commutative HFp–algebra with π0(X) = Fp and πi(X) = 0

for i > n. Given x ∈ πn(X) there is a commutative S–algebra Y and a map of commutative

S–algebras X→ Y which induces the morphism X∗ → X∗/(x) on the level of homotopy groups.
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Proof. Let the HFp–module map ΣnHFp → X represent x. By adjunction and by applying

the nth Postnikov section functor, we obtain the map Pn(PHFp(Σ
nHFp)) → Pn(X) ' X. The

homotopy ring π∗(PHFp(Σ
nHFp)) is the free unstable algebra over the Dyer–Lashof algebra

generated by an element of degree n. Therefore we obtain that π∗(Pn(PHFp(Σ
nHFp))) = ΛFp [xn]

where |xn| = n. Let Z denote Pn(PHFp(Σ
nHFp)). The required Y is Pn(HFp ∧Z X) where HFp

is a commutative Z–algebra by the map Z→ P0Z = HFp.

The homotopy groups of HFp ∧Z X can be calculated using the Künneth spectral sequence

whose E2 page is Tor
ΛFp [xn]
∗,∗ (Fp, X∗). We want to show that for degree less than n+1, π∗(HFp∧Z

X) and Fp ⊗ΛFp [xn]
X∗ agree.

There is a standard resolution of Fp over ΛFp [xn] which is ΣknΛFp [xn] at homological degree

k. Therefore we have Tor
ΛFp [xn]

k,l (Fp, X∗) = 0 for k > 0 and l < n and hence the only terms that

contribute to πi(HFp ∧Z X) for i ≤ n are in E20,∗. Since the differentials on these terms hit the

second quadrant, they are zero. We obtain πi(HFp∧ZX) ∼= Tor
ΛFp [xn]

0,i (Fp, X∗) ∼= (Fp⊗ΛFp
X∗)i for

i ≤ n. Because Fp⊗ΛFp [xn]
X∗ is concentrated in degrees between 0 and n, π∗Y ∼= π∗(Pn(HFp∧Z

X)) ∼= Fp ⊗ΛFp
X∗. Since the image of xn in π∗(X) is x, we have π∗Y ∼= Fp ⊗ΛFp

X∗ ∼= π∗(X)/(x)

and X → Y induces the desired morphism π∗X → π∗X/(x) on the homotopy ring. For this

Lemma, we forget the HFp structure and use the corresponding commutative S–algebra map

X→ Y.
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4.2 Examples in E∞ Z–DGAs

Now we discuss examples of non-trivial E∞ topological equivalences in E∞ Z–DGAs. Theo-

rem 4.4 below gives a general scenario where examples of non-trivially E∞ topologically equiv-

alent E∞ Z–DGAs occur. We start with Theorem 4.3 which provides examples that have a

simple construction. This theorem uses the construction of the example of Dugger and Shipley

that we discuss in Example 1.11 above. For E∞ DGAs, this construction is generalized to odd

primes.

Theorem 4.3. Let X and Y denote the commutative HZ–algebras whose underlying commuta-

tive S–algebras are HZ ∧ HFp and whose commutative HZ–algebra structures are given by the

map

HZ ∼= HZ∧ S → HZ∧HFp

and the map

HZ ∼= S∧HZ → HZ∧HFp

respectively.

These commutative HZ–algebras X and Y are not weakly equivalent. Since the underlying

commutative S–algebras of X and Y are the same, we deduce that the E∞ Z–DGAs corresponding

to X and Y are not quasi-isomorphic but are E∞ topologically equivalent.

Proof. Assume that X and Y are weakly equivalent as commutative HZ–algebras. Taking cofi-

brant and fibrant replacements, we assume that there is a weak equivalence ψ : X Y
∼ of
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commutative HZ–algebras. This means that there is the following diagram in commutative

S–algebras.

HZ

U(X) U(Y)

ϕYϕX

'
ψ

(4.2)

Here, U denotes the forgetful functor to commutative S–algebras and ϕX and ϕY denote the

commutative HZ–algebra structure maps of X and Y respectively. Note that by the Knneth

spectral sequence,

HFp∗U(X) ∼= HFp∗(HZ∧HFp) ∼= HFp∗HZ⊗Fp HFp∗HFp.

Taking the HFp homology of the diagram above, we obtain the following.

HFp∗HZ

HFp∗HZ⊗Fp HFp∗HFp HFp∗HZ⊗Fp HFp∗HFp

HFp∗ϕYHFp∗ϕX

'
HFp∗ψ

(4.3)

With this identification, HFp∗ϕX(x) = x⊗ 1. Similarly, we have HFp∗U(Y) ∼= HFp∗HZ⊗Fp

HFp∗HFp and HFp∗ϕY(x) = 1⊗ x. As noted earlier, the canonical map HFp∗HZ → HFp∗HFp

is an inclusion and HFp∗HZ is a free commutative ring generated by the same generators as

HFp∗HFp except τ0. The only degree one element in HFp∗HZ⊗Fp HFp∗HFp is 1⊗ τ0 and since

HFp∗ψ is an isomorphism, this is mapped by HFp∗ψ to 1 ⊗ τ0. Since Q1(1 ⊗ τ0) = 1 ⊗ τ1,

HFp∗ψ(1⊗τ1) = 1⊗τ1. But the commutativity of the triangle forces HFp∗ψ(τ1⊗1) = 1⊗τ1 and
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this contradicts the injectivity of HFp∗ψ. Therefore X and Y are not equivalent as commutative

HZ–algebras. The argument for p = 2 is similar.

Theorem 4.4. Let X be either an E∞ Fp–DGA for an odd prime p that satisfies

1. HiX = 0 for i = 1 and i > 2p2 − 4

2. HiX 6= 0 for either i = 2p− 1 or i = 2p− 2

or an E∞ F2–DGA that satisfies

1. HiX = 0 for i = 1 and i > 4

2. HiX 6= 0 for i = 2.

For such an X, there exists an E∞ Z–DGA that is E∞ topologically equivalent to X but not

quasi-isomorphic to X.

Indeed, we show that the E∞ Z–DGA we construct in the proof of the above theorem is not

quasi-isomorphic to any E∞ Fp–DGA.

It is clear that E∞ Fp–DGAs that satisfy the conditions of this theorem exist. One can start

with a graded commutative ring that satisfies the above conditions and use the corresponding

formal commutative Fp–DGA.

Remark 4.5. A special case of the above theorem gives the example of Dugger and Shipley

that we discuss in Example 1.10. For this, one uses the formal commutative F2–DGA with

homology the exterior algebra with a generator in degree 2 for X. Moreover, our theorem
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provides a generalization of this example. We start with an X as described in the p = 2 case

above and let Y be the E∞ Z–DGA we produce in the proof, then X and Y are not quasi-

isomorphic as associative Z–DGAs although they are topologically equivalent ie X and Y are

non-trivially topologically equivalent as associative DGAs.

Proof. To produce our E∞ Z–DGA, we start with an X as above, and construct a commutative

S–algebra map ϕY : HZ → U(X) using obstruction theory where U is the forgetful functor to

commutative S–algebras. This gives us a new commutative HZ–algebra Y whose underlying

commuative S–algebra is U(X). Obstruction theory gives us control over the map induced by

ϕY on the HFp homology. Using this and Dyer–Lashof operations, we show that Y is not weakly

equivalent as a commutative HZ–algebra to any commutative HFp–algebra.

We describe our example when p is an odd prime and H2p−1X 6= 0. The case H2p−2X 6= 0 is

similar. We explain the p = 2 example at the end.

For the obstruction spectral sequence of Theorem 2.1, we use the composite map HZ →
HFp

ϕX−−→ U(X) as a base-point where the map ϕX is the HFp structure morphism of X. Using

this base point and by setting up the obstruction spectral sequence to calculate the commutative

S–algebra maps from HZ to X, we obtain that obstructions to lifting a morphism of unstable

algebras over the Dyer–Lashof algebra in

E0,02 = HomR-alg(HFp∗HZ, X∗)
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to a commutative S–algebra map from HZ to U(X) lie in the cohomology groups

DertR-alg(HFp∗HZ, X
St−1

∗ ) for t ≥ 2.

Here, XS
t−1

denotes the mapping spectrum from the t−1-sphere St−1 to X. In Lemma 4.6 below

we show that these groups that contain the obstructions are trivial. Therefore every map in

HomR-alg(HFp∗HZ, X∗) lifts to a commutative S–algebra map.

The canonical morphism HFp∗HZ → HFp∗HFp is an injection and the image of this mor-

phism is the free commutative algebra generated by ζi and τi for i ≥ 1 when p is odd. For

p = 2, the image is generated by ξ21 and ζi for i ≥ 1. Since the above inclusion comes from

a map of commutative HFp–algebras, it preserves Dyer–Lashof operations. This says that the

Dyer–Lashof operations on HFp∗HZ are those of HFp∗HFp.

To construct the commutative S–algebra map ϕY : HZ → U(X) that defines Y as desired, we

start with any morphism f in E0,02 = HomR-alg(HFp∗HZ, X∗) that maps τ1 to a nonzero element

in H2p−1X and use the lift of this map to a commutative S–algebra map. Here, ϕY being a lift

of f means that the map

HFp ∧HZ
id∧ϕY−−−−→ HFp ∧U(X) → U(X)

induces f in homotopy where the second map is given by the HFp–module structure map of X.

At this point, we need to show that the E∞ Z–DGAs corresponding to X and Y are not

quasi–isomorphic; ie, X and Y are not weakly equivalent as commutative HZ–algebras. Assume
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that they are weakly equivalent over HZ. We start with an X that is cofibrant and fibrant as a

commutative HFp–algebra. Therefore, Y is also fibrant as a commutative HZ–algebra because

the underlying commutative S–algebra of Y is the underlying commutative S–algebra of X. Our

X is also cofibrant as a commutative HZ–algebra since we use a cofibrant HFp so that the

initial map HZ HFp X is a composition of two cofibrations. Recall that cofibrations

of commutative HFp–algebras are those of commutative HZ–algebras. Therefore, we have a

weak equivalence of commutative HZ–algebras ψ : X Y.
∼ That is, we have the following

commuting diagram in commutative S–algebras.

HZ

HFp

U(X) = U(Y) U(X)

ϕY

ϕX

'
ψ

(4.4)

From the above diagram, by applying the HFp homology functor we obtain the following dia-

gram.

HFp∗HZ

HFp∗HFp

HFp∗X HFp∗X

X∗

HFp∗ϕY

HFp∗ϕX

'
HFp∗ψ

(4.5)

Therefore, all the morphisms in this triangle preserve Dyer–Lashof operations. The bottom left

arrow is induced by the HFp–module structure map of X. This is a morphism of commutative
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HFp–algebras, therefore the bottom left vertical arrow also preserves Dyer–Lashof operations

operations. In conclusion, all the arrows in this diagram preserve Dyer–Lashof operations.

The composition of the vertical arrows on the left gives the map f as chosen above. There-

fore, τ1 in HFp∗HZ is mapped to a non-zero element in X∗ by the composition of the vertical

arrows. Because the triangle above commutes, if we travel τ1 through the diagonal arrow to

HFp∗HFp and then to X∗, we see that τ1 in HFp∗HFp must also be mapped to a non-zero ele-

ment in X∗. Because π1X is trivial, τ0 in HFp∗HFp is mapped to zero in X∗. However this, and

the fact that τ1 = −βQ1τ0 imply that τ1 in HFp∗HFp is mapped to zero in X∗. This contradicts

f(τ1) 6= 0. Therefore, Y and X are not weakly equivalent as commutative HZ–algebras.

For the case H2p−2X 6= 0, we use an f in HomR-alg(HFp∗HZ, X∗) that maps ζ1 to a non-zero

element in π2p−2X. Since Q1τ0 = −ζ1, the rest of the argument follows similarly.

For p = 2, we start with an f in HomR-alg(HF2∗HZ, X∗) that maps ξ21 in HF2∗HZ to a non-

zero element in π2X. Note that ξ21 in HF2∗HZ is a free algebra generator and ξ1 6∈ HF2∗HZ. The

arguments are similar but we do not use Dyer–Lashof operations in this case. Again considering

Diagram (4.5), ξ21 in HF2∗HF2 is mapped to a non zero element in π2X but since π1X = 0, ξ1

is mapped to zero and this is a contradiction. Since we haven’t used Dyer–Lashof operations,

we may consider the underlying associative HZ–algebras of X and Y and the above arguments

still work, ie the associative Z–DGAs corresponding to X and Y are non-trivially topologically

equivalent.

What is left to prove is the following lemma which says that the obstructions in the above

setting for lifting f to a map of commutative S–algebras are zero.
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Lemma 4.6. In the setting of Theorem 4.4,

DertR-alg(HFp∗HZ, X
St−1

∗ ) = 0 for t ≥ 2

Proof. We describe the odd prime case, the proof is similar for p = 2. Let FR(ζ1, τ1) denote the

free unstable algebra over the Dyer–Lashof algebra generated by two elements whose degrees

are the degrees of the corresponding generators in the dual Steenrod algebra. The free unstable

algebra over the Dyer–Lashof algebra is described in Theorem 3.1. The lowest degree generator

of FR(ζ1, τ1) after ζ1 and τ1 is βQpζ1 with degree 2p2 − 3. Note that HFp∗HZ has no free

algebra generators in this degree, showing that HFp∗HZ cannot be the free unstable algebra

over the Dyer–Lashof algebra generated by ζ1 and τ1. However, also note that HFp∗HZ agrees

with FR(ζ1, τ1) up to degree 2p2 − 4. Therefore, the morphism FR(ζ1, τ1) → HFp∗HZ which

preserves Dyer–Lashof operations maps ζ1 to ζ1 and τ1 to τ1 is an isomorphism up to degree

2p2 − 4.

Furthermore, considering the free simplicial resolution of these objects as unstable algebras

over the Dyer–Lashof algebra, we get a morphism

F•+1R (FR(ζ1, τ1)) → F•+1R (HFp∗HZ)

of simplicial unstable algebras over the Dyer–Lashof algebra. Note that up to degree n > 0,

FR(M) only depends on the part of the vector spaceM up to degree n. Therefore, the morphism

above is an isomorphism up to degree 2p2 − 4 at each simplicial degree.
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Let the functor

DerR-alg(−, X
St−1

∗ ) = MapR-alg↓X∗(−, XSt−1

∗ )

denote the degree preserving derivations that preserve Dyer–Lashof operations. Since XS
t−1

∗ is

concentrated in degree 2p2 − 4 and below, this functor depends only on the input up to degree

2p2 − 4. Therefore the morphism of simplicial sets above induces an isomorphism

DerR-alg(F
•+1
R (HFp∗HZ), X

St−1

∗ ) ∼= DerR-alg(F
•+1
R (FR(ζ1, τ1)), X

St−1

∗ ).

In cohomology, this induces the isomorphism

DertR-alg(HFp∗HZ, X
St−1

∗ ) ∼= DertR-alg(FR(ζ1, τ1), X
St−1

∗ ) = 0 for t > 0.

The last equality follows because André–Quillen cohomology of a free object is trivial above

degree zero.



CHAPTER 5

PROOF OF THEOREM 1.3

This chapter is previously published as: Haldun Özgür Bayındır. Topological equivalences

of E-infinity differential graded algebras. Algebr. Geom. Topol., 18(2):11151146, 2018.

This section is devoted to the proof of Theorem 1.3. At the end of this section, we discuss

the generalization of this theorem to solid rings as mentioned in Remark 1.4.

To prove Theorem 1.3, we need to show that two co-connective commutative HZ/(m)–

algebras that are weakly equivalent as commutative S–algebras are also weakly equivalent as

commutative HZ/(m)–algebras for any m ∈ Z with m 6= ±1.

Since the category of commutative HZ/(m)–algebras is the category of commutative S–

algebras under HZ/(m), for our purpose, it is natural to consider the homotopy class of com-

mutative S–algebra maps from HZ/(m) to a co-connective HZ/(m)–algebra X. We omit the

forgetful functor to commutative S–algebras and denote this by π0mapS-cAlg(HZ/(m), X). We

show in Proposition 5.1 that there is a unique homotopy class of maps in mapS-cAlg(HZ/(m), X).

The proof of Theorem 1.3 is based on this fact.

Proof of Theorem 1.3. Let X and Y be co-connective commutative

HZ/(m)–algebras that are weakly equivalent as commutative S–algebras. We assume X and Y

are cofibrant and fibrant as commutative HZ/(m)–algebras. Recall that cofibrations, fibrations

and weak equivalences of commutative HZ/(m)–algebras are precisely those of commutative

29
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S–algebras. Therefore X and Y are also fibrant as commutative S–algebras. Furthermore, they

are also cofibrant commutative S–algebras because the initial map S → U(X) factors as a

composition of two commutative S–algebra cofibrations as S HZ/(m) U(X), where U

denotes the forgetful functor to commutative S–algebras.

Because X and Y are weakly equivalent as commutative S–algebras and they are cofi-

brant and fibrant as commutative S–algebras, we have a weak equivalence of commutative

S–algebras ψ : U(X) U(Y).∼ Let ϕX : HZ/(m) → U(X) and ϕY : HZ/(m) → U(Y) denote

the commutative S–algebra maps that are the HZ/(m) structre maps of X and Y respectively.

Since ψ is only a commutative S–algebra map, it may not preserve the HZ/(m) structure, ie

ψ ◦ϕX is not necessarily equal to ϕY .

Let Y′ be the commutative HZ/(m)–algebra whose underlying commutative S–algebra is

U(Y) and whose HZ/(m) structure map is ψ ◦ ϕX. With this HZ/(m) structure of Y′, ψ

becomes a weak equivalence of commutative HZ/(m)–algebras from X to Y′. Therefore it is

sufficient to show that Y′ and Y are weakly equivalent as HZ/(m)–algebras.

By Proposition 5.1, π0mapS-cAlg(HZ/(m), Y) = {∗}. Therefore, ϕY and ψ◦ϕX, the structure

maps of Y and Y′ respectively, are homotopic. A homotopy between ϕY and ψ ◦ϕX is given by

the following diagram.
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U(Y)

HZ/(m) U(Y)I

U(Y) = U(Y
′
)

ϕY

ψ◦ϕX

f

p1

'

'
p2

(5.1)

Here, U(Y)I denotes a path object of U(Y). This is a diagram in commutative S–algebras.

However, if we give U(Y)I a commutative HZ/(m)–algebra structure using f and call this

commutative HZ/(m)–algebra Z, p1 becomes a weak equivalence of commutative HZ/(m)–

algebras from Z to Y and p2 becomes a weak equivalence of commutative HZ/(m)–algebras

from Z to Y′. Therefore, Y and Y′ are weakly equivalent commutative HZ/(m)–algebras and so

are Y and X.

What is left to prove is the following proposition.

Proposition 5.1. For a co-connective commutative HZ/(m)–algebra X, the mapping space

mapS-cAlg(HZ/(m), X) is contractible.

We use the obstruction spectral sequence to show that all the homotopy groups of this

mapping space are trivial. However, since we work over a general Z/(m) where m may not be

a prime, we do not have a description of the E2 page of the spectral sequence as in Theorem

2.1. It turns out that it is sufficient to consider the E1 page only. For this purpose, we use the

spectral sequence in Theorem A of (9) which we can do due to Corollary 4.13 of (9). Because X



32

is a commutative HZ/(m)–algebra, there is a map of commutative S–algebras HZ/(m) → U(X)

that serves as a base point for this spectral sequence.

In this setting, the E1 page of this spectral sequence is given by

Es,t1 = πtmapS-cAlg(Ps+1S (HZ/(m)), X),

where the homotopy groups are calculated at the given base point, see the proof of Theorem A

of (9). This spectral sequence abuts to

πt−smapS-cAlg(HZ/(m), X).

The free commutative S–algebra functor induces a monad in the homotopy category of S–

modules and let hPS denote this monad. We use that the E0,02 term of this spectral sequence is

given by

E0,02 = HomhPS-alg(HZ/(m), X)

which denotes morphisms of algebras over hPS in S–modules. Note that E0,02 term of this

spectral sequence is just a set.

Proof. We will show that in the above spectral sequence, Es,t1 = 0 for t > 0 and E0,02 = pt. This

is sufficient to show that the homotopy groups of the mapping space are trivial.
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We start by showing that E0,02 = 0. We have the following isomorphisms for E0,01 that we

explain below.

E0,01 = π0mapS-cAlg(PS(HZ/(m)), X)

∼= π0mapS-mod(HZ/(m), X)

∼= HomZ-mod(HZ∗HZ/(m), X∗)

∼= HomZ-mod(Z/(m), X0)

The first isomorphism follows by adjunction. For the second isomorphism, we use the universal

coefficient spectral sequence of Theorem 4.5 in Chapter IV of (22) with respect to the homol-

ogy theory HZ∗. This works because X is an HZ–module by forgetting the HZ/(m)–module

structure through the map HZ → HZ/(m). For this spectral sequence, we have

E
p,q
2 = Extp,−qZ (HZ∗HZ/(m), X∗)

drp,q : E
p,q
2 → E

p+r,q−r+1
2

where p denotes the cohomological degree and −q denotes the internal degree, particularly it

denotes the Ext groups calculated by considering the maps that increase the degree by −q.

This spectral sequence abuts to

π−(p+q)mapS-mod(HZ/(m), X).
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Since Z has global dimension 1, Ep,q2 = 0 for p > 1 and therefore all differentials are zero and

the only terms that contribute to π0 are E0,02 and E1,−12 . Note that by Proposition 1.2 in Chapter

IV of (22), HZ∗HZ/(m) is connective. Therefore there is a projective resolution of HZ∗HZ/(m)

that is connective in each resolution degree. From such a resolution, there are no maps of degree

1 to the co-connective object X∗. Hence, E1,−12 = 0. This proves the second isomorphism. By

the Tor spectral sequence of Theorem 4.1 in Chapter IV of (22), HZ0HZ/(m) ∼= Z/(m). The

third isomorphism follows from this because X is co-connective.

By the description of the E0,02 above, a morphism in E0,01 that lifts to E0,02 should preserve

the multiplicative identity. Since Z/(m) is generated as an abelian group by 1, there is only

one such morphism in E0,01
∼= HomZ-mod(Z/(m), X0). Furthermore, we know that this morphism

lifts to the E0,02 term because it is represented by a morphism which is an actual commutative

S–algebra map HZ/(m) → X which is our base point. In conclusion, E0,02 = pt.

Now we will show that Es,t1 = 0 for t > 0. Again by adjunction, we have

Es,t1 = πtmapS-cAlg(Ps+1S (HZ/(m)), X)

∼= πtmapS-mod(PsS(HZ/(m)), X).

There is a spectral sequence for calculating homotopy groups of the homotopy orbit of a

spectrum with an action of a group G.

Hp(G,πqY) ⇒ πp+qYhG
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Therefore it is clear that the homotopy orbit spectrum of a connective spectrum is connective.

Because PS(Y) is wedges of homotopy orbits of Y∧n with respect to the action of the symmetric

group, PS(Y) is connective when Y is. This means that PsS(HZ/(m)) is connective. Since X is

co-connective by hypothesis, we have the following by Proposition 1.4 in Chapter IV of (22)

πtmapS-mod(PsS(HZ/(m)), X) ∼= 0 for t > 0.

Remark 5.2. Note that our proof also applies to prove the following more general statement.

Let X and Y be co-connective E∞ R-DGAs with the property that there is a unique map of rings

R→ π0X, then X and Y are E∞ topologically equivalent if and only if they are quasi-isomorphic

as E∞ R-DGAs. There is always a unique ring map out of a solid ring R to a given commutative

ring. This justifies our Remark 1.4. To see that there is always a unique map out of a solid ring,

first note that two maps i0 : R ∼= R ⊗Z Z → R ⊗Z R and i1 : R ∼= Z ⊗Z R → R ⊗Z R become the

same after composing with the multiplication map of R. Since the multiplication map of R is

an isomorphism, we have i0 = i1. Now let f0 and f1 be two maps from R to a commutative ring

S. We have f0 = m ◦ (f0⊗ f1) ◦ i0 and f1 = m ◦ (f0⊗ f1) ◦ i1 where m denotes the multiplication

map of S. These identities and the fact that i0 = i1 show that f0 = f1.



CHAPTER 6

PROOF OF THEOREM 1.7

This chapter is previously published as: Haldun Özgür Bayındır. Topological equivalences

of E-infinity differential graded algebras. Algebr. Geom. Topol., 18(2):11151146, 2018.

In this Chapter, we prove the following theorem.

Theorem 6.1. Let X and Y be H∞ HFp–algebras with trivial first homotopy groups. If X and

Y are equivalent as H∞ S–algebras, then they are equivalent as H∞ HFp–algebras.

This is a slightly stronger result than Theorem 1.7. If two E∞ DGAs are E∞ topologically

equivalent, then the corresponding ring spectra are commutative S–algebra equivalent and

therefore H∞ S–algebra equivalent. Therefore, Theorem 1.7 is a corollary of Theorem 6.1.

Remark 6.2. As mentioned in Remark 1.8, one of the intermediate results of (11), Proposition

5, states that Theorem 6.1 is still true for H∞ HFp–algebras with non-trivial first homology

and this contradicts Example 4.1. The proof of Proposition 5 of (11) ends by stating that the

canonical map

[PHFp(M),M]HFp-mod → [PS(M),M]S-mod (6.1)

between homotopy classes of maps in HFp–modules to S–modules is injective where M is an

HFp–module. This says that H∞ HFp–algebra structure maps forget injectively to H∞ S–

algebra structure maps. However, this does not imply the desired result since one needs to
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consider H∞ HFp–equivalences and H∞ S–equivalences between different H∞ HFp–algebra and

H∞ S–algebra structures on M.

In the proof of Theorem 6.1, we use the following facts about H∞ algebras which can be

derived using the results of (16). In the items below, X denotes an H∞ HFp–algebra.

1. A morphism of H∞ S–algebras induces a map of rings in the homotopy groups.

2. The structure map µX : HFp ∧ X → X induced by the HFp–module structure on X is a

map of H∞ HFp–algebras. Therefore this map preserves Dyer–Lashof operations on the

homotopy ring.

3. There is an equivalence HFp ∧ X ∼= (HFp ∧ HFp) ∧HFp X. Using this, we obtain the

identification π∗(HFp∧X) ∼= A∗⊗Fp X∗. Note that the Dyer–Lashof operations on A∗⊗Fp

X∗ are not those of the tensor product because the HFp structure on HFp∧X is given by

multiplication with the HFp factor on the left. With this identification, µX∗ is given by

µX∗(a⊗ x) = ax if a ∈ A0 = Fp and µX∗(a⊗ x) = 0 if a ∈ Ai for i > 0.

4. The unit map ηX : S ∧ X → HFp ∧ X satisfies µX ◦ ηX = id. However, ηX is only a map

of H∞ S–algebras and it may not preserve Dyer–Lashof operations in the homotopy ring.

By the identification of π∗(HFp∧X) above, the morphism induced by ηX on the homotopy

ring is given by ηX∗(x) = 1⊗ x.

Proof of Theorem 6.1. Let ϕ : X → Y be an equivalence of H∞ S–algebras. This implies that

ϕ∗ is an isomoprhism of rings. We will show that ϕ induces an equivalence of H∞ HFp–algebras
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by showing that ϕ∗ preserves Dyer–Lashof operations. This is sufficient because an H∞ HFp–

algebra equivalence type is determined by the isomorphism class of its homotopy ring as an

algebra over the Dyer–Lashof algebra, see Theorem 4 in (11) and the discussion after it.

We have the following diagram.

X Y

HFp ∧ X HFp ∧ Y

X Y

ϕ

ηX ηY

id∧ϕ

µX µY

(6.2)

Applying the homotopy functor to this diagram produces the following.

X∗ Y∗

A∗ ⊗Fp X∗ A∗ ⊗Fp Y∗

X∗ Y∗

ϕ∗

ηX∗ ηY∗

ψ

µX∗ µY∗

ϕ∗

(6.3)

The middle horizontal morphism ψ is the morphism induced on the homotopy groups by

id∧ϕ. Because we do not assume ϕ to be a map of H∞ HFp–algebras, ψ may not be induced

by two morphisms on the tensor factors. However, ψ preserves Dyer–Lashof operations because

it is the morphism in HFp homology induced by ϕ.

The top square in Diagram (6.3) commutes because it is induced by the commutative square

in Diagram (6.2). Although the bottom square is not induced by a commuting square, we
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show that it also commutes. For this purpose we need to know more about the Dyer–Lashof

operations on A∗ ⊗Fp X∗.

We have the following map

HFp ∧HFp ∼= (HFp ∧HFp)∧HFp HFp → (HFp ∧HFp)∧HFp X
∼= HFp ∧ X

induced by the map of H∞ HFp–algebras HFp → X. This is a map of H∞ HFp–algebras when

theHFp multiplication onHFp∧HFp is given by that of theHFp factor on the left. Therefore the

morphism A∗ → A∗⊗Fp X∗ induced on the homotopy groups preserves Dyer–Lashof operations.

This says that on A∗⊗Fp {1} ⊆ A∗⊗Fp X∗, Dyer–Lashof operations are given by the ones on the

dual Steenrod algebra ie Qs(a⊗ 1) = (Qsa)⊗ 1.

Now we show that the bottom square in Diagram (6.3) commutes. We first show this for

elements of the form a⊗x ∈ A∗⊗Fp X∗ with |a| > 0. By the description of µX∗ in the paragraph

before this proof, we have µX∗(a⊗x) = 0 and therefore ϕ∗ ◦µX∗(a⊗x) = 0. Therefore our goal

is to show that µY∗ ◦ ψ(a ⊗ x) = 0. Let τ0 denote the degree 1 element in A∗ that generates

it as an algebra over the Dyer–Lashof algebra (this element is called ξ1 for p = 2). Because

π1(Y) = 0, µY∗ ◦ψ(τ0⊗1) = 0. Since µY∗ ◦ψ is a morphism of rings that preserves Dyer–Lashof

operations, µY∗ ◦ψ(a⊗ 1) = 0 whenever |a| > 0. Therefore when |a| > 0,

µY∗ ◦ψ(a⊗ x) = (µY∗ ◦ψ(a⊗ 1)) · (µY∗ ◦ψ(1⊗ x)) = 0.
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After this, we just need to show that the bottom square in Diagram (6.3) commutes for

elements in A∗⊗Fp X∗ of the form a⊗x where a ∈ A0 = Fp. Clearly, it is sufficient to work only

with the elements of the form 1⊗x. By the description of µX∗ in the paragraph before this proof,

we have ϕ∗ ◦ µX∗(1⊗ x) = ϕ∗(x). Therefore, our goal is to show that µY∗ ◦ ψ(1⊗ x) = ϕ∗(x).

Because the top square in Diagram (6.3) commutes, we deduce that

ψ(1⊗ x) = ψ(ηX∗(x)) = ηY∗(ϕ∗(x)) = 1⊗ϕ∗(x). (6.4)

Using this, we obtain what we wanted to show:

µY∗ ◦ψ(1⊗ x) = µY∗(1⊗ϕ∗(x)) = ϕ∗(x).

At this point, we know that the bottom square in Diagram (6.3) commutes and we are ready

to show that ϕ∗ preserves Dyer–Lashof operations. Given x ∈ X∗, we have

ϕ∗(Q
sx) = ϕ∗(Q

sµX∗(1⊗ x)) = ϕ∗ ◦ µX∗(Qs(1⊗ x)) = µY∗ ◦ψ(Qs(1⊗ x)).

Therefore we need to show that µY∗ ◦ ψ(Qs(1⊗ x)) = Qsϕ∗(x). This is given by the following

chain of equalities

µY∗ ◦ψ(Qs(1⊗ x)) = QsµY∗(ψ(1⊗ x)) = QsµY∗(1⊗ϕ∗(x)) = Qsϕ∗(x).
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The first equality follows because both ψ and µY∗ preserve Dyer–Lashof operations and the

second equiality follows by (6.4). Since ϕ∗ preserves Dyer–Lashof operations, it induces an

isomorphism between X∗ and Y∗ as algebras over the Dyer–Lashof algebra and therefore X and

Y are equivalent as H∞ HFp–algebras.

Now we prove the following corollary of this proof.

Corollary 6.3. The two E∞ Fp–DGAs contructed in Example 4.1 are not equivalent as E∞
Z–DGAs.

Proof. Let X denote the commutative HFp–algebra corresponding to the E∞ Fp–DGA in Ex-

ample 4.1 with trivial Q1 (Q2 for p = 2) action. Let Y denote the commutative HFp–algebra

corresponding to the other E∞ Fp–DGA in Example 4.1. We need to show that X and Y are not

weakly equivalent as commutative HZ–algebras. Note that in Example 4.1, it is shown that X

and Y are not weakly equivalent as commutative HFp–algebras by showing that their homotopy

rings are not equivalent as algebras over the Dyer-Lashof algebra. Here, we use the proof of

Theorem 6.1 to show that if X and Y were equivalent as commutative HZ–algebras, then their

homotopy rings would be isomorphic as algebras over the Dyer-Lashof algebra. Note that we

can not apply Theorem 6.1 directly since the first homotopy groups of X and Y are not trivial.

Assume that X and Y are equivalent as commutative HZ–algebras. Therefore they are also

equivalent as H∞ HZ–algebras. We use the set up of the proof of Theorem 6.1 with the base

category being H∞ HZ–algebras instead of H∞ S–algebras. This means that all maps of H∞
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S–algebras should be replaced by H∞ HZ–algebra maps and smash products over S should be

replaced by smash products over HZ. Note that since π∗HFp ∧HZ HFp ∼= ΛFp [x1], the exterior

algebra on a single generator in degree 1, A∗ ⊗Fp X∗ should be replaced by ΛFp [x1] ⊗Fp X∗.

Similarly A∗ ⊗Fp Y∗ should be replaced by ΛFp [x1]⊗Fp Y∗.

Following the steps in the proof of Theorem 6.1, one needs to show that µX∗(x1 ⊗ 1) = 0

where µX∗ : ΛFp [x1]⊗Fp X∗ → X∗ is a morphism of rings that preserve Dyer-Lashof operations.

This follows in the case of Theorem 6.1 from the fact that the object there has trivial first

homotopy group, but this is not the situation in our case. As in the proof of Theorem 6.1, we

have Qs(a⊗1) = (Qsa)⊗1 for all a ∈ ΛFp [x1]. Therefore all Dyer-Lashof operations are trivial

on x1 ⊗ 1. However, for τ0 ∈ π1X, we have βQ1τ0 = −ζ1 6= 0 for odd p and for ξ1 ∈ π1X, we

have Q1ξ1 = ξ
2
1 6= 0 for p = 2. In summary, there is a Dyer-Lashof operation which is trivial on

x⊗1 but non-trivial on τ0 (ξ1 for p = 2). Since π1X is generated as an Fp–module by τ0 (ξ1 for

p = 2) and since µX∗ preserves Dyer-Lashof operations, we deduce that µX∗(x ⊗ 1) = 0. Rest

of the argument follows as in the proof of Theorem 6.1 to show that X and Y are equivalent as

H∞ HFp–algebras which contradicts the fact that their homotopy rings are not isomorphic as

algebras over the Dyer-Lashof algebra.
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Appendix A

PREVIOUS EXAMPLES

This appendix is previously published as: Haldun Özgür Bayındır. Topological equivalences

of E-infinity differential graded algebras. Algebr. Geom. Topol., 18(2):11151146, 2018.

In Section 1.1, we discuss the first class of examples of non-trivial topological equivalences

provided in (1). These examples rely on the classification of Postnikov extensions of ring spectra

developed in (23). In this chapter, we point out a mistake in the construction of these examples

and provide a correction which recovers the classification of quasi-isomorphism classes of Z–

DGAs with homology ring ΛFp(xn) for n > 0, ie the exterior algebra with a single generator in

a positive degree.

Let R be a connective commutative ring spectrum. We first explain the classification of

Postnikov extensions of connective (trivial negative homotopy groups) R–algebras developed in

(23). For a connective R–algebra X, the nth Postnikov section of X is a map of R–algebras

X → PnX which induces an isomorphism on πi(X) → πi(PnX) for i ≤ n and with πi(PnX) = 0

for i > n. Given a connective R–algebra Y with Pn−1Y ' Y and a π0(Y)–bimodule M, a

Postnikov extension of Y of type (M,n) is a map of R–algebras X → Y which satisfies the

following properties:

1. πi(X) = 0 for i > n

2. πi(X) → πi(Y) is an isomorphism for i < n
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Appendix A (Continued)

3. There is an isomorphism of π0(X)–bimodules πn(X) ∼=M where π0(X)–bimodule structure

structure of M is obtained by the map π0(X) → π0(Y).

The moduli space of Postnikov extensions of Y of type (M,n), denoted by MR(Y +M,n),

is defined to be the category whose objects are Postnikov extensions of Y of type (M,n), and

a morphism between two extensions X1 → Y to X2 → Y is a weak equivalence X1 X2
∼ for

which the following triangle commutes.

X1 X2

Y

'

The main result of (23) is a classification of these Postnikov extensions in terms of topological

Hochschild cohomology.

Theorem A.1. (23) Assuming X is cofibrant as an R–module, the following is a bijection.

π0MR(X+M,n) ∼= THHn+2R (X,M)/Aut(M)

This result is used in (1) to classify weak equivalence classes of Z–DGAs with homology ring

ΛFp(xn), the exterior algebra over Fp with a single generator in degree n, for n > 0. Any such

DGA is a Postnikov extension of Fp of type (Fp, n). By the Quillen equivalence of Z–DGAs

and HZ–algebras, this is the same as classifying HZ–algebras with homotopy ring ΛFp(xn) and

such HZ–algebras are Postnikov extensions of HFp of type (HFp, n) in HZ–algebras.
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At this point we note the piece of explanation that is missing in (1) about this classifica-

tion. In (1) it is claimed that weak equivalence classes of HZ–algebras whose homotopy ring are

ΛFp(xn) are classified by π0MHZ(HFp + HFp, n). However in MHZ(HFp + HFp, n), the mor-

phisms are weak equivalences of Postnikov extensions, ie for two Postnikov extensions of HFp of

type (HFp, n): X1 → HFp and X2 → HFp, a morphism inMHZ(HFp+HFp, n) is a weak equiv-

alence of HZ–algebras X1 X2
∼ for which the triangle above commutes. In the classification

we are concerned with here, a morphism of two Postnikov extensions is just a weak equivalence

of HZ–algebras X1 X2.
∼ In general one should not expect these two classifications to be the

same. However, in this case we will show that they are actually the same. Unfortunately we

cannot use simple point set arguments to prove this, even if we work with Z–DGAs instead of

HZ–algebras, because one needs to use a cofibrant and fibrant HZ–algebra model of HFp and

also because we need the same result over S–algebras not only for HZ–algebras.

We prove that these two classifications are the same by first showing that there is a unique

homotopy class of HZ–algebra maps from X to HFp. We prove this in Lemma A.3 by using the

obstruction theory of the Hopkins–Miller theorem. Using this fact, we prove that π0MHZ(HFp+

HFp, n) actually classifies weak equivalence classes of HZ–algebras with homotopy ring ΛFp(xn).

Proposition A.2. The set π0MHZ(HFp + HFp, n) is in bijective correspondence with weak

equivalence classes of HZ–algebras with homotopy ring ΛFp(xn) for n > 0. This statement

holds for S–algebras too. Namely, the set π0MS(HFp + HFp, n) is in bijective correspondence

with weak equivalence classes of S–algebras with homotopy ring ΛFp(xn) for n > 0.
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Proof. We only prove the statement for HZ–algebras. The proof is similar for S–algebras, the

only important difference is that one uses the second part of Lemma A.3 instead of the first

part.

Since up to weak equivalence there is a unique HZ–algebra with homotopy Fp concentrated

at degree zero, every HZ–algebra with homotopy ring ΛFp(xn) is a Postnikov extension of HFp

of type (HFp, n). Given two such Postnikov extensions: ϕ1 : X1 → HFp and ϕ2 : X2 → HFp,

if these extensions are weakly equivalent in MHZ(HFp +HFp, n) then they are clearly weakly

equivalent as HZ–algebras. We need to show that when these Postnikov extensions are weakly

equivalent as HZ–algebras, they are also weakly equivalent in MHZ(HFp +HFp, n).

Let X1 and X2 be weakly equivalent as HZ–algebras, we show that ϕ1 and ϕ2 are weakly

equivalent in MHZ(HFp +HFp, n). We assume that X1 and X2 are both fibrant and cofibrant

and HFp is fibrant as HZ–algebras.

Because X1 and X2 are weakly equivalent as HZ–algebras and because X1 is cofibrant and X2

is fibrant, there is a weak equivalence of HZ–algebras ψ : X1 X2.
∼ Using this weak equiv-

alence we define another Postnikov extension of HFp of type (HFp, n) which is the compos-

ite ϕ2 ◦ ψ : X1 → HFp. This Postnikov extension, ϕ2 ◦ ψ, is weakly equivalent to ϕ2 in

MHZ(HFp +HFp, n) through ψ. Therefore it is sufficient to show that ϕ2 ◦ψ is weakly equiv-

alent to ϕ1 inMHZ(HFp +HFp, n). By Lemma A.3, there is a unique homotopy class of maps

from X1 to HFp. Therefore, ϕ1 and ϕ2 ◦ ψ are homotopic. We have the following diagram

in HZ–algebras which corresponds to a homotopy between these maps where X1 ∧ I is a path

object of X1.
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X1 X1

X1 ∧ I

HFp

'

ϕ1

'

ϕ2◦ψ

The map X1∧ I→ HFp in the above diagram is also a Postnikov extension of type (HFp, n)

of HFp because it factors ϕ1 by a weak equivalence. Therefore the above diagram gives a zig-zag

of weak equivalences between ϕ1 and ϕ2 ◦ψ in MHZ(HFp +HFp, n). This shows that ϕ1 and

ϕ2 are weakly equivalent in MHZ(HFp +HFp, n).

At this point, we are ready to provide the classification of weak equivalence classes of

HZ–algebras with homotopy ring ΛFp(xn) for n > 0 and hence, quasi-isomorphism classes of

Z–DGAs with homology ring ΛFp(xn) for n > 0. By Proposition A.2 and Theorem A.1, This is

given by THHn+2HZ (HFp, HFp)/Aut(Fp). As in Example 3.15 of (1), THH∗HZ(HFp, HFp) ∼= Fp[σ2],

a polynomial algebra with a generator in degree 2 (with cohomological grading). Calculating

the quotient of Fp[σ2] by the multiplicative action of Fp, one obtains the following classification:

for odd n > 0, there is a unique HZ–algebra with homotopy ring ΛFp(xn) and for even n > 0,

there are exactly two non-weakly equivalent HZ–algebras whose homotopy ring is ΛFp(xn). For

n = 0, this classification says that there are two Postnikov extensions of HFp of type (HFp, 0)

and these are HZ/p2 and HΛFp(x0).

Similarly, weak equivalence classes of S–algebras with homotopy ring ΛFp(xn) are given by

THHn+2S (HFp, HFp)/Aut(Fp). In this case, THH∗S(HFp, HFp) ∼= Γ [α2] as rings where Γ [α2] is
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the divided polynomial algebra on a generator of degree 2 which is isomorphic to Fp[σ2] as an

Fp–module, see Theorem 13.4.15 in (24). Therefore we get a similar classification result: there

are exactly two non weakly equivalent S–algebras with homotopy ring ΛFp(xn) for odd n > 0

and there is only one for even n > 0.

What we are really interested in here is deciding which of these non-weakly equivalent

HZ–algebras are weakly equivalent as S–algebras. For this, one considers the the map

THHn+2HZ (HFp, HFp) → THHn+2S (HFp, HFp)

induced by the forgetful functor from HZ–algebras to S–algebras. This corresponds to a mor-

phism of rings ϕ : Fp[σ2] → Γ [α2]. Where ϕ maps σ2 to α2 because HZ/p2 and HΛFp(x0) are

non-weakly equivalent as S–algebras. Since αp2 = 0 in Γ [α2], ϕ(σ
p
2) = 0. This implies that the

two non-weakly equivalent HZ–algebras corresponding to σp2 and 0 are weakly equivalent as

S–algebras. These are the first example of non-trivial topological equivalences from (1). That

is, there are two non-weakly equivalent Z–DGAs with homology ring ΛFp(x2p−2) which are

topologically equivalent.

To complete the proof of Proposition A.2, we need to prove the following lemma. Let X

denote an HZ–algebra or an S–algebra with homotopy ring π∗(X) ∼= ΛFp(xn) for |xn| > 0.

Lemma A.3. Let X be an HZ–algebra as above, we have

π0mapHZ-alg(X,HFp) = pt.
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For an S–algebra X as above, we have

π0mapS-alg(X,HFp) = pt.

Proof. Hopkins–Miller obstruction theory states that obstructions to lifting a morphism in

E0,02 = HomFp-alg(π∗HFp ∧HZ X,Fp) to a map of HZ–algebras lie in the André–Quillen coho-

mology for associative algebras, Et,t−12 = Dert(π∗HFp ∧HZ X,Ωt−1Fp) for t ≥ 2 and obstruc-

tions to homotopy unqiueness of the lift lie in Et,t2 = Dert(π∗HFp ∧HZ X,Ω
tFp) for t ≥ 1.

The desuspension functor Ωs is defined by ΩsM∗ = M∗+s for a graded module M∗. By

the Knneth spectral sequence, π0HFp ∧HZ X = Fp. Therefore there is only a single map in

HomFp-alg(π∗HFp ∧HZ X,Fp) because these morphisms preserve the identity and the grading.

To show that the obstructions to existence and uniqueness are zero, first, note that by the

Knneth spectral sequence, π∗HFp∧HZX is connected and ΩtFp is in negative degrees for t > 0.

Therefore, Der(F•+1(π∗HFp ∧HZ X),ΩtFp) = 0 for t > 0 where F denotes the free associative

algebra functor. Therefore, the cohomology of this co-simplicial abelian group is also zero. This

proves the desired result. The argument for homotopy class of maps in S–algebras is similar,

the only difference is that one uses π∗HFp ∧S X instead of π∗HFp ∧HZ X.
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