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awesomely large) research group: Carlos Améndola, Isaac Burke, Courtney Gibbons, Martin

Helmer, Evan Nash, Jose Rodriguez, and Daniel Smolkin, and especially our fearless leader

Serkan Hoşten.
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SUMMARY

The primary goal of this work is to find series expansions for dimension one components

of algebraic varieties by exploiting the sparse structure of the Newton polytopes of the associ-

ated polynomial system. These series may be power series, Laurent series, or Puiseux series,

depending on the problem. We have three primary motivations for this. First, such expansions

capture local information about the variety and can help us to better understand it. Second,

this serves as a building block toward the computational algebraic geometer’s dream, namely,

a general solver for polynomial systems with solution sets of arbitrary dimension. Finally, and

a bit more specifically, such a solution is highly applicable to homotopy continuation. In fact,

using series expansions to better understand the space curve swept out by a homotopy path

track served as one of the initial motivations for our investigation.

Our first contribution is a better understanding of the polyhedral behavior of series ex-

pansions for polynomial systems. Such expansions are connected to the combinatorial world

through the field of tropical algebraic geometry, and more specifically through tropical varieties

and prevarieties. We define what we call “hidden cone” behavior, where the prevariety fails

to capture enough information to find the correct series expansion, and we give examples that

exhibit such behavior in arbitrary dimensions. We show that, generically, such behavior cannot

occur. Finally, we provide a numerical strategy based on polyhedral end games which enables

us to complete information lacking in the tropical prevariety.
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SUMMARY (Continued)

Our second contribution picks up where the tropical approach leaves off. More specifically,

when sufficiently many terms of a series expansion have been obtained using the above methods,

we give a modification of the Gauss-Newton algorithm for obtaining more terms. It couples

an approach called linearization with structured linear algebra, and like the traditional New-

ton’s method, is capable of doubling the number of known terms at each step. In some cases

the tropical approach mentioned above is entirely unnecessary, and we provide a result that

characterizes precisely when it can be avoided in favor of going straight to our (much quicker)

Gauss-Newton approach.

Finally, we conclude with several examples that illustrate the above techniques. Of partic-

ular note is an investigation of the cyclic 16-roots polynomial system. The prevariety of this

polynomial system has only recently been computationally feasible. The tropical version of

Backelin’s lemma predicts that it will contain a particular 3-dimensional polyhedral cone, but

we show that this description is incomplete, and the predicted cone is in fact contained in a

larger 3-dimensional cone of the prevariety.

xiv



CHAPTER 1

INTRODUCTION

1.1 Preliminaries

1.1.1 Thesis Overview

In this introductory chapter, we begin with some general definitions. We then give a sum-

mary of those results from the field which are necessary to understand our contributions, focus-

ing on the Newton-Puiseux method, tropical geometry, and homotopy continuation. Finally,

we outline our problem statement and summarize our contributions.

In Chapter 2, we give alternatives to the current symbolic methods for computing tropical

information. Most of the work in this chapter is published in [13]. Chapter 3 gives an effective

way of applying the method of Gauss-Newton to find more terms of power or Laurent series

satisfying systems of equations. It is a natural companion to the tropical methods of Chapter 2,

and mostly coincides with work published in [14]. Finally, Chapter 4 provides many interesting

examples that show the power of our results. Some are taken from [13], others from [14], and

still others are new.

1.1.2 General Definitions

For the most part, our base field will be the complex numbers C. We useR[x] = R[x1, . . . , xn]

to denote the polynomial ring in the variables x = x1, . . . , xn over the ring R. Occasionally we

1
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will give results defined over the Laurent polynomial ring R[x±1] = R[x±1
1 , . . . , x±1

n ] where we

allow variables to be raised to negative powers.

We write a polynomial f with support set A as

f(x) =
∑
a∈A

cax
a, ca ∈ k∗,xa = xa11 x

a2
2 · · ·x

an
n . (1.1)

This notation is independent of whether we are working in R[x] or R[x±1]. The degree of f is

max{sum(a) : ca 6= 0}. A polynomial system is a tuple of polynomials; a polynomial system

is sparse if it has relatively few monomials given its degrees. For example, we would consider

f = x8y5 − 1 to be sparse, but not g = x4 − x3 + x2 − x + 1. This is somewhat relative, of

course, but is useful in practice.

The variable t will often be used as a polynomial ring variable which has some special

meaning, for example as the parameter in a homotopy. If f is a polynomial system, then V(f)

will denote the zero set of f ; likewise, for an ideal I, V(I) denotes the variety of I. For our

purposes, an algebraic space curve, or just space curve, is a dimension one algebraic variety. A

point p on a d-dimensional component of a variety V(f) ⊂ Cn is regular if the Jacobian of f

evaluated at p has rank n− d; for a space curve cut out by n− 1 equations in n unknown, this

just says that the Jacobian is full rank. Points that are not regular are called singular. The

geometric intuition for a singular point is a place where the tangent space does not have the

expected dimension.
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Finally, we will use the following notation for various modifications of a field k. We write

k\{0} as k∗. For rational functions, we use the notation k(x); for formal power series, k[[x]]. The

field of formal Laurent series, or in other words series with finitely many negative exponents,

will be denoted k((x)). And lastly, we will use k{{x}} for the field of fractional power (Puiseux)

series, defined as the union over n ∈ N of k((t1/n)). Each element is a series where the exponents

are fractions with bounded denominator.

1.2 Background and Related Work

1.2.1 The Planar Newton-Puiseux Algorithm

The Newton-Puiseux algorithm dates back to Isaac Newton in the 1670’s and 80’s [55].

According to [22], it was “all but forgotten” in the early 19th century, but was used by

Puiseux [61,62] to prove the following:

Theorem 1.2.1 (Newton-Puiseux Theorem). If k is an algebraically closed field of character-

istic 0, then the field of Puiseux series k{{x}} is algebraically closed.

Put another way, this means that a univariate polynomial with coefficients in k{{x}} factors

completely. For proof and an excellent exposition, see for example [19] or [79].

For a polynomial f(x1, x2) =
∑

a∈A cax
a ∈ k[x1, x2], the Newton-Puiseux algorithm finds

terms of series s(t) ∈ k{{t}} such that f(t, s(t)) = 0. It does so term by term, simply by looking

for conditions on the cancellation of the terms of lowest order. The first condition involves the

Newton polygon of the support of f , which invites a few definitions:



4

0 1 2 3 4 5
0

1

2

y exponent

x exponent

Figure 1: The lower hull of the Newton polygon of f = −2x2 + x2y + xy2 + xy3 + y4 + xy5.

Definition 1.2.2. The support of a polynomial f ∈ k[x1, . . . , xn] is the set {a ∈ Nn} such that

xa is a monomial of f (with nonzero coefficient).

Definition 1.2.3. The Newton polytope of a polynomial f ∈ k[x1, . . . , xn] is the convex hull

of its support. When n = 2 we instead use the term Newton polygon.

In looking for the starting term d tγ of s, it is necessary that −γ be the slope of a segment

of the Newton polygon of p, restricting to those segments that lie on the lower portion with

respect to x. In addition, d must be a root of
∑
cax

a2
2 where a runs over the points on the of

the Newton polygon segment corresponding to γ; with a slight abuse of future notation we will

write this as inγ(f).

The following example illustrates these conditions.

Example 1. Suppose we have the polynomial f(x, y) = −2x2 + x2y + xy2 + xy3 + y4 + xy5 ∈

C[x, y]. Figure 1 shows the lower hull of the Newton polygon of f . From it we obtain two

possibilities for the leading exponent, γ1 = 1
2 and γ2 = −1. Using the first, we obtain inγ1(f) =
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y4 + y2 − 2, with roots ±1,±i
√

2. Using the second we obtain inγ2(f) = y5 + y4 which has only

one nonzero root −1; we discard the repeated 0 as it results in the trivial term 0 · t−1. Thus the

five options for the first term of a Puiseux series solution are ±t
1
2 , ± i

√
2t

1
2 , and − t−1.

4

Finding more terms amounts to a recursive application of this idea to f(x, xγ(d + y)) for

chosen first term d tγ , where we require subsequent γ to be positive. The cost is therefore linear

in the number of terms desired. Pseudocode for the algorithm may be found in Appendix A.

Source code documentation for our generalized Newton-Puiseux algorithm in higher dimensions

can be found in Appendix B.

1.2.1.1 Extensions and Improvements

In [25] Duval presents a modification for computing what she calls rational Puiseux expan-

sions, defined for a polynomial f(x, y) ∈ k[x, y] as a system {(x1, y1), ..., (xm, ym)} ⊂ k[[t]]2

of non-equivalent irreducible parameterizations with the xi monomials, such that the set is

invariant under the Galois action of the algebraic closure of k on k itself. Here non-equivalence

means no parameterization can be obtained from another by means of a linear substitution

(x(z(t)), y(z(t))), and irreducibility means there is no k ∈ Z positive such that (x, y) ∈ k[[tk]]2.

Aside from its mathematical implications, this has the algorithmic advantage that no fractional

exponents are necessary, which simplifies symbolic computations; traditional Puiseux series can

be obtained easily by means of a change of variables.
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Poteaux and Rybowicz present a symbolic-numeric extension of Duval’s algorithm in [60] for

k a finite extension of Q. Their algorithm first computes the rational Puiseux system modulo

some prime p in order to obtain exact information, where p is chosen to leave the Newton

polygons unchanged. It then uses this information to guide floating-point computations where

numerical instability might under normal conditions result in drastic errors. For a polynomial

p and Puiseux series solution s of f , they define the regularity index as the number of terms

necessary to distinguish s from the other series solutions of f . For a given series, the algorithm

terminates when as many terms have been computed as its regularity index. Beyond that

point one may quickly compute more terms via quadratic Newton iteration per [47]. This

approach provides an effective way of overcoming the numerical instability inherent in the

classical algorithm.

1.2.2 Tropical Geometry

Several investigations into generalizing the Newton-Puiseux algorithm to higher dimensions

exist; see for example [53], or the succinct and perhaps earliest work [52]. However, the proper

framework for such an investigation lies in the field of tropical geometry. In essence, this field

studies the polyhedral skeleton of algebraic geometry; the Newton polygon in Figure 1 is a

glimpse into the tropical world. We continue with a few definitions. Much of this section

parallels [51], although that work is given in greater generality than our study, so we make

simplifications where appropriate.

For a field k, a valuation on k is a map val : k → R ∪ {∞} that, for all a, b ∈ k, satisfies
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• val(a) =∞ if and only if a = 0,

• val(ab) = val(a) + val(b), and

• val(a+ b) ≥ min{val(a), val(b)}.

We will only make use of two sorts of valuation: the trivial valuation on k, which takes every

nonzero element to 0, and the valuation on Puiseux series taking a series s(t) to its lowest

exponent. Both valuations necessarily send 0 to ∞.

If f(x) ∈ k[x] or k[x±1] is a polynomial, we will write f (xi) for the image of f under the

natural map

k[x] ↪→ k{{xi}}[x1, . . . , xi−1, xi+1, . . . , xn]. (1.2)

In other words, f (xi) is f considered as a polynomial in the variables x \ xi with coefficients in

k{{xi}}. We will use this notation for polynomial systems f = (f1, . . . , fm) as well, setting

f (xi) = (f
(xi)
1 , . . . , f (xi)

m ). (1.3)

The initial form of a polynomial over a field k depends on the valuation used. The general

case requires first defining value groups, residue fields, and the splitting of a valuation, but for

our purposes, the following suffices. We will state the definitions over C[x], but they extend

naturally to C[x±1]. Let f =
∑

a∈A cax
a be a polynomial in C[x], and let 〈·, ·〉 denote the inner
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product. If we set M = min{〈v,a〉 : a ∈ A, ca 6= 0}, then the initial form of f with respect to

v ∈ Rn is

inv(f) =
∑

〈a,v〉=M

cax
a ∈ C[x]. (1.4)

Alternatively, we can define the initial form for a polynomial f in C{{t}}[x], where we use the

nontrivial valuation on Puiseux series. For v ∈ Rn, let M = min{val(ca) + 〈v,a〉 : a ∈ A, ca 6=

0}. Then

inv(f) =
∑

val(ca)+〈a,v〉=M

lc(ca)xa ∈ C[x], (1.5)

where lc(·) is the coefficient of the lowest order term. Note that for f and f (x1) these definitions

are very similar: if f ∈ C[x1, . . . , xn] and v = (v2, . . . , vn) ∈ Rn−1, then

inv(f (x1)) = in(1,v2,...,vn)(f)
∣∣
x1=1

. (1.6)

We can extend these definitions naturally to polynomial systems and ideals. If f = (f1, . . . , fm)

is a polynomial system and I = 〈f〉 the ideal generated by the fi, then we define inv(f) as the

polynomial system (inv(f1), . . . , inv(fm)), and inv(I) as the ideal generated by {inv(f) : f ∈ I}.

Now that we have this notation specified, we define the tropical hypersurface trop(V (f))

of a polynomial f as the set of v for which inv(f) consists of at least two monomials. If

f = (f1, . . . , fm) is a polynomial system, the tropical prevariety of f is

trop(V (f)) =
⋂

i∈{1...n}

trop(V (fi)), (1.7)
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and the tropical variety of the ideal I = 〈f〉 is

trop(V (I)) =
⋂
f∈I

trop(V (f)). (1.8)

Elements of the tropical prevariety are called pretropisms, and elements of the tropical variety

tropisms. In other words, the tropical prevariety is the set of v such that inv(fi) is not a

monomial for any fi in the system f , and the tropical variety is the set of v such that inv(fi)

is not a monomial for any f ∈ I. Since the polynomials in the system are a subset of the ideal,

clearly trop(V (I)) ⊆ trop(V (f)), i.e. every tropism is a pretropism.

Before moving on to an example, we record the following trivial but useful lemma, which

follows from (1.6):

Lemma 1.2.4. Let f be a system of polynomials in C[x] or C[x±1]. Then

trop(V (f (xi))) = trop(V (f)) ∩ V(xi − 1). (1.9)

Example 2 (Example 1, continued). In Example 1 we computed the first terms of the Puiseux

expansion of the polynomial

f(x, y) = −2x2 + x2y + xy2 + xy3 + y4 + xy5 ∈ C[x, y]. (1.10)
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Figure 2: Newton polygon of f = −2x2+x2y+xy2+xy3+y4+xy5, with two rays of trop(V (f)).

For v = (2, 1), we have M = 4 and inv(f) = −2x2 +xy2 + y4, so v is in the tropical prevariety

of the system (f); since the ideal I = 〈f〉 is principal, v must also be in the tropical variety

trop(v)(I). The corresponding element of trop(V (f (x))) is 1
2 , and as claimed in 1.6, we have

in(1, 1
2

)(f)
∣∣∣
x=1

= (−2x2 + xy2 + y4)
∣∣
x=1

= in 1
2
(f (x)). (1.11)

Figure 2 shows the tropical variety of f , represented as two inward pointing normal vectors to

edges of the Newton polygon. Note that we have flipped the coordinates x and y for consistency

with the literature, so that the lower hull with respect to x is visually the lower hull in the

picture. 4

A tropical basis for an ideal I is a set B ⊆ I such that B generates I and trop(V (B)) =

trop(V (I)). In other words, for this generating set, the tropical prevariety equals the tropical



11

variety. We can now state the two results from tropical algebraic geometry that are of greatest

interest for our work, taken directly from [51]:

Theorem 1.2.5. Let k be an arbitrary valued field. Every ideal I in the ring k[x±1
1 , . . . , x±1

n ]

has a finite tropical basis.

Theorem 1.2.6 (Fundamental Theorem of Tropical Algebraic Geometry). Let k be an alge-

braically closed field with a nontrivial valuation, let I be an ideal in k[x±1
1 , . . . , x±1

n ], and let X

be its variety in the algebraic torus Tn ∼= (k∗)n. Then the following three subsets of Rn coincide:

1. the tropical variety trop(V (I)),

2. the set of all vectors v ∈ Rn with inv(I) 6= 〈1〉, and

3. the closure of the set of coordinatewise valuations of points in X,

val(X) = {(val(y1), . . . , val(yn)) : (y1, . . . , yn) ∈ X} (1.12)

For proofs of these results, see [51]. Some general methods can be found in [16]. An algorithm

for lifting points of trop(V (I)) back to X is given in [44]; see also [46] and [59].

1.2.2.1 The Polyhedral View

Tropical hypersurfaces and their intersections have a nice geometric structure. For the

trivial valuation, trop(V (f)) is simply the n− 1 dimensional skeleton of the normal fan of f ’s

Newton polytope. To unpack this definition requires, of course, a few more definitions.

1. A polytope P is a bounded intersection of finitely many closed half-spaces.
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Figure 3: The Newton polytope of f(x, y, z) = 1 + x+ y + xy + z + zy ∈ C[x, y, z].

2. The initial form of P with respect to a vector v, denoted inv(P ), is the set of points in

P that are minimal with respect to 〈v, ·〉.

3. Sets of the form inv(P ) are faces of P .

4. The normal cone of a face F ≤ P is the closure in the Euclidean topology of the set

{w ∈ Rn : inw(P ) = F}.

5. The normal fan of P is the set of its normal cones.

6. The relative interior of a cone C is its interior within its affine span.

In Figure 3 and Figure 4 we plot the Newton polytope and tropical hypersurface, respec-

tively, of the polynomial

f(x, y, z) = 1 + x+ y + xy + z + zy ∈ C[x, y, z] (1.13)



13

Figure 4: The tropical hypersurface trop(V (f)) for f(x, y, z) = 1+x+y+xy+z+zy ∈ C[x, y, z]
under the trivial valuation.

under the trivial valuation. The two-dimensional cones in Figure 4 are the sets of vectors

giving edges as initial forms of the polytope. Under these definitions, the tropical prevariety of

a system with the trivial valuation is just the intersection of polynomials’ normal fans. Following

Lemma 1.2.4, the tropical hypersurface of f (x) would simply be the intersection of the fan in

Figure 4 with the plane V(x− 1).

In view of how easy it is to switch between trop(V (f)) and trop(V (f (xi))), for the most part

we will work with the trivial valuation. This it matches the approach of both [43] and [40,68,69],

which are the state-of-the-art for computing tropical prevarieties.
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1.2.3 Polynomial Homotopy Continuation

Because one of our primary motivations is polynomial homotopy continuation, we describe it

here in brief. Given a polynomial system F (x) with finitely many solutions, one first constructs

a “start system” G(x) which is easier to solve. Using a homotopy system

H(x, t) := γ(1− t)G+ tF, t ∈ [0, 1], γ ∈ C, (1.14)

the solutions of G are tracked from t = 0 to 1 via predictor-corrector methods until solutions

of F are obtained. The use of a random complex constant γ ensures that the solution paths

are generically nonsingular.

Various methods for constructing the start system G exist, but for us the most relevant

is the polyhedral method [10, 36, 78]. This approach is in many ways a precursor to tropical

algebraic geometry and a generalization of the Newton-Puiseux algorithm. For roots in (C∗)n,

it achieves a generically sharp minimal number of paths—the so-called mixed volume—which

for sparse systems can be much smaller than other bounds. In the spirit of [1,4], our work here

can be seen as a generalization of the polyhedral homotopies, where instead of computing only

zero-dimensional solutions sets, we study positive dimensional ones. For a general introduction

to homotopy continuation, see one of [70,71].

1.2.4 Related Work

In addition to the work mentioned above, the following is also relevant. Symbolic elimination

techniques for sparse systems can be found in [33]. Tropical resultants are computed in [41].
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Related polyhedral methods for sparse systems can be found in [36]. Bounds on the number

of Puiseux terms necessary to determine if it is based at an isolated point are derived in [34].

The authors of [39] propose numerical methods for tropical curves. Polyhedral methods to

compute tropical varieties are outlined in [16] and implemented in Gfan [42]. For computation

of prevarieties see [42] or [68].

Relevant to Chapter 3 is [11], which establishes a relationship between polynomials, power

series, and Toeplitz matrices. A direct method to solve block banded Toeplitz systems is

presented in [21]. The book [9] is a general reference for methods related to approximations

and power series. Methods for efficient manipulation of truncated series are classical [18, 48].

Studies of deformation methods in symbolic computation appeared in [17], [20], and [31]. In

particular, the use of power series and Padé approximants in [45] in the purely symbolic context

stimulated our development of the methods of Chapter 3.

1.3 Problems and Solutions

1.3.1 Problem Statement

Now that the background framework has been established, we come to our problem state-

ment. Generally speaking, the problem is to find series expansions of space curves. To be more

precise, we start with a polynomial system f such that V(f) is one dimensional, and hope to

find series expansions for the components of V(f). Our questions then become,

1. When is computing only the tropical prevariety sufficient?

2. If the prevariety is insufficient, how can this be detected, and what can be done about it?
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3. Is there a more effective way of finding terms in the expansion than the term-by-term

methodology of the Newton-Puiseux algorithm?

4. More specifically, can Newton’s method be adapted to expand a series with quadratic

convergence?

1.3.2 Our Contributions

Our answer to the first two questions in 1.3.1 is the content of Chapter 2. We argue that for

generic coefficients, the prevariety contains sufficient information to apply a higher-dimensional

analogue of the Newton-Puiseux method. When this does fail—i.e. when a tropism is in the

relative interior of a cone of the prevariety, so that the leading Puiseux powers cannot be

immediately determined— we provide a numerical alternative to symbolic approaches such

as [16], using polyhedral end games to recover the hidden tropisms.

The latter two questions are answered in the affirmative in Chapter 3. We first apply

linearization, which takes a matrix problem over C{{x}} and rewrites it as a system of linear

equations over C. We are then able to transform the problem so that applying the Gauss-

Newton algorithm is reduced to structured linear algebra. Finally, we provide a simple and

complete characterization of when tropical methods are necessary, versus when only a point in

Cn is needed to start the Gauss-Newton algorithm.



CHAPTER 2

PRETROPISMS AND TROPISMS IN HIGHER DIMENSIONS

2.1 Introduction

In this chapter, we examine an obstacle to the generalization of the Newton-Puiseux al-

gorithm, a so-called “hidden cone” of the tropical prevariety. This is a tropism that is not a

one-dimensional cone of the prevariety. Our solution is based on material previously published

in [13]. It involves applying polyhedral methods in order to complete the information lacking

in the tropical prevariety. We are driven by the following questions:

1. If only the space curves are of interest, can we ignore the higher dimensional cones of

pretropisms?

2. If some tropisms lie in the relative interior of higher dimensional cones of the prevariety,

is it still possible to compute Puiseux series solutions for these space curves?

The layout of this chapter is as follows. In the first section we illustrate the general goal

using Viviani’s curve, which will be a running example throughout this thesis. We then lay out

some of the assumptions necessary for the study. Next we illustrate the “hidden cone” problem

with several examples, and provide a result about genericity conditions for when the hidden

cone problem does not occur. For the non-generic case, we give an overview of current symbolic

methods. And finally, we introduce polyhedral endgames for recovering tropisms contained in

higher dimensional cones, and give some experimental results and timings.

17
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2.2 Puiseux Series

When working with Puiseux series we apply a hybrid method, combining exact and ap-

proximate calculations. Figure 6 shows the plot, in black, of Viviani’s curve, defined as the

intersection of the sphere f = x2
1+x2

2+x2
3−4 = 0 and the cylinder g = (x1−1)2+x2

2−1 = 0 such

that the two are mutually tangent at a point. Let f denote the polynomial system consisting

of f and g, which we consider as polynomials in C[x] = C[x1, x2, x3].

Figure 5: The tropical prevariety of Viviani’s curve under the trivial valuation.
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The tropical prevariety of f is shown in Figure 5. If we take x1 as our series parameter, there

is only one pretropism (1
2 , 0) in trop(V (f (x1))). The corresponding ray v = (2, 1, 0) ∈ trop(V (f))

gives initial forms of f and g respectively as x2
3−4 and x2

2−2x1. For traditional Puiseux series,

one would choose to set x1 = 1, obtaining the four solutions (1,±
√

2,±2) and leading terms

(t2,±
√

2t,±2). If we instead use x1 = 2, we obtain rational coefficients and the following partial

expansion: 
x1

x2

x3

 =


2t2

2t− t3 − 1
4 t

5 − 1
8 t

7 − 5
64 t

9

2− t2 − 1
4 t

4 − 1
8 t

6 − 5
64 t

9

 . (2.1)

The plot of several Puiseux approximations to Viviani’s curve is shown in gray in Figure 6.

Figure 6: Viviani’s curve with improving Puiseux series approximations, labeled with the num-
ber of terms used to plot each one.
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If we shift the Viviani example so that its self-intersection is at the origin, we obtain the

following:

f(x) =


x2

1 + x2
2 + x2

3 + 4x1 = 0

x2
1 + x2

2 + 2x1 = 0

(2.2)

An examination of the first few terms of the Puiseux series expansion for this system, combined

with the On-Line Encyclopedia of Integer Sequences [58] and some straightforward algebraic

manipulation, allows us to hypothesize the following exact parameterization of the variety:


x1

x2

x3

 =


−2t2

2 t3

1+
√

1−t2 − 2t

±2t

 . (2.3)

We can confirm that this is indeed right via substitution. While this method is of course not

possible in general, it does provide an example of the potential usefulness of Puiseux series

computations for some examples.

2.3 Assumptions and Setup

Our object of study is space curves, by which we mean 1-dimensional varieties in Cn.

Because Puiseux series computations take one variable to be a free variable, we require that

the curves not lie inside V (〈xi〉) for some i; without loss of generality we choose to use the

first variable. Some results require that the curve be in Noether position with respect to x1,

meaning that the degree of the variety is preserved under intersection with x1 = λ for a generic

λ ∈ C. It is of course possible to apply a random coordinate transformation to obtain Noether
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position, but we then lose the sparsity of the system’s exponent support structure, which is

what makes polyhedral methods effective.

2.4 Some Motivating Examples

In this section we illustrate the “hidden cone” problem with some simple examples, first in

3-space, and then with a family of curves in any dimensional space.

2.4.1 In 3-Space

Our first example is the system

f(x) =


x1x3 − x2x3 − x2

3 + x1 = 0

x3
3 − x1x2 − x2x3 − x2

3 − x1 = 0

(2.4)

which has an irreducible quartic and the second coordinate axis (0, x2, 0) as its solutions. Be-

cause the line lies in the first coordinate plane x1 = 0, the system is not in Noether position

with respect to the first variable. Therefore, our methods will ignore this part of the solution

set. The algorithms of [32] can be applied to compute components inside coordinate planes.

Computing a primary decomposition yields the following alternative, which lacks the portion

in the first coordinate plane:

f̃(x) =



x1x3 − x2x3 − x2
3 + x1

x1x2 − x2
2 − x2x3 + x2

3 + x1 − 2x2 − 2x3

x3
3 − x2

2 − 2x2x3 − 2x2 − 2x3

(2.5)
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Figure 7: The tropical prevariety trop(V (f̃)) of the system (2.5).

The tropical prevariety trop(V (f̃(x))), seen in Figure 7, contains the rays (2, 1, 1), (1, 0, 0),

and (1, 0, 1); because our Puiseux series start their development at x1 = 0, rays that have a zero

or negative value for their first coordinate have been discarded. The tropical variety however

contains the ray (3, 1, 1) instead of (2, 1, 1), leading to the series expansion


x1

x2

x3

 =


108t3

t− 3t2 − 15t3 + 27t4 + 36t5

−t− 3t3 − 18t4 + 18t5 + 162t6

 . (2.6)
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This ray is a positive combination of (2, 1, 1) and (1, 0, 0). In other words, it is possible for

the 1-dimensional cones of the tropical prevariety to fail to be in the tropical variety, and for

rays in the tropical variety to “hide” in the higher-dimensional cones of the prevariety.

2.4.2 In Any Dimensional Space

This problem can also occur in arbitrary dimensions, as seen in the class of examples

f(x) =



x2
1 − x1 + x2 + x3 + · · ·+ xn = 0

x2
2 + x1 + x2 + x3 + · · ·+ xn = 0

x2
3 + x1 + x2 + x3 + · · ·+ xn = 0

...

x2
n−1 + x1 + x2 + x3 + · · ·+ xn = 0.

(2.7)

The support of the linear portions of the polynomials each span an n−1 dimensional hyperplane.

Since the ray 1 = (1, 1, 1, . . . , 1) has the linear portions as its initial form, they must be facets

and 1 must be a 1-dimensional cone of the prevariety. The ray 1 is not, however, in the tropical

variety, since the initial form system in1(f) contains the monomial x1. For n ≤ 12 we computed

that instead the ray (2, 1, . . . , 1) is in the tropical variety, hiding in the cone of the prevariety

generated by 1 and (1, 0, 0, . . . , 0). The tropical prevariety trop(V (f)) for n = 3 can be seen in

Figure 8.

2.5 The Generic Case

This hiding of tropisms in the higher dimensional cones of the prevariety is problematic, as

finding the tropical variety may require more expensive symbolic computations. For a compar-
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Figure 8: The tropical prevariety trop(V (f)) of the system (2.7) for n = 3.

ison between various approaches to computing it, see Section 2.8. Fortunately, the hidden cone

problem does not occur in general, as the next result will show.

Proposition 2.5.1. For n equations in n+ 1 unknowns with generic coefficients, the set of ray

generators of the tropical prevariety contains the tropical variety.

A version of this was proved in [36] in the context of polyhedral homotopies; this was in turn

strongly based on [10]. It should be noted that our use of generic here refers to the coefficients,

and is not to be confused with generic tropical varieties as seen in [64], which are tropical

varieties of ideals under a generic linear transformation of coordinates.
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Proof. The tropical prevariety always contains the tropical variety. We simply want to show

that all of the rays of the tropical variety show up in the prevariety as ray generators, and not

as members of the higher-dimensional cones. Let I = 〈p1, . . . , pn〉 ⊆ C[x0, . . . , xn], and let w

be a ray in the tropical prevariety but not one of its ray generators. We want to show that w is

not in the tropical variety, or equivalently that inw(I) contains a monomial. We will do so by

showing that Iw := 〈inw(p1), . . . , inw(pn)〉 contains a monomial, which suffices since this ideal

is contained in inw(I).

Suppose Iw contains no monomial. Then (x0x1 · · ·xn)k /∈ Iw for any k. By Hilbert’s

Nullstellensatz V := V(Iw) * V(x0x1 · · ·xn), i.e. V is not contained in the union of the co-

ordinate hyperplanes. Then there exists a = (a0, . . . , an) ∈ V such that all coordinates of a

are all nonzero. Since w lies in the interior a cone of dimension at least 2, the generators of

Iw are homogeneous with respect to at least two linearly independent rays u and v. Thus

(λu0µv0a0, . . . , λ
unµvnan) ∈ V for all λ, µ ∈ C \ {0} where the ui,vi are the components of

u and v, and V contains a toric surface. However, if we intersect with a random hyperplane,

Bernstein’s theorem B [10] implies that the result will be a finite set of points, with the pos-

sibility of additional components that must be contained in the coordinate planes. Hence V

cannot contain a component of dimension > 1 outside of the coordinate planes, and we have a

contradiction.

Remark 1. The above result is reproduced directly from [13], but note that this result easily

generalizes: for n equations in n + d unknowns, the tropical variety is contained in the set of

prevariety cones of dimension ≤ d. This follows by a similar argument, where instead of ruling
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out cones of dimension ≥ 2 which have at least 2-dimensional homogeneity, one rules out cones

of dimension greater than d.

2.6 Current Approaches

In [16] a method is given for computing the tropical variety of an ideal I defining a curve.

It involves appending witness polynomials from I to a list of its generators such that for this

new set, the tropical prevariety equals the tropical variety. Recall that such a set is called a

tropical basis. Each additional polynomial rules out one of the cones in the original prevariety

that does not belong in the tropical variety. As stated in [16] only finitely many additional

polynomials are necessary, since the prevariety has only finitely many cones.

The algorithm runs as follows. For each cone C in the tropical prevariety, we choose a

generic element w in the relative interior of C. We check whether inw(I) contains a monomial

by saturating with respect to m, the product of ring variables; the initial ideal contains a

monomial if and only if this saturation ideal is equal to (1). If inw(I) does not contain a

monomial, the cone C belongs in our tropical variety. If it does, we check whether mi ∈ I for

increasing values of i until we find a monomial m′ ∈ inw(I). Finally, we append m′ − h to our

list of basis elements, where h is the reduction of m with respect to a Gröbner basis of I under

any monomial order that refines w. For w to define a global monomial order, and thus allow

a Gröbner basis, it may be necessary to homogenize the ideal first.

Bounding the complexity of this algorithm is beyond the scope of this work, but for each

cone it requires computing a Gröbner basis of I as well as another (possibly faster) basis when
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calculating the saturation to check if the initial ideal contains a monomial. In some cases we

may only be concerned about tropisms hiding in a particular higher-dimensional cone of the

prevariety, such as with our running example (2.7). Here it is reasonable to perform only one

step of this algorithm, namely looking for a witness for a single cone, which could be significantly

faster. However, this has the disadvantage of introducing more 1-dimensional cones into the

prevariety. More details, including some timing comparisons, will be given in Section 2.8.

2.7 Polyhedral End Games

Polyhedral end games [37] use extrapolation methods to numerically estimate the winding

number of solution paths defined by a homotopy. Their traditional purpose is to complete

the tracking of solution paths towards a singular solution of the target system. The leading

exponents of the Puiseux series can be recovered by taking differences of the logarithms of the

magnitudes of the coordinates of the solution paths.

Even in cases such as our illustrative example, where the given polynomials have a prevariety

that is insufficient to compute all tropisms, a polyhedral end game is capable of computing them.

The setup is similar to that of [76], arising in a numerical study of the asymptotics of a space

curve. We define the system f(x) = 0:


f(x) = 0

tx1 + (1− t)(x1 − γ) = 0, γ ∈ C \ {0}.
(2.8)

As t moves from 0 to 1, the original variety V(f) is intersected with the hyperplane V(x1−γ−t),

i.e. a plane perpendicular to the first coordinate axis.



28

It is important to note that we never allow t to actually reach 1; in the polyhedral end

games of [37], the step size decreases in a geometric ratio. Another thing to note is that the

constant γ in (2.8) is a randomly generated complex number. This implies that for x1 = γ, the

polynomial system in (2.8) for t = 0 has as many isolated solutions, counted with multiplicity,

as the degree of the projection of the space curve onto the first coordinate axis. Because there

can only be finitely many c ∈ C for which V(f)∩V(x1−c) is singular, for t < 1 the introduction

of γ assures that the points remain generic. However, the numerical condition numbers are

expected to blow up as t approaches one.

This deteriorating numerical ill conditioning can be counteracted by the use of multiprecision

arithmetic. For example, condition numbers larger than 108 make results unreliable in double

precision. However in double double precision, much higher condition numbers can be tolerated,

typically up to 1016, and up to 1032 for quad double precision. Interpreting the inverse of the

condition number as the distance to a singular solution, with multiprecision arithmetic we

can compute more points more accurately as needed in the extrapolation to estimate winding

numbers.

An additional difficulty arises when a path diverges to infinity, which manifests itself as a

tropism with negative coordinates. This will already be detected in the prevariety, however, as

a cone which contains rays with negative components. Reformulating the problem in weighted

projective space using a unimodular coordinate transformation circumvents the problem and

brings the cone into the finite case above.
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2.8 Computational Experiments

2.8.1 Symbolic Methods

To substantiate the claim that finding the tropical variety is computationally expensive, we

calculated tropical bases of the system (2.7) for various values of n. The symbolic computations

of tropical bases was done with Gfan [42]. Times are displayed in Table I. The computations

were executed on an Intel Xeon E5-2670 processor running RedHat Linux. As is clear from

the table, as the dimension grows for this relatively simple system, computation time becomes

prohibitively large.

TABLE I: Execution times, in seconds, of the computation of a tropical basis for the sys-
tem (2.7); averages of 3 trials.

n 3 4 5 6 7

time 0.052 0.306 2.320 33.918 970.331

As mentioned in Section 2.6, an alternative to computing the tropical basis is to only cal-

culate the witness polynomial for a particular cone of the tropical prevariety. We implemented

this algorithm in Macaulay2 [28] and applied it to (2.7) to cut down the cone generated by the

rays (1, 1, . . . , 1) and (1, 0, 0, . . . , 0). In all the cases we tried, the new prevariety contained the

ray (2, 1, . . . , 1), as we expected.
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From Table II it is clear that this has a significant speed advantage over computing a

full tropical basis. However, it has the disadvantage of introducing many more rays into the

prevariety. The number can vary depending on the random ray chosen in the cone, so we listed

some of the values we obtained over several trials. We only computed up through dimension

10 because the prevariety computations were excessive for higher dimensions.

TABLE II: Execution times of the computation of a witness polynomial for the cone generated
by (1, 1, . . . , 1), (1, 0, . . . , 0) of the system (2.7); averages of 3 trials. The third column lists the
number of rays in the fan obtained by intersecting the original prevariety with the normal fan
of the witness polynomial.

dim time (s) #rays in new fan

3 0.004 4, 5

4 0.011 10, 11

5 0.004 13, 14

6 0.009 27, 49

7 0.033 13, 25, 102

8 0.170 124, 401, 504

9 0.963 758, 1076

10 10.749 514, 760, 1183, 2501

11 131.771

12 1131.089

2.8.2 Our Approach

The polyhedral end games were performed with version 2.4.10 of PHCpack [75], upgraded

with double double and quad double arithmetic using QDlib [35]. For the first motivating
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example (2.4) in 3-space, there are four solutions when x1 = γ. The tropism (3, 1, 1), with

winding number 3, is recovered when running a polyhedral end game, tracking four solution

paths. Even in quad double precision (double precision already suffices), the running time is a

couple of hundred milliseconds.

Table III shows execution times for the family of polynomial systems in (2.7). The compu-

tations were executed on one core of an Intel Xeon E5-2670 processor, running RedHat Linux.

TABLE III: Execution times on tracking d paths in n-space with a polyhedral end game. The
reported time is the elapsed CPU user time, in seconds. The last column represents the average
time spent on one path.

n d time time/d

4 4 0.012 0.003
5 8 0.035 0.006
6 16 0.090 0.007
7 32 0.243 0.010
8 64 0.647 0.013
9 128 1.683 0.016

10 256 4.301 0.017
11 512 7.507 0.015
12 1024 27.413 0.027

All directions computed with double precision at an accuracy of 10−8. For this family of

systems, double precision sufficed to accurately compute the tropism (2, 1, . . . , 1). Clearly, these

times are significantly smaller than the time required to compute a full tropical basis.
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2.9 Conclusions

The tropical prevariety provides candidate tropisms for Puiseux series expansions of space

curves. As shown in [1, 4] on the cyclic n-root problems, the pretropisms may directly lead to

series developments for the positive dimensional solution sets. In this chapter we studied cases

where tropisms are in the relative interior of higher-dimensional cones of the tropical prevariety.

If the tropical prevariety contains a higher dimensional cone and Puiseux series expansion fails

at one of the cone’s generating rays, then a polyhedral end game can recover the tropisms

in the interior of that higher dimensional cone of pretropisms. As our example shows, this

takes drastically less time than computing the tropical variety via a tropical basis, especially

as dimension grows. It is also faster than finding a witness polynomial for just that particular

cone, and avoids the issue of adding rays to the tropical prevariety.



CHAPTER 3

GAUSS-NEWTON FOR POWER SERIES

3.1 Introduction

In this chapter, we seek to define an efficient, numerically stable, and robust algorithm to

apply the Gauss-Newton algorithm [12,57] over power or Laurent series. We do so with an eye

toward computing power series expansions for space curves, particularly those given as solution

curves of polynomial homotopies. This chapter is based upon work published in [14]. We begin

this section with some motivating examples, before stating the problem in more detail and

giving an overview of the rest of the chapter.

3.1.1 Motivating Example: Padé Approximant

One motivation for finding a series solution is that once it is obtained, one can directly

compute the associated Padé approximant, which often has much better convergence properties.

Padé approximants [9] are applied in symbolic deformation algorithms [45]. In this section we

reproduce [9, Figure 1.1.1] in the context of polynomial homotopy continuation. Consider the

homotopy

(1− t)(x2 − 1) + t(3x2 − 3/2) = 0. (3.1)

The function x(t) =

(
1 + t/2

1 + 2t

)1/2

is a solution of this homotopy.

33
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Its second order Taylor series at t = 0 is s(t) = 1 − 3t/4 + 39t2/32 + O(t2). The Padé

approximant of degree one in numerator and denominator is q(t) =
1 + 7t/8

1 + 13t/8
. In Figure 9 we

see that the series approximates the function only in a small interval and then diverges, whereas

the Padé approximant is more accurate.

Figure 9: Comparing a Padé approximant to a series approximation shows the promise of
applying Padé approximants as predictors in numerical continuation methods.
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Figure 10: Viviani’s curve as the intersection of a sphere with a cylinder.

3.1.2 Motivating Example: Viviani’s Curve

We revisit Viviani’s curve as seen in 2.2. Here we will define it as the intersection of the

sphere (x1 + 2)2 +x2
2 +x2

3 = 4 and the cylinder (x1 + 1)2 +x2
2 = 1 such that the self-intersection

is at the origin; see Figure 10. Our methods will allow us to find a series expansion around any

point on a 1-dimensional variety, assuming we have suitable starting information. For example,

the origin (0, 0, 0) is a singular point of the curve. If we apply our methods at this point, we

obtain the following series solution for x1, x2, x3:



−2t2

2t− t3 − 1
4 t

5 − 1
8 t

7 − 5
64 t

9 − 7
128 t

11 − 21
512 t

13 − 33
1024 t

15

2t

(3.2)
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This solution is plotted in Figure 11 for a varying number of terms. To check the correctness,

we can substitute (3.2) into the original equations, obtaining series in O(t18). The vanishing

of the lower-order terms confirms that we have indeed found an approximate series solution.

Such a solution, possibly transformed into an associated Padé approximant, would allow for

path tracking starting at the origin.

Figure 11: Viviani’s curve, with improving series approximations and thus more accurate pre-
dictions for points on the curve.

3.1.3 Problem Setup

For a polynomial system f = (f1, f2, . . . , fm) where each fi ∈ C[t, x1, . . . , xn] or C[t±1, x±1
1 , . . . , x±1

n ],

recall that the solution variety V(f) is the set of points p ∈ Cn+1 such that f1(p) = · · · =

fm(p) = 0. Let f be a system such that the solution variety is 1-dimensional over C and is not
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contained in the t = 0 coordinate hyperplane. We seek to understand V(f) by studying f (t), i.e.

the associated system of polynomials in x1 . . . xn with coefficients in the field of Puiseux series

in t. In fact, we will consider all calculations to occur in C((t)), since the exponents of the fi

(and therefore the f
(t)
i ) are all integers.

Our approach is to use Newton iteration on the system f (t). Namely, we find some starting

z ∈ C((t))n and repeatedly solve

Jf (t)(z)∆z = −f (t)(z) (3.3)

for the update ∆z to z, where Jf (t) is the Jacobian matrix of f (t) with respect to x1, . . . , xn. This

is a system of equations that is linear over C((t)), so the problem is well-posed. Computationally

speaking, one approach to solving it would be to overload the operators on (truncated) power

series and apply basic linear algebra techniques. A main point of the chapter is that this method

can be improved upon.

Of course, applying Newton’s method requires a starting guess. In most cases this can

just be a point p̃ = (p1, . . . , pn) such that p = (0, p1, . . . , pn) is in ∈ V(f). However, if p is a

singular point, this is insufficient. In addition, p could be a branch point (which we discuss

in Section 3.2.2), in which case it is also not enough to use as the starting guess for Newton’s

method.

We solve two problems in this chapter. First, we find an effective way to perform the Newton

step; the framework is established in Section 3.2.1, and our solution is laid out in Section 3.2.3.
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And second, we discuss the prelude to Newton’s method in Section 3.2.2, characterizing when

techniques from tropical geometry, such as those in Chapter 2, are needed to transform the

problem and obtain the starting guess.

3.2 Our Solution

3.2.1 The Newton Step

Solving the Newton step (3.3) amounts to solving a linear system

Ax = b (3.4)

over the field C((t)). Our first step is linearization, which turns a vector of series into a series

of vectors, and likewise for a matrix series. In other words, we refactor the problem and think

of x and b as in Cn((t)) instead of C((t))n, and A as in Cn×n((t)) instead of C((t))n×n.

Suppose that a is the lowest order of a term in A, and b the lowest order of a term in b.

Then we can write the linearized

A = A0t
a +A1t

a+1 + . . . , (3.5)

b = b0t
b + b1t

b+1 + . . . , and (3.6)

x = x0t
b−a + x1t

b−a+1 + . . . (3.7)
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where Ai ∈ Cn×n and bi,xi ∈ Cn. Expanding and equating powers of t, the linearized version

of (3.4) is therefore equivalent to solving

A0x0 = b0

A0x1 = b1 −A1x0

A0x2 = b2 −A1x1 −A2x0 (3.8)

...

A0xd = bd −A1xd−1 −A2xd−2 − · · · −Adx0

for some d. This can be written in block matrix form as



A0

A1 A0

A2 A1 A0

...
...

...
. . .

Ad Ad−1 Ad−2 · · · A0





x0

x1

x2

...

xd


=



b0

b1

b2

...

bd


. (3.9)

For the remainder of this chapter, we will use z and ∆z to denote vectors of series, while x and

∆x will denote their linearized counterparts, that is, series which have vectors for coefficients.

Example 3. Let

f = (2t2 + tx1 − x2 + 1, x3
1 − 4t2 + tx2 + 2t− 1). (3.10)
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Starting with z = (1, 1), the first Newton step Jf (t)(z)∆z = −f (t)(z) can be written:

 t −1

3 t

∆z = −

 t+ 2t2

3t− 4t2

 . (3.11)

To put in linearized form, we have a = 0, b = 1,

A0 =

 0 −1

3 0

 , A1 =

 1 0

0 1

 , (3.12)

b0 =

 −1

−3

 , and b1 =

 −2

4

 . (3.13)

Since A0 is regular, we can solve in staggered form as in (3.8), which yields the next term:

∆x =

 −1

1

 t. (3.14)

After another iteration, our series solution is

 1− t

1 + t+ t2

 . (3.15)

In fact this is the entire series solution for f — substituting (3.15) into f causes both polynomials

to vanish completely. 4
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Remark 2. When the series solution of a system is finite, as above, solving (3.4) is equivalent

to applying Hermite interpolation at 0. To see this, observe that a series

x(t) = x0 + x1t+ x2t
2 + x3t

3 + · · ·+ xkt
k + · · · (3.16)

can be trivially rewritten via its Maclaurin expansion as

x(t) = x(0) + x′(0)t+
1

2
x′′(0)t2 +

1

3!
x′′′(0)t3 + · · ·+ 1

k!
x(k)(0)tk + · · · , (3.17)

where x(k)(0) denotes the k-th derivative of x(t) evaluated at zero. This implies that

xk =
1

k!
x(k)(0), k = 0, 1, . . . , (3.18)

so solving (3.4) up to degree d is equivalent to saying that all derivatives up to degree d of the

parameterization x(t) match the solution at t = 0; this is precisely Hermite interpolation. If

the solution has finitely many terms, then it will be obtained if (3.4) is solved up to its degree.

3.2.2 The Starting Guess, and Related Considerations

Our hope is that a solution z(t) of f (t) parameterizes the curve in some neighborhood of a

point p ∈ V(f). In other words, if π is the projection map of V(f) onto the t-coordinate axis,

then z(t) should be a branch of π−1.

It is natural to think that there are two scenarios for the starting point p ∈ V(f), namely

that it is a regular point or it is singular. And indeed, when p is singular, tropical methods
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a general point a singularity a branch point

Figure 12: Lifting x = 0 to three different types of point. In general, the line x = 0 intersects the curve at regular points.
If the curve intersects itself for x = 0, we are at a singular point. The curve turns at a branch point.

are required. Intuitively speaking, when at a singular point, knowing just the point itself

is insufficient to determine the series; higher-derivative information is required. Observe the

second frame of Figure 12.

The point p being regular, however, is not enough. Consider the third frame of Figure 12.

Here x = 0 cannot be lifted because the origin is a branch point of the curve. In other words,

the derivative at p in terms of t is undefined, so a Taylor series in t is impossible without a

transformation of the problem.

The proper way to check if Newton’s method can be applied directly to p, or whether

tropical methods are needed, is by checking if p is a singular point of V(f) ∩ V(t). Setting

faug = (t, f1, . . . , fn), we have V(faug) = V(f)∩V(t). We can thus use V(faug) to distinguish the

first frame of Figure 12 from the latter two. This is summarized and proven in the following.

Proposition 3.2.1. Let p = (0, p1, . . . , pn) ∈ V(f), and set p̃ = (p1, . . . , pn). Then p is a

regular point of V(faug) if and only if for every step of Newton’s method applied to x(t) := p̃,

a = 0 and A0 has full rank.
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Proof. (⇒) By definition, p is a regular point of faug if and only if Jfaug(p) has full rank. But

note that Jfaug is 

1 0 · · · 0

df1/dt df1/dx1 · · · df1/dxn

df2/dt df2/dx1 · · · df2/dxn

...
...

...

dfm/dt dfm/dx1 · · · dfm/dxn


. (3.19)

and Jf (t) is 

df1/dx1 · · · df1/dxn

df2/dx1 · · · df2/dxn

...
...

dfm/dx1 · · · dfm/dxn


. (3.20)

So Jfaug has full rank at p if and only if Jf (t) |t=0 has full rank at p̃. Thus it suffices to show that

after each Newton step, a = 0 and x(0) = p̃ remain true, so that A0 = Jf (t)(x(0)) = Jf (t)(p̃)|t=0

continues to have full rank.

We clearly have a ≥ 0 at every step, since the Newton iteration cannot introduce negative

exponents. At the beginning, a = 0 and x(0) = p̃ hold trivially. Inducting on the Newton

steps, if a = 0 and x(0) = p̃ at some point in the algorithm, then the next A0, namely

Jf (t)(x(0)) = Jf (t)(p̃)|t=0, is the same matrix as in the last step, hence it is again regular and a

is 0. Since f (t)(x(0)) = f (t)(p̃)|t=0 = 0, b must be strictly greater than 0. Thus the next Newton

update ∆x must have positive degree in all components, leaving x(0) = p̃ unchanged.
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(⇐) If p is a singular point of V(faug), then on the first Newton step A0 = Jf (t)(p̃)|t=0 must

drop rank by the same argument as above comparing (3.19) and (3.20).

To summarize the cases:

Lemma 3.2.2. There are three possible scenarios for V(faug):

1. ∃p ∈ V(faug) regular,

2. ∃p ∈ V(faug) singular, or

3. @p ∈ V(faug)

In the first case, we can simply use p̃ = (p1, p2, . . . , pn) to start the Newton iteration. In the

second, we must defer to tropical methods. If p is a branch point, the tropical methods will

imply a substitution t→ tk where k is the winding number, and will provide a starting z, which

will lie in C[[t]]n. In the final case, we also defer to tropical methods, which provide a starting

z that will have negative exponents. A change of coordinates brings the problem back into one

of the first two cases, and we can apply our method directly. It is important to reiterate that p

may be a regular point of V(f) but a singular point of V(faug), as is the case in the third frame

of Figure 12. The following example also demonstrates this behavior.
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Example 4 (Viviani, continued). We return to the example of Viviani’s curve. We will use

the formulation from Section 2.2, where setting x1 = 0 gives the highest and lowest (real) points

on the curve; the system is

f = (x2
1 + x2

2 + x2
3 − 4, (x1 − 1)2 + x2

2 − 1). (3.21)

When x1 = 0 we obtain the two points (0, 0, 2) and (0, 0,−2), which are both regular points.

For the augmented system faug, the Jacobian Jfaug is


1 0 0

2x1 2x2 2x3

2x1 − 2 2x2 0

 (3.22)

which at the point p = (0, 0, 2) becomes


1 0 0

0 0 4

−2 0 0

 . (3.23)

This matrix drops rank, hence p is a singular point of faug and we are in the second case

of Lemma 3.2.2. Following the lemma, we defer to tropical methods to begin, obtaining the
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transformation x1 → 2t2 and the starting term z = (2t, 2). Now the first Newton step can be

written:  4t 4

4t 0

∆z = −

 4t2 + 4t4

4t4

 . (3.24)

Note that Jf (t)(z) is now invertible over C((t)). Its inverse begins with negative exponents of t:

 0 1/4

1/4 t−1 −1/4 t−1

 . (3.25)

To linearize, we first observe that a = 0 and b = 2, so x will have degree at least b− a = 2.

The linearized block form of (3.24) is then



0 4 0 0 0 0

0 0 0 0 0 0

4 0 0 4 0 0

4 0 0 0 0 0

0 0 4 0 0 4

0 0 4 0 0 0



∆x =



−4

0

0

0

−4

−4



. (3.26)

Whether we solve (3.24) over C((t)) or solve (3.26) in the least squares sense, we obtain the

same Newton update

∆x =

 0

−1

 t2 +

 −1

0

 t3, (3.27)



47

or in non-linearized form,

∆z =

 −t3
−t2

 . (3.28)

Substituting z + ∆z = (2t− t3, 2− t2) into (3.21) produces (x6
1 + x4

1, x
6
1), and we have obtained

the desired cancellation of lower-order terms. 4

We will refer to the matrix in (3.26) as a Hermite-Laurent matrix because of its correspon-

dence with Hermite-Laurent interpolation; see Remark 2.

3.2.3 A Lower Triangular Echelon Form

When we are in the regular case of Lemma 3.2.2 and the condition number of A0 is low,

we can simply solve the staggered system (3.8). When this is not possible, we are forced to

solve (3.9). Figure 13 shows the structure of the coefficient matrix (3.9) for the regular case,

when A0 is regular and all block matrices are dense. The essence of this section is that we can

use column operations to reduce the block matrix to a lower triangular echelon form as shown

at the right of Figure 13, solving (3.9) in the same time as (3.8).

The lower triangular echelon form of a matrix is a lower triangular matrix with zero elements

above the diagonal. If the matrix is regular, then all diagonal elements are nonzero. For a

singular matrix, the zero rows of its echelon form are on top (have the lowest row index) and

the zero columns are at the right (have the highest column index). Every nonzero column has

one pivot element, which is the nonzero element with the smallest row index in the column. All

elements at the right of a pivot are zero. Columns may need to be swapped so that the row

indices of the pivots of columns with increasing column indices are sorted in decreasing order.
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Figure 13: On the left is the banded block structure of a generic Hermite-Laurent matrix for
n = 5. On the right is its lower triangular echelon form.

Example 5. (Viviani, continued). For the matrix series in (3.26), we have the following

reduction: 

0 4 0 0 0 0

0 0 0 0 0 0

4 0 0 4 0 0

4 0 0 0 0 0

0 0 4 0 0 4

0 0 4 0 0 0



→



0 0 0 0 0 0

4 0 0 0 0 0

0 4 0 0 0 0

0 4 4 0 0 0

0 0 0 4 0 0

0 0 0 4 4 0



. (3.29)

Because of the singular matrix coefficients in the series, we find zeros on the diagonal in the

echelon form. 4

Given a general n-by-m dimensional matrix A, the lower triangular echelon form L can be

described by one n-by-n row permutation matrix P which swaps the zero rows of A, and a

sequence of m column permutation matrices Qk (of dimension m) and multiplier matrices Uk
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(also of dimension m). The matrices Qk swap columns in order to bring the pivots with lowest

row indices to the lowest column indices. The matrices Uk contain the multipliers necessary

to reduce what is at the right of the pivots to zero. From these, the construction of the lower

triangular echelon form can be summarized by the following matrix equation:

L = PAQ1U1Q2U2 · · ·QmUm. (3.30)

Solving the matrix equation is similar to solving a linear system with LU factorization—the

multipliers are applied to the solution of the lower triangular system which has L as its coefficient

matrix.

3.3 Some Basic Cost Estimates

Working with truncated power series is somewhat similar to working with extended precision

arithmetic. In this section we make some observations regarding the cost overhead.

3.3.1 Cost of one step

First we compare the cost of computing a single Newton step using the various methods

introduced. We let d denote the degree of the truncated series in A(t), and n the dimension of

the matrix coefficients in A(t) as before.

The staggered system. In the case that a ≥ 0 and the leading coefficient A0 of the matrix

series A(t) is regular, the equations in (3.8) can be solved with O(n3)+O(dn2) operations. The

cost is O(n3) for the decomposition of the matrix A0, and O(dn2) for the back substitutions

using the decomposition of A0 and the convolutions to compute the right hand sides.
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The big block matrix. Ignoring the triangular matrix structure, the cost of solving the larger

linear system (3.9) is O((dn)3).

The lower triangular echelon version. If the leading coefficient A0 in the matrix series

is regular (as illustrated by Figure 13), we may copy the lower triangular echelon form L0 =

A0Q0U0 of A0 to all blocks on the diagonal and apply the permutationQ0 and column operations

as defined by U0 to all other column blocks in A. The regularity of A0 implies that we may use

the lower triangular echelon form of L0 to solve (3.9) with substitution. Thus with this quick

optimization we obtain the same cost as solving the staggered system (3.8).

In general, A0 and several other matrix coefficients may be rank deficient, and the diagonal

of nonzero pivot elements will shift towards the bottom of L. We then find as solutions vectors

in the null space of the upper portion of the matrix A.

3.3.2 Cost of computing D terms

Assume that D = 2k. In the regular case, assuming quadratic convergence, it will take k

steps to compute 2k terms. We can reuse the factorization of A0 at each step, so we have O(n3)

for the decomposition plus

O(2n2 + 4n2 + 8n2 + · · ·+ 2k−1n2) = O(2kn2) (3.31)

for the back substitutions. Putting these together, we find the cost of computing D terms to

be O(n3) +O(Dn2).
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3.4 Conclusion

In this chapter, we considered the extension of the Gauss-Newton algorithm from complex

floating-point arithmetic to the field of truncated power series with complex floating-point

coefficients. Using linearization, we formulated a linear system where the coefficient matrix is

a series with matrix coefficients, and provided a characterization for when the matrix series

is regular based on the algebraic variety of an augmented system. The structure of the linear

system leads to a block triangular system, which can solved effectively with a lower triangular

echelon form. We show that this solution has cost cubic in the problem size. In general, at

singular points, we rely on methods of tropical algebraic geometry to provide the starting guess

for the algorithm as well as possibly a transformation of the system. In the next chapter, we

will provide some illustrative examples and demonstrate our method’s application to polynomial

homotopy continuation.



CHAPTER 4

EXAMPLES AND APPLICATIONS

4.1 Introduction

In this chapter, we tie together Chapters 2 and 3 with several examples that illustrate their

use in finding series solutions for space curves. To set up the problems we used the computer

algebra system SageMath [74], for tropical computations we used Gfan [15] unless otherwise

noted, and for commutative algebra calculations we used Singular [23] via the SageMath in-

terface. Our power series methods have been implemented in PHCpack [75] and are available

in Python via the interface phcpy [77]. We provide four examples of our methods at work,

applying them to the circle problem of Apollonius, the tangents to four spheres problem, and

the cyclic 8- and 16-roots systems. The first three examples were published in [14], while the

cyclic 16-roots example is new.

4.2 The Problem of Apollonius

The classical problem of Apollonius consists in finding all circles that are simultaneously

tangent to three given circles. A special case is when the three circles are mutually tangent and

have the same radius; see Figure 14. Here the solution variety is singular – the circles themselves

are double solutions. In this figure, all have radius 1, and centers (0, 0), (2, 0), and (1,
√

3).

We can study this configuration with power series techniques by introducing a parameter t to
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Figure 14: Singular configuration of Apollonius circles. The input circles are filled in, the
solution circles are dark gray. Because the input circles mutually touch each other, three of the
solution circles coincide with the input circles.

represent a vertical shift of the upper circle. We then examine the solutions as we vary t. This

is represented algebraically as a solution to



x2
1 + x2

2 − r2 − 2r − 1 = 0

x2
1 + x2

2 − r2 − 4x1 − 2r + 3 = 0

t2 + x2
1 − 2tx2 + x2

2 − r2 + 2
√

3t− 2x1 − 2
√

3x2 + 2r + 3 = 0.

(4.1)
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Because we are interested in power series solutions of (4.1) near t = 0, we use t as our free

variable. To simplify away the
√

3, we substitute t→
√

3t, x2 →
√

3x2, and the system becomes



x2
1 + 3x2

2 − r2 − 2r − 1 = 0

x2
1 + 3x2

2 − r2 − 4x1 − 2r + 3 = 0

3t2 + x2
1 − 6tx2 + 3x2

2 − r2 + 6t− 2x1 − 6x2 + 2r + 3 = 0.

(4.2)

Call this system f . Now we examine the system at (t, x1, x2, r) = (0, 1, 1, 1) = p. The Jacobian

Jf at p is 
0 2 6 −4

0 −2 6 −4

0 0 0 0

 , (4.3)

so f — and by extension faug — is singular at p, and we are in the second case of Lemma 3.2.2.

Applying Gfan to the system provides the tropical prevariety F of f under the trivial

valuation. Keeping the variable order as (t, x1, x2, r), F is generated by the five rays (1, 0, 0,

0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and (-1, -1, -1, -1). Our series parameter is t, so we only

care about rays with positive t-component, and choose v = (1, 0, 0, 0). Solving invf gives two

possible starting solutions, which rounded for readability are (t, 1, 1 + 0.536t, 1 + 0.804t) and
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(t, 1, 1 + 7.464t, 1 + 11.196t). We will continue with the second; call it z. For the first step of

Newton’s method, A is


2 6 −4

−2 6 −4

0 0 0

+


0 44.785 −22.392

0 44.785 −22.392

0 38.785 −22.392

 t (4.4)

and b is 
41.785

41.785

0

 t
2. (4.5)

From these we can construct the linearized system


A0

A1 A0

A1 A0

∆x =


b0

0

0

 . (4.6)

Solving in the least squares sense, we obtain two more terms of the series, so in total we have



x1 = 1

x2 = 1 + 7.464t+ 45.017t2 + 290.992t3

r = 1 + 11.196t+ 77.971t2 + 504.013t3.

(4.7)
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By comparison, the series we obtain from the other possible starting solution is



x1 = 1

x2 = 1 + 0.536t− 0.017t2 + 0.0077t3

r = 1 + 0.804t+ 0.029t2 − 0.013t3.

(4.8)

From these, we get a good idea of what happens near t = 0: the first solution circle grows rapidly

(corresponding to the larger coefficients in (4.7)), while the other stays small (corresponding to

the smaller coefficient in (4.8)). This is illustrated in Figure 15, which shows the solutions of

the system at t = 0.13.

Figure 15: Solution to (4.1) for t = 0.13. The largest circles correspond to power series solutions
with larger coefficients than the coefficients of the power series solutions for the smaller circles.
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This example demonstrates the application of power series solutions in polynomial homo-

topies. Current numerical continuation methods cannot be applied to track the solution paths

defined by the homotopy in (4.1), because at t = 0, the start solutions are double solutions. The

power series solutions provide reliable predictors to start tracking the solution paths defined

by (4.1).

4.3 Tangents to Four Spheres

Our next example is that of finding all lines mutually tangent to four spheres in R3; see [24],

[50], [72], and [73]. If a sphere S has center c and radius r, the condition that a line in R3 is

tangent to S is given by

‖m− c× t‖2 − r2 = 0, (4.9)

where m = (x0, x1, x2) and t = (x3, x4, x5) are the moment and tangent vectors of the line,

respectively. For four spheres, this gives rise to four polynomial equations; if we add the

equation x0x3 +x1x4 +x2x5 = 0 to require that t and m are perpendicular and x2
3 +x2

4 +x2
5 = 1

to require that ‖t‖ = 1, we have a system of 6 equations in 6 unknowns which we expect to be

0-dimensional.

If we choose the centers to be (+1,+1,+1), (+1,−1,−1), (−1,+1,−1), and (−1,−1,+1)

and the radii to all be
√

2, the spheres all mutually touch and the configuration is singular; see

Figure 16. In this case, the number of solutions drops to three, each of multiplicity 4.

Next we introduce an extra parameter t to the equations so that the radii of the spheres are

√
2 + t. This results in a 1-dimensional system F , which we omit for succinctness. F is singular
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Figure 16: A singular configuration of four spheres. The input spheres mutually touch each
other and the tangent lines common to all four input spheres occur with multiplicity.

at t = 0, so we are once again in the second case of Lemma 3.2.2. Computing a tropical basis
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in Gfan and the primary decomposition in Singular, we decompose F into three systems, one

of which is

f =



x0 = 0

x3 = 0

x2
4 + x2x5 + x2

5 = 0

x1x4 + x2x5 = 0

x1x2 − x2x4 + x1x5 = 0

x2
1 + x2

2 − 1 = 0

2t4 + 4t2 + x2x5 = 0

x2
2x4 − x2x4x5 + x1x

2
5 − x4 = 0

x3
2 − x2 − x5 = 0.

(4.10)

Using our methods we can find several solutions to this, one of which is



x0 = 0

x1 = 2t+ 4.5t3 + 30.9375t5 + 299.3906t7 + 3335.0889t9 + 40316.851t11

x2 = 1− 2t2 − 11t4 − 94t6 − 986.5t8 − 11503t10

x3 = 0

x4 = 2t− 3.5t3 − 23.0625t5 − 193.3594t7 − 2019.3486t9 − 23493.535t11

x5 = −4t2 − 10t4 − 64t6 − 614t8 − 6818t10 − 82283t12

.

Substituting back into f yields series in O(t12), confirming the calculations. This solution could

be used as the initial predictor in a homotopy beginning at the singular configuration.



60

In contrast to the small Apollonius circle problem, this example is computationally more

challenging, as covered in [24], [50], [72], and [73]. It illustrates the combination of tropical

methods in computer algebra with symbolic-numeric power series computations to define a

polynomial homotopy to track solution paths starting at multiple solutions.

4.4 Series Developments for Cyclic 8-Roots

A vector u ∈ Cn of a unitary matrix A is biunimodular if for k = 1, 2, . . . , n: |uk| = 1 and

|vk| = 1 for v = Au. The following system arises in the study [26] of biunimodular vectors:

f(x) =



x0 + x1 + · · ·+ xn−1 = 0

i = 2, 3, 4, . . . , n− 1 :
n−1∑
j=0

j+i−1∏
k=j

xk mod n = 0

x0x1x2 · · ·xn−1 − 1 = 0.

(4.11)

Cyclic 8-roots has solution curves not reported by Backelin [8]. Note that because of the

last equation, the system has no solution for x0 = 0, or in other words V(faug) = ∅. Thus we

are in the third case of Lemma 3.2.2.
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In [1,4], the vector v = (1,−1, 0, 1, 0, 0,−1, 0) gives the leading exponents of the series. The

corresponding unimodular coordinate transformation x = zM is

M =



1 −1 0 1 0 0 −1 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



x0 → z0

x1 → z1z
−1
0

x2 → z2

x3 → z3z0

x4 → z4

x5 → z5

x6 → z6z
−1
0

x7 → z7.

(4.12)

Solving the transformed system with z0 set to 0 gives the leading coefficient of the series.

After 2 Newton steps, invoked in PHCpack with phc -u, the series for z1 is

(-1.25000000000000E+00 + 1.25000000000000E+00*i)*z0ˆ2

+( 5.00000000000000E-01 - 2.37676980513323E-17*i)*z0

+(-5.00000000000000E-01 - 5.00000000000000E-01*i);

After a third step, the series for z1 is

( 7.12500000000000E+00 + 7.12500000000000E+00*i)*z0ˆ4

+(-1.52745512076048E-16 - 4.25000000000000E+00*i)*z0ˆ3

+(-1.25000000000000E+00 + 1.25000000000000E+00*i)*z0ˆ2

+( 5.00000000000000E-01 - 1.45255178343636E-17*i)*z0
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+(-5.00000000000000E-01 - 5.00000000000000E-01*i);

4.5 A Note on Cyclic 16-Roots

Lastly we apply power series methods to the cyclic 16-roots F , the 16-dimensional version

of the polynomial system in 4.11, for which the tropical prevariety was computed recently [40].

In [8] a result by Backelin establishes that there is an (m− 1)-dimensional component of cyclic

n-roots whenever n = m2. One result from [1,4] is an explicit construction of such a component

in general, which we reproduce below:

Proposition 4.5.1 (Proposition 4.31 in [2]). For n = m2, there is an (m− 1)-dimensional set

of cyclic n-roots, represented exactly as

xkm+0 = ukt0

xkm+1 = ukt0t1

xkm+2 = ukt0t1t2

...

xkm+(m−2) = ukt0t1t2 · · · tm−2

xkm+(m−1) = ukt
−m+1
0 t−m+2

1 · · · t−2
m−3t

−1
m−2

(4.13)

for k = 0, 1, 2, . . ., m− 1 and uk = e2πik/m.
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For n = 16, this says that there must exist a component of dimension 3. From the formu-

lation (4.13) we can write down the corresponding cone of the prevariety, as generated by the

exponents of the ti’s. This gives the following three rays:

(1, 1, 1, -3, 1, 1, 1, -3, 1, 1, 1, -3, 1, 1, 1, -3),

(0, 1, 1, -2, 0, 1, 1, -2, 0, 1, 1, -2, 0, 1, 1, -2),

(0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1).

(4.14)

However, using the prevariety computed in [40], we calculated that the cone (4.14) is actually

contained in a larger cone of the tropical prevariety, which is generated by the following four

rays:

( 1, 1, 1, -3, 1, 1, 1, -3, 1, 1, 1, -3, 1, 1, 1, -3)

(-1, -1, 3, -1, -1, -1, 3, -1, -1, -1, 3, -1, -1, -1, 3, -1),

( 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1),

(-1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1),

(4.15)
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Using the same coefficients as in (4.13), this yields the following formulation, which vanishes

entirely when substituted into F :

x4k = ukt
1
0t

1
1t

1
2t
−3
3

x4k+1 = ukt
−1
0 t−1

1 t32t
−1
3

x4k+2 = ukt
1
0t
−1
1 t12t

−1
3

x4k+3 = ukt
−1
0 t11t

1
2t
−1
3

(4.16)

for k = 0, 1, 2, 3 and uk = e2πik/4. To visualize these two cones, we can project them into the

x0, x1, x2 exponent-hyperplane and intersect with the plane x2 = 1; see Figure 17. No proof is

necessary to show the containment, other than noting that the initial form of f with respect to

any ray in the interior of these cones is the same.
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(1, 1)

(-1
3 ,-1

3)

x
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◦

◦
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◦

Figure 17: The Backelin cone for cyclic 16. Cone predicted by [1, 4], red. Cone found using
computation from [40], blue.



CHAPTER 5

CONCLUSION

Polynomial systems are at the center of computational algebraic geometry. The majority

of the focus of the field has been their solution in the zero dimensional case, although much

work has certainly been done towards solving positive dimensional systems. In this work, we

advance the understanding of the positive dimensional case in two important ways. First,

we investigate the numerical side of tropical geometry, defining “hidden cone” behavior and

giving an alternative approach to current symbolic methods for computing the tropical variety.

And secondly, we give an efficient method for extending series information using a modified

Gauss-Newton approach, and categorize situations where this method alone is sufficient. As

our examples and applications demonstrate, these methods can provide great insight into space

curve solutions of polynomial systems.

Our work begs several future avenues of exploration. The most obvious is to extend our

methods to varieties of dimension greater than one. This would likely require a significant

rethinking of the necessary data structures and algorithms, as well as a better understanding

of the tropical geometry involved—our methods take advantage of the fact that the tropical

shadows of one dimensional varieties are much simpler than those of higher dimensional vari-

eties. Another, smaller avenue to explore is whether the Newton solve and substitution steps

might be combined to save some cost; we made an attempt by applying techniques of algo-

66



67

rithmic differentiation, but were ultimately unsuccessful. And finally, questions of convergence

call for much investigation. We mean convergence in both senses—the regions of convergence

of the series, and the rate of convergence of the Gauss-Newton method itself. Both questions

are in their essence numerical. The first naturally falls in the realm of numerical and complex

analysis, while the second is numerical in nature because polynomial coefficients, as well as the

series coefficients obtained through our tropical approach, are generally approximate. These

questions were outside the scope of our work here, but might well offer fruitful lines of inquiry

for further research.
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Appendix A

THE NEWTON-PUISEUX ALGORITHM

For a polynomial p ∈ k[x1, x2] where k is an algebraically closed field of characteristic 0, the

Newton-Puiseux algorithm can be seen as a way of factoring p into (x2−y0)(x2−y1) · · · (x2−yn)

where yi ∈ k{{x1}}, i.e. the (algebraically closed) field of fractional power series. What follows

is a rather straightforward pseudocode implementation of the algorithm. Recursion is used to

overcome the difficulty of branching solutions, i.e. when two Puiseux roots of the polynomial

have the same first few terms.

In the function recurse, the variable curSol is a list of the monomials in the solution

currently being computed. The variable solutions is a list of Puiseux solutions, to which curSol

is added when complete. cxγ is an initial Puiseux term of p, which the function assumes is

already in curSol.

function compute Puiseux expansion(p(x, y), number of terms n)

if degy(p) = 0 then return ∅

end if

toReturn ← empty list

initTerms ← list of initial terms of Puiseux solutions of p

for c0x0
γ0 in initTerms do

recurse(p, c0x0
γ0 , [c0x0

γ0 ], toReturn, n)
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Appendix A (Continued)

end for

return toReturn

end function

function recurse(p(x, y),cxγ , curSol, solutions, depth)

p0(x, y) ← p(x, xγ(c+ y))

initTerms ← list of initial terms of Puiseux solutions of p0 with positive exponents

if depth=0 OR p0 is a monomial OR initTerms is empty then

append curSol to solutions

return

end if

for c0x0
γ0 in initTerms do

revisedList ← curSol

γ1 ← exponent of last monomial in curSol

append c0x0
γ0+γ1 to revisedList

recurse(p0, term, revisedList, solutions, depth-1)

end for

end function
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Appendix B

SOURCE CODE DOCUMENTATION FOR THE GENERALIZED

NEWTON-PUISEUX ALGORITHM

B.1 General Newton-Puiseux code

def reducePoly(p):
"""
For a polynomial p, factors out any extra x_i's unless p is a
monomial.
"""

def reduceIdeal(I):
"""
For an ideal I, factors out any excess x_i's from its generators.
"""

def getRationalCoeffs(I, clockout = 2, height_bound = 0):
"""
Searches for a rational solution to the ideal defined by I. If
height_bound is specified and greater than 0, uses it as the
numerator/denominator bound, otherwise increments the bound until
points are found or clockout time is spent, whichever comes first.
Clockout doesn't quite work--it will start a rational_points
calculation as long as we haven't reached it, meaning it could start
one just before the clockout and then take a while.
WARNING: definitely might return an empty list even if variety is
non-empty and contains rational points.
"""

def getCoeffs(I):
"""
Looks for nonzero solutions to the initial form system defined by I.
"""

def npSubstitution(I, exps, coeffs):
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Appendix B (Continued)

"""
Prepares for the next iteration of the Newton-Puiseux algorithm,
using the exponent and coefficient tuples in exps and coeffs,
respectively.
In other words, does the higher-dim version of substituting
xˆgamma(c+y) for y as we would do in the planar version.
"""

def printConeInformation(inForm):
"""
For the initial form system object in inForm, prints the following
useful information:
- the defining rays of the cone,
- the initial form system itself,
- the system with x=1 substituted, and
- the system with a unimodular coordinate transformation applied.

"""

def getInput(s, myType):
"""
Using the prompt in the string s, gets input from the user, coerces
it to type myType, and returns it. If this fails, the process
repeats until success or an entry of 'q' or 'Q'.
"""

def performStep(I, SOLUTION, showHigherCones=False):
"""
Ties together the above methods to perform a step of the
Newton-Puiseux method on the ideal I. The current solution must be
given in SOLUTION, and will be modified according to the step
performed here. showHigherCones is a boolean that gives the option
to use a ray in a higher dimensional cone of the prevariety.
Because each step (can) involve a choice of which ray and
coefficient tuple to use, this function requires user input.
The user is also given the option of looking for rational
coefficients, which calls getRationalCoeffs. If the user indicates
they are done, the function returns SOLUTION, otherwise it
recurses.
"""

def newtonPuiseux(I):
"""
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Appendix B (Continued)

This function applies the Newton-Puiseux algorithm to the ideal I by
starting the recursion of performStep() with an empty SOLUTION.
"""

B.2 Series tuple class

class pSeriesTuple(object):
"""
Class representing a tuple of power or Laurent series.
"""
def __init__(self,expander_index=0):

"""
Class constructor. expander_index is the index in the tuple of
variables of the variable considered the series parameter.
"""

def addTerm(self,coeffs,exps):
"""
Extends the series with another term.
"""

def seriesTuple(self):
"""
Returns the associated tuple of power or Laurent series.
"""

def __eq__(self,other):
"""
Checks equality of series tuples.
"""

def __repr__(self):
"""
String representation of self.
"""

def __str__(self):
"""
String representation of self.
"""
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Appendix B (Continued)

def __call__(self,value):
"""
Substitutes value in each of the series of the tuple.
"""

B.3 gfan prevariety wrapper class

class inFormWrapper(object):
"""
Wrapper for gfan's tropical computations. Allows us to compute
tropical prevarieties for ideals whose base ring is not QQ.
More specifically, this object is a wrapper for the gfan
initial_form_systems of Sage.
NOTE: takes the negatives of gfan's rays, since this is what we want
for our algorithm
"""
def __init__(self,forms,rayList,rationalVersion = []):

"""
Constructor. forms is a list of polynomials (the initial form
system), rayList is the cone of the prevariety that gives forms
as its initial form system, and rationalVersion is a list of the
polynomials with their coefficients set to \(1 \in QQ\). Does no
sanity checking.
"""

def rays(self):
"""
Returns the list of rays of the cone of the prevariety that has
self as its initial form system.
"""

def changeRays(self,rays):
"""
Returns an inFormWrapper with the current data but with rays
substituted for the current rays; useful when specializing to an
internal ray.
"""

def initial_forms(self):
"""
Accessor for the internally stored forms.
"""
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Appendix B (Continued)

def mixedVolume(self):
"""
When self.forms is a square system, uses gfan to compute its
mixed volume. If it fails, prints a message but does not raise
an exception.
"""

def getInitialForms(I, justFan=False):
"""
If the ideal is already over QQ, no need for anything fancy. We
still return the above initial form wrapper for consistency, but do
no more than call gfan. Otherwise, we convert the polynomials to
dicts, construct new dicts with integer coefficients such that the
coefficients are 1..n ordered to correspond to the order of the
original polys in the original list. We pass these to gfan, then use
the coeffs of the initial forms to figure out which of the original
polys they correspond to, then make some new dicts and restore the
original coefficents, finally wrapping as our objects.
"""
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Courtney R. Gibbons, Martin Helmer, Serkan Hoşten, Evan D. Nash, Jose Israel Rodriguez,
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