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CONTRIBUTION OF AUTHORS

Chapter 1 is a brief introduction to the problem addressed and the outline of the docu-

ment. Chapter 2 is starting an analysis fo the MRI reconstruction from the physical background

through the signal processing needed to tackle the problem. The interpolation kernel study has

been addressed by Alex Iacobucci and it is reported in depth in his thesis. Chapter 3 is analysis

I made for the density compensation step of the Non-uniform Fast Fourier Transform algorithm.

Chapter 4 contains the proposed implementation (intended for a publication in a conference (1))

that has been developed in group. The actual OpenCL implementation is described more in

depth in this document while Alex Iacobucci is focusing more on the software synchronization

and the preprocessing described in the implementation. I made Figures 11-12-13 to describe the

architecture for the research group. Fixed point and Non-scalable implementation are extensions

I made for the research. Chapter 5 provides the results obtained for the proposed implemen-

tations (intended for a publication in a conference (1)), Figures 26 and 27 are intended for the

publication and can be found in this thesis and in Alex Iacobucci’s thesis (2) as part of the

research (1). I made Figure 22 to emphasize the importance of the density compensation step,

for this reason it can be found also on Alex Iacobucci document. Chapter 6 propose some fur-

ther improvement to the architecture. The FFT modified kernels is part of the research, while

the other two methodologies are extensions I made to the research. Chapter 7 provides a brief

conclusion to the research presented in this document.
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SUMMARY

The use of MRI machines has recently witnessed tremendous growth in the medical field,

largely due to its non-invasive acquisition of data about patients in a large variety of applications.

Over the years, a major challenge in MRI machines that scientists and researchers have been

trying to address is improving the acquisition time. Historically MRI data has been sampled

on Cartesian grids since such a grid guarantees ease in data processing due to the availability

of fast algorithms to perform the required operation of an Inverse Discrete Fourier Transform

(IDFT). However this advantage comes with the cost of long acquisition time over Cartesian

grids which makes it tedious for patient inside an MRI machine.

To overcome this, the scientific community sought to reduce the acquisition time by sampling on

more complex trajectories. The saving in acquisition, however, increases processing complexity

in performing the IDFT on non-Cartesian grids.

A fast algorithm that includes all the necessary steps for reconstructing the IDFT image

from the non-uniform grid is called the Non-uniform Fast Fourier Transform (NuFFT). The

overall aim of this thesis is to devise and implement an efficient NuFFT algorithm using FPGAs

and OpenCL and to to investigate the functionality and performance of the design.

Specifically, this document focuses on possible techniques to handle the density compensation

step, proposing different approaches and comparing them in terms of performance, accuracy

of reconstruction and hardware resources utilization. An efficient, low power, and scalable

architecture suitable for the most commonly used MRI image sizes is presented, achieving a

x



SUMMARY (continued)

marked improvement with respect to previously published FPGA and CPU implementations.

Furthermore, a fixed point implementation of the designed architecture is proposed, achieving

a considerable improvement in term of resource utilization which may be useful for future 3D

extensions of the same architecture.

Finally, a new technique exploiting the symmetric property of the k-space is presented,

potentially achieving large improvements in performance and memory utilization at a minor

cost in the accuracy of the image reconstruction.
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CHAPTER 1

INTRODUCTION

Magnetic Resonance Imaging (MRI) is one of the most used methods for imaging the body,

due to its non invasive nature and to the excellent tissue contrast that can be obtained. However,

MRI requires long scan times to obtain an image making the process long and tedious for patients

inside the machine.

Over the years, several works have been proposed in order to reduce the acquisition time of

an MRI machine, both from a theoretical and practical point of view. Non-Cartesian sampling

trajectories allow accurate and efficient image reconstruction, increasing the signal processing

phase in order to properly reconstruct the image. The purpose of this work is to create an

efficient FPGA accelerator to elaborate data from an MRI machine in a reasonable time with

acceptable accuracy. This project was part of a research group funded by Altera, and part of

the design, like the study of the interpolation kernel, as well as some hardware and software

reordering techniques applied in the FPGA, is also presented in Iacobucci et al. [2].

1.1 Thesis Outline

Chapter two provides a brief introduction to MRI, from the physical working background

to the acquisition of the signal stimulated using two different magnetic fields, to the filling of

the frequency space (called k-space) using different trajectories. Then the Fourier Transform

is introduced to transform the signal from the frequency domain to the actual image domain.

1
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The concept of Non-Uniform Fast Fourier Transform and how it is performed is described,

introducing all the steps that the accelerator has to perform in order to properly reconstruct an

MRI image.

In chapter three, the density compensation step (probably the most effective in terms of

accuracy of the image reconstruction) is taken into account. Several methodologies to tackle

this step are presented. The Voronoi diagram is also introduced, allowing one to describe a

density estimation based on this mathematical instrument.

In chapter four the actual implementation using OpenCL on FPGA is described. First of all,

OpenCL is introduced in order to describe the programming scheme ideal for this programming

language. Then the proposed implementation is presented with a description of every single

component (hardware and software) in the architecture. The main purpose of this architecture

is to make it scalable and efficient at the same time. The focus then shifts to performance

leading to a proposed non-scalable approach, as well as a Fixed Point implementation so as to

reduce the hardware resource utilization.

In chapter five the results of the different implementations are reported. A comparison in

terms of performance, hardware resources utilization, and accuracy is performed for different

ways to compute the density compensation. The proposed architecture results are shown, as well

as the comparison with the non scalable implementation. Finally fixed point implementation

is compared with the floating point in terms of accuracy, performance and hardware resource

utilization.
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In chapter six additional approaches are presented. Some of them require extra hardware to

improve the kernel execution time, while others exploit theoretical properties of the k-space to

simplify and reduce the number of points taken into account.

Finally chapter eight summarizes the work commenting on the results obtained.



CHAPTER 2

MRI RECONSTRUCTION THEORY

2.1 Physical background

In order to understand how an MRI machine works a simplified description of the physical

principles besides the Magnetic Resonance theory are provided.

Matters is comprised of atoms and each atom includes 3 main particles: electrons, protons

and neutrons. Electrons continuously move around the nucleus of the atom where protons and

neutrons reside.

Elements in nature can be characterized by their atomic number (number of protons inside an

atom), and by the atomic weight (given by the number of protons and neutrons).

Elements with an even atomic number and even atomic weight do not have spin which is

fundamentally related to the Magnetic Resonance [3]. Protons inside the nucleus are repeatedly

rotating around an an axis creating their own magnetic field that is oriented along the axis of

rotation. A proton placed within a magnetic field B0 starts rotating around the axis of the

magnetic field direction. This phenomenon is called Magnetic Resonance.

Actually, two different states are possible when protons are within an external magnetic field.

They can, in fact, rotate in a parallel or anti-parallel way with respect to the magnetic field

direction. The rotation frequency around the axis is determined by the Larmor Equation 2.1:

f0 = γ ·B0 (2.1)

4
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where:

• γ is a constant called GyroMagnetic Ratio, which is a characteristic of every proton.

• B0 is the applied Magnetic Field in Tesla.

When protons are not within a strong external magnetic field they align almost randomly in

every direction so, if we sum up all the magnetization vector, a zero total magnetization is

obtained. Once a strong external magnetic field is applied, they will align along that direction

and the magnetization will be a value greater than 0. The greater is the intensity of the external

magnetic field, the higher will be the value of the magnetization since the number of protons

rotating in the anti-parallel direction will be lower.

Now in order to produce an MRI signal, another magnetic field B1 needs to be applied so as

to produce a dynamic magnetic vector. The B1 force applied needs to rotate at the same speed

of the continuously rotating spins (f0). Under this condition it is possible to push the rotating

spins from the longitudinal plane (z) to the transverse one (xy).

Once the magnetization M is tilted in the xy plane, we can measure the intensity of the

induced current in a perpendicular coil exploiting Faraday’s principle.

2.2 MRI Encoding and Gradients

Thanks to the interaction between protons and magnetic fields and thanks to the Faraday’s

principle it is possible to measure an MRI signal using a coil. It is also possible to change the

total magnetization and produce a signal, but it is not possible to locate the origin of the signal.

All the protons of the same region of interest are precessing at frequency f0, which is de-

pendent on the main static field B0. A change in the strength of the field with respect to the
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location will result in a precession of each proton with a different frequency. So, observing the

measured MR frequency component it is possible to spatially locate the protons. Spatial encod-

ing is the name given to the frequency labeling accomplished by changing gradients (magnetic

fields used in the acquisition process). To locate then in a plane we need at least 2 coordinates,

so spatial encoding in two directions is needed [4].

Frequency Encoding Gradients

Frequency encoding is accomplished through the use of magnetic fields called gradients. Gra-

dients distort the main magnetic fields in a predictable way, causing a change in the precession

frequency as a function of the position.

The effective magnetic field B(x) at any point (x) along the horizontal axis can be computed

by:

B(x) = B0 + xGf (2.2)

where B0 is the main magnetic field, and Gf is the frequency-encoding gradient. From the

Equation 2.1 the resonant frequency is varying linearly along the frequency-encoding axis:

f(x) = γB(x) = γB0 + γx ·Gf = f0 + fG(x) (2.3)

where f0 is the main Larmor frequency. Figure 1 shows how the frequency encoding works along

the horizontal axis.



7

Figure 1: Frequency Encoding

Phase Encoding Gradients

Phase encoding is more difficult than frequency encoding. The phase encoding gradients

add another signal to the contribution due to the frequency gradient.

The measurement is performed in two steps: in the first one the phase encoding is in phase

with the frequency encoding, while in the second one the gradient is applied and the phase is

slightly changing on the vertical axis.

The measured signal will always be the sum of the two contributions, but it is very important

to extract the phase from the second contribution to spatially locate the point. This is the reason

why two steps are needed. With two measurements it is always possible to extract both the

contributions and so the phase.

Combining these two techniques it is possible to spatially locate the informations. In fact,

all the elements in a column will have the same frequency but a different phase, and all the

elements in a row will have the same phase but a different frequency.
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Figure 2: Frequency Encoding (background gradient) and Phase Encoding (circles gradient).
Image adapted from [3].

Figure 2 shows both the frequency and the phase encoding. The frequency encoding is the

background gradient, while phase one is the change in color between the circles.
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2.3 K-space

The complex raw data set obtained by collecting all the elements in phase and frequency

encoding is called k-space. K-space is often referred to as the temporary image space, in which

data from MRI signals are stored during an acquisition.

K-space is a spatial frequency domain. Its 2-D Fourier Transform will lead to the final

reconstructed image. For that reason, the points (kx, ky) in k-space do not correspond with

individual pixel (x, y) in the image. Each point in k-space contains informations about every

pixel of the final image.

2.4 K-space Trajectories

The process of acquiring data using an MRI machine is also called k-space filling, and it can

be done in many different ways depending on how we activate the phase and frequency encoding

[5]. Every single method offers benefits and disadvantages:

• Linear or Cartesian: it is accomplished sensing line by line. This is the easiest way

to collect data in the frequency domain and it does not require any processing since it is

possible to apply directly the 2D Inverse Fast Fourier Transform in order to produce the

final reconstructed image.

• Centric: it is accomplished sensing first the amplitudes in the center of the k-space and

then going to the periphery. It is useful when a contrast MRI is required. In fact, low

frequency signals are collected quickly allowing a visualization of the contrast media in

the minimum amount of time possible.
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• Spiral: it is accomplished by sensing the k-space in a spiral fashion starting from the

center and going towards the periphery. As with the Centric one, this is beneficial in

contrast enhanced MRI imaging. Furthermore, it is more efficient than the Cartesian one

since it achieves a greater coverage of the entire k-space in less time, and does not collect

data in the corners of the k-space that don’t necessarily contribute to the final image.

• Radial: it is accomplished by sampling the k-space with radial spokes that pass through

the center of the k-space. There are several potential advantages in the use of the radial

trajectory, such as the shorter minimum TE or the no phase-encoding requirement.

A representation of the 4 trajectories can be found in Figure 3.

It is worth noting that the scan time can be reduced changing the way the k-space is filled.

Since the k-space is obtained changing the polarity of the gradient applied in the two directions

(frequency and phase), the top half part of the k-space is a mirror image of the bottom half

with opposite polarity. It is possible to state the same for left and right part.

Two different techniques exploit these characteristics of the k-space to make the scan time

shorter:

• Half Fourier: it is accomplished filling half of the k-space along the phase direction. The

other half can estimated from the acquired data.

• Partial Echo: similar to the Half Fourier it is accomplished filling half of the k-space in

the frequency encoding direction.
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Figure 3: Representation of the 4 most used trajectories in MRI. (a) is Cartesian, (b) is Centric,
(c) is Spiral, (d) is Radial

2.5 Fourier Transform

The Fourier Transform is a mathematical operation that converts a signal in time domain

s(t) into a signal in the frequency domain S(f) according to the following formula.

S(f) =

∫ +∞

−∞
s(t) · e−2πftdt (2.4)

Where:

• t and f are real variables.

• s(t) and S(f) may be complex.
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Figure 4: In the Half Fourier (a) just half of the k-space is filled in phase encoding direction,
while in Partial Echo (b) half of the k-space is filled in the frequency encoding direction

• e−2πft is often referred to as a transform kernel.

Equation 2.4 shows how a signal in the time domain can be transformed into oscillatory functions

in the frequency domain. Likewise knowing a frequency representation of a signal, as is the case

in the MRI field, it is possible to retrieve s(t) by applying the Inverse Fourier Transform:

s(t) =

∫ +∞

−∞
S(f) · e2πftdf (2.5)

In the digital world, the considered signal are never continuous but are usually known at N

instants separated by sample times T . The counterpart of the Fourier Transform for finite-extent

discrete-time signals is called Discrete Fourier Transform. The Discrete Fourier Transform and

its inverse are defined by the following formulas:
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S(f) =

N−1∑
t=0

f(t) · e−2πft (2.6)

s(t) =

N−1∑
f=0

S(f) · e2πft (2.7)

The concept of the Fourier Transform can be extended and generalized to higher dimensions.

In case of an MRI we are mostly interested in 2D or 3D cases. Since the purpose of this thesis is to

describe an architecture to elaborate and process MRI images, the focus will be on 2 dimensional

discrete-space signals. The 2 dimensional Discrete Fourier Transform and its inverse is defined

by the following formulas:

S(k, l) =
1

MN

M−1∑
m=0

N−1∑
n=0

s(m,n) · e−j2π(
k
M
m+ l

N
n) (2.8)

s(m,n) =
M−1∑
k=0

N−1∑
l=0

S(k, l) · e−j2π(
k
M
m+ l

N
n) (2.9)

Where:

• k, l are the coordinates in the frequency domain

• m,n are the coordinates in the image domain

• M,N are the numbers of uniformly sampled data in the two directions

It is worth noticing that, as Pratt says in [6], "because the transform kernels are separable and

symmetric, the 2D transform can be computed as sequential row and column 1D transforms".
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This approach has been used in order to compute the Inverse Architecture in the OpenCL FPGA

implementation.

2.6 Non Uniform Fast Fourier Transform

In MRI applications and many more in the signal processing area, data is not always uni-

formly sampled. Standard Discrete Fourier Transform is defined for regularly sampled data of

finite-extent signals, so, non-uniform trajectories during the k-space filling preclude the use of

this mathematical instrument for the image reconstruction.

Non-Uniform Discrete Fourier Transform is a generalization of the DFT for data that are

not uniformly sampled.

Consider a set S of size M consisting of non-equispaced source samples si, i = 1, ...,M . Let

the reconstructed image f be of size G × G, and let m,n be the matrix coordinates in f with

an offset of G/2 (m,n = −G/2, ..., G/2− 1). NuDFT can be formally defined as in [7]:

f(m,n) =

M∑
i=1

si · e−2πi(sixm+siyn) (2.10)

with si being the complex value of the source point, and six, siy being the k-space coordinates

of point s.

The arithmetic operations required for a computation of the NDFT are O(MG2). With an

approximation scheme the NuFFT allows the computation in O(M + G2logG) complexity [8].

Figure 5 shows the main steps of the algorithm.
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Figure 5: Non Uniform Fast Fourier Transform steps

Each step of the algorithm will be explained in this chapter. Different density compensation

techniques will be analyzed in the next chapter while some others will be just briefly described

since they will be explained in greater detail in [2].

Density Compensation

The use of non-Cartesian trajectories introduce different densities in the k-space sampling.

Some regions of the k-space can have a high concentration of samples while others have much

lower. Each and every kind of trajectory will introduce different patterns in the density of
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samples in the k-space. Some of them will lead to a higher concentration in the center of the

k-space (radial, spiral) while others will lead to more points at the edges (lissajous).

The use of these different trajectories in the MRI machines are briefly explained next. The

central frequencies (lower frequencies) contain the most important information in the image

reconstruction so the data acquisition must be more precise, thus at those frequencies denser.

Sampling points far form the k-space origin will lead to acquisitions of higher frequency con-

tent (edges in a reconstructed image) that does not carry the same amount of fundamental

information.

It is critical to consider the different sampling densities so to normalize the obtained values

and to properly reconstruct the image.

Re-gridding

The gridding is the fundamental step in the actual reconstruction [9].

Data samples lie along a trajectory in the k-space. For each target point computation a con-

volution is performed with an interpolation kernel and the result is sampled and accumulated

into a Cartesian grid.

Mathematically speaking, as shown by Pauly in [10], the gridding can be described in the fol-

lowing way. The non-Cartesian sampling function (trajectory) S(kx, ky) is:

S(kx, ky) =
∑
i

δ(kx − kx,i, ky − ky,i) (2.11)
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The sampled data is given by product of the value of the k-space at that point and the

trajectory function described above M(kx, ky) · S(kx, ky). This is convolved with the chosen

interpolation kernel C(kx, ky) and then sampled on a Cartesian grid [10]:

M̂(kx, ky) = [(M(kx, ky) · S(kx, ky)) ∗ C(kx, ky)] ·X
(
kx

∆kx
,
ky

∆ky

)
(2.12)

There are some fundamental parameters that have to be chosen in this step in order to

properly reconstruct an image.

1. Type of convolution kernel C(kx, ky)

2. Density of the reconstruction grid S.

3. Size of the interpolation window W .

4. Oversampling factor α.

The choice of these parameters can deeply affect both performance and quality of the results

of the reconstructed image. There are several convolution kernels that can be used to interpolate

the non-uniform sampled points. The most well-known ones are described and compared in

several papers in the literature and they are: Gaussian, 2 terms cosine, 3 terms cosine, Kaiser-

Bessel. Kaiser-Bessel has been proved to be the most efficient and the one that guarantees the

lowest aliasing in the reconstructed image [2]. For that reason, it has been chosen for analysis

and implementation in the proposed FPGA architecture.

The density of the Cartesian grid is another parameter that we are free to choose since we

are reconstructing on that grid. This choice is going to affect the aliasing generated from the
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adjacent replica lobes and on the apodization effect that the kernel produces. It is important

to carefully choose this parameter.

The size of the interpolation window is the last important parameter that has to be chosen.

This affects performance and quality of the reconstructed image. The bigger the size of the

window the worse the performance is, since more computations are required for each source

point. For example, if the size of the interpolation window is 4, each source point will affect and

update 16 target points. If 5, then 25 target points will be modified and so on. On the contrary,

increasing the size of the interpolation window is not necessarily going to improve the quality

of the image. The number that provided the best performance with a satisfactory quality of the

reconstruction image was 4.

The oversampling factor α defines the minimum distance between two points in the uniformly

sampled target space. The smaller the distance the smaller will be the error caused in the

reconstruction by the aliasing replica. The oversampling factor will significantly affect the use

of local memory in the FPGA, and consequently the performance.

Figure 6 and Figure 7 show the result of the regridding step. Non uniformely sampled data

points are convolved with an interpolation function creating a surface. This surface is, then,

uniformly sampled.

2D Inverse Fast Fourier Transform

The algorithm used to implement the 2D Inverse FFT is the Cooley-Tukey. It is the most

commonly used FFT algorithm. It exploits one of the characteristics of the FFT in order to
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Figure 6: Non uniformely sampled data

make it easier and faster to apply. It consist of applying the 1 dimensional FFT on each row

and then on each column of the 2 dimensional space. Mathematically speaking [10]:

m̂(x, y) = [(m(x, y) ∗ s(x, y)) · c(x, y)] ∗X
(

x

FOVx
,

y

FOVy

)
(2.13)

Deapodization

An error is also introduced by the inverse transform of the adopted kernel (called apodization

function). This error can be easily compensated by dividing the image with the ideal apodization

function. Practically speaking, it is not convenient to apply the deapodization to the entire
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Figure 7: Interpolated Non Uniformely Sampled Data

image, because it can accentuate some artifacts at the edge of the FOV. The point of interest

is anyway just the center of the image [9]. Mathematically speaking [10]:

m̂(x, y) =
1

c(x, y) + a
[(m(x, y) ∗ s(x, y)) · c(x, y)] ∗X

(
x

FOVx
,

y

FOVy

)
(2.14)



CHAPTER 3

DENSITY COMPENSATION

As stated previously, assigning the same weight to each k-space point when using Non-

Cartesian trajectories with nonuniform density will lead to an inaccurate reconstruction [9].

The non uniform k-space density is the result of the different distance between portions

of the same trajectory (different interleaves of the same spiral or radial acquisition) and from

varying the velocity of the scan acquisition along the trajectory (usually the velocity is slow

when passing along the center of the k-space, while it increases going farther from it).

If the regridding algorithm is used to reconstruct an MRI image this step is important to

get an accurate result. Different approaches can be adopted to compute the density of the non

uniform acquisition. Two macro-groups can be defined:

• Post-compensation: the compensation is applied after the regridding when the k-space is

uniformly sampled. Mathematically speaking [10]:

M̂(kx, ky) =
1

ρ′(kx, ky)
[(M(kx, ky) · S(kx, ky)) ∗ C(kx, ky)] ·X

(
kx

∆kx
,
ky

∆ky

)
(3.1)

21
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• Pre-compensation: the compensation is applied directly to the raw data from the MRI. It

usually requires an analytic knowledge of the sampling trajectory used or some numeric

computations. Mathematically speaking [10]:

M̂(kx, ky) = [(
M(kx, ky)

ρ(kx, ky)
· S(kx, ky)) ∗ C(kx, ky)] ·X

(
kx

∆kx
,
ky

∆ky

)
(3.2)

3.1 Post-compensation

This technique consists of keeping track of the quantity of the "energy" accumulated in each

grid point during the regridding, and then performing a division by this energy after completing

the convolution. It is easy to implement this in parallel to the regridding step. It can be view

as regridding itself but considering the input data 1 instead of the complex value sampled by

the MRI machine.

In this way, for each grid point the value of the "energy" given by the interpolation kernel

it is stored and accumulated. To avoid division by 0 (in case a grid point is never affected) a

constant small value is given to all the grid points. The value should be at least one order of

magnitude smaller than the smallest value present in the kernel interpolation window.

The major advantage of this technique is that can be computed on the fly during the regrid-

ding. This means that we do not necessarily need to know the sampling trajectory of the MRI

machine, or to perform preprocessing on the raw data.

However, it can be used only when the k-space sampling density varies slowly in space. It,
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furthermore, interferes with the image deapodization step, and it does not work properly for

commonly used k-space trajectories, such as spiral and radial.

3.2 Pre-compensation

As already stated, this technique refers to performing the density compensation prior to

the convolution. It means that the weights for raw data needs to be assigned by the Density

Compensation Function (DCF).

3.2.1 Analytic Pre-compensations

There are numerous ways to compute the DCF. Depending on the trajectory used it is easy

to apply some geometric arguments to calcualte the DCF. For radial scans, for instance, the

DCF is called Rho filter. The Rho filter function value is proportional to the distance from the

center of k-space multiplied by the gradient magnitude. Similarly, for other trajectories it is

possible to find some analytic funcitons that represent exactly the DCF needed to compensate

for the non-uniform sampling trajectory.

Meyer and Nishimura in [11] proposed an analytic solution for spiral trajectories that consist

in the multiplication of the raw source points by |g(t) · [sin(arg{g(t)}− arg{k(t)})]|, where g(t)

is a function proportional to the k-space velocity acquisition.

The first term takes into account the the different k-space velocity, while the second one the

higher density of the spiral in proximity of the origin.

In the literature different solutions have been proposed for an analytic computation of the

sampling density for spiral trajectories [12] [13].
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3.2.2 Numerical Pre-compensations

Analytic pre-compensations usually are not computationally intensive, and that is the reason

why several approaches have been studied for the most commonly used trajectories.

However, for more general trajectories, it may not be possible to generate a DCF analytically.

Numerical approaches can be directed at specific or more general trajectories and applied to

all the possible k-space filling. For spiral trajectories different numerical techniques have been

developed in [14] and in [15]. Since the purpose of this document is to create an architecture

working for different kind of MRI machines, a general method based has been studied and

analyzed. It consists of computing the Voronoi diagram of the sample distribution.

3.2.2.1 Voronoi Density Compensation

In order to fully understand how this method works it is important to define the Voronoi

diagram [16].

It is assumed that a finite number n of points in an Euclidan plane is given, and that n

is a finite number greater than 2. Let us label the points p1, p2, ..., pn with coordinates in a

Cartesian plane (x11, x12), ..., xn1, xn2) and assume that such points have different coordinates

in the plane. Let p be a point in the plane with coordinates (x1, x2), then the Euclidean distance

between p and pi is given by:

d(p, pi) =
√

(x1 − xi1)2 + (x2 − xi2)2 (3.3)
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If pi is the nearest point to p, then p is assigned to V (pi), Voronoi region associated with pi.

Therefore, the region given by

V (pi) = {(x1, x2)|d(p, pi) ≤ d(p, pj), forj 6= i, j ∈ In} (3.4)

is called Voronoi polygon associated with pi. The Voronoi diagram is the set of the Voronoi

polygon associated with each point in the plane:

V oronoi(P ) = {V (p1), V (p2), ..., V (pn)} (3.5)

An actual example of the Voronoi diagram is Figure 8.

As can be seen, each point has a Voronoi polygon associated to it. The area of each Voronoi

polygon is inversely proportional to the density. Points very close to each other (dense regions

in the plane) will have a very small Voronoi polygon associated with them, while points in the

outer space that are farther from each other will have bigger Voronoi polygons.

By applying the Voronoi diagram to MRI reconstruction, it is so possible to have a parameter

proportional to the density for every sample in the raw data acquisition. This approach can be

applied to all the trajectories, from the most commonly used to random ones, as long as there

is no double sampling of a given point. One of the pre-requisites of the Voronoi diagram is, in

fact, the uniqueness of the points in the plane.

Mathematically speaking the Voronoi diagram computation is more intensive than an ana-

lytical approach, but, since Voronoi diagram is a widely studies concept in many fields several
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Figure 8: Example of the Voronoi diagram for a random of points in a space. Generated using
MATLAB software

solutions to help and simplify the mathematical process have been proposed. On of the issue

related to the Voronoi diagram applied as density compensation in MRI reconstruction is that

the outer points are unbounded, thus the area of the Voronoi polygon associated to them is,

theoretically speaking, infinite.

One of the first approaches to solve this issue, the one proposed in [17], is to determine the

convex hull for the sampling points, and to remove the points belonging to the outer convex

hull. This solution is convenient and does not affect the accuracy of the image reconstruction

since it will remove just few points far from the center of the k-space. A similar approach is

to identify the points in the outer convex hull and to assign to them the latest finite value
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computed, or to the greatest one. These solutions are, however, increasing the complexity of

the Voronoi diagram calculations, making this approach impractical for real-time systems. For

the purpose of the architecture, it is possible to consider the acquisition trajectory of the MRI

machine not changing over different acquisitions. For this reason it is possible to compute the

Voronoi diagram and the density compensation once off-line before the actual computation.

However, in order to simplify the Voronoi diagram computation, the solution proposed in

[18] it is used. It consists of the computation of the Voronoi diagram for the points close to the

center of the k-space, and to assign the rest of the points areas equal to that of the last cell

computed. Thanks to that approach, the number of points processed by the Voronoi function

is drastically reduced. In terms of accuracy and performance of the density compensation, this

approach leads to good results thanks to the fact that the points close to the center of the Fourier

space carry most of the fundamental information of the image that needs to be reconstructed.



CHAPTER 4

FPGA IMPLEMENTATION

In this chapter all the different approaches adopted in order to fulfill the purpose of an

MRI accelerator on FPGA using OpenCL will be described and analyzed. Then the proposed

architecture for the FPGA 2017 conference will be explained in detail.

4.1 FPGA

An FPGA is "a large-scale integrated circuit that can be programmed after it is manufactured

rather than being limited to a predetermined, unchangeable hardware function"[19]. FPGA are

composed by small blocks of programmable logic, that contains registers, low level configurable

elements arranged in a grid connected through a complex interconnection system. Logic elements

are, usually, Look-up Tables combined with multiplexers and clock enables, and they can also

contain higher-lever arithmetic blocks like multipliers and floating point blocks.

Recently, FPGAs have spread their role into computing units for processors and more com-

plex systems. The great advantage of reconfigurability allows to create a platform highly efficient

for different applications without the requirement of an actual change in the system. Unlike

GPUs which are commonly used in order to help the main processor of a machine to perform

particular operations, FPGAs are deeply linked with the hardware structure that a designer

wants to infer. They do not exploit the programming parallelism, but they exploit the actual

hardware that can be pipelined and replicated.

28
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Figure 9: OpenCL FPGA working architecture

4.2 OpenCL

The very first point that needs to be addressed is the difference between programming an

FPGA using OpenCL with respect to the standard HDL used until now. OpenCL is a framework

for writing programs and applications across numerous heterogeneous platforms (CPUs, GPUs,

DSPs, FPGAs). It has a specific view of the computing system, consisting of a number of

compute devices attached to a host processor. All the functions executed on the OpenCL

device are called kernels. Kernels are launched by the host processor through an application

programming interface (API) that also manages the device memory, which is separate from the

host device [20] [21].

Memory usage and management is fundamental to building an efficient accelerator. OpenCL

defines a 4-level memory hierarchy for the compute device:
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• Global Memory: is shared by all the processing elements and it should be used only

when necessery since it has an high access latency.

• Read-Only Memory: it is small, with low latency, but it can be written only by the

host device and not by the computing devices.

• Local Memory: it is small and it can be managed internally by the computing device

and it has a reduced access latency.

• Registers: fastest memory available on the computing device. It is of limited size though.

There are several advantages that come with the use of OpenCL instead of the standard HDL

based design. Traditional design consists in creating datapaths and state machines to control

these datapaths, managing directly the hardware resources available and handling the timing

constraints imposed by the external interfaces. The OpenCL compiler does all of that auto-

matically, making the FPGA design similar to software development. This approach makes

it easier to migrate from different typologies of FPGAs, leaving to the compiler the hardware

management.

It, furthermore, reduces the development time making it easier to reduce and meet the time

to market required for a product. However, in order to fully exploit the OpenCL compiler

potential, some guidelines and precautions have to be followed while describing the functions in

the kernels. The most relevant, identified during the time spent describing the architecture are

the following:
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• Loops should have a fixed number of iterations. This is due to the fact the OpenCL com-

piler, in order to increase the throughput of the entire design, tends to pipeline everything.

In order to fully pipeline the exact number of iterations in a loop must be fixed.

• Simpler code translates into better hardware. This is due to the fact that the OpenCL

compiler translates the C code for the kernel description into Verilog. The simpler the

C code is, the easier it is for the compiler to translate into better hardware the behavior

described in the kernel.

• Limited number of access to global memory. This is due to the fact that the global

memory is slow, and represents, most of the time, the bottleneck. However, sometimes

it may happen that global memory have to be accessed several times. In this case it is

necessary to perform it in bursts.

In order to obtain good results using the Altera OpenCL compiler it is necessary to carefully

follow these steps.

4.3 First Approach

This first approach has been developed without the use of a workstation. It is still tied to

the HDL way to describe an architecture (the one proposed by Cheema et al. in [22]), and it led

to poor performance. It is still important to mention that, since it was a fundamental step in

the understanding of the actual use of OpenCL. The overall design can be found in Figure 10.

Due to its complexity, a brief description of how the kernels are working will follow:
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Figure 10: First OpenCL implementation, kernels block diagram

• Source Interface: this kernel is in charge of taking data from the host code, putting

them in an internal buffer (Altera OpenCL channel extension is used for this) and to start

the regridding process as soon as the first data is in the buffer.

• MRI recon: in order to understand this kernel the concept of tiling must be introduced.

The source points space is divided into small areas called tiles, with the final purpose of

reducing the number of global memory accesses. This kernel is in charge of identifying

the tile a source point belong to. Since a source point could belong to more than a single

tile (if it is in the border it could affect target points belonging to more tiles) it is written

in all the FIFOs of the tiles it belongs to. This kernel also keeps track of the number of
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source points processed and alerts the arbiter when all of them have been computed. It,

furthermore, sends, for each source point, the tile (or tiles) it is identified with.

• Arbiter: this kernel is the "brain" of the design. It keeps track of the number of points

that needs to be processed for each tile, and it decides what tile needs to be processed

next (depending on a specified trajectory pattern, or sending the tile with the most points

in the buffer).

• FPMA: stands for "Floating Point Multiplier Accumulator". It is the "worker" of the

architecture.

It is in charge of fetching the tile data from the global memory every time the arbiter

is communicating to change tiles, to execute the interpolation operation, computing the

contribution for each source point in the target space, and accumulating it. Once the

Arbiter sends a new tile, data is written back in the global memory, and a new tile is

fetched.

Once compiled, several problems came out of this design. The most critical were:

1. Global memory accesses: for space reasons in the FPGA the compiler was unable to

create buffers big enough to store the source points belonging to each tile. This led to

a continuous tile switching, to several memory accesses, which incredibly slows down the

process.

2. Not-fixed loops for FPMA: since the number of source points for each tile was not fixed, the

FPMA kernel was not pipelined (the number of iterations was changing every iterations).
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The non-pipelined behavior of this kernel was, furthermore, increasing the number of clock

cycles.

3. Channel cycle: the cycle created between the FPMA kernel and the Arbiter kernel created

several problems for the compiler: emulating the architecture, exploiting the emulator tool

provided by Altera with the OpenCL SDK. Everything seemed to be working fine. During

the hardware generation phase, Altera OpenCL compiler was wrongly seeing the channels

as useless, removing them from the design. It was possible to solve this problem using

some directives of OpenCL.

For all the reasons above, it was not possible to obtain satisfactory results. It was an

important step towards the actual implementation since it highlighted all the problems that

need to be tackled in order to exploit the functionality of the compiler and of the FPGA.

4.4 Proposed Implementation

In order to design an efficient system using OpenCL it is necessary to stick to some simple

"rules" as much as possible. It is fundamental that the compiler can infer the pipeline for each

kernel. This implies that if a kernel has a loop, the number of iterations in this loop must be

fixed prior to the compilation.

It is also very important to reduce the accesses to the global memory as much as possible.

For regridding-based non uniform Fast Fourier Transform, and for a scalable architecture, this

is almost impossible due to the accumulating behavior of the algorithm, that is continuously

updating values in the target domain (uniform grid in k-space).
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The proposed design was written following mostly the first directive which was the one that

really slowed the performance in the first implementation. Even if just one kernel is not pipelined

it is going to affect the performance of the entire system.

The proposed architecture also exploits, unlike the previous one, some features of the host

machine to guarantee speed the efficiency of the system.

4.4.1 Host Code parallelism and Pre-processing

As mentioned before in the OpenCL the host machine is responsible for managing the com-

munication with the FPGA, allocating and gathering all the structures. Furthermore it can also

synchronize the OpenCL kernels execution invoking them when needed. The host code have

been coded to add some important functionality on the system:

1. Software Pipelining: MRI processing requires subsequent sets of data to be processed

sequentially. In order to improve performance in the proposed architecture the host code

is able to invoke the kernels in a pipelined manner. OpenCL events are exploited so to

fulfill this purpose. A more in-dept discussion can be found in Iacobucci [2].

2. Density weights Pre-computation: as mentioned in the Density Compensation Chapter,

the pre-compensation requires knowledge of the MRI acquisition trajectory a priori. Fur-

thermore it is possible to assume that an MRI machine will have fixed acquisition param-

eters, so the density weights computation will not change in different acquisitions of the

same MRI machine. For this reason, density compensation weights can be computed once

off-line and then passed directly to the FPGA as kernel arguments.

The method chosen to compute the density compensation weights is the Voronoi diagram.
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Figure 11: The Host machine is invoking the kernel following a pipelining manner

The algorithm proposed is called just once at the beginning of the pipeline and it is applied

to each and every acquisition.

It directly implements the theoretical steps needed to compute the Voronoi diagram. It is

possible to think of the source space as a 2 dimensional space from -0.5 to 0.5 in both the

dimensions. This space is divided into a fixed number of points (the space between two

different points in the source space should be lower than the minimum space between two

points), and each of these points is associated with the closest source point as defined in

Equation 4.

It is just an easy way to compute the Voronoi weights for each source point, but it is effec-

tive and, since there is no limitations in the execution time, it is adequate. A pseudocode

of the algorithm can be found in Appendix A.

4.4.2 FPGA Accelerator

The OpenCL kernels design have been deeply influenced by the limitations given by the

compiler and by the algorithm. Numerous subsequent accesses to memory are required, for
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both reading and writing. To make these interactions fast enough the local memory in FPGA

have to be used, although its size is limited.

The purpose of the proposed solution is to be scalable and efficient at the same time. To reach

ideal scalability the amount of local memory (which is dependent on the FPGA architecture in

use) should not be linked to the size of the frame processed. To avoid that the Tiling approach

of the previous implementation has been extended and slightly modified to fit this approach.

Tiles are no longer referred to the source points space (non uniformly sampled k-space) but to

the target point domain (uniform grid k-space). The tiling division in the target domain allows

no repetition of points in the queues (buffers).

Furthermore, assuming the knowledge of the sampling trajectory a priori, it is possible to

estimate how many target points belong to a given tile, enabling a fixed boundary for the loop

for the kernel in charge of updating the target point values. The number of tiles L can be chosen

arbitrarily depending on the FPGA architecture in use. In the proposed architecture a number

of tiles up to 4 have been tested. The tiling division is performed as in Figure 12.

The symmetric structure has been chosen for 2 main reasons:

1. To simplify the matrix addressing operation, during the reading and writing back opera-

tion, an addressing operation between the overall target k-space and the addressing space

of the considered tile must be performed. This structure allows an easy and fast addressing

operation to be made. Furthermore, the computation to see if a target point belongs to a

tile or not is simple and can be easily implemented.
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Figure 12: Tile division for L=4

Figure 13: Block diagram for the kernels architecture for L=4. The grey blocks are data buffers
in the external memory

2. For spiral and radial trajectories it is possible to roughly estimate the number of target

points. Since they cover the k-space symmetrically, the number of target points for each

tile can be estimated as follows:

TPtile = #SP · (2σ)2/4 (4.1)
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Figure 13 is the block diagram for the kernel architecture.

• Source Interface: it receives the array of source points as a parameter. It fetches one

source point at a time and passes it through a channel to the Interpolation kernel. The

loop is statically bounded assuming the knowledge a priori of the acquisition trajectory

and of the number of source points acquired.

The pre-density compensation can be performed also in this kernel, giving to the Source

Interface kernel also the Voronoi precomputed weights array as a parameter. In that case,

it will perform the division and than it will pass the already compensated data to the

Interpolation kernel.

Figure 14 highlights on the data managed by this kernel. As defined in the host code, the

following data structure is defined for the Source Points array:

– Real part: floating point value associated with the real part of the source point.

– Imaginary part: floating point value associated with the imaginary part of the source

point.

– X coordinate: floating point value associated with the X coordinate in the k space.

Originally, it varied between -0.5 and 0.5. In the host code this value is moved

between 0 an 1.

– Y coordinate: floating point value associated with the X coordinate in the k space.

Originally, it varied between -0.5 and 0.5. In the host code this value is moved

between 0 an 1.
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Figure 14: Source Interface step, with emphasis on the data structure managed by this kernel

• Interpolation: it receives source points one at a time through the channel. For each

source point it generates the set of (2σ)2 contributions to the target k-space, the index

of the contribution in the target k-space. Finally, it determines the tile i into which the

contribution falls and it writes the generated structure (Real part contribution, Imaginary

part contribution and the target space index) into the queue belonging to that tile i.

Figure 15 puts focus on the data managed by the Interpolation (or regrididng) kernel. It

receives in a pipelined manner source points from the Source Interface Kernel. It computes

the contributions and stores them in the proper queue in a data structure. The target

point data structure embeds the following fields:

– Real part: floating point value storing the real part of the contribution.
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Figure 15: Interpolation step, with emphasis on the data structure managed by this kernel

– Imaginary part: floating point value storing the imaginary part of the contribution.

– Index: integer value representing the index in the target space domain of the con-

tribution. The index is computed with respect to the grid of the target space in the

following way:

Index = XTP ·G+ YTP (4.2)

Where G is the number of rows and columns in the final reconstructed image, XTP

and YTP are the coordinates of the target point affected by the contribution.

• Target Interface: it waits for the Interpolation Kernel to be completed before starting.

It stores a matrix of tile size in local memory initialized to all zeros. For each queue,

it receives the contribution to the target k-space one at a time and sums them to the

appropriate local matrix locations (addressed with respect to the global index passed in

the data structure from the Interpolation kernel). In case of a post-compensation it is

possible to divide by the weight in this phase so as to correctly update the target space
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Figure 16: Target Interface step, with emphasis on the data structure managed by this kernel

every time.

The assumption of the knowledge of the number of target space contributions for each tile

is made in order to define a fixed boundary for each queue a priori. At the and of each

queue, the tile is written back into the memory and the local matrix is initialized to all

zeros again ready for a successive tile. When all the tiles have been processed the Target

k-space is finally ready and it is possible to apply the Fast Fourier Transform.

Figure 16 shows the processing of the contributions in the queues. The portion of the k

space linked to a specific tile is written back, tile by tile. The data structure handling the

target space points have the following fields:

– Real part: floating point value storing the summation of all the contribution for a

target point.

– Imaginary part: floating point value storing the summation of all the contribution

for a target point.
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Figure 17: IFFT step, with emphasis on the data structure managed by this kernel

• Altera IFFT Kernels: the design can be found on Altera’s website [23]. It consists of

3 kernels that perform a 1 dimensional Fast Fourier Transform. As previously mentioned,

a 2 dimensional transformation can be broken down into 2 one dimensional Fast Fourier

Transform applied on each row and on each column of the space. The host machine in-

vokes the 3 kernels two times feeding them row by row in the first iteration, and column

by column in the second one.

The final result is a matrix of the same size as the target space representing the recon-

structed image.

Figure 17 shows the data managed by the Altera IFFT kernels. From a top view it takes

a complex matrix of size GxG and returns a complex matrix of the same size after the

transformation.

• Deapodization: this step can be implemented both on the fly or statically, depending

on the available resources in the FPGA. In the on-the-fly implementation, coefficients
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are computed in hardware applying the formula of the analytic expression for the inverse

Fourier Transform of the interpolation kernel. The on-the-fly computation needs DSPs

availability on the FPGA. The static implementation stores the coefficients, computed

off-line, in the local memory in a vector of size G.

Figure 18: Deapodization step, with emphasis on the data structure managed by this kernel

Figure 18 shows the data managed by the Deapodization kernel. As in the previous case

this is just a manipulation between two complex matrices of size GxG.

A flow of a source point in the architecture is described in Figure 19. The picture includes

just the regridding step, which is the most complex one. A source points and its Voronoi

density estimation are passed to the Source Interface Kernel by the host machine. This kernel

is in charge of applying the density compensation and to pass, through a buffer, the modified
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source point to the Regridding Kernel. The regridding computes the contributions to the target

point uniform grid, and distributes them in the queue of the tile they belong to.

The Target Interface Kernel basically consists of several accumulators. Each accumulator

represents a specific coordinate in the target space grid. The contributions generated by source

points are accumulated in the specific location they belong to. This operation is repeated for

each and every source point, finally, the target space will have all the contribution, and the

IFFT can be applied on it.

Figure 19: Flow of a source point in the regridding architecture
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4.4.3 Software Reordering

The OpenCL compiler is able to translate the above kernels in a highly pipelined hard-

ware. The only issue is for the Target Interface Kernel where the compiler is able to detect a

dependency in the local memory. The same memory location could be accessed in successive

iterations. To ensure data consistency the compiler has to slow down the pipeline, processing

a new Target Point every 6 clock cycles. To solve this issue it is necessary to provide data in

a specific order so as to avoid data dependency and to exploit a specific directive to the Altera

OpenCL compiler, called ipdev, to make it avoid the possibility of a data dependency and to

obtain a highly pipelined hardware also for the Target Interface Kernel.

Different approaches have been tried, from among the purely hardware ones, with a reorder-

ing of the points exploiting a circular buffer or a cache. Using hardware approaches, it was

not possible to reduce the number of the pipeline clock cycles without loss in accuracy of the

reconstructed imaged. Assuming that the sampling trajectory is known a priori, it is possible

to apply a software reordering once off-line and then apply the read pattern to all the successive

frames. To avoid data dependency points must be processed by the Interpolation kernel in such

a way that, for each queue of contribution to the tiles, contribution to the same target point are

allowed once every X contributions. In this case, since a new data is fed into the pipeline every

6 clock cycles, X should be at least 6.

The off-line algorithms pre-determines the order in which data should be read to the file to

avoid dependency. It follows a greedy approach so as to have a reasonable execution time. For

each source point, target points expected to be affected are computed. If all the contributions
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are not already in the latest contributions for each queue, the source point is inserted and all

the contributions are put in the latest contribution buffers. If there are no points satisfying this

condition, a filler point is inserted.

A filler point is a source point placed at the edge of the image for each tile. In order to

reduce the number of filler points inserted, source points requiring the smallest number of them

are inserted in the queue.

Although this algorithm increases the number of source points the total number of filler points

inserted is so small that it is negligible compared with the total number of source points.

Furthermore, the gain in terms of performance overcomes the time penalty introduced. A

pseudocode and a more detailed explanation of the technique can be found in Iacobucci et al.

[2].

4.5 Non-Scalable Implementation

The above system is scalable and can be implemented in different FPGAs without looking

at the available space. It can, in fact, be adapted to fit the available space introducing a further

tile division. At the same time, if the available space is enough to fit the target space, the

tile division can be avoided reducing the complexity of the code and obtaining even better

performance.

The Non-scalable approach is a simplification of the scalable one when there is enough local

memory in the FPGA to fit all the points of the target space. The no-tiling approach simplifies

a lot the architecture since several steps of the algorithm are not needed anymore:
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Figure 20: Block diagram for the non scalable implementation. Red block can be implementend
through Altera OpenCL channel.

• The regridding step is simplified. It is not needed anymore to identify the queue a specific

target point update belongs to. Thus, the logic resources used are much less.

• Since it is no need to switch tiles anymore, the Target Interface Kernel can be executed in

parallel to the regridding step without waiting for the end. This significantly improves the

performance. The communication between the Regridding Kernel and the Target Interface

one can be implemented using the Altera OpenCL channel extension, or through global

memory.

This implementation is strictly dependent on some important factors of the image recon-

struction. The use of local memory is dependent on the target image size. The target image

size depends on the image acquisition of the MRI machine and on the chosen oversampling factor.
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4.6 Fixed Point Implementation

One of the most interesting features of the Altera OpenCL compiler is the native support

for floating point operations. This is one of the most important advantages with respect to

any VHDL/Verilog designed architecture. It is, in fact, tedious to implement floating point

operation with Hardware Description Languages even using Intellectual Properties and design

provided by the vendor (Altera includes in Quartus software several intellectual properties to

help FPGA designer).

However, when programming an FPGA, fixed point operations lead to a simple hardware

and to better performance. Appendix B briefly describes how floating point and fixed point

arithmetic work, highlighting advantages and disadvantages of both in terms of precision, per-

formance and hardware resources utilized.

The OpenCL standard does not support fixed point data type. This means the fixed point

data types must be implemented using integer data types. The advantage of using VHDL/Ver-

ilog in describing fixed point data types is the liberty that the designer has to select exactly

the number of bits needed to correctly represent a value. In OpenCL there is no such liberty,

since the supported data type are 8-16-32 or 64 bits resolution. Appropriate masking operation

can, however, be implemented so that the tool can perform optimizations to conserve hardware

resources.

The fixed point architecture is pretty similar to the proposed one. The only difference is in

the adopted arithmetic, which will exploit only fixed point numbers leading to a much simpler

hardware implementation.
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4.6.1 Source Point Data Structure

As we already stated in the Proposed Implementation Section, the Source Point Data struc-

ture is composed of the following elements:

• X coordinate of the source point in the k-space. This is expressed as a floating point

varying from -0.5 and 0.5.

• Y coordinate of the source point in the k-space. As the above one it is expressed as a

floating point varying from -0.5 to 0.5.

• Real part of the source point. Expressed as a floating point.

• Imaginary part of the source point. Expressed as a floating point.

These floating point variables must be properly adapted to integer values, and the kernel that

manages these data must me properly modified. The data is modified from floating to fixed

point directly in the Host code, where also the fixed factor is impressed. The Source Point Data

coordinates are handled differently with respect to the real and imaginary values. X, and Y

coordinates are normalized in the range 0 to 1 in the host code. The regridding kernel adapts

the scale from 0 to 1 to 0 to G. This allows one to define a bound on the number of bits of the

integer part of the fixed data representation:

IntegerBits = log2(G) + 1 (4.3)
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So for a target picture of 256*256 9 bits are necessary, for a target picture of 512*512 10 bits,

while for a 1024*1024 11 bits are necessary. To have a acceptable precision in the decimal

representation 32 bit integer number are used.

In the worst case scenario, for an impractical target frame size of 1024*1024 the precision of

the decimal part will be:

1

221
= 4.76E−7 (4.4)

Which is more than enough considering the further approximation to the nearest neighborhood

performed in the regridding kernel.

On the other hand, real and imaginary values are not bounded by maximum and minimum

values, making the choice of the fixed factor much more difficult, and deeply linked with the

dataset used. Furthermore, they have to be multiplied by the interpolation kernel value, gener-

ating a contribution for a target space grid point. More contributions will then be accumulated

generating finally the complete target space grid.

While the multiplication is never for a number greater than 1, one cannot determine a

reasonable maximum value in the accumulation to bound the integer part. The factors proposed

in the following worked well for the datasets tried, but the same cannot be guaranteed for

other datasets. These have to be properly tuned for each MRI machine, possibly knowing the

maximum real and imaginary value that can be sampled.

To keep a comparable precision with respect to the floating point architecture a 32 bit

integer value has been used. The decimal bits are set to 20, while the integer bits to 12. This
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should guarantee enough precision for the decimal part, and enough range to avoid overflow.

Specifically:

1

220
= 9.53E−7 ≈ 1E−6 (4.5)

−2048 < integer < 2047 (4.6)

4.6.2 Kernels Modifications

Kernels have been modified to handle fixed variables. The most significant changes have

been performed in the Regridding, FFT and Deapodization kernels.

1. Regridding: the kernel vector used to compute the kernel coefficient for the interpolation

is properly adapted from floating point to fixed. A factor of 7 has found to be enough to

guarantee good results in terms of accuracy. The management of the coordinate values

are properly adapted, and a fixed point round function has been created so to handle the

nearest-neighborhood computation in the interpolation phase.

2. FFT: Altera IFFT kernels are adapted so as to receive and produce a fixed point matrix.

Some modifications to the kernel have been performed to avoid floating point operations.

In the algorithm used for the Fast Fourier Transform computation, a look-up table with

sin and cosin floating points is stored. These values have to be properly adapted into

integer variables.

Also in this case the factor found to guarantee good accuracy results is 7.

3. Deapodization: Also the deapodization kernel needs to be modified to properly handle

a fixed point architecture. In that case a lookup table with the deapodization vector
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(computed from the used interpolation function) has been converted from floating point

to fixed point.

The factor found to be the most effective is 10.

4.6.3 Overflow Prevention Techniques

Extra care must be taken when using fixed point arithmetic, mostly for multiplications and

divisions.

1. Kernel Coefficient Multiplication: it a multiplication between a number with 20

decimal bit (real and imaginary values) and the interpolation kernel coefficient with 14

decimal bit. The result is temporarily stored in a 64 bit variable and then is shifted back

by 14 bit into a 32 bit variable.

2. FFT Multiplication: as in the previous case, the result is stored in a temporary 64 bit

variable and than it is shifted back by 7 bit.

3. Deapodization Coefficient Division: after the Fast Fourier Transform the values are

divided by the deapodization coefficients. No further operation is required.



CHAPTER 5

RESULTS

This chapter will focus on the result obtained with the proposed architecture from the point

of view of both the accuracy of the reconstructed image and the performance of the accelerator.

The analysis will start with the accuracy results obtained with different approaches of density

compensation (pre-computed post compensation, on-the-fly post compensation, full Voronoi

pre-compensation, reduced Voronoi pre compensation) and then on the performance results for

the different approaches of above that can simplified into 4 groups (computed on the fly com-

pensation, compensation of the source points in source interface, compensation of the target

point in target interface, compensation applied in the source code).

Then the results of the proposed architecture in term of performance and accuracy are shown,

along with the improvement obtained for the non-scalable solution for the 128 and 256 pixel

input source.

Finally the results of the fixed point architecture are compared with the proposed one in

term of performance, accuracy and resource utilization.

54
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5.1 Testing System

A Lenovo ThinkStation P500 with 32 GB of DDR4 RAM, 8 Intel Xeon E5-1629 CPUs

running at 3.50GHz and with CentOs 6.8 as operating system has been used for testing. The

target FPGA was an Altera Arria 10 GX, which exchanges data with the host machine through

PCIe16 connection. The OpenCL code was compiled using the Altera OpenCL Compiler Version

15.1.

5.2 Architecture Parameters

The tested implementation uses an oversampling factor α = 2, a Kaiser-Bessel windowed

function as the interpolation kernel, with a convolution windows size σ = 2. The parameter of

the Kaiser Bessel was chosen according to the formulas from [24]:

C(kx) =
G

2σ
· I0

β
√

1−
(

2Gkx
2σ

)2
 for|kx| ≤

2σ

G
(5.1)

β = π

√
(2σ)2

α2

(
α− 1

2

)2

− 0.8 (5.2)

Equations 5.1 and 5.2 show the analytic expression for the kernel and for the parameters com-

putation.

The Kaiser-Bessel function has been uniformly sampled in S ·W points, and the kernel value

is chosen with the nearest neighbor interpolation technique, so that the actual equation for the

used kernel is:

Ĉ(kx) = C(kx) ∗Gate(SGkx) (5.3)
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Given this choice for the convolution kernel, its IFFT is:

c(x) =
sin
√

π2σx
G2 − β2

π2σx
G2 − β2

· sin(SGkx)

SGkx
(5.4)

and it has been used for on-the-fly computation of Deapodization coefficients. S is a coefficient

calculated to impose a maximum nearest-neighbor interpolation error of 10−2, according to the

formula described in [24]:

max(nearest_neighborε) =
0.91

αS
(5.5)

The equations above have been generalized to work for the 2-dimensional case.

5.3 Accuracy Metrics

The accuracy metrics are used to evaluate the image reconstruction are 2: PSNR and SSIM.

Peak signal-to-noise ratio (PSNR) evaluates the reconstruction of a signal by dividing the

maximum power possible in the signal with the power of the noise that is corrupting that signal

[25]. It is expressed in terms of a logarithmic scale.

PSNR = 20log10

(
MAX2

I

MSE

)
(5.6)

where MSE is the mean squared error defined as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (5.7)
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An higher PSNR generally indicates that the reconstruction has a higher quality. Usually

typical values for good accuracy in the image is between 30 and 50dB.

The Structural Similarity Index (SSIM) unlike to the more classical PSNR takes into account

how a human being perceives an image [26]. It focuses on the structure of the image, that is

the most critical parameter in MRI, since it requires one to reconstruct a picture in such a way

that doctors can see what they need to diagnose a patient [27]. It is defined as follows:

SSIM(P ) =
2µ1(P )µ2(P ) + C1

µ1(P )2 + µ2(P )2 + C1
· 2 · cov(P ) + C2

s1(P )2 + s2(P )2 + C2
(5.8)

where:

• µ1, µ2 are the mean values of the two images over a small window around the point P.

• s1, s2 are standard deviations of the two images over the same window.

• cov is the covariance over the same window.

• C1, C2 are regularization constants.

This index measures the structural similarity between two images, and it varies between -1 and

1. Two nearly identical images will result in an index close to 1.

5.4 Performance Metrics

Performance are evaluated following some defined rules:

• The number of source points is the size of the input image. For a 128x128 input image,

128x128 source points will be passed to the architecture.
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• The oversampling factor is set to 2. So the target frame will have double the size of the

input frame.

The actual metric used to evaluate performance is frames per second (fps), the number of frames

that the architecture is able to process in a second. This is not calculated computing how many

times a frame can be processed in a second, but providing the same input to the architecture

several times so to verify also the effectiveness of the software pipelining.

5.5 Resource Utilization Metrics

The resource utilization is expressed as a percentage of the utilized resource in the Altera

Arria 10 GX.

Specifically the total available hardware in the FPGA is:

TABLE I: TOTAL RESOURCE AVAILABLE IN ARRIA 10

LE 855289
FF 1081705
RAM 2714
DSP 1518

The "Util" section includes an overall percentage of the used resources in the FPGA.

5.6 Density Compensation Results

As stated in the introduction to this chapter, different compensations have been tested in

order to obtain the best results. In the density compensation chapter, two ways of compute the
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density compensation have been analyzed: post-compensation (applied directly on the uniformly

sampled target space), and pre-compensation (applied on the source non-uniformly sampled

source points).

We already stated that the post-compensation leads to some problems with aliasing and

requires a specific sampling step in the target space. It is also the only one that does not re-

quire the knowledge a priori of the sampling trajectory and that can be computed on the fly.

Pre-compensation is the most used typology of compensation in the MRI field, but it requires

the knowledge of the sampling trajectory and, sometimes, complex computations.

Accuracy results

In order to measure the accuracy results of our architecture a dataset provided by Stanford

University have been used. This dataset is well-suited to test the correct working of an MRI

reconstruction algorithm and architecture, due to precise and sudden borders within the final

picture.

The picture is recurrent in the literature of MRI reconstruction and it is also appropriate to

understand how the choice of the density compensation methodology affects the accuracy of the

results.

In order to focus only on the density compensation, the algorithm does not the deapodization

step.
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Figure 21: Ideal Reconstructed Image for Stanford Dataset [28]

First of all, the importance of the density compensation step can be highlighted by the

image reconstructed without that step, as it is possible to see in Figure 22. The reconstructed

image appears blurry and it is almost impossible to see clearly what it is showing. The fact that

the image is recalling somehow the ideal reconstructed image indicates that the chosen kernel

interpolation function is properly working, along with the width of the interpolation window

and the sampling step of the uniform target space.

Depending on the type of density compensation chosen there are different algorithms that

can be applied exploiting some assumptions. For the post compensation:
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Figure 22: Image reconstructed without the density compensation step. Data from [28].

1. Post-compensation on-the-fly: this is exploiting the fact the the post compensation

does not require a knowledge a priori of the sampling trajectory.

2. Precomputed post-compensation: it is safe to assume that the trajectory is known a

priori (thus, completely removing the only advantage of the post-compensation with re-

spect to the pre-compensation). With this assumption is possible to compute the post com-

pensation once before the execution of the accelerator. The oversampling factor adopted

in the FPGA architecture should be already taken into account when computing the co-

efficients. The post-compensation refers to the target domain space, generating a weight

for each target point. The number of target points depends on the size of the source frame
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and on the oversampling factor chosen.

The division for the weight is performed for each and every contribution and thus, causes

a loss in the accuracy of the reconstructed image.

For the pre-compensation, we tried to tackle the most general solution possible. So Voronoi

methodology has been used.

1. Full Voronoi: in this case the Voronoi diagram is computed for all the source points in

the space. In order to use the pre-compensation typology the a priori knowledge pf the

sampling trajectory is already assumed.

2. Half Voronoi: in this case the Voronoi diagram is computed just for the source points

close to the center of the k-space. The area of the polygon associated with each source

point, for radial and spiral trajectories, progressively increases with the distance to the

center. The Voronoi diagram is computed until the area of the polygons is within a certain

maximum value, then all the other polygons are assigned to this value.

The value chosen in order to stop the Voronoi computation within a limited number of

points, obtaining acceptable accuracy results is 0.1.

Figure 22 shows the image reconstructed using the different approaches described above.

For a human eye it is almost impossible to notice any difference between the two reconstructed

images, even if it can be noticed that the image reconstructed using the Voronoi approach is a
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Figure 23: Stanford image reconstructed using different typologies of density compensation.
Data from [28].



64

TABLE II: DIFFERENT SSIM AND PSNR FOR THE DENSITY COMPENSATION
METHODOLOGIES ADOPTED WITH RESPECT TO THE IDEAL RECONSTRUCTION
FOR STANFORD DATA SET.

SSIM PSNR
No Compensation 0.2664 14.0681
Post Compensation precomputed 0.7579 21.0569
Post Compensation on-the-fly 0.7584 21.0682
Full Voronoi 0.8318 23.1444
Half Voronoi 0.8168 22.5762

bit clearer than the one reconstructed adopting the Post-compensation.

Results obtained in Table II are quite expected. The quality of the reconstruction without

density compensation is low. Post-compensation results are comparable, the minor difference is

given by the loss of accuracy in the sum of divisions. Pre-compensation is, as expected, the one

that gives the best results. The Half Voronoi methodology proves its effectiveness, highlighting

that the computation of the areas of a limited number of polygons in the Voronoi diagram and

the assigning the rest to the ultimate value does not significantly affects the reconstruction.

Performance Results

As we said in the introduction to the chapter, performance and resource utilization will also

be affected by the choice of the density compensation methodology. For sake of simplicity all

the performance results are obtained with a number of source points equal to the pixels in the

target image, with a convolution window of size 2, and with an oversampling factor 2.
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TABLE III: DIFFERENT SSIM AND PSNR FOR THE DENSITY COMPENSATION
METHODOLOGIES ADOPTED WITH RESPECT TO THE IDEAL RECONSTRUCTION
FOR A RADIAL TRAJECTORY DATA SET.

SSIM PSNR
No Compensation 0.2283 8.0173
Post Compensation precomputed 0.775 18.4369
Post Compensation on-the-fly 0.782 18.4692
Full Voronoi 0.9128 21.243
Half Voronoi 0.8272 19.5064

1. Post-compensation on the fly: this option, the only one that does not assume the

knowledge a priori of the sampling trajectory, heavily increases the number of utilized

resources (requiring a further buffer in the target interface).

2. Pre-compensation in Source Interface: this solution introduces a further step in the

Source Interface Kernel. The well pipelined hardware generated by the compiler, assures

good results from a performance point of view.

3. Post-compensation precomputed: this option requires a division by the coefficients

in the Target Interface Kernel. This division is well pipelined and does not heavily affect

the performance.

4. Pre-compensation in the Host Code: this option is, theoretically speaking the best.

Input source points fed to the architecture are already compensated and no further oper-

ation is required in the FPGA.
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The following table shows the resource utilization and the execution time for each case

described above. As expected, the last option gives the best performance with less hardware

resource utilization.

TABLE IV: RESOURCE UTILIZATIONS FOR A 128X128 INPUT, OVERSAMPLING FAC-
TOR = 2.

128x128 LE FF RAM DSP Util
Post-compensation on the fly 24% 36.94% 41.68% 62.31% 60.84%
Pre-compensation in source 21.77% 33.16% 35.27% 58.03% 54.82%
Post-compensation precomputed 22.05% 33.41% 36.30% 58.03% 55.32%
Pre-compensation host 21.64% 32.92% 34.35% 57.37% 54.45%

TABLE V: RESOURCE UTILIZATIONS FOR A 256X256 INPUT, OVERSAMPLING FAC-
TOR = 2.

256x256 LE FF RAM DSP Util
Post-compensation on the fly 26.23% 38.45% 82.85% 62.12% 65.89%
Pre-compensation in source 23.98% 35.48% 70.22% 59.09% 56.54%
Post-compensation precomputed 24.88% 35.72% 71.36% 59.07% 57.68%
Pre-compensation host 23.72% 33.50% 70.35% 58.78% 56.32%
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Figure 24: Performance results for a 128x128 pixel input image.These results have been collected
for the research, for this reason they can be also found in the Iacobucci [2]
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Figure 25: Performance results for a 256x256 pixel input image.
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TABLE VI: RESOURCE UTILIZATIONS FOR A 512X512 INPUT, OVERSAMPLING FAC-
TOR = 2.

512x512 LE FF RAM DSP Util
Post-compensation on the fly 37.23% 45.67% 98.45% 72.52% 85.34%
Pre-compensation in source 35.94% 42.56% 91.22% 70.34% 75.87%
Post-compensation precomputed 36.56% 41.98% 93.45% 70.45% 73.69%
Pre-compensation host 34.78% 41.12% 91.57% 68.34% 71.68%

5.7 Proposed Architecture Results

The proposed architecture embeds the best density compensation approach (Voronoi density

compensation computed in the host code), and adds the deapodization step to further improve

the accuracy of the image reconstruction. Accuracy results are, again measured in SSIM and

PSNR. Perfromance is compared to similar architectures proposed in the literature.

It was not easy to find suitable architectures to compare our architecture with. Mostly of

the work proposed in the literature focuses only on the regridding step, which is the one that

requires the most computational power and hardware resources, completely ignoring the impor-

tance of the density compensation and of the deapodization.

Accuracy Results

The SSIM and PSNR obtained, using the proposed architecture on the dataset introduced

above are the following:
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TABLE VII: ACCURACY RESULTS FOR THE PROPOSED ARCHITECTURE. THIS IS
INCLUDING ALSO THE DEAPODIZATION STEP, OTHER THAN A FULL VORONOI
DENSITY COMPENSATION APPLIED IN THE HOST CODE.

SSIM PSNR
Stanford 0.9585 34.5302

Performance Resutls

In order to have a reasonable performance comparison with other architectures proposed in

the literature, the design has been compiled in two different fashions, so to include:

• Regridding step only, to compare results with the FPGA solution proposed by Kestur et

al. in [29] and with the CPU solution proposed by Sorensen et al. in [30].

• Density Compensation, Regridding, IFFT and Deapodization compared with the results

obtained by Sorensen et al. in [30].

The throughput is measured in frame per second (fps), where the size of the frame is given by

the frame of the input image multiplied the chosen oversampling factor.

The results show a marked improvement with respect to the regridding solutions highlighting

the efficiency of the OpenCL FPGA implementation.

Results with the GPGPU solution in [30] are, on the other hand, comparable, indicating the

further work that is required in order to improve the architecture.
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Figure 26: Throughput of the entire process (Density Compensation + Regridding + Deapodiza-
tion). The results are compared with the one obtained in with a GPU [30]. These results have
been collected for the research [1], for this reason they can be also found in the Iacobucci [2]

5.8 Non Scalable Implementation Results

The non scalable implementation guarantees better results thanks to the use of an Altera

channel between the regridding kernel and Target Interface Kernel. This allows to start accu-

mulating the contributions in the target space while the regridding phase is still going on.

The performance gain is described in the following tables.

TABLE VIII: PERFORMANCE IMPROVEMENT FOR THE NON SCALABLE ARCHITEC-
TURE, 128X128 CASE.

128x128 1 Frame fps
Scalable Architecture 4.31 187.61
Non Scalable Architecture 3.76 224.01
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Figure 27: Throughput of only the reconstruction (Regridding) phase. Results are compared
with Sorensen et all. [30] with a CPU, and Kestur at all. with an FPGA [29].These results have
been collected for the research [1], for this reason they can be also found in the Iacobucci [2]

TABLE IX: PERFORMANCE IMPROVEMENT FOR THE NON SCALABLE ARCHITEC-
TURE, 256X256 CASE.

256x256 1 Frame fps
Scalable Architecture 16.27 67.23
Non Scalable Architecture 14.19 76.32

Just the 128x128 and 256x256 cases are illustrated, since the 512x512 case requires, for an

oversampling factor set to 2, a buffer that is not going to fit in the local memory available in

the FPGA.
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This architecture can be easily compared with the solution proposed by Li et al. in [31].

They describe a similar implementation using Labview and obtaining good performance results

but tied to the memory available on the FPGA chip considered. At the same time they do not

clearly mention the size of the target image, neither the use of oversampling, and the number of

source points used to reconstruct the image. The claimed result is 400 fps, computed dividing

1 second with the time to execute one frame.

The results showed in this document are the ones actually returned feeding the hardware

with the same data-set over and over. In the 128x128 case the pipelining does not improve the

performance, and, actually, the time to load into the FPGA a new dataset is greater than the

processing time of the FPGA. For small images the bottleneck in terms of performance can be

considered the Host-compute unit communication.
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5.9 Fixed Point Implementation Results

As described in the Implementation chapter, fixed point arithmetic leads to a considerably

improvement in term of resource utilization. The logic components to accomplish mathematical

operations, such as multiplication and division, are much fewer.

The reduced hardware utilization can lead to possible new features in the design that will

be discussed in the next chapter.

Accuracy Results

The results obtained with the fixed point implementation are compared with the ideal re-

construction of the image. PSNR and SSIM are used, as before, to quantify the reconstruction.

Accuracy results for the Stanford data set are showed in the the table and graphically.

The Fixed point implementation is not able to keep the same accuracy in the reconstructed

image. However, it is possible to tune some parameters accordingly to the input image in order

to have better accuracy in the reconstruction.

TABLE X: ACCURACY COMPARISON BETWEEN THE PROPOSED FLOATING POINT
IMPLEMENTATION AND THE FIXED POINT.

Stanford SSIM PSNR
Fixed Point 0.72 18.87
Floating Point 0.95 34.53
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Figure 28: Graphic comparison between the ideal reconstruction and the one obtained with the
Fixed point implementation . Data from [28].

Performance Results

Performance results are showed in Figure 29. Although comparable results were expected

with respect to the floating point implementation (exactly the same operations are performed

in both the two architectures), the fixed point implementation is slower.

This is due to the fact that the frequency of the hardware is decreased from 180MHz to

145MHz. To obtain comparable performance it is possible to exploit the reduced hardware

resources utilized and increase the number of points processed at the same time in the Target

Interface kernel. For processing 16 contributions to the target space at the time the execution

time is comparable to the floating point implementation.

Resource Utilization Comparison

Resource utilization is compared with the least hardware demanding floating point imple-

mentation (density compensation in the host code). As expected, the improvement in hardware
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Figure 29: Frame per second comparison between Floating and Fixed point architecture

resources actually utilized is impressive. The only comparable parameter is the local memory,

which is more or less the same. The implementation still requires a local buffer of the same size

of the floating point implementation.

TABLE XI: COMPARISON FOR THE 128X128 CASE USING FLOATING AND FIXED
POINT ARITHMETIC.

128x128 LE FF RAM DSP Util
Fixed Point 6.25% 9.91% 33.06% 16.46% 16.17%
Floating Point 21.64% 32.92% 34.35% 57.37% 54.45%
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TABLE XII: COMPARISON FOR THE 256X256 CASE USING FLOATING AND FIXED
POINT ARITHMETIC.

256x256 LE FF RAM DSP Util
Fixed Point 6.38% 10.07% 70.80% 19.63% 16.46%
Floating Point 23.72% 33.50% 70.35% 58.78% 56.32%

TABLE XIII: COMPARISON FOR THE 512X512 CASE USING FLOATING AND FIXED
POINT ARITHMETIC.

512x512 LE FF RAM DSP Util
Fixed Point 7.12% 15.34% 92.67% 24.45% 18.62%
Floating Point 34.78% 41.12% 91.57% 68.34% 71.68%



CHAPTER 6

FURTHER APPROACHES

The proposed architecture is able to process MRI data in an efficient way, performing an

image reconstruction with high accuracy. An improvement in term of performance is possible.

6.1 Modified FFT Kernels

The synchronization between kernels performed in the host code slows down the process,

leaving the FPGA waiting for new data to be processed most of time. This problem is highlighted

between the regridding kernel and the Target Interface one, between the ladder and the FFT,

and between the FFT and the deapodization. It is possible to solve this issue using more

hardware resources making the accelerator obtain much better results in term of performance.

The synchronization between kernels can be managed using Altera OpenCL channels, avoid-

ing to wait for the host. FFT kernels exploit NDrange kernel, multiplicating the execution during

the fetch and writing back execution. In order to avoid a loop in the same kernel, FFT must be

duplicated and the synchronization can be performed using channels.

The execution time for a frame, for an input image of 128x128 is reduced by 1.4 ms leading

to a huge improvement in performance, as it is possible to see in Figure 30.
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Figure 30: Altera OpenCL profiler output for modified FFT kernel

6.2 Half Fourier and Partial Echo

In chapter 2, these 2 techniques used to reduce the MRI acquisition time have been pre-

sented. These techniques exploit the symmetric behavior of the k-space to acquire just half of

the data and to generates the other half. A similar approach can be used to reduce the number

of processed points in the regridding process, reducing both the local memory required and the

execution time.

Half Fourier filling consists in filling just half of the k-space in the phase encoding direction.

The other half can be reproduced considering the symmetry of the k-space. This property can be

exploited as well in the regridding step. In our work this technique was applied to the Stanford

data set, considering first 90% of the phase encoding, then moving the boundary of 10% up to

50% of the phase encoding as shown in Figure 31.
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Figure 31: Partial k-space considered for the reconstruction, from 90% to 50% exploiting the
Half Fourier Technique

The consideration of just a part of the k-space will result in a series of advantages and

disadvantages:

• The number of processed source points is reduced, thereby improving the performance of

the architecture.

• The size of the local buffer stored in target interface is reduced. A part of the target points

is generated exploiting the symmetric behavior of the k-space.

• The accuracy of the reconstructed image is affected by the reduced number of source points

used.

The following table will highlight the results in terms of accuracy of the reconstructed image

of the Stanford and Cardiac data sets, as well as the reduced size of the local buffer, and the

expected improvement in execution time.
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Figure 32: Reconstruction using part of source points sampled in the k-space for Stanford data
set, for Spiral trajectory in Stanford Data set [28].
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TABLE XIV: SSIM, PSNR, REDUCTION IN LOCAL BUFFER SIZE AND REDUCTION IN
PROCESSED POINTS FOR REDUCED K-SPACE REGRIDDING, FOR SPIRAL TRAJEC-
TORY FOR STANFORD DATA SET.

Used k-space percentage SSIM PSNR Reduction in
local buffer size

Reduction in processed
point for Spiral trajecotry

90% 0.95 33.34 9% 4.44%
80% 0.94 31.43 19.36% 9.93%
70% 0.9 29.8 29.13% 19.47%
60% 0.85 26.97 39.29% 31.66%
50% 0.55 13.91 49.44% 50%

TABLE XV: SSIM, PSNR, REDUCTION IN LOCAL BUFFER SIZE AND REDUCTION IN
PROCESSED POINTS FOR REDUCED K-SPACE REGRIDDING, FOR A RADIAL TRA-
JECTORY DATA SET.

Used k-space percentage SSIM PSNR Reduction in
local buffer size

Reduction in processed
point for Radial trajecotry

90% 0.9 34.94 9% 2.86%
80% 0.88 33.24 19.36% 9.54%
70% 0.86 32.52 29.13% 17.94%
60% 0.78 26.76 39.29% 29.98%
50% 0.58 22.34 49.44% 50%

The same approach can be used in the Partial Echo reconstruction as in Figure 33. In

this case just a part of the frequency encoding is considered, while the other part is derived

from the properties of the k-space. Due to the symmetric behavior of the most used sampling

trajectories the results obtained are practically the same both in performance of accuracy of the

reconstructed image and on the gain in performance and memory utilization.
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Figure 33: Partial k-space considered for the reconstruction, from 90% to 50% exploiting the
Partial Echo Technique

Figure 34: Combined Partial Reconstruction Example

These two techniques can be combined so to obtain a further improvement of performance

and resource utilization further reducing the penalty in the accuracy. In this case source points

below a certain limit both in the frequency and phase encoding are not considered. The recon-

struction is then performed deriving some values from the symmetric properties of the k-space,

and zero filling some part of it.
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Figure 34 shows an example of the reconstruction procedure. The source points in the blue

are properly utilized for the regridding. The grid points in the light blue are computed exploiting

the k-space property. The grid locations in the white are filled with zeros. This shouldn’t

considerably affect the accuracy since this part of the k-space does not bring fundamental

informations. As in the previous case, reconstruction data for Stanford and Cardiac data set

are collected, and the actual image are proposed. This technique is able to further reduce the

number of points processed and the size of the local buffer in the architecture, guaranteeing

decent results in terms of accuracy.

6.3 Multiple Processing Blocks

Combining the fixed point implementation with the theoretical technique described above

it could be possible to fit, in an FPGA, multiple hardware processing entities. This solution

could be useful for real time MRI that is one of the trending topics in this field. From a simple

estimation it could be possible to process up to 4 images of size 256x256 in parallel in an

Altera Arria 10. The bottleneck is the amount of available local memory. Using the combined

reconstruction technique proposed in the above section it is possible to reduce the amount of

local used memory to 22% of the total availability for each instance. A concurrent design could

also be useful for 3D MRI that requires a high number of frames to be processed.
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Figure 35: Reconstruction using part of source points sampled in the k-space for Stanford data
set, for Spiral trajectory in Stanford Data set [28].

TABLE XVI: SSIM, PSNR, REDUCTION IN LOCAL BUFFER SIZE AND REDUCTION
IN PROCESSED POINTS FOR COMBINED REDUCED K-SPACE REGRIDDING, FOR
SPIRAL TRAJECTORY FOR STANFORD DATA SET.

Used k-space percentage SSIM PSNR Reduction in
local buffer size

Reduction in processed
point for Radial trajecotry

81% 0.95 32.06 18.27% 6.91%
64% 0.89 28.56 35.28% 19.41%
49% 0.82 26.77 49.18% 33.30%
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TABLE XVII: SSIM, PSNR, REDUCTION IN LOCAL BUFFER SIZE AND REDUCTION
IN PROCESSED POINTS FOR COMBINED REDUCED K-SPACE REGRIDDING, FOR A
RADIAL TRAJECTORY DATA SET.

Used k-space percentage SSIM PSNR Reduction in
local buffer size

Reduction in processed
point for Spiral trajecotry

81% 0.91 35.89 18.27% 5.75%
64% 0.89 32.88 35.28% 16.80%
49% 0.87 32.77 49.18% 31.82%



CHAPTER 7

CONCLUSIONS

This document addresses the problem of image reconstruction for MRI applications using

FPGAs. Recently non uniform sampling trajectories are being used in MRI to reduce the acqui-

sition time consequently increasing the amount of mathematical operations needed to produce

an accurate result. The Non uniform Fast Fourier Transform algorithm is able to reconstruct

the image with an approximation scheme considerably reducing the computational time.

In this thesis an image reconstruction algorithm is, then, developed and implemented us-

ing OpenCL exploiting a powerful compiler from Altera. The design procedure is completely

different with respect to any classical HDL, but, following the guidelines provided on Altera’s

website and decoupling the design from the actual hardware implementation, it is possible to

obtain excellent results in a reasonable time. Different approaches for the density compensation

step are analyzed and discussed in term of performance, accuracy of the results, and resource

utilization in Arria 10. Then an efficient, low-power, and scalable architecture able to handle

all the most common frame sizes in MRI is proposed. This architecture competes with and

improves upon different applications provided in the literature, even if most of them just focus

on the interpolation phase which is the most computational intensive.

The proposed implementation is then modified to improve performance. Altera OpenCL chan-

nel extension is used instead of a buffer in global memory. Although this solution, by far,

improves the execution time, it loses the scalable nature. Fixed point arithmetic, which is not
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directly supported by OpenCL, is used to describe the same implementation. This arithmetic

led to a great reduction in terms of hardware utilization. Performance and accuracy are still

not comparable with the floating point implementation. Furthermore, some parameters need to

be properly adapted and changed with the MRI machine used for the acquisition.

Finally some further innovations to reduce the execution time are proposed. The first one

is purely architectural and consists of a duplication of the FFT hardware so to avoid the Host

interfering with the FPGA, while the second one studies the accuracy of the image reconstruction

considering some properties of the k-space. The interpolation considers just a part of the source

points, and the entire target grid space is estimated from that. The results show a great trade-

off between size of the local buffer and estimated execution time with the accuracy of the

reconstructed image.
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Appendix A

VORONOI DIAGRAM COMPUTATION ALGORITHMS

The Voronoi diagram consists of a partitioning of a space into regions depending on the

distance with respect to given points. In the case of MRI acquisition these points are the source

points, and the Voronoi diagram can be used in order to estimate the density weight for each

source point. The computation of the Voronoi diagram is intensive and it is dependent on the

number of points in the space, and on the wanted resolution.

The approach used in the Host code of the proposed architecture is slightly different but it is

effective in the computation of the Voronoi area associated with each source point. A division of

the source point space is assumed. The denser the "sampling" of the Voronoi diagram wanted,

the more precise will be the result.

for each coord inate o f the source po int space K_{x , y}

s e t minimum d i s t anc e to 1000

s e t c l o s e s t source po int to 0

for each source po in t s SP_i

compute the d i s t anc e between the source po int SP_i and K_{x , y}

i f the d i s t ance i s l e s s that the minimum d i s t anc e

s e t minimum d i s t anc e to d i s t anc e

s e t c l o s e s t source po int to SP_i

end i f
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Appendix A (continued)

end for

i n c r e a s e the l o c a t i o n SP_i o f the weight vec to r

end for

This algorithm does not require any modification for the convex hull points. It is also possible

to reduce the computation time of this algorithm exploiting the solution proposed in [18]. In

that case, just the area of the polygons at the center of the k space can be computed, reducing

the number of points to be assigned to a specific source point. Also the source point vector can

be properly modified to consider only the source points at the center of the k space instead of

all of them. This will considerably reduce the execution time of the algorithm, without losing

in the reconstruction accuracy, as shown in the Accuracy results section.



92

Appendix B

FLOATING AND FIXED POINT ARITHMETIC

B.1 Floating Point

Altera OpenCL compiler describes floating point numbers using a technical standard pro-

vided by IEEE: IEEE 754-2008.

The format defined by the standard includes:

• Finite Numbers: each finite number is described by three integers:

(−1)s · c · 2q (B.1)

where s is the sign, c is the coefficient and q is the exponent.

• Two infinites

• Two kind of Nan

The possible representable values are determined by the number of digits of the coefficient,

and the maximum value of the exponent parameter. OpenCL defines 3 types data types that

can be used to describe floating point values. The difference is in the number of bit used to

represent the number.

1. cl_half : it is a 16-bit float. 5 bits are used for the exponent, while 11 bits are used for

the number representation.



93

Appendix B (continued)

Figure 36: Floating Point Bit Division

2. cl_float: it is a 32-bit float. It represents a single precision float, 8 bits are used for the

exponent, while 24 for the number representation.

3. cl_double: it is a 64-bit float. It represents a double precision float, 11 bits are used for

the exponent, while 53 for the number representation.

The bits for the single and double representation are arranged as in Figure 36. The most

significant bit is the sign, the biased exponent is in the middle while the mantissa i the least

significant bits.

This representation is attractive to have great precision adding, though, some complexity

in the management of the operations. For instance the multiplication between two floating

point numbers requires different steps; a summation of the exponents of the two numbers,

a multiplication of the mantissas, a normalization of that result, adjusting the exponent if

necessary. Finally, a XOR between the two sign bits is necessary. A similar complex operation

for the division has to be performed.
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Appendix B (continued)

In an FPGA design this can lead to extra hardware in order to deal with all the operations,

and, even if they are handled directly the compiler extra logic is require and can lead to a much

complex hardware.

B.2 Fixed Point

"A fixed point number representation is a real data type for a number that has a fixed

number of digits after the radix point" [32]. Essentially, a fixed point number is an integer

scaled by a factor. Operations in fixed point arithmetic are simple and they can be easily

implemented. To convert a fixed point number from a scaling factor F to another with factor G

just a multiplication by F and a division by G is needed. In binary representation this is pretty

easy because both multiplication and division can be implemented with a shifting operation (as

long as the factor are power of 2).

Addition and subtraction of values of the same fixed point type is directly the mathematical

operation between two integer, and the result is correct as long there is no overflow. The

multiplication, as the addition and subtraction, is the simple multiplication between two integers.

It is, though, necessary to take into account the fact that the result will have a scaling factor

that is the product of the scaling factors of the two operands. A similar process has to be

applied also for the division, where the scaling factor is given gy the quotient by the 2 scaling

factors.

The problem with fixed point data type is that a lot of operations can produce results that

have more bits than the operands, so information loss is probable. This has to be taken into
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Appendix B (continued)

account when designing a fixed point architecture.

Because of that, the hardware necessary to implement fixed point operations is smaller

and less complex than the equivalent implemented in floating point arithmetic. The result

is that is possible to fit more fixed point operations into the FPGA. This can lead to better

performance, if there is the chance to double the architecture within the FPGA allowing to

double the throughput, or to free space in the local memory so to fit bigger buffers in the Target

Interface kernel.
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