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SUMMARY 

 

Electromyogram signals were recorded and analyzed from subjects with Amyotrophic Lateral 

Sclerosis. In contrast to routine needle clinical examinations, we used surface electrodes (High 

Density surface EMG, HDsEMG) in an attempt to show the feasibility of muscle assessment 

using a non-invasive approach. The study started by examining Fasciculation Potentials, a crucial 

electrodiagnostic feature of ALS. The feasibility of the proposed surface recording for their 

detection was soon established, so the fasciculation potentials were then further explored in order 

to understand the nature of their spontaneous discharges, when compared with regular motor unit 

discharges.. Due to a lack of software applications to analyze the signals from HDsEMG 

electrodes, a number of new techniques were designed and implemented to extract these 

potentials from raw EMG, and to classify them based on their shapes. Taking advantage of 

advanced multi-channel recording technologies, we explored Fasciculation Potentials with 

respect to the ‘Innervation Zones’ of their sites of origin, where signs of muscle reorganization 

were observed. In addition to their non-invasive nature and their comfort for the patients, 

HDsEMGs were proposed as potentially more suitable in monitoring the progress of the disease. 

Preliminary results were presented on this theme. Muscle functional capacity was also assessed, 

by measuring the slope of the EMG-force relation. Abnormal EMG-force slopes in some of the 

ALS subjects were recorded. In addition to global EMG analysis, single motor units were also 

extracted in a collaborative project which provided EMG decomposition outcome. We studied 

discharge behavior of single motor units in hand muscles of ALS subjects, during isometric 

voluntary contractions.  Overall, we concluded that HDsEMG can substitute for many 

electrodiagnostic practices in clinics, and can provide supplementary information about the 

muscle which is not attainable using single needle recording.



 
 

1 
 

1 Overview 

 

 

1.1  Amyotrophic Lateral Sclerosis 

 Amyotrophic Lateral Sclerosis (ALS) is a fatal progressive form of motor neuron disease 

leading to death of spinal and/or bulbar motor neurons. When these motor neurons die, there is a 

loss of connection between the muscle fibers and the CNS. In advanced cases, patients will 

experience increasing difficulty moving, swallowing, and speaking, depending on the site of 

motor neuron loss. Muscle atrophy, paralysis and respiratory system malfunctioning will follow. 

The root cause of ALS remains unclear, and varies from familial (in which there are strong 

genetic contributors) to idiopathic or sporadic. The disease causes degeneration of the lower 

motor neurons (LMN), located in the ventral horn of the spinal cord, and that innervate the 

muscles.  There is usually associated loss of the upper (cortical) neurons (UMN) that provide 

descending input to the lower motor neurons.  Thus, ALS patients typically experience 

symptoms and signs of both UMN (including spasticity and hyperreflexia) and LMN (including 

muscle weakness, muscle twitches and muscle atrophy) dysfunction. 

To date, there is no unique diagnostic test for ALS.  The “definitive” diagnosis is made by the 

presence and progression of both UMN and LMN symptoms and signs in three of four possible 

anatomical regions (bulbar, cervical, thoracic, and lumbosacral), and supported by findings of 

active denervation and reinnervation using clinical electromyography (EMG). Other appropriate 

imaging and blood tests are performed to exclude other “mimic” conditions (e.g., cervical 

spondylosis, inclusion body myositis, Lyme disease, etc.). 
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1.2 Electromyography  

The initiation of muscle contraction requires the movement of ions across the muscle 

fiber membrane. The gradient of these charges across the membrane creates electrical fields. An 

electrical field can be detected by recording from surface or intramuscular electrodes. This 

technique is called Electromyography (EMG). Due to the close interconnection of muscle and 

nerves, the EMG can be seen as a window to understand the functions of the nervous system. 

Consequently, the EMG has a significant role as an electrodiagnostic tool in neurological 

disorders.  

One essential component of the nomenclature in this thesis is the concept of the Motor 

Unit (MU). The MUs are functional building blocks of a skeletal muscle. Muscles are connected 

to the nervous system (innervation) by means of specialized neurons called motor neurons. An α 

motor neuron innervates a number of muscle fibers, which are not usually adjacent. A MU refers 

to the set of muscle fibers innervated by one motor neuron. The definition of the “motor unit” 

usually includes the motor neuron (its soma in the spinal cord, its axon, and its terminal 

branches), and corresponding muscle fibers. MUs’ territories within a muscle are overlapping, 

allowing them to function with the support of other units. 

 

1.3  Muscle Fiber Action Potentials and Motor Unit Potentials 

An action potential is a short disturbance to the electrical resting potential of a nerve 

membrane. Once an electrical stimulus is greater than a threshold, it initiates an inflow of sodium 

ions toward the interior of the cell, called depolarization phase, followed by the outflow of 

potassium ions to the exterior of the cell, the repolarization phase, and finally returning to its 

resting potential, the refractory phase. An Action Potential (AP) refers to the series of the three 
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phases. APs are the key electrical means for transformation of information throughout the 

nervous system. While the stimulated point on the fiber is returning to its resting potential, 

adjacent points on both sides get stimulated, initiating their excitation. This way, the signal 

transfers toward the fiber endings on both sides.  

The mechanism of voluntary muscle contraction is also initiated by APs. Originating in 

central nervous system, they reach to the soma of α motor neurons in the ventral horn of spinal 

cord. The APs propagates along a motor axon and toward the terminal branches at the end of the 

nerve. At each axon branch end, there is a synaptic cleft, where the nerve ending is connected to 

(likely) the middle of a muscle fiber. This is called a Neuromuscular Junction (NMJ).  

An AP in the presynaptic membrane causes activation of a key neurotransmitter 

(acetylcholine), which in turn launches an AP on the postsynaptic muscle fiber membrane. APs 

on muscle fibers are called Muscle Fiber Action Potentials or MFAPs. Since an α motor neuron 

is connected to a number of muscle fibers (up to several hundreds, depending on the muscle), all 

the innervating muscle fibers are potentially excited at the same time. If there exist a means of 

electrical activity recording (an EMG electrode), summation of all MFAPs will be recorded at the 

same time, forming Motor Unit Potentials (MUPs). 

 

1.4  Force Generation 

MFAPs propagate the same way as AP spread on nerve fibers. They travel along the fibers.. 

Their activation causes calcium release from the sarcoplasmic reticulum, which in brief makes 

the sarcomere, the contractile unit of the muscle fiber contract. The myofilaments (their subunits) 

slide together, leading to fiber contraction. In skeletal muscles, and at their ending, the muscle 

fibers are usually connected to tendon fibers, through which the generated force is transferred to 
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a bone. The nervous system controls a voluntary contraction by using two main strategies: MU 

recruitment and rate coding. The order of MUs activations and their firing rate modulation are 

the key factors that define the mechanism of a movement.  

A body of research has been dedicated to investigate these phenomena by means of 

Electromyography (Burke, 1968; De Luca et al., 1982; Fuglevand et al, 1993; Farina et al., 2002; 

Zhou and Rymer, 2004). Along with this understanding, there comes the ability to detect 

potential abnormalities and define electrodiagnostic features. 

 

1.5 High Density surface EMG  

Characterization of  an EMG signal depends critically on electrode properties, including 

size, charge transfer properties, orientation with respect to muscle fibers/fascicles, and 

configuration (monopolar, differential etc.) . Indwelling micro and macro needle electrodes, fine 

wires, and surface electrodes provide a spectrum of invasive and non-invasive approaches, each 

used for a specific application. 

Needle EMG examination is routinely used as the major diagnostic and confirmatory tool 

for identifying ALS in clinical practice. Surface EMG provides non-invasive examination of 

electrical activity of muscle, but has been viewed as being unsuitable for single MU analysis 

despite some promising clinical applications. This perceived role is due to its lack of sensitivity 

to small motor unit activities recorded from the surface of the skin. However, development of 

HDsEMG techniques has opened new avenues in reliable, noninvasive methods of EMG 

decomposition. Flexible surface electrode arrays (or grids) can be easily attached to the skin and 

can record long-lasting muscle activities noninvasively.  
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The HDsEMG technique is especially helpful when inserting a needle electrode could be 

painful (such as in facial muscles or tongue) and may cause discomfort for sensitive subjects. In 

HDsEMG, the lack of sensitivity (due to low pass filtering effect) is compensated by the 

additional spatial information added to temporal data. Multi-channel electrodes cover a large 

area of muscle, and can thus record more motor unit activities, while intramuscular EMG records 

from only a small volume of the muscle. This fact makes High-density surface EMG, HDsEMG, 

electrodes more appropriate for tracking the changes in the muscle for an individual over time, 

since inserting a needle at the exact same place inside the muscle is difficult if not impossible. 

Furthermore, HDsEMG electrodes can yield some information that cannot be obtained using 

single channel EMG, such as an estimate of motor unit end plate or muscle fiber conduction 

velocity.  

 

1.6  Overall Objective 

In spite of more than a decade of investigations, HDsEMG recording still is in a research 

stage, and has yet to show its value in clinics. Accordingly, this work aims to investigate 

application of surface EMG data for subjects with ALS, and to facilitate data analysis, which can 

be helpful in extracting useful information for the sake of clinical diagnosis, as well as for 

scientific research. The overall goal of this project is to demonstrate the utility of surface EMG 

in the assessment of ALS. 

 

1.7 Work Plan 

Most ALS diagnostic and tracking criteria require intramuscular recordings, to show 

presence of fibrillation potentials, fasciculation potentials (FPs), evidence for reinnervation in 
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motor unit potentials, and MU loss revealed by motor unit number estimation (MUNE). If 

surface EMG recordings are to be comparably useful, it will be necessary to demonstrate the 

feasibility of monitoring several aspects of the above-listed key electrodiagnostic features of 

ALS using multi-channel surface EMG recordings. 

 

1.7.1 Aim1: To detect and analyze abnormal spontaneous EMG activity  

Loss of LMN is equivalent to decrease of neural input to a muscle, and this is called 

denervation. A major sign of active denervation is the presence of abnormal spontaneous 

electrical activities. Abnormal spontaneous firings include fibrillation potentials (an action 

potential fired from a single denervated muscle fiber) and fasciculation potentials (action 

potentials fired from a motor unit). Fibrillation potentials are essentially undetectable on the 

surface of skin, because they are at sub microvolt level. The focus in this aim (1) was on 

Fasciculation Potentials (FPs). The presence of FPs indicates the existence of abnormal 

membrane potential in the terminal of the motor axon (hyperexcitable) and if diffusely 

distributed, is a sign of denervation (De Carvalho et al., 2008). Presence of FPs is prominent in 

ALS.  

Immediately after it became clear that FPs are detectable using HDsEMG technology, a 

lack of a proper software to analyze our EMG signal emerged. Available data analysis software 

(such as Spike2 and EMGLAB) have been proved inefficient for recordings of spontaneous 

activity of muscle, which requires hundreds of seconds of data recordings.  

In this aim, the designs of clinically applicable programs for FP analysis are described. Chapters 

2 to 4 are dedicated to this aim.  
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1.7.2 Aim2: To investigate the waveform of Fasciculation Potentials, in an effort to describe 

differences from a typical MU potential. 

One of the novel features of multi-channel recordings is their ability to locate the 

innervation zone (IZ) of an individual MU. While other research groups have discussed 

fasciculation potentials based on their waveform potential complexity or their temporal 

information, we approached them based on their IZ distribution. Abnormal lengths for the 

collective neuromuscular junctions of a MU are discussed in Chapter 5. 

 

1.7.3 Aim3: To Assess muscle function and its deficits by studying the relationship between 

surface EMG and joint torque 

In order to understand the impact of the changes in the mechanism of MU recruitment 

and the resulting force generated, the EMG-force relationship has been extensively studied in the 

past in different neurological disorders, but rarely in subjects with ALS. We conducted a study 

where subjects with ALS were instructed to perform abduction contractions on FDI muscle at 

randomized different levels of force. EMG-force slope for ALS subjects were then compared 

with age matched healthy controls. Chapter 7 is dedicated to this project. 

 

1.7.4 Aim4: To examine the motor unit firing rate behavior in ALS compared with aged 

matched controls. 

MU firing rate refers to the rate of discharges of a recruited MU. Firing rate is one of the 

main factors in force generation. Changes in the rate coding strategy can help us to understand 

the underlying changes in the muscle, as an effect of the motor neuron degeneration disease. 
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Firing rate variations have also been associated with LMN or UMN lesions. This study is one of 

the first ones that address firing rate change in ALS using HDsEMG technology, while all the 

existing ones are made using intramuscular EMG. Chapter 8 is dedicated to this study. 
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2 A Clinically Applicable Approach for Detecting 

Spontaneous Action Potential Spikes in Amyotrophic 

Lateral Sclerosis with a Linear Electrode Array
1
 

 

Faezeh Jahanmiri-Nezhad, Xiaoyan Li, Paul E. Barkhaus, William Z. Rymer, Ping Zhou 

 

Examination of spontaneous muscle activity is an important part of the routine 

electromyogram (EMG) in assessing neuromuscular diseases.  The EMG is specifically valuable 

as a diagnostic test in supporting the diagnosis of amyotrophic lateral sclerosis (ALS).   High 

density surface EMG (HDS EMG) is a relatively new technique that has until now been utilized 

in research, but has the potential for clinical application.  This study presents a simple HDS EMG 

method for automatic detection of spontaneous action potentials from surface electrode array 

recordings of ALS patients.  To reduce computational complexity while maintaining useful 

information from the electrode array recording, the multi-channel HDS EMG was transferred to 

single dimensional data by calculating the maximum difference across all channels of the 

electrode array.  A spike detection threshold was then set in the single dimensional domain to 

identify the firing times of each spontaneous action potential spike while a spike extraction 

threshold was used to define the onset and offset of the spontaneous spikes.  This data was used 

to extract the spontaneous spike waveforms from the electrode array EMG.  A database of 

detected spontaneous spikes was thus obtained, including their waveforms, on all channels along 

with their corresponding firing times.  This newly developed method makes use of the 

information from different channels of the electrode array EMG recording.  It also has the 

primary feature of being simple and fast in implementation, with convenient parameter 

adjustment and user-computer interaction. Hence it has good possibilities for clinical application. 

  

                                                           
1
 Published in Journal of Clinical Neurophysiology 2014 Feb;31(1):35-40. doi: 0.1097/01.wnp.0000436896.02502.31 
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2.1  Introduction 

Diffuse, abundant spontaneous muscle activity may be a typical electrophysiological 

feature in many neuromuscular diseases. Various spontaneous electromyogram (EMG) signals 

collectively are the electrophysiological manifestation of widespread degeneration of the bulbar 

and spinal motoneurons (Brooks, 1994). This examination of spontaneous muscle activity is an 

important part of the routine EMG, particularly in supporting the diagnosis of amyotrophic 

lateral sclerosis (ALS). The electrophysiological diagnosis of ALS includes the detection of 

positive sharp waves or fibrillation potentials and the manifestation of reinnervation in the motor 

unit action potentials (MUAPs). These symptoms have to appear in three of four regions (bulbar, 

cervical, thoracic and lumbosacral) to confirm the diagnosis (Brooks, 1994).  The presence of 

spontaneous EMG may portend lower motoneuron dysfunction prior to clinical symptoms such 

as weakness or muscle atrophy, possibly even before the onset of definite reinnervation changes 

in the MUAPs (de Carvalho and Swash 1998; Rosenfeld 2000; Barkhaus and Nandedkar 2005).  

Thus, enhanced detection of spontaneous EMG may be of great importance for early diagnosis of 

ALS.  ALS is almost inevitably fatal in 3-5 years. With the introduction of potential new 

therapies (Swash, 2000), early diagnosis of ALS has become an extremely important issue in 

optimizing management. . 

The intramuscular needle electrode is routinely used for detection of spontaneous muscle 

activity. It is generally accepted that the spontaneous activity of single muscle fibers such as 

fibrillation potentials or positive sharp waves can only be detected by such electrodes. 

Conversely, other spontaneous motor unit activity that may represent the collective activity of 

many muscle fibers (e.g. fasciculation potentials) can be recorded by both concentric needle 

electrodes as well as regular surface electrodes.  While fibrillation potentials are considered to be 

the most important feature of active denervation such as seen in ALS, recent discussion has 
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revisited the potential application of fasciculation potentials to enhance the  diagnostic sensitivity 

of ALS (de Carvalho 2000; de Carvalho et al. 2008; Benatar and Tandan, 2011; Noto et al. 

2012). 

In recent years, high density surface EMG (HDS EMG) techniques have been developed 

using electrode arrays comprised of a number of closely spaced, miniscule  recording probes or 

bars  (Zwarts and Stegeman 2003; Merletti et al. 2003; Rau et al. 2004; Lapatki et al, 2004; 

Pozzo et al. 2004;  Merletti et al. 2009;). These electrode arrays cover a relatively large area of a 

muscle.  Their noninvasive nature allows long recording times.  The latter is required for a 

quantitative evaluation of the discharge patterns of spontaneous motor unit action potentials, 

which may vary from a few milliseconds to more than a minute (Howard and Murray, 1992).  

Because of the added value of the spatial information, such electrode arrays can facilitate further 

discrimination between spontaneous action potentials (Drost et al. 2007). These discharge 

patterns have been used to assess their different origins (Kleine et al. 2008; Kleine et al 2012). 

Although it has great potential to offer additional investigative and diagnostic information, HDS 

EMG has not been used as a clinical tool for evaluation of neuromuscular diseases (Drost et al., 

2006).  If new criteria are to be considered in using fasciculation potentials to facilitate earlier 

diagnosis of ALS (de Carvalho et al. 2008; Benatar and Tandan, 2011), it would be helpful to 

develop a clinically applicable method to optimize their detection. This work presents a 

simplified method to automatically detect action potential spikes from HDS EMG recordings in 

ALS patients, which is suitable for clinical assessment of fasciculation potentials.  Our intent was 

not to develop complicated signal processing technique to discriminate between different 

spontaneous spikes. Our goal was to develop a clinically applicable method characterized by 

quick and convenient implementation for detecting the occurrence of spontaneous spikes, 

regardless of their motor unit origins (similar to the strategy used in routine needle EMG 
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examination).  Development of such methods will promote clinical integration of HDS EMG in 

the evaluation of neuromuscular diseases. 

 

2.2 2.2. Methods 

2.2.1 Testing Signals 

The testing data used in this study were recordings from 6 subjects with “Definite ALS” 

or “Probable ALS with Laboratory Support” based on El Escorial criteria from the third author’s 

institution. These patients had already been studied by conventional clinical EMG as part of their 

clinical evaluation (Brooks 1994).  All subjects gave written, informed consent prior to 

participation in this study.  This study was approved by the local Human Studies Committee. 

  Data collection protocol followed a spontaneous muscle activity paradigm.  No disturbing 

sensory stimuli were allowed in the examination room.  Each subject was positioned comfortably 

supine on an examination table with a pillow under their head. The tested arm was placed in its 

natural, resting position. The biceps brachii (BB) muscle was recorded with the elbow partially 

flexed and forearm in semi-pronation.   A 20-channel linear bar electrode array (Figure 26), 

designed and fabricated in our laboratory, was used for all recordings.  The distance between two 

consecutive recording bars is 5 mm, and each bar is 1 mm in width and 10 mm in length, 

arranged in a linear configuration.  After placement of the linear electrode array from proximal to 

distal tendon junctions of the BB muscle, the subjects were asked to completely relax.  Surface 

EMG signals were recorded for at least 10 minutes in a relaxed condition.  The surface electrode 

array signals were amplified by the Refa EMG Recording System (TMS International BV, 

Enschede, The Netherlands) in a monopolar configuration, with a reference electrode located on 

the olecranon (each channel also has a common feedback subtraction of the average of all the 
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recording channels). The surface EMG signals were sampled at 2k Hz per channel, with a band 

pass filter setting of 20-500 Hz. 

 

Figure 1: The linear electrode array used in this study. 

 

2.2.2 Spontaneous Spike Detection 

For an electrode array, a single channel EMG data is represented by a row vector 

dj=(x[1], x[2],…,x[Ns]), where j is the channel index and Ns is the total number of samples. The 

whole data set from the electrode array recording, represented as �̂�, is a matrix of Nch rows and 

Ns columns, where Nch is the number of electrode channels (Nch=20 in this study).  A 

spontaneous spike  can be represented by a matrix of Nch rows and M columns, where M is the 

duration of the spike. Six steps are involved in the spike detection algorithm from an electrode 

array. 

Step 1: Select appropriate channels.  One challenge with electrode array recording is to 

ensure the signal quality for all the channels (especially for electrode arrays comprised of a 

number of tiny recording probes). The minute skin-electrode contact area induces high skin-

electrode impedance which is a major reason for high recording noise.   Despite careful skin 

preparation, situations are sometimes encountered where the signal-to-noise ratio is poor in 

several channels of an electrode array. Thus in the first step, we reviewed all of the recording 

channels: those channels having poor recording quality were excluded from further analysis.   If 
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all the channels have good signal quality, this step is unnecessary (this is usually the case for 

most of the liner bar electrode array recordings). 

Step 2: Signal segmentation.  Due to the lengthy recording period of the linear electrode 

array used in this study, it is not feasible to analyze the entire recording time or epoch.  Thus, the 

signal was sequentially segmented into 100 s segments from beginning to end, with each 

segment being processed separately. 

Step 3: Creating a one-dimensional signal.  To facilitate convenient and fast spontaneous 

spike detection in the electrode array EMG recordings, a single dimensional signal, oneV, was 

constructed using signals from all the channels: 

𝑜𝑛𝑒𝑉 =  max �̂� − min �̂� 

More specific, 

𝑜𝑛𝑒𝑉[𝑖] =  max
𝑗=1:𝑁𝐶ℎ

[𝑥𝑖𝑗] −  min
𝑗=1:𝑁𝐶ℎ

[𝑥𝑖𝑗] 

where �̂� = [𝑑1, 𝑑2, … , 𝑑𝑁𝐶ℎ
] =  [𝑥𝑖𝑗]𝑁𝐶ℎ×𝑁𝑠

.  

Thus, the amplitude of oneV[i] at each time equals the maximum difference across all 

channels of the array. 

To reduce the high frequencies that induce error in the spike detection algorithm, a 

Hanning window was used to smooth the oneV signal, resulting in soneV:  

𝑠𝑜𝑛𝑒𝑉[𝑖] =
1

𝑛
∑ (𝑜𝑛𝑒𝑉[𝑖] ∗ 𝜔[𝑗])

𝑗=𝑖+𝑛

𝑗=𝑖−𝑛
,  

𝜔[𝑗] = 0.54 − 0.46 ∗ cos (
2𝜋

𝑛 − 1
𝑗) 

where 𝑛 is the Hanning window size, which is user-adjustable depending on the raw EMG 

signal. Increasing 𝑛 will result in more smoothed signal while concomitantly reducing the 

detection sensitivity. In this study, 𝑛 was set to 20 ms as a compromise.   
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Step 4: Spontaneous spike detection.  This step is to determine whether or not a 

spontaneous spike has occurred. A spike detection threshold was applied to the soneV signal, and 

any activity above this threshold indicates that a spontaneous spike occurred. The spike detection 

threshold was set as 𝑟 × 𝑚𝑎𝑥( 𝑠𝑜𝑛𝑒𝑉),  where 0 < 𝑟 < 1.   𝑟 was set to be 0.2 in most cases of 

this study.  A plot is provided in our program for a user to review the total soneV, as well as the 

preset threshold.   This plot is a visual aid to the user to select the most appropriate level for 

spike detection threshold.  In addition, the soneV signal can be plotted together, corresponding to 

all the available segments.  The output of this step is the occurrence times of the peaks of the 

detected spontaneous spikes. 

Step 5: Onset and offset detection of spontaneous spikes.  This step extracts the beginning 

and end points of the detected spontaneous spikes in the previous step. To determine how long 

the data should be extracted for an individual spike, another threshold was set to determine the 

onset and offset of the spike. This threshold is called spike extraction threshold.   In contrast to 

spike detection threshold, the spike extraction threshold is not fixed. In this study, the spike 

extraction threshold was set as 20% of the maximum peak amplitude of each detected 

spontaneous spike.  The cross points of this threshold with the soneV signal determine the onset 

and offset of the detected spike.  If the spike extraction threshold is lower than the baseline of the 

soneV signal (which may be the case for low amplitude spikes), the minima of the soneV signal 

is used to determine the onset (the first minima in the left lobe of the soneV signal) and the offset 

(the first minima in the right lobe of the soneV signal) of the spontaneous spike. The minima can 

be determined by the first zero crossing of the first order differentiation of the soneV signal.  

Step6: Exaction of spontaneous spikes and database construction.  The temporal 

information obtained in step 4 and step 5 is used to extract multi-channel waveforms from the 

electrode array EMG recordings.  This is the last step of our spike detection algorithm.  The final 
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output is a database of individual detected spontaneous spikes, as well as the temporal 

information for each spike. It is noted that although each spike has its own duration, they are all 

stored with the same length, padded with zero when necessary.  

2.3 Results 

 Figure 2 shows an example of an overall view of a 100 s spontaneous HDS EMG signal 

recorded from the BB muscle of an ALS subject, together with the converted one-dimensional 

signal, oneV, and its smoothed version, soneV.  The bottom of the figure shows an enlarged 

version of a selected segment (only the first 11 channels are presented), in which four 

spontaneous spikes with different amplitude and duration are observed. 

1

20

oneV

soneV

 

Figure 2: An overview of 100 s spontaneous surface electromyogram (EMG) signals recorded with the 
linear electrode array, and the oneV and soneV signals. An enlarged version of a selected signal segment 
is also shown (with only 9zz channels), in which 4 fasciculation potentials are detected. 
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Figure 3 demonstrates examples of spontaneous spike detection in different situations 

using our simplified method.  Figure 3a shows the most typical case of the spike detection, where 

the segment of soneV signal is plotted with the spike detection threshold.  The spike detection 

and extraction thresholds are marked as dotted and dashed horizontal lines, respectively.  The 

onset and offset of the detected spikes are shown by the two vertical dashed lines.  Beneath the 

soneV signal, the corresponding EMG data of selected channels are plotted. The duration of the 

detected spike is recorded on the top of the soneV signal. 



 
 

18 
 

Spke width: ~32 ms

soneV

spike detection threshold

spike extraction threshold

Ch 1

Ch 5

Ch 10

Ch 15

Ch 20

Spke width: ~58 ms

Spke width: ~25 ms

Spike width: ~36 ms

Spike width: ~37 ms

(a) (b)

(c)
(d)

(e)

 
Figure 3: Demonstration of different situations of spontaneous spike detection. (a) the most typical case; 
(b) detection of two close spontaneous spikes; (c) detection of a complex spontaneous spike; (4) 
detection of a low amplitude spontaneous spike; (4) a false detection with the soneV signal which can be 
corrected by examining the raw signals of all the channels. 

 

 Figure 3b shows a similar example of two close spontaneous spikes, which can be 

detected from the soneV signal.  Figure 3c shows an example of detection of a complex 

spontaneous spike.  Figure 3d demonstrates that when the signal to noise ratio of the signal is 

low, the soneV can detect low amplitude spontaneous spikes (most likely originated from motor 

units deeper within the muscle).  In this example, comparing the peak amplitude of the spike 
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with the spike detection threshold indicates that the detected spike has low amplitude. In 

addition, the spike extraction threshold, calculated as 20% of the maximum spike amplitude, is 

even lower than the soneV signal baseline.  Thus, the first minima in the left and right lobes of 

the soneV signal were used to determine the onset and offset of the spike. 

Figure 3e shows a false spike detection due to artifact that appeared on a specific channel 

of the electrode array (channel 18 in this example).  Such false detection can be easily excluded 

by examining the soneV signal, together with the EMG signals on all the channels of the array: 

this is a function provided by our program. 

Figure 4 shows an example of the final spontaneous spike database.  Nine spikes out of 

more than 300 spontaneous spikes are present.  In this figure each spontaneous spike is plotted in 

its own scale because of the large range in amplitude variation.  Plotting all of the spontaneous 

spikes using the same scale would not lead to a comprehensive plot.  It is worth noting the 

polarity changes across the channels, due to the common feedback in the recording system 

montage. 

In general, we observed that the detected spontaneous spikes from ALS subjects have a 

wide range of amplitude and duration.  Figure 5 shows an example of the spontaneous spike 

detection from several 100 s segments selected from a long recording of 1500 s. For each 

segment, the firing time, amplitude and duration of the detected spontaneous spikes are described 

in the 3-dimensional plots.   A total of 263spontaneous spikes were detected from the entire 

length of the recording, and their amplitude and duration distribution is presented in the right 

bottom panel of the figure. It is noted that the detected spikes may include slow and random 

fasciculation potentials, as well as some tonic spontaneous spikes with regular firing patterns. 
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Figure 4: Sample raster plot of the detected spontaneous spikes from the biceps brachii muscle on an 
amyotrophic lateral sclerosis (ALS) subject using the linear electrode array. The occurrence time and the 
maximum peak- to-peak amplitude are indicated on the top of each spike. 
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Figure 5: A demonstration of the firing time, duration and amplitude of the detected spontaneous spikes 
in several 100-second signal segments selected from a 1500-second recording. The bottom right panel 
shows the amplitude and duration of all the spikes from the entire recording. 

 

2.4 Discussion 

Since 1957, EMG examination has been routinely used as the primary electrodiagnostic 

and confirmatory tool for identifying ALS (Lambert and Mulder, 1957).  Concentric needle 

EMG has been applied systematically and prospectively in diagnosing and evaluating ALS.  

HDS EMG has been emerging as a promising tool to offer additional investigative and diagnostic 

information (e.g., muscle fiber conduction velocity, motor unit territory, innervation zone 

localization) in the evaluation of neuromuscular disorders (Masuda and Sadoyama 1987; Sun et 

al 1999; Zwarts and Stegeman 2003; Merletti et al. 2003; Rau et al. 2004; Merletti et al. 2008).   

To date it has seen relatively limited use as a clinical tool (Drost et al., 2006).  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sun%20TY%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sun%20TY%22%5BAuthor%5D
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One major reason may be the complexity of the multiple channel processing imposed by 

the electrode montage.  HDS EMG recording produces a large data set, causing inconvenience in 

data analysis in terms of memory space and time efficiency, thus constraining its clinical 

application even when recording from relaxed muscles.  Although amplitude threshold based 

algorithms are often used for spike detection, application of such methods to HDS EMG is 

inconvenient. For example, thresholding using a specific channel of the array would have missed 

the spontaneous action potentials on other channels.  Because of action potential propagation, the 

temporal information obtained in a specific channel may not be applicable to other channels.  An 

alternative way is to apply thresholding to all the channels and assign those potentials with close 

timings to be of the same origin.  For a HDS EMG recording this method is not efficient as one 

would need to repeat the detection process for all the channels.  

To promote clinical application of HDS EMG, this study presents a convenient and fast 

approach for automatic detection and analysis of spontaneous action potential spikes from 

electrode array recordings in ALS patients. The primary feature of the study was to handle HDS 

EMG recordings in a simplified manner while preserving the advantage of multiple channel 

recordings.   This was accomplished by transferring the multi-channel data matrix to single 

dimensional data via calculating the maximum differences across channels of the electrode array. 

For a differential recording which usually demonstrates polarity changes among the electrodes 

(as demonstrated in our data because of the common feedback subtraction of the average of all 

the recording channels), this can emphasize the occurrence of spontaneous spikes.  The temporal 

difference due to action potential propagation along muscle fibers can also be reflected in the 

constructed one dimensional signal. By this means, our method takes advantage of the electrode 

array while avoiding computational burden and complexity imposed by multi-channel 

recordings.  From the one-dimensional data, a spike detection threshold can be set to identify 
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firing times of each spontaneous spike while a spike extraction threshold can be used to define 

the onset and offset of the spikes. Such information is sufficient to extract the spontaneous spike 

waveforms from HDS EMG. 

 To facilitate clinical application, our program also provides convenient user-computer 

interaction.  For example, at the signal preprocessing stage, a user is able to review the overall 

EMG segment, and exclude any segments with voluntary EMG activity or severe noise 

contamination. A user can set different threshold levels, according to the specific spike 

amplitude level of interest.  At each step of the spike detection process, the program also 

provides plots allowing the user to view the results.  At the end of spike detection from the last 

segment of a trial, the plot of final residual signal is provided by setting the detected spikes to 

zero.  Before storing the spikes in the final database, a user can review the soneV signal together 

with the raw EMG signals on different channels to  ascertain that the spontaneous spikes 

consistently occur on these channels rather than on a specific channel (as typically in  the case of 

artifacts). 

The output of our algorithm is a database of extracted multi-channel spikes along with 

their firing times.  In parallel to the needle EMG examination, our algorithm detects the 

occurrence of spontaneous action potential spikes regardless of their motor unit origins since 

these would have the same diagnostic significance.  The goal in this project was not to develop 

novel or advanced methods for classifying spontaneous spike waveforms. Instead, we wanted to 

develop a clinically applicable method to apply HDS EMG.  Such a method would promote the 

clinical utility of HDS EMG.  Although classification of action potentials or separation of 

superimposed waveforms is beyond the scope of this work, the database obtained from this study 

could be used as the first step for such a purpose. The developed spike detection method can also 

be applied to voluntary EMG to acquire candidate MUAPs for signal decomposition.   The data 
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presented in this study are from spontaneous muscle recordings from ALS subjects. 

Nevertheless, the spike detection algorithm can also be applied to examine spontaneous EMG 

activity from other patient populations (such as hemiparetic stroke or spinal cord injury). 

Finally, although this study used a long recording time to test our method, such a long 

recording time is usually not required in routine clinical application.  With clear conventional 

evidence of denervation (i.e., fibrillation potentials) in a muscle, detection of a small number of 

fasciculation potentials may be sufficient to further support the possibility of ALS.  Conversely, 

when clinical and conventional EMG abnormality is limited, a longer duration recording time 

may be necessary. Thus, the recording time for detecting fasciculation potentials depends on the 

context of the clinical situation (Mills 2011; Zhou et al. 2012).   
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3 Sensitivity of fasciculation potential detection is 

dramatically reduced by spatial filtering of surface 

electromyography
2
 

 

Faezeh Jahanmiri-Nezhad, Paul E Barkhaus, William Zev Rymer, Ping Zhou 

  

 

     Bipolar electrode configuration is most commonly used in surface electromyography (EMG) 

recording because a differential amplifier can eliminate any ‘‘common mode’’ components from 

the two closely placed recording surfaces. Higher order spatial filtering of surface EMG with an 

electrode array can further highlight activity of superficial motor units and thus provides a useful 

approach for single motor unit active y detection using surface EMG (Farina et al., 2003). 

However, in this letter we demonstrate that to achieve the best capacity for fasciculation 

potential detection, as may be used to investigate amyotrophic lateral sclerosis (ALS), a 

monopolar surface electrode configuration provides a more accurate approach.  

Fasciculation potentials may be an important marker in studying ALS (Mills, 2011). They can 

also contribute to help diagnosis of ALS according to recent consensus of the Awaji criteria (De 

Carvalho et al., 2008). Fasciculation potentials can be recorded readily by concentric needle and 

conventional bipolar surface electrodes (Howard and Murray, 1992), which are routinely 

available in clinical EMG laboratories. Recently, high-density surface electrode arrays comprised 
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of a number of closely placed tiny recording probes have achieved increasing applications for 

research laboratory based investigation of neuromuscular diseases, including examination of  

fasciculation potentials from ALS patients (Drost et al., 2007; Kleine et al., 2008, 2012; Zhou et 

al., 2011, 2012; Zhang et al., 2013). It is important to optimize the detection of fasciculation 

potentials for such investigations. In this letter we attempt to quantify the effects of different 

spatial filtering techniques (which are often used for electrode array surface EMG recordings) on 

sensitivity of fasciculation potential detection, with the view toward determining the most 

appropriate electrode configuration.  

 Eight subjects (57 ± 9 years; 6 males, 2 females) with definite ALS or probable ALS with 

laboratory support participated in this study. The study was approved by the local Human 

Studies Committee, and all the subjects gave their written informed consent. Fasciculation 

potentials were recorded using surface electrode arrays from 18 muscles in total. These include 

10 biceps brachii muscles, 4 first dorsal interosseous (FDI) muscles, and 4 thenar muscles. 

During the recording, subjects were asked to completely relax their tested arm. After skin 

preparation, a 20-channel linear electrode array (Fig. 1a), designed and fabricated in our 

laboratory, was used for biceps brachii muscle recording. The electrode array was placed on the 

middle of the muscle belly from proximal to distal tendons along muscle fiber direction. For the 

FDI and thenar muscles, a 64-channel 2D flexible surface electrode array (Fig. 1b, TMS 

international BV, the Netherlands) was used for recording. The electrode array was placed with 

one column along the muscle fiber direction. The duration of the resting muscle recording 

maintained at least 200 s for the biceps brachii muscle and 300 s for the FDI or thenar muscle. 

The signals were amplified by the Refa128 EMG system (TMS International BV, the 

Netherlands). Reference electrode was placed near the elbow. The signal was sampled at 2 kHz 

per channel, with a band pass filter setting of 20–500 Hz. It is noted that for each channel a 
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common feedback subtraction (average of all the recording channels) was imposed by the 

system. Because of this system feedback, in this letter, we call such a setting as initial mode 

(instead of usually called ‘‘monopolar configuration’’). However, such a common feedback 

would not have any influence on implementing different linear spatial filters.  

All the signal processing was performed offline using Matlab (MathWorks, Natick, MA). 

Fasciculation potentials were detected using a previously described algorithm (Jahanmiri-Nezhad 

et al., 2014). In brief, the algorithm transforms the multi-channel signal to a single-dimensional 

data by calculating the maximum difference across all channels of the electrode array. Such 

processing can reduce computational complexity, yet maintain useful information from the 

electrode array recording as much as possible. A spike detection threshold was applied to the 

one-dimensional signal (smoothed by a Hamming window) to identify the firing times of each 

fasciculation potential. In this study, the spike detection threshold was set as 20% of the 

maximum amplitude of the smoothed one-dimensional signal.  

The number of fasciculation potentials was first obtained in the initial mode. Then, different 

spatial filters were applied. For the linear electrode array, a longitudinal single differential 

(bipolar) filter and a longitudinal double differential (DD) filter were used for processing. For the 

2-D electrode array, a longitudinal bipolar filter and a Laplace filter was tested. Each spatial 

filter corresponded to an electrode configuration comprised of several neighboring electrodes 

with different weights, as demonstrated in Fig. 6(a) and (b). The spatially filtered signal was 

obtained by weighted summation of neighboring electrode recording. The number of the 

fasciculation potentials was then identified for each spatial filter configuration. Fig. 1c shows an 

example of EMG recordings using different electrode configurations, which demonstrates that 

some fasciculation potentials recorded in the initial mode were not observable after the spatial 
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filtering. Because of this, the number of fasciculation potentials detected was dramatically 

reduced by spatial filtering of surface EMG.  
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Figure 6: (a) A schematic plot of the 20-channel linear electrode array used for the biceps brachii muscle 
recording. Each recording bar is 1 mm in width and 10 mm in length, and the inter-bar distance is 10 
mm. (b) A schematic plot of the 2D flexible electrode array used for the FDI or thenar muscle recording. 
Each recording probe is 1.2 mm in diameter, and the center to center distance between two adjacent 
probes is 4 mm for both horizontal and vertical directions. (c) A comparison of fasciculation potentials 
recorded from biceps brachii muscle of an ALS subject using the initial mode, the bipolar and double 
differential configurations, respectively. 

 

 

        For the 10 biceps brachii muscles, the average number of fasciculation potentials detected 

per 100 s was 149 (range: 13–407). After the bipolar filtering, this number was reduced to 28 

(range: 1–75). Calculation of the reduction rate for each muscle indicates that on average 73.7% 

of the fasciculation potentials recorded in the initial mode could not be captured with the bipolar 

electrode configuration. The average detection rate per muscle was further reduced by 84.3% 
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with double differentiation compared with the initial mode. For the 4 thenar muscles, the average 

number of detected fasciculation potentials per 100 s was 264 (range: 10–545).  

Calculation of the reduction rate for each muscle indicates that the average reduction rate of 

fasciculation potential detection was 53% for the bipolar electrode configuration, and 70.3% for  

the Laplace electrode configuration, respectively, compared with the initial mode. Similar 

findings were also observed from the FDI muscle. The average reduction rate of fasciculation 

potentials per FDI muscle was 47% for the bipolar configuration, and 86.4% for the Laplace 

configuration, respectively, compared with the initial mode.  

              We conclude that for robust detection of fasciculation potentials in ALS, spatial filtering 

of surface EMG dramatically reduces the detection sensitivity and thus should not be applied. 

The electrode configuration is of the user’s construction, and the EMG signal as recorded is 

influenced by our choice of different electrode configuration methods. How to determine the 

most appropriate electrode configuration depends on the investigatory objective of the recording. 

For best capacity of fasciculation potential detection using surface EMG, our analysis indicates 

monopolar surface electrode configuration should be used.  
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4 Spike Sorting Paradigm for Classification of Multi-

channel Recorded Fasciculation Potentials 
3
 

Faezeh Jahanmiri-Nezhad, Paul E. Barkhaus, William Z. Rymer, Ping Zhou 

 

 

Background: Fasciculation potentials (FPs) are important in supporting the electrodiagnosis of 

Amyotrophic Lateral Sclerosis (ALS). If classified shaped-wise, FPs can also be very 

informative for laboratory-based neurophysiological investigations of the motor units. 

Methods: This study proposes a Matlab program for classification of FPs recorded by multi-

channel surface electromyography (EMG) electrodes.  The program applies Principal 

Component Analysis on a set of features measured from all channels. Then, it registers 

unsupervised and supervised classification algorithms to sort the FP samples. Qualitative and 

quantitative evaluation of the results is provided for the operator to assess the outcome. The 

algorithm facilitates manual interactive modification of the results. Classification accuracy can 

be improved toward satisfaction. The program makes no assumption based on occurrence times 

of the spikes, in accordance with the sporadic and irregular nature of FP firings.   

Results: Ten sets of experimental data recorded from subjects with ALS using a 20-channel 

surface electrode array were tested. A total of 11891 FPs were detected and classified into a sum 

of 235 prototype template waveforms. Evaluation and correction of classification outcome of a 

dataset with over 6000 FPs can be achieved within 1-2 days. Facilitated interactive evaluation 

and modification could expedite the process of gaining accurate final results. 

Conclusion: The developed Matlab program is an efficient toolbox for classification of FPs. 

Keywords— Amyotrophic Lateral Sclerosis, Fasciculation Potential, Feature Extraction, 

Principal Component Analysis, Unsupervised Clustering, Supervised Classification. 
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4.1  Introduction  

Amyotrophic Lateral Sclerosis (ALS) is a progressive, degenerative disorder that affects 

both upper and lower motor neurons.  There is currently no unique marker to diagnose ALS. The 

crucial factor in ascertaining the diagnosis of ALS is to observe the clinical progression of motor 

neuron loss from the region(s) of onset, as it spreads to other regions in the body (M. de 

Carvalho et al., 2008).  Active denervation is reflected by abnormal spontaneous activity in 

affected muscle, which includes fasciculation potentials (FPs), generated from single or multiple 

motor units (MUs).  FPs are detectable by conventional clinical electromyography (EMG).  

While not necessarily an indicator of denervation, frequent occurrence of FPs in association with 

changes in motor unit potentials (reflecting MU reinnervation) has been recognized as an 

important supportive evidence for the electrodiagnosis of ALS (M. de Carvalho et al., 2008; de 

Carvalho & Swash, 2012, 2013).  

Needle electrodes are used to detect spontaneous muscle activity in routine clinical EMG studies. 

Conventional surface electrodes are limited by their non-selective measurement of the electrical 

activity of a muscle that may be attenuated by their large size.  In the last decade, High Density 

surface EMG (HDsEMG) electrode arrays have been developed (Drost, Kleine, Stegeman, van 

Engelen, & Zwarts, 2007; Howard & Murray, 1992; Merletti et al., 2010). This technique has 

attracted much attention in laboratory-based investigations including examination of FPs, (Drost 

et al., 2007; Howard & Murray, 1992; Merletti et al., 2010).  A HDsEMG electrode contains an 

array of miniscule recording surfaces spaced closely to one another.  The muscle’s electrical 

activity can then be simultaneously recorded by a number of channels.  This multi-channel 

electrode array enhances temporal and adds spatial information and selectivity that conventional 

surface electrodes lack.  A thorough review of surface electrode array EMG analysis and its 
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advantages compared with concentric needle EMG is described by Farina et al (Farina, Holobar, 

Merletti, & Enoka, 2010).  Zhou et al recently demonstrated that a HDsEMG array can be more 

sensitive than a needle electrode in capturing FPs from the superficial muscles in ALS patients 

(P. Zhou, Li, Jahanmiri-Nezhad, Rymer, & Barkhaus, 2012).  

Although different FPs, regardless of waveform or motor unit origin, would have the 

same clinical diagnostic significance, it would be helpful to classify the FPs for laboratory-based 

investigations. Results of FP classification can be further analyzed to characterize  the firing 

pattern and action potential waveform of fasciculating MUs. Potential applications may include 

(but not limited to)  indirect discovery of their site of origin and distinguishing between FPs that 

are encountered in the normal population and those associated with pathological processes such 

as ALS (Fermont et al., 2010; Mills, 2010). These pieces of information can be obtained through 

classification of FPs into groups of similar waveform shapes.  

The task of FP classification is somewhat similar to the task of EMG decomposition, which is 

the process of breaking down an epoch of voluntary EMG signal to derive its constituent single 

MU potential firings.  In the past several decades, much effort has been focused on EMG 

decomposition, traditionally with intramuscular needle electrodes. The concept and methods of 

decomposition in clinical EMG have been reviewed by Stashuk [32]. In recent years, there have 

been numerous studies on EMG decomposition using surface electrode (Chauvet et al., 2003; 

Christodoulou and Pattichis, 1999; De Luca et al., 2006; Garcia et al., 2005; Glaser et al., 2013; 

Holobar et al., 2009; Holobar et al., 2010; Holobar and Zazula, 2004; Kleine et al., 2007; 

Marateb et al., 2011; Merletti et al., 2008; Nawab et al., 2010; Zennaro et al., 2003; Zouridakis 

and Tam, 2000).  However, available EMG decomposition software, such as Spike2 (Cambridge 

Electronic Design Limited, Cambridge, England) or EMGLab (McGill et al., 2005) are not 



 
 

33 
 

applicable for FP classification, due to different characteristics of spontaneously fired spikes 

compared with voluntarily firing MUs.   

The objective of this study is to design a spike sorting program specific to the unique features 

of FPs.  Some routines in EMG decomposition are adopted for FP classification. However, our 

classification strategy does not rely on MU firing rate information because of the sporadic 

character of FPs. In this program, robust unsupervised and supervised classification techniques 

are combined with facilitated interactive decision making modules. Throughout this process, 

automatically classified FPs are evaluated in several steps. Erroneous assignments are corrected 

interactively. Consistency of waveforms in each class is visually examined. In addition to 

qualitative evaluation, quantitative within-class distance and between-class distances are also 

examined for the sake of class accuracy estimation.  Moreover, performance of the classification 

is examined using the concept of “two-source” method by applying independently to two non-

overlapping sets of channels divided from an array recording. The classification program is 

tested with FP data sets of ALS patients. Both advantages and limitations of the program are 

discussed. 

4.2 Materials and Methods 

4.2.1 Experiments 

FPs recorded from subjects with Definite ALS or Probable ALS with Laboratory Support 

based on El Escorial criteria (Brooks, Miller, Swash, Munsat, & World Federation of Neurology 

Research Group on Motor Neuron, 2000) are used to test the classification program.  Data 

recording is performed at the second author’s institution and had the approval of the local 

Human Studies Committee.  All subjects are given written informed consent prior to their 

participation.  Subjects are seated comfortably in a regular chair or in their wheelchair, with their 
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elbow partially flexed and forearm semi-pronated.  Subjects are asked to completely relax.  

A linear array of 20-channel HDsEMG electrode, designed and fabricated in our laboratory, is 

used for the recording of FPs in the biceps brachii muscle.  The electrode is oriented along the 

long axis of the muscle fibers such that the center of the electrode array is close to the center of 

the muscle belly, with the proximal edge oriented toward the muscle’s origin and the distal edge 

oriented toward the muscle’s tendinous insertion.  Each bar of electrode is 1mm in width and 10 

mm in length. The inter electrode distance is 5 mm. The signals are amplified by the Refa128 

EMG Recording System (TMS International BV, the Netherlands).  The reference electrode is 

placed on the ipsilateral elbow.  Sampling rate is 2 kHz per channel. Band pass filter is set for 

20–500 Hz, which can slightly smooth out waveform shapes, but does not affect classification 

performance.  Hardware-based common feedback (average of all available channels) is 

subtracted from each channel.  

In this study, ten data sets of FPs recorded from the biceps brachii muscles of five ALS 

subjects (56 ± 10 years; 4 males, 1 female) are presented.  The duration of recording ranges from 

F300 to 2500 seconds, with an average of approximately 1000 s.  

4.2.2 FP Classification Program Description  

The FP classification program includes the following steps or modules. Prolonged recordings of 

spontaneous muscle activity are broken down into 100-second epochs.  Spike detection 

algorithm (Jahanmiri-Nezhad, (in press)) is applied to the EMG signal.  Extracted FPs are stored 

in a database along with information of their firing time.  Below, we describe the feature 

extraction, spike sorting, evaluation and interactive modification processes. All programs are 

coded in Matlab version 7.12 (R2011), the MathWorks Inc.   
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4.2.2.1 Database of Detected FPs 

Prior to classification, FPs are detected using a modification of the algorithm described 

by (Jahanmiri-Nezhad et al., 2013).  This algorithm starts by transforming the HDsEMG multi-

dimensional signal into a one-dimensional signal.  Amplitude thresholding is then applied to the 

one-dimensional signal to determine the timings of individual spikes. To construct the one-

dimensional signal, the difference between maximum and minimum voltage values across all the 

channels is used to make a new data point at each time sample.  In this study, we use the standard 

deviation of the EMG data at each sample time across all channels.  
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Figure 7:  Summary of the spike detection process.  (A) shows a sample raw EMG. Half-second EMG 
epochs containing only 9 channels are shown here.  (B) shows an example of amplitude thresholding.  
The bottom two lines (in blue) are EMG. The spikes on these channels are FPs.  FPs are apparent on the 
rectified black line above that shows the one-dimensional signal.  The magenta dashed line crossing the 
black line is the user-selected threshold.  Amplitude thresholding on the black line provides the start and 
end times of each FP. (C) shows an example portion of a database of extracted FP.  Each column 
represents one FP, where each row represents one channel of recording. ‘FT’ and ‘Amp’ refer to “firing 
time” and “maximum amplitude”, respectively. 
 
 

Although it is a common practice to apply spatial filtering on multichannel EMG data in 

order to improve the quality of the signal (Merletti et al., 2008), we deliberately refuse to do so, 
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since it has been shown that sensitivity of FP detection is dramatically reduced after spatial 

filtering, (Jahanmiri-Nezhad et al., 2014). Figure 7 illustrates the procedure for FP extraction, 

starting from raw EMG (recorded at rest) at left.  At the right panel, a sample database of FPs 

recorded by the 20-channel electrode array is shown.  Firing times and maximum peak-to-peak 

amplitude across all channels are also reported. 

 

4.2.2.2 Feature Extraction 

Regardless of electrode configuration, a matrix ([]nCh×w) is used to represent a spike, where ‘nCh’ 

is the number of channels and ‘w’ is the duration of the waveform (in this work: []20×55). Two 

features from each channel are measured: 1) peak to peak amplitude (polarity considered). 

Amplitude ‘polarity’ is positive when the negative peak of the waveform comes prior to the 

positive peak;  2) area under the curve (sum of absolute values).  An FP is ‘nf’-dimensional 

vector, where nf = nCh×2. To increase the efficiency of the feature domain, Principal 

Component Analysis (PCA) is applied.  By selecting only a number of principal components, we 

can reduce the dimensionality of the feature space, and thus reduce the complexity of the 

processing.  This is especially helpful in HDsEMG recordings where the number of recorded 

channels is large, or when the sample size for classification is relatively small. In general, in 

parametric methods (i.e. methods involving any type of Expectation-Maximization, including 

Kmeans and Gaussian mixture model estimation), relative number of samples to number of 

parameters has to be sufficiently large for reliable density estimation. However, in experimental 

data, the number of samples is usually limited. Efficient dimension reduction strategies are very 

helpful in this regard. For PCA implementation, first the dataset in feature space is built as a 

matrix feat-Data=[]N×nf, with N number of FP samples.  Covariance matrix of ‘feat-Data’ matrix 

is computed, covfeat-Data= []nf×nf.  Eigen-decomposition is applied on the covariance matrix.  Data 
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samples transformed by the eigenvector corresponding to the largest eigenvalue hold the highest 

variance.  This can be the most discriminative feature for classification purpose.  We can choose 

one, two, or ‘nf’ principals to transform the data. As the dimensionality of feature space 

increases, the condition number of covfeat-Data matrix is checked. A too large condition number 

will lead to an ill-conditioned covariance matrix, which in turn impairs the reliability of PCA. In 

theory, a ‘too large’ condition number is defined when the logarithm of the condition number is 

larger than precision of entry data. In this study, to optimize the PCA, the dimensionality of 

feature space does not exceed a value that causes the condition number to surpass 1000. A five 

dimensional space is usually chosen for the 20-channel data in this work. 

4.2.2.3 Unsupervised Clustering Strategy for FP Classification 

The K-means technique (built in Matlab Statistics Toolbox) is used for the initial attempt 

of spike sorting. Number of classes and initial seeds (initial estimate of class templates) are 

required. To assist with the estimation of number of classes, FPs are plotted in 3D space using 

the first three principal components (an example is shown in Figure 4, Panel C). The plot 

(partially) demonstrates how the data are scattered, so the number of clusters may be estimated. 

Overestimation is preferable to underestimation at this stage. The former can be adjusted later by 

cluster combination. ‘Underestimation’ would lead to erroneous classes, which is undesirable.  

The initial seeds can be picked randomly (default) or selected manually.  Once K-means is 

applied, the first set of clustered FPs is ready. The members of each class are then visualized in 

their waveform format, in separate plots.  A good performance would be easily recognizable by 

overall consistency in waveform shapes within each class. If the overall outcome is poor for most 

of the classes, input parameters, which may include feature set dimension, initial estimate of 

class numbers, or distance metric, are modified. Then, the clustering step is repeated until the 
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overall output is reasonable.  The variables ‘Cluster’ and ‘Label’ are adjusted accordingly 

afterwards.  The variables are described in table 1. 

Table 1 _ Variable description 

Variable Description 

K Number of classes.  This number gets updated 

throughout the process.  

Cluster Type: ‘structure’.  It stores member indices assigned 

to each class. It also flags which indices may be 

used for measuring the template of the class.  

Label A vector storing class index of each FP. 

Label-0 Refers to unlabeled FPs.
  

Label-1 Trash Bin. Refers to erroneous samples detected as 

FP, or waveforms with too small SNR.  

Template Prototype waveform shape of a class.  

template Prototype of a class in feature space. 

4.2.2.4 Visually Aided Evaluation and Refinement 

The objective of this step is to make each class as accurate as possible.  For this purpose, 

each class is visually examined and refinements are made as necessary. Class examination starts 

by first illustrating members of each class by their waveform shape.  A class is either overall 

accurate (members’ waveform shapes are consistent) or inaccurate (there are too many 

inconsistencies).  In the latter instance, if there are too many low-SNR or erroneous waveform 

shapes, the whole class is assigned to Label-1.  If the cluster is composed of two or more patterns 

of data, then that class requires another round of clustering.  

When the class is overall accurate and the number of erroneous assignments is minimal, 

‘Interactive Class Refinement’ module is called up to remove inconsistent assigned samples. In 
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this module, there are four possible options to modify the status of each assignment. For each 

assigned member, the four options include: 1) accept and include in class template measurement; 

2) accept but not include for class template; 3) move it to Label-0 group; or 4) move it to Label-

1.  The second option refers to correctly assigned members that for some reason (e.g., 

superimposition with other waveforms, unexpected noise on some channels, or misalignment of 

the waveforms compared to other members of a class) are excluded from computing class 

template shape.  Figure 8, panel A, shows a sample plot by this module. Waveforms belonging to 

one class are plotted side by side. Members of a class are illustrated in a default number of 25-

sample group at a time.  The entire group can be Accepted/ Rejected, or individual samples can 

be modified one-by-one. For this purpose, the screen is divided into four regions by dotted lines, 

corresponding to options 1 to 4. The user can click in a particular region to select the appropriate 

option for a sample.  The program will re-adjust the ‘Cluster’ and ‘Label’ variables accordingly. .  
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Figure 8: (A) Sample plot of ‘Interactive Class Refinement’ module. FPs are plotted side-by-side. Each 
column represents one FP. Four options are integrated in the screen by the four regions. In this 
example, three samples (in different color) can be identified with inconsistent waveform shapes (case of 
superimposition).Clicking in region2 would exclude them from computing the template of this class, and 
clicking in region3 would remove their membership and assign them to L-0.  (B) Sample plot of 
templates proposed to be similar to the template of the class of interest (in magenta color). (C) Up to 
five samples from the to-be-merged classes are plotted side by side, providing a visual aid for the user to 
determine whether to combine the two classes or not. (D) A multi panel plot. Each panel shows the to-
be-classified sample (in green, left) along with the template of candidate class (in blue, right). Amplitude 
information is also included. The sample may be assigned to one of the classes, be left unassigned, be 
sent to Trash, or open a new class. 
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After modifying classification results, it is usual to find two or more classes with almost identical 

waveform templates. This is primarily due to the initial overestimation of class number and 

presence of noise.  Such classes need to be merged.  Inter-cluster distance matrix is used to 

provide an initial list of potential twin classes.  A plot of potential twin classes, in feature space, 

is provided which assists to narrow down the list, such as in Figure 8 panel B.  Furthermore, the 

candidates are investigated in their waveform shape format to make a firm decision about 

merging, such as in Figure 8, Panel C. Variables ‘K’, ‘Cluster’ and ‘Label’ are updated, if a 

change has occurred.  Another round of ‘Interactive Class Refinement’ module is called up for 

final refinement of the combined classes. 

4.2.2.5 Final Supervised Classification 

In the previous step, the goal is to make each class as accurate as possible.  Uncertain 

samples are left unassigned.  Now in this final step, classification decisions are made for the 

remaining unlabeled samples.  In this step, class templates are known, whereas in step 1 

(unsupervised clustering) such knowledge is unavailable.  Therefore, the assignment of 

remaining samples can be made through supervised classification.  A classifier is trained based 

on discriminant analysis (linear or quadratic) technique using thus far classified samples as 

training data.  Theoretically a sample should be assigned to the closest class (minimum distance).  

However, since we deal with ‘difficult to classify’ spikes in this step, the waveform shapes of a 

sample and the candidate class template are visualized before any decision is made. 

The algorithm pulls samples with Label-0, and finds the closest classes to each sample.  

In a first attempt, a few waveforms from each class along with all of the potentially new 

members are plotted side by side.  The user can interactively “accept” or “reject” the 

classification (as shown in Figure 10).  In a second attempt, yet unlabeled samples are examined 
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individually. An FP waveform is plotted along with candidate class templates, such as in Figure 

8  panel D.    

4.2.2.6 Quantitative Evaluation of Relative Class Consistency 

 

A quantitative measur ement is provided to the user, as a supplement to qualitative visual 

evaluation.  As a measure of internal consistency in each class, within-class distance (SW) is 

measured and compared to between-class distances (SB).  An ideal classification has a large SB 

compared to SW.  This means that the classes are well separated from each other, while members 

of a class are compactly close to its center (i.e., similarity between members of a group is 

relatively high and similarity of members of different groups is small).  Euclidean distance 

between members of a class and class template are measured and averaged, leading to SW. 

Euclidean distance between templates of all possible pairs of classes are also measured and 

stored in the matrix SB.  For each class, a more-than-unity ratio of SB/ SW is desired. 

4.2.2.7  Examination of Reproducibility; Two-source Method Comparison 

 

The program involves the operator in modification of the outcome. In an attempt to 

evaluate the reproducibility of the final outcome, the set of 20-channels data is divided to two 

non-overlapping 10-channels sets. Set1 refers to data on channels 1-10, and set2 refers to 

channels 11-20. The program is applied on set1 and set2, and the results are compared. The 

number of clusters might vary between the two sets. This is partially because of possibly high 

similarity of different waveforms, when the number of channels is reduced. Class labels of 

corresponding samples do not necessarily match. The only known variable is the index of class 

members. For each class, from the set of results with lower number of classes, we examine the 

corresponding labels from the other set of results. The most frequent label is determined, Lf. We 
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quantify the accuracy of the result for that class, by the ratio of number of members with Lf to 

the total number of members. At the end, we average the accuracy ratios of all the classes.  

4.3 Results 

FPs are extracted from spontaneous electrical activity in the biceps brachii muscle recorded 

by linear array HDsEMG electrode from subjects with ALS.  The extracted spikes are stored in a 

database along with their firing times.  Feature selection, initial unsupervised clustering, 

interactive evaluation and refinement, and final supervised classification steps are applied to the 

FP database.  

One example set of results, on dataset ‘5-2’ in Table 2, is partially presented in Figure 10.  

The raw EMG of this data set -on a single channel- is presented in Figure 9. It is essential for the 

user to examine the whole length of recording to ensure that there is no unwanted voluntary 

muscle activity. Further discussion on presence of voluntary activity during spontaneous activity 

recording is presented in section 4.1.  Illustration of the whole length EMG on all the channels is 

not feasible. Only one channel (where amplitude is high) is depicted here. 

20 s

100 µ
V

 

Figure 9: Single channel raw EMG corresponding to data presented in the result section. Each trace 
shows 100 s. Total recording time is 900 s.  
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The outcome of each step described in the method section is illustrated in Figure 4.  A 

total of 749 FPs are detected.  Panel A shows an FP in its waveform format, a sample outcome of 

spike detection algorithm.  Panel B shows selected feature values.  From each available trace of a 

multichannel FP, the peak-to-peak amplitude and area under the curve are measured.  The blue 

thin circles represent the amplitude and the thick dark circles represent ‘area’ under the curve. 

Whole feature space in the first three components after PCA is depicted in panel C.  Panel D 

refers to the same dataset after initial clustering and its refinement.  Not all samples are included 

here. Panel E shows templates of each class (not all classes included).  Panel F shows the final 

outcome of classification. 
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Figure 10:  An illustration of outcome results in a classification process. (A) shows an example outcome 
of spike detection.  (B) refers to feature space. (C) shows the first three principal components of whole 
feature space. (D) shows the result of initial clustering algorithm (color coded) after evaluation and 
refinement of classes. (E) shows parts of the FP templates in their waveform shape. (F) shows groups of 
sample FPs assigned to each class. Further analysis of FP shape and firing pattern can start from here. 

 

Quantitative evaluation of classification performance is also computed.  Averaged SB/ 

SW for each class with respect to all other classes are measured.  The averaged mean is again 

Blue thin circles:
 Signed P-P Amplitude (µV)

Dark thick circles:
 Area (µV)^2
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averaged across all classes and reported in Table 2. Furthermore, averaged accuracy following 

two-source method is reported along with yielded number of classes. 

 

Table 2 _ Summary of classification outcome 
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1 900 479 2 24 21 89 

2 900 632 30 57 33 80 

3 500 583 196 33 29 70 

4-1 300 205 2 12 9 94 

4-2 900 1234 0 13 9 96 

4-3 2500 6894 21 58 2 62 

4-4 800 657 8 8 9 93 

5-1 700 209 8 13 67 97 

5-2 900 749 5 18 7 95 

5-3 1500 249 1 3 9 99 

Total: 10 
Ave: 990± 

615 

Ave: 

1189± 

2028 

_ _ 

Ave: 

 19.5± 

19.5 

Ave:  

87.5 %± 

12.6 

 

Overall, the number of waveform classes varied from 3 to 57. A large number of classes refers to 

high variability of FP shapes and might indicate for very unstable membrane potentials at 

multiple locations. Within-class to Between-class distance ratio is always above 1, and the 

average value ranges from 2 to 67. Reproducibility of the outcome is tested with two source 

method, and accuracy ranges from 62 to 99%, with an average of 87.5%.  

 

4.4  Discussion 

Ten sets of fasciculation potentials, collected from subjects with ALS, are tested for spike 

sorting with our proposed program.  
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The results reveal that on average only one or two classes are continuingly firing over the course 

of recording. The frequency of most other classes is much lower. This fact might explain the 

complexity of the classification problem from a mathematical point of view. To partially show 

the heterogeneity of class sizes in FP data, the FP classes are categorized to single classes, 

classes with 2-9 members, classes with 10 to 99 members, and classes with above 100 members. 

A summary of class size shows that, on average, there are 7 classes with only one member, 9 

with 2-9 members, 6 with 10-99 members, and only 2 classes with above 100 members. Further 

investigation is needed to understand this phenomenon, which may or may not be related to the 

site of origin of FPs. 

4.4.1  Presence of Voluntary Activity 

It is very common that over the long period of spontaneous EMG recording, short periods 

of voluntary activities show up, due to slight movements of the subject. Before deriving any 

conclusion over firing pattern of an FP class, it is necessary to examine the inter-discharge 

interval histogram of the class. Interval histogram can be cautiously inspected for any evidence 

of voluntary recruitment. Corresponding potentials should be excluded from further analysis of 

FPs. As Figure 9 shows an example, in this study, raw EMG is inspected before FP detection 

step. Any epoch of voluntary activity is excluded manually. Voluntary activity is usually easily 

recognizable from spontaneous activity. Unlike sporadic nature of FPs, voluntarily recruited 

motor units have a regular firing pattern. 

4.4.2  FP Classification vs. EMG Decomposition 

EMG decomposition is an inverse process of EMG signal generation, which breaks down 

the EMG signal into the contributions of different MUs. For EMG decomposition, different 
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classes of waveform potentials indicate that they are from different MUs.  In contrast, the 

number of different classes of FPs does not necessarily indicate that each class belongs to a 

different MU. This is primarily due to the fact that FPs may arise from different places at the 

distal branching near the muscle fibers, and hence have different shapes. In that case since they 

all share the same alpha motor neuron (same anterior horn cell), they belong to a single MU by 

definition. .  

The concept and methods of EMG decomposition have been developed in the past 4 

decades (see a review  by Stashuk, 2001). The discharges of FPs are much less frequent than 

those of voluntarily activated MUs.  Therefore, waveform potential superimposition is a less 

challenging problem.  Template-based clustering is then appropriate for FP classification 

purpose.  Conversely, as a consequence of lower firing frequency of FPs, a long duration of 

EMG recording time (in the order of minutes or longer) might be necessary to be able to capture 

a sufficient number of FPs. Analysis of long recordings with a large number of traces using 

HDsEMG is computationally costly, if performed on raw data, which is a common approach in 

many of the available EMG decomposition toolboxes.  Also, a classification paradigm is needed 

that does not rely on firing time of spontaneous spikes. This is because FPs discharge randomly, 

in contrast with regular firing of voluntarily recruited MUs.   

Furthermore, high variability in FP waveform shapes makes accurate classification hard. High 

variability in waveform shapes causes overlaps among different classes of FPs in feature space.  

It is known that even waveforms of voluntarily recruited MUs in healthy subjects vary over time, 

measured as jiggle (Stalberg and Sonoo, 1994). The variability in voluntary motor unit potential 

comes from slight variations in inter-discharge interval times of two consecutive muscle fiber 

action potentials. Since a motor unit potential is the summation of all muscle fiber potentials, 

consequently, the motor unit potential shape changes slightly as well. By ‘high variability of 
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waveform shapes among FPs’, we refer to the fact that FPs come from (electrically) unstable 

membranes, and the site of instability might vary throughout time.  FPs might fire from different 

dendrites’ terminal branches at different times from within one single MU.  These may lead to 

variation of waveform shapes even for FPs belonging to a single MU.  From a classification 

perspective, the distribution of data may not have a clustered shape and data are spread all over 

the feature space. Visual interactive modification module designed in this work aims to help with 

difficult-to-classify samples. 

4.4.3  Previous Works 

Although considerable work has been reported on decomposition of HDsEMG,   

classification of spontaneous spikes recorded for long duration of time has only been approached 

in limited number of studies. Drost et al,(Drost et al., 2007), reported HDsEMG recorded FPs 

and illustrated the value of 2D spatial information in discriminating different waveforms. 

However in this work, only one set of data was analyzed using a previously developed EMG 

decomposition technique, (Kleine et al., 2007).   

Another work of FP classification is performed by Winslow et al,2009, which focused on 

classification of 24hour-long EMG (at rest) from paralyzed hand muscles of subjects with spinal 

cord injury. However, their technique was designed for two-channel EMG data.  An average of 

approximately 3000 spontaneous action potentials were detected, which required about 17 days 

to be fully classified, with 5 hours of segmentation, 1 day for clustering, 10 days for manual 

evaluation and 5 days for finalizing the classification.  It was claimed that it would take up to 

two years for each dataset to be classified with a fully manual approach.  In contrast, the current 

study demonstrates relatively good efficiency of FP classification time-wise. Spike detection and 
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first round of clustering take seconds to be complete. Modification of the results might take up to 

1-2 days for a database with thousands of FPs. 

4.4.4  Choice of Unsupervised Clustering Technique  

Unsupervised clustering (classification of a data set without a prior information about the 

number of classes or their shape) is applied to the data.  Existing techniques for clustering are 

numerous, including parametric, non-parametric, iterative, or hierarchical methods (R.O. Duda, 

2001).  In general, no clear evidence exists about superiority of one clustering algorithm over 

another (B. Liu, 2007). Nevertheless, depending on the nature of the data, one technique might 

be preferable to others.  Here, the K-means algorithm is selected for clustering the FPs.  K-means 

technique has been widely used in many applications.  It is computationally faster than 

hierarchical methods, when the number of variables is large.  However, K-means has poor 

performance on non-hyper elliptical datasets (B. Liu, 2007).  Feature selection plays a key role in 

performance of the clustering task. If the K-means method fails to correctly separate among the 

groups, then another approach needs to be sought for.  We found Gaussian Mixture Model 

(GMM) clustering algorithm –also integrated in Matlab- very efficient in such cases. However, 

GMM fails to operate on classes with rather small sample size, especially if feature space 

dimension is large. 

It is acknowledged that more automated clustering techniques needs to be attempted here. 

Combination of K-means with another clustering technique is one example, as shown by 

Takahashi et al., 2003, where each class obtained from the K-means is split and later (similar 

ones) are agglomerated to overcome the problem of overlapped classes. Meanwhile, a careful 

visual assessment of the results may always be necessary.  



 
 

51 
 

4.4.5  Feature Extraction 

Choosing discriminative features plays a key role in classification performance. In 

intramuscular needle recordings, features measured from motor unit potentials usually includes 

amplitude, duration, area, number of phases, number of turns, etc. (Sonoo & Stalberg, 1993).  

Those features are usually less useful for surface recordings, due to the low-pass filtering effect 

of the skin and subcutaneous body tissues on the EMG signal.  Visually inspecting many 

experimental data, we believe that distributions of amplitude and area across all the channels are 

appropriate features. 

4.4.6  Applications of FP Classification   

From a clinical electrodiagnosis perspective, the question of interest is solely presence or 

absence of FPs in an examined muscle.  However, FPs are not yet fully understood, De Carvalho 

and Swash, 2012, as to their origin and pathophysiological significance.  Hence further 

investigation of FPs is certainly warranted.   

FPs firing pattern and waveform shapes can both provide additional diagnostic and investigatory 

information. A potential application is the discrimination between FPs observed in healthy 

population and those observed in pathological conditions such as ALS, for example as described 

by Mills, 2010. Discovering a discriminatory feature between the two groups would be very 

valuable, but first it necessitates understanding the origin site of these spontaneous activities. As 

described by Wettstein, 1979, these investigations go back to 1936, when Denny-Brown and 

Pennybacker defined FPs as originating from the anterior horn cell in the spinal cord. This 

finding has been challenged since then, and the body of research shows that FPs might arise from 

a cortical origin, as well as from the distal or proximal portions of the lower motor neuron. Some 

FPs are shown to be driven as by cortical magnetic stimulation (summarized by DeCarvalho and 
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Swash, 2012). Most of these studies use invasive techniques; however, HDsEMG has also been 

investigated to examine FPs (Drost et al., 2007; Kleine et al., 2008; Kleine et al., 2012). Kleine et 

al., 2008, investigated firing time of a (fasciculating) MU, specifically the Inter-Discharge 

Interval (IDI) histogram, believing that IDI histogram is a marker of membrane excitability 

property. The authors examined the IDI histograms of different FPs and concluded that both 

neuronal and axonal evidences exist among ALS population.  

The waveform shapes are also discussed in terms of diagnosis by Drost et al., 2007, which still 

needs further investigation. FPs can be also studied in conjunction with drugs, since certain 

medication (e.g. cholinergic drugs) can affect their firing (Drost et al., 2007). FPs, as a 

neurologic symptom, are not limited to ALS and may also appear in different neuropathic 

disorders. 

4.4.7 Time Consumption to Provide Accurate Results 

Our paradigm design applies the fast and simple K-means technique, which requires only 

seconds for even the longest dataset.  The validation and refinement section takes the most time 

in this process.  Usually for datasets of less than 500 samples, the refinement process may take 

up to one to two hours (depending on the signal’s ambiguity). Usually, the required time for 

validation increases as the number of samples increases (i.e. above two or three thousand).  

Using this toolbox, and depending on the nature of dataset, it could take a user about 2 days to 

modify the results of classifications when the number of samples is greater than one or two 

thousand(s) spikes.  This is still faster than the aforementioned 10 days by Winslow et al 

(Winslow, Dididze, & Thomas, 2009). 

A major factor affecting the speed of modification step is the ‘cleanliness’ of the 

waveforms. Waveforms from a ‘clean’ EMG signal are typically more distinct from each other, 
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and consequently the initial results are more accurate and minimal further modification is 

required, if any.  Recordings of low SNR, or presence of a considerable amount of superposition, 

will lead to greater uncertainty in classification.  The “noisier” the signal, the greater the 

interference between corresponding samples of individual classes. This leads to feature space 

becoming non-hyper elliptical.  This in turn leads to poor performance of the K-means algorithm, 

and prolongs the process of refinement.   

Managing large data sets increases the evaluation and modification process, making it 

tedious.  A large number of spikes in a dataset usually correlate with the detection of many small 

amplitude low SNR samples.  Depending on the application of a study, such potentials may not 

be of interest and can be quickly excluded from the dataset.  A reduction in data size simplifies 

analysis.  However, when all the spikes need to be included, one approach dealing with large 

data size is to divide it into smaller sets. The results from each subset can then be combined and 

matched to provide the global output.   

4.4.8  Visually-aided Classification 

A key advantage of this program is visualization of multi-channel waveforms to facilitate 

interactive decision making. A user is able to observe an unlabeled waveform along with other 

members of a class, and waveforms of other classes and make classification decisions.  

Manual spike sorting is often used by a user expert in EMG techniques.  Nevertheless, relying 

solely on observational or qualitative investigation can lead to erroneous classification due to 

human vision artifacts.  Therefore, visually aided classification has both advantages and 

limitations. Human visual error typically occurs when two FP samples are very close in shape: 

comparison of waveforms across all channels is not always straightforward. One effective step to 

alleviate this issue is the sizing of displayed images of FPs on the screen.  Default size of a figure 
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in Matlab has fixed square borders. If number of waveforms in a figure is relatively high, then 

waveform shapes will look compressed, and if number of waveforms is small, their shapes will 

look stretched out. In both cases, it is visually hard to assess the waveforms. So at each plot, the 

user would need to change the borders of the plot to change it to a proper size. To avoid this 

display problem, our toolbox automatically sets the size of a figure (width and height) based on a 

fixed maximum number of waveforms for each figure (width) and the number of channels 

(height). . This circumvents the risk of “visual artifact”, and expedites the evaluation process. 

4.5  Summary 

 

This study tackles the problem of classification of fasciculation potentials (FPs), which are 

important for electrodiagnosis and investigation of Amyotrophic Lateral Sclerosis (ALS) or other 

neuromuscular diseases. Beside only their detection, examination of their detailed time course 

and waveform shape can shed light on their origins. A paradigm for classification of FPs was 

developed and tested with surface EMG data recorded from ALS patients using a 20-channel 

linear electrode array. The paradigm includes individual FP detection, feature extraction, and 

spike classification. The distributions of spike ‘amplitude’ and ‘area’ across all the existing 

channels were measured from FP waveforms to build the initial feature space. Principal 

component analysis was applied for the purpose of feature space dimension reduction.  For spike 

sorting purpose, existing built-in Matlab unsupervised and supervised algorithms were used, 

such as Kmeans, GMM, and Linear Discriminant Analysis.  

The key feature of our design was the development of visually-aided interactive modules 

for step-by-step evaluation and modification of classification results. The spike sorting process 

started by employing unsupervised ‘K-means’ clustering algorithm. The results were evaluated 

and modified through our facilitated user interactive modules. Supervised ‘Linear Discriminant’ 



 
 

55 
 

function was then applied to classify thus-far unassigned samples, in a ‘controlled’-manner.  

Accuracy of classification was therefore visually inspected. Quantitative measure of class 

consistency was also provided.  

Overall, accuracy of classification can potentially be improved toward satisfaction, through 

the interactive modification modules. From 10 sets of data, a total of 11891 FPs were detected, 

and classified into a sum of 235 prototype template waveforms. The final output was 

reproducible, tested by two-source method. Evaluation and correction of classification outcome 

of a dataset with over 6000 samples was achieved within 1-2 days. We observed that number of 

FP prototypes can be very large, but on average only 1-2 of the classes were continuingly firing 

over the course of recording. The result of this work facilitates further investigation on 

examination of FPs, such exploration of their site of origin. 
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5 Innervation Zone Analysis Of Fasciculating Motor Units 

In Als Using A Linear Electrode Array 
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4
 

 
 
 
Abstract— In this study, fasciculation potentials recorded by linear array surface EMG from amyotrophic 

lateral sclerosis (ALS) subjects were examined. The Innervation Zones (IZ) of their originated motor 

units were estimated. The information was compared with that obtained from voluntarily recruited motor 

units in the same set of ALS subjects as well as in healthy controls. IZs within an ALS subject where 

found more scattered, versus more centrally clustered IZs in healthy subjects. IZs were even more 

scattered among fasciculating motor units. A more scattered IZ distributions among ALS subjects can be 

the result of muscle reorganization due to the ongoing denervation/reinnervation process. Three ALS 

subjects had repetitive visits, providing longitudinal data of FPs, where an increase of IZ distribution was 

observed for at least one instance in all the three subjects. Results and limitations of surface EMG are 

discussed. 
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5.1  Introduction 

5.1.1 Motor Unit and Motor Unit Potential 

 An alpha motor neuron originates from spinal cord and innervates a number of muscle 

fibers via neuromuscular junctions. This framework is called a motor unit (MU). Motor units are 

structural and functional building blocks of a muscle. Central nervous system controls muscle 

contractions through different MU activation patterns. Information is transferred from the 

nervous system to a muscle via action potentials. An action potential is a wave of temporary ion 

transportation across cell membrane due to a stimulus impulse (or excitation) to the resting 

membrane potential. An order of muscle activation is delivered to the muscle when repetitive 

action potentials pass neuromuscular junction gap (NMJ) and reach the corresponding muscle 

fibers. Neuromuscular junction refers to the synapse between a nerve ending and the closest site 

of a muscle fiber membrane (called postsynaptic membrane). Neurotransmitters, mainly 

acetylcholine, are the main players for the depolarization of postsynaptic membrane, which in 

turn is the key factor to excite the muscle fiber. An action potential will fire on the muscle fiber 

at the site of NMJ and propagates along the muscle fiber in opposite direction toward the muscle 

tendons, as in Figure 11. Once there is a means of recording, the sum of all muscle fiber action 

potentials (MFAPs) within a MU will be recorded on the electrode, called a motor unit potential 

(MUP), as in Figure 12. Although the shape of an action potential (including MFAP) typically 

has depolarization, repolarization, and refractory period phases, during an Electromyography 

(EMG), at the site of detection, the shape of recorded waveforms depends on both physiological 
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and non-physiological factors [Farina] including the type of the electrode and its relative distance 

to origin site of excitation.  

  

 

Figure 11: Schematic of a MU. Distribution of NMJs along muscle fibers is shown. On top of the skin 
surface, an array of tiny electrodes is located. Motor unit potential can be recorded simultaneously on 
multiple channels. 

 

5.1.2 Multi-channel Recording of MUP and Innervation Zone 

 NMJ is usually defined for a single muscle fiber. A motor unit composed of hundreds of 

muscle fibers will have hundreds of NMJs. Long history of research reveals that in a parallel 

muscle such as Biceps Brachii, normally NMJs belonging to a single motor unit are usually 

clustered near the center of the muscle, as shown in Masouda et al, 1983.This fact allows us to 

determine an Innervation Zone (IZ) for a MU set.  In this document, ‘IZ length’ or ‘NMJ length’ 

of a motor unit refer to the spatial length of NMJs spread along the muscle length, as shown in 

Figure 11. During last decade, technology for high density surface EMG recording with surface 

electrode arrays has emerged and well developed, allowing discovery of further information 
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about the architecture of a motor unit.  For example, linear array surface EMG electrodes are 

found useful in determining the IZ of a motor unit,  as shown in Merletti et al, 2003.  

 

Figure 12: Raster plots of simulated MFAPs and a final MUP. This plot shows the concept of MUP 
generation obtained from summation of single MFAPs on multichannel electrodes. The Innervation Zone 
can be detected from the multichannel MUP. In reality, single MFAPs are not detectable by surface 
electrodes.  

 

As shown in Figure 12, when a muscle fiber gets excited, the channel located right on top of the 

NMJ site is the one on which the waveform will appear first. The adjacent channels will receive 

the waveform with a time lag and this repeats for the rest of the channels until either the 

amplitude of the waveform diminishes in background noise (a sign to reach the end of fibers in a 

MU) or the last electrodes (distal or proximal or both) are reached. This propagation -

accompanied with sequential time lags- builds a horizontal V-shape wave on the image of the 

multi-channel waveform, see Figure 12. The point, at which the two sides of the ‘V’ meet, is 

considered to be the IZ of that motor unit.  
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5.1.2. Fasciculation Potentials in ALS 

 Amyotrophic Lateral Sclerosis (ALS) is a fatally progressive motor neuron degenerative 

disease. Loss of neural drive to a muscle (called denervation) will lead to alteration in the muscle 

organization. Over the course of the degeneration process, one prominent electrophysiological 

abnormality is the emergence of spontaneous activities including Fibrillation Potentials and 

Positive Sharp Waves, and Fasciculation Potentials (FPs). The two former phenomena 

(Nandedkar et al., 2000) arise from single muscle fibers that are believed to be denervated (i.e., 

their corresponding axon branches have died). Due to their subtle amplitude, so far, Fibrillations 

are only detectable by means of intramuscular recordings, and cannot be seen on surface 

recordings. FPs, however, arise from a motor unit set, and are detectable on the surface of the 

skin. In contrary to a voluntarily recruited motor unit, firing of FPs is random and sporadic.  

Beside their clinical significance in diagnosis, FPs have been studied to understand their site of 

origin. An FP can potentially initiate anywhere: in a MU set (i.e. motor neuron soma in the spinal 

cord, along the motor axon, and at the end of terminal branches) or even supra-spinally. Many 

invasive and non-invasive approaches have been applied to tackle this question. Evidence of both 

central and peripheral origins and on a motor axon at both proximal and distal sites have been 

shown. A detailed history of these techniques can be found in De Carvalho and Swash, 2012. 

Among the established techniques, HDsEMG has also been used for this purpose (Drost et al, 

2007; Kleine et al., 2012).  

5.1.3 Work Plan 

 We explored the waveform shape of FPs, as well as voluntarily recruited MUPs both in 

ALS and age-matched healthy control subjects. We specifically examined their  IZ and 
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propagation patterns, which have been proved helpful in understanding the MU organization  in 

a muscle (Lateva and McGill, 2001; Lateva et al., 2002; Lateva et al, 2010). Results from 

different groups were compared and discussed.  

5.2 Material and Methods 

5.2.1 Experiments  

 Experimental EMG data were recorded from twelve neurologically intact subjects: 6 

male and 6 female, age 20-70 years old, average age 43 ± 18. We also had seven subjects with 

ALS : 6 male and 1 female, age 48 to 71, average age 56 ± 10.  The ALS subjects were 

diagnosed having “Definite ALS” or “Probable ALS with Laboratory Support” based on El 

Escorial criteria, Brooks, 1994.  Three ALS subjects had multiple visits, and in total there were 

14 datasets available from ALS. This study was approved by the local Human Studies 

Committee, and all the participants gave the informed consent.  

 The Biceps Brachii muscle was examined with the elbow partially flexed and forearm in 

semi-pronation.   A custom-made 20-channel linear bar electrode array (Figure 12) was used for 

all experimental recordings.  The distance between two consecutive recording bars was 5 mm, 

and each bar was 1 mm in width and 10 mm in length, arranged in a linear configuration.  The 

linear electrode array was placed on the Biceps with its center on the belly of the muscle along 

muscle fibers. Channel 1 was on the proximal side and channel 20 covered the distal side of 

Biceps muscle.  The signals are amplified by the Refa128 EMG Recording System (TMS 

International BV, the Netherlands).  The reference electrode is placed on the ipsilateral elbow.  

Sampling rate is 2 kHz per channel. Band pass filter is set for 20–500 Hz, which can slightly 

smooth out waveform shapes, but does not affect classification performance.  Hardware-based 

common feedback (average of all available channels) is subtracted from each channel.  
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5.2.2 Determining the IZ  

Multichannel MUPs were extracted manually from low force levels of voluntary contraction 

EMG. FPs, however, were detected automatically using the software described in Jahanmiri-

Nezhad et al., 2014. The algorithm first transformed the 20-dimensional signal to a 1-

dimensional trace, and applied amplitude thresholding to detect a potential by recording its 

occurrence timing. The temporal information were then used to extract the multichannel 

waveforms from the 20-dimensional signal. Extracted FPs were stored in a database. The FPs 

were afterward clustered into classes of similar waveform shapes, by means of the toolbox 

described in Chapter 4. 

IZ detection was performed semi-manually. A Matlab program was implemented to illustrate the 

points of extrema versus channel number. At each channel, the points of maxima and minima 

were determined and depicted in a figure (an example shown in Figure 13). Data in this figure 

can be divided to two ‘ascending’ and ‘descending’ sections. The point where these sections 

meet can be used to estimate the location of Innervation Zone. There may be no time-delay 

propagation around this point across several channels, and this clue can be used to estimate IZ 

length (through counting the number of channels where no MUP propagation pattern was 

observed). Channel number (x-axis) works as a ruler for muscle length.  
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The simulated waveforms in Figures 12 and 13 were synthesized by a single motor unit 

potential model (unpublished work), where we attempted to mimic the characteristics of biceps 

muscle and our experimental 20-channel linear array electrode  In this model number of fibers in 

a motor unit (‘n’), depth of each fiber from the surface, transversal distance of a fiber from the 

center of the muscle, NMJ sites along the fiber length, longitudinal conductivity, and radial 

conductivity were determined. The spatial distribution of NMJs in a 3D Cartesian space was 

modeled by a random variable using random number generator.  

 For each examined muscle, distribution of IZs along the were determined by first its 

length (distance between the most proximal and the most distal IZ) and second by computing the 

variation (standard deviation, STD) of IZs. It is noted that even for a normal muscle, it is not 

unlike to spot an off-center IZ, but the hypothesis is that IZs are generally clustered at the center 

for normal muscles, so we expect to see small variations in IZs within a muscle of a healthy 

subject. 

 

 

Figure 13: A simulated MUP. On the left, 
raster plot of MUP waveform is depicted 
(y axis is voltage with arbitrary unit (au) 
and x-axis is time duration (au)). On the 
right, the plot of Points of Extrema are 
presented (y-axis represents the time and 
corresponds to x-axis of the raster plot, 
and x-axis represent channel number). 
The sites of minimum are marked with 
green circles and the maximum points at 
each channel are marked with red 
squares. In the raster plot, the site of IZ is 
located at the center (channel 10). The 
troughs (both for the points of min and 
max)on the right panels, also occur at 
x=10.  



 
 

64 
 

5.2.3 Statistical tests 

 Normality test (Jarque-bera test, built in Matlab) was performed before any t test 

comparison between the MUPs in ALS and healthy subjects. Where the test of normality failed, 

boxcox transformation was tried with different parameters, until the Normality assumption was 

met for the ttest. Power analysis (built-in Matlab) was also performed in order to estimate 

required sample size for a statistical test, although we were limited to the presented data. 

5.3 Results 

 Four to nine MUPs (total of 69) were manually extracted from voluntary EMG trials, 

from 12 healthy subjects. The waveforms from each subject were visually examined so that each 

represented different MUs.  Data from two of the subjects were excluded since their entire 

recording had no V-wave shape (propagation with time-lag) in them. An inspection of the EMG 

from these subject proved no time-lag across channels existed over the entire course of recording 

for these two subjects. From the remaining 59 waveforms, 10 MUPs were either noise, or had no 

clear IZ, and hence they were excluded too. This is worth mentioning, so that it is clear that 

abnormal patterns of propagation and no-clear IZ zone might be observed in control subjects as 

well, and is not always due to physiologic factors. As discussed later in this work, they may be 

result of a bad recording or due to superimposition of two or more MUPs (a prominent feature in 

surface recordings even at low force level EMG).  

 Likewise, three to nine voluntarily activated motor units (total of 47 MUPs) were 

manually extracted from 9 voluntary EMG recordings from ALS subjects (not all the 15 

recordings, from ALS population, had voluntary trials from Biceps).  

 12630 FPs were automatically extracted from 15 trials of long duration of spontaneous 

activity recordings in 7 ALS subjects. Detected FPs from each set of recording were clustered 
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into a total of 375 classes of similar shape, using a program described in Chapter 4. Classified 

FPs were examined with regard to their IZ location, the same way as voluntary recruited MUPs. 

Figure 14 depicts a portion of different classes of FPs in one subject. Figure 15 presents the 

within-muscle distributions of IZs for the three groups of data. The results are summarized in 

Table 3. 
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Figure 14: Raster plots of nine sample prototype shape of FPs belonging to one subject. Class index, 
number of members of that class (how many samples assigned to it), and its amplitude is reported on 
the top.C2 has a strange straight propagation, with no time lags between the channels. In C5, two IZs 
were detected, indicating for either a doubly innervated MU or two superimposed FPs. The heavy black 
lines indicate of IZs. 
 

Table 3 – Measures of IZ distribution among FPs compared with MUPs in control and ALS 
subjects.  

 
MUPs ; healthy MUPs; ALS 

Fasciculation 

Potentials 

IZ length within a muscle 

(mm) 
2.5-25 5-42.5 12.5-75 

Mean (mm) 10.2±8.1 19.2 ± 11.7 39.1 ±16.3 

 

STD (IZs) (mm) 
1.4 to 17.6 2.4 to 14 4 to 21 

Mean (mm) 
5.1±5 8.7±4.2 12.8±4.9 
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 Three subjects with ALS had multiple visits, as listed in Table 4. This allowed us to 

monitor their spontaneous discharge activities. Analysis of IZ distribution on FPs from these 

subjects are illustrated in Figure 16 and summarized in Table 4. In Figure 16, the x-axis is the 

index for each subject (S represents Subject, and V represents Visit). It is noted that the bars are 

just showing the extent of IZ distribution along the muscle, but the statistical tests (the ones who 

pass the tests are marked with asterisks), refer to standard deviation of IZs. The statistical tests 

showed significant differences from some of the visits in all three subjects. The zero length of IZ 

for the last visit of Subject 3, was the result of a very weakened muscle with only few classes of 

FPs with unclear IZs. 

Figure 15:  Plot of within-muscle IZ 
distribution.  
The y-axis shows channel number, 
since IZ is determined based on 
1:20 array electrode.  
The x-axis represents each 
datasets.  
Corresponding statistical 
comparisons are presented in 
Table 3. 
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Table 4 _ Longitudinal data of length of IZs within a muscle 

IZ Length in mm Jul 2009 Jun2011 Aug2011 Dec2011 Mar2012 

Subject1 35 45 32.5 75 - 

Subject2 - 27.5 17.5 42.5 52.5 

Subject3 - 35 37.5 0 - 
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Figure 16: Longitudinal study of IZ scatter for three ALS subjects. Statistical test was performed on STD 
of IZs. The asterisks indicate for statistical difference. 
 

It is not unlikely that more scattered IZs among healthy subjects would be correlated with age. In 

this regard, Figure 17 illustrates the IZ variation for the control population. A trend of increased 

IZ variation versus age can be seen. 
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 In brief, scatter of IZs (IZ length) within a muscle had a larger extent among MUPs in 

ALS than in controls. However, statistical tests did not confirm it. A power analysis suggests that 

at least two more ALS samples are required for a statistical test. Meanwhile, it was proved that 

the variation of IZs (STD) within a muscle, in voluntary MUPs of ALS is statistically larger than 

in controls (p-value=6e-5). This quantity was also statistically larger among FPs than in 

voluntary MUPs in controls and ALS (p-values=5e-6, 0.052, respectively). It is acknowledged 

that the numbers of FP samples were significantly larger than the numbers of manually extracted 

MUPs, and higher variability of IZs also could be shown among MUPs if more data were 

available from voluntary EMG. Nevertheless, the fact that IZs have a narrow band around the 

center is in general an accepted hypothesis. 

 

  Enhanced variation of IZs location in the muscles with ALS can be an indicator of 

ongoing reorganization process of muscles under denervation caused by the motor neuron 

degenerative disease. 

Figure 17: Variation of IZ  within 
a muscle in control subjects 
with respect to their age. A 
linear trend can be observed. 
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5.4 Discussion 

 This work is the first study for IZ analysis of fasciculating motor units. The study 

revealed the enlargement and scattered IZ of fasiculating motor units compared with voluntarily 

recruited motor units. The study also performed a preliminary IZ analysis for fasciculating motor 

units. 

 Longer length of IZ from could be related to the process of muscle fiber 

denervation/reinnervation. When a motor neuron dies, its corresponding muscle fibers become 

‘orphans’, and will be ‘adopted’ by surviving motor units. Collateral sprouting and reinnervation 

process starts right after. It might be due to an non-optimum reinnervation process that 

myoneural junctions get more scattered. Verification of this hypothesis is beyond the scope of 

this work. It is also acknowledged that origin site of excitation causing FP potentials might be at 

terminal branches of an axon, rather than the motor neuron soma in the spinal cord. In other 

words, the 375 classes of FPs did not necessary from 375 different motor units. It remains 

unclear whether this fact can lead to abnormal site of IZ on FP waveforms. 

5.4.1 Motor Neuron Degenerative Diseases and ALS 

 ALS is a type of motor neuron degeneration (MND) disease. There also exist other 

subtypes of MND. Primary Lateral Sclerosis (PLS) affects the lower motor neurons (LMNs), 

which are the neurons originating in the ventral horn of spinal cord and innervate the muscles. 

Primary Muscular Atrophy (PMA), in contrast, affects the upper motor neurons (UMNs), which 

are located in the cortex and provide descending input to LMNs. However, in ALS, both UMNs 

and LMNs are affected. An individual with ALS experience both the symptoms of UMN and 

LMN lesions. Symptoms of LMN lesion include muscle cramp, muscle weakness, muscle 
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twitches and muscle atrophy. Symptoms of UMN lesion usually include spasticity and 

hyperreflexia. In this work, the focus is on the fasciculation potentials, related to signs of LMN.  

5.4.2  IZ in Fasciculating Motor Units 

 Contrary to other studies on FPs using HDsEMG (Drost et al., 2007; Kleine et al., 2008; 

Kleine et al., 2012), we approached FPs by their IZ distribution. Determining the location of IZ 

in a motor unit by means of multi-channel EMG recording has more than 30 years of history 

(Masouda et al. 1983; Falla et al., 2002; Merletti et al., 2003; Mesin et al, 2008). In this work, 

distribution of motor unit IZs were studied, using an 20-array surface electrode on biceps 

muscles of ALS subjects. Longer extent of IZs within a muscle was observed among the FPs. 

The variation of IZ locations were statistically greater in ALS population, compared with the 

ones in healthy subjects.  

5.4.3 Fasciculating Motor Unit IZ distribution in Biceps 

 IZ distribution had been previously reported to have a narrow band in biceps of healthy 

subjects (Masouda et al. 1983; Masouda and Sayodama, 1986; Brown et al., 1988; Barbero et al., 

2012). We showed that IZs are more scattered among fasciculating motor units in ALS. All the 

IZs within a muscle were extracted from a single trial of EMG recording from totally resting 

muscle, and without any voluntary contraction. Hence, the possibility of a shift in IZ location due 

to muscle contraction (as described in Martin and McIsaaz, 2006; Piitulainen et al., 2008; 

Nishihara 2010; Nishihara 2013) is ruled out.   

This finding could be a result of muscle reorganization due to ongoing degeneration process. 
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5.4.4 Difficulties in Finding the IZ  

 The relationship between MUP morphology and its corresponding anatomic factors is 

very interesting. An excellent example is presented in Lateva and McGill, 2010. Nevertheless, a 

need also emerges to know the non-physiologic factors that influence the motor unit waveform 

potentials and should be avoided to be interpreted as a neurophysiologic observation. With 

regard to IZ localization using surface recording, two major problems that complicate the 

analysis were encountered, including: improper electrode positioning and unresolved  

superimposed waveforms. Examples for the former include: 1) electrode was not positioned 

parallel to muscle fibers on the proximodistal axis of the muscle, and 2) improper use of 

electrode-skin gel making short cuts in between-electrode distance. An example of an anatomical 

factor aggravating IZ localization is presence of pennated fibers with regard to surface, as 

reported in detail in Barbero et al, 2012. This happens when muscle fibers in a motor unit are 

angled at one end of the muscle. Only few channels close to the superficial section of the fibers 

can record the potentials. The waveforms suddenly disappear and do not propagate along the 

muscle length, so IZ localization will be impossible. 

5.4.5 Increased Aging and Increased Variability in IZ Length  

 Although beyond the scope of this work, higher variation in IZ locations within a muscle 

was shown to be correlated with age among our control population, as shown in Figure 17. A 

systematic study is required to investigate the aging parameter in IZ distribution, in order to 

discriminate between this factor and that of progressive case of muscle denervation such as ALS. 
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6 A Practice of Caution: Action Potential Spikes or Noise?
5
 

 

Faezeh Jahanmiri-Nezhad, Xiaoyan Li, William Zev Rymer, Ping Zhou 

 

Background.  High density surface electromyogram (EMG) techniques with electrode 

arrays have been used to record spontaneous muscle activity, which is an important aspect both for 

supporting the diagnosis of neuromuscular diseases and for laboratory based neurophysiological 

investigations.  This short report presents a practical issue we have experienced during recording 

of spontaneous muscle activity using electrode arrays from subjects with neuromuscular disorders. 

Findings.  We show that recording artifacts can appear similar to spontaneous action 

potential spikes.  Moreover, a causal filter may induce asymmetric distortions of an artifact and 

thus confuse it with a real action potential spike. For a single channel surface EMG recording, it 

might be difficult to judge whether such a spike is a real action potential or an artifact.  Further 

investigation of the signal distributions among other channels of the array can be used to reach a 

more confident judgment. 

Conclusions.  During examination of spontaneous muscle activity using electrode arrays, 

caution is required for differentiation of physiological signals from artifactual spikes, which is 

important for extraction of accurate diagnostic or investigatory information.   
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 The examination of spontaneous muscle activity is an important aspect of electrodiagnostics 

both for supporting the diagnosis of neuromuscular diseases and for laboratory based 

neurophysiological investigations.  The intramuscular needle electrode is routinely used for 

detection of spontaneous muscle activity.  In recent years, high density surface electromyogram 

(EMG) techniques with electrode arrays comprised of a number of closely spaced, small 

recording probes or bars have been used to record spontaneous muscle activity (Drost et al., 2007; 

Jahanmiri-Nezhad et al., 2013; Kleine et al., 2008; Zhou et al., 2011; Kleine et al., 2012].  This 

brief report presents a practical issue we have experienced during recording of spontaneous 

muscle activity using these novel electrode arrays, from subjects with neuromuscular disorders 

(amyotrophic lateral sclerosis (ALS), hemiparetic stroke and spinal cord injury). We show that 

artifacts induced by external stimuli can appear similar to spontaneous action potential spikes. 

Therefore, such recordings should be judged with caution whether they are of physiological or 

non-physiological origins. 

  Below we demonstrate several typical examples and discuss the discrimination of 

artifactual spikes from real spontaneous action potentials.  A 20-channel linear electrode array 

(custom made, each bar width 1 mm, length 1 cm,  inter-bar-distance 5 mm) and a 64-channel 

flexible electrode array (8 × 8 square matrix, each electrode 1.2 mm in diameter, inter-electrode-

distance 4 mm, TMS International BV, the Netherlands) were used for the spontaneous EMG 

activity recording of the hand and arm muscles.  The surface electrode array signals were 

amplified by the Refa System (TMS International BV, the Netherlands), with a reference 

electrode located on the olecranon.  Each channel also had a feedback subtraction of the mean of 

all the recording channels to reduce common mode noise. The surface EMG signals were 

sampled at 2 kHz per channel.  All recordings were processed in a bipolar configuration by 
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calculating the differential signals between two consecutive electrodes or bars.  All the 

experimental protocols were approved by the Institutional Review Board of Northwestern 

University (Chicago, USA), and the tested subjects gave written consent for participating in the 

study. 

  Figure 18 (a) shows an artifactual spike recorded by one channel of the linear electrode 

array. The spike was captured during recording of spontaneous EMG activity from the paretic 

biceps muscle of a stroke subject.  Due to its monophasic and symmetric appearance, the spike 

can be recognized as an artifact.  We note that after processing the signal with a causal filter 

(second order Butterworth high pass filter, cutoff frequency 10 Hz), the resultant waveform has a 

negative rebound (or positive rebound from clinical neurophysiology viewing with negative 

upwards) and a gradual return to the baseline (Figure 18b). Such asymmetric distortions of the 

artifact may be confused with a real action potential spike [Quian Quiroga, 2009]. For a single 

channel surface EMG recording, it remains difficult to judge whether such a spike is a real action 

potential or an artifact.  Further investigation of the signal distributions among other channels of 

the array would be necessary to reach a more confident judgment.   

 

Figure 18: An example of (a) an artifactual spike and (b) the distorted waveform after processing with a 
causal filter.  
 
 

  Figure 2 shows such an example, where the distribution of the artifactual spike among the 

19 bipolar channels of the linear electrode array (placed along muscle fibers) is demonstrated in 
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Figure 19a.  It was observed that the artifactual spike only occurred in 2 adjacent bipolar 

channels at exactly the same time, suggesting their lack of physiological origin. As a 

comparison, Figure 19b shows three fasciculation potentials (two of them were from the same 

motor unit) recorded from the biceps muscle of an ALS subject, using the linear electrode array.  

Such fasciculation potentials were also confirmed by their reproducible occurrence during the 

long (> 10 minutes) recording period.  Clear action potential propagation was observed from 

different channels along muscle fibers, demonstrating a V-shape propagation pattern. If 

calculating muscle fiber conduction velocities from inter-electrode-distance and time delay 

between the action potentials, a physiologically acceptable range (3-6 m/s) can be obtained. 

 

Figure 19: Signal distribution among 19 channels of the linear electrode array for: (a) an artifactual spike; 
(b) fasciculation potentials of biceps muscle of an ALS subject. 
 

 

Figure 20 shows an example of repetitive spikes from one channel of electrode arrays, 

with physiological origins (multiplets, myokymic or neuromyotonic discharges (Gutmann and 

Gutmann, 2004; Whaley and Rubin, 2010)) or induced by external stimuli.  The signals shown in 

Figure 3a and 3b were recorded from the thenar muscle of an ALS subject using the flexible 
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electrode array.  Figure 20(a) shows brief bursts of single action potentials spikes. The spikes 

within multiplets discharged multiple times in rapid succession.  These bursts discharged 

recurrently at regular or irregular intervals up to several minutes.  Figure 20(b) shows an 

example of neuromyotonic discharges, which have similar characteristics but bursts are 

prolonged and the spike amplitude may wane.  In contrast, Figure 20(c) shows an example of 

repetitive artifactual spikes, which have a similar pattern to myokymic discharges.  Again, for a 

single channel surface EMG recording, it would be difficult to judge whether such repetitive 

spikes are of physiological origin or triggered by external stimuli.  

 

 

Figure 20: An example of repetitive spikes from one channel of electrode arrays. (a) Multiplets or 
myokymic discharges from the thenar muscle of an ALS subject; (b) Neuromyotonic discharges from the 
same muscle; (c) Repetitive artifactual spikes induced by external stimuli. 

 

 

Figure 21 shows the distribution of the repetitive spikes on different channels of the 

electrode array.  The non-physiological origins of the repetitive artifactual spikes (Figure 21a) 

can be determined from two observations. Firstly, each individual spike has monophasic and 

symmetric appearance. It is worth noting that causal filters commonly used for on-line spike 

detection might change such appearance and make artifacts look more similar to real action 

potentials.  Secondly, the repetitive artifactual spikes occurred at exactly the same time with 
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random polarity change. In contrast, the repetitive action potential spikes demonstrate clear 

action potential propagation observed from different channels. 

 

Figure 21: Signal distribution among different channels of the electrode array for: (a) repetitive 

artifactual spikes; (b) multiplets from the thenar muscle of an ALS subject. 

 

 

Although examination of signal distribution over an electrode array is very helpful in 

differentiating artifactual spikes from real action potentials, it should be acknowledged that 

abnormal action potential propagation patterns do not necessarily mean artifactual spikes. For 

example, for deeper motor units, the action potential propagation tends to be blurred by the 

volume-conductor properties of overlying tissue (Mesin et al., 2011). Abnormal conduction 

velocities in the biceps brachii muscles have been reported in muscular dystrophy patients with 

the aid of a multichannel EMG system, suggesting pathological longitudinal spread of end-plates 

(Hilfiker and Meyer, 1984; Kumagai and Yamada, 1991). Thus, caution is required for 

differentiation of physiological signals from artifactual spikes, which is important for extraction 

of accurate diagnostic or investigatory information.  It is also important to explore the cause of 

artifacts.  For example, we found the repetitive artifactual spikes shown in Figure 20(c) can be 

triggered by connecting a cell phone, which should therefore be avoided during the recording.  
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7 EMG-force Relation in the First Dorsal Interosseous 

Muscle of Patients with Amyotrophic Lateral Sclerosis
6
 

Faezeh Jahanmiri-Nezhad, Xiaogang Hu, Nina Suresh, William Zev Rymer, Ping Zhou 

 

 

 
Background and Purpose:  The relationship between surface electromyography (EMG) and joint force is essential to 

assess muscle function and its deficits. However, few studies have explored the EMG-force relation in patients with 

amyotrophic lateral sclerosis (ALS).  The purpose of this study was to examine the EMG-force relation in ALS 

subjects and its alteration in comparison with healthy control subjects. 

Methods:  Surface EMG and force signals were recorded while 10 ALS and 10 age-matched healthy control subjects 

produced isometric voluntary contraction in the first dorsal interosseous (FDI) muscle over the full range of 

activation.  A linear fit of the EMG-force relation was evaluated through the normalized root mean square error 

(RMSE) between the experimental and predicted EMG amplitudes.  The EMG-force relation was compared between 

the ALS and the healthy control subjects.  

Results: With a linear fit, the normalized RMSE between the experimental and predicted EMG amplitudes was 9.6 ± 

3.6% for the healthy control subjects and 12.3 ± 8.0% for the ALS subjects.  The slope of the linear fit was 2.9 ± 2.2 

µVN-1 for the ALS subjects and was significantly shallower (p < 0.05) than the control subjects (5.1 ± 1.8 µVN-1).  

However, after excluding the four ALS subjects who had very weak maximum force, the slope for the remaining ALS 

subjects was 3.5 ± 2.2 µVN-1 and was not different from the control subjects (p > 0.05).  

Conclusions: A linear fit can be used to well describe the EMG-force relation for the FDI muscle of both ALS and 

healthy control subjects.  A variety of processes may work together in ALS that can adversely affect the EMG-force 

relation. 

  

                                                           
6
 “Reprinted from IOS Press Journal of NeuroRehabilitation, DOI: 10.3233/NRE-141125, Copyright (2014), 

with permission from IOS Press.” 
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7.1  Introduction 

The relationship between surface electromyography (EMG) during muscle contraction 

and the resulting force has been extensively studied in the past(Perry J, 1981). A linear relation 

between force and EMG amplitude has been documented in small muscles with narrow motor 

unit recruitment force ranges, such as the first dorsal interosseous (FDI) muscle , while nonlinear 

EMG-force relations have also been reported for larger muscles (e.g. proximal leg or arm 

muscles) with wide motor unit recruitment force ranges(Basmajian & DeLuca, 1985; Lawrence 

& De Luca, 1983; Moritani & deVries, 1978; Solomonow, Baratta, Shoji, & D'Ambrosia, 1990; 

Woods & Bigland-Ritchie, 1983). 

The investigation of EMG-force relation has various clinical applications. For example, 

based on the established EMG-force relation, the EMG signal can be used to predict muscular 

force which may otherwise be difficult to measure directly. The EMG-force relation can be a 

useful marker of changes in motor unit or motor neuron pool activation during muscle force 

generation.  For example, imposition of the spinal cord section in animal preparations may 

induce a significant increase in the regression slope of the EMG-force relation indicating an 

inefficient use of the muscle(Blaschak, Powers, & Rymer, 1988). Due to pathophysiological 

changes in motor neuron pool and intrinsic muscle properties in patients with neurological 

disorders, the EMG-force relation can also be profoundly affected.  Namely, diverse changes in 

EMG-force slopes have been reported in paretic muscles of stroke patients compared with 

contralateral or neurologically intact muscles(Gemperline, Allen, Walk, & Rymer, 1995; Tang & 

Rymer, 1981; P Zhou, Li, & Rymer, 2013). 

In contrast to studies of EMG-force relation in neurological injuries such as stroke, it is 

presently unknown whether or how the EMG-force relations may be altered in patients with 
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motor neuron diseases such as amyotrophic lateral sclerosis (ALS).  ALS (also known as Lou 

Gehrig’s disease) is a progressive neurodegenerative disease that affects both upper and lower 

motor neurons.  Intramuscular EMG examination has been routinely used for supporting the 

diagnosis of ALS(M De Carvalho et al., 2008).  Motor unit number estimation (that relies on 

electrical stimulation and surface EMG recording) and its various forms of modification or 

improvement can provide a useful tool for assessing spinal motor neuron degeneration and 

tracking disease progress(X. Liu et al., 2009; Nandedkar, Barkhaus, & Stålberg, Nov 2010; 

Shefner & Gooch, 2002).  The utility of interference surface EMG analysis has also been 

reported for supporting the diagnosis of the disease(Diószeghy, Egerházi, Molnár, & Mechler, 

Dec 1996). 

To date, the EMG-force relation has not been systematically examined in ALS except for 

one study that was performed toward an estimation of muscle contraction levels using EMG 

amplitude in patients with neuromuscular disorders including ALS(Boe, Rice, & Doherty, April 

2008).  In addition to force estimation, a systematic analysis of the EMG-force relation in 

individuals diagnosed with ALS can provide valuable information to assist in the assessment of 

neural and muscular pathological changes.  The objective of this study was then to examine 

EMG amplitude and force levels of the FDI muscle during voluntary isometric contractions 

tested in both neurologically intact and ALS subjects.  First, we investigated whether a linear 

regression, as previously reported for the FDI muscle in healthy subjects, can be used to 

characterize the EMG-force relation for the ALS subjects.  Second, the EMG-force relation 

observed from the ALS subjects was compared with the healthy control subjects to assess 

whether there was a systematic alteration in the relation.  
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7.2  Methods 

7.2.1 Subjects 

Ten subjects with confirmed ALS (7 male and 3 female; 53 ± 12 years, range: 31 - 67 

years; years from symptom onset: 1 - 6 years; years from diagnosis: <1 - 4 years) and 10 

neurologically intact subjects (5 male and 5 female, 52 ± 15 years, range: 25 - 80 years) 

participated in this study.  The first dorsal interosseous (FDI) muscle of the stronger hand was 

tested in 9 ALS subjects, and for one ALS subject the test was performed bilaterally. Therefore, 

11 datasets were available in total for the ALS group. For the control subjects, the test was 

performed on the dominant side. All subjects signed informed consent via protocols approved by 

the Institutional Review Board under the Office for the Protective of Human Subjects at 

Northwestern University (Chicago, USA). 

7.2.2 Experimental Design 

Subjects were seated in a Biodex chair in a standardized posture with the forearm resting 

on an arm base. As shown in Figure 1, the wrist and forearm were placed in an arm brace and 

secured to the supporting surface to avoid movement when the subject performed index finger 

isometric abduction.  Extra foam was placed around the arm brace for further securing purpose to 

avoid force contamination on the FDI muscle. The proximal phalanx of the index finger was held 

in neutral position and placed in a firm cast inside a vise that was attached with a six degrees-of-

freedom load cell (ATI-FT4006, ATI Inc, Garner, NC). The thumb angle relative to the index 

finger was held at 45 degrees. The three medial fingers were secured on specifically designed 

surfaces. Isometric force of the FDI muscle was measured at the 2
nd

 metacarpophalangeal (MCP) 

joint (Figure 22). 
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Figure 22: Experimental setup for surface EMG and contraction force recordings from the FDI muscle.  
 

 

A flexible surface electrode array with 64 channels (8 rows and 8 columns, each 

recording probe 1.2 mm in diameter, inter-probe distance 4 mm for both directions) was used to 

measure electrical activity of the muscle through a 128-channel EMG system (Refa system, TMS 

International BV, Netherlands). The system has adjustable filter settings and real time display, 

providing visual feedback to the examiner to assess signal quality. The EMG signal was sampled 

at 2000 Hz per channel with a bandpass filter setting at 5-500 Hz. The auxiliary channels of the 

system were used to record muscle force. The force signal was sampled at 2000 Hz with a low 

pass filter at 20 Hz. The EMG and force recordings were synchronized during the experiment. 

All the data were stored in ASCII format for offline analysis. 

The experimental protocol started by measuring the isometric maximum voluntary 

contraction (MVC) force of the FDI muscle for index finger adduction. Once the MVC was 

determined, the subject was asked to perform isometric contractions of the FDI muscle at 10%, 

20%, 30%, 40%, 50%, 60%, and 70% of the MVC in different trials.  For each trial, one level of 



 
 

84 
 

muscle contraction was performed. The subject was instructed to reach the target force and hold 

it for approximately 10 seconds.  The order of contraction levels was randomized and each 

contraction level was repeated at least twice.  Sufficient resting periods between trials were 

provided to the subject to minimize mental and muscle fatigue. 

In order to guide the subject to perform a desired level of contraction, a home-designed 

Graphical User Interface (GUI) Matlab program was used to provide visual feedback. This GUI 

program shows a two dimensional Cartesian coordinate plane, where 𝑥-axis represents force on 

the horizontal direction (Fx, index finger abduction/adduction) and 𝑦-axis represents force on the 

vertical direction (Fy, index finger flexion/extension). A cursor in the shape of a triangle was 

used to indicate the current position of muscle contraction force in the x-y plane, which is at the 

origin during rest. To perform each level of contraction, an open circle and a filled circle were 

used to represent the Target position and the Guide position, respectively. The filled circle can 

change colors from yellow to orange and then to green in order to indicate to the subject that a 

trial is about to start. The subject was asked to generate force by abducting the index finger to 

move the cursor to the Target, stay at the Target position for 10 s and then relax slowly until the 

cursor was back at the starting point.  

7.2.3. Data Analysis 

The segments of EMG signal during which the force was held constant were used for 

later analysis. To facilitate signal segmentation, a simple interface program was designed for the 

user to choose the most constant part of the force profile. Based on the timing of force signal 

segmentation, EMG signals were segmented as well.  The average rectified value (ARV) of each 

channel’s EMG was measured. Due to the fact that the electrode array is larger than the FDI 

muscle and the EMG channels on the edge of the array were off the muscle, the ARV values 
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from the 16 centered channels of the electrode array were averaged to represent the EMG 

amplitude of the FDI muscle. 

A linear function in the form of 𝑦 = 𝑎𝑥 + 𝑏 was derived based on a 1
st
 order polynomial 

least-square fit, where 𝑥 represents force measurement, 𝑦 represents EMG amplitude, 𝑎 is the 

slope of the EMG-force relation, and 𝑏 is the intercept.  To evaluate the linear fit of the EMG-

force relation, we calculated the normalized root mean square error (En-rmse) between the 

experimental EMG amplitudes and those predicted by the linear fit from the force measurement. 

The analysis was performed on all the ALS and healthy control subjects.  Two-sample t-

tests were used to examine the difference between the slopes of the EMG-force relation of ALS 

and healthy control subjects. Statistical significance was defined as p < 0.05. 

7.3 Results 

7.3.1. MVC force and EMG measurement 

The MVC force in abduction was recorded for the FDI muscle of both ALS and healthy 

control subjects. As we expected, the MVC force of the ALS was systematically lower than that 

of the healthy control subjects. Across healthy control subjects the average MVC force was 32 ± 

12 N (range: 17 - 55N), which was significantly larger than the ALS subjects with an average 

MVC force of 15 ± 13 N (range: 1.5-32 N) (p < 0.05).  It was also observed that the average 

EMG amplitude at the MVC was 146 ± 34 µV (range: 98 - 201 µV) of healthy control subjects, 

which was significantly higher (p < 0.05) than the maximum EMG amplitude of the ALS 

subjects [47 ± 41 µV (range: 3 -132 µV)].  
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7.3.2. EMG-force relation 

Figure 23 shows the sample recordings of the EMG and force signals at two different 

muscle contraction levels from a healthy control subject. For each level, the force in directions of 

index finger abduction and flexion was measured.  Among 64 channels of the electrode array, 

only 6 channels (channels 26 to 31) of data are shown to avoid complexity in the figure.  Figure 

24 and Figure 25 present the experimental EMG and force relation for all the healthy control and 

ALS subjects, respectively. The line drawn in each panel is the result of a 1
st
 order polynomial 

least-square fit for the recorded sets of data points.   

Chan 26
 27

31

 28
29
30

Selected section for EMG and 
force measurements

Time (s) 

Fx

Fy

Fx

Fy

 

Figure 23: Examples of surface EMG and force signals recorded at two different contraction levels from a 
healthy individual.  Each contraction lasted around 10 seconds. Six EMG channels are shown here in the 
upper panels. The lower panels show force profiles. Both fore directions in abduction (Fx) and flexion 
(Fy) are shown. The abduction force level in the left trial is about 1.7 N and in the right trial is 8.4 N. 
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It was evident that a linear fitting can be used to well describe the EMG-force relation for 

the FDI muscle of both ALS and healthy control subjects.   
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   Figure 24: The linear fitting of the EMG-force relation for each of the healthy control subjects. 
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              Figure 25: The linear fitting of the EMG-force relation for each of the ALS subjects. 
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For four ALS subjects (ALS 1, ALS 2, ALS 3, and ALS 7), the maximum force of the FDI 

muscle was very weak. Among this group, three subjects (ALS 1, ALS 3, and ALS 7) showed a 

more scattered sets of data points, with a linear trend still visible between the recorded EMG and 

force signals.  Fitting a linear function into the experimental data, the normalized root mean 

square error (RMSE) value was 9.6 ± 3.6% for the healthy control subjects and 7.5% ± 3.5% for 

the ALS subjects, after excluding the three subjects (ALS1, ALS3, and ALS 7) with scattered 

data points, and not difference was found between groups (p > 0.05). Whereas including these 

three subjects, the normalized RMSE value was 12.3 ± 8.0% for the ALS subjects, which was 

significantly higher than that of the healthy control subjects (p < 0.05). 

 

 

 

7.3.3. EMG-force slope comparison 

The slope of the 1
st
 order polynomial curve fit of the EMG-force relation was calculated 

and compared between the two groups.  The slope was 5.1 ± 1.8 µVN
-1

 for the healthy control 

subjects and was significantly steeper than the ALS subjects (2.9 ± 2.2 µVN
-1

) (p < 0.05). It is 

noted that the slope for the ALS subjects with weak maximum contraction force (i.e., ALS 3 and 

ALS 7, Figure 25) was very small.  After excluding the four subjects who had very weak force or 

scattered EMG-force data points (ALS 1, ALS 2, ALS 3, and ALS 7), the slope for the remaining 

ALS subjects was 3.5 ± 2.2 µVN
-1

.  A trend of slope reduction can still be observed when 

compared with healthy control subjects, but no statistical difference was found between the two 

groups (p > 0.05).  
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7.4 Discussion 

This study examined the alteration of the relation between the EMG amplitude of the FDI 

muscle and the corresponding isometric force during index finger abduction in individuals 

diagnosed with ALS. The observed relation was further compared with that of the healthy 

control subjects to assess neuromuscular deficits in ALS.  A linear fit between the surface EMG 

amplitude and the muscle contraction force was confirmed to be valid for the FDI muscle of the 

healthy controls and the ALS subjects.  A trend of decreased slope in the linear fit of the EMG-

force relation was observed in the ALS subjects compared with healthy control subjects. But no 

significant difference was found between the two groups when the reduction of MVC was taken 

into account. 

The findings of this study may be a result of various types of interactive processes in 

ALS patients that can impact the EMG-force relation in different ways. These may include spinal 

motor neuron degeneration, muscle fiber reinnervation following the degeneration process, 

impairment of motor unit control properties, and muscle fiber atrophy, etc.  The influence of 

these processes on EMG-force relation has been investigated using a simulation of motor neuron 

pool activity (muscle force and surface EMG)(P Zhou, Suresh, & Rymer, Sept 2007). The 

decreased slope of EMG-force relation  can arise from several factors such as a selective 

degeneration of high threshold motor units, increased motor unit firing rates, atrophy of muscle 

fibers, and muscle contractile property changes, which have been reported in ALS patients. For 

example, a weaker correlation was found between motor unit action potential and twitch force in 

the FDI muscle for rapidly progressing ALS subjects, compared with healthy controls or subjects 

with slowly progressive motor neuron degeneration such as spinal muscular atrophy(Dengler et 

al., June 1990; Vogt & Nix, 1997). This suggested degeneration of high threshold motor units, 
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resulting in prevalence of relatively a large number of slow motor units in the muscle.  For ALS 

patients with dominant lower motor neuron dysfunction, elevated motor unit firing rates were 

also observed, possibly due to compensatory mechanisms to cope with the loss of motor 

units(Kasi et al.). With all these changes, surface EMG of the affected muscle involves 

summation of relatively a large number of motor unit action potentials with small amplitudes in 

order to reach a given force. Due to increased degree of action potential cancellation, the surface 

EMG amplitude in such a case would be lower. This effect would be more evident at higher 

force levels, resulting in a slope reduction in the EMG-force relation(P Zhou et al., Sept 2007). 

On the other hand, factors increasing the slope of the EMG-force relation were also 

reported in ALS subjects, such as muscle fiber reinnervation following motor neuron 

degeneration. Decreased motor unit firing rate was also observed in patients with dominant upper 

motor neuron dysfunction possibly due to decreased central drive or intrinsic motor neuron 

property changes(Kasi et al.).  It is noted that for motor neuron diseases such as ALS, a variety 

of processes may work together (for example, denervation and reinnervation of muscle fibers) at 

different stages of the disease, which in turn may affect the disease progress. Thus 

experimentally observed EMG-force slope variations in affected muscles of ALS subjects could 

be the overall effects of many different factors. 

In this study, a non-invasive electrode array was used for EMG data recording.  The 

advantage of high density surface EMG has been reported in (Staudenmann, Kingma, 

Daffertshofer, & Stegeman, April 2006) (Staudenmann, Daffertshofer, & Kingma, April 2007) 

for improving estimation or tracking of muscle force using principal component analysis and 

independent component analysis.  In this study, the objective was to examine the EMG-force 

relation. We found that the EMG amplitude varied significantly on different channels even for a 
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specific level of contraction.  As force increases, the pattern of amplitude variation versus force 

might be different from channel to channel. Thus we averaged the EMG amplitude of all the 

channels to have a more robust and comprehensive measurement of the EMG-force relation. 

Finally, given recent advances in surface EMG decomposition using high density surface 

EMG(Holobar, Farina, Gazzoni, R, & Zazula, Mar 2009; Holobar & Zazula, 2007), it is feasible 

to decompose the EMG signals collected in this study, thus providing more definite information 

about motor unit alteration than that obtained from the EMG-force relation analysis.  Indeed, this 

was the primary motivation of using high density surface EMG recording in this study. As an 

overall effect of many different factors, EMG-force relation analysis can provide a general 

estimation of motor unit changes in an affected muscle. To obtain more definite information, our 

future work will focus on decomposition based motor unit analysis (e.g., motor unit control 

property, quantitative motor unit action potential analysis, etc.) in ALS subjects. 
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8 Characterization of Motor Unit Firing Behavior in the First 

Dorsal Interosseous Muscle of Patients with Amyotrophic 

Lateral Sclerosis 

Faezeh Jahanmiri-Nezhad, Ales Holobar, William Z. Rymer, Ping Zhou 

Abstract 

The objective of this study was to examine motor unit discharge patterns in subjects with 

Amyotrophic Lateral Sclerosis (ALS), compared to a healthy control population. A flexible 8×8 

grid of surface miniscule electrodes was used to record electromyographic (EMG) signals from 

the First Dorsal Interosseous (FDI) muscle of ten ALS subjects and ten age-matched 

neurologically healthy subjects. Motor units were recruited voluntarily during randomized series 

of isometric contraction at different force levels, ranging from  10%  to 100% of Maximum 

Voluntary Contraction (MVC) at 10% increment. Segmented EMG signals were decomposed 

and single motor unit discharge patterns were identified. Mean firing rates were computed based 

on instantaneous firing rates (IFR) of each motor unit. The firing rates at each force level were 

analyzed for each individual by fitting a linear line in them and measuring the firing rate-force 

slope and initial firing rate values. The ALS subjects were divided to two groups based on their 

FDI weakness (measured by abduction force at maximum voluntary contraction). The ALS 

subject with normal FDI strength had no statistically difference with healthy subjects in their 

slope and initial firing rate, unlike the ALS subjects with severe FDI weakness.  
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8.1 Introduction 

 Motor unit firing rate refers to the rate of discharges of a recruited motor unit. Increase of 

firing rate, along with number of activated motor units, contributes to muscle force generation. 

Changes in firing rate, called as ‘rate coding’, can be considered as a strategy for the  nervous 

system to adjust  the mechanical output of a muscle, and have been extensively studied in animal 

models and humans (Burke, 1968; De Luca et al., 1982; Fuglevand et al, 1993; Farina et al., 

2002; Zhou and Rymer, 2004; Hu et al., 2014).  

 In this work, we examined possible changes in motor unit firing behavior of individuals 

with Amyotrophic Lateral Sclerosis (ALS). ALS is a unique form of motor neuron disease 

caused by the progressive degeneration of the lower motor neurons (LMN) located in the ventral 

horn of the spinal cord that innervate the muscles, and the upper (cortical) motor neurons (UMN) 

that provide efferent input to the lower motor neurons.   

 So far it is not very clear whether or how motor unit firing rate would be altered in ALS 

patients. As one of the main factors in force generation, MU discharge behavior might be altered 

as a result of changes in neural control mechanisms for a muscle under denervation. 

Furthermore, altered MU firing rate might explain muscle weakness in an individual, and 

therefore may be considered a useful neurophysiologic factor in assessment of an individual in 

clinical trials. 

 In De Carvalho et al., 2005, review of published clinical trial designs for ALS, it was 

concluded that ALS-FRS (Functinal Rating Scale), perhaps MUNE (MU number estimation), 

and Neurophysiological index (related to never conduction and excitability parameters) are the 

most effective measurements in providing guidelines for an individual treatment designs. The 
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latter two suggested neurophysiological measurements are focused at compound motor action 

potential amplitude and the number of MUs. Both parameters dwindle dramatically along with 

disease progression (Maathuis et al., 2013; Baumann et. al, 2012). However, motor unit 

discharge behavior is also a main factor in force generation, that can compensate for recruitment. 

Firing rate of MUs are critically valuable in examining muscle weakness in an individual and 

have been hardly studies in ALSin first dorsal interosseous muscle by Kasi 2009; and in tibialis 

anterior muscle by De Carvalho et al., 2012). 

 High Density surface EMG (HDsEMG) provides non-invasive examination of electrical 

activity of muscle. Multi-channel electrodes cover a large area of muscle, thus can record more 

activities, while intramuscular EMG records from only a small area of the muscle. This fact 

makes HDsEMG electrodes more appropriate for tracking the changes in the muscle for an 

individual over time, since insertion of a needle at the exact same place might be difficult if not 

impossible. For the study of firing rate, EMG and Force was recorded simultaneously from First 

Dorsal Interosseous (FDI). Techniques of multi-channel surface EMG decomposition and their 

adequate accuracy assessment has been previously established (Zhou and Rymer, 2004; Holobar 

et al., 2009; Holobar et al., 2010; Holobar et al., 2014). 

8.2 Experiments 

8.2.1 Experimental Design and Subject Population 

 Experimental data from ten healthy intact subjects (5 male, 5 female, age range 30 to 80 

years, with mean 51.2±15.3) )and ten subjects with ALS (7 make, 3 female, age range 31 to 67 

years, with mean 531±12.5) are presented. All subjects signed informed consent via protocols 

approved by the Institutional Review Board under the Office for the Protective of Human 
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Subjects at Northwestern University (Chicago, USA). The experiments were performed at the 

Single Motor Unit lab of  the Rehabilitation Institute of Chicago, IL, USA.  The first dorsal 

interosseous (FDI) muscle was examined. For control subjects and ALS subjects with non-

affected hand muscle, the dominant side was examined, and for the ALS subjects with very weak 

hand muscles the stronger side was tested.  

 All the ALS participants were taking Rilutek, with ALS 1, 8 and 9 as exceptions. 

Riluzole, the only drug approved for the treatment of ALS, has been reported to have no acute 

effects on motor unit parameters (Desai et al, 1998).  

 Subjects were seated in a Biodex chair. Forearm was resting on an arm base. The wrist 

and forearm were placed in an arm brace and secured to the supporting surface to avoid 

movement when the subject moved the index finger.  Extra foam was placed around the arm 

brace to further firm the forearm, to avoid force contamination on the FDI muscle. The proximal 

phalanx of the index finger was held in neutral position and placed in a firm cast inside a vise. A 

six degrees-of-freedom load cell (ATI-FT4006, ATI Inc, Garner, NC) was attached to the vise. 

The thumb angle relative to the index finger was held at 45 degrees. The three medial fingers 

were secured on specifically designed surfaces. Isometric abduction force of the FDI muscle was 

measured at the 2
nd

 metacarpophalangeal (MCP) joint. 

 A flexible surface electrode array with 64 channels (8 rows and 8 columns, each 

recording probe 1.2 mm in diameter, inter-probe distance 4 mm for both directions) was used to 

record EMG; see Figure 26. EMG was amplified by Refa system (TMS International BV, 

Netherlands). The system has integrated filter settings. Bandpass filtering with tuned for 5-500 

Hz. Real time display provided visual feedback to the examiner to assess signal quality. The 
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EMG signal was sampled at 2000 Hz per channel. The auxiliary channels of the system were 

used to record muscle force. The force signal was sampled at 2000 Hz with a low pass filter at 20 

Hz. The EMG and force recordings were synchronized during the experiment. All the data were 

stored in ASCII format for offline analysis in Matlab 7.12.0, The MathWorks Inc., Natick, MA, 

2011. 

 

 

 In order to guide the subject to perform a contraction at a certain level of force, a custom 

designed Graphical User Interface (GUI) Matlab program was used to provide visual feedback. 

This GUI program shows a two dimensional Cartesian coordinate plane, where 𝑥-axis represents 

force on the horizontal direction (Fx, index finger abduction/adduction) and 𝑦-axis represents 

force on the vertical direction (Fy, index finger flexion/extension). A cursor in the shape of a 

triangle was used to indicate the current position of muscle contraction force in the x-y plane, 

Figure 26: An 8×8 grid of surface 
EMG electrode placed over FDI 
muscle. 
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which is at the origin during rest. To perform each level of contraction, an open circle and a 

filled circle were used to represent the Target position and the Guide position, respectively. The 

filled circle can change colors from yellow to orange and then to green in order to indicate to the 

subject that a trial is about to start. The subject was asked to generate force by abducting the 

index finger to move the cursor to the Target, stay at the Target position for 10 s and then relax 

slowly until the cursor was back at the starting point.  

 The experimental protocol started by measuring the isometric maximum voluntary 

contraction (MVC) force of the FDI muscle for index finger adduction. Once the MVC was 

determined, the subject was asked to perform isometric contractions of the FDI muscle at 10%, 

20%, ..., 100% of the MVC in different trials. If MVC level is large enough, minimal force levels 

such as 1N, 2N, ..., 5N were also tried. The order of contraction levels was randomized and each 

contraction level was repeated at least twice.  Sufficient resting periods between trials were 

provided to the subject to minimize mental and muscle fatigue. 

8.2.2 EMG Decomposition and Firing Rate Calculation 

  The decomposition technique followed a blind source separation approach. Segments of 

EMG during constant force were decomposed using an existing software described in (Holobar 

et al., 2009; Holobar et al., 2010; Holobar et al., 2014), which takes Convolutive blind source 

separation strategy to decompose an interference pattern to individual motor unit potentials. 

  IDIs were computed from sequential firing times. Instantaneous firing rate (IFR) refers to 

the reciprocal of individual IDIs in a class. Mean firing rate was measured as the average of all 

IFRs, excluding ‘too small’ or ‘too large’ values. Such supposedly erroneous IDIs might be the 

result of false positive (causing too small IDI) and false negative (too large IDI) malfunctioning 
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of EMG decomposition. In this work, IDIs above 250 ms and less than 25 ms were excluded 

from the firing rate calculation, equivalent to a 4-40 pulse per second (pps) cutoffs.  

 Figure 27 shows two examples of EMG decomposition output at 1 Newton abduction 

force level. In both a) and b), the bottom trace shows one channel of EMG (selected from the 

center of the grid). The above traces on EMG is an illustration of discharge patterns for 4 and 9 

MU activities extracted from the EMG trace in an ALS and a Healthy subject, respectively. 

 Furthermore, firing rate versus force values can be fitted into a linear line: y=Ax+B, 

where y refers to firing rate, A refers to the slope, x refers to force, and B refers to the constant 

value (the ordinate number at force= 0).  

8.2.3. Statistical Tests 

 Student ttest was used for statistical comparison. Normality of data distribution for each 

side of the comparison was tested using a Jarque-Bera test (built in Statistical Toolbox of 

Matlab). This test makes no assumption about the mean and STD of data, in contrast to a 

Kolmogorov-Smirnov test. If a data set failed the normality test, we attempted to transform the 

data until the test did not reject the null hypothesis. A power function or a boxcox function was 

used to transform the data. 

All the programs were coded in Matlab, MathWorks, Natick, Massachusetts, USA.  
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Figure 27: Discharge patterns of MUs extracted through EMG Decomposition, at 1 Newton of force. The 
data on the right panel belongs to a healthy subject, and on the left panel belongs to an ALS subject. 
Pulse per second is reprted at the end of each pattern. 

 

8.3 Results 

Overall, 1038 motor units from the ten healthy subjects, and 675 units from the ALS group were 

extracted. Number of extracted MUs from a single trial, regardless of force level, ranged from 1 

to 30 (averaged at 12±5), for intact group; and from 2 to 18 (averaged at 7±4) for ALS group. 

Averaged firing rates versus force (N) for each individual are illustrated in Figure 28. In general, 

a linear trend between firing rate and exerted force can be seen for the populations, excluding 
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subjects ALS1, 3, and 7. Subjects ALS1, 2, 3, and 7 have a very weak FDI (FMVC < 5N). Subject 

ALS10 had a mild level of weakness, with maximum force of 12N.  
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Figure 28: averaged firing rates for each individual. The top row shows the results from ALS population, 
and the bottom row presents the results from healthy subjects. In each panel, x-axis indicates force (in 
absolute Newton value), and y-axis shows firing rate (pulse per seconds). Each sample represents the 
average firing rates of all the motor units extracted from EMG at each level of contraction.  

  

Due to high variability of force levels among ALS subjects, the data were grouped into three 

classes: H={H1-H10}, G1={ALS1,2,3,7,10}, and G2={ALS4,5,6,8,9}. For each individual, a 

line was fitted to the Firing Rate and Force quantities. Fitted lines are illustrated in Figure 29. In 
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this figure, we can see G2 overlaps with H. Large inconsistencies are seen among G1, with 

somtlevel of force generation). 
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Figure 29:   the (fitted) linear relationship between firing rate and force levels (in Newton).  

 

 From each fitted line y=Ax+B, two parameters A and B (slope and the constant value) 

can be derived. In Figure 30, the distributions of A and B belonging to each individual is 

depicted in each group. Variability among both A and B parameters is higher for data in G1 

(weak muscles). TO quantify it for example, the coefficient of variation (COV=STD/Meean) of 

slopes in G1 is about two times larger than in H and G2 (COV= 0.49, 0.82,0.42 for H, G1, and 

G2, respectively). In same Figure 30, on the top right, a feature space is illustrated with both A 

and B values, with blue dots presenting healthy subjects, and red stars presenting the ALS 

subjects. The bottom right shows the same figure expanded. Three contours are dividing this 
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space to three regions. The middle region is where most of the data are clustered, mainly 

composed of H and G2 samples. The top and bottom regions are exclusively composed of G1.  
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Figure 30: Plot of slope and initial firing rate values for the three groups (H: Healthy, G1: ALS with weak 
FDI, G2: ALS with normal FDI).  On the left, distributions of A and B are depicted individually. On the 
right, a feature space of the data (x-axis: A, y-axis: B) is presented. The contours are dividing the feature 
space into three regions. The middle region contains all the H and G2 samples are clustered. The up and 
bottom regions include three and two samples from the G1. 
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8.4 Discussion 

8.4.1. Analysis of Firing Rate  

Monotonic increase of firing rate in FDI  has been previously published by De Luca et al., 1982 

(up to 80% of MVC); while, Conwit et al., 1999, reported a constant firing rate up to 30% of 

MVC and rate coding strategy playing an effective role only at high levels of force in quadriceps 

femoris muscle. High firing rates have been associated with lack of recurrent inhibitions  Davey 

et al, 1993. Effect of synaptic noise on force steadiness (Dideriksen et al., 2012) -> may be 

irrelevant; but may also be related to Firing rate variability 

8.4.2. Firing Rate Analysis and ALS 

 To date, diagnosis of ALS is not straightforward. It depends on clinical assessment and 

involves detection of both LMN and UMN symptoms, evidence of disease progress and spread 

to different regions, and eventually ruling out other mimic conditions (Higashihara and Sonoo, 

2007; De Carvalho et al., 2011). Sonoo et al., 2011, emphasized on utility of EMG for detection 

of LMN symptoms in ALS diagnosis. Meanwhile, Vucic, 2012, pointed out the significance of 

UMN in early diagnosis of ALS. Both the functional transcranial magnetic stimulation and 

anatomic diffusion tensor imaging were mentioned as two highly sensitive detectors of UMN 

signs, yet they would require sophisticated costly technology which may not be available at all 

medical facilities. Nevertheless, motor unit discharge behavior of voluntary EMG, after accurate 

decomposition, can hint the presence of UMN signs. A significant reduction of coefficient of 

variation of instantaneous firing rates was observed in different groups of patients with marked 

spasticity including primary lateral sclerosis, as well as ALS, while the opposite happened for 

patients with dominant LMN lesions. Vucic et al. concluded that detection of abnormalities in 

firing rate especially when no sign of LMN symptoms exist would have important 
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pathophysiological importance and can help with an early diagnosis. The importance of MU 

firing eate measurements in detecting neuromuscular dysfunction had been also emphasized by 

Dorfman, et al., 1989. 

 

8.4.3. Firing Rate Analysis In Other Conditions 

 Firing rate modulation have also been studied in other conditions such as muscle fatigue, 

other neurologic disorders such as stroke and spinal cord injury (Andreassen and Rosenfalck, 

1978; Thomas and del Valle, 2001; Kallenberg and Hermens; 2006; Zhou et al., 2007; Inglis et 

al., 2011; Chou et al., 2013; Watanabe et al, 2013; Mottram et al., 2014), and studies of aging 

(Patten et al., 2001; Kallio et al., 2012). 

 

8.4.4. Summary of the Results 

 Both ALS and Control subjects were using rate coding strategy during force generation. 

Based on figure 28, three ALS subjects with very weak muscle were exceptions (ALS1, 3 and 7). 

In order to characterize the results, a linear line was fitted into the firing rate and force values. 

The slope and the initial firing rate values were measured. Our results showed that ALS subjects 

with normal force generation abilities had a similar pattern of firing rate modulation versus force 

as in healthy subjects. However, the characteristics of ALS subjects with mild to severe 

weakness are scattered with some examples with high slopes and low initial firing rate, and some 

example with rather variant slope values and high initial firing rates.  

 

The scattered results presented in Figure 30 can be interpreted in different ways. One other 

example is depicted in Figure 31, where the whole space is grouped into two regions, based on 
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the data in ALS, with a proposed trend in each group (ALS2 is considered as an outlier). The 

MVC force values, on the lines connecting the ALS samples, are interestingly declining as the 

lines move outwardly from the center. The In this new categorization, ALS1,4,5,7,8 are in one 

group, and ALS3,6,9, and 10 in another group. The members of the first set had rather low 

values of slope; and, as force declined, the initial firing rate increased. Meantime, the members 

of the latter had low values for initial firing rates; and, as force declined, the slope increased. 

This interpretation suggests two different mechanisms in rate coding as weakness progresses, but 

remains unproved at this stage of data analysis. 
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Figure 31: A-B feature space divided (arbitrarily) into two regions. 
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9 Future Directions 

 

The series of work presented here are dedicated to surface electromyography (EMG) 

examination of subjects with a progressive motor neuron degenerative disease, ALS, using High 

Density Surface EMG electrodes. The developed data analysis techniques facilitate the potential 

clinical applications of surface EMG. In addition, they provide supplementary investigatory 

information, which is helpful for basic neurophysiological investigations (such as 

comprehending the organization of motor units in a muscle, examining the neural control 

strategies of muscle activation, etc.). The findings can ultimately be useful to detect the 

abnormality in the muscle and/or its neural drive as a result of the neurophysiologic disorder.  

 

In this work, the examination of within-muscle Innervation Zone distributions, the analysis of 

EMG-force slope, and measuring single motor unit discharge behaviors were presented. Further 

studies can be followed up to explore potential applications of HDsEMG to study ALS. 

Suggested studies are listed, but not limited to the following: 

 

9.1  Detection of Fibrillation Potentials 

Fibrillation potentials are the hallmark of denervation. They arise on single muscle fibers that are 

believed to be denervated (lost connection to their corresponding motor axons). Their detection 

is so far only attainable through needle EMG (Nandedkar et al, 2000). It would be very helpful to 

examine the possibility of HDsEMG recording (which can cover larger area of a muscle), 

combined with advanced data analysis techniques, to discover these hidden rhythmic activities 
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on top of the skin, which might imply presence of fibrillation potentials. Attempts of finding 

differences between baseline EMG of control and ALS subjects reported in nonlinear dynamic 

domains (Zhang and Zhou, 2014). Nevertheless, no confirmed evidence exists so far whether the  

differences in such domains were specifically induced  by underlying fibrillation potentials . A 

simultaneous recording of surface and intramuscular EMG is required to provide more definite 

information By analyzing simultaneously recorded needle EMG, one will know whether an 

episode of surface recording contains fibrillation potentials or other abnormal discharges   

 

9.2 Motor unit recruitment patterns 

Motor unit recruitment and firing rate are the two motor unit control properties governing muscle 

force generation. In chapter 9, we investigated the firing rate behavior of single motor units in 

ALS. Analysis of motor unit recruitment patterns, in particular with respect to motor unit type 

and size, will be an essential complementary study. A different force protocol with slow ramp 

contractions will be more appropriate for motor unit recruitment investigations.  

 

9.3 Motor Unit Number Estimation  

Another critical study commonly practiced in motor neuron degeneration disorders is the Motor 

Unit Number Estimation and its various modification forms such as motor unit number index 

estimation (MUNIX) (Nandedkar et al, 2004; Li et al., 2012; Zhou et al, 2014), which demand 

electrical stimulation of the nerve. The future studies in this area will be to examine whether an 

HDsEMG will have any advantage for motor unit number estimation compared with single 

channel surface EMG recording.  
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9.4 Study of abnormal propagation patterns – a simulation study 

We observed abnormal pattern of waveform propagation among some of the fasciculation 

potentials from the biceps muscle of ALS subjects. This abnormal pattern had also been reported 

previously but by very few people. It will be helpful to conduct a simulation study of motor unit 

potential with respect to its innervation properties, in an attempt to find the factors that can drive 

a multi-channel MUP waveform to resemble the abnormal patterns observed in experimental 

data. The results will be helpful to understand the experimentally observed abnormal propagation 

patterns.  

 

9.5 Within-motor unit innervation zone analysis 

Chapter 6 is dedicated to ‘within-muscle’ innervation zone analysis. It is also suggested to 

examine the ‘within motor unit’ IZ analysis. We observed abnormally longer innervation zone 

length in fasciculating motor units of ALS subjects. The analysis was based on the collective 

measurements from the available motor units in each individual. Meanwhile, we observed that 

some waveform potentials have a long innervation zone. While the former project may indicate 

for a muscle reorganization, the latter will indicate for reinnervation occurring within a motor 

unit. 

 

9.6 Fasciculation potential analysis on the 8×8 grid electrode 

Developed techniques of fasciculation potential detection and classification (Chapters 2 and 4) 

are easily extendable to data recorded by the grid electrode. Spontaneous EMG data from First 

Dorsal Interosseous (FDI) and Abductor Pollicis Brevis (APB) are available recorded by the grid 

electrodes from same population of ALS subjects, described in Chapter 6. Innervation zone 
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analysis can be repeated on these data. Comparison of the outcomes on distal muscles (the FDI 

and APB) and the more proximal muscle (the biceps) will be very interesting. The obstacle will 

be the anatomy of FDI and APB muscles. Unlike the straightforward parallel structure of muscle 

fibers in the biceps, the FDI and API muscles have a bipennate architecture. Estimation of their 

innervation zones would require cautions. 

 

9.7 Complement surface EMG with other techniques that measure 
subcutaneous tissue and skin layer parameters 

The final but certainly not least in this list is the ‘notation’ that surface EMG should be 

carefully treated and not mistaken as an intramuscular EMG. This is significantly important, yet 

usually simply ignored. In an intramuscular EMG recording, an electrode is inserted into the 

muscle and directly records the electrical activity. A surface EMG, however, cannot collect the 

same signal as that from an intramuscular EMG electrode, being affected by the effects of the 

connective tissue around the muscle, the different skin layers, and also  by the effect of the skin-

electrode contact (if a  conducting gel is applied). Both intramuscular and surface EMG 

recordings are affected by the electrode type (i.e. the electrode configuration, geometry, the 

recording  surface area, etc.). In substituting an intramuscular electrode for a surface recording 

electrode, potential techniques should be looked for that may  provide some estimation of the  

collective contribution of these factors. (Barkhaus and Nandedkar, 1994; Barkhaus et al, 2006). 
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