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The contents of this thesis is the result of a joint effort between my PhD advisors Professor Daniela

Tuninetti, Professor Natasha Devroye and I. Our main contributions and a detailed list of prior existing

work are presented in Chapter 1. The main results of our collaboration are found in Chapters 2, 3 and 4.

Conclusions are finally summarized in Chapter 5.

Motivated by the problem of spectrum scarcity, we consider allowing a wireless communications

system to share the underutilized spectrum with a radar system. Thus, interference between the co-

existing systems are unavoidable. More precisely, we study and analyze how each system affects the

performance of one another so as to use these insights as a guide to efficient co-design synergies. We

make progress by providing an in-depth analysis of a single-carrier communications system suffering

from weak, intermediate, and strong radar interference including system model, detection schemes, and

error performances as well as optimizing a two-dimensional signal constellation that either maximizes

the transmission rate or minimize the error rate. We further analyze and give comprehensive numerical

evaluations of the error rate a more commonly-used multi-carrier OFDM communications system where

various (optimal and suboptimal) decoders are presented. Lastly, the receiver operating characteristic of

the radar system was investigated where we derive two detectors. Simulations results are then verified

and conclusions are drawn.
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SUMMARY

Spectrum sharing between radar and communications systems has been a topic of interest as a novel

solution to the increasing demand for new wireless services but limited available bandwidth. In partic-

ular, the S-band (2-4 GHz) is one of the potential candidate bands for spectrum sharing as it is where

radar systems (e.g., air traffic control, Navy surveillance, and weather), communications satellites, and

commercial wireless networks (e.g., WiFi and Long-Term Evolution (LTE)) operate. Therefore, a good

understanding of how current radar and communications systems affect one another is essential to effi-

ciently co-design both systems to operate reliably (without performance degradation ideally).

The main focus of this work is to attempt an analytical characterization of the optimal performance

of an uncoded communications system, using complex-valued modulation schemes when the optimal

Maximum Likelihood (ML) detector is used, in the presence of an unaltered radar system. To do so, we

need a tractable model. Radar systems periodically transmit radar pulses of large amplitude and short

duration while communications systems send signals of significantly lower power, smaller bandwidth,

and 100% duty-cycle. This implies that each narrowband subcarrier in an Orthogonal Frequency Di-

vision Multiplexing (OFDM) communications system experiences the radar interference as an approx-

imately amplitude-constant additive interference. This amplitude can be accurately estimated from the

knowledge of the (slowly varying) parameters of the radar waveform and the relative geometry between

the radar transmitter and the communications receiver. The phase however changes very rapidly due to

multi-path propagation; the worst case scenario is when such a random phase is uniformly distributed.

With these considerations in mind, we build a simple model for when a radar and a communications
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SUMMARY (Continued)

system operate in the same frequency band, which captures some key performance bottlenecks and

highlights different operating regimes.

A simplified single-carrier communications system with additive radar interference and Gaussian

noise is first considered and the constellation design with the goal of maximizing the transmission rates

subject to average power and error rate constraints, and minimizing the error rates under a power budget

are later proposed. Two regimes, where the radar interference power, measured by the Interference-

to-Noise ratio (INR), is low and very high compared with the intended communications signal power,

measured by the Signal-to-Noise ratio (SNR), are thoroughly investigated and the Symbol Error Rate

(SER) expressions for both regimes are presented. In the weak radar interference regime, the radar

interference is treated as Gaussian noise and the probability of error increases with the radar power.

At low INR, the channel behaves as a complex-valued AWGN channel and the designed constellations

exhibit a concentric (almost equilateral) hexagonal structure as the number of signal points increases. In

the very strong radar interference regime, the radar interference can be estimated and subtracted off the

received signal at the cost of cancelling out a portion of the communications signal, which reduces the

effective SNR at the receiver, and the probability of error exhibits an irreducible error floor that can be

exactly characterized. At high INR, the channel behaves as a real-valued phase-fading AWGN channel

and the designed constellations are shaped as an unequally-spaced Pulse-Amplitude Modulation (PAM).

In the intermediate radar interference regime, where the radar and communications signals are received

at roughly the same strength, the probability of error attains its maximum value, and it is numerically

shown that the hexagon-shaped constellation transitions into an unevenly PAM-shaped as the radar

power increases.
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SUMMARY (Continued)

Next, the interference caused by a radar system on a multi-carrier OFDM-based communications

receiver is investigated. Due to the unknown time delay between the communications and radar sig-

nals at the OFDM receiver, the received signal becomes correlated over time and across carriers. The

performance of the optimal ML decoder, which considers both time and frequency correlation for the

OFDM system, is measured in terms of error rates and numerical results show that a suboptimal time-

correlated decoder is slightly inferior to the optimal ML decoder but outperforms symbol-by-symbol

and frequency-correlated suboptimal decoders.

Finally, we investigate the complimentary problem, where a radar system is interfered by a com-

munications signal, and its Receiver Operating Characteristic (ROC) performances for two composite

hypothesis testings, the Average Likelihood Ratio Test (ALRT) and the Generalized Likelihood Ra-

tio Test (GLRT), are derived. Certain knowledge of communications system parameters is assumed to

be available at the radar receiver. Specifically, the radar receiver knows the set of all possible com-

munications symbols but not the actual transmitted symbol. Three scenarios are considered here: the

communications constellation and the channel gain between the communications transmitter and the

radar receiver are either known or unknown. When both the communications constellation size and

the channel gain are known, it is shown that a communications interference of sufficiently low power

slightly degrades the radar detection performance, and as the interference power becomes stronger than

the radar power, the radar receiver can successfully decode and cancel the communications symbol

where the ROC curve approaches the no interference case; the GLRT detector is shown to very well

capture the the performance of the ALRT detector. When the channel gain is known, it is shown that the

optimal ALRT detector can either ignore or cancel the communications interference for weak or strong
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interference power, respectively; the GLRT is shown to well approximate the ALRT in the weak regime

but not in the strong regime, with the largest gap from the ALRT in the intermediate interference regime.

Interestingly, for the scenario where the radar receiver has no knowledge of the channel gain from the

communications transmitter, the GLRT detector does not depend on the received signal, which yields a

straight line in the ROC curve no matter what the power of the radar signal is; hence, the GLRT is not

suitable in this scenario. For all cases, simulations confirm that the ALRT performance improves with

more knowledge of the communications parameters, as expected.

xiv



CHAPTER 1

INTRODUCTION

With an ever growing number of wireless services, the need for extra bandwidth has become a

serious issue for the wireless communications industry. One solution to the increasing demand for spec-

tral resources of wireless services is to allow the wireless communications systems to utilize the radar

spectrum, sparking much research in both the radar and communications communities. For instance,

DARPA (Defense Advanced Research Projects Agency) has launched the SSPARC (Shared Spectrum

Access for Radar and Communications) program to encourage research in this direction [1] and the NSF

(National Science Foundation) also has a dedicated crosscutting program for EARS (Enhancing Access

to the Radio Spectrum) [2]. The spectrum of interest for sharing is the S-band (2-4 GHz), where several

wireless communications systems (i.e., Wi-Fi and WLAN) and radar systems (i.e., air surveillance and

weather) operate. The economical implications of successful spectrum sharing, as well as the technical

challenges of maintaining integrity under spectrum sharing for each individual system, are difficult to

understate. Therefore, novel solutions for the efficient and fair sharing of the spectrum is needed.

The interference effects between communications and radar systems were already considered in the

50s [3], but have only recently come to the forefront due to the significant increase of wireless services

for smartphones, tablets and real-time video streaming. Much recent work has looked at issues related

to the co-existence between radar and communications systems. The feasibility of dynamic spectrum

sharing between wireless communications systems and air traffic control radar is investigated in [4] via

a numerical simulation. The effect of a rotating radar on bit and packet error rates of a WiMax receiver

1
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was simulated in [5]. In [6, 7], the authors venture into the theoretical analysis that looks at a tradeoff

between communications information rate and radar estimation rate.

The longer term goal for spectrum sharing may be to modify radar and communications systems

to co-exist ( [8] and references therein). However, to effectively design co-existence systems, it is im-

portant to first understand the impact of unaltered systems on one another. In this vein, there are two

important avenues to visit: how communications signals affect the performance of radar systems, and

the reverse: how radar signals affect the error rate (and other metrics) of communications systems. The

following list is a very small extract of the available literature considering the former aspect. The authors

in [9] studied the effects of amplitude and frequency modulated audio signals on radar system and con-

cluded that the FM interference behaves like AWGN but AM/DSB interference behaves quite differently.

A cognitive design of the transmit signal and receive filter optimizing the radar detection performance

by inducing spectral constraints on the radar waveform to predict the actual scattering scenario and to

acquire information about hostile active jammers was proposed in [10]. National Telecommunications

and Information Administration (NTIA) carried out an experimental analysis of interference of digital

signals on radars, which showed that the interference to noise ratio as low as −6 to −9 dB significantly

degrades the radar performance [11, 12].

While there have been many numerical and experimental studies on the loss of performance of the

radar and communications systems once they co-exist [13–17], there has not been much research on an-

alytical models and analysis using such models to demonstrate the effect of unaltered radar interference

on the error rate performance of the communications systems despite its relevance for designing more

backwards-compatible spectrum sharing solutions. Herein, our research is mainly focused on analyti-
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cally characterizing the impact of unaltered radar interference on wireless communications systems as

a starting point for a practical interference management approach. In [18], we investigated the effect

of radar interference on an uncoded real-valued modulation scheme used on an Additive White Gaus-

sian Noise (AWGN) channel and then extended our closed-form analysis of the average SER to any

complex-valued modulation scheme in [19]. We explicitly consider commonly-used PAM, QAM and

PSK constellations but the results and insights are valid in general.

How to enable the communications and radar systems to co-exist in an efficient manner can be ap-

proached from several angles. One straightforward solution is to split the available resources (in time

or frequency) through policy so that each system operates independently and interference is avoided

altogether. For example, the authors in [20] proposed a time-frequency (carrier by carrier) resource

allocation algorithm for co-existing LTE advanced cellular and S-band radar systems. Such resource

allocation schemes lead to orthogonal resource allocation, quite different from the simultaneous, over-

lapping frequency spectrum sharing studied here. Another direction is to retrofit one system so as to

better withstand the effect of the other system. Rather than retrofitting one system, one could opt to

re-design and co-design both the communications and radar systems. In [21], it was concluded that

a co-design is key in improving the performance of co-existing architectures, and co-designs have at-

tracted much recent attention, see for example [22] and references therein. In contrast to the resource

allocation (orthogonalizing) approach of [20], a framework for a joint radar-communications system was

introduced in [23], where only one transmitted signal (decoupled into training and data portions) is used

for simultaneous operations for both systems. The optimal training signals are shown to yield both the

largest lower bound on the communications rate and the maximum probability of detection. The work
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in [23] considered a scenario where both the radar and communications systems share a transmitter and

receiver. Waveform design is another popular co-design scheme. This technique utilizes the characteris-

tics of the other system’s signal so as to improve each system’s performance through carefully designing

their transmitted waveforms [24–27]. The authors in [28–30] proposed a spectrum sharing algorithm

between a Multiple-Input Multiple-Output (MIMO) radar and an LTE cellular system, in which the loss

in radar performance is minimal when one selects the best channel onto which to null-project the radar

signal so as to create minimal interference to the LTE system. In [31], an LTE packet scheduling algo-

rithm based on channel sensing was proposed for spectrum allocation for an LTE system during radar

intermittent periods resulting in a slight performance degradation for the LTE system. The experimental

study of the degradation in performances of the coexisting air traffic control radar and LTE systems in

the S-band in [32] reported that the LTE system in the TDD bands suffers a significant performance

degradation when the radar pulses hit the synchronization packets, and discussed the improved filtering

and spectrum sensing (among the possible mitigation techniques) for both systems. In [22], the authors

looked at how to design the radar system so as to maximize the Signal-to-Interference-plus-Noise-Ratio

(SINR) at the MIMO radar receiver subject to MIMO communications system requirements. Spectrum

sharing between a communications system and a MIMO radar system modeled as MIMO interference

channel is considered in [33], where a zero-forcing pre-coder for radar transmitter that completely elim-

inates the radar interference to communications users was proposed and the impact on both the radar

and communications systems was investigated. In [34], the authors discussed the gray space spectrum

sharing between a primary rotating radar and a secondary cellular device that allows the secondary de-

vice to transmit as long as its resulting interference does not exceed the radar’s tolerable level with an
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extension to multiple rotating radars and cellular network hotspots presented in [35]. In [36], the radar

waveforms were optimized so as to maximize the radar estimation rate as well as the communications

data rate. These co-design schemes differ from the presented scheme here, in which the radar system is

left unaltered.

In general the focus has been mainly on the design of radar waveforms, or more generally the

whole system structure of radar system, for enhanced spectral efficiency when co-existing with com-

munications systems. In this work, we are interested in the complementary problem: the design of the

communications signal constellation so as to optimize the communications system performance in the

presence of a radar signal. Here, in contrast to other work, the radar signal is left unaltered.

Past work has studied the optimal constellation design under various performance metrics for dif-

ferent channel models. However, to the best of our knowledge, no one has looked at the channel model

with additive radar interference considered here. For example, the optimization of complex signal con-

stellations in the presence of Gaussian noise only was presented in [37], where the minimization of the

probability of error was based on an asymptotic approximation of the ML decoder for large Signal-to-

Noise-Ratio (SNR). Another example is [38] where the authors presented the optimal signal constella-

tion for phase noise channels when using either the SER or the average mutual information for an ML

detector as the optimization objectives.

Motivated by the necessity of delivering the largest possible rate subject to an error rate being be-

low an application-dependent value while not exceeding a power budget, we studied the problem of

maximizing the cardinality of the constellation subject to average constellation power and SER con-

straints [39]. The more common approach of minimizing the SER for a fixed constellation size subject
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to an average power constraint is also investigated here. This problem is well motivated for cognitive

networks in which the communications nodes are “intelligent” and may adapt their transmission to their

sensed spectral environment. In particular, if they sense a radar signal, depending on its strength, they

may adapt their constellation and decoding schemes as proposed here.

While there have been many studies on how radar and communications systems can co-exist within

tolerable performance degradation, clear insights on how unaltered radar and communications systems

affect one another has not been investigated much despite its relevance to better determine which tech-

nology should be pursued for reliable radar-communications coexistence. Herein, our research is mainly

focused on the performance of a communications receiver with interference from unaltered radar sig-

nals. The findings of this work are relevant for systems where changing the hardware may be too costly,

but further digital signal processing of the baseband received signal is viable.

This paper investigates the effect of radar interference on two types of communications systems: a

single-carrier, and a multi-carrier communications system.

1.1 Single-Carrier Communication System with Radar Interference

In Chapter 2, we consider a transmitter wishing to communicate with a receiver over a memory-

less additive noise channel, where the noise consists of a Gaussian component and a radar interference.

The radar interference is modeled as having a known constant amplitude and a known random phase

uniformly distributed in [0, 2π]. We seek to understand how the SER of an uncoded communications

system using a complex-valued modulation scheme is affected by a specific model of radar interference

under a range of low to high level of radar power relative to the SNR of the communications signal.

Based on the obtained SER expressions, we aim to design a constellation that maximizes the transmis-
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sion rate, measured by the number of signal constellation points, subject to the average power and error

rate not exceeding predetermined values as well as the ‘dual’ problem of the constellation design that

minimizes the SER subject to a fixed rate since many widely-used complex-valued modulation schemes,

such as QAM and PSK, are not necessarily optimal for this radar-interfered channel.

We observe three different regimes of operation depending on the relative value of the radar inter-

ference power, measured by the INR, and the intended signal power, measured by the SNR:

1. Treat interference as Gaussian noise: when INR ≤ SNR, we show that it is optimal to use the

classical minimum distance decoder as if the overall channel noise were Gaussian. As expected,

the SER is minimal when INR=0 and it increases with INR. The channel behaves as a complex-

valued AWGN channel and our optimization results show that the designed constellation is ap-

proximately shaped as a concentric hexagonal lattice. More precisely, the constellation points

are the vertices of a trellis of almost equilateral triangles that form concentric almost equilateral

hexagons as the number of signal points increases. We shall refer to this shape as ‘hexagonal-like’.

2. Interference cancellation: when INR� SNR, we show that it is optimal to estimate the phase

of the radar interference (as the phase of the received signal) and subtract its contribution from

the received signal at the communications receiver. Interestingly, in the process of canceling the

radar interference, part of the useful signal is also cancelled. This in turn reduces the effective

SNR at the communications receiver and thus the SER exhibits an irreducible error floor that does

not coincide with the case INR = 0. This error floor can be exactly characterized as the attain-

able SER over a narrowband fading channel with multiplicative fading that is perfectly known at

the receiver but unknown at the transmitter. The channel behaves as a real-valued phase-fading
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AWGN channel, indicating a loss of one of the two real-valued dimensions, and our optimization

results show that the designed constellation is approximately shaped as an unevenly-spaced PAM.

More precisely, the constellation aligns all the points on an almost-straight line with the largest

possible minimum distances. We shall refer to this shape as ‘PAM-like’.

3. Intermediate regime: this regime represents the worst operating point from the perspective of a

communications system coexisting with a radar system as the SER attains its highest value. De-

pending on the SNR, modulation scheme and constellation size, we heuristically observe that the

highest SER takes place around INR ∼=SNR. Thus, an exhaustive search for the INRs is required

to properly design a constellation. Our optimization results show that the designed constellation

stretches from a hexagonal-like constellation at low INR to a PAM-like one at high INR.

These intuitions and the observed three operating regimes are confirmed to be fundamental by the

recent information theoretic analysis [40] of the Shannon’s capacity (i.e., largest possible coded rate that

can be reliably decoded) for the considered channel model.

1.2 Multi-Carrier Communication System with Radar Interference

We conduct a comprehensive analysis of a discrete-time channel model for an OFDM-based multi-

carrier communications system experiencing radar interference in Chapter 3. We are interested in study-

ing the performance of this particular model in terms of block and symbol error rates. Due to the un-

known time lag between communications and radar signals at the OFDM receiver, the received signal

becomes correlated among OFDM symbols (time) and across subcarriers (frequency). By evaluating

the error rate performances of the ML decoders under various OFDM and radar systems parameters via

simulations, we observe that the optimal frequency-time-correlated receiver is the best as expected and
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that the suboptimal time-correlated receiver, which is slightly inferior to the the optimal receiver, out-

performs the suboptimal frequency-correlated and the worst performing symbol-by-symbol receivers.

The performance limits of such a communication system co-existing with an interfering radar sys-

tem were explored in [41], where it was concluded that 1) the average error rate of a communications

system increases with increasing radar interference power up to the point where both the signal and

interference have approximately the same power levels, and then it decreases to an asymptote that can

be exactly characterized, and 2) the probabilities of detection and false alarm increase with the (non-

Gaussian) communications interference power for a fixed-threshold detector, while the detection proba-

bility decreases with increasing communications power but the false alarm probability either decreases

or remains roughly constant for a cell-averaging adaptive-threshold radar detector.

Next, the complimentary problem where the performance of a radar system suffering from com-

munications interference is analyzed. While it is common to model the wireless communication in-

terference at a radar receiver as a Gaussian process, it has been found in [42] that interference from

a communications system affects the radar detection does not behave like Gaussian interference. This

finding is further supported by the study of the impact of an interfering 4G communications signal radar

systems in the L- and S-band [43]. A non-Gaussian statistical model of the communications interference

under path loss and Rayleigh fading based on an empirical approach was proposed in [44].

The Receiver Operating Characteristic (ROC) performance of the Average Likelihood Ratio Test

(ALRT) and the Generalized Likelihood Ratio Test (GLRT) were investigated in [45] where closed-

form expressions for these two tests were obtained based on the Gaussian assumption.
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1.3 Radar System with Communications Interference

In Chapter 4, the radar system is interested in detecting whether a target is present or absent at a

specific location in the presence of communications interference as measured by the ROC curve. The

communications interference is assumed to come from a discrete constellation. Certain knowledge

of communications system parameters is assumed to be available at the radar receiver. Specifically,

the radar receiver knows the set of all possible communications symbols (all possible constellation

points) but not the actual transmitted symbol. The following three scenarios are considered based on the

availability of the channel gain between the communications transmitter and the radar receiver and the

communications constellation used:

1. The communications constellation and the channel gain are fixed (and thus known) at the radar

receiver.

2. The channel gain is fixed (and thus known) at the radar receiver but the communications constel-

lation is not. This is because the communications transmitter adapts its transmission based on the

channel gain to its communications receiver.

3. Both the communication constellation and the channel gain are unknown at the radar receiver.

Here we also assume that the constellation is changed by the communications transmitter so as

to adapt to the channel gain to its communications receiver as in Scenario 2 and that the channel

gain is Rayleigh distributed and independent of the communications constellation.

We derive ROC curves based on the Bayesian approach (also referred to as the ALRT test), where

prior knowledge of the unknown parameters is required [46]. We find that a communications interfer-
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ence of sufficiently low power slightly degrades the radar detection performance and the probability of

detection decreases with increasing communications power. As the interference power becomes stronger

than the radar power, the optimal radar receiver can successfully decode and cancel the communications

symbol, and the ROC curve approaches the no interference case.

Another composite hypothesis testing approach based on the maximum likelihood estimation of the

unknown parameters (referred to as the GLRT test) is also investigated and its performance is compared

with the aforementioned ALRT test. For the first and second scenarios, the ALRT and GLRT demon-

strate a similar performance when the communications power is either sufficiently low or high. In the

third scenario, the GLRT performance deteriorates as it does not depend on the received signal or the

interfering communications symbol.



CHAPTER 2

A SINGLE-CARRIER COMMUNICATIONS SYSTEM SUFFERING FROM RADAR

INTERFERENCE

(This chapter was previously published as “Let’s share CommRad: effect of radar interference on

an uncoded data communications system”, in Proceedings of IEEE Radar Conference (RadarConf)

[18], “On the Error Rate of a Communication System Suffering from Additive Radar Interference”, in

Proceedings of IEEE Global Communication Conference (GlobeCom) [19], and “Signal Constellation

Design in the Presence of Radar Interference and Gaussain Noise”, in Proceedings of IEEE Military

Communications Conference (MILCOM) [39].)

First we look at a single-carrier communications system affected by a radar interference, which is

a special case of a more complicated OFDM-cased multi-carrier communications system discussed in

Chapter 3.

In this chapter, we analytically derive the optimal detection scheme then present the symbol error

rate expressions for various optimal and suboptimal ML decoders. Finally, we design signal constella-

tions for two different optimization problems: one is to maximize the transmission rate under a certain

power budget and an error rate constraint, while the other is to minimize the probability of error under

a certain power constraint and a fixed rate condition.

12



13

2.1 System Model

Radar systems periodically transmit pulses of large amplitude1 and short duration, while commu-

nications systems generally send signals of significantly lower power, smaller bandwidth, and 100%

duty-cycle. This implies that a narrowband communications system experiences the radar interference

as an approximately amplitude-constant additive signal. This amplitude can be accurately estimated by,

for example, listening periodically to the channel for some time prior to transmission, which is doable

because of the slowly varying parameters of the radar system. The phase shift, on the other hand, is

from the multiplication of the radar carrier frequency by the radar pulse propagation delay; even a small

variation in propagation delay causes a large phase difference, which may be difficult to track; for this

reason and similar to well accepted fading models [48], the phase is assumed unknown and uniformly

distributed on [0, 2π]. This assumption is consistent with [49], which shows that the joint Probabil-

ity Mass Function (PMF) of the radar amplitude and phase consists of a union of multiple constant

amplitude, uniform phase pieces. In other words, for several amplitudes, the joint PMF is uniformly

distributed across the phase (for a given amplitude). One of the amplitudes clearly dominates the others,

and hence the radar signal’s joint PMF can be approximated by a phase uniform in [0, 2π] at the given

dominant amplitude. In the following single-carrier system, we thus approximate the radar interfer-

ence at a communications receiver as an additive signal with a known (dominant) amplitude, which (by

assumption) may be estimated due to the radar signal’s high power, and uniformly distributed phase,

1Since the radar power is significantly higher than the communications power, the analog-to-digital converter
at the communications receiver might not see the small communications signal. This may be an issue in practice,
but can be mitigated [47]. Note that mitigating this effect is not the focus of this work.
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which is assumed to be unknown and changing from one channel use to another. The correlations in the

received signal at an OFDM receiver, caused by the unknown time lag between arriving communications

and radar signals, will be presented in Chapter 3.

The discrete-time complex-valued received signal at the single-carrier communications receiver is

Y =
√

SX+
√

IejΘ + Z, (2.1)

where X is the transmitted symbol from the constellation X = {x1, ..., xM} of unit energy and equally

likely points,Θ is the radar phase uniform in [0, 2π], and Z is a zero-mean unit-variance proper-complex

Gaussian noise. Here we assume that the random variables (X,Θ,Z) are mutually independent. S

denotes the average Signal-to-Noise Ratio (SNR) of the communications signal, while I denotes the

average Interference-to-Noise Ratio (INR) of the radar signal. The pair (S, I) is assumed known and

fixed at the receiver.

2.2 Detection Schemes

Based on the system model in Equation 2.1, the channel conditional distribution for the received

signal Y = y ∈ C at the single-carrier communications receiver is given by

fY|X,Θ(y|x, θ) :=
1

π
e−|y−

√
Sx−
√

Iejθ|2 .

The optimal ML receiver chooses an estimate of the transmitted symbol x` ∈ C

^̀(OPT)(y) = arg max
`∈[1:M]

EΘ[fY|X,Θ(y|x`, Θ)]



15

= arg min
`∈[1:M]

(
|y−

√
Sx`|2 − lnEΘ[e2<{(y−

√
Sx`)
√

Ie−jΘ ]
)

= arg min
`∈[1:M]

(
|y−

√
Sx`|2 − ln I0

(
2
√

I|y−
√

Sx`|
))
, (2.2)

where I0 denotes the modified Bessel function of the first kind of order zero [50, eq(9.6.16)].

We thoroughly investigate two regimes: weak radar interference when the INR of the radar signal is

smaller the SNR of the communications signal, and very strong radar interference for the opposite.

Low INR regime: When I� S, the term I0(z) ∼= 1 in Equation 2.2 for |z|� 1 [50, eq(9.6.12)]. As

a result, the optimal ML receiver can be approximated as

^̀(OPT)(y) ≈ ^̀(TIN)(y) = arg min
`∈[1:M]

|y−
√

Sx`|2. (2.3)

We can see that the decoder at low INR is actually the minimum Euclidean distance decoder implying

that the radar interference is treated as Gaussian noise. We refer to this decoder as the ‘TIN’ receiver, in

which ‘TIN’ stands for Treat Interference as Noise.

High INR regime: When I � S, the term I0(z) ∼= e|z| in Equation 2.2 for |z| � 1 [50, eq(9.7.1)].

As a result, the optimal ML receiver can be approximated as (see Appendix B for detailed derivation)

^̀(OPT)(y) ≈ ^̀(IC)(y) = arg min
`∈[1:M]

(
|y−

√
Sx`|−

√
I
)2

= arg min
`∈[1:M]

(
<{e−jΘ(y−

√
IejΘ−

√
Sx`)}

)2
. (2.4)
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The expression in Equation 2.4 suggests that the radar interference can be estimated and subtracted

off the received signal, but part of the communications signal is also removed. Thus, one of the two

real-valued dimensions of the received signal is lost and the channel becomes the following real-valued

phase-fading Gaussian channel

Yeq = <{e−jΘ
√

SX}+ Zeq, Zeq ∼ NR(0, 1/2), (2.5)

where the phase-fading e−jΘ is known at the receiver but unknown at the transmitter. We refer to this

decoder as the ‘IC’ receiver, in which ‘IC’ stands for Interference Cancellation.

2.3 Decoding Regions

In the preceding section, we presented the optimal and suboptimal detection schemes. Here we take

a closer look at their decoding regions to get a better visualization of differences between having only

Gaussian noise and having both Gaussian noise and radar interference.

The optimal ML receiver, based on Equation 2.2, prefers point x` to xk if

|y−
√

Sx`|2 − ln I0
(
2
√

I|y−
√

Sx`|
)
< |y−

√
Sxk|2 − ln I0

(
2
√

I|y−
√

Sxk|
)
.

Low INR regime: For I� S, the TIN receiver prefers point x` to xk if

|y−
√

Sx`|2 < |y−
√

Sxk|2.
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In other words, the TIN receiver decodes x` if the received signal y is closer to x` than xk. Thus, the

TIN decoding regions depend only on the minimum distance as in the AWGN channel.

High INR regime: For I� S, the IC receiver prefers point x` to xk if

(
|y−

√
Sx`|−

√
I
)2
<
(
|y−

√
Sxk|−

√
I
)2
. (2.6)

The expression in Equation 2.6 can be separated into the following cases:

Case 1:
|y−

√
Sx`| >

√
I

|y−
√

Sxk| >
√

I

The IC receiver decodes x` if dy,` < dy,k (i.e. y is closer to x`);

Case 2:
|y−

√
Sx`| >

√
I

|y−
√

Sxk| ≤
√

I

The IC receiver decodes x` if dy,` + dy,k < 2
√

I;

Case 3:
|y−

√
Sx`| ≤

√
I

|y−
√

Sxk| >
√

I

The IC receiver decodes x` if dy,` + dy,k ≥ 2
√

I;

Case 4:
|y−

√
Sx`| ≤

√
I

|y−
√

Sxk| ≤
√

I

The IC receiver decodes x` if dy,` ≥ dy,k (i.e. y is further from x`);

where dy,` = |y −
√

Sx`| is the Euclidean distance between y and x`. In other words, each decoding

region depends not only on the minimum distance but also the maximum distance and the middle two

cases that cause “sliced areas” as seen in Table I. Hence, the IC decoder produces decoding regions

that spread across multiple regions rather than being concentrated around constellation point as in the

AWGN case.
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TABLE I: THE OPTIMAL AND SUBOPTIMAL IC DECODING REGIONS FOR 8-PSK AT
SdB = 10 IN DIFFERENT REGIMES.

IdB

Decoders OPT IC

IdB = 2.5

(I� S)

IdB = 10

(I = S)

IdB = 15

(I� S)
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Table I shows the optimal and suboptimal decoding regions for an 8-PSK constellation at SdB =

10 dB in the low, mid, and high INR regimes. The red bullets represent the coordinates of the transmitted

symbols {x1, . . . , x8}, and are numbered 1 to 8 with 1 on the positive real axis and the others having an

increasing number going counterclockwise. The decoding regions of the suboptimal TIN decoder (not

reported due to limited space) depends only on the minimum Euclidean distance and are the same as the

optimal decoding regions at IdB = 0.25 in Table I for all range of INR values. For the AWGN (I = 0)

case, all decoders yield exactly the same decoding regions, based on the minimum distance only. At

low INR (IdB = 0.25SdB), we see that the decoding regions of the IC decoder shows visual differences

compared with those of the optimal decoder. At mid INR (IdB = SdB), the IC decoder produces similar

shapes (but slightly larger) as the optimal decoder. At high INR (IdB = 1.5SdB), the suboptimal IC

decoding regions are almost identical as the optimal ML decoding regions.

Based on these results, we expect the TIN decoder to be very good at low INR (I � S); as I

increases, the optimal decoding regions start to spread to nearby regions and the IC decoder should be

better than the TIN decoder at mid INR (I ∼= S); as I further increases much higher than S, the IC

decoder should be very good and actually approach the performance of the optimal one at high INR

(I� S). This intuition will be formalized next.

2.4 Symbol Error Rate (SER) Analysis

We analyze the SER at low and high INR using suboptimal TIN decoder in Equation 2.3 and IC

decoder in Equation 2.4.
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Low INR regime: The probability of error of the optimal receiver is upper bounded by that of the

TIN receiver and is given by

P(OPT)
e ≤ P(TIN)

e =
1

M

M∑
`=1

P
[
|Y −

√
Sx`|2 > min

k:k 6=`
|Y −

√
Sxk|2

∣∣ X = x`

]

=
1

M

M∑
`=1

P

[
Zeq > min

k:k 6=`

(√
S|xk − x`|
2

−
√

I cos(Θ)

)]

=
1

M

M∑
`=1

EΘ

Q
√Sd2min

2
−
√
2I cos(Θ)

 , (2.7)

where dmin = mink:k 6=` |xk − x`| is the minimum Euclidean distance between symbols. We can see

that the SER of the TIN decoder depends only on the cardinality and the minimum distance of the

constellation. Notice that the expression in Equation 2.7 without the extra term
√
2I cos(Θ) is in fact the

SER of an ML decoder for the AWGN-only channel.

High INR regime: Recall the expression for Yeq in Equation 2.5, the probability of error of the

optimal receiver is upper bounded by that of the IC receiver and is given by

P(OPT)
e ≤ P(IC)

e =
1

M

M∑
`=1

P
[
|Yeq −

√
Sr`|2 > min

k:k 6=`
|Yeq −

√
Srk|2

∣∣ X = x`

]
I�S�1
≈ 1

M

M∑
`=1

P

[
Zeq sign(rk − r`) > min

k:k 6=`

√
S|rk − r`|
2

]

≈ 1

M

M∑
`=1

EΘ
[
Q
(
∆+
k,`(Θ)

)
+Q

(
∆−
k,`(Θ)

)]
, (2.8)

where r` = <{e−jΘx`} for ` ∈ [1 :M], (2.9)

∆+
k,`(Θ) = min

k 6=`:sign(rk−r`)>0

√
S
2

∣∣rk − r`∣∣, (2.10)



21

∆−
k,`(Θ) = min

k 6=`:sign(rk−r`)<0

√
S
2

∣∣rk − r`∣∣. (2.11)

We note that the approximation in Equation 2.8 does not have a simple interpretation as Equation 2.7

in terms of geometric properties of the constellation; it is, however, easy to evaluate numerically.

Next we analyze the SER expressions in Equation 2.7 and Equation 2.8 for the following commonly-

used constellations, and evaluate its performance based on the Nearest Neighbor Union Bound (NNUB).

2.4.1 Pulse-Amplitude Modulation (PAM)

Low INR regime: For I < S, the probability of error of the TIN decoder in Equation 2.7 is

P(ML)
e,PAM ≤ P

(TIN)
e,PAM ≈ 2

(
1−

1

M

)
EΘ

[
Q

(√
6S

M2 − 1
−
√
2I cos(Θ)

)]
by NNUB,

where the term 2
(
1− 1

M

)
indicates the number of nearest neighbors for a PAM as in the AWGN case.

High INR regime: For I� S, the probability of error of the IC decoder in Equation 2.8 is

P(ML)
e,PAM ≤ P

(IC)
e,PAM

I�S�1
≈ 2

(
1−

1

M

)
EΘ

[
Q

(√
6S

M2 − 1
cos2(Θ)

)]
by NNUB.

2.4.2 Square Quadrature Amplitude Modulation (Square-QAM)

Low INR regime: For I < S, the probability of error of the TIN decoder in Equation 2.7 is

P
(map)
e,QAM ≤ P

(TIN)
e,QAM ≈ 4

(
1−

1√
M

)
EΘ

[
Q

(√
3S

M− 1
−
√
2I cos(Θ)

)]
by NNUB,
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where the term 4
(
1− 1√

M

)
indicates the number of nearest neighbors for a square-QAM as in the

AWGN case. Detailed derivation as well as the exact SER and union bound expressions of the TIN

decoder for the squareM-QAM can be found in Appendix C.

High INR regime: For I � S, the probability of error of the IC decoder is given by Equation 2.8

as it does not seem possible to express the functions ∆±k,`(Θ), in Equation 2.10 and Equation 2.11, in

simple terms for the squareM-QAM but they can be simply evaluated numerically.

2.4.3 Phase-Shift Keying (PSK)

Low INR regime: For I < S, the probability of error of the TIN decoder in Equation 2.7 is

P(ML)
e,PSK ≤ P

(TIN)
e,PSK ≈ 2 EΘ

[
Q
(√
2S sin

( π
M

)
−
√
2I cos(Θ)

)]
by NNUB,

where 2 indicates the number of nearest neighbors for a PSK as in the AWGN case. Detailed derivation

as well as the exact SER and union bound expressions of the TIN decoder for theM-PSK can be found

in Appendix D.

High INR regime: For I� S, the error probability of the IC decoder in (Equation 2.8) is

P(ML)
e,PSK ≤ P

(IC)
e,PSK = P(IC)

e,PSK|xM

I�S�1
≈ P

[
sign(rM − r`)

(
Zeq +

√
S
2

(rM − r`)
)
< 0, ∃` < M

]
, (2.12)

where rM − r` = 2 sin
(
φ`
2

)
sin
(
φ`
2 −Θ

)
, φ` = 2π`

M , and r` is defined in Equation 2.9. Further

simplifications of the probability in Equation 2.12 do not seem possible but this can be numerically

evaluated.
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With these SER approximations for the above classical constellations, we can then investigate the

performance of various decoders in terms of error rates.

2.5 SER Performance Evaluations

Here we report the optimal decoding regions and SER performance for the practically-used 16-PAM,

16-QAM, and 16-PSK constellations. The optimal decoding regions at S = 10 dB and I = 15 dB are

shown on the left hand side of Fig. Figure 1, and the red bullets denote the locations of the transmitted

symbols {x1, . . . , x16} numbered from 1 to 16. The SER curves are plotted against the INR (in dB)

normalized by a fixed SNR of 10 dB on the right hand side of Fig. Figure 1. The lowest SER is

always at I = 0 corresponding to the AWGN-only channel case. The SER increases with INR until

it reaches its highest value, which takes place around for IdB/SdB ≈ 1, then it decreases and flattens

out to the asymptote given by the SER expression for the IC decoder at I → ∞. Recall that at high

INR, the communications receiver can estimate and cancel the radar interference, thus, the SER starts

to decrease around I ≈ S. However, part of the communications signal is also removed, which reduces

the effective SNR at the receiver. Hence, the SER does not reduce all the way to the lower SER bound

for the interference-free case as the channel at high INR becomes the real-valued phase-fading Gaussian

channel. Note that at low INR the TIN decoder provides an excellent approximation for the performance

of the optimal ML decoder, while the IC decoder does not perform as well in this regime. The opposite

holds at high INR. In general, the IC decoder is actually not much off compared to the optimal ML

decoder, even at low INR.
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(a) Optimal decoding regions 16-PAM. (b) SER for 16-PAM.

(c) Optimal decoding regions 16-QAM. (d) SER for 16-QAM.

(e) Optimal decoding regions 16-PSK. (f) SER for 16-PSK.

Figure 1: Decoding regions for S = 10 dB and I = 15 dB, and SER for S = 10 dB vs. I in dB.
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2.6 Signal Constellation Design

Given the performance of commonly-used constellations designed for the AWGN-only channel,

a natural question is whether constellations optimized for the channel in Equation 2.2 have different

shapes and properties. Here we are interested in designing a two-dimensional signal constellation so as

to optimize the communications system performance in the presence of a radar signal. We look at two

optimization problems under predetermined conditions: one is to maximize the transmission rates, and

the other is to minimize the error rates. The performance comparison of the designed constellations and

the practically-used ones is later presented.

2.6.1 Optimization Formulation for Maximizing the Transmission Rates

Our goal is to design a signal constellation with the largest rate (number of points M) subject to

given average SER and average power constraints. Mathematically, for some desired maximum SER

value of ε, we aim to determine

M(OPT)(ε) = max M (Equation 2.13)

s.t. Pe(X ) ≤ ε, (2.13a)

X = {x1, · · · , xM}, (2.13b)

1

M

M∑
`=1

|x`|
2 ≤ 1, x` ∈ C, (2.13c)

where Pe(X ) denotes the SER approximations of the optimal ML decoder for the constellation X , and

is given by Equation 2.7 and Equation 2.8 in the low and high INR regimes, respectively. This implies

that the location of the signal constellation points in Equation 2.13b has to be optimized to satisfy the
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constraints for the average SER in Equation 2.13a and average power in Equation 2.13c. Note that such

a constellation needs not necessarily exist as the SER has to be at least as large as that of a binary-PAM.

In our optimization algorithm, we start by fixing the number of points M (as small as 2) and find

such a signal constellation that minimizes the SER approximations of the optimal decoder; if the SER

for the found constellation satisfies Equation 2.13a then we increaseM by 1 and repeat these steps until

the maximum SER requirement is violated. We then obtain the constellation X with the largest number

of pointsM(OPT) under the given constraints.

2.6.2 Optimization Formulation for Minimizing the Error Rates

The dual problem of the constellation design that minimizes the SER subject to a fixed transmission

rate (constellation size) and an average power constraint is considered here and is given by

P(OPT)
e (M) = min Pe(X ) (Equation 2.14)

s.t. X = {x1, · · · , xM}, (2.14a)

1

M

M∑
`=1

|x`|
2 ≤ 1, x` ∈ C. (2.14b)

In our optimization algorithm, we fix the constellation of size M and find such a signal constellation

that minimizes the SER approximations of the optimal decoder within a given power budget.

In both (non-convex) optimization problems, we use the numerical Global Search (GS) method

in [51], as implemented in the MATLAB Global Optimization Toolbox. Global Search is a gradient-

based algorithm that uses a scatter-search mechanism to generate multiple randomized start points then

analyzes and rejects the points that are not likely to improve the best local minimum found so far. Global



27

Search aims to find the function’s global minima; it attempts this by finding and comparing different

local minima of smooth nonlinear optimization problem. Thus, the results are not always guaranteed to

be globally optimal. In order to minimize the chance of having found a local optimum, we run the GS

method multiple times with different starting points as well as other optimization parameters.

2.6.3 Optimization Results for Constellations with Maximal Rates

We show here the results from the optimization problem in Subsection 2.6.1, in which we aim to

design a two-dimensional signal constellation that can achieve the largest number of points M subject

to average power and error rate constraints.

Table II reports the designed constellations with maximum number of pointsM for fixed ε of 10−3,

10−5, and 10−6 at SdB = 10, 15 and 20 and IdB = 0.25SdB. We observe that a triangle is initially

formed with just 3 points then more points are added to form more triangles next to one another. At

ε = 10−6 and SdB = 20, the designed constellation of M = 7 points looks like a hexagon with a

center point. As we relax the SER requirements to allow for more transmitted points, we observe that

the designed constellations are shaped as concentric hexagons with multiple layers; for example, only 8

points are allowed for transmission under a given SER constraint of ε = 10−5 while 12 points can be

sent for ε = 10−3. Generally, the shape of the designed constellation tends to a hexagonal lattice (the

best packing in two dimensions) as the number of points increases.

Table III reports the designed constellations with maximum number of points M for fixed ε of

10−0.82, 10−1.15, and 10−1.48 at SdB = 10, 20 and 30 and I = 2SdB. Notice that the error rate constraints

are set relatively high; this is due to the low SNR range in our optimization examples (see Appendix E

for more details). We observe that the designed constellations are shaped as unequally-spaced PAM. The
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TABLE II: DESIGNED CONSTELLATIONS WITH MAXIMUM TRANSMISSION RATES AT
VARIOUS SdB AND IdB = 0.25SdB.

SdB

ε 10−3 10−5 10−6

10

No constellations satisfying
the fixed SER of 10−5 at

S = 10 dB are found.

No constellations satisfying
the fixed SER of 10−6 at

S = 10 dB are found.

15

20
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TABLE III: DESIGNED CONSTELLATIONS WITH MAXIMUM TRANSMISSION RATES AT
VARIOUS SdB AND IdB = 2SdB.

SdB

ε 10−0.82 10−1.15 10−1.48

10

No constellations satisfying
the fixed SER of 10−1.48 at

S = 10 dB are found.

20

30
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intuition is that the constellation points are placed as far apart from one another as possible (given the

average power constraint) so as to result in larger possible minimum distances. Recall that the channel

is equivalent to a real-valued phase-fading channel in the high INR regime so it makes intuitive sense

that the points are placed according to the optimal packing in one dimension (at least at high SNR),

which is the equi-lattice (equally-spaced points on a straight line).

2.6.4 Optimization Results for Constellations with Minimum Error Rates

We show here the results from the optimization problem in Subsection 2.6.2, in which we aim to

design a two-dimensional signal constellation that can yield the lowest SER subject to average power

and fixed constellation size constraints.

Table IV reports the designed constellations with minimum symbol error rates for fixed number of

points M of 4, 8, and 16 at SdB = 20 and IdB = 0.25SdB for the TIN decoder and IdB = 2SdB for the

IC decoder as well as at I ∼= S for the optimal decoder in Equation 2.2. We observe that the designed

constellation tends to shape like a concentric hexagon when I � S, while it tends to shape like a PAM

but with unequally-spacing between symbols when I � S. Notice that the shapes of the designed

constellations for minimizing the error rates are the same as those of the complimentary problem of

maximizing the transmission rates. We heuristically observe that the highest SER takes place in the

range of INRs close to SNR. We expect to see a transitioning between a hexagonal-like constellation at

low INR and a PAM-like one at high INR around I ∼= S. However, depending on the SNR, modulation

scheme and constellation size, the exact point of IdB
SdB

in which the transitioning occurs is unpredictable.

Therefore, an exhaustive search for the INRs is required to properly design a constellation. In this

constellation design in the intermediate regime, we look at SdB = 20 and IdB = 20, 25, and 28 for
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TABLE IV: DESIGNED CONSTELLATIONS WITH MINIMUM SER AT SdB = 20 AND
IdB ∼= 0.25SdB,SdB AND 2SdB forM = 4, 8, AND 16.

IdB

M 4 8 16

5

I ∼= S

40
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TABLE V: COMPARISON OF MAXIMUMM FOR DIFFERENT CONSTELLATIONS FOR
ε = 10−1.

(a) TIN Decoder at various SdB and IdB = 0.25SdB.

Constellation
SdB 10 15 20

PAM
PSK
OPT

M = 3, Pe = 10
−1.2210

M = 4, Pe = 10
−1.3706

M = 4, Pe = 10
−1.3725

M = 5, Pe = 10
−1.0241

M = 8, Pe = 10
−1.0835

M = 11, Pe = 10
−1.0301

M = 7, Pe = 10
−1.3020

M = 13, Pe = 10
−1.1219

M = 26, Pe = 10
−1.0562

(b) IC Decoder at various SdB and IdB = 2SdB.

Constellation
SdB 10 20 30

PAM
PSK
OPT

M = 2, Pe = 10
−1.2377

M = 2, Pe = 10
−1.2377

M = 2, Pe = 10
−1.2377

M = 5, Pe = 10
−1.0838

M = 5, Pe = 10
−1.0020

M = 5, Pe = 10
−1.0882

M = 15, Pe = 10
−1.0290

M = 11, Pe = 10
−1.0001

M = 16, Pe = 10
−1.0192

M = 4, 8, and 16, respectively. We observe that the hexagon stretches into the straight line in the mid

INR regime.

2.6.5 Performance Comparison

Here we compare the performance, in terms of transmission rates and error rates, of the designed

constellations with the classical ones. Numerical results show that our designed constellations outper-

form the others.

Table V compares the largest rate M of the designed constellations with the practical ones, which

are PAM and PSK in our examples, subject to the SER upper bounded by ε = 10−1 at SdB = 10, 15,

and 20 for low INR, and SdB = 10, 20, and 30 for high INR. At low INR (IdB = 0.25SdB), the designed

constellations achieve the largest rates compared to PSK and PAM. As the radar interference increases,

less points can be sent. At high INR (IdB = 2SdB), the transmission rates achieved by PSK and PAM are
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Figure 2: SER Comparison forM = 16 and S = 20 dB.

very competitive with the optimally designed constellations. In these cases, the designed constellations

have advantages of yielding lower error rates than the classical ones.

Figure 2 shows the SER curves as a function of INR for the designed constellations with M =

16 points at SdB = 20 in Table IV. Note that those constellations were optimized for a fixed INR

and thus may not be optimal for the whole INR range. For comparison, we report the SER for the

16-PAM, 16-QAM, and 16-PSK, as representatives of the practical constellations. For low INR, the

classical 16-PAM, 16-QAM, and 16-PSK are markedly suboptimal; the best performance is attained

by the constellation 16-OPT-LOW, which was optimized for IdB = 0.25SdB = 5. For mid INR, the

constellation 16-OPT-MID, which was optimized for IdB = 1.4SdB = 28, where the SER curve of the

16-OPT-LOW crosses that of the 16-OPT-HIGH, performs the best. For high INR, the classical 16-PAM

is very competitive with the constellation 16–OPT-HIGH, which was optimized for IdB = 2SdB = 40.
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At all range of INR, we remark the designed constellations outperform practically-used ones in

terms of SER. Thus, one should send a hexagonal-like constellation in the weak radar interference

regime, while a PAM constellation should be used in the very strong radar interference regime.

2.7 Conclusion

In this paper, we investigated a single-carrier system under the effect of a radar interference. We

studied the error rate performance of uncoded complex-valued modulation schemes at a communications

receiver in a complex-valued Gaussian channel with additive constant-amplitude and random-phase

radar-induced interference. We derived the SER expressions for arbitrary constellations. The analysis

of the error rate showed that the communications receiver should treat the radar interference of weak

power as noise, while the receiver should estimate the radar interference of very strong power and

cancel it. For small INR, the channel behaves as complex-valued AWGN channel. For large INR, the

SER exhibits an irreducible “error floor” for large INR, which can be exactly characterized and behaves

like narrowband fading channel with multiplicative fading that is perfectly known at the receiver but

not at the transmitter. This unfortunately results in a loss of one of the complex dimensions as part

of communications signal is lost in the interference cancellation process, which has been shown to be

unavoidable in [40].

When considering actual wireless fading channels, this seems to imply that the channel model of

interest, from the point of view of the communications receiver, is that of a narrowband fading model

where the effective fading is the product of two terms: one corresponding to the classical (say Rayleigh

or Rice) fading for the SNR, and the other due to the radar interference cancellation.



35

We then considered the designs of a two-dimensional signal constellation able to better handle this

particular radar interference from two perspectives: maximizing the transmission rates subject to aver-

age power and error rate constraint, and minimizing the error rates subject to a power constraint. We

observed that the designed constellation tends to a concentric hexagon shape when the radar interfer-

ence power is low compared to that of the communications signal, while it tends to an unequally-spaced

PAM shape for the high radar interference power regime. Although the detection scheme for the radar

interference of intermediate power cannot be expressed in a closed-form, the result showed that the de-

signed constellation is shaped as a transition from a hexagonal-like shape at weak radar interference to

a PAM-like shape at very strong radar interference.



CHAPTER 3

A MULTI-CARRIER COMMUNICATIONS SYSTEM SUFFERING FROM RADAR

INTERFERENCE

(This chapter was previously published as “Communications System Performance and Design in

the Presence of Radar Interference”, in IEEE Transactions on Communications [52], and “Let’s share

CommRad: Co-existing communications and radar systems”, in Proceedings of IEEE Radar Conference

(RadarConf) [41].)

Narrowband single carrier systems, such as those studied in Chapter 2, are no longer the PHY layer

choice for high speed networks. LTE, WiFi and foreseeably 5G are OFDM-based. In this section, we

consider a general OFDM-based multi-carrier communications systems of N subcarriers and L OFDM

blocks with additive white Gaussian noise and radar interference, as opposed to a simplified model of a

single-carrier communications system, where N = L = 1, in the previous chapter.

3.1 System Model

The OFDM-based communications system operates at a carrier frequency of fC Hz with N subcar-

riers over a total bandwidth of BC Hz. The transmitted communications signal consists of L OFDM

symbols, each with a symbol duration of TC seconds. The pulsed radar system of interest operates at

a carrier frequency fR Hz over a bandwidth of BR Hz. The pulse repetition interval (PRI) of the radar

pulse wR (t) is given by TR and each pulse has a width of τR seconds. The radar signal is assumed to

36



37

arrive at the communications receiver Td seconds after the arrival of the communications signal. This

time delay Td is unknown at the communications receiver and is assumed random.

The communications receiver is assumed to sample in synchrony with the transmitted symbols, with

the sampling period of TS = 1/BC seconds, at the time instants t = dTS, d ∈ N0. The time delay in

samples is defined as Nd = bTd
TS
c, which is also random.

At the OFDM receiver, the discrete-time complex-valued baseband received signal is expressed as

Y =
√

SX + I + Z ∈ CN×L, (3.1)

where

• S ∈ RN×N+ is a diagonal matrix containing the average Signal-to-Noise Ratios (SNRs) of the

communications signal for the corresponding subcarriers,

• X ∈ CN×L is a matrix of the transmitted symbols drawn from the equally-likely complex-valued

signal constellation X = {x1, · · · , xM} subject to the average power constraint 1
M

∑M
`=1 |x`|

2 ≤ 1,

• I ∈ CN×L is a matrix of the radar interference with rows corresponding to the subcarriers and

columns corresponding to the OFDM blocks. This matrix is a function of the random variable

Nd, which represents the time delay in samples (justification given later), and

• Z ∈ CN×L characterizes the proper-complex Gaussian noise, whose components are independent

standard normal random variables.

The random variables (X,Nd,Z) are mutually independent and S is fixed and known at the receiver.
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The interference matrix I is obtained by passing the received radar signal through the OFDM re-

ceiver chain. The received radar signal at the OFDM communications receiver on the kth subcarrier

and mth OFDM block of the matrix I – after sampling, removing the cyclic prefix of length NCP sam-

ples, and performing an N-point Discrete Fourier Transform (DFT) – is given by (see [49] for detailed

derivation)

Ik,m = DFT
(
vR,m[n]e

j2π∆fnTS
)
ejψm , n ∈ [0 : N− 1], (3.2)

where vR,m [n] = wR
(
(n+mNC +NCP − Nd) TS

)
, n ∈ [0 : N − 1], is the sampled version of the

passband radar signal wR(t) during the mth OFDM block, NC = d TCTS e is the OFDM symbol duration

in samples,NR = d TRTS e is the pulse repetition interval of the radar signal in samples, ∆f = fR− fC is the

difference between the frequencies of the two systems, and the radar phase at the mth block is defined

as

ψm = 2πTS
(
∆f(mNC +NCP) − fRNd

)
. (3.3)

Note that some OFDM blocks might not experience the radar interference as in practice radar signals

generally consist of periodic pulses of large amplitude and small duty-cycle while the communications

signals usually have lower power and 100% duty-cycle (i.e., τR ≤ TC ≤ TR). Let I denote the set of

OFDM block indices during which radar pulses take place, i.e., I =
{⌊

Td+nTR
TC

⌋ ∣∣∣n ∈ [0 : ⌊LTC−Td
TR

⌋]}
.

Also define εm as a binary indicator that is 1 ifm ∈ I, and 0 otherwise.
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For a rectangular radar pulse, the sampled version of it for themth block of length N is given by

vR,m[n] =


εmAR, cm ≤ n ≤ dm − 1,

0, else,
n ∈ [0 : N− 1], (3.4)

and its corresponding DFT is given by

VR,m[k] = DFT (vR,m[n]) =


εmAR√
N

(dm − cm) , k = 0,

εmAR√
N

sin(πk(dm−cm)/N)
sin(πk/N) e−jπ(dm+cm−1) k

N , k ∈ [1 : N− 1],

(3.5)

where cm and dm denote the start and end of the non-zero content of vR,m [n], and AR is its amplitude.

For blocks with no radar interference (i.e., with εm = 0), cm = 0 and dm = 1. Otherwise,

cm =


Nd −NCP, Nd > NCP,

0, else,
(3.6)

dm =


nR −NCP, nR > NCP,

0, else,
(3.7)

where nR = bτR+Td
TS
c indicates the end of the radar pulse at the OFDM receiver.

By substituting Equation 3.5 in Equation 3.2 and assuming that∆fNTS is an integer, we can simplify

the kth andmth entry of the radar interference matrix I in Equation 3.2 as

Ik,m = VR,m [(k− ∆fNTS)N] e
jψm = VR,m [kN] e

jψm
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=


εmAR√
N

(dm − cm) e
jψm , kN = 0,

εmAR√
N

|sin(πkN(dm−cm)/N)|
sin(πkN/N) ejψ

′
k,m , otherwise,

(3.8)

= Ak,me
jΘk,m , k ∈ [0 : N− 1], m ∈ [0 : L− 1], (3.9)

where (a)N denotes a modulo N, ψm is defined in Equation 3.3, kN = (k− ∆fNTS)N, and

ψ ′k,m = ψm + πβk,m − π
kN
N

(dm + cm − 1), (3.10)

βk,m =


0, 0 ≤

(
kN(dm−cm)

N

)
2
≤ 1,

1, else.
(3.11)

The results in [49] shows that the PMF based on Equation 3.8 still closely resembles the actual PMF

based on Equation 3.2 when ∆fNTS is a non-integer. Hence, we remark that Equation 3.8 is a good

approximation for any ∆fNTS ∈ R+.

The simplified expression in Equation 3.8 asserts that for those OFDM symbols and subcarriers that

experience the radar interference, the joint distribution of (Ak,m, Θk,m) is dominated by a single am-

plitude for which the phase is essentially uniform. This general conclusion from [49] is not restricted

to rectangular radar pulses. Although here we have restricted attention to a rectangular radar pulse for

analytical simplicity, other waveforms lead to qualitatively similar joint (amplitude and phase) distri-

butions seen at the OFDM receiver, and are expected to lead to similar overall conclusions since our

model requires only statistical knowledge of the phase. With this in mind, the following radar param-

eters are assumed to be known (or can be reliably estimated) at the OFDM receiver in our model: the
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radar pulse shape including the radar pulse width (τR) and the radar carrier frequency (fR) are generally

either public record or can be obtained from the corresponding entity (e.g., a weather radar station), and

the dominant radar signal’s amplitude can be estimated as explained in Section 2.

Notice that the amplitude and phase of the radar interference at the kth subcarrier and mth OFDM

block, denoted as Ak,m and Θk,m in Equation 3.9, respectively, are functions of Nd. Thus, the radar in-

terference matrix I from the channel model in Equation 3.1 can be expressed as a deterministic function

of the random variable Nd.

We conclude this section with a couple of remarks.

The radar pulse can interfere with two OFDM blocks rather than only one block as assumed in the

above derivation; in this case, the radar pulse will arrive towards the end of themth block and extend to

the start of the (m+1)th block. Following [47] and references therein for ATC radars, we assume that

the radar pulse width is smaller than the cyclic prefix interval, i.e., τR < TCP. Thus, the first part of the

radar pulse affects the data part of themth block, which increases the chance that the receiver makes an

error; its second part, however, corrupts only the cyclic prefix part of the (m+1)th block, which will not

contribute to a higher error rate at the (m+1)th block as its data is not damaged. As a result, the time lag

between the communications and radar signals at the receiver falls within the range of the start of the

radar-interfered OFDM block and the end of that block. Hence, this time delay Td is assumed uniform

on [0, TC − τR) or, equivalently, the sampled time delay Nd ∼ U {[0 : NC − nw]}, where nw = bτRTS c is

the sampled radar pulse width.
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Finally, for the case of N = L = 1 with the assumption that the radar PRI equals the OFDM

symbol span, i.e., TR = TC, the amplitude of the radar interference in Equation 3.9 is approximately

deterministic and its phase Θk,m = f(Nd) is in fact Θ ∼ U [0, 2π], as discussed in Chapter 2.

3.2 Detection Schemes

Based on the channel model of an OFDM receiver suffering from radar interference in Equation 3.1,

we can finally derive its corresponding detection schemes. The channel conditional distribution of the

discrete-time complex-valued received signal in Equation 3.1 is given by

fY|X,Nd(y|x, nd) =
e−[y−

√
Sx−i(nd)]

∗
Σ−1[y−

√
Sx−i(nd)]

|πΣ|
, y ∈ CNL×1, x ∈ CNL×1, (3.12)

and the radar interference matrix i(nd) ∈ CNL×1 is a function of the random variable Nd with entries

from Equation 3.8. A∗ and |A| denote the Hermitian transpose and determinant of matrix A, respectively,

and Σ = ENd

[(
y −
√

Sx − i(nd)
)(

y −
√

Sx − i(nd)
)∗] is the covariance matrix.

For any OFDM block of duration TC to experience the radar interference, the radar pulse of width τR

can arrive at the OFDM receiver anytime, as early as the same time as an OFDM symbol, but the radar

pulse has to end by the end of that OFDM symbol. Thus, the time lag between the communications

and radar signals is assumed uniformly distributed on [0, TC − τR) or, equivalently, the time delay in

samples Nd ∼ U {[0 : NC − nw]}, where nw = bτRTS c is the radar pulse width in samples. This unknown

time delay causes the received signal to be correlated in both time (OFDM symbols) and frequency

(subcarriers). The optimal ML detector decodes N subcarriers and L blocks altogether. The suboptimal

ML detectors are categorized into three cases, based on the correlation of the received signal: when it
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considers the correlation in time only (referred to as the suboptimal time-correlated decoder); when it

considers the correlation in frequency only (referred to as the suboptimal frequency-correlated decoder);

and when it considers the received signal as uncorrelated (referred to as the suboptimal uncorrelated

decoder or, also known as, the symbol-by-symbol detector). Next, we derive the decoding schemes for

these decoders that minimize the probability of error.

3.2.1 Optimal ML Decoder

Based on the channel conditional distribution in Equation 3.12, the optimal receiver chooses an

estimate of the transmitted symbol X = x` ∈ CNL×1 for the received signal Y = y ∈ CNL×1

^̀(OPT)(y) = arg max
x`∈{x1,x2,...,xMNL }
x`=[x1 x2 ... xNL]

T

NC−nw∑
nd=0

fY|X,Nd(y|x`, nd) · P [Nd = nd]

= arg max
x`∈{x1,x2,...,xMNL }
x`=[x1 x2 ... xNL]

T

NC−nw∑
nd=0

e
− 1

σ2

L−1∑
m=0

N−1∑
k=0

|yk,m −
√
Sk,m[x`]k,m − ik,m(nd)|

2

(NC − nw + 1) · (πσ2)NL
, (3.13)

where [x`]k,m is the kth (subcarrier) andmth (OFDM block) entry of matrix x`

3.2.2 Suboptimal Time-Correlated Decoder

The suboptimal time-correlated decoder ignores the correlation in frequency of the received signal

and thus considers only the time correlation. We shall refer to this detector as the “SUBTIME” decoder.



44

The SUBTIME receiver chooses an estimate of the transmitted symbol X ′ = x ′` ∈ CL×1 for the received

signal Y ′ = y ′ ∈ CL×1 for all the blocks at the kth subcarrier

^̀(SUBTIME)
k (y ′) = arg max

x ′`∈{x
′
1,x
′
2,...,x

′
ML

}

x ′`=[x1 x2 ... xL]
T

NC−nw∑
nd=0

e
− 1

σ2

L−1∑
m=0

|yk,m −
√
Sk,m[x`]k,m − ik,m(nd)|

2

(NC − nw + 1) · (πσ2)L
. (3.14)

The decoded block of size L at each kth subcarrier in Equation 3.14 are then put into a block of sizeNL,

denoted as ^̀(SUBTIME)(y) ∈ CNL×1, for the error rate analysis in Section 3.3, and is given by

^̀(SUBTIME)(y) =
[
^̀(SUBTIME)
k=0 (y ′|m=0) . . . ^̀

(SUBTIME)
k=N−1 (y ′|m=0) . . . ^̀

(SUBTIME)
k=N−1 (y ′|m=L−1)

]T
. (3.15)

3.2.3 Suboptimal Frequency-Correlated Decoder

The suboptimal frequency-correlated decoder ignores the correlation in time of the received signal

and thus considers only the frequency correlation. We shall refer to this detector as the “SUBFREQ”

decoder. The SUBFREQ receiver chooses an estimate of the transmitted symbol X ′′ = x ′′` ∈ CN×1 for

the received signal Y ′′ = y ′′ ∈ CN×1 for all the subcarriers at themth OFDM block

^̀(SUBFREQ)
m (y ′′) = arg max

x ′′` ∈{x
′′
1 ,x
′′
2 ,...,x

′′
MN

}

x ′′` =[x1 x2 ... xN]T

NC−nw∑
nd=0

e
− 1

σ2

N−1∑
k=0

|yk,m −
√
Sk,m[x`]k,m − ik,m(nd)|

2

(NC − nw + 1) · (πσ2)N
. (3.16)
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The decoded block of size N at each mth block in Equation 3.16 are then put into a block of size NL,

denoted as ^̀(SUBFREQ)(y) ∈ CNL×1, for the error rate analysis in Section 3.3, and is given by

^̀(SUBFREQ)(y) =
[
^̀(SUBFREQ)
m=0 (y ′′) ^̀(SUBFREQ)

m=1 (y ′′) . . . ^̀(SUBFREQ)
m=L−1 (y ′′)

]T
. (3.17)

3.2.4 Suboptimal Uncorrelated Decoder

The suboptimal uncorrelated decoder ignores the correlation in both frequency and time of the re-

ceived signal and is basically a symbol-by-symbol detecter. We shall refer to this detector as the “SUB-

NONE” decoder. The SUBNONE receiver chooses an estimate of the transmitted symbol X = x` ∈ C

for the received signal Y = y ∈ C at the kth subcarrier andmth block

^̀(SUBNONE)
k,m (y) = arg max

x`∈{x1,x2,...,xM}

1

NC−nw+1
· 1
πσ2

NC−nw∑
nd=0

e
− 1

σ2
|yk,m −

√
Sk,mx` − ik,m(nd)|

2

. (3.18)

The decoded symbol at each mth block and kth subcarrier in Equation 3.18 are then put into a block of

size NL, denoted as ^̀(SUBNONE)(y) ∈ CNL×1, for the error rate analysis in Section 3.3, and is given by

^̀(SUBNONE)(y) = [̂`(SUBNONE)
0,0 (y) . . . ^̀(SUBNONE)

N−1,0 (y) . . . ^̀(SUBNONE)
0,L−1 (y) . . . ^̀(SUBNONE)

N−1,L−1 (y)]T . (3.19)

Since the optimal receiver decodes the whole block (of L symbols and N subcarriers) of the re-

ceived signal, its computation time increases with the constellation size and numbers of subcarriers and

symbols. The suboptimal receivers reduce the decoding time by disregarding some or all of the correla-
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tions in the received signal. Hence, the computational complexity (in terms of decoding time) for each

decoder is:

• O
(
MNL×NL×(NC−nw)

)
for OPTIMAL decoder,

• O
(
ML×NL×(NC−nw)

)
for SUBTIME decoder,

• O
(
MN×NL×(NC−nw)

)
for SUBFREQ decoder, and

• O(1×NL×(NC−nw)) for SUBNONE decoder.

3.3 Error Rate Analysis

We now study the performance of the receivers in terms of error rate. Here we look at two types

of error rates: BLock Error Rate (BLER) and Symbol Error Rate (SER). The BLER looks at all the

^̀(y) blocks, each of size NL for all the L OFDM blocks and N subcarriers, and calculates how many

blocks contain one or more symbol errors over the total number of blocks NB, while the SER looks at

how many incorrect symbols occur on average in each ^̀(y) block. Mathematically, the block error rate,

given that x` ∈ CNL×1 is transmitted, can be expressed as

BLER =

MNL∑
`=1

P [X = x`] · P
[
^̀(y) 6= x` | X = x`

]
=

1

MNL

MNL∑
`=1

P
[
ENd

[
fY|X,Nd(y|x`, nd)

]
< max
n:n6=`

ENd
[
fY|X,Nd(y|xn, nd)

]
|X = x`

]

=
1

MNL

MNL∑
`=1

P

NC−nw∑
nd=0

e
− 1

σ2
[y−
√

Sx`−i(nd)]
∗
[y−
√

Sx`−i(nd)]

< max
n:n6=`

NC−nw∑
nd=0

e
− 1

σ2
[y−
√

Sxn−i(nd)]
∗
[y−
√

Sxn−i(nd)]

. (3.20)
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It does not seem possible to analytically express Equation 3.20 in a closed form. Therefore, we proceed

to use Monte Carlo simulation to approximate the block error rate calculation as

BLER ∼=
1

NB

NB∑
b=1

εb, (3.21)

where the block error indicator is defined as

εb =


1, ^̀(yb) 6= [x`]b,

0, ^̀(yb) = [x`]b,

^̀(yb) ∈ CNL×1,

and [x`]b ∈ CNL×1 is the transmitted symbol x` for the bth block from a total number of NB blocks.

Similarly, the corresponding symbol error rate for a transmitted symbol x` ∈ C can be expressed as

SER =

M∑
`=1

P [X = x`] · P
[
ENd

[
fY|X,Nd(y|x`, nd)

]
< max
n:n6=`

ENd
[
fY|X,Nd(y|xn, nd)

]
|X = x`

]

=
1

M

M∑
`=1

P

NC−nw∑
nd=0

e
− 1

σ2
|y−
√

Sx`−i(nd)|2 < max
n:n 6=`

NC−nw∑
nd=0

e
− 1

σ2
|y−
√

Sxn−i(nd)|2 |X = x`


∼=

1

NL×NB

NB∑
b=1

NL∑
s=1

εb,s, (3.22)

where the symbol error indicator is defined as

εb,s =


1, [̂`(yb)]s 6= [x`]b,s,

0, [̂`(yb)]s = [x`]b,s,

and [̂`(yb)]s ∈ C is the estimate of the transmitted symbol [x`]b,s for the sth element of the bth block.
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The BLER in Equation 3.21 and SER in Equation 3.22 for each decoder can be obtained as follows:

• For the optimal ML decoder, substitute ^̀(yb) = ^̀(OPT)(y) from Equation 3.13.

• For the suboptimal time-correlated decoder, substitute ^̀(yb) = ^̀(SUBTIME)(y) from Equation 3.15.

• For the suboptimal frequency-correlated decoder, substitute ^̀(yb) = ^̀(SUBFREQ)(y) from Equa-

tion 3.17.

• For the suboptimal symbol-by-symbol decoder, substitute ^̀(yb) = ^̀(SUBNONE)(y) from Equa-

tion 3.19.

3.4 Error Rate Performances of the Decoders

Next we evaluate the error rate performances of the decoders. The OFDM system operates at a

carrier frequency of fC = 2.84952GHz with a total bandwidth of BC = 960 kHz. The cyclic prefix has a

length ofNCP = 16. The selection of the available bandwidth is consistent with an LTE communications

system. In practical OFDM systems,N is generally greater than 64 but for computational efficiency here

we consider examples with much smaller values of N. The pulsed radar system transmits a rectangular

pulse of amplitude AR = 2.5 every TR = 83.33 µs at a carrier frequency of fR = 2.85 GHz.

Based on the optimal decoder in Equation 3.13 and suboptimal decoders in Equation 3.14, Equa-

tion 3.16, and Equation 3.18 with the rectangular radar interference in Equation 3.8, we conduct various

evaluations with different values for the number of subcarriersN, number of OFDM blocks L, and radar

pulse width in samples nw. The modulation schemes considered in this example are Binary Phase-Shift

Keying (BPSK), Pulse-Amplitude Modulation (PAM), and Quadrature Amplitude Modulation (QAM),

which are the commonly-used constellations.
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TABLE VI: ERROR RATE (IN LOG-SCALE) COMPARISON OF THE RECEIVERS AT VARIOUS
NUMBER OF SUBCARRIERS N, NUMBER OF OFDM BLOCKS L, AND RADAR PULSE

WIDTH IN SAMPLES nw.

Parameters
Decoders OPTIMAL SUBTIME SUBFREQ SUBNONE

N = 2, L = 1

nw = 2, BPSK
log(BLER) = −2.343

log(SER) = −2.644
log(BLER) = −2.338

log(SER) = −2.639
log(BLER) = −2.343

log(SER) = −2.644
log(BLER) = −2.338

log(SER) = −2.639

N = 2, L = 2

nw = 1, BPSK
log(BLER) = −4.444

log(SER) = −5.046
log(BLER) = −3.688

log(SER) = −4.288
log(BLER) = −3.638

log(SER) = −4.237
log(BLER) = −3.269

log(SER) = −3.871

N = 2, L = 2

nw = 2, BPSK
log(BLER) = −3.221

log(SER) = −3.656
log(BLER) = −3.217

log(SER) = −3.652
log(BLER) = −2.035

log(SER) = −2.630
log(BLER) = −2.032

log(SER) = −2.627

N = 2, L = 2

nw = 2, 4-QAM
log(BLER) = −1.673

log(SER) = −2.075
log(BLER) = −1.560

log(SER) = −1.996
log(BLER) = −1.243

log(SER) = −1.755
log(BLER) = −1.177

log(SER) = −1.697

N = 2, L = 2

nw = 2, 4-PAM
log(BLER) = −0.800

log(SER) = −1.302
log(BLER) = −0.800

log(SER) = −1.302
log(BLER) = −0.751

log(SER) = −1.258
log(BLER) = −0.751

log(SER) = −1.258

N = 2, L = 4

nw = 2, BPSK
log(BLER) = −4.523

log(SER) = −5.347
log(BLER) = −4.523

log(SER) = −5.347
log(BLER) = −1.747

log(SER) = −2.630
log(BLER) = −1.744

log(SER) = −2.627

N = 4, L = 2

nw = 2, BPSK
log(BLER) = −2.608

log(SER) = −3.214
log(BLER) = −2.531

log(SER) = −3.175
log(BLER) = −1.751

log(SER) = −2.634
log(BLER) = −1.746

log(SER) = −2.629

N = 4, L = 2

nw = 4, BPSK
log(BLER) = −2.122

log(SER) = −2.726
log(BLER) = −1.947

log(SER) = −2.557
log(BLER) = −1.375

log(SER) = −2.210
log(BLER) = −1.340

log(SER) = −2.122

N = 4, L = 4

nw = 2, BPSK
log(BLER) = −3.604

log(SER) = −4.285
log(BLER) = −3.457

log(SER) = −4.234
log(BLER) = −1.492

log(SER) = −2.640
log(BLER) = −1.488

log(SER) = −2.635
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Table VI shows the BLER and SER performances of all the decoders for S = 10 dB at each sub-

carrier. Table Table VI shows the BLER and SER performances of all the decoders with S = 10 dB

at each subcarrier. As expected, numerical results indicate that the OPTIMAL decoder always outper-

forms the suboptimal decoders in terms of error rates, both block and symbol, and that the SUBNONE

decoder (symbol-by-symbol detector) generally performs the worst as it ignores all the correlations.

The SUBTIME decoder is optimal when there is only 1 channel in the system (i.e., N = 1) as there

is no correlation in frequency. Similarly, the SUBFREQ decoder becomes optimal when there is only

1 OFDM block (i.e., L = 1) as there is no correlation in time. Generally, the SUBFREQ decoder per-

forms competitively with (but usually slightly better than) the SUBNONE decoder; however, it does

not perform as well as the SUBTIME decoder. This indicates that accounting for time correlation (i.e.,

decoding several OFDM blocks at once at the expense of increased complexity) is critical for good

performance. There is a trade off between the computation time and error rates when using suboptimal

decoders. Depending on an application, if the time complexity is a major constraint (especially for large

values of M,N, and L) then the SUBTIME decoder is an excellent compromise. Notice that both the

BLERs and SERs increase with the constellation size for the same system configurations as seen in the

case where M increases from 2 to 4 (i.e., the third to fifth rows in Table Table VI), in which BPSK

yields the lowest error rates while 4-PAM gives the highest error rates. Notice also that an increase in

the radar pulse width degrades the performance of the system as seen in the case where nw increases

from 2 to 4 (i.e., the seventh and eighth rows in Table Table VI).
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We finally conclude that among all the suboptimal receivers, the SUBTIME receiver consistently

yields the lowest error rates except for the case when L = 1 in which the SUBFREQ receiver outper-

forms the SUBTIME receiver (i.e., the first row in Table VI).

3.5 Conclusion

We first introduced a more simple model of a single-carrier communications system with radar in-

terference in Chapter 2. Here, we discussed a more complicated but practically relevant model of a

multi-carrier communications system. We modeled the additive pulsed radar interference after being

processed by an OFDM receiver and analyzed several optimal (in terms of minimizing the probability

of error) and suboptimal detection schemes. The unknown time lag between radar and communications

signals, modeled as a random variable, causes the received communications signal to be correlated in

both time and frequency. We categorized the suboptimal decoders, based on the correlation, into three

types: the suboptimal time-correlated decoder considers the correlation in time only; the suboptimal

frequency-correlated decoder considers the correlation in frequency only; while the suboptimal uncor-

related decoder, also known as the symbol-by-symbol detector, ignores the correlation in both time and

frequency. Finally, we evaluated the error rate performances of the receivers with an interfering rect-

angular radar signal via simulations and the result showed that the suboptimal time-correlated receiver

performs the best while the suboptimal symbol-by-symbol receiver performs the worst.

We believe that our findings will help in effectively co-designing, or at least offering a baseline for

comparison when radar and communications systems share the same spectrum.



CHAPTER 4

A RADAR SYSTEM SUFFERING FROM COMMUNICATIONS INTERFERENCE

(Parts of this chapter were submitted as “On Optimal ROCs for a Radar System Interfered by a

Communications System”, to IEEE International Conference Communications (ICC) [53].)

In order to efficiently co-design the coexisting radar and communications systems, a good under-

standing of how each system affects one another is essential. In Chapters 2 and 3, we investigated the

performance degradation of the single-carrier and multi-carrier communications systems in the presence

of radar interference. Here in this chapter, we explore the complimentary problem, how the communi-

cations interference affects the radar system under the shared spectrum.

4.1 System Model

Before discussing the model of a radar system with communications interference and its perfor-

mance, we first present the interfering communications system model.

Communications System Model

At the communications receiver, the un-interfered (for simplicity in establishing the interference

model at the radar receiver) discrete-time complex-valued received signal is

Yc = gcXc + Zc, (4.1)

52



53

where gc ∈ C is the communications channel gain, Xc ∈ Xc is the equally likely unit-energy complex-

valued communications symbol from the constellationXc, and Zc is the zero-mean unit-variance proper-

complex additive white Gaussian noise.

In this work, motivated by capacity approaching adaptive schemes used in modern wireless systems,

we assume that the communications transmitter chooses Xc as a function of the instantaneous SNR |gc|
2

as follows. The rate attainable by using a good channel code mapped onto a finite constellation can be

approximated as log
(
1+ |gc|

2/κ
)

where κ := − ln(5 BER)
1.5 [48, Chapter 9, Eqn (9.7)] is a function of

the desired Bit Error Rate (BER). In this work, we assume that the communications constellation is

a square QAM of cardinality |Xc| = 4blog4(1+|gc|
2/κ)c, which is a random variable that takes values in

m ∈ {1, 4, 16, 64, ...} with probability

qm := Pr [|Xc| = m] = Pr

[
4

⌊
log4

(
1+

|gc|2

κ

)⌋
= m

]

= F|gc|2(κ(4m− 1)) − F|gc|2(κ(m− 1)), (4.2)

where F|gc|2(.) is the CDF of |gc|
2. For example, for Rayleigh fading we have qm = e

−
κ(m−1)

2σ2g −

e
−
κ(4m−1)

2σ2g , where σ2g := E[|gc|
2] is the average SNR at the communications receiver.

Radar System Model

At the radar receiver with communication interference the received signal is

Yr = hrXr + hcXc + Zr, (4.3)
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where |hr|
2 = Sr is the SNR of the radar signal, Xr ∈ Xr = {0, 1} is the indicator function representing

absent or present target at a specific location, |hc|
2 = Sc is the SNR of the communications signal,

Xc ∈ Xc as before, and Zr is the zero-mean unit-variance proper-complex additive white Gaussian noise.

The random variables (Xc, Xr, Zc, Zr) are assumed to be mutually independent. In this work, we assume

that at the radar receiver hr is known and fixed, while gc is random and not instantaneously known.

Regarding knowledge of Xc and hc at the radar receiver, we shall consider the following scenarios:

1. [Case 4.2.1] both hc and Xc are known and fixed, and

2. [Case 4.2.2] hc is known and fixed but Xc is not, where Xc is chosen according to (Equation 4.2)

because the communications transmitter adapts its transmission based on the channel gain to its

communications receiver, and

3. [Case 4.2.3] both hc and Xc are unknown, where hc is Rayleigh distributed and independent of

all other random variables, and Xc is chosen according to (Equation 4.2).

When the channel gains (hr, hc) are fixed (Cases 4.2.1 and 4.2.2), we have

fYr|Xr,Xc(y|k, x) =
1

π
e−|y−hrk−hcx|2 , (4.4)

while when only hr is fixed and hc ∼ NC(µc = 0, σ
2
c) and is independent of everything else (Case 4.2.3),

we have

fYr|Xr,Xc(y|k, x) =
1

π(1+ σ2c |x|
2)
e
− 1

(1+σ2c |x|2)
|y−hrk−µcx|2

. (4.5)
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4.2 Hypothesis Testing

We consider here the performance of the radar receiver posed as a binary composite hypothesis test.

As opposed to the simple hypothesis test, where the distributions for both hypotheses are completely

known, the composite hypothesis test must accommodate the unknown parameters. We are interested

in the Bayesian approach, which requires the prior knowledge of the distributions of the unknown

parameters and models the unknown parameters as realizations of random variables [46]. Since it is

assumed that the statistical characterization of the communications system is known at the radar receiver,

it is reasonable to employ the Bayesian ALRT for the optimal Neyman-Pearson detector. The two

hypothesis to be considered are Hk = {Xr = k} for k ∈ {0, 1} corresponding to radar target absent and

target present, respectively.

4.2.1 Case 1: Known Communications Constellation and Channel Gain

We start with the scenario in Case 4.2.1 where the likelihood function in Equation 4.4 is used for

a fixed channel gain pair (hr, hc). Recall that the points in the constellation are chosen uniformly with

PMF p(x) = 1
m , ∀x ∈ Xc : |Xc| = m. The (shifted by the known quantity +|hr|

2) ALRT is given by

ALRT(y) = ln

∑
a∈Xc

p(a) fYr|Xr,Xc(y|1, a)∑
b∈Xc

p(b) fYr|Xr,Xc(y|0, b)
+ |hr|

2

= ln

∑
a∈Xc

1
|Xc|

e−|y−hr−hca|2∑
b∈Xc

1
|Xc|

e−|y−hcb|2
+ |hr|

2

= ln
e−|y−hr|

2 ∑
a∈Xc

e−|hca|2+2<{(y−hr)∗hca}

e−|y|2
∑
b∈Xc

e−|hcb|2+2<{y∗hcb}
+ |hr|

2
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= ln
e−|hr|

2+2<{y∗hr}
∑
a∈Xc

e−|hca|2+2<{(y−hr)∗hca}∑
b∈Xc

e−|hcb|2+2<{y∗hcb}
+ |hr|

2

= 2<{y∗hr}+ ln

∑
a∈Xc

e−|hca|2+2<{(y−hr)∗hca}∑
b∈Xc

e−|hcb|2+2<{y∗hcb}
, (4.6)

where 2<{y∗hr} corresponds to the case of no communications interference.

For the ALRT detector, let the probability of False Alarm (FA) be PFA;ALRT(t) := Pr[ALRT(Yr) >

t|H0], and the probability of Correct Detection (CD) be PCD;ALRT(t) := Pr[ALRT(Yr) > t|H1]. The

ROC curve for a FA constraint ε ∈ [0, 1] is obtained as

P?CD;ALRT(ε) := max
t∈R:PFA;ALRT(t)≤ε

PCD;ALRT(t). (4.7)

A suboptimal detector is the GLRT, which “ignores” the prior distribution on the unknown parame-

ters and instead “estimates” them by maximum likelihood. The (shifted by the known quantity +|hr|
2)

GLRT is given by

GLRT(y) = ln
max
a∈Xc

fYr|Xr,Xc(y|1, a)

max
b∈Xc

fYr|Xr,Xc(y|0, b)
+ |hr|

2

= 2<{y∗hr}+ ln
max
a∈Xc

e−|hca|2+2<{(y−hr)∗hca}

max
b∈Xc

e−|hcb|2+2<{y∗hcb}

= 2<{y∗hr}+ max
a∈Xc

(
2<{(y−hr)

∗hca}− |hca|
2
)
− max
b∈Xc

(
2<{y∗hcb}− |hcb|

2
)
. (4.8)
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Let the probability of FA for the GLRT detector be PFA;GLRT(t) := Pr[GLRT(Yr) > t|H0], and the

probability of CD be PCD;GLRT(t) := Pr[GLRT(Yr) > t|H1]. The ROC curve for a FA constraint

ε ∈ [0, 1] is obtained as

P?CD;GLRT(ε) := max
t∈R:PFA;GLRT(t)≤ε

PCD;GLRT(t). (4.9)

4.2.2 Case 2: Known Communications Channel Gain but Unknown Constellation

We now move to the scenario in Case 4.2.2 where the likelihood function in Equation 4.4 is used

for a fixed channel gain pair (hr, hc), and p(x,m) = 1
m , ∀x ∈ Xc : |Xc| = m and zero otherwise. The

ALRT is given by

ALRT(y) = ln

∑
m

∑
a∈Xc:
|Xc|=m

p(a,m) fYr|Xr,Xc(y|1, a)

∑
n

∑
b∈Xc:
|Xc|=n

p(b, n) fYr|Xr,Xc(y|0, b)
+ |hr|

2

= 2<{y∗hr}+ ln

∑
m

∑
a∈Xc:
|Xc|=m

qm
m e

−|hca|2+2<{(y−hr)∗hca}

∑
n

∑
b∈Xc:
|Xc|=n

qn
n e

−|hcb|2+2<{y∗hcb}
. (4.10)

With Equation 4.10, we then compute the equivalent of Equation 4.7.

The GLRT is similarly given by

GLRT(y) = ln

max
m

max
a∈Xc:
|Xc|=m

fYr|Xr,Xc(y|1, a)

max
n

max
b∈Xc:
|Xc|=n

fYr|Xr,Xc(y|0, b)
+ |hr|

2



58

= 2<{y∗hr}+ max
m

max
a∈Xc:
|Xc|=m

(
2<{(y−hr)

∗hca}− |hca|
2
)
− max

n
max
b∈Xc:
|Xc|=n

(
2<{y∗hcb}− |hcb|

2
)
. (4.11)

With Equation 4.11, we then compute the equivalent of Equation 4.9.

4.2.3 Case 3: Unknown Communications Constellation and Channel Gain

We now move to the scenario in Case 4.2.3 where we use p(x,m, h) = 1
mfhc(h), ∀x ∈ Xc : |Xc| =

m, h ∈ C and zero otherwise. The ALRT is given by

ALRT(y) = ln

∫
dh1fhc(h1)

∑
m

∑
a∈Xc:
|Xc|=m

p(a,m) fYr|Xr,Xc(y|1, a)

∫
dh2fhc(h2)

∑
b∈Xc:
|Xc|=n

p(b, n) fYr|Xr,Xc(y|0, b)
+ |hr|

2

= 2<{y∗hr}+ ln

∫
dh1fhc(h1)

∑
m

∑
a∈Xc:
|Xc|=m

qm
m e

−|h1a|
2+2<{(y−hr)∗h1a}

∫
dh2fhc(h2)

∑
n

∑
b∈Xc:
|Xc|=n

qn
n e

−|h2b|2+2<{y∗h2b}
. (4.12)

With Equation 4.12, we then compute the equivalent of Equation 4.7. Note that if the fading is Rayleigh

then we can use Equation 4.5 with µc = 0, which already has “averaged out” h1 and h2, to get

ALRT(y) = |hr|
2 + ln

∑
m

∑
a∈Xc:
|Xc|=m

qm
m

1
π(1+σ2c |a|

2)
e
−

|y−hr|2

1+σ2c |a|2

∑
n

∑
b∈Xc:
|Xc|=n

qn
n

1
π(1+σ2c |b|

2)
e
−

|y|2

1+σ2c |b|2

. (4.13)
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The GLRT is similarly given by

GLRT(y) = ln

max
h1

max
m

max
a∈Xc:
|Xc|=m

fYr|Xr,Xc(y|1, a)

max
h2

max
n

max
b∈Xc:
|Xc|=n

fYr|Xr,Xc(y|0, b)
+ |hr|

2

= 2<{y∗hr}+ ln

max
m

max
a∈Xc:
|Xc|=m

e−|hOPT
1 a|2+2<{(y−hr)∗hOPT

1 a}

max
n

max
b∈Xc:
|Xc|=n

e−|hOPT
2 b|2+2<{y∗hOPT

2 b}

(a)
= 2<{y∗hr}+ |y− hr|

2 − |y|2 = |hr|
2, (4.14)

where in (a) we used the optimal values hOPT
1 = y−hr

a and hOPT
2 = y

b , or in other words, we have

max fYr|Xr,Xc(y|k, a) = 1/π. The fact that Equation 4.14 does not depend on the received value y

immediately raises a red flag regarding the suitability of GRLT as a surrogate of ARLT in this case –

which was suggested for other scenarios in [45]. With Equation 4.14, we then compute the equivalent

of Equation 4.9.

4.2.4 Unaltered radar receiver

Finally we use as a baseline performance in all the above cases the ROC of an “unaltered radar

receiver,” that is, a radar that uses the same LRT as if there were only Gaussian noise; we have

LRT(y) = 2<{y∗hr}. (4.15)
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(a) PCD vs. PFA for |Xc| = 4QAM. (b) PCD vs. PFA for |Xc| = 16QAM.

Figure 3: ROC for a fixed pair (|hr|
2, |hc|

2) = (Sr,Sc) where Sr = 10 dB and Sc = {0, 10, 20} dB.

We then compute the ROC curve for a FA constraint ε ∈ [0, 1] as

P?CD;LRT(ε) := max
t∈R:PFA;LRT(t)≤ε

Pr[2<{Y∗r hr} > t|H1], (4.16)

where the probability of false alarm for the LRT is defined as PFA;LRT(t) := Pr[2<{Y∗r hr} > t|H0].

4.3 Receiver Operating Characteristic (ROC) Performance

In this section, the ROC curves for both the optimal ALRT and suboptimal GLRT detectors are

numerically evaluated for the three scenarios presented in Section 4.2.

Composite Hypothesis Testing for Case 4.2.1

For a fixed channel gain pair (|hr|
2, |hc|

2) = (Sr,Sc) and a known communications constellation Xc

at the radar receiver, we evaluate the ALRT and GLRT expressions in Equation 4.6 and Equation 4.8,

respectively. Figure 3 shows the ROC curves for the ALRT (solid lines) and GLRT (dashed lines) at
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(a) PCD vs. PFA for q = [0.41, 0.52, 0.07]. (b) PCD vs. PFA for q = [0.18, 0.41, 0.41].

Figure 4: ROC for a fixed pair (|hr|
2, |hc|

2) = (Sr,Sc) where Sr = 10 dB and Sc = {0, 10, 20} dB with
Xc = {Ø, 4QAM, 16QAM}.

Sr = 10 dB and Sc ∈ {0, 10, 20} dB with |Xc| = 4QAM (see Figure 3(a)) or |Xc| = 16QAM (see Fig-

ure 3(b)). For comparison, the LRT detector (‘dotted’ line) in Equation 4.16, where the communications

interference is absent, is plotted as an upper bound.

We observe that the detection performance for both the ALRT and GLRT detectors are hardly af-

fected by the weak or strong communications interference, where the receiver can either ignore or

successfully decode and cancel the interference, respectively. The worst performance occurs when

the radar and communications signals have roughly equal powers, in which the GLRT visually shows

slightly inferior performance to that of the ALRT as the communications constellation size increases.

Composite Hypothesis Testing for Case 4.2.2

For a fixed channel gain pair (|hr|
2, |hc|

2) = (Sr,Sc) and an unknown Xc that adapts to the com-

munications channel gain gc ∼ NC(0, σ
2
g), we evaluate the ALRT and GLRT expressions in Equa-
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tion 4.10 and Equation 4.11, respectively. Figure 4 shows the ROC curves for the ALRT and GLRT

at Sr = 10 dB and Sc ∈ {0, 10, 20} dB for σ2g ∈ {10, 15} dB. For a desired BER = 10−3 and

σ2g = 10 dB we have q = [q1, q4, q16] = [0.41, 0.52, 0.07] (see Figure 4(a)) while for σ2g = 15 dB we

have q = [0.18, 0.41, 0.41] (see Figure 4(b)) – where q1 is the probability of the communications trans-

mitter being silent, q4 of using a 4QAM, q16 of using a 16QAM, while the remaining qm are essentially

zero to Matlab numerical precision.

We observe that the detection performance for the ALRT detector is hardly affected by the weak

communications interference, while the strong interference slightly degrades the detection performance

of the ALRT detector. As observed in Composite Hypothesis Testing for Case 4.2.1, the worst perfor-

mance occurs when the radar and communications signals have roughly equal powers. Note that the

ALRT performance is better with a smaller variance σ2g due to the higher probability qm of transmitting

less points (small m), and that the GLRT can estimate the unknown communications parameters better

with a higher power σ2g = E[|gc|
2]. We also remark that the GLRT very well approximates the ALRT

for weak interference and the GLRT performs quite worse for strong interference. However, the GLRT

cannot capture the performance of the ALRT for comparable communications and radar powers.

Composite Hypothesis Testing for Case 4.2.3

Since |hr|
2 = Sr is fixed and known, but hc ∼ NC(0, σ

2
c) and Xc are unknown, we evaluate the

ALRT and GLRT expressions in Equation 4.12 and Equation 4.14, respectively. Figure 5 shows the

ROC curves at Sr = 10 dB, hc ∼ NC(0, 10 dB), for either σ2g = 10 dB (see Figure 5(a)) or σ2g = 15 dB

(see Figure 5(b)), and BER = 10−3.
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(a) PCD vs. PFA for q = [0.41, 0.52, 0.07]. (b) PCD vs. PFA for q = [0.18, 0.41, 0.41].

Figure 5: ROC for a fixed |hr|
2 = Sr and a random hc ∼ NC(0, 10 dB) with

|Xc| = {Ø, 4QAM, 16QAM}.

(a) PCD vs. PFA for q = [0.41, 0.52, 0.07]. (b) PCD vs. PFA for q = [0.18, 0.41, 0.41].

Figure 6: ROC for a fixed |hr|
2 = Sr and a random hc ∼ NC(0, 15 dB) with

|Xc| = {Ø, 4QAM, 16QAM}.
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As expected, the detection performance increases with the radar power. As observed in Composite

Hypothesis Testing for Case 2, the performance of the ALRT is better with a smaller variance σ2g due to

the higher chance of transmitting a symbol from a smaller communications size, i.e., less variability in

Xc. However, the performance of the GLRT does not change with different parameters (i.e, the dashed

lines are all on top of one another). This is so because GLRT(y) is a constant as seen in Equation 4.14;

that is, the likelihood function for the received signal y given hypothesis H1 (target present) is the same

as that given hypothesis H0 (target absent), and thus the probabilities of CD and FA are the same for a

specific threshold thereby yielding a straight line in the ROC curve. Thus, the GLRT detector should

not be used in this scenario.

Note that the ROC curve for the ALRT at Sr = 10 dB in Figure 5, the ‘solid blue’ line, performs

worse than those in Figure 4 due to the additional unknown parameter hc in this scenario.

Similar to Figure 5 where the difference between the left and right figures is the distribution of

gc, Figure 6 plots the ROC curves for the ALRT and GLRT at Sr = 10 dB and hc ∼ NC(0, 15 dB) for

|Xc| = {Ø, 4QAM, 16QAM} with Rayleigh fading channel gc ∼ NC(0, 10 dB) (see Figure 6(a)), and

gc ∼ NC(0, 15 dB) (see Figure 6(b)) to attain BER = 10−3. Similar observations as for Figure 5 can

be made here. For comparison, we remark that the ALRT performs better with a lower communications

power range σ2c = E[|hc|
2], i.e. the ROC curves for the ALRT detector in Figure 5 are higher than those

in Figure 6.

As opposed to the work in [45], which concluded that the GLRT detector generally well approxi-

mates the performance of the ALRT detector and could be used in place of the ALRT detector due to

its computational efficiency, our simulated ROC performance suggests that this is not always the case.
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When the radar receiver suffers from communications interference, we showed that the GLRT detector

does not always perform closely to the optimal ALRT detector, especially when the communications

constellation is chosen adaptively so as to satisfy an error rate constraint at the communications receiver

and this is not known at the radar receiver. As a result, we conclude that the GLRT should not be used

unless the interfering communications signal has relatively low or very high power compared to that

of the radar signal, and that the implementation of the ALRT detector is strongly encouraged in the

presence of communications interference.

4.4 Conclusion

In Chapter 2 and 3, we presented the error rate performance of a communications system in the

presence of radar interference as well as a constellation design that is optimized for this particular system

model. Here we analytically investigated the performance of the ALRT and GLRT detectors (based

on the Bayesian approach and the maximum likelihood estimation, respectively) of a radar receiver

in the presence of a communications signal for the following three scenarios: 1) the channel gains

from both the communications transmitter and the radar transmitter to the radar receiver as well as the

communications constellation are fixed and known; 2) the channel gains from both the communications

transmitter and the radar transmitter to the radar receiver are fixed and known, but the communications

constellation is not; and 3) only the channel gain from the radar transmitter to the radar receiver is known

but the channel gain from the communications transmitter to the radar receiver and the communications

constellation are not. In the latter two cases, the communications constellation is chosen adaptively at

the communications transmitter from a set of a square QAM constellations based on the channel gain to

the communications receiver so as to satisfy the error rate constraint and this is not known at the radar
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receiver. The receiver operating characteristic curves of the ALRT and GLRT detectors are examined

where results showed that very strong communications interference hardly degrades the performance of

the radar receiver as the receiver can successfully decode and cancel the interference, while intermediate

communications interference of roughly the same power as the radar signal significantly affects the radar

detection performance.

For the first scenario, we observed that the suboptimal GLRT detector very well approximates the

optimal ALRT detector in spite of the power level of the communications interference; however, the

GLRT shows slight performance degradation in the intermediate interference power regime as the com-

munications constellation size grows. For the second scenario, we observed that the GLRT detector

cannot capture the performance of the ALRT detector and thus should not be used in this intermediate

interference regime, though the GLRT still effectively approximates the ALRT in both the weak and

strong interference regimes. Interestingly, for the last scenario where the radar receiver has no knowl-

edge of both the communications constellation size and the channel gain from the communications

transmitter, the GLRT detector does not depends on the received signal and its ROC performance does

not increase with the radar power. Thus, in this scenario, the GLRT should not be used at all despite its

computational efficiency compared to the ALRT.

Note that as we have discussed so far the co-existing systems operate independently; however, one

would eventually want to have a joint radar-communications detector that does both the average symbol

error rate for the communications system and the receiver operating characteristic for the radar system.



CHAPTER 5

CONCLUSION

In this thesis, we have studied how co-existing communications and radar systems affect each other’s

performance as it is important to assess the performance of unaltered systems and understand what

happens if the transmit sides of both systems are kept unaltered, which is the main focus of this work

before embarking in a full co-design. These insights into the performance of unaltered systems can help

guide future research directions in co-design synergies. We have investigated the performance limits of

separate and unaltered co-existing and interfering communications and radar systems. The findings of

this work are relevant for systems where changing the hardware may be too costly, but further digital

signal processing of the baseband received signal is viable.

We started with the investigation of how an interfering radar signal degrades the performance of

a single-carrier communications system under the shared spectrum, categorized by the strength of the

radar interference with respect to the communications signal power. Then we extended our work to

a two-dimensional communications constellation design with the goal of either maximizing the trans-

mission rate subject to an average power and error rate constraints or minimizing the error rate under a

power budget and a fixed transmission rate. Next, we explored the multi-carrier communications system

performance suffering from radar interference, where the optimal and various suboptimal detectors are

derived based on the correlation of the received signal at the OFDM receiver. Lastly, the performance

of the radar receiver co-existing with the communications system was investigated, and the receiver
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operating characteristic performance was numerically evaluated in Matlab and conclusions are finally

drawn. The contributions of this thesis are summarized as follows:

• First, we looked at how the performance of a communications system degrades when co-exists

with a radar system. We focused initially on a simpler single-carrier communications system. We

approached the problem by modeling a single-carrier communications system with an interfering

radar signal, where we considered a transmitter communicating with a receiver over a memory-

less additive Gaussian noise and radar interference channel in Chapter 2. The radar interference is

modeled as having a known constant amplitude and a known random phase uniformly distributed

in [0, 2π]. We derived the Symbol Error Rate (SER) expressions of an uncoded communications

system using using a complex-valued modulation scheme – specifically pulse amplitude modula-

tion, quadrature amplitude modulation, and phase shift keying – at all range of radar signal power

relative to the power of the communications signal. It has been shown that the radar interference

of low power is treated as Noise while the communications receiver can subtract the strong radar

interference along with part of the desired communications signal yielding an irreducible error

floor. Based on the obtained SER expressions, we then optimized a communications constellation

that maximizes the transmission rate, measured by the number of signal constellation points, sub-

ject to the average power and error rate not exceeding predetermined values as well as the ‘dual’

problem of the constellation design that minimizes the SER subject to a fixed rate since many

widely-used complex-valued modulation schemes, such as QAM and PSK, are not necessarily

optimal for this radar-interfered channel. We have shown that a constellation shaped as a concen-
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tric hexagon is optimal in the weak interference regime while it transitions to an unequally-spaced

straight line shaped constellation in the strong interference regime.

• Next, we considered a more complicated multi-carrier communications system affected by a radar

interference. In Chapter 3, we assumed a general OFDM receiver with a radar signal arriving at

an unknown time. We modeled the time delay between the two signals as uniformly distributed,

which causes the received signal to be correlated in both time and frequency. Various decoders

have been analyzed based on the correlation in the received signal. The optimal receiver considers

the correlations in both time and frequency while suboptimal receivers consider only time or

frequency or none of the above. The block and symbol error rate expressions were derived.

Though no closed-form error rate expressions could be obtained, the performance of all decoders

are evaluated via Monte Carlo simulation, where it has been shown that accounting for time

correlation (i.e. decoding several OFDM blocks at once at the expense of increased complexity)

is critical for good performance, and that the use of the suboptimal decoder that considers only

the correlation in time of the received signal is recommended if the computation time is a major

constraint since the computation time of the optimal decoder increases with the constellation size.

• Lastly, we studied the performance of a radar system with an interfering communications signal

in Chapter 4. We derived two composite hypothesis testings: 1) the optimal Average Likelihood

Ratio Test (ALRT) based on the Bayesian approach where the prior knowledge of the distributions

of the unknown parameters is required, and 2) the suboptimal Generalized Likelihood Ratio Test

(GLRT) which estimates the unknown parameters that maximize the likelihood. We considered

scenarios based on the availability at the radar receiver of the communications constellation and
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channel gain from the communications transmitter. Numerical results have shown that the GLRT

detector efficiently captures the performance of the ALRT detector when both the channel gain

and the communications constellation are both known; however, the performance of the GLRT

detector degrades with less knowledge of the unknown parameters, and that the GLRT detector

does not depend on the received signal or the power of the radar signal when the radar receiver

has no knowledge of both the channel gain and the communications constellation.

These insights into the performance of separated and unaltered systems can help guide future re-

search directions in co-design synergies. Eventually, one would want to have a joint radar-communications

detector that can perform both the communications’ average error rate and the radar’s receiver operating

characteristic.



CHAPTER 6

FUTURE DIRECTIONS

After the study of the interference impact on each system presented in the the previous chapters, the

next logical step is to optimize the performance by jointly design the co-existing systems. We propose

modeling the joint radar-communications system that can perform both communications error rate and

radar target detection as a joint radar-communications receiver collocated with a radar transmitter, i.e.,

it is a joint radar transceiver combined with a communications receiver, paired with a communications

transmitter located elsewhere. With this model, the statistical characterization of the radar and commu-

nications systems can be reasonably assumed known at the joint receiver, i.e. the channel gains from the

communications and radar transmitters to the joint receiver as well as the communications constellation

used are fixed and known at the joint receiver.

The discrete-time complex received signal at the joint radar-communications receiver is given by

Y = |hr|Xr + hcXc + Z, (6.1)

where |hr|
2 = Sr is the average Signal-to-Noise Ratio (SNR) of the radar signal, Xr ∈ Xr = {0, 1} is the

indicator function representing absent or present target at a specific location |hc|
2 = Sc is the average

SNR of the communications signal, Xc ∈ Xc is the equally likely unit-energy complex-valued communi-

cations symbol from the constellation Xc, and Z is the zero-mean unit-variance proper-complex additive

white Gaussian noise. Here we assume that the random variables (Xc, Xr, Z) are mutually independent
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and that the channel gain pair (hr, hc) and communications constellation Xc are fixed and known at the

joint receiver.

With Equation 6.1, the likelihood function is given as

fY|Xr,Xc(y|a, b) =
1

π
e−|y−|hr|a−hcb|2 . (6.2)

There are many ways to approach this joint design problem, and here we propose the following

directions.

6.1 Joint Bayesian Estimate

One solution is to jointly decode both the radar and communications signals together using the joint

Bayesian estimate where the joint receiver chooses an estimate pair

(x̂r(y), x̂c(y)) = arg max
a∈Xr,b∈Xc

Pr[Xr = a, Xc = b|Y = y] · fY|Xr,Xc(y|a, b)

= arg max
a∈Xr,b∈Xc

Pr[Xr = a|Y = y] · Pr[Xc = b|Y = y] · 1
π
e−|y−|hr|a−hcb|2 . (6.3)

This method is optimal in the sense of minimizing the joint error rate given by Pr[(x̂r(Y), x̂c(Y)) 6=

(xr, xc)|Y = y].

6.2 Two-step Decoding Process

Another possible decoding method is a two-step decoding process, which aims to decode one signal

of interest first then subtract its estimate off the received signal to remove the interference effect so
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as to better estimate the other signal afterwards. Here we can investigate two methods: decode the

communications signal first then radar, or decode the radar signal first then communications.

6.2.1 Communications First, Radar Next

For this method, the joint receiver will decode the communications symbol first where it chooses an

estimate of the transmitted communications symbol xc ∈ Xc

x̂c(y) = arg max
b∈Xc

Pr[Xc = b|Y = y] · EXr [fY|Xr,Xc(y|a, b)]

= arg max
b∈Xc

1− p

π
e−|y−hcb|2 +

p

π
e−|y−|hr|−hcb|2 , (6.4)

where the error rate for the communications system can be calculated as Pr[x̂c(Y) 6= xc|Y = y].

Next, the communications symbol estimate is subtracted off the received signal where we have

Y ′ = Y − hcx̂c(Y) = |hr|a+ hc(xc − x̂c(Y)) + Z,

with a likelihood function fY ′|Xr(y
′|a) that has no closed form and has to be calculated numerically. The

Likelihood Ratio Test (LRT) based on the residual received signal is expressed as

LRT ′(y ′) = ln
fY ′|Xr(y

′|1)]

fY ′|Xr,(y
′|0)
, y ′ ∈ C. (6.5)

Then we can plot the ROC curve for the radar system as

P?CD;LRT ′(ε) := max
t∈R:PFA;LRT ′ (t)≤ε

PCD;LRT ′(t), (6.6)
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where the probabilities of correct detection and false alarms are given as PCD;LRT ′(t) := Pr[LRT ′(t) ≥

t|Xr = 1] and PFA;LRT ′(t) := Pr[LRT ′(t) ≥ t|Xr = 0], respectively.

6.2.2 Radar First, Communications Next

Similarly, the joint receiver will decode the radar symbol first where it chooses an estimate of the

transmitted radar symbol xr ∈ Xr

x̂r(y) = arg max
a∈Xr

Pr[Xr = a|Y = y] · EXc [fY|Xr,Xc(y|a, b)]

= arg max
a∈Xr

Pr[Xr = a|Y = y] ·
∑
b∈Xc

Pr[Xc = b] ·
1

π
e−|y−|hr|a−hcb|2 , (6.7)

where the Likelihood Ratio Test (LRT) based on the residual received signal is expressed as

LRT ′′(y) = ln
EXc [fY|Xr,Xc(y|1, b)]

EXc [fY|Xr,Xc(y|0, b)]
, y ∈ C. (6.8)

Then we can plot the ROC curve for the radar system as

P?CD;LRT ′′(ε) := max
t∈R:PFA;LRT ′′ (t)≤ε

PCD;LRT ′′(t). (6.9)

Next, the radar symbol estimate is subtracted off the received signal where we have

Y ′′ = Y − |hr|x̂r(Y) = |hr|(xr − x̂r(Y)) + hcxc + Z,
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with a likelihood function fY ′′|Xc(y
′′|b) that has no closed form and has to be calculated numerically.

The joint receiver then chooses the transmitted communications symbol as

x̂c(y
′′) = arg max

b∈Xc

fY ′′|Xc(y
′′|b), (6.10)

from which the communications error rate can be calculated as Pr[x̂c(Y
′′) 6= xc|Y

′′ = y ′′].

Simulating the performance of the aforementioned decoding method is an interesting direction for

future work.
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publication] IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author,

also obtain the senior author’s approval.
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1) The following IEEE copyright/ credit notice should be placed prominently in the references:
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2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or
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3) In placing the thesis on the author’s university website, please display the following message in a

prominent place on the website: In reference to IEEE copyrighted material which is used with permis-

sion in this thesis, the IEEE does not endorse any of [university/educational entity’s name goes here]’s

products or services. Internal or personal use of this material is permitted. If interested in reprint-

ing/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new

collective works for resale or redistribution, please go to http://www.ieee.org/publications_

standards/publications/rights/rights_link.html to learn how to obtain a License

from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply

single copies of the dissertation.
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Appendix B

REAL-VALUED PHASE FADING GAUSSIAN CHANNEL AT VERY STRONG

RADAR INTERFERENCE

The IC decoder is an approximation of the optimal decoder when I � S � 1 where ln I0(z) ≈ z

for |z|� 1 and is expressed as

^̀(IC)(y) = arg min
`∈[1:M]

(
|y−

√
Sx`|−

√
I
)2

= arg min
`∈[1:M]

(
|y−

√
Sx`|2 − I

|y−
√

Sx`|+
√

I

)2
. (B.1)

The numerator and the denominator in Equation B.1 can be approximated as

|y−
√

Sx`|2 − I = |(
√

Sx−
√

Sx` + z) +
√

IejΘ|2 − I

= |
√

Sx−
√

Sx` + z|2 + 2
√

I<{e−jΘ(
√

Sx−
√

Sx` + z)}

= 2
√

I
(
1+O(

√
S/I)

)
· yeq, (B.2)√

|y−
√

Sx`|2 +
√

I =
√
|
√

Sx−
√

Sx` + z|2 + 2
√

Im′ + I +
√

I

= 2
√

I
(
1+

√
|
√

Sx−
√

Sx` + z|2/I + 2
√
1/I<{e−jΘ(

√
Sx−

√
Sx` + z)}+ 1

)
= 2
√

I
(
1+O(

√
S/I)

)
, (B.3)
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Appendix B (Continued)

where O(·) denotes the big “O” notation; that is, f(x) = O(g(x)) if and only if there exists an x0 and

a positive real number κ such that |f(x)| ≤ κ|g(x)| for all x ≥ x0, and yeq := <{e−jΘ(
√

Sx −
√

Sx` +

z)}. Therefore, by combining Equation B.2 and Equation B.3, we see that at hight INR the decoder

in Equation B.1 becomes

^̀(IC)(y)
∆
= arg min

`∈[1:M]

(
<{e−jΘ(y−

√
IejΘ−

√
Sx`)}

)2
.
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Appendix C

PROOF OF THE SER FOR A SQUAREM-QAM

A squareM-QAM is composed of two symmetric
√
M-PAM impressed on the in-phase and quadra-

ture carriers. Based on the TIN decoder in Equation 2.7 at low INR, the SER expression of a
√
M-PAM

with half the energy along the real-axis is written as

AM,S(Θ) := 2
M− 1

M

(
1

2
Q

(√
6 S

M2 − 1
+
√
2I cos(Θ)

)
+
1

2
Q

(√
6 S

M2 − 1
−
√
2I cos(Θ)

))
.

Similarly, the SER expression of a
√
M-PAM with half the energy along the imaginary-axis is written

as

BM,S(Θ) := 2
M− 1

M

(
1

2
Q

(√
6 S

M2 − 1
+
√
2I sin(Θ)

)
+
1

2
Q

(√
6 S

M2 − 1
−
√
2I sin(Θ)

))
.

Therefore, conditioned onΘ, the probability of a correct detection for the squareM-QAM is the product

of correct probabilities for two PAM systems and is given by

Pc,QAM|Θ =
(
1−A√M,S/2(Θ)

)(
1− B√M,S/2(Θ)

)
. (C.1)

By averaging the expression in Equation C.1 over Θ, the error probability of the TIN decoder is

P(TIN)
e,QAM = E

[
1− Pc,QAM|Θ

]
= EΘ

[
1−

(
1−A√M,S/2(Θ)

)(
1− B√M,S/2(Θ)

) ]
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= 4

(
1−

1√
M

)
EΘ

[
Q

(√
3 S
M− 1

−
√
2I cos(Θ)

)]
− EΘ

[
A√M,S/2(Θ)·B√M,S/2(Θ)

]
(C.2)

≤ (M− 1) EΘ

[
Q

(√
3 S
M− 1

−
√
2I cos(Θ)

)]
. (C.3)

The exact SER and its union bound for the squareM-QAM are given in Equation C.2 and Equation C.3,

respectively.
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Appendix D

PROOF OF THE SER FOR A SQUAREM-PSK

For a unit-energyM-PSK, each symbol is defined as

x` = e
jΘ` with φ` =

2π`

M
, ` ∈ [1 :M].

Therefore, we have the minimum Euclidean distance for anM-PSK as

dmin = |xk − x`| =

∣∣∣∣2ejπ+φk+φ`2 sin
(
φk − φ`
2

)∣∣∣∣ = 2 sin
( π
M

)
.

For I < S, by the symmetry of the constellation, the error probability for the TIN decoder in Equa-

tion 2.7 is

P(TIN)
e,PSK = P

[
<{(
√

IejΘ + Z)e−j
π+φ`
2 } sign

(
sin
(
φ`
2

))
>

√
S sin2

(
φ`
2

)
, ∃` ∈ [1 :M− 1]

]
(D.1)

≤ (M− 1) EΘ
[
Q
(√
2S sin

( π
M

)
−
√
2I cos(Θ)

)]
. (D.2)

The exact SER and its union bound expressions for the M-PSK are given in Equation D.1 and Equa-

tion D.2, respectively. Note that further simplifications of the exact SER for theM-PSK in Equation D.1

do not seem possible but this can be done numerically.



84

Appendix E

SER AND SNR COMPARISON FOR A PAM WITH FIXED NUMBER OF

CONSTELLATION POINTS

The SER versus SNR curves for a fixed constellation size M is shown in Figure 7. We consider

M = 2, 4, and 8 in this example for the AWGN case (I = 0) and the real-valued phase-fading channel

case (I → ∞). Additionally, the designed constellation of size 2 in the high INR regime, marked in

dash line, is included for SER and SNR comparison. We see that imposing log10(SER) ≤ −3 results

in M = 2 at SdB ≥ 45, M = 4 at SdB ≥ 55, and M = 8 at SdB ≥ 63. Therefore, the proposed

constellations yield higher error rates (obviously higher than the tolerable SER in practice) since the

range of the SNR used in our constellation design examples in Section 2.6 are quite low.

Figure 7: SER comparison vs. SdB for variousM values.
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