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SUMMARY

The goal of performance testing is to uncover problems where an application unexpectedly

exhibits worsened characteristics for a specific workload. It is difficult to construct effective

performance test cases that can find performance problems in a short period of time, since it

requires test engineers to test a large number of combinations of actions and data for large-scale

applications. A fundamental question of performance testing is how to find ”key abstractions”

that allow testers to select a manageable subset of the input data for test cases without com-

promising the effectiveness of testing.

We offer a novel solution for Abstraction Search for Input partitioning for Software perfor-

mance Testing (ASSIST) for finding key abstractions for input space partitioning for perfor-

mance testing automatically. ASSIST is an adaptive, feedback-directed learning testing system

that starts with a small subset of test cases to enable testers to steer towards challenging tests

automatically to find more performance problems in applications in a shorter period of testing

time. We have implemented ASSIST and have applied it to a dummy web application called

JPetstore which has all the functionality found in any e commerce application.

viii



CHAPTER 1

INTRODUCTION

1.1 Background

Quality assurance is an important process in any industry. In organizations that develop

software applications, various tests are performed on the system to ensure that the product

meets customer’s expectations. To evaluate the performance of the software product, test

engineers adopt various techniques with the intent of finding defects in the software. Some

defects are caused due to programming errors by developers. These defects are found by running

functional tests on the system till the software fails. But not all defects can be found using

functional testing. Many defects are caused due to requirements gap. The defects may be hidden

in such a way that the software seems to work fine in one environment but starts failing when

the environment changes. Here the failure is not related to any specific function but the overall

quality of the product. For example, scalability, security or performance are non-functional

properties of a software that needs to be tested. In order to uncover these defects test engineers

perform various non-functional tests on the software.

Goal of performance testing is to uncover problems where an application unexpectedly ex-

hibits worsened characteristics for a specific workload (42; 56).Performance degradation is a

situation when a system has very low throughput and high response time caused by unexpect-

edly large transactions or concurrent users. Performance testing or load testing is performed to

uncover areas of performance degradation. Load testing should ensures that the web application

is able to maintain the response times for the requests during many simultaneous transactions or

users. In other words, this ensure that the application is scalable. Scalability of an application

1
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is important because of the nature of web linking of pages. As web applications may generate

enormous volume of workload in a short period of time, it is important that it is scalable.

Consider an online store ecommerce application. The major business functionalities handled

by the application are the following

• product catalogue which lists all the products in their store, their specifications and price

• creating user accounts for the customers and giving them access to a virtual cart to which

they add their items

• allowing customers to select products and add it to their cart

Functional testing will be used to ensure that the application can successfully perform the

above functionalities. If there is a requirement which says that this application should support

concurrent access by hundreds of users, load testing is performed to ensure that the application

performs well even when under stress.

Performance testing is important for web applications because there is a direct correlation

between fast and stable web applications and the revenue generated from them. With the

increase in use of web applications, the users of web applications will not tolerate high response

time or errors.

Effective test cases for load testing, which is a variant of performance testing, find situ-

ations where an application suffers from unexpectedly high response time or low throughput

(34; 8). Test engineers construct performance test cases, and these cases include actions (e.g.,

interactions with GUI objects or method calls of exposed interfaces) as well as data that ac-

company these actions (33). It is difficult to construct effective performance test cases that can

find performance problems in a short period of time, since it requires test engineers to test all

combinations of actions and data for large-scale applications.
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Consider Renters Insurance Program (or simply Renters) designed and built by a major

insurance company. A goal of this program is to compute quotes for insurance premiums for

rental condominiums. Renters is written in Java and it contains over 10,000 methods that

are invoked more than three million times over the course of a single end-to-end pass through

the application. Its database contains approximately 78Mil customer profiles. Since it takes on

average ten minutes to compute a quote for a single profile, it would take over 1,500 years to test

Renters on test cases that cover all profile inputs. A fundamental question of testing is how to

select a manageable subset of the input data for performance test cases without compromising

the effectiveness of testing.

This problem is partially addressed by partitioning input data space into disjoint blocks and

constructing test cases by selecting one value from each block (5, page 150)(55). A common

way to partition input space is to model the domain of each program input, partition each

domain’s values into blocks, and then combines values from each blocks into test inputs. A

classic example of input space partitioning is a calculator program where the domain of input

values is partitioned into three blocks: negative numbers, zero, and positive numbers. Doing

so involves introducing the “sign” abstraction – concrete numerical values are abstracted away

and only signs are considered. A benefit of using this abstraction is that tests can be created

from as few as three concrete values chosen from these partitions.

Naturally, finding proper abstractions is a highly creative process that involves deep un-

derstanding of input domains (5, page 152). Ideally, test engineers should spend more time to

find abstractions that will enable them to concentrate on more challenging tests for applica-

tions rather than blindly forcing all tests, which is unfortunately a common practice now (43).

Currently, a prevalent method for performance testing is intuitive testing, which is a method
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for testers to exercise the product based on their intuition and experience, surmising probable

errors (44)(17). Intuitive testing was first introduced in 1970s as an approach to use experience

of test engineers to focus on error-prone and relevant system functions without writing time-

consuming test specifications thus lowering pre-investment and procedural overhead costs (17).

When running many different test cases and observing application’s behavior, testers intuitively

sense that there are certain properties of test cases that steer applications toward more inter-

esting behavior that is likely to reveal bugs. Distilling these properties into key abstractions

automatically is a goal of our approach.

We offer a novel solution for AbStraction Search for Input partitioning for Software perfor-

mance Testing (ASSIST) for finding key abstractions automatically. ASSIST is an adaptive,

feedback-directed learning testing system that starts with a small subset of test cases to enable

testers to steer towards challenging tests automatically to find more bugs in applications in a

shorter period of testing time. ASSIST uses limited runtime monitoring together with machine

learning techniques and automated test scripts to reduce large amounts of performance-related

information collected during application runs to a small number of factors that provide in-

sights into abstractions that guide input space partitioning. We have implemented ASSIST

and applied it to JPetStore - an Online Petstore from the Open Source Community. JPetStore

application has catalogues for various pets like fish, dog from which we can select and buy pets.



CHAPTER 2

PROBLEM STATEMENT

2.1 Problem

In this section we give background on the process of input space partitioning, discuss abstrac-

tions for testing, show an illustrative example of how abstractions are learned for performance

testing, and formulate the problem statement.

2.1.1 Input Space Partitioning

The process of input space partitioning is shown in a diagram in Figure 1, where steps

of the process are shown as rectangles, arrows specify the directions in which these steps are

applied, and these arrows are labelled with numbers in circles to indicate the sequence of steps.

The beginning of the process is shown with the rectangle in the upper left corner that specifies

modelling of domain and application.

Modelling the domain and the application involves identifying testable functions and all

parameters that can affect the behavior of each identified testable function. These parameters

form the input domains of the application under test (AUT). Once the input domain is defined,

test engineers (1) abstract away nonessential properties of this domain leaving a set of essential

input parameters that affects the performance of the system the most, in test engineer’s opinion.

Using this set of essential parameters, the test engineer (2) creates domain and operational

abstractions that can de described as rules on input characteristics. Recall the example of

the “sign” abstraction for a calculator where inputs are represented as positive and negative

regions of values and zero. Defining these abstractions is a highly creative and intellectually

5
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intensive process that requires deep understanding of input domains and applications. Finding

good abstraction leads to effective or “good” tests that are created using these abstractions.

A main goal of testing is to create “good” test cases with which different testing objectives

can be achieved (37). These objectives include finding functional and nonfunctional defects,

finding safe and non-safe scenarios for using products, and checking for conformance to reg-

ulations. Good test cases are more likely to expose bugs and to produce results that yield

additional insight into behavior of application under test (i.e., they are more informative and

more useful for troubleshooting). Constructing good test cases requires significant insight into

an AUT and its requirements and useful abstractions for testing.

Once abstractions are found, (3) input domains are partitioned into blocks, each of which

comprises a range of values for each input parameter. Then (4) tests are created by taking

one value from each block and combining these values. After running these tests on AUT,

(5) results are analyzed to determine if tests are effective. This analysis involves statistical

evaluation of different measurements collected during execution. If this analysis shows that

AUT shows the same behavior for most of all tests, then these tests are deemed ineffective. In

this case, using information learned from running ineffective tests, engineers go back (6) to the

initial step of modelling domains and AUT and the process repeats until proper abstractions

are found and effective tests are created.

According to Beizer, five different testing levels have one thing in common – it is assumed

that testers acquire certain knowledge of the application that enables them to create abstractions

and models that would guide testing process. Level 0 is the most primitive – the model is the

code and debugging is testing, and level 4 is when testing becomes a mental discipline that

increases quality (11). That is, the current state of the art is that testers apply a certain level of
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Figure 1. The process of input space partitioning.

mental exercise to create abstractions and models, and then build test cases using these models.

This process is intellectually intensive, and intuitive testing is a way to address this problem by

relying upon experience and intuition of testers who test applications for a long time. Clearly,

automating this process is a fundamental problem of software testing.

2.1.2 Abstractions For Performance Testing

Abstraction is a fundamental technique in computer science to approximate entities or ob-

jects in order to infer useful information about programs that use these entities or objects (19).

Abstract interpretation, type static checking, and predicate abstraction are examples of math-

ematical frameworks that allow scientists to design abstractions over mathematical structures

in order to build models and prove properties of programs. Software model checking is one of

largest beneficiary fields of computer science where abstractions enable engineers to deal with

the problem of state space explosion.

User-defined abstractions are most effective in the solution domain, i.e., the domain in

which engineers use their ingenuity to solve problems (31, pages 87,109). In the problem do-

main, mathematical abstractions are used to express semantics of requirements. Conversely,
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in the solution domain, engineers go into implementation details. To realize requirements in

the solution domain, engineers look for user-defined abstractions that are often implemented

using ad-hoc techniques (e.g., mock objects that abstract missing components (24)). Thus

user-defined abstractions are most effective when they reflect the reality of the solution domain

(3).

Abstractions play a significant role in software testing (10). Useful abstractions for testing

approximate the functionality of an AUT. For example, a useful abstraction for the Renters is

that some insurance customers will pose a high insurance risk if these customers have one or

more prior insurance fraud convictions and deadbolt locks are not installed on their premises.

Computing insurance premium for these customers requires invoking additional procedures that

retrieve and process additional data from the back-end database thereby significantly increas-

ing the workload and degrading performance of the AUT, i.e., Renters. Using this abstraction,

testers can model the system as having two main performance components: one the computes

insurance premium for customers with clean history and the other for renters with fraud con-

victions who do not use deadbolts. With this model, testers can partition test inputs in two

regions that correspond to the functionalities of these main components. Even though real-

world systems exhibit much more complex behavior, useful abstractions enable testers to build

effective test cases.

Abstractions for testing are notoriously difficult to capture. Test engineers must intimately

know the functionality of the subject application under test, understand how programmers

designed and implemented their abstractions, and hypothesize on how application behavior

matches key abstractions that were extracted from requirements for this application. Without
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having useful abstractions it is difficult to define objectives that lead to selecting good test cases

(37).

2.1.3 An Illustrative Example

Currently, the state-of-the-art of finding useful abstractions is to use experience and intuition

of performance test engineers who spend time observing the behavior of AUTs when running

manually constructed test cases. There is little automated support for discovering problems with

performance testing, where a recent work by Hassan et. al. is the first that can automatically

detect performance problems in the load testing results by analyzing performance logs (34).

Experience and intuition are main tools that performance test engineers use to surmise probable

errors (44)(17).

In psychology, intuition means a faculty that enables people to acquire knowledge by link-

ing relevant but spatially and temporally distributed facts and by recognizing and discarding

irrelevant facts (54). What makes intuitive acquisition of knowledge difficult is how relevancy of

facts is perceived. In software testing, facts describe properties of systems under test, and many

properties may be partially relevant to an observed phenomenon. Intuition helps testers to form

abstractions with correctly assigned relevancy rankings to different facts, form hypotheses based

on these abstractions, and test these hypotheses without going through a formal process.

Consider an illustrative example of how intuitive testing works for Renters. A performance

test engineer notices at some point that it takes more CPU and hardware resources (fact 1)

to compute quotes for residents of the states California and Texas (fact 2). Independently, the

database administrator casually mentions to the tester that a bigger number of transactions

are executed by the database when this tester runs test cases in the afternoon (fact 3). Trying

to find an answer to explain this phenomenon, the tester makes a mental note that test cases
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with northeastern states are usually completed by noon and new test cases with southwestern

states are executed afterwards (fact 4). A few days later the tester sees a bonfire (fact 5) and

remembers that someone’s property was destroyed in wildfires in Oklahoma (fact 6). All of a

sudden the tester experiences an epiphany – it takes more resources for Renters to execute tests

for the states California and Texas because these states have the high probability of having

wildfires.

Once this crucial logical relevance is established between facts 1 and 2, facts 3-6 are not

needed any more – they simply helped to establish the rule that running tests on states with

wildfires leads to bigger workload on the applications. When test cases are run for wildfire states,

more data is retrieved from the database and more computations are performed. The tester

then identifies other wildfire states (e.g., Oklahoma) and partition input space into wildfire

and nonwildfire states. From these partitions the tester creates test cases thereby concentrat-

ing on fewer more challenging tests for Renters rather than blindly forcing all tests, which is

unfortunately a common practice now (43).

2.1.4 The Problem Statement

Our goal is to automate finding useful abstractions for performance testing by reversing

this process. That is, testers should be able to first run applications on a small set of test

cases and then infer useful abstractions for testing with a high precision. Specifically, these

abstractions should link inputs, methods, and models of back-end databases with which these

methods exchange data into if-then rules that tell testers how to create good test cases. For

example, a rule may say “if inputs convictedFraud is true and deadboltInstalled is false

then the test case is good.”
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In this thesis we accept a performance testing definition of what constitutes a good test

case. One of the goals of performance testing is to find test cases that worsen response time or

throughput of the AUT. It can be achieved by adding more users as well as finding inputs that

make the AUT take more resources and time to compute results. Conversely, bad test cases

are those that utilize very few resources and take much less time to execute compared to good

test cases. A main goal is to produce rules that describe good and bad test cases automatically

and then use these rules also automatically to partition input space from which more test cases

are built and used. The system should also correct itself by testing learned rules on selecting

test data from partitions that are based on these rules and verifying that these test data lead

to predicted performance results.

Additional rules may provide insight into the behavior of the AUT. For example, a rule may

specify that the method checkFraud is always invoked when test cases are good and the values

of the attribute SecurityDeposit of the table Finances are frequently retrieved from the back-

end database. This information helps testers to create a holistic view of testing, partition test

inputs appropriately thereby reducing the number of tests, and thus these rules can be used to

select better test cases automatically.

Finally, no performance testing is complete without providing sufficient clues to performance

engineers where in the AUT problems can lurk. A main objective of performance analysis is to

find bottlenecks (or hot spots), which are phenomena where the performance of an application

is limited by one or few components (41), (52), (4), (6). A single method that drags down

the performance of the entire application is easy to detect using profilers; however, it is a

difficult problem to find bottlenecks when there are hundreds of methods whose execution time

is approximately the same, which often is the case in large-scale applications (4),(6). The
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problem that we solve in this thesis is that once the input space is partitioned into blocks that

lead to good and bad test cases, we want to find methods that are specific to good performance

test cases and that are most likely to contribute to bottlenecks, with high precision and in a

short period of time.



CHAPTER 3

APPROACH

3.1 The ASSIST Approach

In this section we present the AUT model for ASSIST, explain the key ideas behind our

approach, give an overview of ASSIST, describe the architecture of ASSIST, and provide an

overview of how ASSIST is used.

3.1.1 The AUT Model

Database-centric applications (DCAs) are common in enterprise computing, and they use

nontrivial databases (38). Database abstractions and models are complementary to abstrac-

tions and models that are used to create DCAs; it is often a case that they complement one

another (30). Together, inputs to DCAs, method calls, and databases are fused in the logic

of these DCAs. During execution of DCAs, interactions between inputs, method calls, and

databases form different patterns that reflect underlying abstractions using which DCA logic

is implemented. Recovering those abstractions, refining them, and making them available to

testers is the main goal of this thesis.

Figure 2. The model of the AUT for ASSIST.

13
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Consider a model of the DCA that is shown in Figure 2. Inputs to the DCA lead to

invocation of methods that may request additional inputs or call other methods. In addition,

these methods retrieve data from databases, use this data to trigger more computations, request

more input data, and insert or update data in the database. Good performance test cases are

those where input data trigger more computations that update data in the databases and request

more data from the databases that in turn trigger more computations. We do not differentiate

between serialized and concurrent executions in this model.

3.1.2 An Overview of ASSIST

ASSIST is based on two key ideas. First, the instrumented AUT is run on a small number of

test cases that can be selected randomly, its execution profiles are collected and clustered using

machine learning (ML) techniques automatically into two groups that correspond to good and

bad test cases. The values for AUT inputs for good and bad test cases are formed into the input

to an ML classification algorithm. This input contains implications of the form VI1 , . . . , VIk → T ,

where VIm is the value of the input Im and T ∈ {G,B}, G and B standing for good and bad

test case correspondingly. The ML classification algorithm learns the model and outputs rules

that have the form Ip � VIp • Iq � VIq • . . . • Ik � VIk → T , where � is one of the relational

operators and • stands for logical connectors and and or.

These learned rules are supplied back into the test script, which is a program that test

engineers write to automate testing. This test script performs actions (invoking methods or

mimicking user actions on GUI objects) on interfaces of the AUT using some underlying test-

ing frameworks. Test engineers write code in test scripts that guide selection of test inputs;

typically, it is done using exhaustive enumeration of all input values or by using algorithms of
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combinatorial design interactions (27). In our case, selection of test inputs is guided by rules

that are obtained using the ML classification algorithm.

Using newly learned rules, input test space is partitioned and the cycle repeats. The test

script selects inputs from different partitions, the AUT is executed again, and new rules are

learned. If no new rules are learned after some time of testing, it means that the partition of

test inputs is stable with a high degree of probability. At this point instrumentation can be

removed and testing can continue with using ASSIST.

Our goal is to help test engineers to identify bottlenecks automatically in a form of method

calls, so that these engineers can debug the identified performance problems. Some methods

are more important than others. There may be a method that is periodically executed by a

thread to check to see if the content of some file is modified. While this method may be one of

the bottlenecks, it is invoked in both good and bad test cases thus reflecting the fact that its

presence does not lead to any insight that may resolve a problem that leads to good test cases.

Our second key idea is to consider the most significant methods that occur in good test cases

and that are not invoked or have little to no significance in bad test cases. The significance of a

method is a function of the number of times that this method is invoked, the total elapsed time

of its invocations minus the elapsed time of all methods that are invoked from this method,

the number of attributes that this method accesses in the databases, the amount of data it

transfers between the AUT and the databases, and finally, the number of methods that are

invoked from this method. Large applications implement multiple requirements, each of these

requirements is implemented using different methods. Each AUT run involves thousands of

its methods that are invoked millions of times. The resulting execution profile is a mixture of

different method invocations, each of which address a part of some requirement. To identify most
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Figure 3. A speech model of blind source separation.

significant methods, we need a new approach with which we break these profiles automatically

into components that match high-level requirements and then we identify methods with most

significant contributions to these components.

3.1.3 Blind Source Separation

We draw an analogy between separating method invocations in execution profiles into com-

ponents that represent high-level requirements and a well-known problem of separating signals

that represent different sources from a signal that is a mixture of these separate signals. This

problem is known as blind source separation (BSS)(47, pages 13-18).

The idea of BSS is illustrated in Figure 3. Two people speak at the same time in a room

with two microphones M1 and M2. Their speech signals are designated as source 1 and source

2. Each microphone captures the mixture of the signals source 1 and source 2 shown as

the corresponding signal mixtures from M1 and M2 respectively. The original signals source

1 and source 2 are separated from the mixtures using a technique called independent com-

ponent analysis (ICA)(32), which we describe in Section 3.1.4. Even though the idea of BSS

is illustrated using the speech model, ICA is widely used in econometrics to find hidden fac-
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Figure 4. Schematics of the ICA matrix decomposition.

tors in financial data, image denoising and feature extraction, face recognition, compression,

watermarking, topic extraction, and automated concept location in source code (26).

In this thesis we adjust the BSS model for breaking profiles automatically into compo-

nents that match high-level requirements and then identifying methods with most significant

contributions to these components. Nontrivial applications implement quite a few high-level

requirements in different methods that are executed in different threads, often concurrently.

We view each requirement as a source of a signal that consists of method calls. When an

application is executed, multiple requirements are realized, and method invocations are mixed

together in a mixed signal that is represented by the execution profile. Microphones are repre-

sented by instrumenters that capture program execution; multiple executions of the application

with different input data is equivalent to different speakers talking at the same time – as a re-

sult multiple signal mixtures (i.e., execution profiles for different input data with mixed realized

requirements) are produced. With ICA, not only it is possible to separate these signal mixtures

into components, but also to define most significant constituents of these signals (i.e., method

calls). We choose ICA because it works with non-Gaussian distributions of data, which is the

case with ASSIST.
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3.1.4 Independent Component Analysis

ICA is a recently developed mathematical technique for separating signal mixtures into

statistically independent signals (32). It is based on the assumption that different signals from

different physical processes are statistically independent. For example, different requirements

are often considered independent since they implemented in applications as separate concerns

(46; 53). When physical processes are realized (e.g., different people speak at the same time or

stocks are traded or an application is run and its implementations of different requirements are

executed in methods concurrently), these different signals are mixed and these signal mixtures

are recorded by some sensors. Using ICA, independent signals can be extracted from these

mixtures with a high degree of precision.

A schematics of ICA matrix decomposition is shown in Figure 4. The equation ‖ x ‖=‖

A ‖ · ‖ s ‖

described the process, where ‖ x ‖ is the matrix that contains the observed signal mixtures and

‖ A ‖ is the transformation or mixing matrix that is applied to the signal matrix ‖ s ‖. In

our case, the matrix ‖ x ‖ is shown in Figure 4 on the left hand side of the equal sign, and

its rows correspond to application runs with different input data (or profiles) with its columns

corresponding to method invocations that are observed for each profile. Each element of the

matrix ‖ x ‖ is calculated as

xji = λN ·N j
i + λT · T j

i + λA ·Aj
i + λD ·Dj

i + λM ·M j
i

where N j
i is the number of times that the method j is invoked in the profile i, T j

i is the total

elapsed time of these invocations minus the elapsed time of all methods that are invoked from

this method in this profile, Aj
i is the number of attributes that this method accesses in the

databases, Dj
i is the amount of data that this method transfers between the AUT and the
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databases, M j
i is the number of methods that are invoked from this method, and finally, λ are

normalization coefficients computed for the entire matrix ‖ x ‖ to ensure 0 ≤ xji ≤ 1. Naturally,

xji = 0 means that the method i is not invoked in the profile j, while xji = 1 means that the

given method makes the most significant contribution to the computation in the given profile.

Using ICA the matrix ‖ x ‖ is decomposed into a transformation and a signal matrices that

are shown on the right hand side of the equal sign in Figure 4. The input to ICA is the matrix

‖ x ‖ and the number of source signals, that in our case is the number of requirements (reqs

in the Figure 4) implemented in the application. Elements of the matrix ‖ A ‖, Aq
p specify

weights that each profile p contributes to executing code that implements the requirement

q, and elements of the matrix ‖ s ‖, skq specify weights that each method k contributes to

executing code that implements the requirement q. Methods that have the highest weights for

given requirements are thought to be the most significant and interesting for troubleshooting

performance problems. This is a hypothesis that we validate with our case study.

3.1.5 ASSIST Architecture And Workflow

The architecture of ASSIST is shown in Figure 5. Solid arrows show command and data

flows between components, and numbers in circles indicate the sequence of operations in the

workflow. The beginning of the workflow is shown with the fat arrow that indicates that the Test

Script executes the application by simulating virtual users and invoking methods of the AUT

interfaces. The Test Script is written (1) by the test engineer as part of automating application

testing; it is practically impossible to performance test applications without automated test

scripts since it is not feasible to engage hundreds of thousands of testers who will call multiple

methods with high frequency manually (20)(21)(36)(42).
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Figure 5. The architecture and workflow of ASSIST.

Once the test script starts executing the application, its execution profiles are collected (2)

by the Profiler, and these profiles are forwarded to the Profile Analyzer, which produces (3)

the Profile Statistics. This statistics contains information on each profile such as the number

of invoked methods, the elapsed time it takes to complete the end-to-end application run, the

number of threads, and the number of unique methods that were invoked in this profile. The

profile statistics is supplied (4) to the module Profile Clustering, which uses an ML algorithm

to perform unsupervised clustering of these profiles into two groups that correspond to (6)

Good and (5) Bad test profiles. The user can review the results of clustering and (7) reassign

clustered profiles if a need exists. These clustered profiles are supplied (8) to the Learner

that uses them to learn the classification model and (9) output rules that we described in

Section 3.1.2. The user can review (10) these rules and mark some of them as erroneous if the
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user has sufficient evidence to do so. Then the rules are supplied (11) to the Test Script that

keeps executing the application, but at the same time it listens at a connection for rules. Once

the Test Script receives a new set of rules, it partitions the input space into blocks according

to these rules and starts forming test inputs by selecting one input from each block. Thus the

cycle repeats, with new rules that can be learned at each several passes and the input space is

repartitioned adaptively to accomodate these rules.

Interestingly, the AUT does not have to execute instrumented with the Profiler for the entire

duration of testing. Once ASSIST does not learn new rules, which means that the classification

model performs well on newly added profiles, instrumentation can be removed and the AUT

can be run on the partitioned input space using learned rules. This way the performance

degradation that is introduced by instrumentation is temporary, which makes this approach

usable in practice.

Finally, recall from Section 2.1.4 that once the input space is partitioned into blocks that lead

to good and bad test cases, we want to find methods that are specific to good performance test

cases and that are most likely to contribute to bottlenecks. This task is accomplished in parallel

to computing rules, and it starts when the Profile Analyzer produces (12) the method and data

statistics that is used to construct (13) two matrices ‖ xB ‖ and ‖ xG ‖ for (14) bad and good

test cases correspondingly. Constructing these matrices is done as we described in Section 3.1.4.

Once these matrices are constructed, ICA decomposes them (15) into the matrices ‖ sB ‖ and

‖ sG ‖ for bad and good test cases correspondingly. Recall that our key idea is to consider the

most significant methods that occur in good test cases and that are not invoked or have little

to no significance in bad test cases. Crossreferencing the matrices ‖ sB ‖ and ‖ sG ‖ which

specifies method weights for different requirements, the Advisor (16) determines top methods
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that performance testers should look at (17) to debug possible performance problems. This

step completes the workflow of ASSIST.



CHAPTER 4

IMPLEMENTATION

4.1 Introduction

In this section we explain the implementation details of ASSIST. A detailed application

work flow is illustrated in the Figure 6.

The JPetstore application is statically instrumented with user defined probes. We use JMeter

to create automated test scripts for load testing. Automated test scripts are used because

load testing requires to simulate many concurrent users and transactions which is not feasible

to perform using manual testing. Our application has JMXLoadScript module which creates

JMeter test scripts iteratively. Initially, the test scripts are generated by randomly selecting

URLs of the JPetstore application. Once the test scripts start executing JPetstore on the Apache

Tomcat web server, the execution profiles of the test runs are collected by the Profiler. The

execution profile contains run time information about the JPetstore application written to the

Profile Repository by the probes. These execution profiles are processed by the ProfileAnalyzer

to produce Profile Statistics. The Profile Clustering module analyzes the profile statistics to

cluster the profiles as Good or Bad Test profiles. The user can review the results of clustering

and may reassign the class of Profiles. These clustered profiles are fed as input to the Learner

which uses a classification model to learn rules. In our implementation we use WEKA to

implement the machine learning algorithms. Once the rules are generated, JMXLoadScript

module includes these rules in the new test scripts.

The application has following parts.

23
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Figure 6. ASSIST Application Workflow
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• User defined probes generated using ProbeKit. ProbeKit is a framework on Eclipse Test

and Performance Tools Platform (TPTP)

• The JMXLoadScript module. It generates the JMeter Test Scripts. These scripts are

composed of random HTTPRequests to the web server where JPetstore is deployed. As a

preliminary setting, we start the Apache tomcat server at the beginning of the application

run.

• The JPetstore web application which has been statically instrumented by ProbeKit and

runs on Apache Tomcat web server. When the HTTPRequest hits the web server, the in-

strumented code writes data about method invocations, SQL queries and ServletRequests

to a socket.

• ProfileRepository which opens a ServerSocket which listens on a port. Once a client socket

writes to this port, it reads from the socket and generates profiles for each run of the test.

• ProfileAnalyzer which lets the user assign classes to each profile and analyse the profiles.

It uses a machine learning algorithm to learn rules from these clustered profiles. Profiles

can be clustered as Good or Bad Profile depending on the time it takes for all the method

invocations. In our implementation, for a given set of clustered profiles, those profiles

which have total elapsed time greater than the average elapsed time for the entire set is

considered as good profile.

WEKA is used to perform this clustering.(7) WEKA is a collection of open source Machine

Learning algorithms for data mining.Once the profiles are classified, rules are generated. The

user can reassign the class of the clustered profiles if need be. These rules are fed back to the

test scripts generation module.
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4.2 System Under Test - Web Application JPetstore

For the implementation of ASSIST, we used JPetstore(2). It is an online petstore application

(see Figure 7) which allows users to buy pets. User can select among many options to buy dogs,

cats or fishes. Each user gets a virtual cart to which items can be added and the user can

checkout the cart after shopping. Users have to enter their billing address, shipping address

and credit card information in order to checkout from the store.

The performance critical scenarios in this application are

• Browsing the catalogue of various pets

• Adding,Removing,Updating items to the shopping cart

• Customer Log in,Log out

• Checkout

The JPetstore is based on a Model-View-Controller framework. It uses Apache Struts framework

to implement the controller. Model (application business logic), view (html pages) and controller

(ActionServlet) are bound to each other through the configuration file struts-config.xml. We

have deployed iBatis JPetstore on Apache Tomcat web server and we use Apache Derby as the

database backend.(1) Each test script simulates a load of 5 users executing 100 HttpRequests

for 5 iterations on the web server. The next section talks in detail about the test scripts.

In order to have a clearer understanding of the System Under Test, we use JDepend to

calculate the metrics of the JPetstore application. JDepend traverses through Java class files

and generates design quality metrics for each Java Package.(14) Jdepend can calculate the

following metrics of the packages:

1 Number of Concrete classes [CC]
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Figure 7. JPetstore Home Page

2 Number of Abstract classes [AC]

3 Afferent Coupling [Ca] - Number of packages which depend on this package, how respon-

sible is this package.

4 Efferent Coupling [Ce] - Number of packages which this package depends on, how inde-

pendent is this package.

5 Abstractness [A] - Ratio of number of abstract classes in the package to the total number

of classes in the package.

A =
AC

AC + CC
(4.1)

It has a value between 0 and 1. A value of 1 indicates completely abstract and 0 is

completely concrete.
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Figure 8. JDepend metrics result for JPetstore packages

6 Instability [I] - Ratio of Efferent coupling to total coupling.

I =
Ce

Ce+ Ca
(4.2)

7 Distance from the Main Sequence [D] - This represents the perpendicular distance from

the imaginary line A + I = 1. The x coordinate will represent the abstractness and y

coordinate will represent the instability.

Figure 8 is a snapshot of the results generated by JDepend (48). It lists all the packages and

the values for each of the above mentioned metrics.

4.2.1 JPetstore Package details

com.ibatis.jpetstore.domain This package has a total of 9 classes. All of them are Con-

crete classes. As there are no abstract classes, the abstractness (A) is 0%. This package has
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Figure 9. Metrics for com.ibatis.jpetstore.domain

Figure 10. Metrics for com.ibatis.jpetstore.persistence

a efferent coupling of 5 because it uses 5 external packages. Also, this package has a afferent

coupling of 4 since it is being used by 4 other packages. Figure 9 illustrates these metrics clearly.

com.ibatis.jpetstore.persistence This package has a total of 2 classes. All of them are

Concrete classes. As there are no abstract classes, the abstractness (A) is 0%. This package has

a efferent coupling of 5 because it uses 5 external packages. Also, this package has a afferent

coupling of 1 since it is being used by 1 other package. Figure 10 illustrates these metrics clearly.

com.ibatis.jpetstore.persistence.iface This package has a total of 6 classes. All of them

are Abstract classes. As there are no concrete classes, the abstractness (A) is 100%. This

package has a efferent coupling of 4 because it uses 4 external packages. Also, this package has

a afferent coupling of 2 since it is being used by 2 other packages. Figure 11 illustrates these

metrics clearly.
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Figure 11. Metrics for com.ibatis.jpetstore.persistence.iface

Figure 12. Metrics for com.ibatis.jpetstore.persistence.sqlmapdao

com.ibatis.jpetstore.persistence.sqlmapdao This package has a total of 8 classes. All

of them are Concrete classes. As there are no abstract classes, the abstractness (A) is 0%. This

package has a efferent coupling of 7 because it uses 7 external packages. Also, this package has

a afferent coupling of 0 since it is not being used by any other packages. Figure 12 illustrates

these metrics clearly.

com.ibatis.jpetstore.presentation This package has a total of 4 classes. All of them are

Concrete classes. As there are no abstract classes, the abstractness (A) is 0%. This package has

a efferent coupling of 7 because it uses 7 external packages. Also, this package has a afferent

coupling of 0 since it is not being used by any other packages. Figure 13 illustrates these metrics

clearly.
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Figure 13. Metrics for com.ibatis.jpetstore.presentation

Figure 14. Metrics for com.ibatis.jpetstore.service

com.ibatis.jpetstore.service This package has a total of 3 classes. All of them are Con-

crete classes. As there are no abstract classes, the abstractness (A) is 0%. This package has

a efferent coupling of 7 because it uses 7 external packages. Also, this package has a afferent

coupling of 1 since it is not being used by any other packages. Figure 15 illustrates these metrics

clearly.

com.ibatis.struts This package has a total of 4 classes. 3 of them are Concrete classes

and 1 Abstract class. The abstractness (A) is 25%. This package has a efferent coupling of 8

because it uses 8 external packages. Also, this package has a afferent coupling of 1 since it is

not being used by any other packages. Figure 15 illustrates these metrics clearly.

com.ibatis.struts.httpmap This package has a total of 7 classes. 6 of them are Concrete

classes and 1 Abstract class. The abstractness (A) is 14%. This package has a efferent coupling
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Figure 15. Metrics for com.ibatis.struts and com.ibatis.struts.httpmap

of 4 because it uses 4 external packages. Also, this package has a afferent coupling of 1 since it

is not being used by any other packages. Figure 15 illustrates these metrics clearly.

4.3 Test Scripts

Load testing is performed to identify the bottlenecks in the web application as well as the

maximum operating capacity of the application. The process followed to perform load testing

involves various stages. The web application is thoroughly studied and the various performance-

critical scenarios are identified. Once the performance objectives and metrics are clear, tests

are designed to perform load testing. To execute these tests, tools are used to simulate the load

on the application. In this implementation of ASSIST Apache Jmeter is used.

Apache JMeter (49) is a Java desktop application designed to load test functional behaviour

and measure performance. This implementaion mainly focuses on testing the Apache Tomcat

Web Server which hosts the JPetstore application. JMeter performs tests on web server by

sending the server HTTP/HTTPS requests. It runs in a fully multi threaded framework which

allows to specify the number of concurrent users needed to simulate. This is done by specifying
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the number of Threads in the Thread Group. JMeter provides both GUI and Non-GUI options

to work with. We chose the Non-GUI option as the test scripts had to be generated iteratively

and randomly from the JMXLoadscript module.

Once the number of users have been decided, the tasks assigned to each user need to be

specified. We have to specify which HTTP Requests each user will fire. All the possible URLS

of JPetStore were identified and stored in an array list. JMXLoadScript module was used to

randomly select 20 URLS from the array list. The HTTP Requests could be GET or POST.

After thoroughly studying the JPetstore web application, we found that there were a total of

120 possible URLS. 5 of these were HTTP POST requests and 115 of these were HTTP GET

requests. Out of the 115 GET requests, 12 URLS did not pass any URL parameters and the

rest did.

To construct the test scripts, we use the classes provided by JMeter. We start with the

org.apache.jmeter.testelement.TestPlan which has a org.apache.jmeter.threads.ThreadGroup ob-

ject and a HashTree. The ThreadGroup object implements the thread group of the test. Thread

group controls the number of threads or the number of distinct users running the test. It allows

us to specify the following parameters of the test

• The number of distinct users running the test

• The ramp up period of the test

• The number of times to execute the test

ThreadGroup threadGroup = new ThreadGroup();

LoopController lc = new LoopController();

lc.setLoops(5);

lc.setContinueForever(true);

threadGroup.setSamplerController(lc);
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threadGroup.setNumThreads(5);

threadGroup.setRampUp(1);

The HashTree contains all the Samplers we need to have in the test. Samplers tell JMeter to

send requests to a server and wait for a response. They are processed in the order they appear

in the tree. We use org.apache.jmeter.protocol.http.sampler.HTTPSampler to implement

the HTTP requests. To create the HTTP requets, we set the domain, port, path and the

arguments of the request. Depending on whether we choose to create a HTTP GET or POST

request, we set the method of the HTTPSampler object and the arguments. Arguments are

implemented using org.apache.jmeter.protocol.http.util.HTTPArgument and specified as

key-value pairs.

sampler.setDomain("localhost");

sampler.setPort(8080);

path = URLS[random.nextInt(19)]; //randomly selecting URL from the list of possible URLS

sampler.setPath(path);

if(URLGetMap.containsKey(path)) {

sampler.setMethod("GET");

sampler.setArguments(createArguments(path,true)); //createArguments() creates arguments based on the URL chosen

...

}

All the Samplers are added to the HashTree and it is passed from the JMXLoadScriptModule

to the main thread which runs JMeter. JMeter thread parses this HashTree and executes the

HTTPRequests sequentially. Another functionality of JMXLoadScript is to include rules in the

test scripts, once they are generated. Once rules are generated by the Learner, the main JMeter

thread gets a notification that new rules exist. It passes this information to JMXLoadScript

module. In the beginning of every iteration, we check whether new rules exist. If they do, we

parse the rules and build our Test Script to incorporate the rule.
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4.4 Profiling

To classify a given run of test script as good or bad, we need to find exactly how much time

it takes to execute it. Each test script consists of 20 random URLs initially. As we find more

rules, the test script incorporates those rules. We classify test scripts as good or bad based on

the total time taken for all the method invocations. Since we are performing load testing, we

are interested to find those cases where the total time taken for the method invocation is high.

These will let us focus on areas causing performance issues.In order to find the total time for

the method invocations , we needed to collect the runtime information required for collecting

the various statistics of each test script run. There were basically 3 things we focused on

• the method calls made, the parameters passed to the method and the objects returned by

the method call

• the SQL queries made and the parameters passed to the queries

• the HTTP requests passed by the to the web server.

4.4.1 ProbeKit

For profiling, we used ProbeKit (16),which is available through Eclipse Test and Performance

Tools Platform (TPTP). Probekit allows us to insert fragments of code that can be invoked

from specific points in a Java Class (at entry, at exit). These fragments of code are called

Probes. Eclipse TPTP provides the Probekit Editor which is used to define probes. Probes

are contained in a probekit source file which has extension ’.probe’. A single Probekit Source

file may contain more than one probes.Probe specification consists of

• Target specifications which indicates the classes and methods on which the probe should

be applied.
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Figure 16. Probekit Editor

• Import Directives specify the Java packages and classes that are referenced by the probe.

• Framgments is the logic of the probe. Here we specify the fragment type, data items and

the Java code.

4.4.2 Specifying Targets in Probe

Targets let us specify filter rules which lets us include or exclude certain methods or classes

from instrumentation. The Probekit Editor performs pattern matching to decide which classes

and methods must be instrumented. The pattern can also include wildcard charater. The

above figure applies the probe only to all the methods in the com.ibatis.jpestore package. All

other classes and methods are excluded from instrumentation. If no value is entered, all the
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Figure 17. Specifying Targets in Probekit Editor

classes and methods will be instrumented. To apply probes to only specific classes or methods, a

target specification type=exclude,package=*,className=*,method=*,signature=* is specified.

4.4.3 Import Directives in ProbeKit

An import directive is to import those classes which are being referenced by the probe. They

are optional. A probe can contain more than one import directive.

4.4.4 Fragments in ProbeKit

Probe fragments defines the logic. There are different types of probe fragment. The type

indicates when the fragment will run . A probe can contain more than one fragment, but cannot

contain more than one fragment of a given type. For example, probe with fragment type as

”entry” will run upon the entry of every method. Similarly, a probe with fragment type as
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Figure 18. Import Directive in Probekit Editor

”exit” will run upon method exit. The different fragment types are entry, exit, afterCall which

runs after the target method is called, beforeCall which runs before the target method is called,

catch which runs at the beginning of a catch clause, staticInitializer which runs during the static

class initializer of every probed class, executableUnit which runs before every executable unit

of code in methods that match the probe’s target and filter specification.

Fragments also contain data items. It specifies the name and type of data which will be used

in the fragment code. The specification of data item is optional. While specifying a data item,

we have to specify it’s data type and variable name. There is a small set of datatypes identified

by ProbeKit. className, methodName, methodSig, args are some of the available datatypes.

The variable name follows any Java variable name naming convention.

The final part of a fragment contains the Java source code which has to be executed while

the probe runs. This source code accesses various run time information about the instrumented

class files using the data items. For example, the name of the currently loaded class can be

retrieved through className data item.
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In our implementation, we created three probes. The first probe was for entry and exit

of every method in all classes in the package com.ibatis.jpetstore. The fragment source code

captures information about the timestamp at which the probe is called while method entry

and exit. It also capture the method name, method signature and the classname. All this

information is then written to a socket. The information in the socket will be later read by the

profiler to create the profiles.

Another probe captures all the information associated with the database related methods.

This probe is run after any database related method is invoked. It captures the method name

and writes it to the same socket.

The third probe is written to capture the Http get and post requests. In this code fragment

we capture the http requests URL and the parameters passed which is written to the socket.

These values are later used as input ARFF data in WEKA to generate rules.

After writing the probes, we have to instrument the classes. There are two methods of

instrumenting the class files using ProbeKit - dynamic and static. For our implementation

we instrumented the class files statically. To enable profiling over tomcat, we had to enable

standalone profiling. To do this, we need to set some Java options in tomcat. We add these

options to catalina.bat.

-agentlib:JPIBootLoader=JPIAgent:server=standalone;

ProbekitAgent:ext-pk-BCILibraryName=BCIEngProbe,

ext-probescript=<dir where SQLProbe is downloaded>\bin\SQLProbe.probescript

To run the Java Profiler in stand alone mode, in Windows, we need to add certain locations

to our Path before we can start profiling.

• TPTP Agent Controller Home - Location where the agent controller is installed

..\agntctrl.win_ia32-TPTP-4.7.1a\bin
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• TPTP Agent Controller Plugins - Location where the Agent Controller plugins are in-

stalled

..\agntctrl.win_ia32-TPTP-4.7.1a\plugins\org.eclipse.hyades.probekit\lib

• TPTP JAVA Profiler Home - Location of tptp java profiler

..\agntctrl.win_ia32-TPTP-4.7.1a\plugins\org.eclipse.tptp.javaprofiler

4.5 Profile Repository

When the probes run, the information which is collected about the application run is written

to a socket, dynamically. Profile Repository is the part of application which ensures that the

Server Socket is ready for listening. Profile Repository reads the information written in the

socket and creates profiles. Profiles are text files which have all the information retrieved by

the probes for each run of the JMeter test. All these profiles are stored in the Repository.

Given below are few examples of part of a profile. These are captured from the three different

probes which was mentioned previously. This line from the profile captures the information

on the struts class to which the HTTP request is redirected, the URL and all the request

parameters. It was captured by the probe which runs during the exit from every doGet and

doPost methods.

REQENT_|_http-8080-1_|_30547667616764_|_org/apache/struts/action/

ActionServlet_|_doGet(Ljavax/servlet/http/HttpServletRequest;Ljavax/servlet/http/HttpServletResponse;)

V_|_URL_|_http://localhost:8080/JPetStoreApp/shop/viewProduct.shtml_|_productId={RP-SN-01+}_||_

This line from the profile captures information on the database calls made. It lists the

java.sql Class and method which was invoked. It also lists the SQL query which was used. It

was captured by the probe which runs after the call of every database related method.

JDBC_|_http-8080-1_|_30546988983935_|_25987818_|_32778033_|_prepareStatement_|_
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select ITEMID, LISTPRICE, UNITCOST, SUPPLIER, I.PRODUCTID, NAME, DESCN, CATEGORY,

STATUS, ATTR1, ATTR2, ATTR3, ATTR4, ATTR5

from ITEM I, PRODUCT P where P.PRODUCTID = I.PRODUCTID and I.PRODUCTID = ?_||_

This line from the profile captures information on the method calls which were made. It

contains the name of the class and the method which was invoked. This was captured by the

probe which runs on entry and exit of every method call made in the com.ibatis package.

MTDENT_|_http-8080-1_|_30542358122959_|_com/ibatis/common/resources/

Resources_|_getResourceAsStream(Ljava/lang/ClassLoader;Ljava/lang/String;)Ljava/io/InputStream;_||_

MTDRET_|_http-8080-1_|_30542403474044_|_com/ibatis/common/resources/

Resources_|_getResourceAsStream(Ljava/lang/ClassLoader;Ljava/lang/String;)Ljava/io/InputStream;_||_

4.6 How are rules formed?

For every iteration of test script that is executed by JMeter, a profile is created. Each profile

has many URLs. These URLs are selected randomly. We cluster these profiles as Good or Bad

depending on the total elapsed time taken by the profile. A good profile is one which has a

longer total elapsed time. We use the weka.classifiers.rules.JRip class to implement the

rule learner. It is a propositional rule learner. The input parameters to the rule learner are a

count of the number of times each URL occurs in the profile. The input to the WEKA is an

Attribute Relation File Format file. ARFF file has two section the Header section and Data

section. The Header section contains the relation name and the attributes. The format for the

relation declaration is

@relation <relation-name>

The attribute declaration part contains the names of all attributes and the datatype. In our

implementation, each profile generates an instance in the ARFF file. The attributes are all the

possible URLs in the JPetstore and the data contains the number of times each URL occurs in
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Figure 19. Creating the ARFF file as input to the Rule Learner

the profile. Figure 19 gives the illustration. The rule learner takes the count of URL as input

parameters and therefore, the rules which are formed is of the form

URL1_name > count1 & URL2_name < count2 --> Good

Here url1_name, url2_name are readable forms of URL. To form rules in the above format,

we map each URL to a readable form of the URL.We later map these readable forms of the

URL with the count of number of occurrences of the URL in each profile. Let us consider an

example. After running the application for a while, we collect 12 profiles. We cluster these

profiles as Good or Bad. In our implementation, the profiles will be auto-clustered based on

the total elapsed time of the profile. But the classes of these profiles can be reassigned if there

is a need. After assigning classes (clustering) to these profiles, we learn the rules. We get a rule

which says
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(viewPrdct_F1-FW-01 <= 0) -> Bad

This rule will be passed to the JMXLoadScript module, which incorporates this rule in the

next iteration of test scripts generation. If we split this rule,viewPrdct_F1-FW-01 is the more

readable form of the URL

http://localhost:8080/JPetStoreApp/shop/viewProduct.shtml?\\productId=FI-FW-01

and 0 is the count of occurrence of the URL in the profile. This rule implies that a profile where

the URL

http://localhost:8080/JPetStoreApp/shop/ viewProduct.shtml?productId=FI-FW-01

does not occur at all, has lower chances of having a performance problem.

Figure 20 is a snapshot of the input ARFF file. The attribute declaration part lists all

the readable URL names and the data type. The data type is numeric, since the data stores

the count of the occurrences of the URL. The data declaration part lists the comma separated

values of the count of occurrences of the URLs listed in the attributes. The columns in the data

appear in the order of the attributes declared.

4.7 Profile Analyzer

The Profile Analyzer performs the analysis and clustering of Profiles. The rule learner is

also a part of Analyzer. The clustered profiles are used to generate rules. When the application

starts, it starts the Profile Repository, tomcat server,profile analyzer and jmeter scripts in that

order. The Profile Repository creates a server socket that listens for clients on a port. When

tomcat starts running, it runs the statically instrumented JPetstore. Once tomcat is up and

running, profile analyzer starts. It has a GUI interface which lets the tester interact with

the system. After the profile analyzer is started in an independent thread, JMeter test script
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Figure 20. Input Arff file
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Figure 21. Snapshot of the Profile Analyzer

generation is invoked. The JMeter tests are generated iteratively and the profiles generated

are stored in the repository by the Profile Repository module. Once the iterations start, test

engineer can start analyzing the profile by selecting Control->Analyaze->Start from the drop

down menu. This will initiate the system to read the profiles in the repository and extract

various information form these files. During the profile analysis, the application collects the

number of methods, number of invocations and the total elapsed time taken by each profile.

We can stop the analyzer by selecting Control->Analyzer->Stop. To resume the analyzer we

can select Control->Analyzer->Resume. Figure 21 is a snapshot of the UI screen of Profile

Analyzer. Figure 22 shows the menu options for starting and stopping the profile analyzer.
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Figure 22. Menu Options to control Profile Analyzer

Once we have enough profiles to start learning rules, we can cluster the profiles. In our

implementation, we need to have at least 10 profiles whose class have been assigned before

we can start learning rules. Clustering the profiles can be done automatically by clicking the

AutoCluster button or it can be done manually by the test engineer. The autocluster assigns

the classes based on the total elapsed time. Consider 10 profiles have been analyzed. A profile

would be assigned as Good by the auto cluster if the total elapsed time of the profile is greater

than the average total elapsed times of the 10 profiles. It is our assumption that a profile which

has longer elapsed time is prone to performance degradation issues during load testing. Hence

we concentrate on areas which take more time. If the test engineer wishes to reassign the class

of the profile, clicking on the assigned class will pull up a drop down menu. The menu contains

all the possible values for the class.(Good, Bad, Unassigned) The test engineer can choose any

of the value from the drop down to reassign the class of the profile.

4.8 Rule Generation

Profile Analyzer collects all the profile statistics and clusters the profiles as Good or Bad.

The clustering can be done automatically or manually by the test engineer. Once we have

clustered a minimum number of profiles (in our implementation, it is 10) rules can be generated
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Figure 23. Rules Generated by the System

from these clustered profiles. We use WEKA for rule generation. In our implementation, we use

weka.classifiers.rules.JRip to implement the rule learning algorithm. JRip implements

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) (15). We pass

the input ARFF file to the Classifier. The algorithm uses this training set to build classifiers

and get rule set. The rule set is parsed and displayed on the Profile Analyzer GUI. Figure 23

is a snapshot of the rules which have been generated by the system. Figure 24 shows the menu

option available to start learning the rules and to create a decision tree.

Once the rules are generated, they are fed-back into the input test script generation module.

The input test script generation module, parses all the rules and generates a HashMap of the

http requests and the count of its occurrence which have to be included in the next iteration of
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Figure 24. Menu Options for generating rules

input test scripts generation. The algorithm followed to implement this can be briefly described

as follows :

1 Initialize RuleCountMap ={}, the hashmap which stores the http requests and the count

of occurrence after parsing the rules. Repeat the following steps until all the Rules for

the RuleSet have been iterated over

1 If the rule is classified as Good rule, Get the URL name, count of occurrence of the

URL and the relational operator of the current rule

2 Check if the relational operator is GREATER or GREATER-EQUAL. If yes, check

whether the RuleCountMap already contains the url name. If yes, check the count

of occurrence stored in the map against the URL name. If the count of occurrence

is lesser than the count in the current rule, store the current count of occurrence

against the URL name in the RuleCountMap. If the hashmap does not contain

the URL, store the current count of occurrence + 1 against the URL name in the

RuleCountMap.

3 Check if the relational operator is LESSER or LESSER-EQUAL. If yes, check whether

the RuleCountMap already contains the url name. If yes, check the count of occur-
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rence stored in the map against the URL name. If the count of occurrence is greater

than the count in the current rule, store the current count of occurrence against the

URL name in the RuleCountMap. If the hashmap does not contain the URL, store

the current count of occurrence - 1 against the URL name in the RuleCountMap.

4 Check if the relational operator is EQUAL. If yes, store the current count of occur-

rence against the URL name in the RuleCountMap.

1 If the rules is classified as Bad rule, Get the URL name, count of occurrence of the

URL and the relational operator of the current rule

2 Check if the relational operator is GREATER or GREATER-EQUAL. If yes, check

whether the RuleCountMap already contains the url name. If yes, check the count

of occurrence stored in the map against the URL name. If the count of occurrence

is greater than the count in the current rule, store the current count of occurrence

against the URL name in the RuleCountMap. If the hashmap does not contain

the URL, store the current count of occurrence - 1 against the URL name in the

RuleCountMap.

3 Check if the relational operator is LESSER or LESSER-EQUAL. If yes, check whether

the RuleCountMap already contains the url name. If yes, check the count of occur-

rence stored in the map against the URL name. If the count of occurrence is lesser

than the count in the current rule, store the current count of occurrence against the

URL name in the RuleCountMap. If the hashmap does not contain the URL, store

the current count of occurrence + 1 against the URL name in the RuleCountMap.

4 Check if the relational operator is EQUAL. If yes, store the current count of occur-

rence against the URL name in the RuleCountMap.
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2 Iterate through the map and construct HTTP Requests to the TestPlan depending on the

count of occurrence stored against each URL name. After a few iterations of relearning

the rules, we observe that the rules will stabilize.



CHAPTER 5

RESULTS

5.1 Results

ASSIST tool is for the test engineers to locate those regions in the application which will

require more resource allocation. Initially, the tool uses random load testing of the AUT.

After some execution profiles of the application have been collected, the tool learns about the

AUT and creates abstractions on the input space through rules. The rules are generated using

machine learning algorithms.

The rules which are generated look like below

( url1_name > count1 ) and ( url2_name < count2)

Here, url1_name ,url2_name are more readable forms of the URLs and count1,count2 are

the number of occurrence of the URL in the profile. Rules are formed based on whether a profile

is clustered as Good profile or Bad profile. We measure the method weights in each profile by

collecting the method statistics. A profile is considered good profile if, for a set of profiles, the

total time for all method invocations in that profile is greater than the average of the total time

for all method invocations for all the profiles in the set. We ran our tool against the instrumented

JPetstore application and collected execution profiles. To compare the effectiveness of our

method with the normal random load testing, we had two sets of experiments. The first was

completely random load testing which did not use any profile analysis or rule generation. Next,

we performed the load testing with ASSIST tool.
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TABLE I

Time Taken during Random Load Testing
Number of Transactions Run 1 Run 2 Run 3 Run 4 Run 5

(in seconds) (in seconds) (in seconds) (in seconds) (in seconds)

25000 111.652 108.912 109.016 108.848 112.709

50000 225.981 210.781 211.53 218.106 220.463

75000 350.392 306.811 311.492 313.834 323.677

100000 525.858 406.25 402.275 413.45 469.856

125000 710.072 507.428 502.565 537.662 625.654

5.2 Random Testing

First we performed the completely random load testing. We choose random URLs and used

JMeter Test Scripts to simulate those HTTP requests on the Tomcat web server where the

instrumented web application is deployed. The execution profile of these HTTP requests were

collected. In our implementation, we had the following values for the parameters :

• Number of Simulated Users : 5

• Number of iterations per User : 5

• Number of URLs chosen in each JMeter Test Script : 100

This experiment was repeated a couple of times and we calculated the time (in millisec-

onds) taken to complete the transactions. The table Table I shows the time taken to execute

transactions for 5 different runs of load testing.

5.3 ASSIST Tool

Once we collected the results from the random load testing, in the next set of experiments,

we use our tool to perform load testing. The parameters of the application run remain the

same. We had the following values for the parameters :
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TABLE II

Time Taken during ASSIST approach based Load Testing
Number of Transactions Run 1 Run 2 Run 3 Run 4 Run 5

(in seconds) (in seconds) (in seconds) (in seconds) (in seconds)

25000 114.736 122.567 128.12 115.229 110.957

50000 395.952 401.289 417.813 511.923 217.027

75000 1347.582 2169.098 2219.494 1181.176 519.821

100000 3336.947 4699.773 4982.46 2319.03 2212.628

125000 6431.132 8611.381 6141.95 6351.225 4938.466

• Number of Simulated Users : 5

• Number of iterations per User : 5

• Number of URLs chosen in each JMeter Test Script : 100

Once the test scripts start executing the instrumented JPetstore application, execution

profiles are formed. Each profile corresponds to one Test Script. We start the profile analyzer

to analyze the execution profiles. The analyzer collects the profile statistics. The analyzer

calculates the total number of methods called in the profile, total number of method invocations,

total elapsed time for each test script and populates the datagrid on the Tool.

Once the profiles have been analyzed and the statistics have been calculated, it appears on

the datagrid. Test engineer can cluster the profiles manually or use the AutoClustering button

to cluster the profiles as Good or Bad. In our test runs, we collected 15 profiles, clustered them

and generated rules. After the rule generation, we collected more profiles. These profiles were

generated by test scripts which chose the URLs based on the rules which were generated. The

table Table II shows the time taken to execute transactions for 5 different runs of load testing.
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TABLE III

Average time Taken by Both Approaches
Number of Transactions Random Load Testing ASSIST Approach

(in seconds) (in seconds)

25000 110.2274 118.3218

50000 217.3722 388.8008

75000 321.2412 1487.4342

100000 443.5378 3510.1676

125000 576.6762 6494.8308

We see that while performing random load testing it takes an average 576.67seconds to

execute 125,000 transactions.But with the ASSIST approach, executing 125,000 transactions

takes an average 6494.8308seconds. This implies that ASSIST picks up those regions of

application for load testing which take longer time to execute. The requests which take longer

time to execute have higher chances of turning out to create a performance bottleneck.

The plots show the comparison between the 2 approaches with respect to the time taken to

execute certain number of transactions. The figures depicts how the ASSIST approach moves

towards the slow region of the application.We also give a comparison of the average time taken by

both the approaches.Figure 30,Table III. From the above results it is clearly visible that ASSIST

approach steers the load testing towards those region which require more resource allocation. It

helps the test engineer to find abstractions for input space partitioning for software performance

testing.
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Figure 25. Comparison of the time taken to execute 25000 transactions

Figure 26. Comparison of the time taken to execute 50000 transactions
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Figure 27. Comparison of the time taken to execute 75000 transactions

Figure 28. Comparison of the time taken to execute 100000 transactions
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Figure 29. Comparison of the time taken to execute 125000 transactions

Figure 30. ASSIST steers the load testing toward the slow performing regions of the
application



CHAPTER 6

RELATED WORK

6.1 Related Work

Numerous techniques have been proposed to automate regression testing. These techniques

usually rely on information obtained from the modifications made to the source code. Some

of the popular regression techniques include analyzing the program’s control-flow structure (9),

analyzing changes in functions, types, variables, and macro definitions (12)(39), using def-use

chains (29), constructing procedure dependence graphs (13)(51), and analyzing code and class

hierarchy for object-oriented programs (40)(50). These techniques are not directly applicable

to finding useful abstraction for testing, since regression information is derived from changes

made to the source code.

Partition testing is a set of strategies that divides the program’s input domain into subdo-

mains (subsets) from which test cases can be derived to cover each subset at least once. The

goal of such a partitioning is to make sure that the resulting test set is a good representation

of the entire domain (55). General guidelines on how to create an effective partition have been

discussed on (25). Various systematic approaches have been proposed to partition the input

space of programs as surveyed in (57). Some used specifications to create the partition (45),

others used actual programs to conduct a control flow and data flow analysis (22), (23), (28),

(35). In general, the input domain for partition testing is typically infinite, while it has a finite

set of execution profiles. Closely related is the work by Dickinson et al (18), which use clustering

analysis execution profiles to find failures among the executions induced by a set of potential

test cases. Although we both used clustering techniques, our work differs in that we cluster the

58



59

execution profiles based on the length of the execution time and number of methods have been

invoked, and we target the performance bugs instead of functional errors.



CHAPTER 7

CONCLUSION

7.1 Conclusion

In this thesis, we offer an implementation of the ASSIST approach. This approach starts

with generating tests for a part of the application and grows by learning about the application,

forming rules which steer the tests towards a region which demands more resource allocation.

While the factors involved to determine whether a particular part of the web application is

prone to performance degradation or not are numerous, we propose using the total elapsed time

taken by the tests as a parameter to be considered.

There has been a lot of research on generating automated test suites (20),(21),(36). This

thesis focuses specifically on creating automated test cases for load testing. We have built

a tool that does automatic test generation. Although it starts off as a completely random

test generation system, over time it learns certain rules from the various application runs and

generates test suites based on those rules. The tool we built is adaptive, feedback-directed

learning testing system. This tool is not only for automation of load tests but also helps in

fault localization. For a commercial web application system, there can be huge number of

resources (number of web pages on the web server) which are in the scope of performance

testing. This tool helps the test engineer by narrowing down the location of occurrence of

performance degradation issues.

7.2 Future Work

This research has left many questions unanswered. There is a lot of scope for further research

on this topic.
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Firstly, we have a very small scale implementation of the load testing. Our testing envi-

ronment simulates 5 users performing the actions for 5 iterations. But in reality, load testing

simulates thousands of users. We were unable to simulate such realistic testing environments

due to resource constraints. One of the bigger challenges of further research would be to validate

the results of this research using real world data.

Also, our implementation forms rules based on the count of number of URLs present in each

profile. To form rules, we need to know all the possible URLs of the web application. Since we

picked up a relatively small web application like JPetstore for our case study, we could list out

all the possible URLs by simple manual inspection. For real world applications, there needs to

be a module which implement a crawler which will collect all possible navigational paths of the

application under test.

Another area of further research would be to try to form abstractions depending on the

values of URL parameters instead of the count of the URLs in the test script. This would lead

to input space partitioning depending on the value of URL parameters for different URLs. The

attributes of the ARFF file which is fed to the rule learner will contain names of all possible

URL parameter and the data section of the ARFF will contain the values it takes.
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51. Raúl A. Santelices, Pavan Kumar Chittimalli, Taweesup Apiwattanapong, Alessandro Orso,
and Mary Jean Harrold. Test-suite augmentation for evolving software. In ASE,
pages 218–227, 2008.

52. Gary Sevitsky, Wim De Pauw, and Ravi Konuru. An information exploration tool for
performance analysis of java programs. In In TOOLS 01, page 85. IEEE Computer
Society, 2001.



66

53. Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley M. Sutton Jr. Degrees
of separation: Multi-dimensional separation of concerns. In ICSE, pages 107–119,
1999.

54. Malcolm R. Westcott. Toward a contemporary psychology of intuition. A historical and
empirical inquiry. New York: Holt Rinehart & Winston, Inc., New York, NY, USA,
1968.

55. Elaine J. Weyuker and Bingchiang Jeng. Analyzing partition testing strategies. IEEE
Trans. Softw. Eng., 17(7):703–711, 1991.

56. Elaine J. Weyuker and Filippos I. Vokolos. Experience with performance testing of soft-
ware systems: Issues, an approach, and case study. IEEE Trans. Softw. Eng.,
26(12):1147–1156, 2000.

57. Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and
adequacy. ACM Comput. Surv., 29(4):366–427, 1997.



VITA

NAME: Aswathy Nair

EMAIL: anair6@uic.edu

EDUCATION: B.Tech, Information Technology, Anna University,

Chennai, 2008

M.S, Computer Science, University of Illinois at

Chicago, Chicago, 2011

WORK EXPERIENCE:

Summer 2011, Intern, Bank Of America

Summer 2010, Intern, VMWare

2009-2010, Part time Application Developer, Of-

fice of Vice Chancellor for Research, UIC

2008-2009, Application Developer, Inautix Tech-

nologies (Subsidiary of Bank of New York Mellon)

67


	to1 Introduction
	1.1  Background

	to2 Problem Statement
	2.1  Problem
	2.1.1  Input Space Partitioning
	2.1.2  Abstractions For Performance Testing
	2.1.3  An Illustrative Example
	2.1.4  The Problem Statement


	to3 Approach
	3.1  The ASSIST Approach
	3.1.1  The AUT Model
	3.1.2  An Overview of ASSIST
	3.1.3  Blind Source Separation
	3.1.4  Independent Component Analysis
	3.1.5  ASSIST Architecture And Workflow


	to4 Implementation
	4.1  Introduction
	4.2  System Under Test - Web Application JPetstore
	4.2.1  JPetstore Package details

	4.3  Test Scripts
	4.4  Profiling
	4.4.1  ProbeKit
	4.4.2  Specifying Targets in Probe
	4.4.3  Import Directives in ProbeKit
	4.4.4  Fragments in ProbeKit

	4.5  Profile Repository
	4.6  How are rules formed?
	4.7  Profile Analyzer
	4.8  Rule Generation

	to5 Results
	5.1  Results
	5.2  Random Testing
	5.3  ASSIST Tool

	to6 Related Work
	6.1  Related Work

	to7 Conclusion
	7.1  Conclusion
	7.2  Future Work

	to CITED LITERATURE
	to VITA

