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SUMMARY

This thesis work is developed to design and implement a brand new Memory Access Schedul-

ing Algorithm for CPU-GPU heterogeneous architectures. The ultimate goal is to introduce

a new strategy that would improve the overall performance in real world scenarios, exploiting

diverse memory patterns. Due to the complexity of having two modules executing very different

workloads, many considerations have to be taken into account when dealing with these systems.

For this reason, a considerable part of this work introduces many concepts, previous researches

and simulation tests to provide all the necessary knowledge to understand the fundamentals

behind the concept of the Priority-Based Scheduling Algorithm. The main idea behind this new

strategy is to develop an Algorithm that improves the performance of the whole system in fixed

conditions defined by previous works and architectural analysis‘. From this basis, the schedul-

ing mechanism has been built developing dedicated architectural features to support a logic

that would reflect the environment of interest. Introducing Priority-Based queuing structures

and implementing operations able to provide Fairness and different latency values according

to the issuing modules, it was possible to achieve a logic able to improve performance in an

environment defined by the previously assumed conditions. The design of this new strategy is

presented and described starting from a high level architectural point of view, to the imple-

mentation layer. Finally, the simulation results are presented and discussed, highlighting the

advantages and trade-offs of this new scheduling algorithm.

x



CHAPTER 1

INTRODUCTION

In the latest years, the Computer Architectures Research Area has been populated by many

different concepts and commercial products based on CPU and GPU heterogeneous systems.

These architectures are characterized by the fact that both modules work together to improve

the overall performance, according to the running applications, and are already diffused in com-

mercial environments. These systems can be split in two main categories: Discrete and Fused

architectures (Figure 1).

In the first case, the two processing units are developed on two different physical modules and

provided with private and dedicated memory hierarchies. In this first scenario, shared data is

processed using particular protocols that control the communication between the two DRAM

memories and, from a lower level point of view, the architecture is made of two independent but

interconnected memory systems. Unfortunately, in these environments data has to be sent from

the CPU module to the GPU, processed and sent back, and the whole operation introduces

a considerable amount of overhead on memory instructions and delay. Modern approaches to

this problem brought to the development of Fused Architectures, where both the CPU and

GPU are placed on the same die. Fused Architectures have already been developed and dis-

tributed on the market, demonstrating good achievements in terms of timing performance and

power consumption. The concept is to have the CPU and GPU modules on the same die and

served by one single off-chip DRAM Memory Hierarchy and Controller. The major benefit of

1
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Figure 1: CPU-GPU heterogeneous architectures

this architecture is the reduction of the overhead generated by the communication between the

memory modules dedicated to the two distinct computation units, as designed for the Discrete

counterpart. Developing an architecture based on one single main memory hierarchy, theo-

retically, would completely remove the timing overheads. In a real world scenario, however,

while the improvements still justify the research and development of Fused Architectures, new

challenges have surfaced on a variety of different aspects. While many of these issues like fre-

quencies management and low-level microelectronics design are attributable to the Electrical
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Research area, major attention has been focused on the Scheduling of the instructions coming

from the two distinct modules. Usually, when dealing with these two different computation

units, CPU and GPU, several new parameters have to be taken into account. Different mem-

ory accesses patterns, applications, requirements and constrains are introduced and have to be

considered not only to reduce the overhead, but also to serve the particular purpose of each

computation unit. Additionally, in certain cases, those differences can be exploited to improve

the performance of the whole system. In summary, the introduction of a complex architecture

composed by units with different behaviors sharing a single resource has to be dealt with ex-

treme attention of each module characteristics and requires a detailed strategy to process all

the requests coming from the whole heterogeneous computation environment. Due to this large

amount of different constraint and application-related peculiarities, many different approaches

have been taken under consideration to design a scheduling algorithm for both Fused and Dis-

crete Heterogeneous Architectures. In many cases, strategies have been developed to evaluate

a dynamic algorithm according to the priority degree desired for one of the two modules. The

goal of this Research is to introduce a brand new Priority-Based Memory Access Scheduling

Algorithm for CPU-GPU Workloads that takes into account both the different purposes of the

two modules and provide an efficient scheme, based on assumptions built from their expected

behavior, to evaluate and assign coherent priority degrees to their instruction flows. The whole

research stands on a set of performance analysis’ and behavioral considerations discussed and

presented on different papers published in Literature. For this reason, the goal of the second

chapter of this work is to collect and explain, from an architectural point of view, the major
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characteristics and features of all the modules of the system under study. Subsequently, the

same modules are analyzed considering a CPU-GPU heterogeneous system. The aim of this

part is to describe in detail how all the features of each module behave in a shared environment

and how it is possible to control all the requirements and application-specific patterns in order

to optimize the considered metrics. These considerations are then taken as assumptions in the

third and fourth chapters, where two algorithms are discussed and explained. The first one,

published in 2012, is the Staged Memory Scheduling: Achieving High Performance and Scala-

bility by Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya Subramanian, Gabriel H.

Loh and Onur Mutlu (1), presented here as the reference algorithm that will be used for the

result comparisons. The second algorithm is the Priority-Based Memory Access Scheduling for

CPU-GPU Workloads, a brand new algorithm built from the assumptions described in chapter

II. The two algorithms’ objective is similar: to exploit the CPU and GPU features in order to

improve the overall behavior of the considered system. However, while the reference algorithm’s

high level scheduling across modules is developed over probability considerations independent

from the application loaded in the computation cores, the Priority-Based algorithm picks up

instructions from the different modules according to the status of the system and the running

applications. Our is to provide a scheduling algorithm able to improve performances according

to analysis on specific but common workloads. Finally, in Chapter 5, the two algorithm are

compared through a series of simulation results analysis’ where the different advantages and

disadvantages of the two approaches are introduced and discussed. Finally, we summarize our

work in Chapter 6.



CHAPTER 2

BACKGROUND AND FUNDAMENTALS

The goal of the following sections is to provide a background of all the concepts and archi-

tectures useful to understand the design features presented in the following chapter, where the

studied Scheduling Algorithms will be discussed in detail. In this chapter all the actors that

will play a part in the explanation of the algorithms will be described, without introducing

details on the whole computer architectures topic that would be not useful for the purpose of

this work.

In the first section of this chapter, the main features of the memory system are discussed in

order to present the main modules, operations and metrics that will have a role in the design

and the implementation of the algorithms. Subsequently, an overview on the dynamics and

mechanisms of the memory accesses and the main memory operations requested by the CPU

and GPU modules are introduced to state the behaviors that will be taken into account in

the considered Scheduling Algorithms. Finally, the simulation environment is represented to

provide a clear understanding on how the tests and the simulations had been performed and

how the simulation environment had been modified to output the information used for the

comparisons.

5
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2.1 The Memory Hierarchy

The memory system considered in our machine can be schematized as a hierarchy of different

storage components having different purposes and features. This is a well-known and powerful

concept, essential in the computing architectures definitions (Figure 2).

This hierarchical view of the memory system finds its origin from the different types of memories

present on the market that can be used, applying different strategies, to improve performances

and maintain a boundary on costs. The main idea of Memory Hierarchy can be conceptualized

using a pyramidal scheme of the system where the height of each layer represents the speed

of the memory, the width the capacity. At the top of the pyramid it is possible to find the

CPU registers, very small and fast memories that can be accessed by the CPU in a negligible

amount of time to store data during execution. CPU registers can be used, for example, during

the execution of a program to store the value of operands, or the offset of a jump instruction.

The second layer is occupied by cache memories, small storage devices, faster than the main

memory, loaded with data accessed during execution by the CPU and that are likely to be

accessed or manipulated in the future. They‘re introduced as a faster extension of the main

memory, and provide a fast access to data that otherwise would require a slow main memory

request at each need. Usually cache memory is represented in its own sub-hierarchy made of

multiple levels, where each level has different features in terms of performance and size (Table

I). Every level can be made of multiple chips, each one private to its core, or shared where more

than one core has access to the stored data. Access policies and coherence protocols have to

be set accordingly to the visibility of the cache. Data stored in the cache memories is loaded
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Figure 2: The memory hierarchy

from the Main Memory according to policies aiming to maximize the hit ratio of the memory

requests operations, an important metric that estimates the number of accesses performed on

a fast cache with respect to the number of accesses on the slow Main Memory.

2.1.1 The Main Memory

The Main Memory is the physical volatile layer of memory responsible to store all the data

necessary for the execution of the processes running on the computation cores. It can store

parts of the programs extracted from the secondary memory and make it accessible, through the

previously described layers, to the CPU, propagating memory commands. Usually this layer of

the memory hierarchy is implemented with dynamic random access memories (DRAM), where

each bit of information is stored using the charge of a single capacitor. Due to the scalability
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TABLE I: EXAMPLE OF CACHE FEATURES THROUGH DIFFERENT LEVELS.

Level Description Size Speed

Level 1 Instruction and Data Cache 128 Kib 700 GiB/sec
Level 2 (Also Shared) Instruction and Data Cache 1 MiB 200 GiB/sec

Level 3 Shared Cache 6 MiB 100 GiB/sec
Level 4 Shared Cache 128 MiB 40 GiB/sec

of microelectronics technology, the number of transistors packed in a small area can lead to

a considerable amount of storage (GB). The main memory is organized and described in a

sub-hierarchy where each layer is an aggregate of lower level components (Figure 3).

The highest level components are the channels, and each one of them includes a set of ranks

which are collections of different memory chips served by one unique chip select. Down in the

hierarchy, each rank is made of different banks (usually 8) split in rows (64K). Each memory cell

is addressed by the rank, bank, row and column (2). The DRAM is organized as a bidimensional

array of transistors placed in a matrix of variable size (Figure 4). The Read operation is used

to obtain a cell of data addressed by the row and column indexes and is performed by reading

and rewriting the whole row of the addressed cell because of the loss of charge that requires the

data to be reloaded after the read. After that, the required bit is then selected and provided.

The Write operation is similar: the bit lines are charged, the selected transistors closed, and

the charge stored. Due to the implementation of the stored bit as a capacitor, the charge is not

kept for a high amount of time due to the leak of charges. For this reason, a Refresh operation is
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Figure 3: Memory components scheme

required and every period of time in terms of milliseconds, a dummy Read and Write operation

is required to restore the charge (3).

2.1.2 Main Memory Operations

The following is a list of the main operations performed in the memory system and imple-

mented in the memory controller design.

Read

1. At the beginning of the Read scenario, the addressing signals, RAS* and CAS* can be

considered active, and the bit lines are precharged to Vdd/2.

2. The desired Row Address signal is activated and RAS* goes to GND. The bit lines are

disconnected from the Vdd/2 voltage and are floating, maintaining the charge.



10

Figure 4: Transistor level DRAM architecture

3. The signal address is applied to the row driver and the stored signal is propagated to the

sense amplifier.

4. The differential voltage between the stored signal and the reference is amplified and the

single bits are brought to VDD or GND.

5. CAS is brought to GND and the column data is connected to the sense amplifier.

6. All data of the row is brought, through sense-amplifying, to GND or VDD.

Write
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1. At the beginning of the Write scenario, the addressing signals, RAS* and CAS* can be

considered active, and the bit lines are precharged to Vdd/2.

2. The desired Row Address signal is activated and RAS* goes to GND. The bit lines are

disconnected from the Vdd/2 voltage and are floating, maintaining the charge.

3. Datum is applied to the line.

4. CAS* brought to GND and the write driver drives the sample amplifier.

5. Both RAS* and CAS* are brought to the active state again.

Refresh

The Refresh operation is performed as a dummy Read, and each row is refreshed at a time. It

is an overhead operation because cannot be performed at the same time of a Read and a Write

operation.

2.1.3 Main Memory Timing Parameters

The following Table (TABLE II ) represents a list of the main timing parameters used to

evaluate the performances of a memory system (4).

2.1.4 The Memory Controller

The memory controller is the module in charge of the management and addressing of the

memory requests coming from the computation units in the system. It can be both integrated

into the Computation Unit (CPU, GPU) or off-chip and shared among the different sources of

the commands. The memory controller manages the configurations signals directed to the Main

Memory for the Read and Write operations. Additionally, it periodically triggers the Refresh
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TABLE II: TIMING PARAMETERS IN DRAM MEMORY ACCESSES.

Name Description

t RP Time for Row Precharge: time required to charge the sense amplifiers and the bank activation.
t RCD Time between Ras and Cas activation: number of clock cycles between the opening of the row and the column activation.
t RAS RAS Active Strobe: time to activate a row of a bank.
t RC Time for Row Cycling: time between two consecutive accesses to the same bank. Defined as the sum of t RAS + t RP
t RRD Time between successive activations on different banks.
t CLK Clock Cycle Time
t WTR Time for Write To Read: Minimum time between end of a WRITE and a READ command.
t WR time for Write to Row: time interval between end of WRITE and PRECHARGE command.

commands to perform the data recovery. Furthermore one of the main tasks of the module

is to convert the high level addresses it receives from the instructions executed by the CPU

into the proper set of control signals required by the Main Memory to perform its operations.

This conversion has to take into account the mapping from a physical encoded address to a set

of selection signals to the correct rank, bank, row and column of the data we want to access.

Once the address has been converted and the control signals has been injected into the main

memory, the memory controller receives the data through a Data Bus. The Data Bus Width

can be variable and spans from 8 bits implemented in early systems to 512 bits to serve video

cards and high bandwidth computation units. The Memory Controller can also consists of

error detection logic that, through matching operations, can acknowledge the presence of an

error and restart the memory request operation in order to submit the correct information.

Due to the increasing of complexity in terms of parallel programming, and the necessity to

have a shared memory across multiple modules and multiple threads, Memory Controllers have

become more and more complex to support new challenges on Fairness and Data Coherence.
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Furthermore, many new ways to optimize the memory throughput have been developed to

improve the concurrency exploiting both software and architectural solutions. One example is

the impressive amount of research performed in the topic of Scheduling Algorithms, but the

set of optimization spans among almost all the layers of design, from low-level Software to

Microelectronics. The development of more complex architectures is led by numerous different

improvements in the design of DRAM memories. As an example, the implementation of Double

Data Rate memories, which allows the transmission of data both in the rising and falling edge of

a clock cycle, requests additional logic to the memory controllers, which can be also dependent

from the number of channels of the main memory since they have to deal with all the channels

of the whole memory system.

2.1.5 The Row Buffer Management

In order to improve the timing performances during accesses to the memory, not only

traditional caches have been introduced in the memory systems, but also some mechanisms

to exploit the temporal and spatial locality of multiple accesses. One of the most common is

the row buffer, a fast-access memory that stores the last accessed rows to improve the timing

performances, due to the fact that in terms of probability it is common that during normal

execution the CPU performs more than one access to the same row (5) (Figure 5). For this

reason the larger the hit ratio of the row buffer, the better the timing performances. This subject

has been at the center of the optimization mechanisms for the memory system architectures.

The row buffer misses happen when a sequence of instructions is trying to access different

pages in the same bank. As a response to these architectural choices, to improve different
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Figure 5: The memory scheme

scenarios of the memory utilization, several different policies have been developed to support

the management of the row buffer, which can be chosen according to the different applications

and needs.

1. Open Page Policy

This strategy is used to exploit locality and it is based on the idea of triggering one

Precharge operation only when the row buffer access is missing. On row buffer hits, it

presents a minimal latency because no overhead operation is performed, but in a scenario

where a high number of misses are happening, it can introduce too much overhead. From

the power consumption point of view this policy is the most expansive because the sense
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amplifiers are kept open for the whole time.

2. Close Page Policy

It starts the Precharge operation, periodically, at every memory access. Differently from

the open page case, here the performances are improved in scenarios where many buffer

misses are predicted, but since the Precharge operation is performed more frequently, this

policy can introduce too much overhead in scenarios where the hit rate is high. From the

power consumption point of view, this is estimated to be 3x lower than in the Open Page

Policy (6).

3. Adaptive Page Policy

Since the two previous strategies’ effectiveness depend on the row buffer hit ratio, a

dynamical policy that switches from one to the other has been implemented. The central

idea is to have a trade-off between the advantages and disadvantages of both the strategies.

It works comparing the current hit ratio of the memory session with a threshold value

and, according to this check the policy is kept or swapped with the inactive one.



16

2.2 Memory Accesses in CPU Systems

In the latest years, the design and the implementation of efficient memory systems and

memory management strategies in CPU-based architectures has been at the center of the Ar-

chitectural Research. The introduction and then the massive development of multicore tech-

nologies has been one of the main advancements in the field of Processor’s Design. While the

benefits and the new opportunities coming from these devices has brought a whole set of new

challenges in the development of multithreaded applications, new problems, especially from the

memory management design, have surfaced. The development of computation systems where

different cores have access to the same physical memory, and are able to work on the same data

set, has introduced new challenges in terms of coherency and data protection. Additionally,

the memory bus shared among all the cores can be the bottleneck in an execution scenario due

to the insufficient bandwidth it can provide with respect of the required data exchange gener-

ated by the cores (7). Finally, having a single resource shared among different sources could

introduce problems in terms of fairness due to the fact that, according to different needs and

different workloads, the distribution of the memory accesses could be trickier then expected.

In the following sections, some of the main problems of memory management in multicore en-

vironment are introduced and discussed along with possible solutions. Many of the issues here

presented, even if introduced in a CPU-only environment, can play also an important role in

a CPU-GPU environment, where there are still multiple modules running for the control of a

shared resource (Figure 6).
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2.2.1 The Memory Bus

The Memory Bus represents, in modern architectures, one of the most well-known delay

factors and can be a bottleneck in the whole CPUs memory system. The main problem is

technological: the bus speeds, in fact, do not increase at the same rate as the CPU speeds. Ad-

ditionally, the more CPUs are implemented in the system, the more stressed the bus is and can

influence the overall performance. Cache Snooping itself, a Cache Coherency method described

in the previous sections, can increment the utilization of the bus and decrease the performances.

In order to reduce the effect of this boundary on the performances, many approaches have been

introduced to optimize the bus usage. Again, different strategies have been designed on dif-

ferent layers in many research works and have been tested extensively to determine the best

trade-offs and results (10).

2.2.2 Fairness

In architectures composed of several computation cores, it is important to design and build

a scheme that grants several Fairness controls over the overall flow of memory requests coming

from the different sources. It is necessary, for example, that the time in which the bus is

dedicated to one source does not inject excessive stall time in the other cores’ execution. For

this reason, many research works have been published to control how a memory resource is used

and addressed by all the modules, suggesting many Scheduling Algorithms able to improve the

performances in different scenarios. The main goal would be to provide a Scheduling Algorithm

that would assure to each thread the opportunity to perform the same progress over their

own execution flow. While previous work on Scheduling Algorithms was focused on the timing



18

performances and power consumption, the pursuit of a scheme able to optimize this metric

has been subject of research over the latest years. In many research works on the topic (11)

(12), the framework is similar: assigning different priority degrees at each thread based on

application-aware considerations at the beginning of the executing scenario (static approach),

or at run-time according to traffic analysis performed on the fly. Several concepts used to

manage the fairness across different CPU cores have been introduced and implemented also in

CPU-GPU architectures, in environment where the applications running on each module are

not considered.
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2.3 Memory Accesses in GPU Systems

In recent years, the architectures of GPGPUs have been changed dramatically in order to

improve the overall system performance according to the new architectural concept risen and

developed for the CPU. The general trend is a change from a very specialized and pipelined

module to something more similar to a general purpose programmable processor. One of the

most relevant differences between a GPU and a CPU is the memory hierarchy and how the

module is interfacing the memory. Due to the application specific purposes of GPU, which usu-

ally requires a large amount of data that is going to be processed in parallel, many key features

present in the CPU architectures here have a secondary role. For the same reason, the GPU

is provided with a larger memory bus and special hardware features (texturing hardware, for

example) used to improve the bandwidth of the memory bus and speedup certain applications.

This is necessary because of the high level of multiprogramming that can be found in a GPU

application, where thousands of threads can run in parallel.

In the following sections, some of the frameworks of GPU parallel computing are presented

in order to represent some application specific behavior and its relationship with the memory

management and the issuing of memory requests. The aim is to present examples of how a GPU

manages the stored data in order to provide an idea of some behaviors that had been consid-

ered, and will be explained in the next chapters, while designing the Priority Based Scheduling

Algorithm.
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Figure 6: Tiling-based rendering

2.3.1 Tiling

Tiling is a common framework used in the development of GPU related applications. The

concept is to subdivide the whole workload into subsets of independent data, and apply a Divide

and Conquer methodology (Figure 7). This approach is very common in many Computer

Graphics applications and almost every real-time rendering application like videogames and

dynamic physical effects run-time simulations. The static images generated from the projection

of the scene into an image plane using ray casting techniques, are divided in a grid of smaller

images. The rendering process is then decomposed in many smaller sized rendering processes

that can exploit the parallel computer architecture offered by the GPU. In fact, the geometry
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data of each tile is assigned to one GPU core. Since the dataset of each tile is independent

from the one of the other tiles, no additional synchronization protocols are required because

every computation can be performed independently. Then, when each core has processed the

input data and produced the pixel information, this is written in the main memory. The main

advantage of this approach is that the process is not sensitive to the latency. Due to the large

amount of data processed independently, in case of momentary unavailability of a data set, a

GPU core can start processing another tile and return back to the original later. On the other

hand, due to the fact that the problem is subdivided in a lot of subsets processed in parallel,

the whole operation requires a large amount of bandwidth. These concepts, and the different

constrains in terms of latency and bandwidth, will play an important role in the design of

the Priority-Based Scheduling Algorithm as explained in the following chapters. Tiling Based

Rendering has been developed further and is now considered one of the main frameworks in

rendering technologies. Ultimately, it has been established as one of the main techniques not

just in high level environments, but also in Embedded Systems platforms (13).
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2.4 CPU-GPU Heterogeneous Systems

As seen in the previous sections, the communication between CPU and GPU can represent

a considerable factor in terms of overhead because of the latency generated by the data trans-

fer and by the synchronization operations. Among others, this is one of the reasons behind

the development, by the major processor’s manufacturers, of Fused Architectures, where both

the computation units are placed on the same die, decreasing overheads and improving the

performances in terms of timing and power consumption. In order to solve the PCIe problem

described in the previous section, having the modules on the same chip gave the opportunity to

designers to replace the inefficient PCIe bus with an unified North Bridge. Then, depending on

the manufacturer, several different architectural choices have been implemented to improve the

modules’ communication. An example could be represented by AMD’s Radeon Memory Bus

(14), that improves GPU access to local memory providing high bandwidth, and the Fusion

Compute Link, which is part of the implementation of the Cache Coherency System shared

among CPU and GPU. Obviously, due to the many differences in terms of requirements of the

two modules, some trade-offs have to be introduced in order to have an architecture that is

flexible for all the needs. The memory itself, has to be chosen accordingly: on one hand, a

DDR3 DRAM memory would be the best choice for the CPU, because it would provide addi-

tional capacity with respect to the GDDR5 memories, paired with GPU modules to offer an

improved bandwidth. In a standard architecture, it would be possible to pair one memory chip

(DDR or GDDR) with its own computation core improving the performances of each of them

according to the chosen technology. But in a Fused Architecture, where the physical memory
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is shared, a trade-off has to be implemented in order to guarantee capacity without limiting

the bandwidth. Recent studies (15) have proved that both approaches have its own advantages

and disadvantages and, in the commercial environment, both have been adopted with different

results.

Another parameter that has to be taken into account is the resource allocation to support both

the sequential flow of execution of the CPU and the parallel computation of the GPU module.

The two different purposes of the modules represent an additional complexity due to the fact

that, from a microelectronics and architectural point of view, in order to improve one behav-

ior, the other has to be partially neglected. One high level solution would be to improve the

scheduling methodology, which is the topic of this research and will be extensively discussed in

the following sections. But from a low level and electrical point of view the problem can be for-

mulated in terms of resources. If a fixed amount of transistors on the shared die is considered,

how many of them have to be allocated to latency sensitive units and how many to the parallel

processing counterpart? Again, the solution is to accept a trade-off between prioritizing one

module with respect to the other and different approaches and architectural choices have been

developed and implemented by the main Fused Architectures manufacturers.

The system under study can be simplified and represented as a model made of two modules and

one single shared Memory Hierarchy system which processes all the requests coming from the

modules through a single and shared Memory Controller. The first of the two sources, represents

a CPU defined here as a set of computation cores loaded with a General Purpose application

(benchmark). The second module represents a GPU, defined as a collection of computation
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cores loaded with a Graphics application (benchmark). From studies already published in Lit-

erature, and the considerations presented in the previous sections, it is possible to determine

the different constrains, requirements and sensitive parameters of the two modules. While these

differences are introducing more complexity on the presented environment, on the other hand

can be exploited to build an application-aware Scheduling Algorithm, which from these same

differences can produce benefits in the timing performance of the system. Due to the different

kind of applications loaded into the modules, and based on the previous analysis on each mod-

ule criticalities, different parameters play different roles in each module and each application.

In the general purpose CPU applications, usually the majority of the computation has been

already performed before the issue of the memory requests. This analysis (16) has been ex-

tensively exploited, as a feature, in many previous Scheduling Algorithms. For this reason it

would be expected to have strict latency-related constrains due to the fixed deadlines imposed

to commit each instruction. Due to this characteristic, in many Scheduling Algorithms, by

default, the CPU is assigned with the highest priority.

In a graphics application run by a GPU module, on the other hand, the latency-related re-

quirements are more relaxed due to the high amount of parallelization granted by the GPU

architecture and exploited in numerous ways in each application. If the module is waiting

for stored data, it can still work on a different workload and the latency can result to have a

minimum impact on the whole performance. Furthermore, usually the different sets of data on

which the GPU is working in parallel, are independent.As presented in the previous sections,

Tiling-Based rendering, pixel manipulations, and many other applications can provide a high
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degree of parallelism due to the fact that the same operation is performed to a huge amount of

different and independent input data. According to this model, while the GPU system can tol-

erate a higher latency with respect to the CPU one, it appears more sensible to the bandwidth

of the memory controller. In fact, since the GPU has to work on large data sets, the exchange

of data between the memory and the module is consistent and usually much heavier than the

one issued by the general purpose CPU. From this overview, in an environment such as the

one under study, both the constrains play an important role and the different nature of them

can be exploited to optimize the overall performance in terms of fairness and efficiency, using

priority assignments able to guarantee the respect of CPU deadlines and bandwidth reserva-

tions to support the GPU module. Furthermore, in numerous published papers, it has been

highlighted the fact that often, in a CPU-GPU heterogeneous system, the CPU computation-

intensive phase does happen at the end of the memory access phase (17). On the other hand,

from many application-related analysis, it is possible to observe that also the number of memory

accesses issued by a GPU is not constant but discontinuous, where periods of intensive memory

exchanges are followed by a lighter traffic on the memory controller. In an environment as

the one presented, this feature can be further analyzed and used to schedule the accesses of

a module during the computation-intensive phase of the other one, in order to maximize the

throughput of the memory exploiting the different overhead phases of the CPU and the GPU.
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Figure 7: MARSSx86 architecture

2.5 The Simulation Environment

In order to perform the simulations needed to run the algorithm and analyze the results with

different configurations and on a wide set of workloads, a customized version of the MARSSx68

(18) and DRAMSim (19) simulator has been adopted. This original project combines the

MARSSx86 simulator, developed by the State University of New York, and DRAMSim2 a

cycle-accurate memory simulator developed by the University of Maryland. The two platforms

have been merged to provide an accurate and complete simulation environment useful for very

detailed memory analysis.
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2.5.1 MARSSx86 Simulator

Marssx86 is a cycle-accurate full system simulator used for x86-64 computer architectures

built over the PTLSim simulator but improving the environment with additional features and

better performances in terms of simulation time (Figure 8). Additionally, it provides a simple

but powerful way to declare and implement different fully-customizable computer configura-

tions. The original version of MARSSx86 includes a Memory Hierarchy system, not described

here because substituted by the one implemented in DRAMSim2. Due to the emulation support

provided by Qemu, it is possible to exploit several features of the virtualization to set numerous

simulation settings like the number of instructions to be executed or the number of iterations.

Additionally, a wide set of different coherent caches and interconnections is included in order

to simulate and customize a whole system. It is possible to build a machine using YAML files

and describe each component and interconnection, then use the written configuration inside the

emulation environment to execute one of the many supported sets of benchmarks. Since the

main focus of this research in terms of machine configuration was represented by the memory,

the whole structure of the MARSSx86 has not been modified except, as described below, for

the interface with DRAMSim2.

2.5.2 DRAMSim2

DRAMSim2, which was initially designed as a trace-based simulator, in combination with

MARSSx86 is part of a whole simulation environment and provides a detailed, cycle-accurate

analysis of the main memory in terms of time and power performance. Every single part of the

simulator is highly configurable and, for this reason, DRAMSim2 could be a flexible platform
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Figure 8: DRAMSim2 classes and relationships

for the design and testing of memory components. DRAMSim2 is designed following a modular

approach, where each part of the system provides support functions for the higher level modules

(Figure 9).

2.5.3 DRAMSim2 Components

The Memory System is the most external component of the whole platform. This is the

interface between DRAMSim2 and MARSSx86 and is the only object directly accessed by the

CPU simulator. Its function is to be a wrapper around the other components and to trigger

the update operations for the Memory Controller and Rank components, which performs all
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the operations that have to be done at each clock cycle. The Memory System receives from

the CPU simulator the Transaction objects that are propagated to the Memory Controller and

managed by the same component.

The Memory Controller is the core of the Memory Hierarchy system: it is in charge of the

translation of CPU memory Transactions into BusPacket objects and it is where these objects

are managed and enqueued in the correct structures managed by the Command Queue object.

Furthermore, the Memory Controller is in charge of managing the BankState objects, databases

used to store the current states of each bank of each rank. The main task of this component,

in summary, is to provide all the services needed to let the communication between lower level

modules happen.

The BankStates object provides the data to the CommandQueue object and is updated by the

same element. It is a database that stores the current status of each bank of each rank and

additional information like countdowns and number of accesses. It is queried by the Command

Queue and the Memory Controller, in order to establish if a Bus Packet is issuable or not. During

the instructions’ execution, a bank can be in the Idle, Precharging, Rowactive, Refreshing or

PowerDown state. According to the current state, some operations can be issued and executed

while others are forbidden, in order to ensure coherency with the electrical modules.

The CommandQueue object is where the original queue of memory commands is placed and

where the majority of the Scheduling logic is executed. This object is basically in charge of

three functions: enqueue the requests, process them, and provide them when a pop operation

is issued by the Memory Controller. The enqueue function is called when a new issued packet
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is injected in the system from the CPU and through the Memory Controller: in the original

implementation the queue is chosen according to the rank and the bank of the packet. The

CommandQueue is also in charge of the Scheduling of the memory accesses: in the original

implementation it is very simple: a round robin visit across all the ranks and all the banks.

Finally, the CommandQueue has to provide a BusPacket to the higher levels of the memory

hierarchy through the memory bus. According to the BankState information, which is updated

each time a Packet is transferred from the queues to the Memory Controller, a packet is picked

up and served or, if a Refresh or Precharge operation has to be issued, it is built in order to

trigger one of these two operations in the next clock cycles.

The physical implementation of the memory is represented by the Rank and Bank objects,

which are accessed every time a command is processed and a Read or Write operation is

executed. The number of modules is defined by the system configuration file, which sets the

number of instances for each component and builds in this way the whole physical memory

implementation.

2.5.4 DRAMSim2 Modifications Overview

In order to build the full implementation of the algorithm, the entire DRAM simulator has

been modified to propagate some useful data from the CPU simulator to DRAMSim2, where the

Scheduling Algorithm is applied. The DRAMSim2 environment is built following a modular

approach, so it is possible to edit just some components of the whole system with a minor

impact on the other parts. For this reason, while the Command Queue has been almost fully

rewritten in order to implement the new Scheduling algorithm, the other parts have sustained
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lighter modifications. Several edits on the Bus Packet object have been applied to the code in

order to provide DRAMSim2 with all the necessary information coming from the CPU. First

of all, both the core ID and thread ID had to be propagated to give the memory controller the

opportunity to distinguish memory accesses coming from the CPU from memory accesses issued

by the GPU. Furthermore, in order to implement a control over the waiting time of each single

packet and avoid starvation, each packet has been marked with the time when it was issued by

MARSSx86. Finally, when running a benchmark with numerous accesses to the same physical

address, since both the ”per rank per bank” queuing system and the priority queuing systems

are implemented, it was necessary to have an identification element for each packet to avoid the

accidental elimination of a packet representing a memory command destined to the same rank,

bank, row, column of the one which has to be erased from one of the queuing systems. For this

reason, each time a packet is built from a Transaction, a unique Packet ID is assigned. The

Memory Controller object has been modified just to perform the coherent conversion between

MARSSx86 issued Transactions and the Bus Packets. Additionally, since it is in charge of

providing to the user the results data, it has been modified to produce information that reflects

the new memory controller architecture, and the output now represents the data according to

the new multi-queue Command Queue system.



CHAPTER 3

SCHEDULING ALGORITHMS

As introduced and explained in the previous chapter, many different approaches have been

developed to improve the overall performance of CPU-GPU memory systems. All these strate-

gies are spanning a large amount of layers, from low level electrical concepts, to high-level

software related optimization. One of the most important concepts considered in the pursuit

of new improvements is the Scheduling Algorithm for Memory Accesses. This subject plays

an important role in many of the problems described above. First of all, it is one of the main

tools when dealing with Fairness related problems, where it is necessary to establish a fixed

or dynamic access order among multiple sources. A huge amount of research activities have

been spent in the development of Scheduling Algorithm for multi-threaded CPU architectures

and GPU architectures. While the topic of Scheduling in CPU-GPU architectures can not be

considered recent, the proposed solutions on the topic are less numerous than in the previous

two examples. In the following sections, two of the many previous approaches are introduced

and described in order to provide a set of the different strategies adopted to deal with this

subject over the years and in recent Research projects. Then in the following part one partic-

ular solution, the Staged Memory Scheduling Algorithm, is taken into account and described

in detail as the reference that will be used in the last chapter where the simulation results are

presented and compared.

32
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3.1 Overview of Previous Approaches

In the development of a Scheduling Algorithm for CPU-GPU architectures, different ap-

proaches have been explored in order to improve the overall system performance or specific

parameters like Fairness or the throughput of a subset of cores. Many strategies, while im-

proving a set of metrics, can decrease the performance of other parameters and for this reason

usually a trade-off is necessary across all the aspects of the system. As described in the previous

chapter, in a CPU-GPU architecture, usually the goal is to provide a minimum latency to the

CPU while guaranteeing enough bandwidth for the GPU module. This fact is particularly true

if we consider GPU applications like in the Computer Graphics development, where large sets

of data are processed in parallel. But from a higher level point of view, the GPU has still to

guarantee some kind of reliability in terms of high level metrics. As example, during the execu-

tion of a real-time rendering in a videogame or another real time image-processing operation,

it is possible to measure the overall performance in terms of Frame Per Seconds (FPS).

3.1.1 Priority Assignments According to Frames per Second

The FPS value is related to the ability of the human eye to perceive a flow of images as a

continuous stream without acknowledging the sequence of static images. Usually, the threshold

between a fluid video streaming and the perception of the sequence of images is around 18

FPS, but in modern multimedia applications a stable rate of at least 25 FPS is required.

This constrain has been exploited, in CPU-GPU architectures, to determine a strategy for the

priority degrees assignment across the different computation cores. This is a high level metric

that provides a fixed constrain to the Scheduling Algorithm, that can dynamically determine the
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priority assignment based on a prediction on whether the GPU will be able to provide the desired

frame rate or not. An approach similar to the one mentioned here has been developed in the

paper ”A QoS-Aware Memory Controller for Dynamically Balancing GPU and CPU Bandwidth

Use in an MPSoC” by Min Kyu Jeong, Mattan Erez, Chander Sudanthi, Nigel Paver (20). In

this paper, the scheduling algorithm performs an analysis on the GPU flow of execution to

determine whether the module will be able to provide a desired rate in terms of FPS and adjusts

the priority degree accordingly. Due to considerations explained in the previous section, the

algorithm tries, by default, to prioritize the CPU according to the fact that usually it provides

an improvement of the timing performances. It defines, for each frame, an Expected Progress

(EP) value that is constantly compared to a fixed value. If EP is lower then the threshold, the

GPU’s priority is risen up and its issued memory accesses commands are managed as they were

coming from the CPU, assigning the same priority degree. Otherwise, if the GPU execution

is respecting the boundaries, the CPU is provided with the highest priority. One interesting

feature of this approach to the problem is that no low level architectural optimization is applied.

The QoS Aware Algorithm performs just an analysis on current performance without trying

to tweak any memory feature like space and time locality to achieve an improvements on the

performance.

3.1.2 Priority Assignments According to Dynamic Behavior Analysis

The concept of performing a run-time analysis on certain characteristics of the memory

systems in order to act on the Scheduling process, that was present in the previous FPS based

example, can be found in lower level approaches to the Scheduling problem. The idea is to focus
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the monitoring phase to other features, closer to the Architectural layer of abstraction. One

example is the strategy proposed in the paper ”Phase Aware Memory Scheduling” by Chirag

Sangani, Mathangi Venkatesan and Rakesh Ramesh (17). The idea is to start from analysis

performed on the memory traffic of the whole system, establish them as assumptions, and build

the algorithm around these statements. This approach has been also adopted in the definition of

the Priority Queues Scheduling Algorithm. In the case of the Phase Aware Memory Scheduling

Algorithm, due to an extensive work on the emulation environment, it was possible to observe

that the overall GPUs executions present two phases interleaving periodically. In detail, the

GPU present periodic patterns that show memory intensive intervals, where the module is ex-

ploiting a huge amount of the available memory bandwidth, and computer intensive intervals,

where the memory accesses are relatively limited and the module is busy in computation op-

erations. The idea of the algorithm is to build a Scheduling strategy able to monitor these

phases and schedule the CPU memory instructions in the time periods where the bandwidth is

not saturated by the GPU traffic. The algorithm is application related, taking into account a

behavior that is common in computer graphics workloads like videogames and image processing

operations, and can be designed and built over analysis’ and simulations made a priori. But

differently from the previous example, the analysis and the core of the strategy is built over a

lower level, on the memory traffic of the whole system and not at the application layer. Finally,

one of the main differences from the previous Algorithm is that the behavior of the system is

analyzed, while in the previous case the application related constrains played were at the center

of the priority assignment logic.
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3.2 The Reference Algorithm: Staged Memory Scheduling

This algorithm, published in 2012 in the paper Staged Memory Scheduling: Achieving High

Performance and Scalability in Heterogeneous Systems by Rachata Ausavarungnirun, Kevin

Kai-Wei Chang, Lavanya Subramanian, Gabriel H. Loh, Onur Mutlu (1), has been used as

reference in the estimation and comparative analysis for the developed Priority-Based algorithm.

The goal of this implementation is to build a Scheduling Algorithm able to perform a choice

over the instructions to be picked from the queuing system based on two different levels of

abstraction. On a higher level, the algorithm shrinks the selection according to the module

it wants to serve while, on a lower level, the algorithm tries to sort the commands according

to the row they‘re trying to access. The whole scheduling process, for this reason, is split

and performed in two different stages. The ultimate goal, achieved as demonstrated by the

performance results in the paper, is to accomplish an improvement on the timing performances

of the CPU, while maintaining the GPU performance almost unchanged. One of the most

interesting features of this algorithm is that the priority assignment is not based on application

specific considerations but on probability assumptions that determine whether the scheduling

is performing a Round Robin or a Shortest Job First strategy across the sources. Additionally,

since the priority depends on the probability value introduced in the system, the Scheduling

Algorithm appears fully customizable according to the desired priority configuration used to

optimize the overall performance. Furthermore, one of the main achievements of the Staged

Memory Scheduling algorithm is to solve the problem of the closing of the Row Buffer from

instructions coming from different cores. As described in the previous chapter, in fact, the row
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buffer is used as a cache for the main memory accesses. Since the machine is comprehensive of

multiple computation cores, in the same time period, different cores access different rows. For

this reason, the row buffer would be closed and opened several times, lowering the hit ratio and

worsening the timing performance. But since the requests are already sorted by accessing row,

the hit ratio on the banks is maximized. From the architectural point of view, the scheduling

algorithm can be designed according to its logical staged implementation, dividing the whole

design into sequential stages. Logically, this can be seen as a chain of different steps where each

logic develops its own part of the scheduling algorithm.

This algorithm considers different sources as, for example, CPU cores and GPU cores. A source

is defined as one of the modules that issue a set of Memory Commands. The algorithm is

structured in three stages as follows:

1. The algorithm picks up, for each source, all the commands and groups them in batches

having the same row. So each memory request of the same batch accesses the same

memory row.

2. This higher level scheduler picks up batches according to Shortest Job First or Round

Robin Policies.

• Shortest Job First: it picks up the oldest ready batch from the source with the fewest

total in-flight memory requests across all the three stages of the Staged Memory

Scheduling Algorithm. It favorites latency-concerned instructions.



38

• Round Robin: it picks up the next ready batch scanning each source. When it arrives

to the last one, the cycle begins again from the first one.

3. Bank level commands are issued in order to retrieve the required data. Here the algorithm

works at a lower level and basically performs the standard tasks of the memory controller

to manage the memory accesses because the requests have been already optimized for row

access in the previous steps.

3.2.1 The Visibility Problem

The main problem highlighted by the considered paper itself is the Visibility. Since the

number of GPU requests is usually much larger than the number of commands issued by the

CPU, it can happen that while the Scheduling Algorithm tries to acknowledge which command

is the best one to be processed, the low number of CPU requests can be overshadowed by

the heavy GPU workload. One possible solution, highlighted by the paper’s authors, is to use

a large buffer, which would be able to store every request and, at the same time, provide a

clear information about the order of incoming instructions in terms of time of arrival. The

solution, proposed by the SMS Algorithm Implementation is to split the single queue and to

have one buffer for each source, intended as computational core. This solution is similar to the

one adopted by the Priority-Based Algorithm, where instead of having a queue for each core,

the implementation is made of two application-related queues: one for the CPU computational

cores and one for the GPU computational cores.
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3.2.2 Open Problems

The first problem with the algorithm is directly related to the main advantage, the oppor-

tunity to have a high number of sequential commands querying the same DRAM row. Since a

ready batch is defined as a sequence of one or more requests accessing the same row, it is neces-

sary to introduce a countdown to unleash the batch even if a command addressed to a different

row has not been issued yet. While a countdown to issue an uncompleted batch is necessary

to avoid excessive wait times for incomplete batches, on the other hand the performance can

be related to the type of workload loaded. The influence of the countdown would be almost

negligible when considering workloads accessing the same row for a limited number of times

but could have a negative impact on performance when the memory controller is dealing with

a large number of requests addressed to the same row. Another problem related to the SMS

algorithm is the possible starvation when dealing with heavy loaded sources. The system under

study is loaded with graphics applications, and as explained in the previous sections it is correct

to assume the GPU will issue a large number of commands. According to the algorithm, once

a batch is picked up every instruction contained in it has to be issued to the higher hierarchy

levels in order to go on and perform the same on the next batch. Now, since the number of GPU

requests can be larger than the number of requests coming from the CPU, it can happen that

a very large GPU batch is created and has to be issued. Assuming that one single command is

processed at each clock cycle, it‘s possible to understand the chance that a large GPU queue

could need a considerable amount of clock cycles to be processed in order, before letting the

controller move on to the next computational source. Finally, in the second stage, which is in



40

charge of choosing the source from where the next instruction will be picked up, there is not a

direct methodology to pick up an instruction from a CPU or a GPU source. From the previous

analysis, it is possible to understand how the different constrains of the general purpose and

graphics applications are related to the priority assigned to one of the two modules. In the

SMS algorithm, the accesses to the sources is performed in a Round Robin way, which does

not introduce a priority based choice, or Shortest Job First, which should prioritize the CPU

commands. The priority is assigned in terms of probability, choosing one protocol over the

other based on a fixed parameter p but a direct and dynamic strategy according to the current

queue system status is not implemented.
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Figure 9: SMS batch creation scheme

3.3 Staged Memory Scheduling Implementation

The implementation of the Staged Memory Scheduling Algorithm follows the same logical

scheme as a pipelined series of operations split in different steps of the same Algorithm. Below,

a list of all the steps is presented with a description of all the main operations performed in

that same step.

• Stage 1

In the first stage of the Staged Memory Scheduling Algorithm, the requests of each source
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are sorted and grouped in batches having the same row access (Figure 10). So we have a

queue for each source and for each one we need to implement an algorithm that sorts the

requests and divides it in batches. In order to implement this mechanism, the enqueue

function of the CommandQueue object is modified and the instructions are inserted in

order, according to the row that has to be accessed by the memory request. Furthermore,

it is necessary to know in advance the number of cores that are used during the simulation

in order to implement one queue for each core. According to the paper, only READY

batches are taken in the second stage. A batch is ready when, after a sequence of one or

more requests accessing the same row, we have a requests that tries to access a different

row.

• Stage 2

Here the algorithm performs a higher level scheduling and chooses from which core it has

to pick up the next batch of instructions. It is done according a Shortest Job First (SJF)

policy, or a Round Robin (RR) policy. Using the round robin policy, the scheduler takes

the next ready batch from the next queue. For this reason, when we pick up a batch we

have to consider if this is a ready batch, a sequence of requests to the same row followed

by at least a memory request accessing a different row. Following the DRAMSim archi-

tecture, it is possible to implement it using sequence checks when the getCommandQueue

method is called by the CommandQueue object.
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• Stage 3

In this stage the batch has been selected and in the following N clock cycles, the scheduler

picks up a Memory Command from the chosen batch and processes it, where N is the

number of commands in the selected batch. In order to implement this feature, some

checks on whether the batch has been taken or not are performed and the selected batch

queue is stored for the next clock cycles until it is void.



CHAPTER 4

THE PRIORITY-BASED SCHEDULING ALGORITHM

In the following sections the core of this research work, the Priority Based (PB) Algorithm, a

brand new Scheduling Algorithm for CPU-GPU workloads aimed to be applied into CPU-GPU

architectures is introduced. The goal of this project is to improve the overall performances of

the system implementing a dynamic priority scheme based on the majority of the architectural

and behavioral analysis’ performed in the previous sections. The design of the scheduling

algorithm finds its roots in an extensive study of previously developed theoretical knowledge of

the common memory patterns in CPU, GPU and CPU-GPU architectures. In the first section,

these assumptions are summarized and presented all in one place. Then the architectural high

level design of the algorithm is presented. Many of the implementation details are here omitted

or just introduced because will be part of the implementation description that will be covered

in the third section. Finally, details about the code implementation are described in order to

present the practical code tasks developed for the accomplishment of a working prototype of

the algorithm.

44
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4.0.1 Assumptions

The Priority Based Scheduling Algorithm is essentially an application focused strategy. The

concept is to provide a scheme that can improve the performance of the whole system when it

is executing a set of common workloads with determined characteristics. In the definitions of

these behavior assumptions, the objective is to focus the attention on applications that would

be common in a real world scenario. Given that, the idea was to build an algorithm that

could exploit certain features that have place when loading the CPU with a General Purpose

workload and the GPU with a Graphics or Multimedia application. These are very common

environments, and offer a platform where it is possible to formulate a few assumptions that have

already been mentioned in the previous section and are here summarized as a base foundation

for the developed algorithm.

1. Bandwidth and Latency

As seen in the previous chapters (Section 2.4), and as highlighted in many previous

Research works cited above, usually the CPU General Purpose workloads are latency

sensitive. Due to fixed deadlines, in fact, it is necessary to reduce the time CPU memory

requests are served. On the other hand, due to some execution framework like the Tiling

Operations described as example in the previous chapter, the GPU can usually tolerate

higher values of latency even if it usually requires a large data bandwidth to process huge

parallel data sets. The result of this considerations is that by default, to avoid deadline

misses, it is better to prioritize by default the CPU module.
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2. Number of Memory Accesses

As explained before (Sections 2.2 and 2.4), usually the CPU issues a lower number of

memory accesses with respect of the GPU. Again, this is an assumption that is related to

the bandwidth issues previously described, but is built over different tests where workloads

from CPU-only environments are compared with GPU specific applications. From these

analysis it is possible to observe that even the most memory stressing CPU benchmark

presents a much lower stress on the memory in terms of accesses. This is an experimental

assumptions that brought to the design of a Scheduling Algorithm that tries to optimize

scenarios where this condition is met and, for this reason, that would improve common

environments as the one here described.

3. The Number of Memory Accesses is not Constant over Time

As highlighted in the Phase Aware Memory Scheduling, and as highlighted in the previous

section (Section 3.1.2), when examining the overall memory traffic in a CPU-GPU envi-

ronment it is possible to observe specific periodic patterns where the number of memory

requests bursts to a large amount, and then falls down to lower values. This is noticeable

in the CPU workloads but it is even more evident in the GPU workloads where the num-

ber of requests is larger. As explained in detail before, this characteristic is a consequence

to the fact that usually computation periods are interleaved with memory stressing peri-

ods. Additionally, the GPU triggers the majority of the memory requests only once the

computation period is over. The result of these previously developed analysis’ is that the
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number of instructions coming into the DRAM system is not constant over time but is

highly periodic.

4. Row Buffer Hits

As seen in the previous section (Sections 2.1.5 and 3.2), the Row Buffer Hits have to be

increased in order to improve the overall timing performance. A Row Buffer Hit means

that the data we’re accessing is already stored in a cache implemented to exploit the

Space and Time Locality. So the overall access time of an instruction trying to access

the Open Row of its Bank is lower than the one required to access a closed row. For this

reason, it is necessary to improve the number of processed memory requests when a row

has already been opened.
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4.1 Priority-Based Algorithm: Architectural Design

The main concept of the Priority Based Algorithm is to build a priority assignment strategy

based on the set of behavioral patterns described in the previous section. Due to the fact that

a reordering of memory commands is performed, it is necessary to surround it with additional

assets used to provide a reliable platform that avoids unattended effects like starvation of one

or more cores and memory commands stuck due to the different order in which the instructions

are processed. The design of the Scheduling Algorithm, from an architectural point of view, is

quite modular and the main components are here presented and discussed in detail.

4.1.1 The Queuing System

The core concept behind the design of the Priority-Based Scheduling Algorithm is to provide

a system able to speedup the memory requests coming from the CPU with respect to the GPU,

but without affecting too much its performance. From these intentions, the objective was to

implement a trade-off able to prioritize, by default, the CPU, but avoiding a too penalizing

behavior for the GPU. In order to achieve this goal, a brand new queuing system has been

developed and implemented into the architecture, and the main components are here introduced

and discussed (Figure 11). As a remainder, it is important to highlight that as described in the

previous chapter, the memory controller is able to know which core has originated each injected

memory command.

1. CPU Queue

This queue is used to store the memory commands coming from a CPU source, a core

that is loaded with a General Purpose CPU workload. This queue, by default, will be
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Figure 10: Queuing system in the priority based scheduling algorithm

prioritized by the Scheduler with respect to the GPU one and, if the Priority Queue is

empty then it will pick the instructions from this queue.

2. GPU Queue

This queue is very similar to the previous one and is used to store memory request

commands coming from sources (computation cores) loaded with GPU workloads. This

queue is usually accessed when both the Priority and CPU queues are empty.
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3. Priority Queue This queue is used to process the Relocation Operation, that will be

discussed in the following section. It is the first queue that is tried to be accessed by the

Scheduler and can store both CPU and GPU memory commands. The instructions are

enqueued here only when the Scheduler has to balance the whole queuing system to avoid

GPU starvation. For this reason, since the Priority queue is not empty when a threshold

has been crossed, it has the highest priority.

4. Bank Queues This queue system is similar to the default one used in DRAMSim2. Basi-

cally, for each bank of the memory system a queue is implemented. In the Priority-Based

Scheduling Algorithm, these queues are just used to manage the memory commands oper-

ations that have to be performed when a Refresh operation is triggered and a direct access

to the memory commands of a single bank in a determined rank is needed. In the major-

ity of the memory accesses, this queue system is not used. Each queue of each bank, is

a First-In-First-Out architecture that stores all the previously issued memory commands

directed to a row of that rank-bank subset. Actually, this support queuing system can be

omitted using more complex and inefficient search methods on the previously described

queues, but can be useful to have a fast and direct access during the Refresh operation

management.

4.1.2 The Relocation Operation

As described in the previous sections, by default, the Priority Based Scheduler Algorithm

prioritizes the CPU over the GPU. The amount of priority, and the mechanics used to provide

a reliable way to process all the memory commands coming from all the computation cores
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Figure 11: The relocation operation

are based on the triggering of the Relocation Operation (Figure 12). This function is used to

bring balance to the picked up instructions when too many requests coming from the GPU

are stored in the system or according to other parameters related to the time the instructions

are spending into the system. The Relocation Operation is triggered by the Scheduler Priority

Assignment Policy. When it happens, the memory commands stored in both the CPU and

GPU queues, are relocated into the Priority Queue according to different parameters. In this

way, all the instructions of the system are moved and sorted in order to balance the way the
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next instructions will be picked up and hopefully, to avoid excessive waiting times and too high

latency values for the GPU issued instructions. Obviously, the Priority Assignment Policy has

to be designed properly to decrease as much as possible the number of times the function is

called and, as a consequence, an inefficient scenario where the Priority Queue is continuously

fulfilled. Furthermore, another policy that had to been designed is how the instructions in the

CPU and GPU queues are relocated into the Priority queue. When the Relocation Operation

is triggered, it means that a certain threshold has been crossed and a balance is needed to avoid

GPU starvation. The system is in a situation where the Scheduler must modify the Scheduling

Policy in order to output, through the Pop operation, a number of GPU instructions and restore

a balance where it is possible to prioritize again the CPU, optimizing the performance. For this

reason, the memory commands are relocated taking into account these considerations and for

each CPU operation a variable number of instructions from the GPU has to be enqueued into

the Priority Queue. This parameter is the Number of GPU instructions per CPU instruction

and is here introduced, as design choice, statically (does not change during execution). In order

to make it dynamic, it would need to be dependent from the number of instruction stored in

the GPU queue, which as will be described later is part of the triggering policy. The current

implementation has a fixed number of GPU instructions that have to be enqueued in the Priority

queue but a dynamic triggering policy.

4.1.3 The Priority Assignment Policy

As introduced and described in the previous section, the Relocation Operation is the process

that is in charge of balancing the following picked instructions from the different sources. After
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the Relocation process, the system should avoid GPU starvation and return back to its normal

flow of execution. For this reason, the strategies developed to control the triggering of this

operations are the base of the logic behind the stabilization of the whole system. The relocation

operation is triggered according to two main parameters: the current number of instructions

in the GPU queue, and a timeout value, the GPU Timeout (GPUT). Different simulations and

tests have proven that the combination of both these parameter was the best choice to provide

to the system flexibility over the number of CPU instruction picked up, and reliability to avoid

the GPU memory requests starvation. The number of GPU memory commands is the size of

the GPU queue and can be compared with a threshold to determine if the queue is almost

full. It does not provide information about how long the requests have been waiting in the

queue, but only about how many requests are stored in the memory system. For this reason

this parameter is used to avoid to have too many GPU instructions that need to be brought out

to the system and its main purpose is to avoid an excessive number of calls of the Relocation

function. The system needs to have a controlled number of GPU instructions or it would not

be able to bring them out fast enough, resulting in a continuous flow of calls for relocation.

On the other hand, GPUT is a threshold used to ensure that an instruction is not waiting

for too much time in the system. This reliability can not be provided just by the number of

GPU instructions in the queue because, for light workload, the number of instructions could be

relatively small even if the instructions had been stuck into the queue for a long time. Due to

these considerations the combination of both parameters has been used as a parameter for the

triggering of the Relocation operation.
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4.1.4 The Reordering Management

The Priority Based Scheduling Algorithm is a reordering based scheduling. It means that,

in order to improve the performances, the picked up instructions sequence using this strategy is

different from the one resulting from a non reordering scheduling algorithm like a simple FIFO

queue. In this implementation, however, the local precedence order is still respected. If each

single core is considered, in fact, it is possible to state that each memory command is processed

before the commands that were introduced later in the system. Processed but not provided

as output because of physical related constrains (the bank could be busy for a Refresh or

Precharge operation). On the other hand, it is not possible to state that an instruction coming

from the GPU before a CPU instruction will be served in the same order. The precedence

order is respected on a per core basis but not if we consider the whole system. This introduces

additional complexity to the system because of some implementation problems that will be

described in the following sections. From an higher level point of view, the general concept

is that additional logic has to be provided to ensure that when a row is opened the attached

Read or Write operation has to be performed before the issuing of a successive row activation

command on the same bank. The risk in fact is to issue two consecutive Activate commands.

If this happens, the row would be opened for a Read or Write operation, but then closed due

to a successive Activation that would open a different row. For this reason, the Read or Write

operation attached to the first Activate would be stuck into the queue and would be released

only when another command addressing the same row of the same bank and rank would be

issued by the computation units.
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Figure 12: Queues precedence order in the priority-based scheduling algorithm.

4.1.5 The Scheduling Algorithm

Now that all the components and some of the mechanisms of the Priority Based Scheduling

Algorithm have been introduced and described, this section will try to put all the pieces together

in order to present a comprehensive vision of the whole system. The memory commands coming

from the CPU and GPU cores are marked with the information about their respective sources.

So this information is used by the memory controller to acknowledge whether the instruction is

coming from a CPU core or a GPU one and is used as soon as the instruction is injected into the
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memory system because determines in which queue it will be placed. Once a new instruction

is issued in the system, it is enqueued in the respective queue (CPU or GPU) and into the

general bank queuing structure used, as mentioned before, to support the Refresh operations

that needs a direct access to the instructions of a given bank and rank. Then, the Scheduling

Algorithm picks up an instruction according to the following policy (Figure 13).

• If a Refresh operation is issued on a selected bank, then checks using the Bank Queues if

there is a pending request on the currently open row. If the Refresh bank queue contains

one or more commands addressing the currently open row, then they have to be served,

else a Refresh command is issued.

• if there is not a bank waiting for a Refresh, then the Scheduler tries to access the Priority

Queue: if it is not empty, a command is extracted and processed, otherwise it searches in

the CPU queue and, if also this last one is empty, then the GPU queue is accessed. This

hierarchical order is also applied if the queues are not empty but no packet can be issued

because of electrical issuability constrains. For example, due to technical boundaries

introduced by the different memory models some time, in terms of memory clock cycles,

has to pass between two consecutive Activate commands on the same row.

• If no packets had been considered issuable from all the different queues and certain elec-

trical conditions are met, then a Precharge packet is issued to close the open row and in

order to limit the overhead and not waste the clock cycle.

When the packet that will be popped out from the memory system in the current clock cycle

has been decided, if it is coming from the GPU queue, then the GPUT is reset to the timeout
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value.

Concurrently to the operations listed above, in the same clock cycle, the priority analysis

and assignment process is executed. First of all, the GPU countdown is decremented by one,

Then, a check on the current value and the number of instructions stored into the GPU queue

is performed. If the GPU countdown is zero or the number of instructions is above a certain

threshold, then the relocation operation is triggered, and the CPU and GPU queues are merged,

according to the number of GPU instructions per CPU instruction value. At the end of the

process, both the CPU and the GPU queues will be empty, while the Priority Queue will

be fulfilled of all the instructions of the system, in a balanced sequence of CPU and GPU

instructions that would provide the avoidance of GPU starvation and, at the same time, an

excessive penalization on the CPU instructions latency. When it does happen, the instructions

are processed in the Priority Queues order and, in the meantime, the CPU and GPU queues

are accepting new packets coming from the computation cores. It is important to choose the

number of GPU instructions that triggers the Relocation, and the GPU timeout properly to

avoid a continuous relocation process. Additionally, a final check for starving memory requests

is performed to find if any memory command is stuck in the system. The only cause would

be a double Activation on the same bank without serving the attached Read or Write. If this

happens, or if a Bank needs a Precharge, a Precharge packet is issued in the system. This

is a reliability countermeasure to the double activation problem which is not triggered often,

according to the load of simulations performed. But it can be useful to avoid, in certain rare

cases, the starvation of a GPU packet. According to the performed simulations, usually the
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number of packets that need this operation is below the 0,005%, so the Forced Precharge packet

is issued just a few times over the whole execution. When a packet is popped out from the

memory system, it has to be removed from all the queues: both the copy in the CPU-GPU-

Priority assemble, and the one in the bank queues set. For this reason, a complete deleting

procedure has been implement to ensure that no copies of the issued memory instructions are

still present in the system.

One last feature implemented in the Scheduler Algorithm is a check on the CPU and GPU

queues when the total workload on the system is very light. When the Scheduler has to pick

up an instruction from the two queues, it checks if the CPU queue is almost empty and, at the

same time, if the number of instructions on the GPU queue is much larger, but not enough

to cross the threshold. If in the CPU queues there are just a few packets, probably they have

just entered the system and since the number of instructions in the GPU is much larger, a

GPU instruction, available and issuable, is picked up. Subsequently, a flag is set and, at the

following iteration, will tell the system to pick up the CPU instruction even if the previous

conditions would be met again. This is a simple secondary support strategy used to decrease

the number of relocation calls and designed to perform a less expensive balance operations over

the queues in conditions when picking up a GPU instruction would not result in a worsening

of performance.
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4.2 Priority Queues Algorithm: Implementation

In the previous section, the Priority Based Scheduling Algorithm has been presented from

an high level architectural point of view, describing each component and its own behavior and

purpose inside the whole system. In this section, the same concept will be introduced explain-

ing some implementation details. The main purpose of this is to describe some implementation

choices and discuss the solutions to problems risen up during the design of the algorithm. The

intention is not to comment any code structure written from the project, but focus on the

problem-solving process that brought to the final algorithm implementation.

4.2.1 Implementation in the DRAMSim2 Environment

Due to the high level of modularity already present in the DRAMSim simulation environ-

ment, just a few of the many components have been modified to implement the Priority Based

Scheduling Algorithm. How the simulator’s architecture and code implementation has been

modified to support the development of the algorithm has been extensively discussed in the

previous chapter, here it will be descried how those implemented services are exploited in the

actual algorithm version. From the execution prospective, the whole Scheduling Algorithm can

be split and represented in four distinct parts. The first four listed can be considered as macro

functions, each one implementing one of the main tasks the Algorithm has to provide. The Fifth

one is a collection of small functions used to implement some services requested and triggered

by the other four parts.
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1. The Enqueue Procedure

This procedure is called every time a new packet is issued from the computation cores into

the memory system. It is in charge of pass the memory command through to the correct

modules. It exploits one of the customized features of the simulator, the information

about the source that injected the command (the core ID), to enqueue the instruction in

the CPU or in the GPU queue. Additionally, it accesses the bank and bank the command

is addressing and enqueues it also in the bank queuing structure. Finally, it assigns a

packet ID to the incoming instructions that will be used in the Delete Procedure to access

the correct data packet.

2. The Pop Procedure

This macro function is the part of the algorithm in charge of providing a chosen memory

command to the outer modules. It is called at each clock cycle and is the procedure

triggering all the Scheduling logic. During the execution, many checks are performed in

order to test which queue, if any, is empty and based on this analysis service packets

(Refresh and Precharge) can be issued. The execution of the Pop Procedure, is different

at any iteration according to the whole system status. For example, if a Refresh has

been triggered, it is in charge of scanning the Bank queues systems to check if a packet

accessing the currently opened row is enqueued. Otherwise, it performs its standard flow

of execution and tries to find an issuable instruction through the whole queuing system,

according to the policies described in the previous section. The Pop procedure is also in

charge of checking whether an instruction is issuable or not according to some electrical
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and physical rules, like the maximum number a bank can be activated before a Precharge

operation, or the time that has to pass between two consecutive Activate instructions.

3. The Update Procedure

This procedure is triggered at each clock cycle and is used to perform a check on the

whole system to review the whole status and initiate operations to balance the number of

picked instructions from the modules. In order, the main activities of this operation are:

• Updating the GPU countdown decreasing it by one.

• Checking if a packet in the system has crossed a Safety Threshold and is stuck in

the system due to a double Activate operation.

• Checking the GPU countdown and the Number of instructions stored in the GPU:

if the number is above the Threshold, it triggers a Relocation operation.

• Cleaning the dirty queues after the Relocation Operation, in order to avoid the

presence of copies of previously deleted memory requests.

4. The Remove Procedure

The Remove operation is performed each time an instruction leaves the memory system.

It has to provide two features:

(a) If a Read or Write is issued and it is addressing an already opened row of a bank,

then also the paired Activate command has to be removed.

(b) It has to delete the issued packet from all the queues in the system. If a packet is

picked up from the bank queues because of an issued Refresh, then the same packet
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has to be removed from the CPU or GPU queue. On the other hand, if the Scheduling

algorithm is performing its default behavior, and a Refresh has not been issued, then

the same packet and eventually the Activate command have to be removed from the

bank queue structure.

5. Other Service Features

While writing the whole Scheduling Algorithm, many functions and procedures have been

written to provide lower level services to the main macro functions written above. Usually,

these have been used to performs checks on the electrical level and determine if a proper

packet is issuable. A standard methodology is already present in DRAMSim2, but those

functions had to be modified to support the new Queuing System. Other basic instructions

have been developed to check the origin of the packet, to create new Precharge packets

when one Precharge operation had to be forced into the system and finally, due to the

different nature of this work, to provide additional or modified simulation results according

to the module’s performance the user is interested in.



CHAPTER 5

SIMULATION RESULTS AND ANALYSIS

In this chapter, the results of the simulations performed to test the new Priority-Based

Scheduling Algorithm are introduced and discussed. These results are compared with the ones

obtained using a previously developed Scheduling Algorithm, the Staged Memory Scheduling

Algorithm. Both strategies have been extensively discussed in the previous chapters and are

here analyzed only from the results point of view. The first section introduces the metrics that

will be used for the comparison of the two algorithms. A large set of these has been selected

to cover all the possible different performance parameters. The following section is dedicated

to the presentation of all the test cases and the explanation of the motivation behind their

choice. Here the different benchmarks are introduced and the strategy of the testing process

is described. The following two sections, are dedicated to the actual simulation results on two

main machine environments. In the third, a machine made of 2 cores is used as platform for

testing the algorithms, in the fourth, the tests are performed on a four cores machine. Finally, a

summary of all the analysis developed from the results of each simulation concludes the chapter.
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5.1 Metrics

In this section, the chosen metrics for the comparison of the Algorithms are introduced and

discussed. When defining how to produce the simulation results, the goal was to provide a set

of data able to cover all the characteristics that have a weight on a CPU-GPU environment.

For this reasons, it was necessary to have metrics that would show the performance of the single

computation units, as long as parameters that are related to the whole system.

The following is a list of the metrics and their description that will be used extensively in the

following sections.

1. Instructions per Cycle (IPC)

IPC =
Number of Instructions

Number of Cycles
(5.1)

This metric refers to the whole system and is one of the main parameters to describe

how the whole simulation has been performed on the designed environment. Usually the

simulations are launched for a fixed number of instructions, for this reason the numerator

is usually fixed. The value of the denominator, on the other hand, is variable and depends

on the Algorithm overall performance. The Number of Instructions is the sum of all the

instructions committed by all the processing units of both CPU and GPU.

2. CPU Instructions per Cycle (CPUIPC)

CPUIPC =
Number of CPU Instructions

Number of Cycles
(5.2)
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This metric is similar to the previous one but takes into account just the Instructions

issued by a computation core loaded with a General Purpose Application. This informa-

tion is used to acknowledge the improvements or worsening of the CPU execution speed

using the different Scheduling Algorithms.

3. GPU Instructions per Cycle (GPUIPC)

GPUIPC =
Number of GPU Instructions

Number of Cycles
(5.3)

This metric is similar to the previous one but takes into account just the instructions

issued by a computation core loaded with a GPU related Application.

4. Speedup (S)

S =
IPC PB

IPC SMS
(5.4)

SCPU =
IPC PBCPU

IPC SMSCPU
(5.5)

SGPU =
IPC PBGPU

IPC SMSGPU
(5.6)

The Speedup is a metric used to compare the different IPC values previously introduced

between the two algorithms. The Speedup provides a direct information on the Priority-

Based Algorithm behavior with respect to the reference algorithm.



66

5. Weighted Speedup (WS)

WS =

∑n
i=1

IPC PBi
IPC SMSi

n
, n = Number of Workloads (5.7)

This metric is a weighted average of all the ratios of the IPCs across all the workloads.

It takes into account the whole simulation process and provides information about the

general behavior of the Priority Based Algorithm across different environments. This is

the most general metric of comparison because the assumptions are not considered and

it refers to all the different testing scenarios.

6. GPU Respect of Deadline (GPURD)

This metric is introduced to measure how the possible decrease of performance on the

GPU would affect the whole GPU execution performance in a real world scenario. The

concept is to have a metric that estimates how much the GPU system would have to

be latency tolerant in order to execute a GPU workload without missing a deadline. As

execution step, a frame is considered, estimating that it takes 20 millions instructions to

be processed. From the GPUIPC value, it is possible to evaluate the number of clock

cycles needed by the Reference Algorithm, to complete the frame. Then, the error is

computed using the same strategy on the priority based GPUIPC value and it represents

the amount of delay that would be introduced to complete the frame evaluation.

GPURD =
ClockPB − ClockSMS

ClockSMS
× 100 (5.8)
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7. Number of Instructions Ratio (NIR)

NIR =
Number of Memory Commands CPU

Number of Memory Commands GPU
(5.9)

This parameter is not used for comparison purposes, but it is an important information

about how the memory commands issued by the computation units are distributed among

CPU and GPU. This parameter will be used in relationship with the assumption that the

Algorithm is designed for Scenarios where the number of CPU instruction is lower than

the number of GPU issued instructions. And in order to know how close the simulation

scenario is to the assumption, this value had to be introduced.
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5.2 Test Cases

In order to test the algorithm, two machine configuration have been developed and used in

the simulations.

1. A Two Cores Machine, in which one core is dedicated to the CPU workload and one core

to the GPU workload.

2. A Four Cores Machine, in which each module is made of two cores, and for this reason

we have two cores dedicated to the CPU workloads and two to the GPU workloads.

For each machine, eight test cases have been built using the SPEC2006 Benchmark Suite. Dif-

ferent benchmarks had to be used to provide a wide set of different scenarios. If the CPU and

GPU are considered black boxes, from the memory controller point of view, the input is made

of two flows of memory requests. Now, according on the different benchmarks loaded into the

computation cores, the number of memory requests is different from one benchmark to another.

For this reason, using different benchmarks leads to having different distributions of memory

requests, which is necessary to study how the performances changes according to the different

weights on the different modules. This is also related to the NIR parameter, which can be

described as the difference, in terms of memory requests, of two sets of workloads.

Furthermore, in order to extend the test cases from the machines point of view, all the tests on

the Four Cores machine had been performed on a single channel memory model and on a dual

channel memory model.
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TABLE III: TEST CASES PERFORMED ON THE TWO CORES MACHINE CONFIGU-
RATION

Name CPU Workload GPU Workload NIR

Test 1 bzip2 povray 11.82%
Test 2 gcc leslie3D 17.53%
Test 3 calculix sphinx3 202.12%
Test 4 bzip2 lbm 22.74%
Test 5 bzip mcf 111.03%
Test 6 perlbench gobmk 441.93%
Test 7 gcc calculix 19.35%
Test 8 calculix gcc 147.40%

The tables show the sets of benchmarks used to test the Priority Based and the Staged

Memory Scheduling algorithms on the different machines. As highlighted by the NIR column,

the goal was to provide a various enough set of different loads on the two computation cores.
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TABLE IV: TEST CASES PERFORMED ON THE FOUR CORES MACHINE CONFIGU-
RATION

Name CPU Core0 Workload CPU Core1 Workload GPU Core0 Workload GPU Core1 Workload NIR

Test 1 bzip2 mfc povray lbm 100.01%
Test 2 astar bzip2 perlbench gobmk 135.75%
Test 3 calculix bzip2 sphinx3 lbm 12.55%
Test 4 gcc calculix povray lbm 13.46%
Test 5 gcc perlbench leslie3d 4264ref 41.82%
Test 6 calculix gcc perlbench mcf 158.06%
Test 7 bzip2 gcc gromacs zeus-mp 104.38%
Test 8 povray lbm gcc calculix 522.12%

5.3 Two-Core Machine Results

The attached charts are here introduced to present the results of the simulations performed

on a Two Cores machine configuration.

As highlighted in the graph containing the whole system IPC results (Figure 14), in which

the workloads have been sorted on the x-axis according to their respective NIR value, the

Priority Based Algorithm shows an improvement in performance in all the workloads having

the number of CPU instructions lower than the number of GPU instructions. As soon as the

memory requests numbers are similar, and the NIR approaches values equals or greater than 1,

the improvements decrease and the Priority Based Algorithm behavior is similar, in terms of

performances, to the Staged Memory Scheduling Algorithm. Except for one single case where

the performance, in terms of Whole System Speedup (Figure 15), are slightly worse (0.05%),

even with unbalanced workloads the Priority Based Scheduling algorithm behaves better then
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Figure 13: IPC, two cores machine configuration

the Reference Algorithm. These characteristics were expected and were part of the assumptions

taken in consideration during the design process of the Algorithm. Usually, in fact, the CPU is

dealing with a number of memory requests lower then the number of GPU memory requests,

and the improvements show up when those conditions are met.

The overall performance, among all the tested workloads, can be represented by the Weighted

Speedup:

WS =

∑n
i=1

IPC PBi
IPC SMSi

n
= 2.8825% (5.10)
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As shown in the graphs related to the IPC of the single modules, it is proven that, for the

majority of the tests, the benefits are caused by an improvement of the CPU IPC values with

respect of the GPU counterpart. On the other hand, the GPU performance in some cases are

worse in the Priority Based Scheduling Algorithm. This was an expected behavior, since the

GPU overall performance is less sensitive to latency then the CPU, and the overall Speedup

is increased, the trade-off is advantageous. Furthermore, the concept of the Priority-Based

Scheduling Algorithm is to prioritize the CPU execution over the GPU one, as long as the

decrease of performance is tolerable.

The GPUDM computation for each workload brought to a 2.20% for test4 and 0.5% for test7.

All the other benchmarks presented a slightly improvement or a negligible (<0.1%) decrease of

performance. In these latest cases, the values are so small that can be considered simulation

dependent. In general, the slight decrease of performances can be explained by the fact that,

while simulating the algorithms on a machine made of two cores, the overall weight on the

memory is moderate and the effect on GPUs is almost negligible.
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Figure 14: System and CPU speedup, two cores machine configuration

5.4 Four-Core Machine Results

In this section, the results of the Four Core Machine configuration are presented. The tests

have been launched on two different configurations: the first is a single channel memory sys-

tem, while the second design is provided of two channels. The simulations have been processed

according to the benchmarks listed in the previous section (Table IV).
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Figure 15: IPC, four cores machine configuration, one channel

5.4.1 One-Channel Results

As highlighted by the attached bar charts, the results show a behavior similar to the one

observed in the case of the two cores machine configuration. The IPC chart (Figure 16) shows

that the major improvements are noticeable in relationships with low NIR values. Once the

assumption of having less CPU memory instructions than GPU is met, the Priority Based

Algorithm is able to prioritize efficiently, introducing a low loss in terms of GPU timing perfor-

mances, the CPU and to improve the whole system behavior. The IPC gain is stable until the

NIR is around 1.0, then it decreases, making the Priority Based Algorithm’s behavior similar
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Figure 16: System and CPU speedup, four cores machine configuration, one channel

to the Staged Memory Scheduling Algorithm.

In terms of speedup (Figure 17), the whole systems performances are increased for a range that

starts from 1.5% for high NIR values, to 8% for workloads with low NIR and not very high traf-

fic load. Higher values can be found examining the Speedup of the CPU modules, which are the

main cause of the general improvements on the whole machine. When the initial assumptions

are not met anymore, the Speedup goes to zero and the Priority-Based Algorithm behaves like

the Staged Memory Scheduling Algorithm. The overall performance of the Algorithm, among
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Figure 17: GPU respect of deadline, four cores machine configuration, one channel

different scenarios and workload environments is represented again by the Weighted Speedup

value.

WS =

∑n
i=1

IPC PBi
IPC SMSi

n
= 3.06% (5.11)

From this average value, it is possible to estimate a general benefit from the application of

the Priority based Scheduling Algorithm. As highlighted in the bar chart presenting the

GPURD results (Figure 18), the improvement on the whole system IPC ratio is provided with

a decrease of GPU timing performances. In general, the tests that registered the best results

in terms of improvement, are showing the highest values of delay in the GPU execution. The
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worst case has been found in test4, where in order to avoid deadline misses, the GPU application

should tolerate a 8.11% latency delay on the GPU execution with respect to the Staged memory

Scheduling algorithm. As a remainder, test4 represents also the best result, in terms of general

Speedup, of the whole benchmark set. In addition, as highlighted by the same chart, the other

benchmark ran with GPURD values ranging from 1.85% to 2.23%. As long as the NIR value

increases and as described above the Speedup decreases, the GPURD value becomes negligible

and the GPU behavior is similar to the one of the Staged Memory Scheduling algorithm.

5.4.2 Two-Channel Results

The following results had been extracted from simulations performed on a four core machine

provided with a memory system made of two channels. The goal was to build a wider set of

test cases using two different machine configurations. The attached bar charts show again the

Algorithms’ behavior with the metrics defined in the previous section. Once again, it is possible

to appreciate the improvements generated from the Priority Based Algorithm, especially when

dealing with low NIR values (Figure 19).

From the Speedup chart (Figure 20), it is possible to notice that an improvement is noticeable

in all the tested workloads. In almost all the cases, the whole system improvement is paired

with an higher improvement in the CPU IPC, except for test7 where the values are similar.

The graphs shows again a behavior similar to the one expected: the CPU instructions are

prioritized with respect to the reference algorithm and this improvement is translated into an

increase of the overall IPC that leads to positive Speedup values, ranging from 2.1% to 7.5%.
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Figure 18: IPC, four cores machine configuration, two channels

The Weighted Speedup among all the tested workload and related to the whole system IPCs is

the following:

WS =

∑n
i=1

IPC PBi
IPC SMSi

n
= 3.49875% (5.12)

This test case shows, like in previous examples, that the benefits of the Priority Based Schedul-

ing algorithm are more evident when dealing with NIR ¡ 1.5. When considering higher val-

ues, in fact, the behavior is similar as the one of the Staged Memory Scheduling algorithm.

Regarding the GPU, the GPURD graph (Figure 21) shows a behavior similar to the one exam-

ined for the single channel machine configuration. While in many cases, marked with a zero in
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Figure 19: System and CPU speedup, four cores machine configuration, two channels

the chart, the percentage of delay introduced is negligible (¡0.1%), the worst case would require

to the GPU module a delay tolerance of 9.08%. However, the average GPURD value among

all the workloads is much lower, 2.01% considering the negligible cases and 4.01% otherwise.

Again, the peak value is reported on test4, which is also the one that shows the best result in

terms of overall Speedup and CPU Speedup.
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Figure 20: GPU respect of deadline, four cores machine configuration, two channels

5.5 Result Summary

The different tests presented and discussed above showed similar behaviors and common

characteristics. In all the machine configurations, it was possible to acknowledge an improve-

ment in the overall IPC and CPU IPC that led to positive Speedup values. While in almost

any case the Priority-Based Scheduling Algorithm introduced positive Speedup values, it was

possible to notice higher values when dealing with NIR ranges below the 1.5 threshold. This re-

sult was expected when designing the algorithm and, according to the considerations discussed

in the previous chapters, the environment where the major benefits had been measured is the

most common in a real world scenario, where usually the number of memory requests issued by
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the CPU is lower than the number of the same commands issued by the GPU. In addition, in all

the cases the computed Weighted Speedup value showed positive results that demonstrate the

fact that, even if not in the assumptions‘ NIR ranges, the Priority based scheduling algorithm

performance is at least similar to the one evaluated with the Staged Memory Scheduling algo-

rithm. While the latency sensitive CPU computation cores‘ performance had be improved to

increase the overall IPC, in certain cases the GPU performance decreased. However, as shown

with the chart related to the GPURD values, all the results had been lower than 10% and, in

the average, the additional delay tolerance represented by the same metric would be below the

5.0% threshold. Additionally, in many of the tested workloads the tolerance value measured

was negligible (below 0.1%). This worsening of the GPU performance was expected due to the

additional priority assigned to the CPU computation cores, and according to the performance

results, the decrease of these performance can be considered a positive trade-off with respect

to the overall improvements.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The presented research work’s aim was to introduce a brand new Scheduling strategy for

memory accesses in a CPU-GPU environment, exploiting a priority-based concept, dedicated

architectural choices and a set of previously developed analysis‘, in order to improve the overall

system performance. The first step was to shrink the working environment in order to focus

the algorithm design process on scenarios that would match the characteristics and the needs

of a real CPU-GPU execution session. This was achieved by studying the previous works devel-

oped on these architectures which, according to simulations and real time analysis‘, led to the

definition of the assumptions introduced in the previous chapters and that had been the main

reference for the Priority Based Scheduling Algorithm design. From these basis, the algorithm

was developed through all the architectural required components, and implemented taking into

account a wide set of relocation related problems and developing solutions to them. Finally,

the algorithm had been extensively tested among different workloads and several comparisons

with a previously developed Scheduling Algorithm had been performed to measure the actual

improvements reported in the Results chapter. From the extracted data provided by the simu-

lations, it is possible to observe that, when the previously stated assumptions are met, and the

scheduling algorithm is working in an environment that presents common characteristics, the

improvements are positive in almost all the tested cases and all the considered machines.

Even if the main features of the Scheduling Algorithm are all presented and working, additional

82
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features can be taken into account for future developments of the same strategy. Even if the

original implementation already sets many parameters, like the triggering of the Relocation

Procedure or the reset operation on the GPU countdown, according to the status of the whole

system, in the future it would be possible to introduce additional mechanisms to make some

features more dynamic and test them to acknowledge if they would bring additional improve-

ments in terms of performance.

Finally, while the algorithm exploits the space and time localities introducing controls on the

enqueued memory commands, additional adjustments on the original Queuing System archi-

tecture would improve the effectiveness of those two concepts from a lower level point of view.

Again, it would be interesting to see how the resulting improvements, if any, would differ from

the original implementation here introduced and implemented.
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