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SUMMARY

In this dissertation, I discuss, in three parts, the ontological and metaphysical implications

of two quantum theories: quantum mechanics and loop quantum gravity (LQG). Central to

these discussions is the effect that our interpretation of the mathematics of these theories

has on the ontology of spacetime, “spin-networks,” and identical particles in multi-particle

systems. In the case of loop quantum gravity, the interpretive question is whether or not

spacetime and physical spin-networks are represented in the model 〈M,Ψ[A]〉 or, perhaps,

by the states Ψ[A] of the theory. In the case of quantum mechanics, the interpretive question

is how the singlet state, ψ = | ↑〉| ↓〉 − | ↓〉| ↑〉, represents the world and whether or not it

represents two things. How we answer both sets of interpretive questions influences how we

understand fundamental ontology.

In part one of this dissertation, I address the status of spacetime as well as the nature

and reality of spin-networks in LQG. In this section, I argue that there is a sense in which

spacetime might disappear in LQG while the spirit of substantival spacetime, nevertheless,

lives on. Just as spacetime is modeled by the ordered pair 〈M, g〉 in GR, so some similar

structure is modeled by the ordered pair 〈M,Ψ[A]〉 in LQG. Moreover, so long as there is a

mathematical background manifold (M) included in our representation of the physical world,

the substantivalist has enough structure with which to represent either spacetime or some

similarly substantival background structure. Additionally, what we take to be essential for

spacetime, will determine whether or not spacetime exists in LQG. If spacetime is essentially

a classical structure whose representation includes a pseudo-Riemannian metric (g), then

there is no spacetime fundamentally in LQG. However and more broadly, if spacetime is some

substantival “container” with geometric or quantum-geometric properties, then spacetime is

modeled by LQG. If this more general picture of spacetime is the case, then spacetime is

described by GR as having classical geometry (g) and by LQG as having a quantum geometry

(Ψ[A]). In this context, the difference between GR and LQG rests merely in what kind of

geometry spacetime is thought to have.
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SUMMARY (continued)

However, even if this more general picture of spacetime were not the case and were spacetime

to disappear in LQG, this disappearance is of a kind to which we are now accustomed: the

classical world disappears at quantum scales or under quantum descriptions.

Closely following this discussion, in part two I argue that, contrary to standard pre-

sentations, time does not disappear in LQG because of dynamical considerations stemming

from the Hamiltonian constraint, but because of our interpretation of spacetime and its re-

lationship to 〈M,Ψ[A]〉. In this section, I argue that if we require spacetime and time to

have a classical metrical structure, then spacetime and time disappear from our model as

soon as we remove the metric g in exchange for the quantum states Ψ[A]. While it is true

that the Hamiltonian constraint predicts that the states Ψ[A] are frozen with respect to the

coordinate x0, this does not entail that they are frozen with respect to time.

In part three of this dissertation, I address ontological and metaphysical issues as they

relate to the nature of identical particles and the status of Leibniz’s principle of the identity

of indiscernibles (PII). It is standardly thought that identical particles in entangled states

demonstrate that the PII is false. While Muller and Saunders attempt to save the PII

by showing that identical particles are “weakly discerned,” I argue that their account fails

since it utilizes mathematical structures which are foreign to quantum theory, and since we

have little reason for interpreting the singlet state as representing two particles in the first

place. According to Muller and Saunders, there are, in fact, two particles represented by the

singlet state and these particles have opposite spin. That the particles have opposite spin is

thought to be the case since the singlet state is an eigenstate of the ”opposite spin” observable

(Z−2). However, that the mathematical structure Z−2 represents a physical dyadic relation

like opposite spin, is not argued for by Muller and Saunders. Or rather, the reasons for

thinking that Z−2 represents physical properties are only partially provided for by Muller

and Saunders. That Z−2 represents a dyadic property of all things, seems to be suggested

by a näıve reading of the singlet state, | ↑〉| ↓〉 − | ↓〉| ↑〉, according to which there are
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SUMMARY (continued)

two particles whose particular spins, while not determined, are nevertheless opposite. I

argue that we must take care in how we read physical information from the singlet state

| ↑〉| ↓〉 − | ↓〉| ↑〉 and, in particular, that the individual terms (| ↑〉| ↓〉) and (| ↓〉| ↑〉) do not

individually represent the particles’ properties. In summary, there are then two interpretive

issues which I address in part three of this dissertation: what does Z−2 represent, and what

does | ↑〉| ↓〉 − | ↓〉| ↑〉 represent?

According to each part of this dissertation, the central philosophical issues hinge on how

we interpret quantum formalism. In order for us to extract ontological or metaphysical

implications for spacetime, spin-networks, identical particles, and the PII, we must first

properly interpret how the mathematical structures of our theories represent the physical

world. The conceptual grip on ontology and metaphysics afforded to us by our theories is

only as tight as our confidence in the interpretations with which we began. If there are

reasons to doubt our interpretations, then the supposed philosophical implications of the

theories are suspect.
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1 PART 1: LOOP QUANTUM ONTOLOGY

1.1 INTRODUCTION

In the current literature on loop quantum gravity (LQG), one will find the following claims:

The spin networks do not live in space; their structure generates space. And they
are nothing but a structure of relations...
(Smolin 2002, p.138)

...the quanta of the field cannot live in spacetime: they must build “spacetime”
themselves... Physical space is a quantum superposition of spin networks...a spin
network is not in space it is space.
(Rovelli 2004, p.9, 21)

LQG thus seems to entail that space(time) is not fundamental, but emerges some-
how from the discrete Planck-scale structure.
(Wüthrich 2006, p.169)

...the emergence of spacetime continuum and geometry will be the result of the
quantum properties of the atoms of spacetime.
(Oriti 2014, p.15)

One influential idea based on so-called ‘weave states’ proposes that the spacetime
structure emerges from appropriately benign, i.e. semi-classical, spin-networks.
(Huggett and Wüthrich 2013, p.279)

Such claims cause one to wonder: what kind of objects are spin-networks which quite

literally ground spacetime? Surely, nothing like anything we have ever known. In this

paper, I will address what might be the ontology of LQG in general and of spin-networks in

particular.

LQG begins with Dirac’s quantization procedure and ends with a Hilbert space of states

and a set of physical observables. By analyzing these structures, we will begin to understand

what the “atoms of spacetime” are like. Like most physical theories, there is no single

metaphysical interpretation forced by LQG. Consequently, I am not under the illusion that

1
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this work is complete; rather, I aim to clarify some of the issues at stake and establish a

foundation upon which further analysis may be continued.1 Some of the issues involved in the

theory of LQG include: the nature of spacetime, the relationship of geometry to spacetime,

the status of abstract objects, the relationship of quantum systems to classical structures, the

relationship of (pseudo-)Riemannian structures to physical objects (and to concrete objects),

the debate over substantivalism, the problem of time, the notion of locality, and the notion

of emergence.

Hagar (2014) addresses issues of geometry, Wüthrich (2014) as well as Smolin and

Markopoulou (2007) address issues of locality, Huggett and Wüthrich (2013) as well as Lam

and Esfeld (2013) address emergence and the issue of local be-ables, and finally Wüthrich

(2014), Isham (1992), and Norton (Part 2 of this dissertation) as well as many others ad-

dress the ”problem of time.” However, in order to discuss spacetime emergence or locality,

for instance, we must first know what objects there are in LQG and what those objects

are like. In this paper, I develop eight interpretations of LQG and highlight the ontology

suggested by them. Only under some of these interpretations is spacetime missing from the

ontology of the theory and is in “need” of emergence, and only under certain others are there

spin-networks.

While eight interpretations seem like a tall order, a few of these interpretations are mere

variations of each other and for two interpretations, I provide only the broadest of outlines.

Since my interest is to understand the ontology of LQG, most of the interpretations are

developed just enough to extract some facts about ontology. Due to the limited space of

this article, I cannot address every interpretation or philosophically important nuance of the

interpretations I discuss. Rather than covering every possible interpretation, I have chosen

to focus on what I hope will be a diverse collection of intuitive interpretations. Moreover,
1 The following account assumes the “canonical approach” (as opposed to the “covariant approach”) to LQG which takes

structures in space as being fundamental (spin-networks/s-knots) rather than structures in spacetime (spin-foam). For
the purposes of this paper, this difference will not matter. For ease of expression, I will use “space” and “spacetime”
interchangeably.
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in the course of discussing the ontology of LQG, I will be forced to make use of a variety of

physical and philosophical concepts: quantization, emergence, composition, substantivalism,

relationism, and yet I do not provide anything like a complete account or overview of how

these concepts have been used in GR and how they might be used in LQG. For instance, I

will briefly discuss relationism in the context of explicating Rovelli’s interpretation, yet I do

not provide a general metaphysical account of what exactly relationism amounts to or an

overview of different ways one can be a relationist in LQG (which is of special concern since

spacetime itself might be missing).

As a means of coming to understand the ontology of LQG, I will answer the following

questions on behalf of different interpretations of the theory:

1. In providing a quantum theory of general relativity, does LQG describe spacetime as

having gone missing?

2. Are spin-networks included in the ontology of LQG?

3. Is spacetime emergent from or composed of spin-networks?

I will demonstrate that questions 1 and 2 depend rather heavily upon one’s interpretation of

the mathematics of LQG and upon what we take spacetime to be. Only sometimes is there

spacetime, and only sometimes are there spin-networks. Regarding question three, I will ar-

gue that spacetime is emergent to the extent that it is an effective structure. Whether or not

effective structures are real objects of our ontology or merely useful fictions, is open to debate.

Outline:

1.2. The theory of LQG and the näıve interpretation

1.2.1 Constraints

1.2.2 Spin-networks and s-knots
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1.2.3 Observables

1.2.4 Non-separability

1.3. Spacetime disappears

1.3.1 Näıve∗-LQG

1.3.2 Rovellian LQG

1.3.3 Manifold quantization

1.4. Concluding remarks and challenges

1.4.1 Spacetime is composed of or constructed out of spin-networks

1.4.2 Spacetime emerges from spin-networks

1.4.3 Conclusion

1.4.4 Related issues and looking forward

1.5 Appendix

5.1 Appendix A (Constraints)

5.2 Appendix B (Hilbert spaces)

5.3 Appendix C (Geometric Observables)

1.2 THE THEORY OF LQG AND THE NAÏVE INTERPRETATION

In this section, I will explicate the theory of LQG for non-specialists and, since there is

no interpretation-free way of doing this, I will adopt a language common to much of the
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literature on LQG. This language is colored with explicit statements to the effect that space

and spacetime are background structures assumed by the theory. For instance:2

For each given graph γ, considered embedded in the spatial manifold [Σ] where
the canonical analysis takes place.
(Oriti 2014, p.5)

... graphs which are embedded in space [Σ] in such a way that only nodes that
are within a few Planck distances of each other...
(Markopolou and Smolin 2007, p.2)

Nowadays, this approach is mostly pursued in a different form, based on ideas
of Ashtekar. The idea of “splitting” spacetime [M] into 3-dimensional slices [Σ],
and conceiving dynamics as evolution from one slice to another, remains; but the
basic dynamical variable is now, not a 3-geometry, but a 3-connection...
(Isham and Butterfield 1999, p.22)

It is unlikely that any of these authors intended to endorse the metaphysical claim that

the mathematical 4-manifoldM is physical spacetime or that 3-manifold Σ is space. What

is less clear is how many of these authors endorse the position that the bare manifold M is

sufficiently rich, on its own, to represent spacetime. It is usually assumed that one needs both

M as well as some metric g in order to have a structure rich enough to represent spacetime.

And yet, in LQG,M and Σ have no metric on them; consequently, the physical systems we

model usingM and Σ are similarly impoverished. I suspect that when physicists refer toM

as being spacetime or the spacetime manifold, they are simply using what ends up being a

convenient language to speak of mathematics only and are not endorsing a position on what

physical spacetime is or what structure it has.

In the following exposition of LQG, I will follow this linguistic convention and refer toM

as the spacetime manifold or as representing spacetime, but I will go further and explicitly
2 Furthermore, throughout his text book on LQG (1991), Ashtekar consistently references space and spacetime, as background

structures (p.xviii) equipped with spatial structure such as spatial topology (p.27). Though, in at least one instance, Ashtekar
signals that he is not fully committed to the 3-dimensional manifold Σ as being space: “The resulting canonical variables are
then complex fields on a (“spatial”) 3-manifold Σ.” (p.16) Where “spatial” is, presumably, meant to highlight that without
a metrical structure, Σ cannot itself denote space.
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develop, though not necessarily endorse, an interpretation around the conviction that the

bare manifold M does in fact represent spacetime. I will call this interpretation “näıve”

though I do not call it näıve in a disparaging sense.

According to the näıve interpretation, LQG is a theory of quantum geometry and not

a theory of spacetime or quantum spacetime. It might not be obvious what the difference

is between these options, but it will become clear in the following. According to this inter-

pretation, the world consists of a substantival spacetime manifold which I will often refer to

as being “physically substantial,” represented by M, replete with “geometrically charged”

graphs (s-knots) represented by the s-knot states of the LQG.3 What s-knot states and ge-

ometrically charged graphs are, will be explained shortly. The ontology of näıve-LQG is

“quantum” since the geometry associated with each charged graph has quantum features,

which I will also discuss shortly.

Some might find the näıve interpretation unattractive or even obviously false, since the

bare manifold lacks the structure which we have come to associate with spacetime. However,

for three reasons, it will be useful to take the näıve interpretation seriously. First, the

language of the näıve interpretation is often used in the physics literature itself. Second,

in providing a quantum theory to replace GR, we need to loosen our commitment to old

associations. For instance, through our use of general relativity in describing the world,

we have come to associate physical causes with light cone structures and space and time

with 〈M, g〉. Just because spacetime was described by 〈M, g〉 in GR, does not mean that

it will continue to have this description in LQG. In fact, we know that it won’t have this

description since there is no metric g in LQG. Of course, I do not mean to suggest that just

any interpretation of ‘spacetime’ should be taken seriously, but rather that we cannot rule

out interpretations simply by referring to what is true in GR. Third, I will use the näıve

interpretation as the starting point for developing other interpretations. For this reason,

the näıve interpretation will prove to be a pedagogical aide and a contrast against which
3 If there is matter or energy in the world, then the world includes these items as well.
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to discuss different interpretations. In §1.3, I will develop alternative interpretations, all of

which are less näıve and some of which are not substantival.

One can find many introductions to the theory of LQG, but few are non-technical and

most use heuristics which are detrimental for understanding the theory’s ontology. In the

following account, I have aimed to explain LQG with less mathematics, relegating some of

the technical details to an appendix and to citations. Throughout this text, I will refer to

content in the appendix with its section number “[A(§#)]”.

1.2.1 Constraints

The theory of LQG begins with a Hamiltonian formulation of general relativity (GR), and

proceeds to quantize the theory by quantizing the gravitational field following an approach

developed by Dirac. Dirac’s procedure is the “canonical” route for quantizing classical the-

ories.4 In building a canonical theory, one begins by constructing the total Hamiltonian,

(Gambini and Pullin 2011, p.50):

HT ≡ q̇ip
i − L+ λmΦm.

Here we have subtracted the Lagrangian of the system from the product of the canonical

positions and momenta, and then we have added terms representing the constraints of the

system. In canonical GR, the Lagrangian exactly cancels the contribution of the q̇ipi so that

the HT is nothing but the second class constraints λjΦj (DeWitt 1967 p.1118). In general

these constraints are equations of the form:5

λjΦj = 0.
4 For technical details on canonical quantum gravity, see Isham (1992), Henneaux and Teitelboim (1992), Rovelli (2004),

Wüthrich (2006, 2014), Thiemann (2008), as well as the appendix to this paper.
5 For a more detailed expression of theses constraints see Gambini and Pullin( 2011, p.94), or Rovelli (2004 p.146, 225).
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and represent trajectories through phase space which don’t affect the Hamiltonian (Gambini

and Pullin 2011, p.49,96). Since the total Hamiltonian is identical to the constraints, all

the information of the dynamics of the system is captured by solving the constraints (Isham

1992, p.34-35). In the case of LQG, there are three such constraints: the Gauss, vector,

and scalar constraint. In the literature, there are other names for these constraints: the

Gauss constraint is often referred to as the gauge constraint, the vector constraint as the

diffeomorphism constraint, and the scalar as the Hamiltonian constraint. I will always use

‘Gauss’ and ‘Hamiltonian constraint” but will switch between ‘vector’ and ‘diffeomorphism

constraint.’ The Gauss constraint requires the physical system of LQG to be invariant under

an internal gauge transformation, the vector constraint requires the system to be invariant

under spatial diffeomorphisms, and the scalar constraint requires the system to be invariant

under a reparametrization of the time coordinate (Gambini and Pullin 2011, p.93-94, Rovelli

2004, p.146, 225). There is an industry debating whether or not these constraints require

or suggest that variation across space and through time is either frozen or missing. This

presumed lack of evolution is called the ”problem of time” and is thought to be the problem

in LQG.6

In classical mechanics, a constraint equation on phase space, C(q, p) = b, is upgraded in

the quantum theory to the operator constraint equation: ĈΨ(q) = bΨ (Gambini and Pullin

2011, p.99). In LQG, our Hamiltonian is identical to three constraints of this form where

b = 0 [A(§1.5.1)] (Gambini and Pullin 2011, p.93, Rovelli 2004, p.225). The goal of LQG is

to look at the space of all functionals Ψ of our phase space variable A and project down onto

the space of states which solve all three constraints. This space represents all the physical

states of LQG. The scalar constraint is the only constraint which has not been solved.7 It
6 It turns out that some version of the problem of time is present in any theory which utilizes the Hamiltonian version of GR.

In other words, the problem of time is not a special problem for LQG (Earman 2002). For more on the problem of time see
Isham (1991, 1992), Kuchař (1992), Earman (2002), Wüthrich (2014) and Norton (Part 2 of this dissertation).

7 I will make claims regarding the ontology of LQG using only those states which satisfy the first two constraints. Since the
true physical states lie in the intersection of the solutions to all three constraints, solving the final constraint will not take
us out of the space of solutions of the first two constraints. Once solved, the true space of physical states may suggest
modifications to the ontology of LQG as described here.
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is conventional to speak of the Hilbert space of LQG in terms of the states which solve the

Gauss and vector constraints, though technically the physical Hilbert space will be some

subspace of this which solves all three constraints.

1.2.2 Spin-networks and s-knots

In the following, I will explicate the theory further by discussing first the Gauss constraint

and then the vector constraint. At each stage, I will provide the näıve interpretation of the

states which solve the relevant constraint(s) and will thereby unpack, in stages, the näıve-

ontology. In developing the theory of LQG (2004), Rovelli implicitly endorses the näıve

interpretation up through the Gauss-stage and then jettisons it when considering the vector

constraint (p.238). Contrary to Rovelli, I will push the näıve interpretation through the

vector-constraint-stage as a means of filling out the näıve interpretation.

In order to solve the Gauss constraint, one first identifies a graph of links (lines) and

nodes (points) embedded in the manifold M. The manifold M, in which the graphs are

embedded, is the manifold of GR stripped of its metrical structure. Recall that in GR a

model for spacetime is given by the pair 〈M, g〉.M is a four-dimensional continuum of points

endowed with a topology and differential structure, g is the metric field and responsible for

the geometric properties of spacetime. In LQG, we explicitly quantize only the gravitational

field, represented by g, and do nothing to the manifold M.8 It is because LQG takes M

for granted that the näıf interprets LQG as being a quantum theory of gravity and not

spacetime.

In order to incorporate the physics of general relativity into what will become LQG,

we rewrite the metric g in terms of a vector potential defined by an su(2)-gauge field A

[A(§1.5.1)] (Rovelli 2004, p.46). We transform the values of this field at each point into an

SU(2)-matrix using holonomies along the links of the graph and by “coloring” each link with
8 For a discussion on the appropriateness of assuming a continuum manifold in canonical quantum gravity, see Isham and

Butterfield (1999). Their article also discusses more radical programs for quantizing gravity which do not assume a classical
manifold.
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a representation of the SU(2) gauge group (ergo spin-network).9 In effect, the colorings pick

a group of matrices which act on a certain sized vector space.10 Every link is assigned a

potentially different representation, and each point along the link gets assigned a particular

matrix from the representation [A(§1.5.1)].

Figure 1: We “color” certain graphs in the sub-manifold Σ with quantum gravitational
information. Colored graphs are called spin-networks and are used to construct the Hilbert
space of spin-network states. We identify a spin-network state with each embedded network.

The idea is that for each point along a network’s link, there is an associated matrix

determined by the field A and the color of the link. A spin-network is a graph whose links

and nodes are geometrically “charged” due to the su(2)-gauge field defined on them. Just

as in GR, where collections of spacetime points are associated with a geometry, so in LQG,

graphs are associated with a quantum geometry. The quantum geometry of LQG plus a
9 Holonomies are built out of parallel – transport maps. Amongst other things, these maps transform the elements of our

algebra su(2) into elements of the group SU(2) (Rovelli and Peush 1998, p.2).
10 Each color is associated with a vector space of a different dimension.
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graph is a spin-network. To be clear, at this point in the discussion, I am only speaking

about mathematical objects; thus, in saying that the graphs onM are charged, I am speaking

loosely. However, in just a moment, I will translate, on behalf of the näıve interpretation,

this mathematical language into a description of physical objects.

We associate to each embedded spin-network, a unique gauge invariant functional of

the vector potential called a spin-network state |S(·)〉, [A(§1.5.2)] (Rovelli and Peush 1998,

p.233-237).11 These states form a basis of the Hilbert space of gauge invariant functionals

[A(§1.5.2)]. Thus, each embedded spin-network defines a basis vector in the gauge invariant

Hilbert space:

Spin-network⇒ |Γ(~x), jn, im〉 ≡ |S(·)〉. (1)

The jn keep track of which links (n) have what algebraic spin information (j) and the im

keep track of which nodes (M) have what algebraic information (i).12 The embedded graph

Γ(~x) is a geometrically contiguous series of links and nodes.

I will stipulate as part of the näıve interpretation that structures on M, which happen

to be picked out by the physical states of the theory, are also to be interpreted in a fairly

literal way. Consequently, since spin-networks are embedded structures inM and are picked

out by vector states of the gauge invariant Hilbert space, the ontology of LQG, according to

the näıf, includes gravitationally “charged” substantival graphs (Figure 2). These graphs are

not mere mathematical objects but are composed of spacetime points which are themselves

physical objects according to the näıf. These graphs are gravitationally charged since LQG

represents them as having suitably quantized gravitational properties encoded by the su(2)

gauge field (and coloring). There are times where Rovelli speaks in accordance with this

ontology (2004 p.147-150), even though, at the end of the day, this is not what he actually

thinks the world is like given LQG (see §1.3.2).
11 Varying the vector potential changes how much charge the network has; however, a variation equal to a gauge transformation

does not change the functional defined on it. By varying the gauge field we vary which SU(2) group element/ matrix is
associated with any point.

12 The nodes of the network are also colored. See [A(§1.5.2)] for why this coloring is important.
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Figure 2: The näıf interprets embedded structures in Σ as literally modeling spatially em-
bedded graphs.

Although I have not yet discussed the observables of LQG (see §1.2.3), it is consistent

with those observables to claim that open sets of spacetime which include highly charged

spin-networks, have a large volume or large area. A three-dimensional region of spacetime

points which includes a highly charged node is said to have a large volume and a two-

dimensional surface of spacetime points which is “cut”, by a highly charged link is said to

have a large area (Figure 4). This ontology of gravitationally charged, physically substantial

graphs, which are responsible for the quantum geometry of physical regions and surfaces,

is only possible at the level of the Gauss constraint. In order to solve the diffeomorphism

constraint, the vector constraint, we will have to construct a new set of mathematical states

as well as a new physical structure for them to represent.

A diffeomorphism can smoothly stretch and shift a network around a manifold, in this

case, the three-dimensional manifold Σ. The diffeomorphism constraint requires that our

physical states be invariant under this manipulation. This constraint presents a problem

if our states are defined with respect to particular embeddings in M (or more particularly
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Σ). Networks which are bolted down to locations onM are not diffeomorphically invariant.

Therefore, in implementing the diffeomorphism constraint, our mathematical states are pro-

moted from being tied to particular spin-networks embedded at specific places to equivalence

classes, under diffeomorphisms, of such networks (Rovelli and Peush 1998, p.238-242). For-

mally, this is achieved by mapping each diffeomorphically related spin-network state (|S〉)

to a specially constructed state (〈s|) in its “dual” space [A(§1.5.2)]. In other words, build

an equivalence class of diffeomorphically related states and map each of these equivalence

classes to a single state in the dual of the original space:

[|Sk〉] ≡ [|Γ(k)(~x)jn, im〉]→ 〈s~k|. (2)

Where, 〈s~k| is a functional on spin-network states |S〉 defined by:

〈s~k|S1〉 ≡
∑

[|Sk〉]
〈Sk|S1〉 (3)

〈s~k|(·) ≡
∑

[|Sk〉]
〈Sk|(·). (4)

Here 〈Sk| the unique dual vector to |Sk〉 such that their inner product (the Haar measure) is

one (Rovelli 2004, p.227-228). Moreover, [|Sk〉] is an equivalence class of embedded networks

(with identical coloring (jn, im)) such that for any a, b if |Sa〉 and |Sb〉 ∈ [|Si〉], then there

exists a diffeomorphism Φ such that:13

Γ(a)(~x) = Φ(Γ(b)(~x)). (5)
13 Of course, any state |S〉 which is related to some |Si〉 by a diffeomorphism is, by definition, a member of [|Sk〉]. Also, this

account is a bit simplistic and extra care is needed since, in general, a diffeomorphism can change more than the graph Γ of
a network (Rovelli 2004, p.238).
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A generic s-knot is a superposition of s-knot states:

〈s| ≡
n∑
k=1
〈s~i,k| ≡

n∑
k=1
〈Γ(i)

k (~x)jn, im|. (6)

The construction in equations (3) and (4) reads as follows: take the dual “bra-vector” to

each of our spin-network “ket-vectors” in the above equivalence class and identify the state

〈s|, with their sum [A(§1.5.2)].

The linear span of the 〈s|-states forms a Hilbert subspace in the dual space.14 The 〈s|-

states are both gauge and diffeomorphism invariant, and we will refer to them as s-knot

states. A generic state in this Hilbert space is a superposition of s-knot states; though, I will

refer to both kinds of states simply as “s-knot states.” When it is important to distinguish

these two kinds of states, s-knots and generic superpositions of them, I will do so.

There are different conventions for naming states which are both gauge and diffeomor-

phism invariant. Some authors use “spin-network state” to refer to any and all states even

if they satisfy the diffeomorphism constraint. These authors allow the context to specify

which mathematical structures are intended by the slightly ambiguous term. It is important

to keep this in mind when reading quotes throughout this paper since, often, claims puta-

tively about spin-networks or spin-networks states are really claims about s-knot states and

“s-knots.”

In the context of the näıve interpretation, I will refer to the physical objects represented

by s-knot states (〈s|) as s-knots. When necessary to distinguish these physical structures

from their graphical representation in Σ, I will refer to the physical objects represented by

s-knot states as “physically substantial s-knots.”15 I will follow the same convention regarding

spin-networks and physically substantial spin-networks (or just physical spin-networks). In
14 Technically, we must also take the “closure of the norm” of the vector space formed by the linear span of the 〈s| in order to

get a Hilbert space. (Rovelli, 2004 p.229)
15 Though, in §1.3.1 I will drop this association and will instead refer to the objects represented by s-knots states as simply

“quantum spacetime.” The reason for this change will become clear.
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most cases, I will allow the context to specify whether I am speaking about mathematical

or physical structures.

According to the näıf, s-knots, like spin-networks, are physically substantial networks in

the physical manifold. However, the result of making s-knot states diffeomorphism invariant

is that they are no longer associated with a single spin-network in M. Since spin-networks

in M are nailed down to locations in the manifold, we have been forced to detach our

diffeomorphism invariant states from them. If s-knot states are no longer associated with a

single embedded network, what physical thing in spacetime do s-knot states represent?

Here the literature becomes a bit opaque and pushes away from the näıve interpretation.

As a consequence of diffeomorphism invariance, Rovelli claims that s-knots are “abstract

graphs” and no longer “in space” (Rovelli 2004, p.19-2, p.283). Similarly, Wüthrich claims:

The (abstract) spin network states result after one has solved the Gauss [gauge]
and the spatial diffeomorphism constraints... These spin network states can be
represented by abstract graphs. (2006, p.92)

Abstract spin-network states, according to Wüthrich, are just s-knot states (2006, p.92).

This portion of the literature is opaque since it is unclear what Rovelli is claiming by calling

s-knots abstract, or what Wüthrich is claiming by describing s-knots states as being abstract

(or as being represented by abstract graphs).16

What these authors mean by calling s-knots abstract and as failing to be in spacetime

is complicated, and will take us too far afield if I were to address this issue. For the time

being, I will simply note that according to Rovelli and Wüthrich, the states of LQG do

not represent networks in a physical manifold, and this has something to do with the dif-

feomorphism constraint. The vector-stage marks the interpretive split between what will

become Rovellian-LQG and the näıve interpretation. In the following, I will argue that the
16 Similarly, in (1994) Baez claims that the states represent a collection of loops which are “not necessarily embedded” in the

spacetime manifold. In a private conversation with Baez, he (basically) endorsed the same reason as Rovelli (§1.3.2), for
thinking of the networks as unembedded.
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näıf, contrary to Rovelli and Wüthrich, can interpret s-knots as concrete structures in the

physically substantial manifold.

In order to argue that it is possible that s-knot states are associated with particular and

well-defined structures inM and thereby with particular substantival networks in the phys-

ical manifold, I will first explain the proof that s-knot states are diffeomorphically invariant.

I will then use this proof to motivate a particular conception of what physically embedded

s-knots are.

As a reminder, a generic s-knot state is defined as:

〈s| ≡
n∑
k=1
〈s~i,k| ≡

n∑
k=1
〈Γ(i)

k (~x)jn, im|. (7)

A diffeomorphism UΦ on a basis vector 〈sk| is mathematically equivalent to 〈sk| ◦ UΦ−1 ≡

( ∑
[|Sk〉]
〈Sk|

)
◦ UΦ−1 ≡ (8)

∑
[|UΦSk〉]

〈S| (9)

Where the summation is over all states |S〉 related to |UΦSk〉 by some diffeomorphism.

Since the set of states defining the summation in (3) and (9) are the same [A(§1.5.2)], the

states UΦ〈s| and 〈s| are the same. This proof works by shoving the diffeomorphism into

the summation which defines the s-knots states. The proof proceeds by manipulating each

individual spin-network state and then noting that, when all is said and done, the set of

manipulated states is the same set with which we began.

Following this construction and proof, let me define a geometrically embedded s-knot

to be a diffeomorphically smeared embedded spin-network. Just as a spin-network state

corresponds with a single embedded network, so an s-knot state corresponds with the entire

composite of diffeomorphically related spin-networks (Figure 3).
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Figure 3: Embedded s-knot

The proof that embedded s-knots, the geometric structures, are invariant under diffeo-

morphisms follows the proof that s-knot states are invariant under diffeomorphisms. In

general, we apply a differomorphism to embedded structures by way of their algebraic de-

scriptions. For example in order to apply a diffeomorphism to a circle, we do not apply the

diffeomorphism map to the circular shape directly, but rather to its algebraic representation.

In the same way, in order to apply a diffeomorphism to an s-knot, i.e. the knot of networks

in Figure 3, we do so by applying the map Φ to the s-knot state. Since s-knot states are

invariant under diffeomorphisms, embedded s-knots are too.

We can visualize this algebraic mapping by “cutting out” from M each network which

comprises the s-knot, “shift” and “glue” these networks back onto M. Since the original

composite of networks contains all spin-networks related by a diffeomorphism, the result of

shifting each network in the same way is to produce no overall change to the collection: each
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network gets mapped to the location of one of its twin networks and so on. This shifting

around of networks produces the exact same configuration of embedded networks with which

we began. Since there is no change to the total collection, there is no change to the geometric

s-knot.

Previously, I amended the näıve interpretation from merely interpreting M as repre-

senting a substantival manifold to also interpreting structures defined onM as representing

physical objects or structures in spacetime. I used this emendation to include spin-networks

as objects in the ontology of näıve-LQG. If we apply the same reasoning to the case of s-

knots, our conclusion will be the same. Since geometrically embedded s-knots are picked out

by s-knot states, the näıf interprets these structures as representing physically embedded

substantival s-knots.

Implicit in the preceding account, the näıf assumes that spacetime points have haecceities

and that collections of physically substantial spacetime points are themselves physical. Ac-

cording to the näıf, both spin-networks and s-knots are composed of physically substantial

spacetime points where“composed” means that the basal structure of either kind of sub-

stantival network is a collection of spacetime points. Just as an aluminum baseball bat is

composed of a collection of aluminum atoms, so spin-networks and s-knots are composed of

a collection of physically substantial spacetime points.

1.2.3 Observables

Since LQG is a quantum theory aimed to replace GR, it will have observables corresponding

to the geometric structure of spacetime. Area and volume observables have been defined in

such a way that both spin-network states and s-knot states are eigenvectors of them (Rovelli

2004, p.248, 262 and Rovelli and Pietri 1996, p.15). In just a moment, I will present the

area operator though few of its mathematical particulars will be required for our purposes.

I present the area operator merely to highlight its dependence on certain structures in the
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manifold, and how our embedded spin-networks are related to the operator through these

structures.

Â(S) ≡ lim
n→∞

n∑
k

√√√√−(∫
S(n)

k

dσ1dσ2εabc
∂xa(~σ)
∂σ1

∂xb(~σ)
∂σ2

δ

δAic(~σ)

)2

(10)

The way to interpret Â(S) is that we are measuring the value of some property Â of some

spatial surface S. The Â(S) operator is the concrete “area” observable of LQG. The reason for

italicizing area and volume is to distinguish the operators named by them from the classical

structures we normally intend. I call the area observable “concrete” since it is defined in

terms of embedded structures in the manifold M. In fact, the reason for including this

equation is to illustrate its dependence on the manifold: the integral is defined in terms of a

measure dσ1dσ2 over an embedded surface S. Moreover, the operator δ
δAi

c(~σ) which acts on

the states |S〉 is explicitly dependent on the values of the coordinate functions (~σ) over S.

The area observable acts on spin-network states and has a spectrum of area eigenvalues:

Â(S)|S〉 ≡
∑

n∈{S∩Γ(~x)S}

√
jn(jn + 1)|S〉. (11)

Embedded spin-networks carry charge (jn) on their links and so contribute to the value of

Â(S).17 An embedded network will affect the value of Â(S) for a given surface in two ways:

first, the number of its links which cross or cut the surface ({S ∩ Γ(~x)S}) will change the

number of things summed over in (11). And second, as we change the charge (jn) of the

links, we affect the size (
√
jn(jn + 1)) of each term in the sum.18 Thus, so long as there are

no other networks in the vicinity, it is possible to increase the Riemannian area of surface

S and yet not increase Â. For instance, consider a single embedded network with one link

which happens to cross the circular surface S. If we had a metric, we could change the

Riemannian size of the circle by doubling its radius though, since we do not change the
17 In (11) I indexed the network Γ(~x) with “S” in order to highlight that what is summed over depends on the network |S〉.
18 Similarly, there are two ways for a network to affect the volume of a region: the number of nodes of a network in that region

and the size of their charge.
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number of times with which the surface is cut by the link, we will not increase the physical

area defined by Â. This is so, since the physical area (Â) is dependent only on the number

of links which cross S and the respective charges of those links. In addition, if we keep S

fixed but increase the charge (j1), the area associated with S will increase. These results

are similar to the situation in electromagnetism: to increase the electrical charge of a plate

we must add more charge, not simply increase the Riemannian size of the plate. In the

same way, to increase the area of a region, we must change our network, not the bounds

of our integration (Rovelli, 2004 p.269-270). A similar situation holds true for our volume

observable [A(§1.5.2)]: integrating over a larger region does not necessarily produce a larger

volume.

The remarkable achievement of LQG and the reason for naming these observables area

and volume is that they produce eigenvalues which approximate their Rimannian name-sakes

when acting on certain states. For instance, there are special spin-network states |Sw〉 such

that (Rovelli 2004, p.268):

Â(S)|Sw〉 = (A(g,S) +O(lp/l))|Sw〉 (12)

V̂(R)|Sw〉 = (V(g,R) +O(lp/l))|Sw〉. (13)

Here A(g,S) is the Riemannian area of surface S given by metric g and V(g,R), the Rieman-

nian volume. As we pull back from the Planck scale (l � lp), the values of our observables

approach their Riemannian counterparts. However, not all spin-network states satisfy these

equations. I have just noted that it is possible to increase the Riemannian area without

changing the value produced by Â. The spin-network states which do satisfy these equa-

tions are called “weave states” and are candidates for the coherent states of LQG since

they represent structures which most resemble properties of classical geometry. Colloquially

speaking, the coherent states of a quantum theory are the states which most closely mimic

the behavior of the associated classical system.
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Throughout the remainder of this paper, I will no longer italicize “area” and “volume”

in reference to the observables of LQG. I have made this decision in an effort to signal that

if LQG is correct, physical areas and volumes are more accurately described by Â(S) and

V̂(R) than by their Riemannian counterparts.

An important prediction of LQG is that the area of surfaces and the volume of regions

come in discrete Planck sized packages. This comes about because the graph of a network

is modified by adding or subtracting whole numbered links or nodes to it. And since the

jn in equation (11) only takes on integer values, a network can only add discrete units

of area to any given surface. Similar reasoning holds for the volume observable. Thus, the

geometric observables of LQG do not relate to the manifold as their Riemannian counterparts

do, which can take on a continuum of values. In fact, the important role played by the

manifold is in defining which nodes are contained in which regions and which links cross

which surfaces (Rovelli 2004, p.262-268). For instance, equation (11) is explicitly dependent

on n ∈ {S ∩ Γ(~x)S}; where n refers to particular links in the graph Γ(~x)S .

Our observables’ dependency on structures in the manifold means that they are not

“Dirac observables.” Since the observables of LQG act on the s-knot Hilbert space, we need

them to be both gauge and diffeomorphism invariant. Unfortunately, our observables are

explicitly dependent on particular surfaces S and regions R (Rovelli 2004, p.266) and thus

fail to be invariant under diffeomorphisms. Rovelli has offered some suggestions for how to

get around this issue,19 and claims that once we have gotten around it, the observables will

make no reference to particular regions and surfaces in the manifold, but will be dependent

on the algebraic information of the s-knot states alone (Rovelli 2004, p.262-265). This means

that the spectrum of the observables, according to Rovelli, will depend only on the coloring

of the links and nodes, the number of nodes, and the algebraic-graphical information of the
19 Rovelli suggests that we use the gauge freedom of the matter fields to make the observables diffeomorphically invariant, be

content with partial observables, or use evolving constants (Rovelli and Peush p.7, Rovelli 2004, p.266).
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networks (i.e. which nodes connect to which nodes), and not in any way on how the networks

are situated in the manifold.

My exposition of LQG from the perspective of the näıve interpretation is almost com-

plete; before moving onto alternative interpretations, I will first address the “non-separability

problem.” The following account of the problem and its solution will serve to further elabo-

rate the structure of LQG: abstract networks and their relation to spin-networks, notions of

physical equivalence in LQG, and an often undiscussed modification of the diffeomorphism

constraint. The remaining portions of this section have less to do with the näıve interpreta-

tion per se and more to do with the structure of the theory. In addition, this discussion will

provide motivation for Rovelli’s departure from the näıve interpretation.

1.2.4 Non-separability

Let us define two weave states to be physically equivalent just in case they yield the same

eigenvalue for every observable. Assuming that Rovelli is correct and the observables of LQG

rely only on the algebraic information of the states, then two spin-network weave states are

physically equivalent just in case they are algebraically identical. In this section, I will argue

that, as we have constructed it, LQG is artificially inflated by physically equivalent states.

Let us begin with a purely formal ‘algebraic” graph Γ which tells us which algebraic nodes

connect to which algebraic lines. Algebraic lines and nodes are not instantiated as geometric

structures inM. Strictly, the “algebraic” qualifier is not required as, in and of itself, a graph

is not embedded in a manifold. A graph is merely a set of objects with a binary relation.

When we embed an algebraic graph, we associate a spacetime point to each object in the

set and we choose a line connecting any two points whose associated objects satisfy the

binary relation. In common parlance, a graph usually brings to mind an embedded graph, a

geometric collection of lines and points. In order to ensure that this geometric graph is not

being applied to Γ, I have called it algebraic.
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After selecting Γ, we construct the algebraic network |Γ, jn, im〉 by coloring its lines and

nodes, which we then embed in two distinct ways. By embedding this network in two distinct

ways, we construct two distinct two spin-networks – |Γ(1)(~x), jn, im〉 and |Γ(2)(~x), jn, im〉 –

from a single algebraic network. Let us assume that our algebraic network contains at least

one node of “valence” four or higher.

The problem is, we can embed nodes with four or more links in ways which are not related

by a diffeomorphism (Rovelli and Fairbairn 2008, p.5-6). Having four linearly independent

links in three-dimensional space means that there are some spatial configurations of the net-

work which cannot be achieved with smooth transformations. This is because four linearly

independent lines have one degree of freedom left unconstrained by three-dimensional dif-

feomorphisms. This limitation, imposed by smoothness, will lead to a non-separable Hilbert

space of s-knot states (p.5-6).

Since Γ contains a node of valence four of higher, let us choose Γ(1)(~x) and Γ(2)(~x) so that

they are not related by a diffeomorphism. Now let us impose the diffeomorphism constraint

and construct our s-knot states,

|S1〉 ≡ |Γ(1)(~x)jn, im〉 → [|Γ(1)(~x)jn, im〉]→ 〈s1| (14)

|S2〉 ≡ |Γ(2)(~x)jn, im〉 → [|Γ(2)(~x)jn, im〉]→ 〈s2|. (15)

Since Γ(1)(~x) and Γ(2)(~x) are not related by a diffeomorphism, they belong to distinct equiv-

alence classes and will be mapped to different s-knots: 〈s1| 6= 〈s2|.

Generally, it is not problematic to have physical redundancy in our Hilbert space. How-

ever, in this case, it is. It turns out that there are infinitely many, non-diffeomorphically

related embeddings for any network which contains a node of valence four or higher (Rovelli

and Fairbairn 2008, p.5-6). Thus, every spin-network containing a node of valence four or

higher will have infinitely many physically redundant copies of itself in the s-knot Hilbert
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space. This artificial inflating of the s-knot Hilbert space forces the Hilbert space to be non-

separable since these s-knots form a basis for our new Hilbert space. Since the new Hilbert

space is non-separable, we cannot define an inner product on it, which renders the space of

little use. In order to solve this problem, let us first review a few things about gauge orbits.

In constraint mechanics, the constraints we generate encode symmetries of our system.

If we transform the system in accordance with the constraint, we move along a “constraint-

surface” or “gauge orbit” in the phase space and our Hamiltonian does not change. Thus, we

can use the constraints to specify regions (i.e. the orbits) of our phase space which represent

identical physical situations. Consequently, we have two distinct, though intimately related,

notions of physical equivalence: first, two states are physically equivalent just in case our

observables cannot distinguish them, and second, two states are physically equivalent just

in case they live on a gauge orbit of the theory. In order to ensure that these notions match,

we require that our observables be invariant along the gauge orbits of the theory.

Operators which are invariant along the gauge-orbits of the theory are called Dirac ob-

servables, and only they are candidates for representing physical properties of our system.

Previously, I noted that, as things stand, the geometric observables of LQG are not Dirac

observables since they are not invariant under diffeomorphisms. However, if we are able

to upgrade our observables and define them in such a way that they are diffeomorphically

invariant, then as we move along the gauge orbits associated with s-knot states (i.e. those

orbits consisting of all diffeomorphically related spin networks) the observables will not vary.

However, according to Rovelli, more than this is the case. Consider the set of equivalence

classes of diffeomorphically related embeddings of a single algebraic spin-network. It turns

out that we can continuously parameterize this set using variables called moduli. According

to Rovelli, if our observables are invariant under diffeomorphisms, then they will be invari-

ant under variations of these moduli as well (Rovelli 2004, p.267). For this reason, Rovelli

claims, “these moduli are an artifact of the mathematics: they have nothing to do with the

physics” (p.267).
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If the observables were not moduli-invariant, the moduli would allow the manifold to

physically assert itself: some two distinct embeddings Γ(1)(~x) and Γ(2)(~x) of a single algebraic

graph Γ, would be physically distinguished by the Dirac observables of the theory. However

since the observables are invariant under variations of the moduli, the remaining remnants

of the manifold are erased. It is for this reason that Rovelli claims that the observables of

LQG are defined only by the algebraic properties of the states and nothing else. Thus, the

true gauge orbit, as seen by the invariance of the geometric observables, is larger than the

diffeomorphism-orbit and includes the moduli-orbit as well. Together these orbits cover the

entire manifold M: the observables of LQG, according to Rovelli, will not distinguish any

two embeddings of an algebraic network. Thus,M is invisible to the physical observables of

LQG.

Since the observables are invariant under diffeomorphisms as well as variations in moduli,

Rovelli does not actually impose the diffeomorphism constraint in constructing the s-knot

states; instead, Rovelli, and others, impose the “diff∗-constraint.” I will explain how this con-

straint solves our non-separable problem and will then explain why we are justified in using

it. The diff∗-constraint requires that our physical states be invariant under all spatial trans-

formations which are smooth except at, at most, finitely many points (Rovelli 2004, p.232).

This constraint is logically stronger than the normal diffeomorphism constraint since it re-

quires that our states be invariant under a much larger class of transformations. We use the

diff∗-constraint to define our s-knot states using the same recipe as before (equation 2), yet

the outcome is different. We begin with the gauge invariant states (the spin-network states)

and build equivalence classes of diff∗-related networks, and then we map each equivalence

class to a single vector in the dual space.

By removing the smoothness requirement at finitely many points, we are able to avoid

the trouble posed by nodes of high valence and broaden the number of networks identified in

a given equivalence class. The result of imposing the diff∗-constraint is that the number of

s-knots shrinks to a countable cardinality (Rovelli 2004, p.267). Thus, since the basis vectors
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are the s-knot states, the s-knot Hilbert space is separable. Besides gaining a usable Hilbert

space, this new constraint removes the physical redundancies in our s-knot Hilbert space.

We are justified in using the diff∗-constraint rather than the diffeomorphism constraint,

since all the states which satisfy the new constraint automatically satisfy the original con-

straint; as a result, no unphysical states are admitted.20 In applying the diff∗-constraint, we

have simply made the requirements for being a physical state more strict. One might be

concerned that in tightening the constraint, we will have squeezed out some of the physical

states. This need not worry us too much since all the states from the original Hilbert space

are found represented in the new Hilbert space. By applying the diff∗-constraint, we have

identified some old s-knot states by mapping them to a single state in the new Hilbert space.

Rather than squeezing out old states, the new constraint merely identifies them. Though the

diff∗-constraint shrinks the size of the Hilbert space by associating old s-knots states, it does

not associate any two states which our observables were able to distinguish. The old s-knots

states which end up being bundled together are those states which are physically identical

from the perspective of our observables and thereby, we do not remove states which might

be required for representing some physical possibility. We bundle up only those states which

are representationally redundant.

This completes my exposition of the theory of LQG. At different points in the exposition,

I have explicitly endorsed the näıve interpretation. Before considering other interpretations,

with competing ontologies, recall what the world is like given the näıve interpretation: spin-

networks and s-knots live on a physical manifold and carry gravitational charge along their

links and nodes. The more charge a network has, the more volume it produces. The networks

of LQG build spacetime geometry one region at a time as geometry “radiates” from them

(Figure 4). Since there is a lower bound to how much area and volume a physical network

can carry, spacetime can only be geometrically-parsed up to a certain scale – below which,

no geometry is defined.
20 Unphysical as determined by our original constraint.
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The ontology of this interpretation is not so different from an equally näıve interpretation

of GR. In GR, spacetime is described by 〈M, g〉 which we can interpret näıvely as describing

a physically substantial manifold bearing a physical geometry. In moving to näıve-LQG, we

keep the physically substantial manifold but replace the physical geometry, associated with

the gravitational field and represented by g, with a quantum geometry, produced by charged

networks and represented by 〈s|.

Figure 4: A series of networks: gravitationally charged links and nodes. Each node defines a
volume of space and each link, an area.

By identifying s-knot states with diffeomorphically-smeared spin-networks, we can ex-

plain how area and volume come to be associated with diverse regions of the physical mani-

fold. The issue with spin-network states is that each state is associated with a single physical

network, and this network is nailed down to specific regions of the physical manifold. If our

physical network has a few nodes, then the physical manifold will have only certain regions

for which there are physical volume and area. By smearing the network over the entire

manifold, s-knots are capable of producing areas and volumes across the manifold. Enough
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about the näıve interpretation, for surely M cannot represent spacetime? If M does not

represent spacetime, then, as we shall see, spacetime might disappear in LQG.

1.3 SPACETIME DISAPPEARS

In this section, I will provide seven additional interpretations of LQG, most of which do not

include spacetime in the ontology of LQG. Five of the seven differ from one another and from

the näıve interpretation merely in what they take spacetime to be. I call these interpretations

‘näıve∗’, a family of four related interpretations, and ‘Rovellian.’ The final two interpretations

are different insofar as they explicitly or implicitly require that we formally modify LQG. The

sixth interpretation I call ‘trickle-down’ and the seventh ‘TaG.’ The following analysis will

center around whether or not some interpretations have spacetime and physical structures

called s-knots in their ontology. These are the two ontological questions which are at the

core of this paper. Only by first understanding how and under which interpretations there

are s-knots and not spacetime fundamentally, can we analyze whether or not spacetime is

emergent from or composed of s-knots.

1.3.1 Näıve∗-LQG

In the following, I will amend the näıve interpretation to thicken the notion of spacetime

from being a structure literally modeled by the bare manifoldM with no physical geometric

structure, to being a structure with some kind of geometry or quantum geometry. Unlike

the original näıve interpretation, I will show that, according to some of the näıve∗ inter-

pretations, there is no spacetime in LQG. According to some of these interpretations, there

are physically substantial s-knots which are ontologically distinct from spacetime, while in

other interpretations there aren’t. The motivation for thickening our notion of spacetime to

include something like a metrical structure or physical geometry is that, without it, “space-

time” lacks features such as causes, spatial lengths, and durations of time which seem to be

constitutive of spacetime. Allow me to explain.
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First, were spacetime to be bare and lack the physical structure encoded by g which

I will often refer to as either ‘a physical metrical structure‘ or ‘a physical geometry,’ then

spacetime would lack segments of spatial length and durations of time. Presumably, that

a bare physical manifold lacks spatial lengths and durations of time, is sufficient reason to

doubt that a bare physical manifold is spacetime at all. (In the following, I will say ‘bare

manifold.’) However, in case one needs more convincing, I will briefly show how certain kinds

of causes as well as many other physical facts go missing when we treat M, absent g, as

representing spacetime. The following considerations are not exactly new and versions of

these ideas can be found in Lam and Esfeld (2013) as well as Isham and Butterfield (2011).

According to general relativity, causes are associated with either light-like or time-like

trajectories. This requirement forces all causal processes to stay within the light cone of

the putative cause. However, since light cones are defined using the metric g, without g,

M does not have a light cone structure. Without a light cone structure on M, we cannot

define causal processes there. In the context of LQG, one might not be concerned that a

bare manifold lacks GR-causes since, in the context of LQG, GR is no longer considered

a fundamental theory. Once out from under the thumb of GR, we may try to formulate a

theory of causation which is consistent with a bare manifold.

The trouble in trying to build an account of causation consistent with a bare manifold

is that without a physical metrical structure it’s unclear that spacetime contains a very

robust sense of change. And without change, in what sense are there causes? For example,

consider the broken window: yesterday the window was large, rectangular, and near the

book case, today the window lies in a pile of irregularly shaped small glass shards much

further from the book case. Standardly, the change in the state of the window would signal

some sort of cause, a baseball perhaps, responsible for the change. However, in a bare

manifold, since there are no lengths, there are no rectangles, no irregular shapes, no small,

no near, no far. Without the physical geometry encoded by g, the sense of change which the

world includes is incredibly reduced. Consequently, the kind and number of causes are also
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reduced. Presumably, that causes are hard to pin down in a bare manifold is actually not so

much the issue as it is symptomatic of the fact that so much else has already gone missing:

length, duration, shape, size, speed, momentum, force, many kinds of energy, much physical

variation and most other physical features which are dependent, in some way, on geometry.

Given that so much physical structure is missing in a bare manifold, one begins to doubt

that M is sufficiently rich to model spacetime on its own.

Consequently, perhaps spacetime is better modeled by 〈M, g〉 or perhaps even by 〈M, 〈s|〉.

The latter option should be read as claiming that spacetime is modeled by a topological

manifold bearing the quantum geometry of the s-knot named by 〈s|. In the following, I will

modify the näıve interpretation in four ways in order to accommodate these two options.

As I mentioned at the start of this paper, these interpretations will be less näıve, though

still substantival. Finally, I do not claim that these four interpretations are the only pos-

sible elaborations of the näıve position. These interpretations simply provide us with an

interesting series of vantage points with which to interpret the mathematics of LQG. As a

warning, since I will be cycling through interpretations, I will also be cycling through what

‘spacetime’ means, or how spacetime is represented by the interpretation. For this reason, it

is important to keep in mind which interpretation is being discussed. The following näıve∗

interpretations are named näıvei (i ∈ {1, 2, 3, 4}).

According to the näıve1 interpretation, spacetime is the composition of a substantival

manifold bearing a physical quantum geometry which we represent by the ordered pair

〈M, g〉. By defining spacetime as the composition of two things, I am implicitly treatingM

and g as representing physical things in their own right. However, one need not adopt this

position. Rather than treating M and g as representing physical things which combine to

form spacetime, one might instead understand spacetime to be a “simple,” non-composite

object represented by 〈M, g〉. By calling spacetime simple, I do not mean to suggest that

spacetime fails to have proper parts in terms of spacetime regions or points, but rather

that spacetime fails to have proper parts in terms of structures represented by M and
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g. Thus, contrary to näıve1-LQG, according to what I will call the näıve2 interpretation,

〈M, g〉 represents a simple spacetime in so far as neither M nor g alone represent anything

physical.21 To be clear then, according to the näıve2 interpretation, g does not represent

the physical geometry of spacetime andM does not represent physical “basal” structure of

spacetime. But rather, 〈M, g〉, as a unit, represents a geometric-basal structure which we

call spacetime. In the following, I will unpack how the näıf, of either variety, might update

their belief regarding spacetime in light of LQG.

If spacetime is, as according to näıve1-LQG, such that there is no metrical structure

described by LQG, then there is no spacetime according to näıve1-LQG. It is likely that the

näıf of this variety will interpret the structure 〈M, 〈s|〉 as representing a composite quantum

spacetime: M represents a substantival manifold and 〈s| represents a physically substantial

network responsible for the quantum geometry of quantum spacetime.

If spacetime is as according to näıve2-LQG, since there is no metrical structure describe

by LQG, there is no spacetime according to näıve2-LQG. However, since it is likely that the

näıf2 will interpret the structure 〈M, 〈s|〉 as representing a simple quantum spacetime, then

there is only quantum spacetime and not also physically substantial networks represented

by 〈s|. By definition of what ‘simple’ means, in this context, it’s not the case that 〈M, 〈s|〉

represents a simple structure and 〈s| also represents a physical structure on its own.

In contrast to the previous interpretations, the general motivation for the following two in-

terpretations is the conviction that if the physical model of LQG includes a four-dimensional

basal manifold, then the physical structure being represented is enough like a “container”

for the substantivalist to think that a spacetime lives on in LQG. According to substanti-

valists of this ilk, a spacetime is defined to be that structure in which all physical objects

exist, and that which allows objects to both have “geometric” extension and to be “geo-

metrically” related to one another. (Where ‘geometry’ refers to those physical properties
21 In different settings,M and g can represent whatever we want them to. The point here is simply that if we interpret 〈M, g〉

as representing a simple structure, then these very same mathematical structures M and g, in the context of LQG, cannot
also represent distinct physical things.
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modeled by either GR or LQG.) Substantivalists, of the following variety, interpret 〈M, g〉

as representing a pseudo-Riemannian spacetime and interpret 〈M, 〈s|〉 as representing a

“quantum-Riemannian” spacetime.

According to the näıve3 interpretation, spacetime is the composite of a substantival mani-

fold bearing a quantum geometry which we represent by the ordered pair 〈M, 〈s|〉. According

to this interpretation, spacetime, for obvious reasons, does not disappear in LQG. Moreover,

since spacetime is a composite, both M and 〈s| represent physical things: there is a sub-

stantival manifold with embedded networks which are responsible for the quantum geometry

of spacetime.

According to the näıve4 interpretation, spacetime is a simple, non-composite structure

represented by 〈M, 〈s|〉. In this case, since spacetime is simple, neitherM nor 〈s| represent

anything physical on their own. In particular, the states 〈s| do not represent physical things

called s-knots but rather these states simply provide some of the requisite mathematical

structure for representing the quantum geometric relations between physical structures. As

a unit, 〈M, 〈s|〉 represents spacetime according to näıve4-LQG, just as 〈M, g〉, as a unit,

represents spacetime according to näıve2-LQG.

One might object that, despite my claims to the contrary, the states 〈s| can play dual

roles in the above “simple” interpretations. According to this objection, 〈s| partakes in

representing the simple structure 〈M, 〈s|〉 and represents physically substantial s-knots in

the physical manifold. However, if 〈s| picks out physically substantial networks, then it

seems as though the simple structure 〈M, 〈s|〉 can be conceived to have parts: one of those

parts being the physically substantial networks represented by 〈s|. There might be a subtle

way to conceive of 〈M, 〈s|〉 as being simple eventhough 〈s| also represents something on its

own; however, since I am unable express this possibility without merely insisting that it is

the case, I will not attempt to develop it.

I have introduced the simple interpretations as a means of highlighting the dependence of

physically substantial s-knots on a composite interpretation of (quantum) spacetime. In order
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for there to be physical networks distinct from (quantum) spacetime itself which somehow

partake in structuring (quantum) spacetime, we need to conceive of (quantum) spacetime as

composite.

All told, there are four less-näıve interpretations of spacetime and these possibilities map

the four possible answers to questions 1. and 2. from §1.1: does spacetime disappear in

LQG, and are there s-knots in the ontology of LQG? In summary:

• According to the original näıve interpretation, the manifoldM, devoid of any metrical

structure, represents substantival spacetime. Spacetime does not disappear in LQG,

and there are physically substantial s-knots. Spacetime on this view does not require

any particular physical geometry.

• According to the näıve1 interpretation,M, devoid of any metrical structure, represents

a substantial pre-spatiotemporal manifold. Since substantival spacetime, on this view,

is represented by 〈M, g〉, spacetime disappears in LQG. It’s reasonable to suppose that

a naif of this variety will endorse a composite interpretation of 〈M, 〈s|〉 as describing

quantum spacetime. Spacetime, within this view, requires a classical physical geometry,

and quantum spacetime requires a quantum geometry. In any case, since quantum

spacetime is composite, there are physically substantial s-knots represented by 〈s which

are embedded in the substantival manifold represented by M.

• According to the näıve2 interpretation, substantival spacetime is a non-composite struc-

ture represented by 〈M, g〉 and fails to be described in LQG. It’s reasonable to suppose

that a naif of this variety will endorse a non-composite interpretation of 〈M, 〈s|〉 as

describing a substantival quantum spacetime. Since quantum spacetime is simple, in

the manner described, quantum spacetime cannot be conceived to have physical parts

represented by either M or 〈s|.
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• According to the näıve3 interpretation, substantival spacetime is a composite structure

represented by 〈M, 〈s|〉. Since spacetime is composite, the states 〈s| represent physical

networks embedded in the substantival manifold represented by M.

• According to the näıve4 interpretation, substantival spacetime is a non-composite struc-

ture represented by 〈M, 〈s|〉 and, as such, spacetime exists in LQG, though substantival

s-knots do not.

The theory of LQG neither entails that spacetime disappears, nor that there are physical

networks. Whether or not there are such things depends on our interpretation of the theory

and, in particular, our interpretation ofM and its relation to spacetime. In order to keep this

discussion of ontology from degenerating into a verbal debate, we must specify ahead of time

what we take spacetime to be. The philosophical import of this discussion has nothing to do

with which mathematical structures get to be labeled ‘spacetime,’ but it has everything to do

with what physical structures we take to be essential for spacetime. If we understand physical

spacetime to be essentially as described by either the näıve1 or näıve2 interpretations, then,

if LQG is true, there is no spacetime fundamentally. However and more generally, if we take

physical spacetime to be that structure in the world responsible for some of our experiences,

then, if LQG is true, we will naturally update our beliefs about that structure and adopt

something like the näıve, näıve3, or näıve4 descriptions of spacetime.

Though spacetime might disappear in LQG, it disappears in the same sense that classical

electrons disappear in quantum mechanics. In place of spacetime qua 〈M, g〉, LQG provides

a structure described by 〈M, 〈s|〉. The practical difference between these two structures rests

primarily in the different geometric predictions derived from them. In particular, the quan-

tum geometry predicted by LQG and contrary to GR, is discrete and suitably fuzzy. The

geometry is fuzzy in two senses: first, as will be explained in §1.3.2, that geometric shapes as-

sociated with weave states will never be sharply Riemannian. Second, since a generic s-knot

state is not a weave state, that rather than describing areas and volumes which look Rie-
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mannian in the classical regime, a generic s-knot state describes a superposition of areas and

volumes. How these generic s-knot states come to be associated with the phenomenological

world is the big question underlying all instances of the measurement problem. If having a

fuzzy quantum-geometric structure entails that spacetime has gone missing in LQG, then so

be it; however, one must not think that the disappearance of spacetime, in this sense, is any

stranger than the disappearance of any other classical structure when adopting a quantum

theory.

One might object that, by proposing the näıve3 and näıve4 interpretations, I am not

taking seriously enough the fuzzy physical geometry described by 〈s|. In essence, this is

the same concern which I considered when discussing what goes missing were we to treat

spacetime as being modeled by M alone. There, I argued that since much of what we take

spacetime to be goes missing if spacetime were bare, it would not be spacetime after all. For

similar reasons, perhaps the structure described by 〈M, 〈s|〉 is not very much like spacetime

after all. For example, since a generic s-knot state describes a quantum superposition of

geometric structure, spatial lengths are generically described as a superposition of (roughly)

classical lengths and similarly described are durations of time, speed, momentum, electric

flux and everything else which relies on the physical geometry of spacetime.22 In short, the

quantum fuzziness described by generic s-knot states leaks into the rest of the world. Can

this fuzzy structure really be spacetime? This question is not whether or not spacetime can

be recovered from this fuzzy structure, but whether or not spacetime should be identified

with it. Is spacetime fuzzy? There comes a point when so much has been lost from what we

take spacetime to be, or how we expect physical objects to relate to spacetime, that we must

let go of the concept altogether, or so the objection goes. In general, I am sympathetic to

this objection, though I will note one important caveat. As discussed above, a substantivalist

might regard the fact that 〈M, 〈s|〉 can be interpreted substantivally as evidence that the
22 Similarly, Isham and Butterfield note that by replacing g with a suitably quantized alternative, the quantum geometry

associated with (quantum) spacetime will not include a stable light cone structure but a superposition of light cones/ causal
structures (2001, p. 54, 64).



36

spirit of spacetime lives on in LQG. In other words, a substantivalist might require that for

spacetime to disappear, we need the substantival “container” to disappear. This concern

will be addressed to some extent in §1.3.3. Before moving beyond the näıve∗ interpretations,

I need to clarify one further point.

According to the original näıve interpretation, the vector states of LQG represent physi-

cally substantival s-knots. However, since there are no physically substantial s-knots accord-

ing the näıve4 interpretation, what do the states of the theory represent? According to the

näıve4 interpretation, spacetime is non-composite and modeled by the ordered pair 〈M, 〈s|〉;

consequently, the states of LQG describe different configurations of spacetime itself. In gen-

eral, for interpretations which do not admit s-knots in their ontology, the states of LQG

describe either different configurations of spacetime or of quantum spacetime. In order to

streamline the following discussion, I will choose the latter locution.

The three interpretations to which I will now turn, diverge much more radically from

the näıve interpretation than do the näıve∗ interpretations. According to the Rovellian in-

terpretation, the manifold M is a mathematical artifact and does not encode any physical

information; spacetime, according to this interpretation, is only the gravitational field. Ac-

cording to TaG interpretations, M does encode physical information relevant for spacetime

but, as a result, we ought to provide a quantum description for it as well. TaG-LQG diverges

from the näıve interpretations in providing, or attempting to provide, a quantization of the

spacetime manifold by way of its treatment of M. Similarly, according to trickle-down

interpretations, M encodes physical information relevant for spacetime. However, unlike

TaG, according to trickle-down interpretations, the manifold is thought to be automatically

quantized under the standard formulation of LQG. Trickle-down interpretations diverge from

näıve interpretations insofar as they interpret the effects of quantizing the metric field as

trickling down and affecting the base manifoldM.23 Both TaG and trickle-down interpreta-
23 Technically, the metric g is quantized in canonical quantum gravity and the vector potential A is quantized in LQG. The

difference between these approaches is mostly mathematical since the metric g can be written in terms of “tetrad fields”
which are defined by A.



37

tions are far more programmatic and less well understood than either the näıve or Rovellian

approaches to LQG. As a result, my account of these interpretations will be proportionally

less complete.

1.3.2 Rovellian LQG

The following interpretation is largely inspired by the words and works of Carlo Rovelli;

however, I do not claim that the views expressed here are exactly his own. Thus, this

interpretation is Rovellian, though perhaps not Rovelli’s. According to the Rovellian inter-

pretation, the diffeomorphism freedom found in GR is evidence that M is a gauge artifact

and does not represent a physically substantial manifold (Rovelli 1997, 2004). In fact, this

rejection of the substantival manifold is often how diffeomorphisms are employed by those

wielding Einstein’s infamous hole argument.

Importantly, the diffeomorphism invariance of GR is found recapitulated in the theory

of LQG, in the form of the scalar and vector constraints. As explained in §1.2.1, these con-

straints require that our states be constant in time and across variations of space. However,

it turns out, that even more than this is the case: as we saw in §1.2.4, the observables of the

theory are also moduli-invariant. This is important since if the observables were not, they

would treat two different embeddings of a single algebraic network differently.24 If these two

embeddings produced physically distinct effects (e.g. if the geometry they produced was

distinct), then the manifold would show itself in a physically salient way. However, that is

not true; according to Rovelli, two different embeddings of the same algebraic graph produce

the same geometry. Thus, since the manifold is invisible to the observables of LQG, Rovelli

concludes:

In fact M (the spacetime manifold) has no physical interpretation, it is just a
mathematical device, a gauge artifact... There are not spacetime points at all.

24 Assuming that the network includes a node of sufficiently high valence.
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The Newtonian notions of space and time have disappeared... the spacetime co-
ordinates ~x and t have no physical meaning...
(2004, p.74)

What Newton called “space,” and Minkowski called “spacetime,” is unmasked:
it is nothing but a dynamical object – the gravitational field...
...the gravitational field is the same entity as spacetime.
(2004, p.9, 18)

According to Rovelli, the diffeomorphism invariance of GR and the diff∗ invariance of LQG

imply that M plays no role in determining values of our physical observables, and Rovelli

concludes that M is a gauge artifact and ought not be reified.25 However, just because M

does not play a role in determining what physical values are observed does not require that we

treatM as being a mathematical artifact. How to treat gauge orbits is a thorny philosophical

issue, and it is far from settled that all such orbits ought to be taken non-realistically.26

Rovelli himself recognizes this in his “Halfway Through the Woods” article (1997), and

acknowledges that though LQG and GR are manifold-invariant, one might still insist that

there is a physical background manifold which happens to be unobservable. Though Rovelli

acknowledges that the existence of an unobservable manifold is logically possible, it it not the

position he endorses. According to the Rovellian interpretation presented here and assumed

in Rovelli (2004), there is no physical manifold represented by M.

Since, according to Rovelli, spacetime is just the gravitational field, in quantizing the

gravitational field, we quantize spacetime itself (Rovelli 2004, p.17). Since there is no classical

gravitational field in LQG, there is no classical spacetime either. However, since the weave

states reproduce classical geometry at classical scales, equations (12) and (13), there is a

sense in which spacetime arises or is recovered from the quantum phenomena of LQG. When

(l � lp) and the quantum geometry, or quantum spacetime, is described by a weave state
25 It is unclear how literal we should interpret Rovelli’s repudiation of M as bearing any physical salience. It seems that, at

minimum, the global topology of “space” Σ has bearing on what our experiences of the world is like. For instance, if Σ is
compact (i.e. has a dimension which is rolled up like a three-dimensional cylinder), then our theory of (quantum) spacetime
should predict that we could travel a finite distance in one direction and come back to where we started.

26 See, Healey (2009) for a discussion on how to interpret gauge variables and orbits.
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of the theory, the world looks classical. In these cases, we can use GR and g to model some

features of the world. This way, we might say that spacetime is recovered from LQG in

the classical regime. However, we must not interpret claims to the effect that spacetime is

recovered, in this sense, as necessitating that spacetime, as a new item of ontology, arises in

the classical regime. When ‘recovered’ is understood in this way, all that is required is that

spacetime, the classical gravitational field, is an effective structure. One might have a view

under which these effective structures are genuine objects of our ontology and distinct in kind

from whatever happens to be fundamental. On the other hand, one might view effective

structures as mighty useful fictions. My argument here is only to note that “recovering”

classical objects in this way, does not necessitate that there are such objects.

Much of what I have just said regarding Rovelli’s position can be modified and applied to

some of the näıve∗ interpretations. In particular, according to both näıve1-LQG and näıve2-

LQG, classical spacetime can be recovered in exactly the same way as it is for Rovelli: when

the states 〈s| are weave states, the physical geometry of LQG can be effectively modeled

by 〈M, g〉 when (l � lp). In this way, classical spacetime can be recovered from LQG

according to these interpretations. Or more perspicuously, if our näıve interpretation includes

physically substantial s-knots, as in näıve1-LQG, classical spacetime is recovered when the

physically substantial s-knots come to be described by the weave states of the theory.

Though there is neither a spacetime manifold nor spacetime geometry according to

Rovellian-LQG, only the latter is a result of the quantum theory. The spacetime mani-

fold disappears in Rovellian-LQG for the same reason that it disappears in “Rovellian-GR:”

in one way or another, the theories are diffeomorphically(∗) invariant.

Given that the world does not include a physically substantial manifold, the world also

does not include physically substantial networks, as I have defined them. Physically embed-

ded spin-networks and s-knots are physically substantial insofar as they are comprised of

points from the physical manifold.27 This argument: that there are no physically realistic
27 By calling the points, ‘spacetime points,’ I do not thereby claim that the bare physical manifold is spacetime.
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networks since there is no physical manifold, is not an argument which Rovelli makes. How-

ever, I will assume that, for Rovelli, there are no physically substantial networks, and I will

interpret the following statement, as Rovelli saying as much:

Such geometrical pictures [of geometric networks] are helps for the intuition, but
there is no microscopic geometry at the Planck scale and these pictures should
not be taken too literally in my opinion. (Rovelli 2011, p.4)

Additionally Rovelli (2004, p.268-269), describes spacetime like a shirt which, when ap-

proached, reveals an underlying weave of threads. However, Rovelli cautions against taking

these weaves “as a realistic proposal for the microstates of a given macroscopic geometry

[spacetime]” (p.269). Indeed, for Rovelli, there is no shirt since there is no basal structure,

there are only “fields on fields” (2004, p.9) or rather “fields ‘on’ fields.”28 I interpret these

quotes from Rovelli as cautioning us against näıvely reifying networks in M. The world

does not really contain gravitationally charged points and lines which are responsible for the

macroscopic geometry of the world. In fact, I take it that this is the reason why Rovelli

refers to s-knots as being “abstract.”

According to Rovelli, the physically salient aspects of s-knots are algebraic and indepen-

dent of the manifold altogether. Given their independence of the manifold, we might as

well associate s-knots not with [|Γ(~x), jn, im〉], but with [|Γ, jn, im〉] which I have been calling

algebraic networks. I take it then that when Rovelli refers to s-knots as being abstract and

not in space, that he intends to signal two distinct things: (1) there is no spacetime as repre-

sented by M, and (2) the physically salient mathematical structures of LQG are algebraic,

not geometric.

A note of caution: I am using ‘geometry’ in at least two distinct ways. There is the

physical geometry given by specifying a metric or an s-knot state, and then there is the

geometry of points and lines which we use in constructing the networks in M. In saying
28 Rovelli does not explain what fields, qua physical objects, are. Are fields extended objects, are they composed of field-points

and if so, in which ways are physical fields different from a substantival manifold?
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that the networks are not to be taken in a geometrically-literal way, the Rovellian is only

cautioning against reifying the points and lines of the network. For instance, consider the

two levels of geometry contained in Figure 4. This figure contains the geometric graph of

the spin-network, as well as the geometry of the cubic volume and square areas. According

to the Rovellian, only the volume and areas associated with the network are to be taken

seriously. Neither the lines and points of the graph, nor the shapes denoting the volume and

areas, are to be interpreted “ontologically.” In particular, that the volume is represented as a

cube and that the areas are represented as square, are artifacts of the image. I do not have

space in this article to discuss these ideas fully, but, in general, the information provided

by a network is not enough to fully specify all the angles between adjacent surfaces which

define a volume or area. Thus, shapes associated with the networks of LQG have quantum

indeterminacy built into them. Since some of the angles are left undetermined, the shape is

fuzzy and cannot be represented as being euclidean, as I have done in Figure 4. For more

on these issues see Rovelli and Vidotto (2015).

If geometric spin-networks and s-knots are like the manifold M and fail to refer to

substantival links and nodes in the world, what role do they play? According to the Rov-

ellian interpretation, spin-networks and s-knots are mathematical tools useful for encoding

the properties of quantized spacetime. According to this view, state-vectors which live in

our Hilbert space, networks which live on M, and Γ (networks in some algebraic space),

are all merely mathematical structures which encode the geometric properties of quantum

spacetime. Both the vector states of LQG and the embedded structures, represent quantum

geometric properties of quantum spacetime in terms of the algebraic information they con-

tain. Consequently, no part of a geometric network, not an isolated point or line, is to be

taken as physically salient on its own. The network, as a whole, is physically salient insofar

as it maps to a vector state in the Hilbert space of LQG.29

29 Caveat: some sub-networks can be treated as being physically meaningful, but only because if we were to extract them from
their network, they too would have a copy of themselves in the Hilbert space of LQG. They are not physically meaningful as
proper parts of a network, but are physically meaningful as extracted networks in their own right.
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By repudiating the substantival manifold and by quantizing the gravitational field, Rovellian-

LQG is a form of relational quantum spacetime. However, since Rovelli does not say much

regarding his relationism (2004, p.77-79), I wilI refrain (mostly) from associating any partic-

ular flavor of relationism to Rovellian-LQG.30 Rather than associating a particular flavor of

relationism to Rovellian-LQG, I will leave this particular feature open and will stipulate that

however 〈M, g〉 is interpreted as describing a relational spacetime in GR, that we import

this interpretational stance to LQG and regard 〈M, 〈s|〉 as describing relational quantum

spacetime.31 By leaving an interpretational variable open, Rovellian-LQG is not a single re-

lational interpretation of quantum spacetime, but a schema for generating various relational

interpretations. Depending on how the relationism is fleshed out, the Rovellian will interpret

different s-knot states as representing different relational quantum spacetimes.

One might object that I have omitted an important interpretation of LQG and of s-knot

states in particular. Under näıve-LQG and certain version of näıve*-LQG, s-knot states

represent physically substantival networks in a physically substantial manifold. One might

wonder why I have not considered the analogous relationist interpretation whereby s-knot

states represent physically relational networks in a relational spacetime? The reason I have

not discussed this interpretive option is that I am not convinced that the suggestion is

coherent. In particular, I am not convinced that on a relationist account, there can be a

distinction between what the states represent (relational networks) and some other structure

called relational spacetime. In the case of Rovellian-relationism, what the states represent

is relational spacetime and not some conceptually distinct middle man.
30 See Earman (1989) for different flavors of substantivalism and relationism. Moreover, since it’s possible to deny substanti-

valism and not be a relationalist (Earman, 1979) and since Rovelli has not provided a worked-out metaphysics of (quantum)
spatio-temporal relations and how they constitute quantum spacetime, perhaps Rovelli’s position is more “non-substantival”
than relational.

31 Some kinds of relationist accounts of GR might also require there to be matter fields before there is spacetime. For instance,
if one interprets g as only encoding the spatio-temporal relations between material objects, then, without material objects,
all we have is a relation and presumably no spacetime. However, for Rovelli, g encodes more than spatio-temporal relations,
g is a physical field in its own right (Rovelli 2004, p.77). That being the case, 〈M, g〉 might not require other physical fields
in order to be a model of relational spacetime.
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The reason that the näıve, näıve1, and näıve3-interpretations coherently distinguish be-

tween what s-knot states represent (physically substantial networks) and a physically sub-

stantial spacetime, is because they interpretM substantivally. In the case of näıve-LQG, the

substantival structure is spacetime and according to näıve1 and näıve3-LQG, M represents

a pre-spatio-temporal substantival manifold. In any case, that there is a physically substan-

tial structure independent of the s-knot states, creates the conceptual space for physically

substantial s-knots. In the case of relational space-time, what plays the analogous role to the

substantival interpretation ofM? Or, in other words, if s-knot states do represent physically-

relational s-knots, what is relational spacetime and what represents it in our mathematical

model?32 I cannot rule out the possibility that there is a coherent interpretation of LQG

whereby there are physically relational networks which live in a relational spacetime, but due

to my inability to formulate a coherent instance of such an interpretation, I will not consider

it. In the following, I will continue to assume that if there are physical networks distinct

from spacetime or quantum spacetime, that these networks are physically substantival.

1.3.3 Manifold quantization

In this section, I will address both the TaG and trickle-down interpretations since they

both “quantize” the manifold. In just a moment, I will indicate, as best as possible, what

‘quantize’ means in this context. However, as I mentioned at the start of this paper, these two

interpretations are far more programmatic than serious or well developed versions of LQG;

as such, I will not attempt to explain in very great detail how the manifold is quantized, but

I will merely indicate what it might mean for spacetime and s-knots if it were “quantized.” In

short, since TaG and trickle-down interpretations replace the manifoldM with a “quantum”

basal structure M̂, the physical structure described by these interpretations is that much

more foreign and that much less spatio-temporal. Moreover, in replacing M with M̂, the
32 One might attempt to interpret M relationally, though I have serious doubts that this can be done in a convincing way.
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näıf cannot interpret the theory as including physically substantial s-knots, at least as s-knots

have been conceived thus far.

According to the substantival interpretations considered in this paper, M plays an es-

sential role in representing a substantival basal structure. Within some interpretations,

the manifold M is interpreted as representing a substantival structure on its own (either

spacetime or pre-spatio-temporal); whereas, according to other interpretations, M is a re-

quired component for what ends up representing a substantival structure (either spacetime

or quantum spacetime). Moreover, what makes Rovellian-LQG non-substantival is precisely

the repudiation of M as being physically significant. For the sake of argument then, let

me stipulate more generally that M is essential for encoding whatever might be substanti-

val about spacetime. If this is correct, then the TaG and trickle-down interpretations are

philosophically novel insofar as they describe a theory in which the substantival features of

spacetime are “quantized.” The point is, if our model replaces M with a fuzzy background

structure “M̂,” it is harder to see that there is something like a substantival “container” in

which physical things are and dynamical processes occur. This is not to say that one can-

not interpret M̂ substantivally and is merely to note that unlike M, M̂, might not model

anything like a container. For instance, according to Crowther, spacetime is replaced by a

“cloud of lattices” (2014, p.247).

According to TaG versions of LQG, the topology and geometry (TaG) of classical space-

time 〈M, g〉 are explicitly replaced by some suitably quantized versions. The impetus behind

TaG-LQG is a desire for a more radically background-independent theory of quantum grav-

ity. How one goes about “quantizing” M however, is far from clear. In general, what

quantization means in this context is distinct from what it means according to Dirac’s quan-

tization procedure. Moreover, as Isham (1991) notes, since M is a composite structure

consisting of a set of points, topology, and differential structure, one has many options for

which structures to quantize in quantizing M. For instance, according to Duston’s version

of TaG (2012), certain topological features of the manifold are appended to the spin-network
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states by adding a new internal degree of freedom. Though both Isham and Duston have

developed programs to quantize the topological structure of M, one could instead attempt

to quantizeM through its differential structures or by discretizing the manifold’s base set of

points. In any case, however one goes about “quantizing”M, in addition to g, the states of

TaG-LQG represent physically distinct configurations of 〈M̂, ĝ〉: a quantum-spatio-temporal

structure in all its manifold glories.

Regarding trickle-down interpretations, I intend for this interpretive-scheme to capture

any and all interpretations under which the quantization of the gravitational field is thought

to automatically affect a discretization of the base manifold.33 For instance, according to

Isham and Butterfield, the discrete spectrum of the area and volume observables (§1.2.3)

suggests that the physical basal structure of spacetime or quantum spacetime is “logically

weaker” than a physical continuum (2001, p.78). I am not certain how trickle down effects

work, and my purpose here is not to provide an account of such effects. The point in dis-

cussing this interpretive option is merely to highlight its ontology: whatever basal structure

there is to the world is impoverished compared to that described by M which, of course,

is the same result obtained by TaG-LQG. Consequently, even if we were to adopt a näıve

attitude toward these interpretations, we would not conclude that the ontology of the theory

includes a physically substantial manifold, or perhaps anything which might be interpreted

as a substantival container. Moreover, if there is no physically substantial manifold, we will

not interpret LQG as including physically substantial s-knots. Allow me to explain.

“Quantizing” the manifold M will affect the mathematical networks embedded in it

and, thereby, will affect what the näıf takes the world to be like. Since the näıf interprets

mathematical structures fairly literally, he will interpret the world as including “quantized”

substantival s-knots and not the classical substantival s-knots assumed hitherto. What quan-

tum substantival s-knots are, will depend on how exactlyM is quantized. For instance, if the
33 For a general discussion of this idea, see Isham and Butterfield (2001), Isham (1991) as well as Norton (Part 2 of this

dissertation).



46

manifold is quantized by “summing over” all possible discretizations of the manifold, then

the näıve ontology of this theory would include a fuzzy, discrete, substantival base and yet

no s-knots, at least not as they have been defined. Perhaps the substantival networks of this

basal structure are superpositions of discretized s-knots? I have no reason to think that the

states of either TaG or trickle-down-LQG describe anything like a “〈fuzzy, discrete, substan-

tival base; superposition of discretized s-knots〉.” The point is simply that in quantizing the

manifold, we simultaneously carve away at the substantivalist’s container and cut ourselves

off from being able to interpret the theory as including physically substantival s-knots.

The TaG and trickle-down interpretations are of special interest, since they push directly

up against the substantivalist’s intuitions. The container, which the substantivalist takes

M to represent, is explicitly given a quantum description in TaG and trickle-down interpre-

tations. How, or in which ways, M̂ is able to be interpreted substantivally will depend on

how, and in which ways,M is quantized. In any event, it is unlikely that 〈M̂, ĝ〉 or 〈M̂, 〈s|〉

describes a physical structure alike enough to what we mean by ‘spacetime’ for even the näıf

to think that spacetime, or a close kin, exists fundamentally in LQG.

1.4 CONCLUDING REMARKS AND CHALLENGES

Throughout this account, I have considered eight interpretations of LQG: five näıve inter-

pretations, as well as the Rovellian, TaG, and trickle-down interpretations. Most of these

interpretations do not include physically substantial s-knots in their ontology, and some do

include spacetime. Thus, claims to the effect that spacetime is composed of or is emergent

from spin-networks (s-knots) depend rather acutely on our interpretation. Presumably, if

spin-networks compose spacetime, then there must be a thing called spacetime and there

must be physical things called spin-networks. I will use this section to provide an analysis of

some of the claims which I quoted at the start of this paper. In particular, I will argue that,

for many interpretations, spacetime is not composed of or built from physically substantial

s-knots and that when spacetime is composed of physically substantial s-knots, they compose
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spacetime only “weakly,” which I will explain. Following the analysis of whether or not, and

in what sense, spacetime might be composed of or built from spin-networks, I will briefly

discuss Huggett and Wüthrich’s account of spacetime emergence. I will explain how, for

these authors, emergence does not require a physical object called spacetime to emerge from

some other physical object (a spin-network). I will conclude from these two discussions that

the claims quoted at the start of this paper are hard to make true when taken literally and

are of limited ontological import when suitably interpreted. This is not to say that there is

something wrong or missing from the works which contain those claims. Rather, those works

simply have different goals from the ontological focus of this work. I will close this paper

by noting how this discussion of ontology might affect related topics in the philosophical

foundations of LQG.

1.4.1 Spacetime is composed of or constructed out of spin-networks

I will analyze claims to the effect that spacetime is composed of or constructed out of spin-

networks by placing those claims in the context of three very different interpretations of

LQG. The idea is that by considering the claim “spacetime is composed of spin-networks”

under these three interpretations, we might generalize to the other interpretations. For rea-

sons already discussed, I will translate this conversation from being about spin-networks to

being about s-knots.

If we endorse the näıve3 interpretation, then s-knots compose spacetime though only in a

technical sense. S-knots “compose” spacetime insofar as spacetime is defined to be that phys-

ical structure represented by 〈M, 〈s|〉, and insofar as there are physical things called s-knots.

In other words, s-knots compose spacetime since we need 〈s| for our model of spacetime.

Moreover, since this interpretation takes for granted a physically substantial manifold, it is

not the case that s-knots compose all aspects of spacetime. S-knots, in this situation, merely

provide the missing link for spacetime. With the inclusion of s-knots, the physical manifold
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gains the quantum geometric properties which we have required of spacetime. Since s-knots

do not compose all aspects of spacetime, I will say that s-knots weakly compose spacetime.

If we endorse the näıve1 interpretation, then s-knots only effectively compose space-

time. According to this interpretation, spacetime includes a physical geometry, essentially

described by a pseudo-Riemannian metric. Since the world, according to LQG, is never

exactly described by a pseudo-Riemannian metric, there is no spacetime fundamentally in

LQG. Although, when an s-knot comes to take the form described by some weave state of

the theory, we can pretend, in certain regards (equations 12, and 13) and in certain regimes

(l � lp), that that world is pseudo-Riemannian. In this way, s-knots build an effective

spacetime (i.e. quantum geometry looks classical sometimes.)

According to the Rovellian, spacetime is not literally composed of s-knots for two reasons.

First, according to the Rovellian, there are no physically substantial networks (for why this

is so, see §1.3.2). Second, since the Rovellian defines spacetime to be the classical gravita-

tional field, and since there is no classical gravitational field in LQG, fundamentally then

there is no spacetime. Thus, there is no spacetime to compose, and there are no s-knots for

the composition. Rather than saying that s-knots compose spacetime, the Rovellian might

instead claim that when quantum spacetime comes to take a form described by a weave

state, we can approximate LQG with a classical spacetime, e.g. with a classical gravitational

field.

Thus, as these cases illustrate, it is not straightforwardly the case that spacetime is

composed from or constructed out of s-knots. Moreover, in cases where s-knots really do

compose spacetime, since a realistic interpretation of s-knots assumes a physically substantial

manifold, s-knots compose spacetime only weakly. In the following, I will briefly discuss
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Huggett and Wüthrich’s account of emergence. As we shall see, these authors might not be

making an ontological claim about new kinds of objects coming to exist.

1.4.2 Spacetime emerges from spin-networks

According to Huggett and Wüthrich, “the spacetime structure emerges from appropriately

benign, i.e. semi-classical, spin-networks” (2013, p.279). Presumably, according to these au-

thors, spacetime is not as described by the näıve, näıve3 or näıve4 interpretations. According

to these interpretations, spacetime is fundamental to the theory of LQG and is in no need

of emergence.

According to the remaining interpretations, spacetime is essentially related to the physical

geometry described by g. Since there is no such geometry in LQG, then there is no spacetime

fundamentally. As a reminder, both näıve2 and Rovellian-LQG do not include physically sub-

stantial spin-networks (s-knots) as objects in their ontology (§1.3.1, 1.3.2). Consequently, if

either of these interpretations are what Huggett and Wüthrich have in mind, and they might

not be, then whatever emergence amounts to, for these authors, cannot require that there

actually be physically substantial spin-networks. As it turns out, Huggett and Wüthrich’s

account of emergence does not require that there actually be physical spin-networks.

According to Huggett and Wüthrich, when two theories satisfy a certain set of pre-

specified criteria, the theories (and perhaps some of their substructures) are said to stand

in the emergence relation (2013, p.280). Once the criteria are met and the theories stand in

an emergence relation, we say either that one theory is emergent from the other or that the

physically salient structures of one theory emerge from the physically salient structures of

the other. For instance, if GR and LQG satisfy the emergence relation, we might say that

GR emerges from LQG, or that spacetime (〈M, g〉) or perhaps the gravitational field (g),

emerges from quantum spacetime (〈M, 〈s|〉) or perhaps from s-knots (Wüthrich 2006, §9.2).

Importantly, though Huggett and Wüthrich’s account of emergence requires that spacetime

and spin-networks be possible physical structures relevantly related to our experiences and
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modeled by our theories in order to ground the claim that spacetime is an effective re-

placement for s-knots, their account does not require that there actually be spacetime or

spin-networks (2013, p.284).34 Allow me to explain.

According to Huggett and Wüthrich, spacetime emergence, in the context of LQG, in-

cludes two procedures:

The first procedure, an approximation in the sense of Butterfield and Isham
(1999,2001), should show how the dynamics forces the quantum state into semi-
classical states with a well-behaved classical counterpart such that, e.g., the quan-
tum superposition is dominated by a single spin network. The second, limiting,
procedure then establishes the connection from the semi-classical states to clas-
sical relativistic spacetime. (2013, p.280)

The approximating procedure mentioned here is a requirement on the dynamics of LQG to

force some generic superposition of s-knot states to take the form of a weave state (§1.2.3).

Once done, our authors require that there be some physically salient limiting procedure

whereby these weave states might reproduce the empirical content of relativistic spacetime.

This limiting procedure is at least partially satisfied by the weave states insofar as they

reproduce “the standard [psuedo-Riemannian] area and volume functions” of spatial regions

in the limit l� lp (p.279). Notably, neither condition (approximation or limit), require that

there actually be a classical relativistic spacetime in the regime l� lp; all that these proce-

dures require is that weaves states reproduce the physical geometry of a classical spacetime.

For more on this point, see §1.5.1.

Additionally, these procedures also do not require there to be physically substantial spin-

networks (s-knots). For instance, a Rovellian could interpret the aforementioned processes

as requiring that relational quantum spacetime, as represented by some s-knot state 〈s|,

come to look like a relational classical spacetime (a described by g) in the regime l � lp.35

This example serves to highlight the fact that just because the states of LQG satisfy the
34 Here ‘effectivity’ is understood in terms of the predictive efficacy of theory given the structure in question, 〈M, g〉, for

instance.
35 This in fact is exactly what the Rovellian does say in the form of “recovering” classical spacetime (§1.3.2).
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conditions as outlined by Huggett and Wüthrich, we cannot infer that there are physical

spin-networks (s-knots) from which spacetime emerges. In order for this additional claim to

hold, we need to adopt an interpretation which includes physical s-knots.

In sum, the quoted claims with which I began this paper, are of little aid for understanding

the ontology of LQG: the nature of spacetime, and its relations the networks of LQG. These

claims are of little ontological aid since they are either not true when interpreted literally

and, when true, they don’t say much about ontology. And then again, it is unlikely that

these claims were meant to provide any such aid, but rather these quotes should be read as

providing general heuristics regarding technical results in LQG.

1.4.3 Conclusion

In the first half of this paper, I provided an exposition of LQG expressed in the language of

the näıve interpretation. That interpretation describes the world as including a substantival

manifold called spacetime which contains spatially embedded charged graphs. These charged

graphs are responsible for the quantum geometric structure of spacetime. The second half

of this paper consisted of an analysis of alternative interpretations of LQG. These inter-

pretations differ from one another and the original näıve interpretation in what they take

spacetime to be and, consequently, what they take the states of the theory to represent.

As I have argued, whether or not spacetime disappears in LQG depends upon how one

interpretsM and how essential a pseudo-Riemannian geometry is for spacetime. What goes

missing in LQG, independent of one’s interpretation, is the physical geometry described by

g; whether or not spacetime also goes missing is up for debate. Finally, I have provided an

analysis of some claims to the effect that spacetime is either composed of or emergent from

spin-networks (s-knots) and have argued that, more often than not, these claims cannot be

and perhaps are not meant to be interpreted in an ontologically serious sense.
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1.4.4 Related issues and looking forward

The foregoing analysis will affect other issues in the literature on LQG: the problem of time,

the status of locality in LQG, the nature of emergence and of causation in LQG, as well as the

distinction between abstract and concrete objects. In this final section, I will only discuss,

albeit very briefly, how LQG affects our ability to distinguish between abstract and concrete

objects. I will discuss two predominant accounts of the abstract-concrete distinction and will

show how LQG makes trouble for them. Included in this discussion will be a brief elaboration

(on that discussed in §1.3.1) of the status of causation in LQG. I also discuss the abstract-

concrete distinction as an example of how LQG might force us to reconceive conceptual

distinctions or metaphysical doctrines which LQG touches on. In order to streamline the

following discussion, I will assume that 〈M, 〈s|〉 represents quantum spacetime (as opposed

to spacetime, for instance).

Account one: it is standardly suggested that the difference between abstract and concrete

objects, if there be such a distinction, rests in how these objects relate to spacetime. In

particular, concrete objects are defined to be just those objects which exist at particular

places and times; whereas, abstract objects do not exist at places or times. Tables, chairs,

and presumably spacetime itself are concrete objects; whereas, propositions, numbers, and

Platonic forms are abstract. As one might expect since according to LQG there is no space,

time, or spacetime fundamentally, there is nothing fundamental which exists at spatial places

or times. Thus, it seems that so long as the abstract-concrete distinction hinges on there

being spacetime, then there is no distinction fundamentally.36

We might try to avoid this conclusion by treating classical spacetime as a genuine object

of our ontology in the “emergence” regime. Huggett and Wüthrich’s account of emergence

utilizes effective structures. And, as I noted in §1.4.2, this account of emergence does not

require that we interpret effective structures as being anything more than useful fictions,
36 Presumably, this result would please any one, e.g. Maddy et al. (1990), for whom some mathematical objects are also

concrete.
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though, we could. If we were so inclined, we could adopt a metaphysics of objects whereby

all classical or otherwise effective structures are distinct objects of ontology. These effective

structures are distinct insofar as they are not merely fundamental structures which happen

to take useful forms. According to this suggestion, there are classical tables and there are

also the particles which make up the table. The table is a thing unto itself and is not

merely a convenient name for a table-wise arrangement of quantum particles. If we adopt

the former option, we can try to avoid the collapse of the abstract-concrete distinction since

relativistic spacetime exists, under this view, as an emergent-effective structure (§1.4.2).

While it is true that, according to this metaphysics, there is classical spacetime in the regime

l� lp, spacetime qua an effective structure, cannot play the role which the abstract-concrete

distinction requires of it. For instance, while there is spacetime and therefore a distinction

between abstract and concrete objects in the regime l � lp, what should we say about the

non-classical regime l ≯ lp? Is there no distinction at these energy scales? Do table particles

and numbers, for instance, become indistinguishable when l ≯ lp? Should the fact that there

is a distinction between tables or the particles which make up tables and numbers depend

on how much energy with which we are probing the “table”? Presumably not. Thus, even

if we were to adopt a split level ontology, we would not thereby save the abstract-concrete

distinction qua spacetime.

Account two: it is standardly suggested that concrete objects are causal; whereas, ab-

stract objects are not. According to this suggestion, even if there were only quantum space-

time, since tables are causal (let us assume), tables are thereby concrete; since numbers and

propositions are non-casual, they are thereby abstract. Of course this suggestion assumes

that there are causes in quantum spacetime and, as I argued in §1.3.1, there might not be

causation or at least a very robust account of causation were spacetime defined to be with-

out a classical metrical structure. I will review this argument and strengthen it with a few

additional comments.
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In section §1.3.1, I mentioned that if “spacetime” were without any metrical structure,

then there would be no lengths, no rectangles, no irregular shapes, no small, no near, no

far. I argued that, without these facts, the sense of change and thereby causation, which the

world contains, is significantly diminished. We might hope that by modeling the physical

basal structure of the world as including a quantum geometry, rather than as being a bare

substantival manifold, then these additional quantum geometric features will allow us to

model the sorts of changes which we require for causation. However, it turns out that

things are actually worse off than I have let on and, in particular, adding the quantum

geometry represented by the states 〈s| does not help causation. As soon as we include

the quantum geometry of LQG in our model of spacetime or quantum spacetime, there

is no longer any remaining physical change or variation over time whatsoever. Similar to

general relativity, the quantum geometry of LQG is coupled to whatever matter fields there

are. Thus, if our matter fields undergo any substantive change, the quantum geometry of

LQG will also undergo a change.37 However, as I have already discussed, the Hamiltonian

constraint requires that the quantum geometry of LQG be static. If the quantum geometry

is static, so too are the quantum matter fields to which it is coupled. Thus, since the

Hamiltonian constraint requires that our matter fields remain static, in what sense are there

causes in LQG?

One way to escape this conclusion is to redefine how we model dynamics in LQG, which

happens to be an active area of research (Isham 1992, Kuchař 1992). If one of these research

projects is able to recapture the missing dynamics of LQG, then presumably we could try

to capture causation in LQG using the proposed dynamics. However, according to our cur-

rent understanding, LQG does not include dynamics and, thereby, does not include enough

structure for there to be causation fundamentally. If there is no causation fundamentally in

LQG, then what exactly distinguishes concrete and abstract objects?
37 By substantive change, I mean to exclude cases such as the exchanging of identical particles.
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Thus, if LQG is true, then fundamentally there is neither spacetime nor causation, in

anything like the way these concepts have been standardly conceived. Without spacetime

or causation, we do not have the conceptual resources for there to be a distinction between

abstract and concrete objects, again, at least as this distinction has been standardly con-

ceived. If we think that there is a metaphysical difference, in kind, between mathematical

objects and dining room tables, then, if LQG is true, we will need to upgrade our account of

concrete objects so as to distinguish them from abstract objects. I will close this discussion

with two final comments.

First, how seriously should we treat the lack of causation and the collapse of the abstract-

concrete distinction suggested by LQG when LQG might very well be false? The theory is

not completely well-defined, and we don’t have a direct way to test any theory of quantum

gravity. Given these shortcomings, perhaps it is prudent to set aside the puzzling ontology

of LQG until the theory is confirmed. However, such reasoning would be mistaken. Even

if LQG turns out to be false, we should take these lessons seriously. LQG has shown us

that it is possible to have a physical theory which does not include spacetime or causation.

If spacetime and causation are contingent structures, then we should be wary of defining

metaphysical doctrines, like the abstract-concrete distinction, in terms of them. Presumably,

if there is a distinction between concrete and abstract objects, the distinction is independent

of physics.

Second, in light of LQG, we might upgrade our account of the abstract-concrete distinc-

tion by making use of quantum spacetime. Under this suggestion, concrete objects are just

those objects which are in quantum spacetime and abstract objects are not. Though this is

a reasonable and tidy solution, I suggest that we not adopt it for the previously stated rea-

sons. If there is a metaphysical distinction between abstract and concrete objects, we need

a metaphysical account of this difference and not another distinction in terms of physical

structures. If LQG can erase spacetime, what hope do we have for quantum spacetime?
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1.5 APPENDICES

In this appendices, I will cover three central mathematical developments in LQG: the con-

straints derived from Dirac’s quantization procedure, the spin-network and s-knot Hilbert

spaces, and the area and volume observables. I discuss only these topics because a fuller

treatment should be sought for in a textbook, and yet these few topics are sufficient for pro-

viding a first level orientation to the mathematics of LQG. This appendix is written as an

outline, and many details and caveats are left out. The bulk of this appendix is reproduced

from standard textbooks on LQG such as Rovelli (2004), Thiemann (2007), and Gambini

and Pullin (2011). When no citation is provided, the corresponding material has been drawn

from Rovelli (2004).

1.5.1 APPENDIX A

Constraints

In order to use Dirac’s quantization procedure, we need to write GR as a Yang-Mills

theory. Thus, the task we are first concerned with is how to squeeze GR into a Yang-Mills

theory. For more detail or further reading on this material, see Baez (1994). We begin by

rewriting Einstein’s field equations:

Rµν −
1
2gµν(R + λ) = 8πTµν , (16)

in terms of the “tetrad fields”:

e ≡ eIµσ̂I ⊗ dxµ. (17)

In the case of LQG, with its su(2)-gauge field, the object e ≡ eI σ̂I is a vector in Minkowski

space and the object eIµσ̂I ⊗ dxµ is a “Minkowski-valued” one-form. Generic one-forms are

maps from tangent vectors to smooth functions. The above “Minkowski-valued” one-form is

56
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a map from tangent vectors to vectors in a Minkowski vector-bundle. Because we are working

with vector bundles (which happen to be Minkowski valued), every point of the spatial

manifold has an associated Minkowski space. The tetrad field associates a vector from each

of these vector spaces to every tangent vector at that point in space. Since this mapping

is dependent on the spatial manifold, we need both external (spatial) as well as internal

(gauge) coordinates in order to fully specify the tetrad (up to coefficients).

For any given internal Minkowski vector ~v = vµeIµσ̂I , we define its length in the usual

way:

|v| =
√
−ηIJvµeIµ(x)vνeJν (x). (18)

Unsurprisingly, we can pull this metrical structure back to the base manifold and define the

metric on tangent vectors (vλ∂λ) to be:

gµν∂
µ∂ν ≡ ηIJe

I
µ(x)eJν (x)dxµ ⊗ dxν . (19)

In a similar way, we can rewrite the Ricci tensor and Ricci scalar in terms of tetrad fields

which we can then use, in conjunction with (19), to rewrite (16) as:

RI
µ −

1
2Re

I
µ + λeIµ = 8πGT Iµ . (20)

Here, I have kept only the coefficients of the tensors and have suppressed the basis vectors

σ̂I ⊗ dxµ. The practice of keeping only the coefficients is common, though it can lead to

confusion if one is not careful to keep track of the indices. Throughout this account, ‘I, J,K’

range over internal Minkowski coordinates while ‘µ, ν, λ’ range over external spatial coordi-

nates.
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In the same way that we use the Levi-Civita connection to define covariant derivatives in

GR (as well as covariant exterior derivatives), we use the su(2)-gauge field A ≡ AIJ(x)σ̂I ∧

σ̂J ≡ AIµJ(x)σ̂I ∧ σ̂J ⊗ dxµ to define a similar structure(s) in LQG:

Dµv
I ≡ ∂µv

I +AIµJvJ . (21)

The gauge field A is also known as the vector potential in LQG and is one of the new

variables which Ashtekar used to reformulate canonical quantum gravity along the lines I

am here outlining. The vector potential plays an essential role in writing GR in terms of

a Hamiltonian which we need before we can use Dirac’s quantization procedure. Using the

vector potential, its canonical momenta Ẽµ
I (x), the internal curvature tensor F I

µν , and the

Lagrangian multipliers Nµ, N0, and λI , we can write the Lagrangian for GR as:38

L ≈
∫
d3(x)

(
Ẽµ
I ȦIµ +N0εIJKẼ

µ
I Ẽ

ν
JF

K
µν +NµẼν

IF
I
µν + λI(DµẼ

µ)I
)
. (22)

According to Dirac’s quantization procedure, the three formulas appended by the Lagrangian

multipliers are the constraints of LQG:

DµẼ
µ
I = 0, (23)

Ẽν
IF

I
µν = 0, (24)

εIJKẼ
µ
I Ẽ

ν
JF

K
µν = 0. (25)

Importantly, all the physics of GR are encoded in the following constraints (Isham 1992,

p.34-35). The first constraint is called the gauge or Gauss constraint, the second constraint

is called the vector or the diffeomorphism constraint,
38 Gambini and Pullin (2011, p.93)
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and the third is the called the scalar or Hamiltonian constraint. In turning GR into a

quantum theory, we begin with a space of functionals on the gauge potential Ψ[A] and

promote the vector potential to play a dual role as a multiplicative operator (p.99):

ÂIµΨ[A] = AIµΨ[A]. (26)

The canonical momenta are likewise promoted to the functional derivatives:

ˆ̃Eν
I Ψ[A] = −iδΨ[A]

δAIν
. (27)

Plugging these operators into the aforementioned constraints, the physical states are defined

to be those states which are annihilated by the following three operator-constraints:

−iDµ
δΨ[A]
δAIµ

= 0, (28)

F I
µν

δΨ[A]
δAIµ

= 0, (29)

εIJKF
K
µν

δ

δAIµ
δ

δAJν
Ψ[A] = 0. (30)

The goal, then, becomes to find a set of states which solve these equations and hope that

they form a Hilbert space. In the following I will first construct the spin-network Hilbert

space whose states solve the Gauss constraint, (28). I will then construct the s-knot Hilbert

space whose states solve both the Gauss and diffeomorphism constraints, (28) and (29).

Unfortunately, we do not yet have a Hilbert space of states which solve the Hamiltonian

constraint.
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Hilbert spaces

Nota bene: throughout the rest of this account, I utilize a formalism which is slightly

different from that used in the main body of this text. For instance, rather than representing

spin-network states as |Γ(~x), jn, im〉 and |S〉, I will here use ΨS and |S〉. The majority of

the following construction of the states of LQG follows Rovelli (2014) and Rovelli and Peush

(2013).

The generic space of states with which we begin is S, a linear space of cylindrical functionals,

on the vector potential, A. A generic state in S is defined as:

ΨΓ,f [A] ≡ f(U(A, γ1), ...U(A, γL)). (31)

Here the γk are generic oriented paths in the “spatial” manifold Σ, and each U(A, γk) is a

holonomy along them. We use these states to define an inner product on S and, in turn, use

this inner product to construct K, the “completion” of S ⊂ K. In the following, I will whittle

this large space K into a proper subspace K0 whose states are gauge invariant functionals.

First, we begin with a particular embedded network, Γ(~x), in some surface, Σ, and focus

our attention on those state functionals whose γk are the curves of the graph Γ(~x). We will

use the graphs Γ(~x) to construct basis vectors for the subspace K0; however, in order to do

so, we need to assign an irreducible representation of the SU(2) group to each link of the

graph. By choosing a representation, we are able to associate with each point along the

links, γk, some particular matrices. As the holonomy drags our gauge field along the link,

the exponential map converts the (su(2)) algebra elements to (SU(2)) group elements which

we associate with some particular series of matrices (provided by the representation). I will

briefly explain how this process works and then how we use these representations to build

gauge invariant states.
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The irreducible representations of SU(2) are given by the spin-j representations39 where

j ∈ (0, 1
2 , 1, ...,

n
2 ), n ∈ N. We assign some spin-label jl to each of the links l in Γ(~x), and

pick some matrix element (αl, βl) from the corresponding matrix Mjl(U(A, γl)). We then

construct the following “colored” cylindrical state ΨΓjlαlβl
[A]:

≡Mj1(U(A, γ1))α1
β1Mj2(U(A, γ2))α2

β2 ...MjL(U(A, γL))αL
βL
. (32)

The difference between these states and those defined in (31) is that the generic functional

in (31) is replaced by a generic multiplication of matrix elements. We call the process of

assigning an irreducible representation to each link “coloring” the links, and say that the

color of some link l is its associated representation jl. After coloring the links, we color the

nodes of the graph by associating a special vector (an “intertwiner”) to each node. Each two

nodes can have the same or different intertwiners associated with them.

Since the links of the graph are colored, each link has some Hilbert space Hj associated

with it. To each node we associate the tensor product of the Hilbert spaces associated with

the the links meeting at that node. This giant tensor product of Hilbert spaces contains a

subspace of vectors which are invariant under the action of SU(2)-gauge group. We color

the node by selecting one of these intertwining vectors. Once each node and link is colored,

we define a generic spin-network state ΨS [(A)] to have the form:

≡ ~VMj1(U(A, γ1))α1
β1Mj2(U(A, γ2))α2

β2 ...MjL(U(A, γL))αL
βL
. (33)

39 For each j, we construct the Hilbert space Hj out of the polynomials of the form a2jx
2jy0 + a2j−1x2j−1y1 + ...a0x0y2j

on C2, where ai ∈ C2. The elements m ∈ SU(2) are mapped to linear operators Mj(u) on the vectors of Hj . The trivial
representation, j=0, is all the functions of the form a0x0y0 and so is isomorphic to C2. The fundamental representation of a
group is the group itself and only occurs when the group is itself a group of linear transformations on a vector space. The
spin- 1

2 representation is isomorphic to the fundamental representation, and the spin-1 representation is isomorphic to the
adjoint representation.
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Here, the vector ~V is tensor product of the intertwiners at the nodes. The difference between

these states and those defined by (32) is that these states are defined by contracting all the

end-point matrix elements whereas the states in (32) are defined as simply a product of some

of these elements. Since the vector ~V sits in the giant Hilbert space on which these matrices

act, it is not hard to pick vectors at the nodes to do the contraction. Generically, ~V will

have the form:

Vm ≡ Vβ
m

αm ≡ V
βm

l1
...βm

lin
αm

l1
...αm

lout
. (34)

Where m selects the node. The idea is that the αm index on the node contracts all the

α indices of the links which “leave” the node, n, and the βm contracts the β indices of

the links which “enter” the node. In short, spin-network states are defined by contracting

all the holonomies around the embedded network in order of how the links enter and exit

the nodes of the network. A generic spin-network state ΨS [(A)] is picked out by the set

of information (Γ(~x), jn, im): an embedded graph in Σ whose links have been colored by

selecting representations (jn) and the nodes have been colored by selecting intertwiners (im).

It turns out that spin-network states are invariant under gauge transformations and form an

orthonormal basis for the (non-separable) Hilbert space K0 ⊂ K.

For example, the spin-network represented in Figure 5 defines the following spin-network

state:

ΨS5 [(A)] = Vα1,α2,α3 [Mj1(U(A, γ1))α1
β1Mj2(U(A, γ2))α2

β2Mj3(U(A, γ3))α3
β3 ]Vβ1,β2,β3

α4,α5 .... (35)

Here the ellipsis indicates the contraction along links four and five with the intertwiners at

the remaining nodes.
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Figure 5:

Recall, at this point, our gauge invariant states are in K0 which is a proper subspace

of K. Since both S and K0 are subspaces of K we cannot assume that all the states in

K0 will automatically be one of our cylindrical functions from S. We construct, therefore,

S0, the subspace of states from K0 which live in S. The space S0 contains all finite linear

combinations of spin-networks states and happens to be dense in K0. In the following, I will

use S0 and its dual space S∗0 to construct a space of diffeomorphism invariant states S∗Diff.

Before turning to this task, however, since I will be switching back and forth between states

and their duals, I will use the bra-ket notation: a spin-network state will either be written

as ΨS or as |S〉 and I will refer to the states Ψ ∈ S∗0 as either Ψ†S or as 〈S|.

In order to construct S∗Diff, we begin by mapping those spin-network states ΨS in S0 to

the state 〈s| ∈ S∗0 ; where, 〈s| is a functional on states ΨS1 ∈ S0 defined by:
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〈s|S1〉 ≡
∑

|S2〉∈{|S〉}Φ

〈S2|S1〉. (36)

Where the summation is over all states ΨS2 related to ΨS by a diffeomorphism UΦ: ΨS2 =

UΦΨS . It is not hard to show that the set of states {ΨS}Φ is the same set of states {UΦ(ΨS)}Φ:

For any Ψ′ ∈ {ΨS}Φ, Ψ′ = UΦ1(ΨS), for some Φ1 diffeomorphism. Since the set
of diffeomorphisms form a group, UΦ2 = UΦ1 ◦ UΦ−1 is also a diffeomorphism for
all UΦ1 and UΦ−1 . It is easily verified that Ψ′ = UΦ2(UΦ(ΨS)), and consequently
Ψ′ ∈ {UΦ(ΨS)}Φ. The proof for the other direction is similar. Since the two sets
contain each other’s members, the sets are the same. We will use this result in
the following.

The point in mapping the states, |S〉, to the dual vectors, 〈s|, is that we can build

diffeomorphism invariance into the mapping. A diffeomorphism UΦ on 〈s| is mathematically

equivalent to 〈s| ◦ UΦ−1 :

( ∑
{|S〉}Φi

〈S2|
)
◦ UΦ−1 = (37)

∑
{|UΦS〉}Φi

〈S2|. (38)

Where the summation is over all states ΨS2 related to UΦΨS by a diffeomorphism. Since the

set of states defining the summation in (36) and (38) are the same, the states UΦ〈s| and 〈s|

are the same.

The span of the states 〈s| ∈ S∗0 form the subspace S∗Diff of functionals which are both

gauge and diffeomorphism invariant. S∗Diff is a Hilbert space whose orthonormal basis vectors

are called spin-knot or s-knot vectors. In the main body of this text, I referred to the generic

state 〈s|, as defined in equation (36), as being an s-knot vector; however, this is not quite

true. While the generic states 〈s| do span S∗Diff, they are neither linear independent nor

orthonormal.
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Though a generic state of S∗Diff does not solve the Hamiltonian constraint, these states are

interpreted as representing the physical system of LQG.

1.5.3 APPENDIX C

Geometric Observables

In this section, I will focus on the volume (V̂(R)) observable since I already discussed the

area observable in §1.2.3; I will reproduce the area observable below as a point of comparison.

This section is based on (Rovelli and Peush, 2013) and (Rovelli and Peitri, 2008).

Both the area and volume observables are defined by regions and surfaces in the “spatial”

manifold Σ: there is one observable per region or surface. A generic area observable for some

surface S is defined as:

Â(S) ≡ lim
n→∞

n∑
k

√√√√−(∫
S(n)

k

dσ1dσ2εabc
∂xa(~σ)
∂σ1

∂xb(~σ)
∂σ2

δ

δAic(~σ)

)2

. (39)

Here S(n)
k are n-many subdivisions of S. Since a generic spin-network state (§1.5.2) is iden-

tified with a particular embedded, colored graph (Γ(~x), jn, im), in the following I will write

ΨS [A] as ΨΓ,~j,~i[A]. I have changed notation from {im}, {jn} to~i, ~j in order to more easily ex-

press the spectrum of the volume observable. But first, the spectrum for the area observable

has the rather simple form:

Â(S)ΨΓ,~j,~i[A] ≡
∑

n∈(S∩Γ)

√
jn(jn + 1)ΨΓ,~j,~i[A]. (40)

As we can see from this expression, the eigenvalues are exclusively controlled by the “charge”

or coloring of the links of the graph which cross the surface S.

The classical formula associated with the volume observable is given in terms of the

canonical momenta ẼνJ :
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V(R) ≡
∫

R
d3x

√
1
3!εµνλεIJKẼ

µIẼνJẼλK . (41)

Though one can unpack the operator form of the above expression, doing so would take us

outside the scope of this short appendix and would add little to our understanding of the

geometric structure of the operator. The corresponding spectrum of the volume observable

is given by:

V̂ΨΓ,~j,~i ≈
∑
~β

λ~βP̂~βΨΓ,~j,~i. (42)

And more specifically by:

V̂ΨΓ,~j,~i ≈ λ~iΨΓ,~j,~i. (43)

The first thing to note is that this spectrum includes the projector P̂ onto the some vector
~β. This projector projects onto sets of nodes of certain colorings, and is the reason why the

volume spectrum does not have as simple an expression as the area spectrum. In particular,

the resulting eigenvalues λ~i are determined by which nodes are adjacent in the graph and

so cannot be specified generically. There is little else regarding the formal structure of

the observables which I feel is important for gaining an orientation to the mathematics of

LQG. I will, however, reiterate that the LQG-area and LQG-volume of physical surfaces and

regions diverge from the Riemannian-area and Riemannian-volume of surfaces and regions.

I mentioned this in §1.2.3 but is worth saying again: the volume of a region, as defined by

(41), does not change as we change the Riemannian size of the region being integrated over,

and only changes by changing the set of nodes contained in the region. Similarly, in order

to change the physical area of some surface we must change the set of links which “cut” the

surface.



2 PART 2: NO TIME FOR THE HAMILTONIAN CONSTRAINT

The theory of loop quantum gravity (LQG) is one of the leading contenders for a theory

of gravity at the Planck scale, and yet like all such contenders – string theory, causal set

theory – LQG is fraught with a variety of difficulties. Most of these difficulties are technical

in nature and are not burdened by the conceptual angst inherent in what has come to be

known as “the problem of time.” According to this problem, time is described by LQG as

being “frozen” or missing from the world. In this paper, I will address the problem of time by

highlighting a tension between it and different interpretations of ‘spacetime’ and spacetime’s

relation to the mathematical manifold M. I will use this tension and subsequent analysis

to argue that the problem of time results not from the Hamiltonian constraint, as is usually

argued, but due to our interpretation of LQG.

This paper is comprised as follows:

2.1 Primer on LQG

2.2 The problem of time

2.3 Interpretations and the problem of time

2.3.1 Rovellian

2.3.2 Conceptual problems with the derivation

2.3.3 Composite substantivalism

2.3.4 Manifold quantization

2.3.5 Some particulars on trickle-down effects

2.4 Conclusion

2.5 Cited Literature
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2.1 PRIMER ON LQG

I will assume that my reader has some familiarity with the theory of LQG and will do my best

to ignore much, though not all, of its technical machinery.40 In this section, I will provide

an overview of the mathematics required for a first order understanding of the problem of

time and its relationship to interpretations of LQG.

The theory of LQG is a theory of “canonically quantized” general relativity (GR) for-

mulated using a special set of “loop” variables. The canonical program quantizes physical

fields using the method developed by Dirac. Before running GR through Dirac’s procedure,

in LQG we first rewrite the metric field g on the manifold M in terms of a pair of “tetrad”

fields onM. What mathematical form these fields take is not important, but what is impor-

tant is that these fields are themselves defined by an su(2)-gauge field A. Though it is the

gauge variable A which gets canonically quantized, since the metric field is written in terms

of it, I will often talk about quantizing the metric field g or the gravitational field represented

by it. Once we have rewritten GR in terms of Ashtekar’s new variables (A, Ẽ), we quantize

the gravitational field by running the Hamiltonian version of GR through Dirac’s procedure.

The first half of this process results in a classical theory but one in which the physics of

GR has been squeezed into three constraints.41 These constraints are restrictions on what

trajectories, in the phase space of GR, count as being physical.

In order to quantize the theory, we upgrade the constraints by turning certain functions

of the canonical variables into operators and requiring that the newly christened operator-

constraints annihilate what will be the physical states of theory. In other words, schemati-

cally, before quantization we have three constraints of the form:

Ci(Aj, Ẽj) = 0 (i = 1, 2, 3). (44)
40 For an introduction to the theory see (Gambini and Pullin, 2011) or (Norton, Part 1 of this dissertation) and for a math-

ematically involved account of the theory see (Rovelli, 2004) or (Thiemann 2007). The general and well known results of
LQG, reproduced below, can be be found in these sources.

41 There are three constraints in the context of Ashtekar’s reformulation and two constraints when written in terms of the
original “lapse” and “shift functions.”
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Where Aj and Ẽj play the role of our canonical position and momentum variables. As part

of the quantization process, these constraints become:

Ĉi(Aj, Ẽj)Ψ = 0. (45)

These constraints are known as the Gauss, vector, and scalar constraints; though, the Gauss

constraint is often referred to as the gauge constraint, the vector as the diffeomorphism

constraint, and the scalar as the Hamiltonian constraint. The Gauss constraint requires

the physical system of LQG to be invariant under an internal gauge transformation, the

vector constraint requires the system to be invariant under spatial diffeomorphisms, and

the scalar constraint requires the system to be invariant under a reparameterization of the

time coordinate (Gambini and Pullin 2011, p.93-94, Rovelli 2004, p.146, 225). This current

work is part of an industry debating whether or not these constraints require or suggest

that variation across space and through time is either frozen or missing, but more on this to

come.42

In addition to the constraint-operators, Ĉi(Aj, Ẽj), what have come to be known as

the “area” and “volume operators” have been constructed, and each of these operators has

been found to have a countable spectrum with a lower bound. According to the standard

interpretation of these operators, physical regions and surfaces do not come in just any size.

The area of physical surfaces and the volume of physical regions come in discrete “Planck-

sized” units. How LQG predicates geometric size to physical space will not be important for

the purposes of this paper; what will be important is that, according to LQG, the geometric

size of physical regions and surfaces is limited to elements of discrete spectra.43

42 It turns out that some version of the problem of time is found in any theory which utilizes the Hamiltonian version of GR.
In other words, the problem of time is not a special problem for LQG (Earman 2002). For more on the problem of time see
Isham (1991, 1992), Kuchař (1992), Earman (2002), and Wüthrich (2014).

43 For more details on how LQG predicates size to physical areas and regions and why these sizes are elements of a discrete
spectra see (Rovelli, 2004) or (Norton, Part 1 of this dissertation).
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It is important to keep clear the difference between ‘region’ and ‘surface’ on the one

hand and ‘volume’ and ‘area’ on the other. Though colloquially we often use ‘volume’ and

‘region’ interchangeably, we will not do so in the context of LQG (or GR for that matter).

Allow me to distinguish these concepts. In the context of a mathematical manifold Σ, a

surface is a two dimensional set of points, and a region is a three dimensional set. The

area and volume of these sets are measures of their geometric size. If Σ is Euclidean, the

geometric size of some rectangular surface is the product of two perpendicular edges, and

we call this geometric measure “area.” This same distinction holds when considering physical

regions and surfaces: area and volume are measures of the physical-geometric size of regions

and surfaces. What physical regions and surfaces are depends on one’s metaphysics of

spacetime. According to a common form of substantivalism, physical regions and surfaces

are collections of substantival spacetime points. Whereas, central to relationism is the view

that physical regions and surfaces are codifications of spatial relations which hold between

physical objects. What is new and beautiful about the theories of GR and LQG is that

fixed regions and surfaces have variable geometric size depending on the mass and energy

associated with the regions and surfaces.44 What is new in LQG and mentioned above is

that the geometric size of physical surfaces and regions cannot get smaller and smaller. LQG

predicts a lower bound for the geometric size of physical surfaces and regions.

In the following, I will present the standard argument from the Hamiltonian constraint

for the absence of time in LQG. It is standardly claimed that due to the strange dynamics,

or rather lack thereof, predicted by the Hamiltonian constraint, there is fundamentally no

time in LQG. I will argue that this is the wrong diagnosis, and that time “goes missing”

independent of the Hamiltonian constraint.
44 However, I doubt that this is actually true on a relationist account of spacetime. For instance, according to GR, in order

to change the geometry we need to change the mass-energy distribution, which in turn describes a different collection of
spatial relations between physical objects. While the area and volume do evolve, so too do relationally defined regions and
relationally defined surfaces. Thus, it is not the case that one fixed region can have many volumes: as the volumes evolve so
too do the relationally defined regions.
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2.2 THE PROBLEM OF TIME

In presenting the problem of time, I will follow DeWitt’s original 1967 account of the problem.

Two things to note in this regard: firstly, Dewitt derives the problem of time in the context

of “canonical quantum gravity” (CQG). CQG is formally distinct from LQG in so far as it

does not rewrite the metric field g in terms of Ashtekar’s gauge potential A. In accordance

with this choice of variables, the state functionals in canonical quantum gravity are Ψ(γij)

rather than Ψ(A), where γij is the three-dimensional projection of the metric g. Secondly,

in deriving this problem, Dewitt utilizes language which is colored by an interpretive stance

to which we might object. In particular, at a certain point in the following derivation it

is assumed that our theory still contains a spacetime, though we do not have g as part of

our model and thereby have ceased to model a system that includes physical distances or

durations of time. I will address this implicit interpretational stance and how it affects our

understanding of the problem of time in §2.3.2.

In constructing LQG as well as canonical quantum gravity, we perform a “3+1 split” of

the four-dimensional spacetime manifold represented byM. The 3+1 spilt results in a one-

dimensional time manifold R parameterizing a stack of three-dimensional spatial manifolds

Σ, with metric γij. This splitting of M requires that we split the four-dimensional Ricci

scalar into an intrinsic and extrinsic part. The extrinsic curvature of our three-dimensional

manifold from the perspective of a four-dimensional spacetime is given by the expression

KijK
ij − K2.45 According to DeWitt, with this split, we can express the classical scalar

constraint as:

C3 ≡ H = γ
1
2 (KijK

ij −K2 −R) (46)
45 Kij is called the second fundamental form and K is the contraction of this form with the metric. Equation (46) below is

a classical constraint equation. The corresponding quantum constraint is given by DeWitt (1967) as well as any number of
books or review articles.
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Where R is the three dimensional Ricci scalar and encodes the intrinsic curvature of Σ.

DeWitt reminds us that a generic Hamiltonian is written in terms of a kinetic energy term

minus a term for the potential energy. That the curvature of a spacetime encodes the energy

of the gravitational field according to GR, suggests that the scalar constraint be interpreted

as the “kinetic-extrinsic” curvature energy minus the “potential-intrinsic” curvature energy

(1967, p.1117). Given this interpretation, it is natural to interpret the scalar constraint as

playing the role of the Hamiltonian in describing the system’s evolution. It is for this reason

that the scalar constraint is more commonly known as the Hamiltonian constraint.

After we upgrade to Ĥ and replace γij with the state functionals Ψ(γij), DeWitt concludes

that for any time x0 and state Ψ(γij) which solves the Hamiltonian constraint ĤΨ ≡ 0:

Ψ†γ̂ij(x0, ~x)Ψ = Ψ†γ̂ij(0, ~x)Ψ (47)

Where γ̂ij(x0, ~x) is a field operator acting on the state Ψ. DeWitt notes that all other field

operators yield a similar result, and since the physics of quantum systems is encoded in the

statistics produced by inner products of this kind, “the quantum theory can never yield any-

thing but a static picture of the world” (1967, p.1119). In other words, no physical property,

described by LQG, varies with time. This result is often named the “frozen formalism” or

the “frozen dynamics” of LQG. The frozen dynamics is the first aspect of the problem of

time and results from the Hamiltonian constraint. However, the usual response to the frozen

formalism is to generate a second and distinct aspect of the problem by inferring that time

is absent in LQG. What physicists usually mean by “time is absent” is that the coordinate

time (x0) does not model physical time. For instance, according to DeWitt:

Instead of regarding this equation [the Hamiltonian constraint] as implying that
the universe is static we shall interpret it as informing us that the coordinate
labels xµ are really irrelevant. Physical significance can be ascribed only to the
intrinsic dynamics of the world, and for the description of this we need some kind



73

of intrinsic coordinatization based either on the geometry or the contents of the
universe. (1967, p.1120)

In other words, rather than interpreting the Hamiltonian constraint as requiring the dy-

namics of canonical quantum gravity to be frozen, DeWitt suggests that we re-evaluate our

interpretation of x0 as modeling time. Though I have used DeWitt’s derivation of the prob-

lem and thereby am technically working with a different set of variables than that of LQG,

the same issues and reasoning presented here are carried over to LQG.

In summary, we begin with the formalism of GR which includes a differentiable manifold

M and a psuedo-Rimannian metric, we quantize the gravitational field through either g or

A, and do nothing to M besides split it into 3+1 submanifolds. Since our mathematical

model does not include a metric, the physical world being modeled is assumed not to have

the physical structures modeled by the metric. After replacing g with Ψ(γif ), we interpret

the coordinate function x0 on M as representing time and show that quantum expectation

values do not change as we vary x0. Finally, since we assume that physical geometry does

in fact evolve with respect to physical time, we infer that x0 must not model time after

all. Since the Hamiltonian constraint requires that x0 not model time, we say that time is

missing in LQG and this is the problem of time. The reason why it is a “problem” that x0

does not model time is because we have constructed LQG with the intention that it would,

and have no agreed upon alternative for how to represent time in its place.46

This concludes my presentation of the problem of time in LQG. I will briefly argue that

there is a prima facie conflict between this derivation of the problem of time and other

commitments regarding the nature of “spin-networks” and spacetime in LQG. I will use this

tension as a tool for gaining a better appreciation for why spacetime (and time) disappear(s)

in LQG.
46 For an overview of possible solutions to the problem of time from the physics community see Isham (1991, 1992) and Kuchař

(1992).
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Central to the derivation of the problem of time is the commitment to treatM (without

a metric) as representing a spacetime, and x0 as representing time. And yet, in recent liter-

ature, one often hears claims to the effect that in LQG there is no spacetime fundamentally:

The spin networks do not live in space; their structure generates space. And they
are nothing but a structure of relations... (Smolin 2002, p.138)

...the quanta of the field cannot live in spacetime: they must build “spacetime”
themselves... Physical space is a quantum superposition of spin networks...a spin
network is not in space it is space. (Rovelli 2004, p.9,21)

LQG thus seems to entail that space(time) is not fundamental, but emerges some-
how from the discrete Planck-scale structure. (Wüthrich 2006, p.169)

One influential idea based on so-called ‘weave states’ proposes that the spacetime
structure emerges from appropriately benign, i.e. semi-classical, spin-networks.
(Huggett, Wüthrich 2013, p.7)

Each of the locutions: ‘Planck-scale structure,’ ‘spin-networks,’ ‘structure of relations,’

etc., refer to the same thing. What a spin-network is will be unimportant for our purposes

other than that it is whatever physical structure is represented by the states of LQG.47

According to the above quotes, these networks are interpreted as being a structure or a

structure of relations which describe or perhaps are the Planck-scale structure of spacetime

or, more accurately, “quantum spacetime.”

Since the derivation of the problem of time assumes that spin-network states (Ψ) are

dependent on the “time” axis x0, there seems to be a conflict between the derivation and

interpretations of LQG which take spin-networks to be the pre-spatiotemporal “seeds” of

spacetime. How is it that spin-network states are thought to be dependent on time if

“[p]hysical space is a quantum superposition of spin networks”? (Rovelli 2004, p.21)

It turns out that there are ways of interpreting LQG which avoid this conflict: the idea is,

we begin our analysis of LQG by assuming that spin-network states are dependent on space
47 For a discussion on the ontology of these networks see (Norton, Part 1 of this dissertation).
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and time coordinates and then derive certain undesirable consequences, such as the frozen

dynamics. We then use these consequences to motivate an interpretation of the states as

representing a pre-spatio-temporal structure from which spacetime is built or emergent. In

the following, I will represent four interpretations of LQG under which spacetime disappears

fundamentally and spin-networks are pre-spatiotemporal. The first interpretation is of the

kind I just mentioned: the Hamiltonian constraint helps motivate the pre-spatiotemporal

interpretation of spin-networks. However, it turns out that there are ways to interpret the

mathematics of LQG so that spin-networks are interpreted as being pre-spatiotemporal for

reasons independent of dynamical considerations stemming from the Hamiltonian constraint.

I will present three interpretations of this kind and use them to argue that, contrary to

standard presentations, the Hamiltonian constraint is not the reason why time goes missing

in LQG. To this end, I will argue that even under the first interpretation wherein time and

spacetime are claimed to disappear (partially) because of the Hamiltonian constraint, in

order for the Hamiltonian constraint to play this role, we must adopt a notion of time which

we, presumably, do not take to be the case.

2.3 INTERPRETATIONS AND THE PROBLEM OF TIME

In presenting the following interpretations of LQG, I do not mean to suggest that these

are the only interpretations of the theory, and indeed they are not (Norton, Part 1 of this

dissertation). I present these interpretations in particular since they are present, either

explicitly or implicitly, in the literature, or serve to highlight how different interpretations of

‘spacetime’ affect why there is a problem of time in LQG. The first two interpretations are

rather straight-forward whereas the last two are far less developed and more programmatic.

I will do my best to present what is ontologically relevant from these interpretations but

will not provide a very complete account of them since it is unlikely that such an account is

possible, at least in this stage of their development.
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2.3.1 Rovellian

Though the following interpretation is based on the words and works of Carlo Rovelli, I

do not claim that this is his interpretation. The following interpretation is Rovellian, if

not Rovelli’s. In the following, I will explain how, according to the Rovellian, spacetime

disappears in LQG and the role which the Hamiltonian constraint plays in it doing so.

Taking a step back, in the context of classical general relativity, Rovelli interprets the

diffeomorphism invariance of this theory to mean that the background manifold M is a

gauge artifact of GR (2004, p.74). In fact, this is often how the manifold is treated by

those wielding Einstein’s hole argument (or more precisely, Earman and Norton’s hole ar-

gument). Without reviewing a well-worn debate, what we are told to take away from the

diffeomorphism invariance of GR is that, just because the theory utilizes M in modeling

spacetime 〈M, g〉, we ought not assume that there is a physically substantial manifold of

spacetime points. Importantly, the diffeomorphism invariance of GR is found recapitulated

in the theory of LQG and is the reason why the Rovellian interpretsM as being mathemat-

ical gauge. The Rovellian does not begin his interpretation by tossing aside the manifold

but rather concludes that it is gauge because of the diffeomorphism freedom of LQG which

the Hamiltonian constraint plays a role in expressing.

As we have already discussed, the Hamiltonian constraint seems to require that our

states be frozen in time and not evolve as we move along the time axis x0. Additionally,

the diffeomorphism constraint is thought to require our states to be invariant under three-

dimensional spatial diffeomorphisms (Gambini and Pullin 2011, p.93-94, Rovelli 2004, p.146,

225). Combining these constraints, we can interpret the four-dimensional diffeomorphism

freedom of GR as having been projected along space and time dimensions in the context



77

of LQG (Isham 1992, p.33). As a result, Rovelli concludes that the physics of LQG is

independent of Ψ’s relation to the manifold:48

In fact M (the spacetime manifold) has no physical interpretation, it is just a
mathematical device, a gauge artifact... There are not spacetime points at all.
The Newtonian notions of space and time have disappeared... the spacetime co-
ordinates ~x and t have no physical meaning...(2004, p.74)

What Newton called “space,” and Minkowski called “spacetime,” is unmasked:
it is noting but a dynamical object – the gravitational field... ...the gravitational
field is the same entity as spacetime. (2004, p.9, 18)

Since all there is to spacetime is the metric field, according to Rovelli, and since the

states of LQG represent a quantum version of the metric field, the states ipso facto represent

a quantum version of spacetime itself! Consequently, there is no spacetime, qua classical

structure, in LQG. Spacetime qua the physical structure represented by 〈M, g〉, disappears

according to the Rovellian, in two steps: the manifold is interpreted as having “no physical

interpretation” (ibid p.74) and the metric field is replaced by quantum states.

Thus, for Rovellians, the Hamiltonian constraint helps motivate the “de-reification” of

M and thereby the disappearance of spacetime in LQG. I say “helps motivate” since the

Hamiltonian constraint does not do this alone. For the Rovellian, it is the combined effect of

the Hamiltonian constraint, the three dimensional vector constraint, and the mathematics of

the theory being independent of how we perform the 3+1 split (Thieman 2007, p.39), which

together suggest that the manifold is a gauge artifact.49

Shortly, I will present three competing interpretations of LQG under which spacetime

and time disappear and do so independently of the Hamiltonian constraint; however before
48 It is unclear how literally we should interpret Rovelli’s repudiation of M as bearing any physical salience. It seems that at

a minimum the global topology of “space” Σ has bearing on what our experiences of the world is like. For instance, if Σ is
compact (i.e. has a dimension which is rolled up like a three-dimensional cylinder), then our theory of (quantum) spacetime
should predict that we could travel a finite distance in one direction and come back to where we started.

49 In order to remove all traces of the manifold we also need to note that the geometric observables are “moduli”-invariant. See
Rovelli (2004, p.267) or Norton (Part 1 of this dissertation).
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doing so, I will argue that, upon closer inspection, in order for Hamiltonian constraint to

play the role which we have attributed to it, we must adopt a rather counterintuitive notion

of spacetime and time.

2.3.2 Conceptual problems with the derivation

Rovellians construct their interpretation of LQG by understandingM to be a gauge artifact

in part because of the threat of the frozen formalism. The idea is that if we were to take the

manifold “seriously” then the dynamics described by LQG would be frozen (as well as other

oddities arising from the diffeomorphism constraint); thus, according to the Rovellian, the

manifold must only be an artifact of our mathematics. The question which will drive the

following discussion is “how ‘seriously’ must we take the manifold (M) in order to derive

the frozen formalism?”

Recall the following derivation of the frozen formalism and the resulting argument for

the problem of time:

We begin with the formalism of GR which includes a differentiable manifold
M and a psuedo-Rimannian metric, we quantize the gravitational field through
either g or A, and do nothing toM besides split it into 3+1 submanifolds. Since
our mathematical model does not include a metric, the physical world being
modeled is assumed not to have the physical structures modeled by the metric.
After replacing g with Ψ(γij), we interpret the coordinate function x0 on M as
representing time and show that quantum expectation values do not change as
we vary x0. Finally, since we assume that physical geometry does in fact evolve
with respect to physical time, we infer that x0 must not model time after all.
Since the Hamiltonian constraint requires that x0 not model time, we say that
time is missing in LQG and that this is the problem of time.

Implicit in this derivation of the frozen formalism is the assumption that M still rep-

resents a spacetime and x0 still represents time even though our model does not include a

metric. What must spacetime and time be in order to still have a model for them though

that model does not include a metric? In removing g from our model, it seems that we have
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at least two choices for what we take the geometric properties of a “spacetime” to be. We

might think that a spacetime does not require any physical, metrical, or geometrical prop-

erties, and can be modeled by the bare manifold M alone. According to this suggestion, in

removing g from our model, we do not thereby remove spacetime from the model. On the

other hand, since we remove g in order to make room for the quantum geometry described

by the states Ψ, we might think that the spacetime of LQG simply has quantum rather than

classical geometric properties. In either case, in order to derive the frozen formalism, we

must interpret the Hamiltonian constraint as describing time evolution with respect to x0,

and this requires that a spacetime and time remain represented by the mathematics of LQG

even though the theory does not include a classical metric.

We ought to object that it is infelicitous to think that there is a spacetime or time in

either the bare-geometric world (represented by M) or in the quantum-geometric world

(represented by 〈M,Ψ(A)〉). Surely these structures are either too bare or too quantum to

be models of spacetime (as opposed to quantum spacetime). In both the bare and quantum

worlds, there is no well defined spatial distance between objects in “space” and no durations

between moments of “time.” Moreover, any physical structure which is defined in terms of

or dependent on well-defined lengths or durations of time such as velocity, momentum, and

force, will also be absent were the world without the physical geometric properties encoded

by g.50 Since so much of what we take a spacetime and time to be are missing under the

bare and quantum descriptions, it is reasonable to suppose that a spacetime and time are

not modeled by them. If this is the case, then spacetime and time disappear due to our

interpretation of these concepts and not because of the Hamiltonian constraint.
50 Since we explicitly quantize only the three-dimensional spatial projection of the gravitational field represented by the three-

metric γij or the three-dimensional gauge field A, one might conclude that the temporal metrical structure has not been
affected and that perhaps there are in fact durations of time in LQG. Though sensible, this conclusion is too quick. Since
the formalism of LQG is built around an arbitrary splitting of the spacetime manifold into space and time submanifolds,
whatever conclusions we infer about physical spatial lengths must also hold true for physical, temporal lengths. What we are
calling ‘space’ and ‘time’ are artifacts of our mathematical representation which we can keep from affecting our interpretation
of the physics by keeping in mind the arbitrariness of the 3+1 split.
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One might insist that either the bare or quantum world (〈M|Ψ(A)〉 or M) remains

relevantly spatiotemporal to the extent that the Hamiltonian constraint entails the frozen

formalism. However, what should we then infer from the frozen formalism? Should frozen

dynamics signal, at this late stage, that time is missing when the lack of a physical metrical

structure did not? I suspect, that for many, the answer is ‘no.’ And that, if time can

survive the stripping of the physical metrical structure then it can survive frozen dynamics.

Consequently, if time does not survive in LQG it is not because of the frozen dynamics

described by the Hamiltonian constraint. In the following, I will expand on this theme and

introduce alternative interpretations for which spacetime and time disappear fundamentally

in LQG and for reasons independent of the Hamiltonian constraint. The first interpretation

is an explicit elaboration of some of the ideas just presented.

2.3.3 Composite substantivalism

The following interpretation is an example of one of a few interpretations which one might

adopt regarding a spacetime’s relation to 〈M, g〉. In the context of LQG, since there is no

physical structure having the properties described by g, what we take a spacetime’s relation

to 〈M, g〉 to be, will make a difference as to whether or not there is spacetime in LQG.

According to composite substantivalism (CS), a spacetime has two components: a sub-

stantial basal structure represented by M and a physical geometry represented by g. Ac-

cording to CS, these two structures combine to form a spacetime which we represent by

〈M, g〉. Since we replace g with the quantum variant Ψ(A) in LQG, there is no spacetime.

The physical structure of LQG is described by the ordered pair 〈M,Ψ(A)〉 and this object,

according to CS, does not have the physical properties required of a spacetime. I will stip-

ulate that according to CS, M represents a substantival basal structure, Ψ(A) represents

a physical spin-network (or more accurately an “s-knot”) responsible for quantum geome-

try, and together 〈M,Ψ(A)〉 represents a physically substantial quantum spacetime. Thus,

while there is no spacetime in CS-LQG, there is a quantum spacetime. Time and spacetime
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disappear from CS-LQG because of our interpretation of ‘spacetime’ and not because of the

Hamiltonian constraint.

2.3.4 Manifold quantization

In this section, I introduce what I am calling the “TaG” (topology and geometry) (and

“trickle-down” interpretations. I will explicate these interpretations together since, unlike

Rovellian or CS-LQG, these interpretations “quantize” the manifold M. In just a moment,

I will indicate, as best as possible, what “quantize” means in these contexts. However, as I

mentioned at the start of this paper, these two interpretations are far more programmatic

than well-developed versions of LQG; as such, I will not attempt to explain in very great

detail how the manifold is “quantized” and will merely indicate what it might mean for

spacetime and the problem of time if it were. In short, since TaG and trickle-down inter-

pretations replace the manifold M with a quantum basal structure “M̂,” in addition to

quantizing the gravitational field, the physical structure described by these interpretations

is that much less like a spacetime than were we to simply quantize the gravitational field.

According to TaG versions of LQG, the topology and geometry of classical spacetime

〈M, g〉 are explicitly replaced by some suitably quantized versions. The impetus behind

TaG-LQG is a desire for a more radically background-independent theory of quantum grav-

ity. How one goes about “quantizing” M however, is far from clear. In general, what

‘quantization’ means in this context is distinct from what it means when applying Dirac’s

quantization procedure. Moreover, as Isham (1991, p.137) notes, since M is a composite

structure consisting of a set of points, topology, and differential structure, one has many

options for which structures to quantize in quantizingM; consequently, there are many dif-

ferent kinds of TaG interpretations. For instance, according to Christopher Duston’s version

of TaG, we “quantize” M by encoding certain topological features of the manifold into the

states Ψ by appending to the states an additional internal degree of freedom (2012, p.5).

Though both Isham and Duston have developed programs to quantize the topological struc-
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ture ofM, one could instead attempt to quantizeM through its differential structures or by

discretizing the manifold’s base set of points. In any case, however one goes about “quantiz-

ing”M, in addition to g, the states of TaG-LQG represent physically distinct configurations

of 〈M̂, ĝ〉: a quantum-spatio-temporal structure in all its manifold glories. To be clear, in

replacing 〈M, g〉 with 〈M̂, ĝ〉, we are not merely choosing to use some new mathematics, we

are choosing to use a new mathematical model. No longer do we take there to be a physical

structure represented byM and g. If we assume that a spacetime is only that physical struc-

ture modeled by 〈M, g〉, then since we purposely peel away all the mathematical structure

which we have deemed necessary for modeling a spacetime, there technically is no spacetime

in TaG-LQG.

Though TaG theories have a modified mathematical structure from that of traditional

LQG, they will, in general, incorporate many of the developments already made.51 For in-

stance, according to Duston’s program, the physical states are simply modified spin-network

states. Though TaG-LQG is less an interpretation than it is an extension of LQG, I have

included it since spacetime disappears under it in a novel way: both structures which we

used to model a spacetime in GR are removed from our physical model in LQG. This is

different from the mathematical structure of Rovellian-LQG which still includes M, if only

as a mathematical artifact.

As for trickle-down interpretations, I intend for this interpretive-scheme to capture any

and all interpretations for which the quantization of the gravitational field is thought to au-

tomatically affect a discretization of the base manifold, or something similarly destructive.52

Unlike TaG interpretations which explicitly modify LQG to include a “quantization” ofM,

according to trickle-down interpretations,M is indirectly “quantized” as an effect of having

quantized the gravitational field. The trouble with trickle-down interpretations is that we

are never told how quantizing the gravitational field affects M. All we are told (more often
51 This term ‘traditional’ would be misleading if I did not add the caveat that there have been many attempts at formulating

the theory of LQG and that no formulation should really be called traditional in a very serious sense.
52 For a general discussion of this idea, see Isham and Butterfield (2001) and Isham (1991).
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implicitly than explicitly) is that the lumpy geometry of LQG (recall §2.1) somehow entails,

or perhaps simply suggests, that the physical basal structure is not a continuum and thereby

not modeled by M. For instance, according to Butterfield and Isham:

... we mentioned the discrete spectra of the spatial area and spatial volume quan-
tities: results that arguably suggest some type of underlying discrete structure
of space itself. [Or, the] quantization of logically weaker structure such as dif-
ferential or topological structure; these are called ‘trickle-down effects’. (2001,
p.78)

The idea, then, is that though we only explicitly quantize the gravitational field, the

effect of doing so results in a discrete geometry which entails or suggests that the physical

basal structure is more accurately modeled by something other thanM. For the time being,

we do not need to understand why these interpretations take there to be trickle-down effects.

The purpose in discussing these interpretations is to highlight their ontology: the physical

basal structure is not modeled by M. In order to show that trickle-down interpretations

are more than a logical possibility, I will argue in the following section that something like

trickle-down effects appear in Christian Wüthrich’s and Karen Crowther’s accounts of LQG.

Additionally, I will present two arguments for why we might think that there are such effects.

Before turning to these two tasks, however, allow me to explain in what way trickle-down

effects require that we formally modify LQG, and how this modification affects whether or

not there is spacetime in trickle-down LQG.

According to trickle-down interpretations, whatever basal structure there is to the world,

this structure is not a physical continuum but rather something “logically weaker” (ibid p.78)

which I will denote as M̂. As a result, spacetime disappears for the same reason it does in

TaG-LQG: there is no physical structure having the form 〈M, g〉. The trouble with both

trickle-down and TaG interpretations is that we cannot simply replace M with M̂ without

possibly ruining the technical fidelity of LQG. Depending on which mathematical form M̂

takes, the result of exchanging M̂ forM might not result in a coherent formal structure. For
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instance, since the states of LQG are defined using holonomies along smooth curves in M

(Norton, Part 1 of this dissertation), if we replace the continuum with a discrete lattice, there

will be no spin-network states. However, not all “replacements” are created equal: under

Duston’s program (2012), M is simply replaced with a continuum that lacks a well-defined

topology (M̂) which Duston argues does not ruin the technical fidelity of the theory (p.7).

It is for this reason that Duston is able to utilize the formal results of LQG as well as its

states. I note this potential complication since the extent to which TaG and trickle-down

interpretations are more like extensions of LQG or new theories all together, depends on how

much the “quantization” of M requires that we rework other aspects (e.g. the construction

of the states) of the theory.

2.3.5 Some particulars on trickle-down effects

In order to provide some flesh to the trickle-down interpretations and to show that they are

not merely a logical possibility, I will briefly examine the views of Wüthrich and Crowther.

Though neither author claims to endorse a trickle-down interpretation, both describe LQG in

a way which suggests that there are trickle-down effects. In particular, both authors suggest

that the discrete geometry of LQG somehow causes the basal structure of spacetime to be

something other than a smooth continuum. In fact, the smooth manifold is described by

these authors as being an emergent structure from some more fundamental discrete structure.

Starting with the physical states and predictions of LQG, according to Wüthrich, the

process of taking the appropriate classical limit “should have as its effect the re-emergence

of the continuous spacetime with its pseudo-Riemannian manifold” (2006, p.168, 174), and

that the effect of following a certain mathematical procedure should “change the structure

from discrete quantum states to smooth manifolds” (2014, p.24).53 Consequently, according

to Wüthirch, the fundamentally basal structure of LQG does not have the structure of a
53 And more particularly, according to Wüthrich, the spacetime topology R×Σ emerges or is required to emerge in LQG (2006,

p.159-160).
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continuous manifold. While we are never told exactly why the continuous manifold is missing

fundamentally, it’s possible that this is somehow connected with the discrete geometry of

LQG. Following his discussion of LQG’s discrete geometry, Wüthrich concludes:

“The granularity of the spatial geometry – the ‘polymer’ geometry of space –
follows from the discreteness of the spectra of the volume and the area operators...
. Thus, the smooth space of the classical theory is supplanted by a discrete
quantum structure displaying the granular nature of space at the Planck scale.
Continuous space as we find it in classical theories such as GR and as it figures
in our conceptions of the world is a merely emergent phenomenon.” (2014, p.14)

If “continuous space” refers to the spatial continuum, as is common, then according to

Wüthrich, the discrete geometry of LQG somehow entails that the continuum is missing in

LQG. However, if “continuous space” refers to a continuous spectrum of geometric areas and

volumes, then this passage does not provide a connection between the discrete geometry of

LQG and the supposedly missing manifold. One might think that failing to have continuous

geometric-spectra is the same as failing to have a continuous space, but this is not true (see

“Argument 1” below). Indeed, there are no formal constraints against defining a discrete

geometry on a continuous manifoldM. In any case, though we are not told exactly why the

smooth manifold is missing, since it is missing according to Wüthrich,M – qua the smooth

space of GR must not be a background feature of our mathematical model.

Similarly, throughout her account of spacetime emergence, Crowther claims that “... GR,

and (continuum) spacetime...” (p.9) must be recovered and that LQG describes spacetime as a

“cloud of lattices” (p.247). Taken at face value, these expressions suggest that the continuum

of spacetime is affected in LQG; in particular, the second quote suggests that rather than

having a continuous manifold of points in LQG, we have a cloud of lattices. Moreover, in

noting that the geometric operators of LQG only increase in value as we increase the density

of loops in a given region rather than becoming a better approximation of classical geometry,

Crowther notes:
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This is because macroscopic geometry is not recovered in the limit as the density
of the weave (lattice) of loops goes to infinity. Intuitively, of course, it seems
as though it would be the case that the continuum could be approximated in
this way... The limiting procedure was thought to run analogously to that in
conventional QFT, where a continuum theory is defined by taking the limit of a
lattice theory, as the lattice spacing a goes to zero. (p.253-254)

In this quote, Crowther is primarily concerned with recovering macroscopic geometry,

yet she expresses LQG’s inability to do so in terms of a failure to approximate “the con-

tinuum.” Again, the word ‘continuum’ is ambiguous on its own: standardly, it refers to the

continuum (M) used in modeling spacetime, but it could refer to the spectrum of possible

area and volume values associated with a pseudo-Riemannian metric. Helpfully, Crowther’s

quote continues and contrasts this continuum against the lattice of lattice-QFT. The lattice

of lattice-QFT is, of course, supposed to approximate and replace the smooth topological

manifold M. Indeed in this regard, Crowther later claims “...the limit in which the density

of the weave states goes to infinity (or the “lattice spacing” goes to zero) fails to approximate

continuum spacetime” (p.260). Thus, according to Crowther, the fundamental basal struc-

ture in LQG is something like a cloud of lattices: a discrete, non-continuous structure and

thereby not modeled byM (p.247). In summary, according to both Crowther and Wüthrich,

the continuum of spacetime is merely an emergent structure and is thereby missing funda-

mentally. Since there is no continuum, fundamentally, our mathematical model must include

some non-continuous basal structure M̂ in place of M. I have briefly described these as-

pects of Crowther’s and Wüthrich’s accounts of LQG in order to demonstrate that apparent

appeals to trickle-down effects are sprinkled throughout the literature on LQG.

Neither Wüthrich nor Crowther explicitly endorse a trickle-down interpretation and

thereby do not argue for the reality of trickle-down effects. Moreover, Isham and But-

terfield merely allude that there may be such effects. Indeed, it is entirely possible that

these authors are simply speaking metaphorically or employing a heuristic in talking about

trickle-down effects. In whatever ways trickle-down effects have been employed in the past,

we might want to know whether or not there are such effects. In the following, I will supply,



87

on behalf of trickle-down interpretations, two arguments for the reality of such effects. One

of these arguments is aimed at showing that quantizing the geometry of 〈M, g〉 logically en-

tails that the basal structure is itself discrete and not modeled by M. The other argument

is aimed to show that quantizing the geometry of 〈M, g〉, in conjunction with something like

Ockham’s razor, requires that we modify our mathematical model from that of a continuous

background to that of a logically simpler structure. I will argue that the first argument does

not work but that the second perhaps does.

Argument 1: Regions and surfaces on the continuum M can be infinitely divided into

smaller and smaller sub-regions and sub-surfaces by taking smaller and smaller open sets.

However, as we have seen, physical regions and surfaces in LQG, cannot be infinitely parsed:

there is a smallest size for any region or surface. Thus, if the physical basal structure were

modeled by a continuum, as opposed to something like a lattice, there would be physical

regions smaller than those allowed by the predictions of LQG. If this argument is sound,

then the discrete geometry of LQG entails, along with other premises, that the physical

basal structure of LQG is not modeled by a manifold.

In understanding where this argument goes wrong, it is helpful to recall the discussion

from §2.1 where I was careful to distinguish between regions and surfaces on the one hand and

areas and volumes on the other hand. The problem with Argument 1 is that the argument

does not specify what it means by ‘small’ in reference to taking “smaller and smaller” open

sets. Standardly, a small region inM is a region which has a small geometric measure, either

a smaller area or volume. However, which definition of area and volume are we supposed to

use in formulating the above argument? If area and volume are defined using the operators

of LQG, then the first premise is false. It is not the case that regions can be parsed into

smaller and smaller LQG-areas and LQG-volumes. However, if area and volume are defined

in the first premise using a psuedo-Riemannian metric, then the argument equivocates since

the second premise concerns LQG-areas and LQG-volumes. More importantly, our physical

model does not include a metric; thus, while we are free to add a non-physical metric to
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M, the Riemannian structures it defines are also non-physical. Thus, for these reasons,

Argument 1 fails: either the first premise is false or the argument equivocates between two

notions of ‘small,’ one of which is non-physical.54

Argument 2: Given that the geometric spectra are discrete, why postulate such a rich

structure as the continuum? According to this argument, physical geometry could be mod-

eled with a simpler base set of points and topology and, as a result, the physical basal

structure must actually have the logically simpler form M̂. There are two parts to this

argument: first, that the physical geometry of LQG can be modeled with a simpler struc-

ture than M, and second, that the physical world must not actually be a continuum. In

this way, the continuum disappears fundamentally in LQG and does so by coupling the

discrete geometry of LQG with Ockham’s razor. The discrete geometry suggests that we

don’t need a continuum, and Ockham’s razor cuts it out. There is nothing wrong with this

argument though it does require that the physical geometry of LQG actually be captured

using a simpler basal structure and that we take Ockham’s razor seriously. Regarding the

first condition, for it to be true that the physical geometry of LQG be captured by some

logically simpler structure “M̂,” it must be the case that replacing M with M̂ does not

modify the physical predictions of the theory. Thus, in order for Argument 2 to succeed, we

must first demonstrate that the physical predictions of LQG are in fact invariant under this

replacement.

To be clear, neither Isham nor Butterfield, nor Wüthrich, nor Crowther, employ either

Argument 1 or 2. I have presented these arguments both as a guess towards what might be

possible motivations for trickle-down effects and as a means of stimulating a more explicit

conversation regarding their reality. If there are trickle-down effects in LQG, then spacetime
54 One might wonder how a proper subset could not have a smaller volume than the set in which it is contained. This is possible

in LQG due to the non-standard definition of area and volume utilized by the theory. See (Norton, Part 1 of this dissertation)
for more detail in this regard. In general, given a particular spin-network state, a proper subset might not defined a surface
or region which is associated with any eigenvalue of area or volume.
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and time are missing from the theory due to our interpretation of what is essential for

spacetime: g and in particular M, and not because of the Hamiltonian constraint.

2.4 CONCLUSION

Though spacetime and time might disappear in LQG, it is unlikely that the Hamiltonian con-

straint has much to do with this. According to the CS-LQG, spacetime disappears because

the world does not include a physical metrical structure. According to both the trickle-down

and TaG interpretations, spacetime disappears because there is neither a physical metrical

structure nor a physical continuum in LQG.55 According to these interpretations, spacetime

disappears independently of the constraints and, in particular, time does not disappear due

to dynamical considerations stemming from the Hamiltonian constraint. Contrary to these

interpretations, according to the Rovellian, spacetime and time do disappear because of the

constraints and, in particular, time disappears because of the frozen dynamics predicted by

the Hamiltonian constraint. However, as we have seen, in order for time to disappear because

of the Hamiltonian constraint, it is required that we endorse an odd notion of time: time

that must not require a metric though it must require non-static dynamics. Unless this is

what we take time to be, time does not disappear because of the Hamiltonian constraint

but, presumably, because we removed the metrical structure from our model of the world.

Indeed, if time is essentially metrical, then the standard interpretation of the Hamiltonian

constraint (as governing temporal dynamics), cannot even get off the ground. If the object

of time requires a metric, then there literally is no time for the there to be a “Hamiltonian”

constraint in LQG.

This paper is primarily concerned with how we might interpret the mathematics of LQG

and the notion of spacetime in light of the Hamiltonian constraint and presents claims to

the effect that spacetime disappears in LQG. By properly diagnosing the role which the
55 One does not have to be a substantivalist to think that the continuum represents physical information. The ‘physical

continuum’ stands for whatever physical structure is represented by M.
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Hamiltonian constraint plays or does not play in revealing the absence of time in LQG, we

are better positioned to find a solution to the problem of time. In general, in order to find a

solution to a problem it is helpful to know why there is a problem in the first place. Thus, so

long as we continue thinking that time disappears because of the Hamiltonian constraint, we

might look for time or variable dynamics in the wrong place. For example, it will not do to

argue that some distinct sub-component of the Hamiltonian operator or some combination

of operators, captures evolution with respect to x0. As I have argued, there are independent

reasons for thinking that x0 is not the right structure upon which to model time: there is no

metric, and it might be the case that there is no smooth manifold. Consequently, even if we

were to find a structure which “evolves” states with respect to x0, this would not entail that

x0 thereby models time or that the supposed “evolution” is a model of physical evolution.



3 PART 3: WEAK DISCERNIBILITY AND RELATIONS BETWEEN QUANTA

(Submitted for publication on 05/22/2015 as Norton, Joshua. “Weak Discernibility and

Relations Between Quanta.” Philosophy of Science)

3.1 INTRODUCTION

In their paper, “Discerning Fermions,” Muller and Saunders (2008) argue that identical

particles are weakly discerned by having opposite spin. This is in response to the long-

standing concern that identical particles, like fermions, violate Leibniz’s Principle of the

Identity of Indiscernibles (PII). However, if “identical” particles are discernible by their

spins then they do not differ merely numerically and thus do not violate the PII. If Muller

and Saunders are correct, then they will have successfully demonstrated that one form of

the PII is immune from challenges posed by identical particles. The first half of this paper

will involve laying out the relevant issues as well as Muller and Saunders’ position. In the

second half of this paper, I will argue that Muller and Saunders’ account fails since they

don’t make use of quantum observables and what they do make use of, we are not justified

in interpreting as a physical relation.56 Without a physically pertinent relation, one cannot

even begin the process of weak discernibility.

3.2 THE CHALLENGE FROM IDENTICAL PARTICLES

Assuming some familiarity with both the PII and with the challenge raised by identical

particles, I will be brief in my retelling of this story. Leibniz posited seven principles which

he largely took as being self evident, the Principle of the Identity of Indiscernibles being one

of them. This principle states that if two objects are indiscernible then they are identical
56 Both Huggett and Norton (2014) as well as French and Redhead (1988), make a similar mistake in how they build physical

relations. Huggett and Norton make the same assumptions as Muller and Saunders.’ French and Redhead consider relations
built out of conditional probabilities of single particle operators and provide no argument that these relations represent
physical relations of the particles themselves. See Huggett and Norton (2014) for remarks on French and Redhead’s use of
non-symmetrized observables.

91



92

or, a slightly more interesting formulation, “That it is not true that two substances may

be exactly alike and different merely numerically, solo numero” (Leibniz 1686/1989). I say

more interesting because this quote makes clear that if there are two numerically distinct

things then they must be discernible or if two things are indiscernible then they must not be

even numerically distinct: there must be only one thing. The second conditional will play an

important role at the end of this paper. Leibniz’s principle can be written in the following

logically equivalent ways. The first most faithfully captures the words of Leibniz, but the

third is the most common way of thinking of the principle:

¬[∃x∃y[(x 6= y) · ∀F ∈ {F}|(F (x) ≡ F (y))]] (48)

∀x∀y[(x 6= y) ⊃ ∃F ∈ {F}|¬(F (x) ≡ F (y))] (49)

∀x∀y[∀F ∈ {F}|(F (x) ≡ F (y)) ⊃ (x = y)]57 (50)

Where {F} represents the set of monadic properties for the objects in our domain. According

to this formulation, we define that two objects, a and b, are strongly discerned if, and only

if:

∃F ∈ {F}|{[F (a) ∧ ¬F (b)] ∨ [¬F (a) ∧ F (b)]} (51)

If strong discernibility (51) is met, then the inference in (50) cannot go through. In such a

case, one could then use Leibniz’s Principle of the Indiscernibility of Identicals to infer that

the “substances” must not be identical. However, in the quantum case, it seems that (51)

fails and so the inference in (50) does go through.
57 Some authors include both monadic and relational properties in the set F ; however, Leibniz’s view on relations suggest that

we keep these cases separate. Leibniz scholars debate whether Leibniz was simply an antirealist regarding relations, in which
case relations would certainly not be included in his PII, or whether relations, for Leibniz, are unique in the sense that no two
objects could partake of the same relation as some other distinct pair of objects. For instance, the relation of brotherhood
shared between two men would not the same as the relation of brotherhood shared between any other distinct pair of men.
Consequently, if a relation is satisfied by a pair of distinct objects, the relation fails to be reflexive and as a consequence
weak discernibility is easy to satisfy. Under this second interpretation it again seems unlikely that relations were originally
included in the PII. For a discussion on Leibniz’ views see Mugnai (1992).
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The literature recognizes other means of discerning objects including that used by Muller

and Saunders: two objects, a and b, are defined to be weakly discerned if, and only if, there

is a physically relevant dyadic predicate that is symmetric and non-reflexive58 when applied

to the two objects:

∃F (a, b)|[F (a, b) ∧ F (b, a) ∧ ¬F (a, a) ∧ ¬F (b, b)]59 (52)

The idea behind weak discernibility is that if two objects are identical then F (a, b) is equiv-

alent to F (a, a) and the above condition fails; thus, if it does hold then a and b cannot be

identical. Though the inclusion of weak discernibility shifts the debate away from the exact

form of Leibniz’s principle, the spirit of the debate remains very much the same.

Quantum mechanics challenges the truth of Leibniz’s principle in that identical particles

in states like the singlet state:

Ψ = 1√
2

(↑↓ − ↓↑) (53)

are thought to be distinct particles and yet have no property to discern them. The term

‘identical particles’ is unfortunate given the current context. To be clear in the context

of quantum mechanics, all that is entailed by two or more particles being identical is that

each has the same value for their non-dynamical properties such as their mass and charge.

Identical particles are not necessarily identical in a logical or ontological sense. For the

sake of sticking as closely to the terms of Leibniz’s project I will be assuming that we have
58 Quine (1976) as well as Muller and Saunders (2008), formulate the principle of weak discernibility in terms of irreflexive

relations and not non-reflexive relations. However, I see no reason to require the logically stronger relation in the context of
discerning identical particles.

59 Muller and Saunders (2008, 528-29). The authors also note that weak discernibility can be satisfied by a relation which is
reflexive and symmetric and which does not hold between all non-identical objects. Examples of such relations are ‘identical
to’, or perhaps ‘same haecceity’ (depending on whether or not haecceities are properties.) Such relations will not be of much
use to us.



94

two objects which do differ at least numerically, but there is an important sense in which

entangled states may deny this and thereby trivialize the question of discernibility.60

The singlet state in (53) describes an entangled two particle system expressed in terms of

ẑ-spin, while the particles’ location has been suppressed. In order to be relevant for the PII,

we insist that the implicit portion of the wave function be identical and that the particles

follow the same path through space (this is why it has been suppressed). This state is

physically realizable as two entangled electrons in the same orbital of some atom. In such a

situation, for all the properties that are specified by quantum mechanics, the particles share

said properties. In other words, there is no property held by one of the particles and not

by the other, yet we have assumed that there are in fact two numerically distinct particles.

Consequently, many have taken the existence of such particles as being counterexamples to

the PII.

Though identical particles fail to be strongly discernible, Muller and Saunders claim that

they are weakly discerned by the relation ‘has opposite spin.’ This relation is symmetric and

irreflexive and yet in order to justify its application to the singlet state we need an ‘opposite

spin’-observable which when applied to the singlet state yields an appropriate eigenvalue. A

common assumption, though far from obvious, is that there is a one-to-one mapping from

physical properties to quantum mechanical hermitian operators (observables), such that if

a state Ψ is the ith eigenvector of the observable with eigenvalue ai then the state is said

to have the property associated with this eigenvalue. This association between properties

and eigenvalues is often referred to as the “eigenvector, eigenvalue link” (EE-link) and serves

to coordinate hermitian operators with properties of a system. In order for us to have a

mathematical framework complete enough to describe quantum phenomena, we require that

our mathematical machinery be able to represent every physical property that might be
60 Given the holistic nature of entangled states, one might question whether or not it even makes sense to speak of having two

particles when the state is entangled. It is plausible that particles lose their identity through entanglement and become only
a new unity. If this is correct, then the PII cannot be challenged by entanglement since there are no longer two things which
differ solo numero. I will elaborate on this point towards the end of the paper.
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possessed by our system. Thus, if we want to play the game of modeling quantum mechanics

at all, we must assume that the aforementioned mapping is at least injective.61

Muller and Saunders (2008, 533) use the following generalized operator to build the

relation of having or failing to have opposite spin:

d∑
i,j=1

P
(a)
ij P

(b)
ij (54)

Without getting into too many of the details, the superscripts on the single particle operators

P
(a)
ij pick out which slot of the tensor product the operators act and the subscripts refer to

vectors of a given eigen basis. For example, P (2)
↑↓ = I ⊗ (P↑ − P↓) ⊗ I ⊗ ..., where the P↑

projects onto the ↑ ẑ-spin eigen vector and the and P↓ onto the ↓. Muller and Saunders

(2008, 533-35) define the following two relations and claim that both are able to weakly

discern the identical particles:

Z−2(a, b) iff
d∑

i,j=1
P

(a)
ij P

(b)
ij Ψ = −2Ψ (55)

Z2(a, b) iff
d∑

i,j=1
P

(a)
ij P

(b)
ij Ψ = 2Ψ (56)

In the case considered by Muller and Saunders, the P (·)
ij operators each reduce to the Pauli

spin matrix σz and we get the following refinement:

Z−2(a, b) iff 2σazσbzΨ = −2Ψ (57)
61 I am leaving open the question of surjectivity; in particular, if there are super-selection rules then the mapping will not be

surjective. Relatedly, one might worry that injectivity also fails. It seems that there are quantum facts which we do not
represent with Hermitian operators. Such facts might include selection rules, super-selection rules, the Stone-von Neumann
theorem, or that all systems are represented as vectors in a Hilbert space. Two comments on this: (1) these properties are
not properties of physical systems, at best they are relations which hold between the physical world and some language(s)
which we use to model the world. (2) The ongoing assumption in literature is that meeting the EE-link is the gold standard
for predicating of quantum systems and that projects which diverge from it, ought to be held as suspect. Setting these
concerns aside, I am more than happy to consider alternate mathematical devices for modeling properties of our quantum
systems; however I will not do so here since the EE-link is something which Muller and Saunders are going to want to abide
by since they aim to present an orthodox defense of the PII.



96

Z2(a, b) iff 2σazσbzΨ = 2Ψ (58)

For a=1, b=2 (a↔ b) the relation holds:

Z−2(1, 2) ≡ 2σz ⊗ σzΨ = −2Ψ (59)

For a=b=1 the relation does not hold:

Z−2(1, 1) ≡ 2(σz)2 ⊗ IΨ 6= −2Ψ (60)

For a=b=2 the relation does not hold:

Z−2(2, 2) ≡ 2I⊗ (σz)2Ψ 6= −2Ψ (61)

In other words Z−2 holds iff a 6=b. The relation Z2 holds under the exact opposite conditions.

Thus, the particles are weakly discerned by the relation Z−2 and the PII is immune from

challenges posed by identical particles. For a more detailed account see Muller and Sauders

(2008).

Although Muller and Saunders’ account is straight forward it is far from unproblematic.

Equation (57) captures three different equations each with its own observable. As we select

particular values for a and b we construct new mathematical objects, see (62). Consequently,

the formal relation Z−2, used to weakly discern, is not a Hermitian operator on the system

and we cannot apply the EE-link to it. Since the EE-link is not applicable to Z−2 we have

no reason for thinking that it represents a physical relation. In the following section I will

develop a series of criticisms which stem from this fact.



97

3.3 CHALLENGES

Muller and Saunders are aware that traditionally the EE-link (roughly what they refer to

as StrPP)62 is used to pick out monadic predicates, they none-the-less insist that it can also

pick out polyadic predicates:

Finally, a note on relations. When physical system S is (taken as) a composite

system, built up of other physical systems, some of the properties of S determine

and are determined by relations of its constituents. ... Consequently, both WkPP

and StrPP [EE-link], although giving rise to properties of S and of its subsystems

(expressed by monadic predicates), equally provide conditions for the ascription

of relations among constituents of S; the magnitude A may itself be relational

(as in relative distance), and likewise the operator A corresponding to it. (This

is why one does not need to introduce relation postulates in addition to property

postulates.) Typically, however, as we shall see in the next section, where authors

have made use of WkPP or StrPP [EE-link], they have used them only to consider

monadic properties – that is to say, from our point of view, they have not made

use of either property postulate to ascribe relations among constituents of S which

is the key step that we shall be taking in this paper. (Muller and Saunders 2008,

515)

According to Muller and Saunders, the following are the conditions for ascribing a physical

relation to a formal relation as in (57) “When the projectors under consideration belong

to the spectral family of magnitude-operator A, assumed to be physically meaningful, they

are themselves physically meaningful; by the WkPP, when the system is in the state W, so

is relation Rt, which is defined in terms of them (Req1).” (Muller and Saunders 2008, 532)

Where the condition (Req1) is “all properties and relations should be transparently defined in
62 According to Muller and Saunders “We represent a quantitative physical property mathematically by the ordered pair 〈A, a〉

where A is the operator which corresponds to physical magnitude A and a ∈ C is its value. According to the Strong
Property Postulate (StrPP), a physical system S having state operator W ∈ S(H) possesses quantitative physical property
〈A, a〉 ∈ MS(H)×C iff W is an eigenstate of A that belongs to eigenvalue a” (2008, 513).
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terms of physical states and operators that correspond to physical magnitudes, as in WkPP,

in order for the properties and relations to be physically meaningful” (Muller and Saunders,

527). Here Muller and Saunders use the WkPP, which is simply a weaker version of the

StrPP (Muller and Saunders, 514) and will make no difference to my argument. In summary,

according to Muller and Saunders, what justifies assigning a physical relation, ‘opposite spin’,

to Z−2 is merely that such a relation gains physical transparency by piggy-backing off the

physical transparency of the observables which show up in (57). Before examining this claim

I want to make clear that I am in no way questioning whether the observables which show

up in (57) have physical meaning and am only questioning how physical content is forced

onto a formal relation built out of them.

Firstly, Z−2 is not an observable itself, but is map from {1, 2} ⊕ {1, 2} to the following

set of observables (acting on Ψ):

{2σz ⊗ σzΨ, 2(σz)2 ⊗ IΨ, 2I⊗ (σz)2Ψ}63 (62)

Z−2 is associated with three different observables, each of which seem to be “manifestly”

physical and yet each of which could bear a distinct physical meaning. What then is the

relationship between this set of observables and Z−2 whereby the map becomes associated

with a single physical relation? There are three questions: (1) why must the map represent

any physical property of the system or of the particles which make up the system, (2) why

is this map associated with a dyadic property (opposite spin) and not a property of some

different arity, and (3) even if the mapping is associated with a dyadic property, why must we

think that this relation is symmetric and irreflexive? Surely the formal relation Z−2(a, b) is

symmetric and irreflexive on slot indices a and b, but why must the observables in (57) bind

together to produce a physical relation which is symmetric and irreflexive on the particles?

The criterion we are in search for needs to be more than that the objects mapped onto are
63 As discussed by Huggett and Norton (2014), we should be cautious of these observables since they are multiples of the

identity on the space of fermions and are not symmetrized.
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physically meaningful, or are individually a relation of a certain kind since in general it is

false that maps have the same properties as the objects in their image.

What Muller and Saunders need to supply is an EE-link for relations which identifies

when n-valued functions onto sets of observables pick out m-ary properties. Such a link would

unpack what it means for a relation to be “transparently defined” by selecting which formally

defined relations represent physical properties and what the relevant physical property is.

However, an EE-link for relations is neither provided for by Muller and Saunders nor is it

part of standard quantum mechanics.

As things stand, we cannot do much with Muller and Saunders’ project until we are

given more reason for thinking that Z−2 represents something physical. However, for the

sake of argument let us assume that Z−2 is physically meaningful and consider questions

(2) and (3). If Z−2 does represent something physical, are there reasons for associating it

with the relation ‘opposite spin?’ Not uncontroversially. Analyzing (59)-(61) and how the

operators act on the singlet state does not leave one with any assurance that any weakly

discerning relation is being described by them. For instance, there is nothing ruling out the

possibility that equation (59) tells us that the state has total spin equal to zero while (60)

and (61) tell us that the total spin fails to be either greater or less than zero. If these are

the proper interpretations suggested by the individual equations (59), (60) and (61) then it

would be hard to argue that Z−2 represents a relation since the individual observables are

monadic properties of the system. Similarly, in order for Z−2 to represent a weakly discerning

relation on the particles, equations (59)-(61) must not bind together to suggest some three

place relation between the particles and their environment or etcetera. Somehow we must

use the information in (59)-(61) to rule out all contrary interpretations and leave only an

interpretation attached to some weakly discerning relation. Without this relation, Muller

and Saunders have only a physically salient map (since we have granted them this) and no

means to weakly discern. That equations (59)-(61) do select such a relation is neither argued

for by Muller and Saunders nor is it even clear what such an argument would look like.
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Before exploring other motivations for why we ought to think that ‘opposite spin’ is

true of the singlet state, I just want to highlight one further worry about Z−2. If Muller

and Saunders are correct in their claim that Z−2(x, y) represents a physical relation since

it is built out of physically salient Hermitian operators then it must also be be true that

Z(x) ≡ Z−2(x, a) represents a physically relevant monadic property since it too is built out

of physically salient Hermitian operators. Here a is either 1 or 2. Moreover, since it is not

the case that both x = 1 and x = 2 satisfy Z(x), the particles are strongly discerned by it.

However, we had already concluded that the particles are not strongly discerned.

We are able to by-pass our previous conclusion by utilizing non-Hermitian operators to

represent monadic properties of the particles. If we think that we have made a mistake in

getting to this conclusion (and we have), then I suggest that we have also made a mistake

in the case of weak discernibility. Perhaps in filling out or adding to Muller and Sauders’

conditions for why Z−2(x, y) represents a physical relation we will discover conditions which

fail when applied to Z−2(x, a). However, until these conditions are given we should have no

confidence that Z−2(x, y) is any more physical than Z−2(x, a).

Thus far we have not found anything in the formal structure of Z−2 acting on Ψ which

suggests ‘opposite spin’ or any other symmetric and irreflexive physical relation. Why then

think that it does? With respect to their claim that Z−2(a, b) represents ‘opposite spin,’

Muller and Saunders claim “Relation Z−2 is the one in footnote 5 of (Saunders [2003a],

p.294): ‘has opposite direction of each component of spin to.’” (2008, 535) In this footnote

Saunders argues, “The most general anitsymmetrized 2-particle state is Ψ = 1√
2(φ⊗ψ−ψ⊗φ)

where φ and ψ are orthogonal. Analogues of operators for components of spin can be defined

as S = Pφ − Pψ, where Pφ, Pψ are projections on the states φ, ψ. Each of the two particles
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in the state Ψ, has opposite value of S. But no particle can have opposite value of S” to

itself.64 (Saunders 2003)

What does the heavy lifting in predicating opposite S-value (opposite spin) to the par-

ticles is apparently Saunders’ assertion that each of the two particles in the state Ψ happen

to have opposite values of spin. This is surely troubling; if we are not going to reason in a

circle we must have some way of verifying that the particles do in fact give opposite values

of S. Yet given that the state is entangled we have no way of isolating any single particle to

determine its spin. Saunders claims that the observable S does pick out opposite eigenvalues

when applied to the particles in the singlet state; however, in order to make this claim one

would need to first identify which part of the singlet state, represents some single particle.

Though we know that such talk is nonsense, perhaps if we were to look at the actual terms

of the ẑ-spin-expansion of the singlet state, we might be able to find some motivation for

thinking that ‘opposite spin’ has something to do with the singlet state. It sure seems like

the particles in (63) have opposite spin.

Ψ = 1√
2

(↑↓ − ↓↑) (63)

How does one dissect this state to apprehend one particle at a time and thus come to believe

that each particle has the opposite S-value from the other? If one were to assume that

the slots of each term of the singlet state represent the individual particles, then we might

conclude that the particles have opposite spin. For instance, let:

Particle 1 (↑ ⊗·) as well as (↓ ⊗·) (64)
64 There are formal problems with Saunders’ S: it is a single particle observable and cannot be applied to the singlet state.

This is corrected in Muller and Saunders; though, their observable is not symmetrized. In this same footnote, presumably in
defense of his position, Saunders quotes Mermin (1998). In this paper Mermin gives a non-standard interpretation of quantum
mechanics under which all there is, are relations and no relata. According to this interpretation there are no particles to
weakly discern since there are no particles. The role which Mermin’s interpretation is supposed to play in Saunders’ account
is far from clear. Surely such an interpretation cannot help decide the fate of the PII which assumes that there is relata in
the world.
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Particle 2 (·⊗ ↓) as well as (·⊗ ↑) (65)

Then according to our assumption, the first slot in ↑↓ represents the first particle and its

properties and the second the second particle and its properties, and similarly for ↓↑. Since

the first particle in ↑↓ has the opposite value of spin as the second particle, we conclude that

the particles have opposite spin. Not forgetting that there are two terms, we check the second

term ↓↑ and note that the particles represented here also have opposite spin. Therefore by

the linearity of (63), it is true of the singlet state that the particles have opposite spin.

The mistake of course is that ↑↓ does not represent anything physical: no identical

particles are represented by ↑↓. The eigenvector ↑↓ is no more essential to the physical

description of the state than the minus sign connecting the other nonphysical pieces of

syntax. As a whole, the state has physical content but none of its parts do. To treat the

terms ↑↓ or ↓↑ as individually giving us physical information of the state is to treat the

singlet state as akin to a statistical mixture rather than a genuine entanglement.65 This line

of reasoning corrects an assumption we may have had regarding the EE-link: we may have

assumed that since observables are linear in the wave function that the properties associated

with them are too. This of course is false. Physical properties only hold of physical states.

The EE-link associates properties with physical states and not with non-physical terms of

a state’s decomposition. Moreover, implicit in my treatment is a denial that slot indices

always represent single particles. Rather, only those slots of factorized states, represent

single particles: slots on non-physical syntaxt cannot represent physical particles.

In summary of these arguments: the singlet state is ‘Ψ’ and focussing too much on the

expansion ‘(↑↓ − ↓↑)’ may tempt us into thinking that its pattern of arrows is revealing

hidden relations between the single particles. We must conclude that there is nothing in the
65 Let us lay this objection aside and assume that it makes sense to read physical properties off non-physical syntaxt, we still

need a story as to why ‘opposite spin’ is selected and not ‘definite and opposite spin?’ Surely it is true of both ↑↓ and ↓↑
that the particles have definite and opposite spin, and thus should we not also say of the singlet state that its particles have
definite and opposite spin? Yet this is false: the particles described by the singlet state do not have definite spin and may
or may not have opposite spin (this is the contentious claim we are exploring.) This example highlights the danger inherent
in inferring state properties from non-physical states.
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singlet state’s description that warrants attributing opposite spin to its particles. Moreover,

since, as we have seen, there is nothing in the formal structure of Z−2 which warrants our

association of it to the relation ‘opposite spin,’ quantum mechanics simply does not provide

us with a description of the particles’ spins.66 If quantum mechanics does not provide a

description then why do we think there is one?

In conclusion, I have provided three challenges to predicating ‘opposite spin’ to states like

the singlet state. The first challenge stems from Muller and Saunders’ emphasis that their

formal relation Z−2 should be identified with a physical relation. I have argued that there is

nothing in the formal structure of Z−2 for thinking that it represents any physical property of

the state, nor that it is a physical relation, nor that the physical relation is suitably structured

to weakly discern. I will close this paper with the following consideration, a consideration

which others have also noted: why must we think of the singlet as representing two things

to begin with? As I have argued throughout, it is exceedingly difficult to justify applying

relational properties to the singlet state since an entangled state’s description “hides” what is

true of any single particle. If we are to extract information about single particle properties,

it is not clear how we are to do so. Given the extent to which entangled states hide the

supposed particles which they represent, why not interpret such states as representing only

emergent unities?

Whether or not we think the PII is a logical principle (as Leibniz did), for most of us

the principle remains highly intuitive; moreover, since the principle comes under attack only

to the extent that entangled states represent multiple particles, what is keeping us from

flipping the argument around and using the PII to deny the composite nature of entangled

states? I will not attempt to address this issue and will only note that if we did deny the

composite nature of entangled states, we would simultaneously block the PII from attack as

well as make it unreasonable to apply relational properties to them. For if there are not two
66 It might be the case that Z−2 ought to be associated with ‘opposite spin;’ however, given our current understanding of

quantum mechanics, we are not warranted in making this association. In order to be warranted, we require a more robust
EE-link than the one we currently have.
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“numerically distinct” things to challenge the PII, then there are not two things which have

opposite spin (for instance).
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