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SUMMARY

The main motive behind the research work presented in this thesis, is to provide the proof of concept

for the design of an automated, next generation, adaptive closed-loop deep brain stimulation (DBS)

system. In this work we developed various automated tremor prediction algorithms based on surface-

Electromyography (sEMG) and Accelerometer (Acc) signals measured at symptomatic extremities. We

also performed the mathematical modeling of neuronal activities measured from the affected part of the

brain in case of movement disorder patients. This provides theoretical background to further improve

the existing state of the art DBS system so that it can provide maximum benefits to the patients. This

thesis work can be subdivided into two parts:

• To develop automated tremor prediction algorithms for Parkinson’s Disease (PD) and Essential

Tremor (ET) patients using various machine learning techniques such as Neural Network (NN),

Decision Tree (DT), Tree Bagger (TBAG) and Support Vector Machine (SVM).

• To provide a stochastic model for the neuronal spiking activities measured from the subthalamic

nucleus (STN) of PD patients and Venteral Intermediate Nucleus (VIM) of ET patients during

DBS implantation which can further be used in adaptively controlling the stimulation parameters.

DBS is a surgically-implanted battery-operated electrodes which sends High Frequency electrical

Stimulation (HFS) to targeted areas of the brain [7]. DBS has provided remarkable therapeutic benefits

to PD and ET patients when their disease symptoms are disabling. Despite the long history of the

treatment based on DBS [8], its underlying principles and working mechanisms are still not clear. The

existing FDA approved DBS systems operate open-loop, that is, the physician sets the DBS stimulation

xviii



SUMMARY (Continued)

parameters, such as frequency, pulse amplitude, and pulse duration, with visual feedback from the

patient. DBS stimulation is provided continuously and its parameters remain constant until the physician

changes them. This implies that existing DBS technology is neither adaptive to the patients needs nor

able to follow the patients disease progression over time.

To design an adaptive closed-loop DBS system we need to adaptively change the DBS stimulation

parameters as per the patients need and also make it an automated ON-OFF controlled system. The

next generation adaptive closed-loop DBS system design requires the identification and processing of

suitable physiological signals that contain information related to the real-time response of the brain to

DBS stimulation. The mathematical modeling of neuronal brain activities measured at the site of the

DBS implant would shed light into the mechanisms of DBS system and therefore can provide effective

DBS treatment to PD and ET patients in alleviating their severe disease symptoms [9]. The effect of

DBS parameters on mathematical model parameters can predict the reappearance of diseease symptoms

when DBS is turned OFf and also can be used in optimizing DBS parameters [10–13]. However the

mathematical model based on the neuronal brain activities measured at the site of the DBS implant

would require changes in the currently approved DBS system whose testing and approval could take

years and considerably delay closed loop DBS commercialization. Therefore to overcome this limitation

the authors of [6] have proposed a closed loop DBS design based non-invasive surface electromyogram

(sEMG) and accelerometer (Acc) signals measured from patient’s symptomatic extremities. As this

design was based on manual algorithm which involves manual training and manual setting of several

threshold parameters therefore it’s commercial implimentation is unfeasible.
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This thesis work shows the implementation of various automted tremor prediction algorithms in

case of PD and ET patients based on which we can design a commercially viable closed loop DBS

system. To implement automated tremor prediction algorithms in PD and ET patients we explored

various machine learning techniques. We compared the performance of tremor prediction algorithms

which are implemented using NN, DT, TBAG and SVM in ET and PD patients to choose best among

them. In this thesis work we also performed the mathematical modelling of neuronal spiking activities

recorded from Ventral Intermediate Nucleus (VIM) of thalamus of ET patients and the subthalamic

nucleus (STN) of PD patients using Ornstein Uhlenbeck Process (OUP). The parameter extraction of

OUP ia performed using the Fortet Integral Equation (FIE) [14,15], which is based on the minimization

of maximum Kolmogorov-Smirnov statistical error criteria. This mathematical modelling is performed

on 19 VIM recordings from ET patients and 10 STN recordings from PD patients. We statistically

compared the results obtained from the OUP whose parameters were obtained using FIE method with the

OUP in which the model parameters were extracted using the moments method based on the Ricciardi’s

approach [16] as in [17,18] using a directional Wilcoxon signed rank test [19] and we concluded that the

model parameter estimated based on the FIE method gives overall better results compared to the moment

method in case of ET and PD patients. Therefore mathematical modelling of neuronal spiking activities

in case of ET and PD patients can be performed by OUP in which model parameters are extracted using

FIE method. These results may have various implications in designing the next generation automated

adaptive close loop DBS system.

The introduction chapter of this thesis summarizes the background about ET and PD patients. The

second chapter presents all the automated tremor prediction algorithms in case of PD patients with their

xx



SUMMARY (Continued)

performance comparision. The third chapter of thesis shows the implementation of various automated

tremor prediction algorithms is case of ET patients. In chapter four of this thesis we perform the math-

ematical modelling of neuronal spiking activities using OUP in which model parameters were extracted

using FIE method. In conclusion chapter we compare the various machine learning technique based

tremor prediction algorithms is case of ET and PD patients. Finally, we propose the future directions to

this study.
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CHAPTER 1

INTRODUCTION

Essential Tremor (ET) and Parkinson’s Disease (PD) are the most prevalent progressive neurologi-

cal movement disorders. The underlying pathophysiology for these diseases are still unknown and there

is no cure at present. However, there are medication therapies which can control the symptoms of these

diseases, but if the symptom severity increases to a disabling level, then surgical procedures such as deep

brain stimulation (DBS) can used for further treatment. DBS provides stimulation either to the Ventral

Intermediate Nucleus (VIM) of thalamus in case of ET/PD or to the subthalamic nucleus (STN)/globus

pallidus (GPi) in case of PD, DBS is thought to block the abnormal nerve signals responsible for symp-

toms, such as bradykinesia, rigidity, tremor, and gait difficulties. DBS provides therapeutic benefits

in case of PD and ET by changing the brain activities in a controlled and reversible manner but its

underlying mechanism is still unknown [20].

1.1 Essential Tremor

ET is a progressive neurological disorder [21]. The progression of the disease varies from patient

to patient as in some cases it may be slow and for others it may be very rapid [22], [23]. ET is also

referred to as kinetic and / or action tremor as it occurs only when the affected muscle exerts effort, i.e.,

in posture (kinetic) or in action, and is characterized by a tremor frequency range of 4-12 Hz [24]. ET

can affect the head (neck), jaw, voice and other parts of the body but in most cases tremor originates

from the arm [24]. Statistics of this disease shows that the prevalence of this disease is up to 10% of

1
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the population in the United States. It also indicates that the risk factor for this disease increases as the

age increases (approximately 4% for persons in the age group of 35-40 years and about 5% for those

who are above 60 years [25]). The occurrence of ET patient is approximately ten times that of PD pa-

tients. Many cases of ET are found to be familial but underlying pathophysiology is still unknown [26].

Several physiological, clinical and imaging studies show the involvement of the cerebellum and/or cere-

bellothalamocortical circuits [27]. There is no cure for this disease but there are treatments which can

control the symptoms and improve the quality of life to an extent. The treatment depends on the severity

of the tremor; if it is less severe, then medications the beta-blockers propranolol and the antiepileptic

primidone are effective [28]. If medication does not work and the severity of the disease is disabling,

then surgical procedures such as thalamotomy [29] and DBS [30] may be used. In the thalamotomy

surgical procedure, a small volume of the tissue in thalamus area is removed by using either stereotactic

radio surgery or radio frequency (RF) ablation this procedure is irreversible. DBS, which involves the

placement of electric probe inside VIM of thalamus and is connected to a pacemaker device placed near

collarbone to power the electrode. DBS provides continuous, high frequency electrical stimulation to

target area of the brain and its effects are reversible. Currently, the FDA approved DBS system operates

open-loop, i.e., the stimulation parameters do not change over time. The next-generation of DBS system

is envisioned to adaptively change the stimulation parameters according to the needs and condition of

patient [31].

1.2 Parkinson’s Disease

PD is a gradual progressive neurodegenerative disorder of the central nervous system, which is

characterized by symptoms such as tremor, rigidity, slowness of movement and postural instability. In



3

United states approximately 0.37% (1̃ million) people are suffering from PD. The risk factor for PD

increases with age and prevalence of this disease rises from 1% for age over 60 years to 4% for age

over 80 years [32]. This disease is caused due to the loss of subgroups of dopaminergic neurons in the

substangia niga, a region of the mid-brain that controls movements and is characterized by a rhythmic

tremor in the 4 - 12 Hz frequency band. The insufficient dopaminergic neurons in the substangia niga

disturbs the direct and indirect pathways of transmission of signals from the motor cortex area to the

basal ganglia (BG) which is the cause for most of the Parkinsonian symptoms [20, 33, 34]. This disease

cannot be cured but there are medical procedures which can control the symptoms of this disease [33].

The medication therapies which can control the symptoms are levodopa in combination with dopa de-

carboxylase inhibitor or COMT inhibitor, dopamine agonists and MAO-B inhibitors [35]. In advanced

stage PD medication therapies become ineffective and/or start producing side-effects such as nausea,

dyskinesias and joint stiffness [35] then the surgical procedures such as DBS relieve patients from most

of their debilitating motor symptoms and improve their quality of life to a larger extent [36–39]. Cur-

rently approved DBS (from Medtronic) uses battery-operated surgically-implanted electrodes to deliver

HFS to the neurons in the brain that control movement. DBS is particularly effective at suppressing

involuntary rhythmic tremor in the 4− 12 Hz frequency band [40]. The target area of the stimulation

for PD patients is either the internal segment of GPi or STN as it benefits not only tremor but also other

symptoms such as rigidity, bradykinesia, gait problems, and dyskinesias.

1.3 Current state-of-the-art of DBS system

In case of healthy subjects, the neurons within the GPi and the STN in the basal ganglia resonates at

around 70 Hz; in case of PD and ET patients, due to decrease in dopamine level, the resonant frequency



4

reduces to 30 Hz [41]. DBS uses a surgically-implanted battery-operated medical device which consists

of three components: the lead, the extension, and neurostimulato as shown in Figure 1 1.

Figure 1. DBS system components (Lead, Extension and pulse generator).

1This figure is taken from http://www.med.unc.edu/neurology/divisions/movement-disorders/copy of deep-
brain-stimulation.
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The lead is a thin insulated wire consisting of four thin insulated electrodes (electrodes 0, 1, 2, 3)

whose tips are implanted within the targeted brain area with electrode spacing of 0.5 mm. The neu-

rostimulator is similar to a cardiac pacemaker device and consists of a small battery and programmable

computer chip to send electrical pulses to control disease symptoms. It is implanted under the skin

below the collarbone. The extension is an insulated wire that is passed under the skin and connects

the lead to the neurostimulator to send the signal from neurostimulator to the electrodes. DBS system

delivers High Frequency electrical Stimulation (HFS) through the lead to targeted areas such as VIM of

thalamus in case of ET/PD or to the STN/GPi in case of PD in the brain that control movement.

Activa is the only Food and Drug Administration (FDA) approved DBS system from Medtronic.

DBS can operate in monopolar stimulation mode or in in bipolar stimulation mode. In case of monopo-

lar stimulation mode, the pulse generator is the anode and one or more of the four electrodes can be

the cathode(s) in bipolar stimulation mode, the cathode(s) as well as the anode(s) are provided by the

electrodes. DBS surgery can be unilateral (for ET patients) or bilateral (for PD patients) in which the

leads are surgically implanted in the brain and connected to one or more neurosimulators, respectively.

In the existing open-loop system, the physician sets the stimulation parameters such as frequency, pulse

amplitude, and pulse duration with visual feedback from the patient. The stimulation is provided con-

tinuously and parameters remain constant until physician make any changes into it. The existing DBS

technology is non-adaptive to patient’s needs and is not able to follow the patient’s disease progression

over time. We therefore say that current DBS systems operate open-loop.
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1.4 Adaptive ON-OFF controlled Closed-Loop DBS system

To redesign the current DBS system such that it can adapt to the variation in patient’s tremor con-

dition, it is necessary to design an adaptively controlled closed-loop DBS system. The closed-loop

DBS system design requires suitable physiological signal that contains information related to the real

time response of brain to electrical stimulations for adaptive control of the stimulation parameter and

information related to reappearance of the tremor for adaptive on-off control. The best choice of the

physiological signal would be the actual neuronal brain activity which can be measured either from

individual neurons called micro-recording represented by cell firing, or from group of neurons called

macrorecording represented by local field potential. To measure these signals during stimulation off

times require changes to the current FDA approved DBS system which requires long testing and ap-

proval times and will delay its commercialization. To overcome this limitation, the alternative choice

is non-invasively recorded surface-electromyogram (sEMG) signal in correlation with accelerometer

(Acc) signal [42] which can be used to implement the adaptive on-off control in existing state of the art

DBS system.

Many researches are developing an adaptive closed-loop DBS controller. The study performed

in [43] shows that closed-loop control of DBS amplitude can regulate the spectrum of the local field

potential and therefore can normalize the aberrant pattern of neuronal activity present in tremor. One

study shows that the combination electrochemical monitoring and mathematical modeling can poten-

tially provide an automatic algorithm to adjust the postoperative DBS parameters [44]. Some researches

to design a close-loop DBS system [45] used the optimization of stimulation pattern, such as phase

resetting and delayed feedback [46–48] using a pulse train with random frequency [11]. As these ap-
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proaches are based on mathematical modeling of recorded electrical signals from the key areas of the

brain therefore these closed-loop DBS system designs will need further approval from Food and Drug

Administration for its commercial application. To overcome this limitation the authors of [42, 49] pro-

posed a DBS closed-loop design based on non-invasively recorded sEMG/Acc signals. In [6] authors

showed that a closed-loop DBS system can be designed in case ET and PD using manual algorithm

based on non-invasively measured sEMG/Acc signals which contain tremor information. In [42] it was

shown that DBS could be switched OFF for up to 50% of the time without patients experiencing any

discomfort. In this thesis work we are taking one step forward to designing a fully automated tremor

prediction algorithms in ET and PD patients based on various machine learning algorithms which does

not require manual thresholding of the parameters.

1.5 Motivation and Impacts

The motivation behind this work is to design an automated, controlled closed-loop DBS system

for movement disorders because of the two major shortcomings in the existing DBS system. First, the

current DBS system operates open loop, i.e., it continuously stimulates the brain area which controls the

movement with HFS. This can be avoided by using the HFS pulses just before the reappearance of the

tremor in case of PD and ET patients. The reappearance of the tremor can be predicted by using some

signals measured from the PD and ET patients which contains the tremor prediction information. By

implementing the closed-loop algorithm we can avoid the high injection of the current inside the brain.

Second, the existing DBS system is non-adaptive in nature meaning the stimulation parameters

remains constant until the physician changes them. Even though the disease symptoms may change

over the time, but the stimulation parameters doesn’t change according to patient’s disease progression
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over the time. To make the current DBS system adaptive in nature, we have to record and process the

brain activities measured through the implanted DBS electrodes. The mathematical modeling of the

inter spike time interval (ISI) measured through micro electrode during DBS surgery may provide us

some knowledge about the brain activities in case of ET and PD patients.

The next generation adaptive close-loop control DBS systems will have following major impacts:

1. As the next generation DBS system will provide the HFS only on the reappearance of the tremor

therefore it will require less power, which in turn will prolong the battery life. The prolonged

battery life will reduce the recurring battery implantation surgery cost and risks.

2. It will reduce the injection of the current inside the brain which will avoid the possibility of

destroying healthy cells.

3. It may also provide the run time activities of the brain which could be helpful in understanding

the pathophysiology of the disease and also the working mechanism of DBS system.

1.6 Outline of the work

The introduction chapter of this thesis provides some background about the ET and PD diseases

which includes the symptoms of the diseases, statistics about the population affected by these diseases,

medication based initial treatments of these diseases and surgical based treatments in case of severe

disease symptoms. As DBS is one of the surgical procedures which is widely used to relieve ET and

PD patients from most of their debilitating symptoms. In this chapter we discuss some of the possible

underlying mechanisms involved in DBS which can be responsible to provide the therapeutic benefits to
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the patients. We discuss about the existing state of the art DBS system and its shortcomings followed by

the discussion about the design of an automated adaptive ON-OFF controlled closed-loop DBS system.

The second chapter introduces the automated tremor prediction algorithms for PD patients using

various machine learning techniques. The input parameters for all the tremor prediction algorithms are

estimated from non-invasively measured sEMG and Acc signals; in this chapter we discuss the data

collection procedure used. This chapter describes all the parameters used for tremor prediction and

proposed all the machine learning techniques such as NN, DT, TBAG and SVM based on which all

automated tremor prediction algorithms are designed. The training of machine learning technique based

tremor prediction algorithms in case of PD patients is also presented in this chapter. This chapter also

discusses the performance matrix involved in analyzing the algorithms. This chapter concludes with the

results and discussion of the various automated tremor prediction algorithms in case of four PD patients.

The third chapter deals with the implementation of automated tremor prediction algorithms for ET.

In case of ET patients five different automated tremor prediction algorithms are proposed two of them

also involve a condition classifier before tremor predictor. The conditions classifier section involves

the discussion about the input parameter extraction for the classifier and its implementation. Finally, in

this chapter we provide the individual tremor prediction summary for all tremor prediction algorithms

followed by a comparative analysis amongst all the algorithms.

The fourth chapter derives mathematical models for the neuronal spiking activities recorded from the

STN of PD patients and VIM of ET patients during the micro-electrode recording of the affected areas

of the brain during DBS surgery. To derive a mathematical model for neuronal activities in diseased part

of the brain, we propose to use, following well established literature, the Ornstein-Uhlenbeck Process
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(OUP). In this work, we propose to extract the OUP parameters by using Fortet Integral Equation (FIE)

method. Furthermore, we statistically compare the performance of OUP with some other stochastic

processes such as Poisson Process (PP), the Brownian Motion (BM) and the OUP whose parameters are

extracted using a moment method. We show that the performance of OUP in which the parameters are

extracted using FIE method is superior than the other stochastic processes. This mathematical modeling

can be further used to provide understanding of neuronal activities in the affected part of the brain and

also can be useful in designing an adaptive close-loop DBS in case of PD and ET patients.

In the conclusion chapter of this thesis we compare the machine learning technique based tremor

prediction algorithms in case of PD and ET patients for next generation closed-loop DBS system. As the

future direction of the work we propose to improve the processing of the sEMG and Acc signal. We also

propose to explore some other methods such as Principal Component Analysis (PCA), Factor Analysis

(FA) or Independent Component Analysis (ICA) to extract the optimum number of parameters from

filtered sEMG and Acc signals. Furthermore a rigorous exercise can also be undertaken to find out the

best combination of parameters or options for various machine learning techniques used in this work.

For the modeling of neuronal spiking activities we can further investigate more complex stochastic

process such as Feller process.

This thesis work provides the theoretical concept for the design of an automated next generation

adaptive closed loop DBS system which in turn can improve the existing DBS system design for the

treatment of PD and ET patients.



CHAPTER 2

TREMOR PREDICTION ALGORITHM IMPLEMENTATION IN PARKINSON’S

DISEASE PATIENTS USING MACHINE LEARNING TECHNIQUES

Part of the content of this chapter appeared [1]: Shukla, P., Basu, I., Graupe, D., Tuninetti, D., and

Slavin, K. V.: A neural networkbased design of an on-off adaptive control for deep brain stimulation in

movement disorders. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual Interna-

tional Conference of the IEEE, 2012.

2.1 Background

To redesign the current DBS system such that it can adapt to the variation in patient’s tremor condi-

tion, it is necessary to design an adaptively controlled closed-loop DBS system. To design a closed-loop

DBS system, we need to adaptively control the DBS stimulation parameters as well as the time intervals

when DBS stimulation is administered. This requires the identification of suitable physiological signals

that contain information related to the real-time response of the brain to DBS stimulation. In particular,

we are interested in a simple but robust ON-OFF control of DBS such as when stimulation is switched

OFF and the patient does not experience tremor, the system tracks few physiological signals and predicts

when tremor is about to reappear. When tremor recurrence is predicted, stimulation is switched ON for

a fixed amount of time. The authors showed in [42] that in most of the cases, it is possible to switch

11
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OFF stimulation for more than 50% of the time, which gives a considerable saving in battery life and

reduces the amount of current injected in the brain.

The neuronal brain activity measured at the site of the DBS implant would offer the necessary pre-

dictive information about tremor reappearance. However, measuring from the stimulating electrodes

would require changes in the currently approved DBS system whose testing and approval could take

years and considerably delay closed-loop DBS commercialization. To overcome this limitation the

authors of [42, 49] proposed a DBS closed-loop design where the controller inputs are parameters esti-

mated from non-invasively recorded sEMG/Acc signals that correlate with the tremor symptoms. Such

an automated tremor predictor must achieve the following objectives:

• Goal 1: The onset of the tremor should be predicted just a few seconds before the occurrence of

the tremor so that the patient does not experience any discomfort due to tremor.

• Goal 2: Any kind of voluntary movements and posture initiations should not be predicted as

tremor so as to increase the DBS-OFF time.

In [49], a reliable predictor of tremor onset for Essential Tremor was obtained by using entropy

measures, in particular approximate and wavelet entropy. Furthermore, we extended our work in [6]

and designed a manual closed-loop ON-OFF DBS system based on surface electromyogram (sEMG)

and accelerometer (Acc) signals measured non-invasively from the patient’s symptomatic extremities.

We extracted several features from the sEMG and Acc signals and manually designed thresholds for

a tremor prediction algorithm that was shown to achieve an overall sensitivity of 100% along with an

accuracy of 80.2% in case of 4 PD patients. Based on statistical tests, we concluded that the predicted
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tremor reappearance times differ from random prediction outcomes. Towards the design of a fully

automated closed-loop DBS system suitable for commercial implementation, in [1] we developed a

tremor predictor based on a feed-forward back-propagation Neural Network (NN), which achieved an

overall sensitivity of 92.3% and accuracy of 75.8%, when tested on 2 Parkinson’s Disease (PD) patients.

As the results were limited to 33 trials for two PD patients we extended this work and implemented on

92 trials for 4 PD patients; moreover, we have implemented the tremor predictor algorithms in 4 PD

patients based on various other self adaptive machine learning techniques such as decision tree (DT),

treebagger (TBAG) and support vector machine (SVM).

NN-based predictors, with physiological signals as inputs, have been widely used in clinical appli-

cations such as for predicting, for example, epileptic seizures [50] and sleep apnea [51]. In this work,

we implemented various other machine learning algorithms such as DT, TBAG and SVM along with

feed-forward back-propagation NN to predict tremor reappearance in PD patients.

Finally, we show that in case of 4 PD patients, the NN based tremor prediction algorithm success-

fully predicts tremor in 86 out of 92 trials with an overall accuracy of 76.09% and sensitivity of 91.05%,

the DT based tremor prediction algorithm successfully predicts tremor in 92 out of 92 trials with an

overall accuracy of 85.87% and sensitivity of 100.00%, the TBAG based tremor prediction algorithm

successfully predicts tremor in 91 out of 92 trials with an overall accuracy of 78.26% and sensitivity of

98.41% and the SVM based tremor prediction algorithm successfully predicts tremor in 88 out of 92

trials with an overall accuracy of 83.70% and sensitivity of 94.29%. The overall summary of all tremor

prediction algorithms in case of PD patients is summarized in Table VII. The DT based tremor predic-

tion algorithm has achieved the highest performance among all other tremor prediction algorithms with
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TABLE I

OVERALL TREMOR PREDICTION SUMMARY FOR ALL MACHINE LEARNING
TECHNIQUES BASED TREMOR PREDICTION ALGORITHMS. LEGEND: N = TOTAL # OF
TRIALS, NTD = TOTAL # OF NO TREMOR DETECTED TRIALS, A = ACCURACY IN %, S =

SENSITIVITY IN %, FA = FALSE ALARM RATE IN % AND MCC = MATTHEWS
CORRELATION COEFFICIENT.

TREMOR PREDICTION N NTD TP TN FP FN A S FA Mcc
ALGORITHM (%) (%) (%)

NN 92 11 61 9 16 6 76.09 91.05 18.18 0.37
DT 92 11 71 8 13 0 85.87 100.0 27.27 0.57

TBAG 92 11 62 10 19 1 78.26 98.41 9.09 0.45
SVM 92 11 66 11 11 4 83.70 94.29 0.00 0.51

an overall accuracy of 85.87% and sensitivity of 100.00%. This work shows the possibility of DT-based

closed-loop DBS system design without making any modifications to the existing electrodes implanted

in the brain.

2.2 Data Set

Four PD patients were recruited for the study from the Movement Disorder Clinic at Rush University

Medical Center. Patient details are listed in Table VIII. Informed consent approved by the IRB was

obtained from all patients. The four PD patients had DBS electrodes (Medtronic DBS lead model

3389) stereotactically implanted in the STN. All patients had dominant tremor in one or both arms and

their symptoms were well controlled by the combination of DBS stimulation and medications. All four

patients had one recording session each in the Neural Control of Movement Laboratory (NCML) at

UIC. On the testing day, the patients were on their usual medication and a series of sEMG recordings
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were done from the the extensor digitorum communis (upper forearm). The recording setup was as

in [52]. The sEMG signal was amplified (gain set to 1,000) and bandpass filtered between 20Hz and

450Hz (Delsys Inc., Boston, MA). Along with sEMG, acceleration data was recorded from the finger tip

(with a calibrated Coulbourn type V 94-41 miniature solid-state piezoresistive accelerometer having a

resolution of 0.01g). Both sEMG and accelerometer data were sampled at fs =1000Hz. The experiment

setup is shown in Figure 2.

In the beginning of the experiment, the patient was comfortably seated in an upright position. The

arm of the chair served as the supportive surface for the patient’s forearm. DBS stimulation was switched

OFF for some time before recording started. Then a trial started with the stimulation ON for 20s to 50s

followed immediately by an interval with stimulation OFF. The total duration of each trial, T , was

between 50s to 100s. In each trial, the patient was in one of the following three states:

R: Rest with his/her hand completely relaxed and hanging from the chair’s arm rest.

P: Holding a Posture, with his/her wrist and hand in a neutral extended position.

A: Performing a voluntary Action such as reaching for his/her opposite shoulder or flexion of the

wrist.

In states P and A, the movement/posture was initiated either before or after switching the stimulation

OFF. There were 15 to 20 such trials recorded for each patient. After stimulation was switched OFF at

time tOFF , the first instant ttr when tremor visibly reappeared was noted. Reappearance of tremor was

also verified by thresholding the acceleration data at 0.2mm/s2 for states R and P.
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Accelerometer sensor sEMG sensor for extensor 

sEMG sensor for flexor 

Figure 2. Hand position with sEMG (flexor and extensor) and Acc sensors during posture condition.
Figure from [6].

2.3 Input parameters for tremor predictor algorithms

The tremor predictor inputs are a combination of spectral, entropy and recurrence measures from

the smoothed sEMG and Acc signals. The smoothening of the raw extensor signal x(t) was performed

by calculating the power over windows of 50 ms (equivalent to 50 samples) duration that slide over

every sample. The smoothed sEMG signal will be denoted as xs(t). The sEMG was smoothed to extract

the lower frequency tremor bursts by averaging out the higher frequency oscillations inside the sEMG

bursts. The smoothening of the signal is mathematically equivalent to the low pass filtering. Finally, a

set of parameters were calculated based on smoothed sEMG and Acc signals using windows of 1 sec
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TABLE II

DETAILS OF PD PATIENTS
Patient# age gender DBS parameter active DBS hand

amplitude frequency pulse width contacts implant tested
PD1 46 M 2.8 V 180 Hz 80 µs 1-0+ 2008 R
PD2 45 M 2.5 V 185 Hz 60 µs 1-2-C+ 2002 L
PD3 52 F 2.8 V 185 Hz 120 µs 0-C+ 2004 R
PD4 60 F 2 V 145 Hz 60 µs 1-3-C+ 2009 R

(equivalent to 1000 samples) with an overlap of 0.75 sec thus producing a sample every 0.25 sec. The

first parameter sample was obtained after an initial delay of 1.05 sec. A description of all the parameters

that were used for tremor prediction in case of PD patients is as follows:

1) The mean frequency is the expected value of the frequency distribution over the spectrum range

considered

Fmean =
∑

N
n=1 fnPn

∑
N
n=1 Pn

, N = 37, (2.1)

where Pn is the power of a 1s window of the smoothed sEMG at frequency band centered around fn,

n∈ [1 : N], calculated by using a 512-point Fourier transform. As Fmean involves the power of sEMG and

Acc signals centered around different frequencies, therefore it is expected that Fmean will have greater

value in the absence of a tremor compared to the presence of tremor or just before the appearance of

tremor.
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2) The Peak Frequency and the Power at Peak Frequency: The frequency band of interest is from

f4 = 3Hz to f19 = 18Hz, which carries tremor information. For each band we calculate the power Pn;

the frequency band with maximum power has index i? which is given by:

i? = arg max
n∈[4:19]

{Pn}. (2.2)

The peak frequency and the power at peak frequency, whose utility is explained in [6], are respec-

tively

Fmax = fi? , Pmax =
Pi?

∑i∈[20:37] Pi
. (2.3)

In (Equation 2.3) Pmax is normalized by the power of signal outside the tremor frequency range be-

cause the power at Fmax must be compared over different trials, which might have significantly different

power outside the range of interest.

3) The mean power in n-th frequency band is obtained by decomposing the smoothed sEMG sig-

nal into M = 10 frequency bands with Daubechies4 wavelets. Let X j(t) denote the signal in the j-th

frequency band, j ∈ [1 : M]. The mean power in j-th frequency band is defined as

Pj =
1

∆T
∑

t∈∆T

|X j(t)|2, ∆T = 1s. (2.4)

The mean power in the frequency band of (8−16) Hz was used for the tremor prediction algorithms.

The frequency band of (8−16) Hz was used because it was seen that this frequency band contains most
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of the predictive information [42] which can specially distinguish between the voluntary movement

and actual tremor condition. Moreover, this band also overlaps with the typical action/postural tremor

frequency band.

4) The sample entropy SpEn(U ,m,r) for a time series U (here the smoothed sEMG signal) of length

L involves two input parameters m and r, which are the pattern length and the similarity criterion,

respectively. It is defined as

SpEn(U ,m,r) = lim
L→∞
− log

Bm+1(r)
Bm(r)

, (2.5)

where Bm+1(r)/Bm(r) represents the conditional probability that the two sub-sequences of U matches

point-wise for m points will also match within a tolerance r at the next point; therefore a lower SpEn(U ,m,r)

value reflects a high degree of regularity [53]. Here m = 2,r = 0.14σ , where σ is the standard deviation

of the smoothed sEMG signal.

5) The recurrence rate involves the calculation of a recurrence matrix with elements, Ri, j, (i, j) ∈

[1 : P],P = L− (E−1)τ , for U = {x(i), i ∈ [1 : L]} of length L considering E = 5, τ = 3, L = 1000 as

described in [54]. From Ri, j the recurrence rate R is calculated as

R =
1

P2 ∑
i, j

Ri, j (2.6)

and quantifies possible non-linear synchronization in the sEMG signal (it corresponds roughly to the

probability that a specific state of the dynamical system, reconstructed using a method of delayed vector

construction, will recur [54]).
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6) The (Shannon) entropy is a measure of unpredictability and is often used to quantify the amount

of order/disorder in a signal. In information theory, the entropy of a discrete random variable (RV) X is

defined as [55]:

H(X) = −
K

∑
i=1

pi log pi (2.7)

where pi = P[X = xi], i ∈ {1, ...,K}, is the probability mass function and K is the number of possible

outcomes for X . Based on Equation 2.7, the Wavelet Entropy, Hwt(t) of xs(t), is calculated as [56]:

Hwt(t) =
M

∑
j=1

x j(t) log
1

x j(t)
. (2.8)

where,

x j(t) =
|x j(t)|2

∑
M
k=1 |xk(t)|2

, j ∈ {1, ...,M}. (2.9)

x j(t) represents the normalized power of x j(t) and hence can be treated as a probability mass function

whose (Shannon) entropy is estimated by Hwt(t). This parameter was calculated only for PD sEMG.

For each window of xs(t), the wavelet entropy was calculated as the average of Hwt(t) over the time

window.

2.4 Machine Learning Techniques for Tremor Prediction Algorithm

In this work we developed various automated tremor prediction algorithms for four PD patients

which are based on different machine learning techniques: Neural Networks (NN), Decision Tree (DT),

Tree Bagger (TBAG) and Support Vector Machine (SVM). We compared their performances using
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various criteria to choose the best among all machine learning techniques. First, we discuss the main

features of all tremor prediction algorithms.

2.4.1 Neural Network (NN)

A NN consists of many neurons/nodes arranged in different layers, referred to as input, hidden and

output layers. A NN is a connectionist architecture based on functional and/or structural aspects of the

human brain. It consists of a massive set of interconnected neurons working in unison to solve a specific

problem. A NN is an adaptive network that changes its organization based on the information it receives

that is defined by: (i) the interconnection between different neurons (weights), (ii) the learning process

for updating the weights of the interconnection between the neurons and the bias at each neuron and (iii)

the activation function that converts a neuron weighted input to its output activation, which we introduce

next. To predict the onset of the tremor for the problem at hand, we propose to use a feed-forward back-

propagation NN [57]. The term “feedforward” describes that the neural network processes and recalls

patterns in forward manner. In this type of NN architecture the neurons are connected only in forward

direction, i.e., each layer of the NN contains connections to the next layer, but there are no connections

in backward direction. The second term “backpropagation” describes the direction of error propagation

during the NN training, i.e., the error propagates from output layer to the input layer. As the feed-forward

back-propagation NN architecture is very popular and efficient networks in modeling complex input-

output relationships [57], we implemented this network for tremor prediction in PD patients. There are

various other NN such as radial basis function network, recurrent neural network and LAMSTAR which

can also be applied for tremor prediction algorithms.
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Our NN architecture consists of an input layer with six neurons, two to three hidden layers each

with 20 neurons and an output layer with two neurons. Each layer has its own weight matrix, bias

vector, input vector and output vector, whose dimensions are given by the number of neurons/nodes in

the layer. For the j-th node in a layer, let w j = [w j,1, ...,w j,n] be its weight vector, x j = [x1, ...,xn] be its

input vector, b j be its bias and o j be its output (here n indicates the number of neurons in the preceding

layer). The initialization of weight/bias in NN is one of the most effective ways in speeding up the

training of neural network. There are various weight/bias initialization methods such as least-squares

method [58, 59], statistically controlled activation weight initialization method [60] and Nguyen and

Widrow Randomization method [61]. In this work to speed up the training process the initialization

of the weight/bias is performed by Nguyen-Widrow Randomization technique [61]. This algorithm

chooses the initial values of weights and biases in order to distribute the active region of each neuron

approximately evenly across the layer’s input space.

The net input at j-th node is defined by

o j :=
n

∑
`=1

w j,`x`+ b j (2.10)

The net output at j-th neuron is a function f (o j) of the net signal o j, where f is the activation

function. For nodes in the input layer, we choose the activation function f (o j) = tanh(o j), while for

nodes in the hidden or output layer, f (o j) = o j. The net output values of the nodes in one layer becomes

the input values of the nodes in the next layer (here for notation convenience we omitted the layer index).
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Weights and bias are chosen so as to minimize the mean square error (MSE). The net error over all

P input-output pairs at the N-node output layer is

Enet(w,b) :=
P

∑
p=1

1
N

N

∑
k=1

e2
p,k, (2.11)

where ep,k := dp,k−yp,k is the training error at k-th output layer for the p-th input-output pair (defined as

the difference between the desired/ground truth output dp,k and the NN predicted output yp,k = f (op,k),

and where w is the weight vector and b the bias vector. Here N = 20, and P = 9, 15, 10 and 17 for PD1,

PD2, PD3 and PD4 respectively.

In our NN design we use the derivative-based Levenberg-Marquardt (LM) algorithm for the learning

phase to optimize (w,b). In the LM learning algorithm the weight and bias update is based on the

second-order derivative of the total error function in (Equation 2.11) [62, 63]. It is formulated in terms

of the Hessian matrix H of (Equation 2.11) with respect to (w,b) which is approximated in term of

Jacobian matrix J as H≈ JT J+µI, with I is the identity matrix. Finally, the weights or bias at iteration

k, indicated here as zk, is updated as

zk+1 = zk−
(
Jk

T Jk + µI
)−1 Jkek (2.12)

where µ is the non-negative combination coefficient (µ→ 0: Gauss-Newton algorithm; µ→∞: steepest

decent algorithm) and e is the error vector that contains all the ep,k in the definition error in (Equation 2.11)

[62, 63].
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2.4.2 Decision Tree (DT)

A DT consists of a root node nR, intermediate nodes n, and terminal nodes nT . The input data set

is subdivided into smaller and smaller subsets such that the data in each of the descendants subsets are

‘purer’ than the data in the parent subset, i.e., the descendants subsets contains majority of one class

data compared to the data in the parent subset. To implement a DTC, we calculate the node proportions

p(k|n), where k = 1,2,3, . . . ,K for K equal to the total number of classes for classification, which is

defined as the proportion of k class data at node n. In our analysis K = 2 as we have two classes for

classification one is tremor and other is no-tremor. Based on the proportions calculated for each state at

a given node n, the impurity of node n is a non-negative function

i(n) = φ
(

p(1|n), . . . , p(K|n)
)
, (2.13)

implemented in this work by using the Gini index defined as [64]

i(n) = 1−
K

∑
k=1

p(k|n)2. (2.14)

The goodness of the split at a node n is calculated in term of decrease in impurity ∆i(t), which divides

the node n into nodes nr and nl , the right and the left nodes respectively, such that the proportion pl of

classes goes into left node nl and the proportion pr of classes goes into right node nr; ∆i(t) is defined as

∆i(s,n) = i(n)− pli(nl)− pri(nr) (2.15)
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where s ∈ S and S is a set of binary splits at each node generated by a set of binary questions [64].

Finally, the split criteria s∗ is chosen for root node nR which gave the largest decrease in impurity, i.e.,

∆i(s∗,nR) = max
s∈S

∆i(s,nR). (2.16)

Based on ∆i(s∗,nR), the root node nR is split into two nodes n1 and n2 and the same procedure is

recursively repeated for node n1 and n2. The decision tree is terminated at nodes nT if no significant

decrease in impurity measure was further possible. After creating maximum tree which consists of

several levels, it is optimized by pruning some of its nodes and sub trees. In our algorithm maximum

trees are pruned by implementing an optimal pruning scheme in which a pruned tree with least error

rate is selected from a set of pruned trees [64, Section 10.2].

2.4.3 Tree Bagger (TBAG)

Brieman proposed a new method for classification and named it Tree Bagging [65, 66]. The word

‘Bagging’ is coined by joining two terms Bootsrap and aggregating. Thus the name of the algorithm

itself gives clue about its methodology. Bagging is a statistical learning algorithm based on ensemble

of several statistical predictors that are derived from the re sampling of training data set using bootstrap

[67,68] algorithm. Bagging not only improves the stability and accuracy of statistical learning algorithm

used, but also avoids over fitting of statistical learning algorithm. It is possible to use any machine

learning algorithm method in bagging, but it is used with decision trees in most cases. Here we use

tree bagger, i.e. bagging with decision tree for classification. In a nutshell, tree bagger is a method for

prediction that generates ensemble of decision tree based predictors by making an ensemble of training
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data set using bootstrap algorithm and then uses a majority vote for the aggregation of ensemble of

predictors to generate a final predictor. Bootstrapping algorithm helps in generating several training

data sets from a single training data set with same number of samples as in the original data set.

Consider a classification problem with training data set D with N samples, consisting of data ele-

ments {(x1,y1), . . . , (xN,yN)}, where x1, . . . ,xN are input vectors corresponding to class labels y1, . . . ,yN .

Now we assume that we have a predictor ϕ(xl,D) (generated from a classifier algorithm) that predicts

the class label yl for a given value of xl, (l ∈ [1, ....,N]) based on classifier generated using the training

data set D. To improve the performance of the classifier, we intend to use multiple predictors in place

of single predictor. Therefore, we generate DB
k training data sets each of sample size N, using boot-

strapping method where B denotes that the training data belongs to TBAG method and k ∈ [1, ....,M],

where M is the total number of trees used in TBAG algorithm. We used 150 trees to implement TBAG

algorithm therefore in our analysis M = 150. To prepare DB
k of sample size N, random samples are

drawn but with replacement from original set D. Because of such replication, it is possible to have

repeated samples of (xl,yl) in particular bootstrap training data set DB
k . On the other hand, it may also

happen that a particular sample (xl,yl) is completly absent in DB
k . Finally, with the help of ensemble of

training data set DB
k , an ensemble of predictors {ϕ(xk,DB

k )} is generated. Out of this ensemble, bagging

predictor is chosen based on the majority of votes. i.e.

ϕB = majority of vote ϕ(x,D) (2.17)
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The most crucial component that decides the chance of improvement in accuracy through bagging is

the stability of procedure to construct ϕ . If changes in DB makes a very small change in ϕ , then bagging

predictor ϕB will be very close to ϕ and no improvement will be observed. But with instabilities in the

procedure, very small changes in DB will ensue a large change in ϕ and thus results in a bagging

predictor ϕB that improves accuracy of classifier significantly. In [65], an analysis of instabilities of

various procedures for its suitability in bagging was presented. It is found that except k-means method,

all other methods such as neural nets, classification, regression trees were unstable and can be used in

bagging methodology.

The reason for improvement in accuracy in bagging classifier can be explained as follows: Let

assume that in a classification problem, ϕ(x,D) predicts a class label j ∈ {1, . . . ,J}. This predictor

can be charecterized by Q( j|x) = P(φ (x,D) = j). Let P( j|x) denotes the probability of getting class

j for input x. Q( j|x) refers to the relative frequency of getting class label j, with input x from multiple

predictors generated from many independent replicas of the learning set D. The probability of getting

correct classification for input x is

∑
j

Q( j|x)P( j|x) (2.18)

The net probability of getting accurate classification is

r =
∫ [

∑
j

Q( j|x)P( j|x)

]
PX(dx) (2.19)
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where, PX(dx) denotes the probability distribution of x. Since the probability of getting accurate

classification is always less than or equal to the total probability distribution of a classifier, we have

∑
j

Q( j|x)P( j|x) ≤max
j

P( j|x) (2.20)

where equality holds if

Q( j|x) =


1 if P( j|x) = max

i
P(i|x)

0 else

Now using Bayes predictor φ ∗(x) = argmax
j

P( j|x)PX (x), the maximum value of classification rate is

r∗ =
∫

max
j

P( j|x)PX (dx) (2.21)

Order-correct φ is a predictor that predicts a particular class with higher rate than any other predictor,

provided that input x results in same class, that is, argmax
j

Q( j|x) = argmax
j

P( j|x). The aggregated

predictor is: φA(x) = argmax
j

Q( j|x). The correct classification at x for aggregate predictor is

∑
j

I(argmax
j

Q( j|x) = j)P( j|x) (2.22)

where, I(.) is the indicator function. The expression for correct probability for φA is

rA =
∫

x∈C
P( j|x)PX (dx)+

∫
x∈C′

[
∑

j
I(φA(x) = j)P( j|x)

]
PX (dx) (2.23)
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where, C is the set of all inputs x at which φ is order-correct. Hence the optimal aggregated predictor

φA is generated from far from optimal order-correct φ ’s.

Out of bag error estimate in Tree bagger algorithm is another important parameter, as it provides an

opportunity to use training data as testing data. As mentioned before, bagging generates an ensemble

of sample using bootstrapping with replacement option. Therefore, there will be a classifier with a

training data set that misses a particular record of pair (xi,yi) from the original data set. Such sets are

termed as out of bag examples. Obviously there will be N such subsets (each corresponding to a record

in the original data set) for the original training data set of sample size N. Out of bag estimate for the

generalization error is the error rate of the out of bag classifier on the training set (as compared to known

yi’s). The study of error estimates for bagged classifiers in [69], gives empirical evidence to show that

out of bag estimate is as accurate as using a test set of the same size as the training set. Therefore, using

the out of bag error estimate removes the need for a set aside test set.

2.4.4 Support Vector Machine (SVM)

Statistical classification methods automatically segregate a given input data into different sets. The

schemes for separation of data is learned through a training data set. The sole aim is to generate a

generalized classifier that segregate any known or unknown data set into its components without any

error. There will be no loss of generality if classification problems are reduced to binary classification.

SVM is one of the best method suitable for such classification [70]. First we consider the simplest case

wherein it is possible to classify a data set into two classes by linear classifiers. For the case of linear

classifiers it desirable to find a suitable plane (or line) that separate data with maximum margin. The
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classification boundary, which best generalizes the data classification, is known as the optimal separating

hyperplane.

We consider a binary classification problem given by (Equation 2.24), where classification can be

performed using a hyperplane defined by (Equation 2.25)

D= {(x1,y1), . . . , (xN,yN)}, x ∈Rn,y ∈ {−1,1} (2.24)

f (x) = sgn(w.x−b) (2.25)

In (Equation 2.25) (.) represents the dot products and w denotes the normal vector to the hyper-

plane. For optimal separating hyperplane, [71] proposed a canonical hyperplane H : y = w.x− b = 0

such that it is equidistant from the parallel hyperplanes H1 : y=w.x−b=+1 and H2 : y=w.x−b=−1

with no data points lying between H1 and H2. Thus the distance between H1 and H2 would be

2× |w.x−b|
‖w‖

=
2
‖w‖

(2.26)

An optimal hyperplane requires this distance to be maximized. Hence require minimization of

‖w‖= wT w under the constraint

yi(w.xi−b) ≥ 1 (2.27)
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The constraint given in (Equation 2.27) ensure that no points lie between H1 and H2. Here yi is +1

for data in positive class and −1 for data in negative class. Thus the optimization problems becomes

min
w,b

1
2

wT w subject to yi(w.xi−b) ≥ 1 (2.28)

The solution to (Equation 2.28) is defined by the saddle point of Lagrange

L (w,b,α) ≡ 1
2

wT w−
N

∑
i=1

αiyi(w.xi−b)+
N

∑
i=1

αi (2.29)

where, α1,α2, . . . ,αN are Lagrange multipliers. This needs to be minimized with respect to w,b and

maximized with respect to αi ≥ 0. This reduces the optimization problem to its dual form (LD) which

is a quadratic problem (QP) where object function is dependent on αi.

LD ≡
N

∑
i=i

αi−
1
2

l

∑
i, j

αiα jyiy jxi.x j (2.30)

Solution of Lagrangian multiplier αi gives the value of w

w =
N

∑
i=1

αiyixi (2.31)

Optimal classifier hyperplane is then

f (x) = sgn

((
N

∑
i=1

αiyixi

)
.(x)−b

)
(2.32)
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which is in the form of dot product of training vector xi. This hyperplane considers data to be ideal that is

completely noise free, but acual data would be noisy and thus there would be data points lying between

H1 and H2. Therefore, constrained given by (Equation 2.27) would not hold in a strict sense. This can

be taken into account by using a finite valued penalty function C in our analysis which penalizes the

failure of a data point to reach the correct margin. Thus the optimization problem of (Equation 2.28) is

modified as:

min
w,b,ξ

1
2

wT w+C
N

∑
i

ξi subject to yi(wT xi−b) ≥ 1−ξi, 1≤ i≤ N (2.33)

where the new variables ξi are slack variables. These variables converts a hard margin problem

(where no margin failure, i.e. no presence of any data points between two parallel hyperplanes) into a

soft margin problem (where a little bit of data point intrusion is allowed between two hyperplane). C

is a parameter that optimizes the distance between two hyperplanes and the number of occurrences of

margin failures.

The constrained optimization problem in (Equation 2.33) is solved using Lagrange as before and

thus reduces to:

max
α

LD ≡∑
i

αi−
1
2 ∑

i, j
αiα jyiy jxi.x j (2.34)

subject to 0≤ αi ≤C, ∑
i

αiyi = 0 (2.35)

For non-linearly separable data SVM can be used to generate an optimal separating hyperplane in a

high dimensional feature space after mapping the input vectors x to the feature space. Let the mapping
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function from the input space to the high dimensional feature space be Φ(.). Define the kernel function

as K(xi,x j) = Φ(xi).Φ(x j), i.e. the kernel function in the input space is equivalent to a dot product in

high dimensional space. Thus the introduction of kernel function can generalize SVMs for non-linear

classifiers. This forms a case of generalized optimal hyperplane, the solution to which can be found by

using the method of Lagrange multipliers as before. Let u =
N

∑
i=1

yiαiK(xi,x)− b defines a generalized

hyperplane. Non-linearties may change the quadratic form pertaining to the solution of Lagrange’s

multiplier, however duality turns the objective function into a quadratic form as follows:

LD ≡
N

∑
i=i

αi−
1
2

l

∑
i, j

αiα jyiy jΦ(xi).Φ(x j) (2.36)

subject to 0≤ αi ≤C, ∀i and
N

∑
i=1

αiyi (2.37)

where the Quadratic Problem (QP) given by (Equation 2.36) can be solved by Sequential Minimal

Optimization (SMO) method. A function qualifies to be used as a Kernel function if and only if it

satisfies the Mercer’s condition that makes QP problem positive definite [72]. According to Mercer’s

condition, a transformational function Φ and an expansion

K(x,y) = ∑
i

Φ(x)i.Φ(y)i (2.38)

if and only if, for any g(x) such that
∫

g(x)2dx is finite then

∫
K(x,y)g(x)g(y)dxdy≥ 0 (2.39)
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This method of generating kernel functions is based on the work, [73–75]. Some mapping methods

that qualify as kernel functions are polynomial, radial basis function, multilayer perceptron, Fourier

series, splines, additive kernel and tensor products. In this study Gaussian radial basis kernel function

K(xi,x j) = exp−‖xi−x j‖2
/2σ2 is used because of its capability to handle non linear relation between the

class labels and attributes. Also, it is numerically less complex than other polynomial kernel functions

which have more hyperparameters than radial basis kernel function.

The training of SVM is done by maximizing the objective function in the region where a solution

to the dual problem exists. Only those optimal solutions are considered which satisfies Karush-Kuhn-

Tucker KKT conditions:

αi = 0⇔ yiui ≥ 1, (2.40)

0 < αi <C⇔ yiui = 1 (2.41)

αi =C⇔ yiui ≤ 1 (2.42)

SMO is an algorithm used for solving quadratic programming optimization problem that is an es-

sential part of training the SVM. It works by iteratively breaking the bigger QP problem into smallest

possible ones. These sub-problems are then solved analytically by jointly optimizing two Lagrange mul-

tipliers at a time and updating the SVM with their new optimal values. Thus computationally intensive

matrix operations as well as in-loop numerical QP optimizations are avoided, making it less susceptible

to precision errors. This reduces the training set size as compared to the PC (standard projected con-
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jugate gradient) algorithm thus improving upon the training time as well as its ease of implementation.

SMO can be implemented in two major steps [72]:

1. An analytic method to solve for the two Lagrange multipliers

2. A heuristic approach for selecting two multipliers used for optimization

2.5 Training of Machine Learning Algorithms

The NN (Section 2.4.1) is trained with the following six parameters extracted from a subset of the

recorded sEMG and accelerometer signals: Mean power in the frequency band 8-16Hz of the sEMG

signal defined in (Equation 2.4); Power at peak frequency of the sEMG and of the accelerometer sig-

nal defined in (Equation 2.3); Peak frequency of the sEMG and of the accelerometer signal defined

in (Equation 2.3); and Sample entropy of the sEMG signal defined in (Equation 2.5). The feedforward

backpropagation NN architecture with its atributes, inputs and outputs for Tremor and Non-Termor

events is shown in Figure 4. The NN structure is built off-line during the training phase and the parame-

ters to which the trained NN will converge remain fixed in the testing phase. The parameters of the NN

will not adapt to the patients conditions.

The training of DT (Section 2.4.2), TBAG (Section 2.4.3) and SVM (Section 2.4.4) is performed by

using eight extracted parameters from smoothed sEMG and accelerometer signals: Peak frequency and

Power at peak frequency of sEMG and of the accelerometer signal as in (Equation 2.4); Mean power in

8-16Hz frequency band of sEMG signal as defined in (Equation 2.4); Recurrence rate of sEMG signal as

in (Equation 2.6); Sample entropy and Wavelet entropy of the sEMG signal as defined in (Equation 2.5)

and (Equation 2.9) respectively.



36

INPUT LAYER
Six Neurons in Input layer

Corresponding to each 
signal

HIDDEN LAYER
Number of Hidden layer 

varies from 2 to 3

Number of neurons in 
Hidden layer varies 

from 20 to 25

OUTPUT LAYER
Two Neurons in Output 

layer

Output vector is [1,0] in 
case of Tremor event and

[0, 1] in case of No-
Tremor Event

Neural Network Architecture

Levenberg-Marquardt
Algorithm for Training 

Phase

Nguyen-Widrow 
randomization 

techniques for initial 
weight and bias

Minimum Mean 
Square Criterion for 

weight and bias 
update

Parameters used for 
Prediction of Tremor 

Peak Frequency sEMG 

Power at Peak Frequency sEMG

Sample Entropy sEMG

Peak Frequency Acc

Power at Peak Frequency Acc

Mean Power in 8 to 16 Hz sEMG

Figure 3. Feedforrward backpropagation NN arctitecture with its attributes, input and output sequence
for Tremor and Non-Tremor events.

The time series of all extracted parameters from the sEMG and accelerometer signals are divided

into two regions: tremor region and no-tremor region, visually separated by two sided bold arrow with

name of Tremor Start Time (ttr) as shown in Figure 4. In order to define an input-output vector pair,

a particular time step (shown in Figure 4 by dotted bold vertical line) is chosen from the given time

series. The time series points (indicated by the arrows in Figure 4) on the dotted bold vertical line

forms the input vector which consists of six elements in case of NN based prediction algorithm (as

shown in Figure 4) and eight elements in case of all other prediction algorithms corresponding to each

extracted parameter at the particular time step. In case of NN, if the time step lies before two sided bold



37

arrow with name of Tremor Start Time, ttr the output vector/ground truth is [0,1] otherwise it is [1,0].

For example, in Figure 4 the chosen time step lies after Tremor Start Time, ttr (shown by two sided bold

arrow)therefore, the output vector is [1,0]. In case of DT, TBAG and SVM, by training the algorithms

to transition from Non-Tremor to Tremor at the time instant where tremor was visually detected, the

prediction of tremor for some of the trials turned out to be ‘delayed’ by 0.5s to 2.5s; for this reason, we

train the algorithms to transition from Non-Tremor to Tremor 2.5s before tremor was visually observed

to capture the building up of the tremor as shown by bold dotted vertical line in Figure 4. For DT,

TABG and SVM, the output vector/ground truth is ‘0’ if time instance lies 2.5 seconds before tremor

starts (tremor starting point is shown by bold dotted vertical line) and ‘1’ otherwise as shown in Figure 4.

The DT, TBAG and SVM structures are built during off-line training phase and remains fixed during

testing phase. The structures of DT, TBAG and SVM will not adapt to the patients conditions during

run time.

The training of NN, DT, TBAG and SVM is performed by using 9/16, 15/26, 9/18 and 16/32

sEMG/acc data sets for PD1, PD2, PD3 and PD4 respectively. All the machine learning algorithms

are first trained with the original data set in order to adjust their parameters. The second phase of train-

ing is performed by using the same training set, but this time the different trials are uniformly permuted

at random. This second phase serves to further tune their parameters. Finally, the so trained NN, DT,

TBAG and SVM are fed with the parameters extracted from the sEMG and accelerometer signals as

inputs and is used to predict the onset of tremor after the stimulation turned OFF for all trials.
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Figure 4. Inputs and output for theNN, DT, TBAG, SVM based predictor in a particular trial used for
training. The bold vertical black line, set at 2.5 sec before tremor was visually observed, divides the
time series of the extracted parameters into Tremor (output equals 1) and No-Tremor regions (output
equals 0) in case of DT, TBAG and SVM. For NN the red bold vertical line divides the time series of
the extracted parameters into Tremor (output equals 1) and No-Tremor regions (output equals 0). A

time instance in the ’tremor region’ is shown via a thin vertical line: the six elements of the
corresponding input vector in case of NN and eight element in case of DT, TBAG and SVM are

indicated by six arrows, which results in an output equal to 1.



39

2.6 Performance Matrices for Tremor Prediction Algorithms

To analyze the prediction performance, each considered trial is classified based on the prediction

outcome as follows: let T be the total duration of a trial, tON and tOFF be the times when stimulation

was switched ON and OFF respectively, and ttr and tpr be the times when tremor was detected and

predicted using different tremor prediction algorithms, during the stimulation OFF period, respectively.

Trials where tremor was detected over the recorded interval after stimulation was OFF, i.e ttr < T , are

denoted as TD (Tremor Detected), while those where tremor was not detected, i.e ttr > T , are denoted

as NTD (No-Tremor Detected). In particular we classify as follows [6] (as shown in Figure 5).

For TD:

• If [(ttr > tpr) and (ttr− tpr) < max(5s,0.5(tpr− tOFF))] or [(ttr < tpr) and (tpr− ttr) < 1s], then

the algorithm successfully predicts tremor and this outcome is classified as a true positive (TP). This

is a bit different from the classical TP definition, in that we require that the prediction be at most 50%

of the tremor free OFF period or 5s (whichever is greater) before actual tremor reappears. This allows

penalizing too early prediction outcomes.

• If (ttr > tpr) and (ttr − tpr) > max(5s,0.5(tpr − tOFF)), then the prediction is too early and the

outcome is classified as false positive (FP).

• If (ttr < tpr) and (tpr− ttr)> 1s, then the prediction is too late and the outcome is classified as false

negative (FN).

For NTD:

• If the algorithm does not predict any tremor over the entire interval T − tOFF , then it is classified

as true negative (TN).
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Figure 5. Timing points for events from DBS-ON time (ton) to tremor detection time (ttr) marked in
bold line. There are 4 possible scenarios: 1,2 are TD trials, in 1 the tremor is predicted before its

detection (TP/FP) and in 2 tremor is predicted after its detection (FN); 3,4 are NTD trials, in 3 tremor
is not predicted over the entire interval TN and in 4 tremor is predicted FP. Notation: Ttot is the total

duration of a trial, ton and toff are the times when DBS was switched ON and OFF respectively, ttr and
tpr are the times when tremor was detected and predicted using the algorithm, respectively. Figure

from [6].



41

• If the algorithm predicts tremor over the entire interval T − tOFF , then it is classified as false

positive (FP).

2.6.1 Performance Evaluation.

For the algorithm to perform well, the total number of TP and TN must be maximized while min-

imizing FP and eliminating FN. This would achieve the maximum “tremor-free” interval when the

stimulation is OFF. In order to quantify this, the following performance metrics are defined as:

Accuracy(A) = #T P+ #T N
#T P+ #T N + #FP+ #FN

, (2.43)

Sensitivity(S) = #T P
#T P+ #FN

, (2.44)

FalseAlarm(FA) = #NT D−#T N
#NT D

. (2.45)

Mcc = (#T P)(#T N)− (#FP)(#FN)√
(#T P+ #FP)(#T P+ #FN)(#T N + #FP)(#T N + #FN)

(2.46)

Mcc in (Equation 2.46) defines the Matthews correlation coefficient [76] which measures the quality

of a binary classifier. The value of Mcc lies in the range of -1 to 1, where 1 represents a perfect

prediction, 0 represents no better than random prediction and -1 indicates that there is no agreement

between prediction and observation. The sensitivity in (Equation 2.44) should be very high (above

90%) as we do not want to miss any of the tremor events. Accuracy in (Equation 2.43), which is the

ratio between the correctly predicted trials and the total number of trials, should be high (over 80%).

The false alarm rate in (Equation 2.45) is proportional to the number of early tremor predictions in case

of NTD trials and hence should be low (less than 20%).
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Furthermore, three timing ratios are defined as:

Rpd = ∑(tpr− toff)/∑(tdt− toff), (2.47)

Rdt = ∑(tdt− toff)/∑(tdt− ton), (2.48)

Rpt = ∑(tpr− toff)/∑(tpr− ton), (2.49)

Where the summation is over all the experimental trials for each patient. For those trials where tremor

was not detected i.e. the exact time of tremor reappearance was not known, we considered total record-

ing time Ttot as tremor detected time, ttr whereas the minimum of Ttot and Tf d is taken as tremor predicted

time i.e. tpr = min(Ttot , t f d). Tf d is a maximum duration for which stimulation remains OFF. In practical

cases, Ttot would be the time when the stimulation switches ON automatically after some fixed duration

of time in the absence of a tremor prediction. Therefore, in case of NTD trials we can consider Ttot -

to f f to be the time interval when stimulation is OFF.

Rpd is the ratio between the predicted delay to the actual delay in tremor, hence Rpd provides a

measure of how good the prediction is, i.e., a higher value indicates that the predicted delay tpr is closer

to the actual delay ttr which is desirable. The other two timing ratios, Rdt and Rpt , provide a measure of

the fraction of time the stimulation is OFF with an ideal predictor (which would predict the exact time

when tremor re-appeared) and the one designed. To assess whether a particular patient is suited for this

type of application, the Rdt timing ratios can be used as a measure. If the value of Rdt is very low, i.e., if

the stimulation is OFF for just 10% of the total time, then it is better just to have DBS-ON continuously.
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2.7 Results and Discussion

Based on the prediction time tpr each trial was classified as TP, TN, FP and FN as described in

Section 2.6. For the performance evaluation of the prediction algorithms we have calculated accuracy

(A) using (Equation 2.43), sensitivity (S) using (Equation 2.44), false alarm (FA) using (Equation 2.45)

and Mcc using (Equation 2.46). We have also calculated some timing ratios using tpr, tdt , to f f and ton

which are Rpd as in (Equation 2.47), Rdt as in (Equation 2.48), and Rpt as in (Equation 2.49). All the

performance parameters such as A, S, FA, Mcc, Rpd , Rdt and Rpt are calculated for each individual

patient and overall for each algorithm. The Mcc value is not calculated for the cases where TN = 0 and

FN = 0 to avoid the indeterminate form. The FA is not calculated for PD3 as there is no NTD trial. The

performance metrics for all algorithms in case of PD patients are summarized in following subsections.

2.7.1 Tremor prediction results for NN based algorithm

The NN based tremor predictor achieved an overall sensitivity of 91.05% by correctly predicting

tremor in 86/92 trials in case of all four PD patients. It achieved S >90% in all PD patients except

for PD4, where it achieved sensitivity of 88.89%. The A was found to be more than 75% individually

and overall. The A is quite high which is desirable but there are 6 trials where the algorithm missed to

predict the tremor event. Out of 11 NTD trials, this algorithm predicts no tremor in case of 9 trials and

achieved an overall FA of 18.18%. The overall Mcc value for this algorithm is 0.37 which shows strong

correlation between the predicted and actual classification for all PD patients. The Rpd >70% in all PD

patients except PD3 (69.70%) which means that the predictor loses less than 30% of the actual delay

period due to early prediction.
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TABLE III

PREDICTION RESULTS FOR EACH PD PATIENT AND OVERALL USING NN BASED
TREMOR PREDICTION ALGORITHM. LEGEND: N = TOTAL # OF TRIALS, A = ACCURACY

IN %, S = SENSITIVITY IN %, FA = FALSE ALARM RATE IN %.

PAT # N NTD TP TN FP FN A S FA Mcc Rpd Rdt Rpt

(%) (%) (%)
PD1 16 2 12 0 3 1 75.00 92.31 NC NC 71.00 34.05 25.90
PD2 26 1 19 1 4 2 76.92 90.48 00.00 0.27 80.60 35.68 28.96
PD3 18 0 14 0 3 1 77.78 93.33 NA NC 69.70 15.45 11.75
PD4 32 8 16 8 6 2 75.00 88.89 0.00 0.51 90.20 43.38 35.77
ALL 92 11 61 9 16 6 76.09 91.05 18.18 0.37 NC NC NC

2.7.2 Tremor prediction results for DT based algorithm

The tremor prediction algorithm based on DT achieved an overall sensitivity of 100% by success-

fully predicting tremor in all trials in all PD patients. This algorithm showed an overall accuracy of

85.87%. The minimum and maximum accuracy are 81.25% and 88.89% in case of PD1 and PD3 pa-

tients respectively. In case of PD4, DT based tremor prediction algorithm achieved FA of 37.50% by

predicting tremor in 3 NTD trials. This algorithm predicted tremor in 3 NTD trials and achieved an

overall FA of 27.27%. The Rpd >75% in all PD patients except PD3 (71.79%), which means that the

DT based predictor loses less than 25% of the actual delay period due to early prediction. This algo-

rithm achieved an overall Mcc value of 0.57 which means the predicted classification results are strongly

correlated to the actual classification results.
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TABLE IV

PREDICTION RESULTS FOR EACH PD PATIENT AND OVERALL USING DT BASED
TREMOR PREDICTION ALGORITHM. LEGEND: N = TOTAL # OF TRIALS, A = ACCURACY

IN %, S = SENSITIVITY IN %, FA = FALSE ALARM RATE IN %.

PAT # N NTD TP TN FP FN A S FA Mcc Rpd Rdt Rpt

(%) (%) (%)
PD1 16 2 11 2 3 0 81.25 100.0 0.00 0.56 78.04 34.05 28.72
PD2 26 1 21 1 4 0 84.61 100.0 0.00 0.41 78.89 35.68 30.43
PD3 18 0 16 0 2 0 88.89 100.0 NA NC 71.79 15.45 11.60
PD4 32 8 23 5 4 0 87.50 100.0 37.50 0.69 81.29 43.38 38.37
ALL 92 11 71 8 13 0 85.87 100.0 27.27 0.57 NC NC NC

2.7.3 Tremor prediction results for TBAG based algorithm

The TBAG algorithm predicted successfully in 91 out of 92 trials in case of 4 PD patients and

achieved an overall sensitivity of 98.41%. The overall FA for this algorithm is 9.09% as this algorithm

miss predicted tremor only in 1 out of 11 NTD trials. This algorithm has 19 FP trials and therefore

achieved overall accuracy of 78.26%. The minimum and maximum accuracy turned out to be 88.33%

and 75% in case of PD3 and PD4 patients respectively. This algorithm showed Rpd value >75% in all

PD patient except PD3 where it achieved only Rpd value of 73.43%. Therefore this tremor prediction

algorithm loses less than 25% of the actual tremor delay period due to early prediction. The overall

Mcc value for this algorithm is 0.45 which clearly shows that there is strong correlation between the

predicted tremor classification results and the actual tremor classification results.
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TABLE V

PREDICTION RESULTS FOR EACH PD PATIENT AND OVERALL USING TBAG BASED
TREMOR PREDICTION ALGORITHM. LEGEND: N = TOTAL # OF TRIALS, A = ACCURACY

IN %, S = SENSITIVITY IN %, FA = FALSE ALARM RATE IN %.

PAT # N NTD TP TN FP FN A S FA Mcc Rpd Rdt Rpt

(%) (%) (%)
PD1 16 2 11 2 3 0 81.25 100.0 0.00 0.56 80.30 34.05 29.31
PD2 26 1 19 1 4 0 76.92 100.0 0.00 0.33 78.71 35.67 30.39
PD3 18 0 15 0 2 1 88.33 93.75 NA NC 73.43 15.46 12.36
PD4 32 8 17 7 8 0 75.00 100.0 12.50 0.56 82.09 43.37 38.60
ALL 92 11 62 10 19 1 78.26 98.41 9.09 0.45 NC NC NC

2.7.4 Tremor prediction results for SVM based algorithm

For the comparison of performances of different machine learning techniques, we have also imple-

mented SVM based tremor prediction algorithm. This algorithm could not accurately predict the 4 out

of 92 trials in all PD patients and therefore achieved an overall sensitivity of 83.70%. Patient-wise, it

showed sensitivity of 100.0% in PD1 with 0 miss prediction, sensitivity of 95.45.0% in PD2 with 1 miss

prediction, sensitivity of 88.24% in PD3 with 2 miss prediction and sensitivity of 94.74% in PD4 with 1

miss prediction. The overall accuracy of 83.70% shows that this algorithm correctly predicts tremor in

83.87% of total PD trials. Correct tremor prediction means that the tremor was not predicted too early

in case of the TD trials and no tremor was predicted in NTD trials. The FA of this tremor algorithm

is 0% as this algorithm predicted no tremor for all 11 NTD trials. The Rpd value for PD2 and PD3 is

∼ 75% and for PD1 and PD4 ∼ 85%, therefore the loss of tremor prediction delay in case of PD2 and
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PD3 is ∼ 25% and in case of PD1 and PD4, it is ∼ 15%. The overall Mcc value turns out to be 0.51 for

this algorithm which shows that there is strong correlation between the predicted tremor and the actual

tremor.

TABLE VI

PREDICTION RESULTS FOR EACH PD PATIENT AND OVERALL USING SVM BASED
TREMOR PREDICTION ALGORITHM. LEGEND: N = TOTAL # OF TRIALS, A = ACCURACY

IN %, S = SENSITIVITY IN %, FA = FALSE ALARM RATE IN %.
PAT # N NTD TP TN FP FN A S FA Mcc Rpd Rdt Rpt

(%) (%) (%)
PD1 16 2 12 2 2 0 87.50 100.0 0.00 0.65 85.83 34.05 30.70
PD2 26 1 21 1 3 1 84.62 95.45 0.00 0.28 77.56 35.67 31.40
PD3 18 0 15 0 1 2 88.33 88.24 NA NC 76.42 15.46 13.52
PD4 32 8 18 8 5 1 81.25 94.74 00.0 0.61 84.80 43.37 40.54
ALL 92 11 66 11 11 4 83.70 94.29 0.00 0.51 NC NC NC

2.7.5 Performance comparison of different algorithms

The performance comparison of all machine learning technique based PD tremor prediction al-

gorithms with manual tremor prediction algorithm [6] is shown in Figure 6. The exact comparison

between the machine learning technique based tremor prediction algorithms with manual tremor pre-

diction algorithm is not possible as the total time of the recording, (Ttotal) is different is these cases. In

machine learning technique based tremor prediction algorithms the total time of the recording is same

as the actual time of recording but in case of the manual tremor prediction algorithm the total time
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of the recording is less than the actual time of the recording and this is done to increase the NTD tri-

als. The comparison of total number of TP, TN, FP and FN trials for different prediction algorithm is

shown in Figure 6. The total number of FN trials is 0 for DT based tremor prediction algorithm and

manual tremor prediction algorithm. The number of FN trials is maximum in case of NN followed by

SVM. The number of FN trials for TBAG is very less compared to NN, SVM. Therefore in terms of

miss prediction of the tremor, the performance of TBAG is better than NN and SVM. In terms of miss

tremor prediction criteria, the performance of DT based algorithm is best among all machine learning

techniques and its performance is same as the manual prediction algorithm. The number of FP trials

is minimum for SVM and maximum for TBAG. The number of FP trials in case of DT algorithm is

more than SVM but less than all other algorithms. Therefore, the early tremor prediction is maximum

in case of TBAG compared to all other algorithms. The comparison of DT and manual algorithm in

terms of early prediction showed that DT performed better than the manual algorithm as the number of

FP trials in case of DT is less than the manual algorithm. The total number of TP trials is maximum in

case of DT algorithm and total number of TN trials is maximum in case of SVM. As the total time of

recording is different in case of machine learning algorithms compared to manual algorithm, therefore

the number of TP and TN trials can not be compared separately. To compare the sum of number of TP

and number of TN trials, we have plotted the bar chart of A (%) with other performance metrics for

different algorithms as shown in Figure 7. The A turned out to be maximum in case of DT compared

to all other algorithms. The second highest A (%) is for SVM and the A (%) for NN and TBAG is

comparable. The A (%) of manual algorithm is less than the DT algorithm. In term of sensitivity the

performance of DT and manual algorithm is same as S (%) is 100 % for both the algorithms. The False
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Alarm (FA) (%) is minimum for SVM algorithm i.e.and maximum for manual algorithm. The FA (%) in

case of DT algorithm is slightly better than the manual algorithm. In term of Mcc (%) the performance

of DT is best among all algorithms including manual algorithm. Overall, the performance of DT based

tremor prediction algorithm is best among all prediction algorithms. Its performance is also better than

the manual algorithm in all considered performance metrics. Therefore, towards the design of a fully

automated closed-loop DBS system, DT based tremor prediction algorithm is suitable in case of PD

patients for commercial implementation.
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Figure 6. Performance comparison of NN, DT, TBAG and SVM based on Total # of TP, TN, FP and
FN trials in all PD patients.
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Figure 7. The overall Accuracy (A) %, Sensitivity (S) %, False alarm rate (FA) % and Mcc %. for all 4
PD patient in case of NN, DT, TBAG and SVM.



CHAPTER 3

MACHINE LEARNING TECHNIQUES BASED TREMOR PREDICTION

ALGORITHMS IN ESSENTIAL TREMOR PATIENTS

Parts of this chapter appeared [2]: Shukla, P., Basu, I., and Tuninetti, D.: Towards closed-loop deep

brain stimulation: Decision tree-based patients state classifier and tremor reappearance predictor. In

Engineering in Medicine and Biology Society (EMBC), 2014 Annual International Conference of the

IEEE, 2014

[3]: Shukla, P., Basu, I., Graupe, D., Tuninetti, D., Slavin, K. V., Metman, L. V., and Corcos, D. M.:

A decision tree classifier for postural and movement conditions in essential tremor patients. In 6th

International IEEE Engineering in Medicine and Biology Society (EMBC) Conference on Neural Engi-

neering, accepted, 2013. .

3.1 Background

We already shown that the muscular and kinematic signals, measured non-invasively from the pa-

tient’s symptomatic extremities by means of surface-electromyogram (sEMG) and acceleration (Acc)

sensors, carry predictive information on tremor reappearance and can be successfully used for closed-

loop ON-OFF DBS control [6]. In particular, our proposed entropy-based prediction algorithm uses a

set of parameters extracted from sEMG and Acc signals during DBS-OFF periods. The tremor predic-

tion of this entropy based algorithm, achieved 100% sensitivity and 85.7% accuracy for all trials. It was

52
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also shown through statistical tests that results from algorithm differ from a random prediction outcome.

Since predictor used here require manual training and setting of several parameters [6] therefore, can

be deemed good enough for a proof-of-concept for closed-loop DBS based on non-invasively measured

signals , but not appropriate for practical implementation.

We took a step forward in developing a fully automated tremor predictor algorithm by using various

machine learning techniques such as DT, TBAG and SVM for ET patients. These techniques extract

predictive information from the spectral and entropy measure of the sEMG and Acc signals. As the

manual thresholding based predictor [6] algorithm for ET patients, is a two step algorithm, wherein

first step is classifier stage, which classifies the patient’s (posture or movement) conditions when the

DBS was turned OFF, and second step is tremor prediction step. Therefore, we designed an automated

ET tremor prediction algorithm using machine learning techniques which also comprises of two stages

of tremor prediction: first stage is a classifier stage and second is a tremor prediction stage as shown

in Figure 8. In automated tremor predictor design, the classifier stage is implemented by using DT which

discriminates between movement and postural conditions in ET patients at the time DBS is switched

OFF. The condition classifier is followed by tremor predictor stage which predicts the reappearance of

the tremor and is implemented using DT and TBAG algorithms. At the outset, two algorithms were

developed. In the first algorithm DT is used both as classifier and tremor predictor whereas in the

second algorithm DT is classifier and TBAG is used as tremor predictor. Both of these algorithms failed

to achieve the sensitivity of 100%, i.e., there were some tremors, that were missed by these algorithms.

So we designed an automated tremor predictor for ET without having a classifier stage. Skipping of the

classifier stage from tremor prediction algorithm doesn’t only avoid the miss tremor prediction due to
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the miss classification at the condition classifier stage but also reduces the computational complexity of

tremor prediction algorithm. We have implemented three different tremor predictor algorithms based on

DT, TBAG and SVM which does not consists of conditions classifier stage.

Figure 8. A DT-based classifier (to discriminate between movement and postural conditions) followed
by two DT/TBAG-based tremor predictors, one for movement condition and the other for posture

condition.

In this chapter we showed the implementation of tremor prediction algorithm in ET patients using

five different algorithms based on machine learning techniques. The first algorithm in which, DT con-

dition classifier is followed by DT predictor (DTC-DTP), achieved an overall accuracy of 91.11% and
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sensitivity of 97.96% by successfully predicting tremor in 89 trials out of 90 trials recorded from 4 ET

patients. The second algorithm is also a two stage tremor predictor algorithm, which consists of a DT

classifier stage followed by TBAG predictor stage (DTC-TBAG). It successfully predicted tremor in 88

trials out of 90 trials and achieved an overall accuracy of 87.78% along with 95.56% sensitivity. The

other three algorithms do not have a conditions classifier stage. The ET tremor prediction algorithm,

which consists only a DT based tremor predictor showed overall accuracy of 90.00% and sensitivity

of 100% . It means there is no miss prediction of tremor events. The TABAG based tremor predic-

tor algorithm also achieved an overall sensitivity of 100% by successfully predicting tremor in all 90

tremor trials in case of 4 ET patients and the accuracy for this algorithm was turned out to be 86.67%.

Finally, the SVM based tremor predictor showed an overall accuracy 84.44% along with the sensitivity

of 95.45% by successful prediction of 88 trials out of 90 trials. The overall summary of all tremor

prediction algorithms in case of ET patients is summarized in Table VII

Overall, the performance of DT and TBAG based tremor predictor turned out to be best among all

other machine learning algorithms. As the DT algorithm is computationally less complex compare to

TBAG, therefore DT based tremor predictor can be the first choice for an automated closed-loop DBS

system design without making any further modification to the existing electrodes implanted in the brain.

3.2 Human Subjects

Four patients with ET, who were treated with DBS, participated in this study. Two patients came

from the Movement Disorder Clinic at Rush University Medical Center and two from the University

of Illinois at Chicago Hospital. Patients’ details are listed in Table VIII. The protocol was approved

by the IRB of both Institutions and informed consent was given by all patients. In all four patients the
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TABLE VII

OVERALL TREMOR PREDICTION SUMMARY IN CASE OF FOUR ET PATIENTS FOR ALL
MACHINE LEARNING TECHNIQUES BASED TREMOR PREDICTION ALGORITHMS.

LEGEND: N = TOTAL # OF TRIALS, NTD = TOTAL # OF NO TREMOR DETECTED TRIALS, A
= ACCURACY IN %, S = SENSITIVITY IN %, FA = FALSE ALARM RATE IN % AND MCC =

MATTHEWS CORRELATION COEFFICIENT.
TREMOR PREDICTION N NTD TP TN FP FN A S FA Mcc

ALGORITHM (%) (%) (%)
DTC-DTP 90 36 48 34 7 1 91.11 97.96 5.56 0.83

DTC-TBAG 90 36 43 36 9 2 87.78 95.56 00.00 0.76
DT 90 36 51 30 9 0 90.00 100.0 16.67 0.81

TBAG 90 36 43 35 12 0 86.67 100.0 2.78 0.76
SVM 90 36 42 34 12 2 84.44 94.45 5.56 0.71

DBS electrodes (Medtronic DBS, lead model 3389) were located in the ventral intermediate nucleus

of the thalamus (VIM). The disease symptoms were controlled by a combination of stimulation and

medication.

3.3 Parameter Extraction

3.3.1 Input parameters for conditions classifier

The power of the extensor sEMG and Acc signals is used as an input to the classifier. While, sEMG

was recorded from both extensor and flexor muscles, visual inspection showed a higher signal-to-noise
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TABLE VIII

DETAILS OF ET PATIENTS

Patient# age gender DBS parameter DBS active contacts DBS implant hand tested
amplitude (Volts) frequency (Hz) pulse width (µs)

ET1 64 M 2 150 90 2-C+ 2002 L
ET2 67 M 1,1.4V(L,R) 130 120 1-C+(L),5-6-C+(R) 2010 L,R
ET3 51 M 2.3 185 60 9-C+ 2010 R
ET4 62 F 2 185 90 0-C+ 2007 R

ratio in the extensor muscle recordings and therefore we only considered the power of the extensor

sEMG and Acc signals recordings in our paradigm. These powers are computed as:

XPsEMG(i) =
∫

t∈[tp(i),tp(i)+0.5]
x2

sEMG(t)dt (3.1)

XPAcc(i) =
∫

t∈[tp(i),tp(i)+0.5]
x2

Acc(t)dt (3.2)

where xsEMG(t) and xAcc(t) are the recorded sEMG and Acc signal, respectively, and tp(i) = t0 + i∆,

i = 0,1,2,3, . . . ,80, t0 is the postural/movement condition start time for different trials, and ∆ = 0.025

step size for the power sliding window as shown in Figure 9. For the classification of two conditions

in ET patients, i.e., movement and posture, is based on the power of sEMG in (Equation 3.1) and on the

power of Acc in (Equation 3.2). For a particular trial the input matrix is defined as

X(i) = [XPAcc(i),XPsEMG(i)] (3.3)
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and the corresponding output vector is defined as:

Y (i) = yi (3.4)

where yi = P for posture condition yi = M for movement condition , i = 0,1, . . . ,80.

Figure 9. sEMG signal from extensor muscle and Acc signal plotted over a window of 10 seconds. A
2.5 second time window after postural/movement start time is used in power calculation.

3.3.2 Input parameters for tremor predictor algorithms

Our tremor predictor inputs are combination of spectral, entropy and recurrence measures from the

smoothed sEMG signal obtained by averaging the raw signal over 1s windows and then sliding the

window by 0.25s therefore generating a sample every 0.25s. The mean frequency Fmean as described
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in Equation 2.1, the peak frequency Fmax and the power at peak frequency Pmax as in Equation 2.3, the

mean power in n-th frequency band P j as given in Equation 2.4, the sample entropy SpEn(U ,m,r) in

Equation 2.5 and the recurrence rate R as described in Equation 2.6 are used as the input parameters

for the tremor predictor algorithm. At time instant l ∈ [1 : 4T ], where T is an integer that equals the

duration of a trial which is multiplied by 4 as we are generating parameter samples every 0.25s, the

inputs is defined as:

X(i) =
[
Fmean(i),Fmax(i),Pmax(i),Pj(i),SpEn(U ,m,r)(i),R(i)

]
(3.5)

and the corresponding output vector is defined as:

Y (i) = yi (3.6)

where, yi = 0 for Non-Tremor events and yi = 1 for Tremor events. We use a sliding window processing

of 0.25s; by training the algorithm to transition from Non-Tremor to Tremor at the time instant where

tremor was visually detected, the prediction of tremor for some of the trials turned out to be ‘delayed’

by 0.5s to 2.5s; for this reason, we train the algorithm to transition from Non-Tremor to Tremor 2.5s

before tremor was visually observed to capture the building up of the tremor. This procedure is depicted

in Figure 10. In Figure 10 the six elements of the input vector at a particular time instance are indicated

by arrows and the corresponding output is 1 (as this time instance lies in Tremor region).
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Figure 10. Inputs and output for the DTC-DTP, DTC-TBAGP, DT, TBAG and SVM based predictor in
a particular trial used for training. The bold vertical line, set at 2.5 sec before tremor was visually

observed, divides the time series of the extracted parameters into Tremor (output equals 1) and
No-Tremor regions (output equals 0). A time instance in the ‘tremor region’ is shown via a thin vertical
line: the six elements of the corresponding input vector are indicated by six arrows, which results in an

output equal to 1.
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3.4 Machine Learning Tremor Prediction Algorithms in ET Patients

In case of four ET patients, we have developed five different machine learning technique based on

automated tremor prediction algorithms. These five different automated algorithms were implemented

using Decision Tree (DT) as discussed in Section 2.4.2, Tree Bagger (TBAG) as described in Sec-

tion 2.4.3 and Support Vector Machine (SVM) as discussed in Section 2.4.4. In the following section

the performance of individual algorithms will be discussed based on the performance matrix described

in Chapter 2 in Section 2.6. Finally, the performance of all algorithms will be compared to select best

tremor prediction algorithm for ET patients among all tremor prediction algorithms. We also show the

comparison of machine learning algorithms with the manual threshold based tremor prediction algo-

rithm as proposed in [6]. The exact comparison between the machine learning based tremor prediction

algorithms can not be performed with the manual algorithm [6], as the total time of recording Ttotal is

different in case of manual algorithm with respect to all other machine learning algorithms. In man-

ual threshold based tremor prediction algorithm the Ttotal was chosen to be less than the actual time of

recording on the other hand in all machine learning technique based tremor prediction algorithms the

Ttotal is considered to be the actual time of recording. The rationale behind choosing the Ttotal less than

the actual time of recording to increase the number of NTD trials and to perform some statistics based

on number of NTD trials.

3.5 Results and discussion

3.5.1 Tremor prediction results for DT classifier followed by DT tremor predictor algorithm

ET tremor prediction algorithm based on DT condition classifier followed by DT predictor achieved

an overall sensitivity of 97.96% for four ET patients by successfully predicting tremor in 89 trials out of
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90 trials. The sensitivity is 100% in all ET patients except ET4 where this algorithm missed to predict

one tremor event out of 30 tremor events. The individual accuracy for ET2, ET3 and ET4 is more than

90%, as for these 3 ET patients there is only one FP tremor prediction trial. This algorithm has achieved

an overall accuracy of 91.11%. The minimum and maximum accuracy are 80.00% and 94.74% in case

of ET1 and ET2 (L) patients respectively. In case of ET1 this tremor prediction algorithm showed FA of

50.00% as there were only 2 NTD trials and this algorithm predicted tremor in one of those NTD trials.

This algorithm predicted tremor in 2 NTD trials out of 36 NTD trials and therefore achieved an overall

FA of 5.56%. The timing Rpd parameter is greater than 80% in all ET patients except ET1 (78.28%)

which means that the DT classifier followed by DT predictor loses less than 20% of the actual delay

period due to early prediction. In case of ET2 (L) and ET4 turned out to ∼ 95% which means loss due

to early tremor prediction is very less in these two cases. This algorithm has also achieved an overall

Mcc value of 0.83 which means the predicted classification results are strongly correlated with actual

classification results.

3.5.2 Tremor prediction results for DT classifier followed by TBAG tremor predictor algorithm

The another two stage ET tremor prediction algorithm based on DT classifier followed by TBAG

predictor successfully predicted tremor in 88 trials out of 90 trials in case of four ET patients and

achieved an overall sensitivity of 95.56%. For both ET3 and ET4 patient this algorithm failed to predict

tremor in one of the trials. The overall FA for this tremor prediction algorithm is 0.00% as there was

no miss tremor predicted event for all 36 NTD trials. This algorithm has 9 FP trials and therefore

achieved an overall accuracy of 87.78%. The minimum accuracy is turned out to be 60% in case of

ET2 (R) patient where this algorithm showed 4 FP trials out of 10 trials. In all other cases accuracy is
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TABLE IX

PREDICTION RESULTS FOR EACH ET PATIENT AND OVERALL USING DT CLASSIFIER
FOLLOWED BY DT TREMOR PREDICTOR LEGEND: N = TOTAL # OF TRIALS, A =

ACCURACY IN %, S = SENSITIVITY IN %, FA = FALSE ALARM RATE IN %.

PAT # N NTD TP TN FP FN A S FA Mcc Rpd Rdt Rpt

(%) (%) (%) (%) (%) (%)
ET1 15 2 11 1 3 0 80.00 100.0 50.00 0.44 78.28 43.42 37.53

ET2 (R) 10 2 7 2 1 0 90.00 100.0 00.00 0.76 81.74 40.12 35.38
ET2 (L) 19 11 7 11 1 0 94.74 100.0 00.00 0.90 96.79 53.67 52.55

ET3 16 5 11 4 1 0 93.75 100.0 20.00 0.86 89.96 46.31 43.69
ET4 30 16 12 16 1 1 93.33 92.31 00.00 0.86 94.70 57.73 57.31
ALL 90 36 48 34 7 1 91.11 97.96 5.56 0.83 NC NC NC

>85%. This algorithm showed Rpd value >85% in all cases except ET2 (R) where it achieved only Rpd

value of 64.57% therefore this ET tremor prediction algorithm losses less than 15% of the actual tremor

delay period due to early prediction. The Rpd is low for ET2 (R) as there were many FP trials. In case of

ET2 (L) and ET4 this algorithm has achieved Rpd value of 98.49% and 92.16% respectively. The overall

Mcc value for this algorithm is 0.76 based on this value we can conclude that there is strong correlation

between the predicted tremor classification results and the actual tremor classification results.

3.5.3 Tremor prediction results for DT tremor predictor algorithm

To reduce the complexity of the tremor prediction algorithm we also implemented single stage

tremor prediction algorithms based on DT, TBAG and SVM machine learning techniques. In this section

we discuss the result of single stage tremor predictor algorithm based on DT. This algorithm successfully

predicted tremor in all 90 trials for all four ET patients and therefore achieved an overall sensitivity of
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TABLE X

PREDICTION RESULTS FOR EACH ET PATIENT AND OVERALL USING DT CLASSIFIER
FOLLOWED BY TBAG TREMOR PREDICTOR LEGEND: N = TOTAL # OF TRIALS, A =

ACCURACY IN %, S = SENSITIVITY IN %, FA = FALSE ALARM RATE IN %.

PAT # N NTD TP TN FP FN A S FA Mcc Rpd Rdt Rpt

(%) (%) (%) (%) (%) (%)
ET1 15 2 12 2 1 0 93.33 100.0 00.00 0.78 88.58 43.42 40.47

ET2 (R) 10 2 4 2 4 0 60.00 100.0 00.00 0.41 64.57 40.12 30.19
ET2 (L) 19 11 7 11 1 0 94.74 100.0 00.00 0.90 98.49 53.37 52.99

ET3 16 5 9 5 1 1 87.50 100.0 00.00 0.73 86.49 46.31 44.55
ET4 30 16 11 16 2 1 90.00 91.67 00.00 0.80 92.16 57.73 56.64
ALL 90 36 43 36 9 2 87.78 95.56 00.00 0.76 NC NC NC

100.00%. The overall accuracy is turned out to be 90.00% which shows that this DT based single

stage tremor prediction algorithm correctly predicts tremor in 90.00% of total ET trials. In our analysis

correct tremor prediction means that the tremor was not predicted too early in case of the TD trials

and no tremor was predicted in NTD trials. As there were only 9 FP trials and no FN trials therefore

this algorithm has achieved an overall accuracy of 90.0%. The overall FA of this tremor algorithm is

16.67% as this algorithm predicted tremor in 6 NTD trials out of 36 NTD trials. The FA for ET1 is 50%

as this algorithm predicted tremor in one of the 2 NTD trials and similarly in case of ET3 it predicted

tremor in 2 NTD trials out of 5 NTD trials. The Rpd value for ET1 and ET2 (R) is 68.65% and 79.50%

respectively. For ET2 (L), ET3 and ET4 Rpd is > 90% therefor the loss of tremor prediction delay in

all these cases is <10%. The overall Mcc value is turned out to be 0.76 for this algorithm which shows

that there is strong correlation between the predicted tremor and the actual tremor.
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TABLE XI

PREDICTION RESULTS FOR EACH ET PATIENT AND OVERALL USING DT BASED TREMOR
PREDICTION ALGORITHM. LEGEND: N = TOTAL # OF TRIALS, A = ACCURACY IN %, S =

SENSITIVITY IN %, FA = FALSE ALARM RATE IN %.

PAT # N NTD TP TN FP FN A S FA Mcc Rpd Rdt Rpt

(%) (%) (%) (%) (%) (%)
ET1 15 2 12 1 2 0 86.67 100.0 50.00 0.53 68.65 43.42 34.51

ET2 (R) 10 2 6 2 2 0 80.00 100.0 00.00 0.61 79.50 40.12 34.75
ET2 (L) 19 11 7 10 2 0 89.47 100.0 09.10 0.81 97.52 53.37 52.74

ET3 16 5 13 3 0 0 100.00 100.0 40.00 1.00 90.58 46.31 43.86
ET4 30 16 13 14 3 0 90.00 100.0 12.50 0.82 91.32 57.73 55.50
ALL 90 36 51 30 9 0 90.00 100.0 16.67 0.81 NC NC NC

3.5.4 Tremor prediction results for TBAG tremor predictor algorithm

The TBAG based single stage ET tremor prediction algorithm achieved an overall sensitivity of

100.0% by correctly predicting tremor in all 90 trials in case of all number ET patients. Out of total

number of 90 trials 12 trials were turned out to be FP and therefore this algorithm has achieved an overall

accuracy of 86.67%. The minimum accuracy is obtained for ET2 (R) as there were 4 FP trials out of 10

trials. For ET1 and ET3 the accuracy is 93.33% and 93.75% respectively. The A is quite high which

is desirable. Out of 36 NTD trials TBAG based ET tremor prediction algorithm predicts no tremor in

case of 35 trials and achieved an overall FA of 2.78% which is quite low as desirable. This low FA is

reflected in high Rpd values. The Rpd >90% in all cases except ET2 (R) (69.78%) which means that the

predictor loses less than 10% of the actual delay period due to early prediction. The overall Mcc value
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for this algorithm is 0.76 which shows strong correlation between the predicted and actual classification

for all 4 ET patients.

TABLE XII

PREDICTION RESULTS FOR EACH ET PATIENT AND OVERALL USING TBAG BASED
TREMOR PREDICTION ALGORITHM. LEGEND: N = TOTAL # OF TRIALS, A = ACCURACY

IN %, S = SENSITIVITY IN %, FA = FALSE ALARM RATE IN %.

PAT # N NTD TP TN FP FN A S FA Mcc Rpd Rdt Rpt

(%) (%) (%) (%) (%) (%)
ET1 15 2 13 1 1 0 93.33 100.0 50.00 0.68 90.67 43.42 41.03

ET2 (R) 10 2 4 2 4 0 60.00 100.0 00.00 0.41 69.78 40.12 31.86
ET2 (L) 19 11 6 11 2 0 89.47 100.0 00.00 0.84 97.10 53.37 52.63

ET3 16 5 10 5 1 0 93.75 100.0 00.00 0.87 94.82 46.31 44.99
ET4 30 16 10 16 4 0 86.67 100.0 00.00 0.76 92.95 57.73 55.93
ALL 90 36 43 35 12 0 86.67 100.0 2.78 0.76 NC NC NC

3.5.5 Tremor prediction results for SVM tremor predictor algorithm

The SVM based ET tremor predictor missed to predict 2 tremor events out of 90 trials in case of

all 4 ET patients and achieved an overall sensitivity of 94.45%. Both the miss tremor prediction events

happened for ET2, 1 for ET2 (R) and 1 for ET2 (L). It has achieved S of 100.0% in all ET patients

except for ET2 (R) and ET2 (L) where it achieved sensitivity of 85.71% and 83.33% respectively. The

maximum accuracy is turn out to 100.0% and minimum obtained accuracy by this algorithm is 70.0% in

case of ET2 (R). For ET2 (L), ET3 and ET4 the accuracy is 84.21%, 87.50% and 80.00% respectively.
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The A is an important criterion for the performance of tremor prediction algorithm which is quite high

for this algorithm but there are 2 trials where this algorithm failed to predict tremor events. Out of 36

NTD trials this algorithm predicts no tremor in case of 34 trials and achieved an overall FA of 5.56%.

This algorithm predicted tremor for 1 NTD trial of ET1 and 1 NTD of ET2 (R). The overall Mcc value

for this algorithm is 0.71 which shows strong correlation between the predicted and actual classification

for all 4 ET patients. The Rpd is very high for all 4 ET. The maximum Rpd achieved by this algorithm

is 95.78% for ET2 (L) and minimum obtained Rpd value is 76.98% for ET2 (R). The tremor predictor

algorithm loses less of the actual delay period due to early prediction.

TABLE XIII

PREDICTION RESULTS FOR EACH ET PATIENT AND OVERALL USING SVM BASED
TREMOR PREDICTION ALGORITHM. LEGEND: N = TOTAL # OF TRIALS, A = ACCURACY

IN %, S = SENSITIVITY IN %, FA = FALSE ALARM RATE IN %.

PAT # N NTD TP TN FP FN A S FA Mcc Rpd Rdt Rpt

(%) (%) (%) (%) (%) (%)
ET1 15 2 14 1 0 0 100.0 100.00 50.00 1.00 80.22 43.42 38.11

ET2 (R) 10 2 6 1 2 1 70.00 85.71 50.00 0.31 76.98 40.12 37.22
ET2 (L) 19 11 5 11 2 1 84.21 83.33 00.00 0.68 95.78 53.37 53.22

ET3 16 5 9 5 2 0 87.50 100.0 00.00 0.76 93.84 46.31 44.73
ET4 30 16 8 16 6 0 80.00 100.0 00.00 0.64 88.49 57.73 54.72
ALL 90 36 42 34 12 2 84.44 94.45 5.56 0.71 NC NC NC
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3.5.6 Performance comparison for all tremor prediction algorithms

The performance comparison of all ET tremor prediction algorithms based on TP, TN, FP and FN

criterion is shown in Figure 11. The exact comparison between the machine learning technique based

tremor prediction algorithms with manual tremor prediction algorithm is not possible as the total time

of the recording, Ttotal is different is these cases. In case of all five machine learning technique based

tremor prediction algorithms the total time of the recording is same as the actual time of recording but

in case of the manual tremor prediction algorithm the total time of the recording is less than the actual

time of the recording and this is done to increase the NTD trials. Based on Figure 7, the total number

of FN trials is 0 for single stage DT based tremor predictor algorithm and single stage TBAG tremor

predictor algorithm. Also, for the manual threshold based tremor prediction algorithm the total number

of FN trials is turned out to be 0. The SVM based single stage tremor prediction algorithm and two

stage tremor predictor based on DT classifier followed by TBAG predictor (DTC-TBAGP) obtained 2

FN trials. The DT classifier followed by DT predictor (DTC-DTP) algorithm has only 1 FN trial. The

total number of FN is maximum in case of DTC-TBAGP and SVM algorithms and minimum is case of

single stage DT and TBAG based tremor prediction algorithms. Using the FN performance criterion we

can conclude that DT and TBAG based single stage tremor predictor performed better than DTC-DTP,

DTC-TBAGP and SVM algorithms. Finally, based on FN criteria the performance of DT and TBAG is

same as the manual threshold based tremor prediction algorithm. The DTC-DTP algorithm showed the

minimum number of FP trials among all prediction algorithms. Among all machine learning technique

based algorithms the number of FP trials is maximum is case of TBAG and SVM algorithms but is less

than the total number of FP obtained by manual algorithm. Therefore, the early tremor prediction is
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maximum in case of manual algorithm compare to all other algorithms. As the total time of recording,

Ttotal is different in case of machine learning technique based algorithms compare to manual threshold

based algorithm therefore we will not make a comparison of total number of TP and total number of TN

trials in case of machine learning technique based algorithms with manual threshold based algorithm.

Among all machine learning technique based tremor prediction algorithms the single stage DT based

tremor predictor algorithm achieved maximum number of TP trials and SVM based single stage tremor

predictor algorithm has achieved minimum number of TP trials. The total number of TN is maximum

for DTC-TBAGP algorithm and minimum for DT based single stage tremor predictor, therefore we can

conclude that for NTD trials the performance of DTC-TBAGP algorithm is best among all machine

learning technique based algorithms.

To compare the sum of number of TP and number of TN trials, we have plotted the bar chart of

A (%) with other performance metrics such as S (%), FA (%) and Mcc (%) for all machine learning

technique based algorithms and manual algorithm in Figure 12.The maximum A (%) is achieved by

DTC-DTP algorithm which in turn out to be slightly higher than the single stage DT based tremor

prediction algorithm. Similarly, A (%) of DTC-TBAGP is slightly higher than that of single stage

TBAG algorithm therefore we can conclude that the two stage prediction algorithms achieved higher A

(%) compared to the single stage predictor algorithms. The least accuracy is obtained by SVM based

single stage tremor prediction algorithm. The A (%) for manual algorithm is slightly higher than SVM

based tremor prediction algorithm but lower than all other algorithms. As A(%) is proportional to the

sum of total number of TP and total number of TN trials therefore it is least for SVM based single stage

algorithm followed by manual threshold based algorithm. The S (%) bar chart in Figure 12 shows that
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single stage DT predictor, single stage TBAG predictor and manual threshold based predictor achieved

an overall sensitivity of 100%. The sensitivity is minimum for SVM based tremor prediction algorithm.

Among all machine learning techniques based algorithms the minimum FA (%) is achieved by single

stage TBAG predictor algorithm and maximum FA (%) is achieved by single stage DT tremor predictor

algorithm. The FA (%) for manual algorithm is lower than the single stage DT tremor predictor but

higher than all other algorithms. In term of Mcc (%) the performance of DTC-DTP is best among all

algorithms including manual algorithm as shown in Figure 12.

Overall the performance of single stage TBAG algorithm is best among all other ET tremor pre-

diction algorithms as it achieved 100% sensitivity with high accuracy and least false alarm rate. The

performance of single stage TBAG algorithm is quite comparable to single stage DT algorithm as it

has also achieved the sensitivity of 100% with high accuracy. If we compare the performance of single

stage TBAG algorithm with single stage DT algorithm we will find that the the sensitivity for both the

algorithm is same, the accuracy for single stage DT tremor prediction algorithm is slightly higher than

the single stage TBAG tremor prediction algorithm but there is significant difference between the FA

of both the algorithm. The FA (%) of single stage DT algorithm is 2.78% with only 1 FP trial and FA

(%) of single stage TBAG algorithm is 16.67 with 9 FP trials. The single stage TBAG tremor predic-

tion algorithm is computationally more complex than the single stage DT tremor prediction algorithm.

The performance of single stage TBAG tremor prediction algorithm is better than the manual threshold

based tremor prediction algorithm in term of A, S, FA and Mcc values. Now, if we compare the perfor-

mance of single stage DT tremor prediction algorithm with manual algorithm we can conclude that DT

based single stage tremor prediction algorithm has performed better than the manual algorithm is term
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of A and Mcc. Only the FA in case of single stage DT algorithm is higher than the manual algorithm

it may be due to the fact that the single stage DT algorithm does not have conditions classifier. Finally

based on the performance of various machine learning technique algorithms we can conclude that a fully

automated closed-loop DBS system can be designed based on single stage DT and single stage TBAG

tremor prediction algorithms in case of ET patients. As the complexity of TBAG algorithms is higher

than the DT algorithm therefore DT based single stage tremor predictor is most suitable for commercial

implementation in case of ET patients.

Figure 11. Performance comparison of DTC-DTP (Decision Tree Classifier followed by Decision Tree
Predictor), DTC-TBAGP (Decision Tree Classifier followed by Tree Bagger Predictor), DT, TBAG and

SVM tremor prediction algorithms based on Total # of TP, TN, FP and FN trials in all PD patients.
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Figure 12. The overall Accuracy (A) %, Sensitivity (S) %, False alarm rate (FA) % and Mcc %. for all
4 ET patient in case of DTC-DTP (Decision Tree Classifier followed by Decision Tree Predictor),
DTC-TBAGP (Decision Tree Classifier followed by Tree Bagger Predictor), DT, TBAG and SVM



CHAPTER 4

STOCHASTIC MODELING OF NEURONAL FIRING ACTIVITY IN THE

THALAMUS OF ESSENTIAL TREMOR AND THE SUBTHALAMIC NUCLEUS OF

PARKINSON’S DISEASE PATIENTS.

A part of this chapter appeared [4]: Shukla, P., Basu, I., Graupe, D., Tuninetti, D., and Slavin, K. V.:

On modeling the neuronal activity in movement disorder patients by using the orntein uhlenbeck process.

In Engineering in Medicine and Biology Society (EMBC), 2014 Annual International Conference of the

IEEE, 2014.

[5]: Shukla, P., Basu, I., Tuninetti, D., Graupe, D., and Slavin, K.: Stochastic modeling of neuronal

activity in the thalamus of essential tremor and the subthalamic nucleus of parkinsons disease patients.

Biological Cybernetics, submitted.

4.1 Background

Mathematical modeling of neuronal activity of GPi/STN (in PD) and VIM (in ET) can provide

some understanding of the underlying mechanism of DBS and the pathophysiology of PD and ET. The

time variations in extracted parameters of the predictive mathematical model for neuronal activity of

GPi/STN and VIM can be used to predict the reappearance of the disease symptoms in case of PD

and ET patients when the DBS stimulation is turned off. Moreover, the model parameters can be used

to predict the effects of the DBS parameters and therefore can be used in optimizing DBS parame-

ters [10,11,77]. The next generation closed-loop, adaptive DBS system can be designed based on good

73



74

predictive mathematical model which captures the system dynamics of GPi/STN and VIM in case of PD

and ET patients respectively. Mathematical modeling of neuronal activity in GPi/STN and VIM can be

performed by either deterministic or stochastic neuronal models. The deterministic neuronal modeling

technique requires the detailed interaction among all the neurons at microscopic level, which makes it

parameter extensive and also parameter specific [78]. On the other hand, macroscopic stochastic model-

ing of neuronal activity does not require the microscopic detailed knowledge of all possible interactions

between neurons and thus needs less parameters for modeling [79].

In this work, our main goal is to derive macroscopic stochastic models for the neuronal spiking

activity in the STN and the VIM, based on actual patient data obtained during micro-electrode record-

ing obtained during DBS surgery. Here, we will use the Ornstein Uhlenbeck Process (OUP) whose

parameters are extracted using the Fortet Integral Equation (FIE) as described in [14, 15] to capture the

dynamics of the neuronal spiking activities in the STN of PD patients and in the VIM of ET patients.

Furthermore, we aim to statistically compare and evaluate the performance of OUP-FIE method with

other stochastic process such as the Poisson Process (PP), the Brownian Motion (BM) and the OUP

whose parameters are extracted using moments method as described in [16] which were previously dis-

cussed, but in the context of limited data sets [17]. Such mathematical modeling of micro-electrode

recordings may provide understanding of neuronal activity in these parts of the brain [20]. This knowl-

edge can potentially be helpful when designing improved closed-loop control of DBS and predicting its

behavior.

Neurons communicate with one another through electrical impulses that come in the form of ac-

tion potentials generated when the neuronal membrane voltage exceeds a certain threshold. Various
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stochastic processes have been proposed to model the randomness of the inter-spike interval (ISI), the

time interval between the two consecutive neuronal firings. One of the earliest studies used the Poisson

Process (PP) [80, 81] which is a simple stochastic process that counts the number of events and the

time when these events occur in a given interval of time. The inter-arrival time in the PP has a negative

exponential distribution described by a single parameter, the average number of events per unit time.

Unfortunately, the PP does not capture the mechanism of the spike generation [82]. Various stochastic

processes based on the integrate-and-fire model have been proposed to capture the mechanism behind

the spike generation [83, 84]. The Brownian Motion (BM) with positive drift which has the Inverse

Gaussian (IG) distribution as the underlying distribution [82] was the first stochastic process applied to

the leak-less integrate-and-fire neuronal model. The BM provides a closed form solution to the ISI dis-

tribution. Unfortunately, BM does not model the exponential decay between two subsequent neuronal

spikes. Other approaches to model neuronal spiking include point processes [85, 86]. These methods

however require a large number of parameters for modeling the ISI [87]. To avoid the complexities

and shortcomings of previous methods, in the present work we propose to use the Ornstein-Uhlenbeck

Process (OUP) to model the neuronal activity [88].

The OUP is a modified Wiener Process, derived via a leaky integration assumption that can generate

irregular neuronal spike activity [89, 90]. This process accounts for the spike generation mechanism

and the change in membrane potential between two firing events, which were ignored in oversimplified

stochastic processes such as PP and BM [80]. OUP only needs two parameters, together with three

free parameters, which reduces the computational complexity compared to generalized point processes.

In [17] and [18], we used the OUP to model the spike activity recorded from the STN of a PD patient
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and from the VIM of an ET patient, respectively. Although the results were promising, the statistical

significance of the proposed method remained unclear due to a limited data set. Moreover, in our

previous studies [17,18], the two OUP parameters were estimated based on the first two moments of the

first passage time (FPT) distribution, the time distribution when the neuron membrane potential exceeds

a certain threshold starting from some initial resting potential [16], and hence does not take the entire

distribution into consideration.

This segment of this thesis includes the following: We present data from a large number of patients;

specifically, we used 19 VIM recordings from ET patients and 10 STN recordings from PD patients. We

estimate the OUP parameters from the measured ISI distribution by using the minimization of maximum

Kolmogorov-Smirnov statistical error of the FPT distribution function using the FIE [14, 15]. By using

a directional Wilcoxon signed rank test [19], we compare the results obtained from the OUP whose

parameters were obtained using FIE method with the OUP in which the model parameters were extracted

using the moments method based on the Ricciardi’s approach [16] as in [17, 18]. Finally, we show

that the model parameter estimated based on the FIE method gives overall better results compared to

the moment method, while both OUP-based models provide a better fit for the measured ISI than the

simplistic stochastic models like PP and BM.

This chapter is organized as follows: Section 4.2 describes the data set used for modeling the ISI

distribution followed by the introduction of OUP and the parameter estimation in the FPT problem.

Section 4.3 outlines the mathematical foundations of the four models considered in the paper, namely

OUP with its Moment-based parameter identification method, OUP with FIE parameter identification,

the PP and BM models. Section 4 presents the modeling results of the ISI distributions by using the
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various models. It also includes the statistical analysis performed on the results to prove its statistical

significance. Finally, conclusions of the present work are highlighted in Section 4.5.

4.2 Data Set

We obtained electrophysiological datasets from the University of Illinois at Chicago (UIC) and the

Rush University in Chicago, with respective IRB approvals. The data were recorded pre-stimulation,

during stimulation and post stimulation at the time of DBS surgery for ET patients (target VIM) and PD

patients (target STN). During the DBS-implant procedure, micro-electrode recordings (MER) were rou-

tinely performed by the DBS team to precisely locate the target for DBS lead placement by assessing

neuronal spiking activity at different depths along the pre-calculated trajectory that leads to the in-

tended target. In both institutions, MER was performed using platinum-iridium tipped microelectrodes

(microTargeting, FHC Inc, Bowdoinham, ME) connected to either Guideline 3000A system (Axon In-

struments, Union City, CA) in Rush University, or NeuroNav and MicroGuide MER systems (Alpha

Omega Engineering, Nazereth-llit, Israel) in UIC. With the Guideline system, the data were sampled at

20 KHz [91] and recorded without any test stimulation. With the NeuroNav/MicroGuide system, the

data were sampled at 25 KHz and the dataset included MER before and during intraoperative stimulation

at 130 Hz and 160 Hz [92, 93].

MER is used to analyze the high-frequency activity of a single neuron in the form of electrical

potential differences across the cell membrane of the neuron. With the extracellular recording approach

used in clinical practice, there are unavoidable sources of electrical noise such as background noise due

to cellular activity of neighboring neurons and measurement noise. Another source of noise comes in

the form of stimulus artifact that is present in MER data when a train of high-frequency DBS pulses is
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applied through the macro contact of the microelectrode assembly. These stimulus artifacts are removed

from the signal by subtracting the artifact template from the recorded signal to recover the neuronal

activity; however, since the stimulus artifacts are large enough to saturate the signal amplification, it is

not possible to determine any spiking activity embedded inside the artifact. Data recorded before and

after stimulus artifact appear similar. The stimulus artifact look similar to pre- and post-stimulation

recordings. Finally, the timestamps of spike occurrences were detected by setting a threshold. The

physician performing the MER determined the threshold based on visual inspection of the recorded

spikes as shown in Figure 13. The difference between the two consecutive timestamps is the ISI that is

required for parameter extraction for the OUP, IG and PP.

Figure 13. Sample of recorded data set over a window of 1 sec with spike thresholding. Dotted line =
Threshold.
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4.3 The First Passage Time problem using the OUP model

The neurons generate electrical impulses called action potentials or spikes when the membrane

voltage exceeds a certain threshold to communicate with each other. After the generation of an action

potential, the membrane potential resets to the resting potential and, for modeling purpose, this value is

set to be zero in our analysis. The spike timestamps form a renewal random process, related to the First

Passage Time problem (FPT). In the rest of the section, we first discuss the OUP model, followed by a

discussion on the FPT problem, and finally the OUP-FPT parameter extraction by using the Ricciardi’s

moment method and FIE method.

4.3.1 The Ornstein Uhlenbeck Process (OUP)

The OUP is a modified Wiener Process Xt , which can be thought as the continuous time analogue of

the discrete time AR(1) process. It is based on the Langevin standard differential equation (SDE) [94,95]

that can be solved by using Ito calculus [88, 96] to give

Xt = µτ +(x0−µτ)e−t/τ +σ

∫ t

0
e−(t−s)/τdWs (4.1)

where τ > 0 is a time constant, µτ > 0 is equilibrium mean value, σ > 0 is diffusion coefficient or the

degree of volatility around the mean, Wt is a standard Wiener Process, and x0 the initial condition of the

process. The probability density function of Xt in (Equation 4.1) is given by [17]

fOU (x, t;x0) =

√
1

π [1− e−2t/τ ]σ2τ
· exp

{
−[(x−µτ)− (x0−µτ)e−t/τ ]2

[1− e−2t/τ ]σ2τ

}
. (4.2)
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Physiologically, µ and τ represent the input to the model neuron in terms of excitatory and inhibitory

Possion’s trains of impulses. For a more detailed mathematical description, we refer the reader to [17]

and references therein.

4.3.2 The FPT Problem and OUP Parameter Extraction

An input impulse to a neuron generates a spike only when its membrane potential Xt exceeds a

threshold y0 (assumed constant) and then it resets to its resting potential x0. Therefore neuron’s activity

between two consecutive neuronal firing can be described as FPT problem of OUP [97]. The OUP-FPT

random variable T is defined as the time t after time 0 at which Xt first hits a constant threshold, y0

starting from the initial value x0 < y0. Mathematically, T is defined as

T = inf{t ≥ 0 : Xt ≥ y0, Xt |t=0 = x0 < y0}. (4.3)

The probability density function of T , formally defined as

fT (t;x0,y0) =
∂

∂ t
P[T ≤ t], (4.4)

is not known in closed form, but its moment generating function is [16]. Based on the moment generat-

ing function, all the moments of T can be calculated as described in [17, 97]. The FPT density function

in (Equation 4.4) is defined in terms of five parameters: µ , σ , τ , x0 and y0 of which the last three pa-

rameters (membrane time constant τ , membrane resting potential x0 and constant threshold voltage y0)

are intrinsic parameters of the neurons and can take biologically plausible values. The first two parame-
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ters (equilibrium mean value µ and degree of volatility around the mean σ ) are input parameters of the

model responsible for the neuronal activity and can be extracted from the ISI distribution.

In this work, the OUP parameter estimation is performed based on two methods: (1) the Ricciardi

moment method, where the first two moments of the FPT are equated to the first two moments esti-

mated from the data [17], and (2) the Fortet Integral Equation, where two different expressions of the

probability density function for the dimensionless form of OUP are equated.

4.3.2.1 The Ricciardi’s Moment Method (RMM).

Several methods are known to obtain numerically the approximate moment generating function of

the OUP [17, 97]. In this work we use the explicit expression for the first two moments

τ
2Mn(η |ξ ) = mn(η |ξ ) = E[T n]

as described in [16] given by

M1(η |ξ ) = φ1(η)−φ2(ξ ) (4.5a)

M2(η |ξ ) = 2φ
2
1 (η)−φ2(η)−2φ1(η)φ1(ξ )+φ2(ξ ) (4.5b)

ξ =

√
2

σ2τ
(x0−µτ), (4.5c)

η =

√
2

σ2τ
(y0−µτ) (4.5d)
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where η ≥ ξ and where the φk(z), k = 1,2 are given by

φk(z) =
k
2k

∞

∑
n=1

(
√

2z)n

n!
Γ
(n

2

)
ρ
(k)
n (4.5e)

ρ
(1)
n = 1, (4.5f)

ρ
(2)
n = ψ(n/2)−ψ(1) (4.5g)

Here Γ(y) and ψ(y) are the gamma and digamma functions, respectively [16]. To obtain the estimates

of µ̂ and σ̂ , we first solve for ξ in (Equation 4.5c) and η in (Equation 4.5d) from

τM1(η |ξ ) = m1 (4.6a)

τ
2M2(η |ξ ) = m2 (4.6b)

where m1 and m2 are the first two moments obtained from the recorded FPT distribution, and then we

inverse the relationship in (Equation 4.5c) and (Equation 4.5d) to obtain [98]

µ̂ =
1
τ

η̂x0− ξ̂ y0

η̂− ξ̂
(4.7a)

σ̂ =

√
2
τ

y0− x0

η̂− ξ̂
(4.7b)

where τ , x0 and y0 are neuronal membrane potential, resting potential and firing threshold respectively.
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4.3.2.2 The Fourtet Integral Equation (FIE) Method

In this method we considered the dimensionless form of the OUP-FPT problem to estimate the

parameters µ and σ of the model. The corresponding probability for the dimensionless OUP-FPT

problem, in the form of standard normal distribution function Φ(·) is given by [15]:

P[Ys > 1] = Φ
(

α(1− e−s)−1
β
√

1− e−2s

)
(4.8)

where Ys, α , β and s are defined as [15]:

Ys =
Xsτ

y0
(4.9a)

α =
µτ

y0
(4.9b)

β =
σ

y0

√
τ

2
(4.9c)

s =
t
τ

(4.9d)

This probability can also be calculated using transition integral equation [15].

P[Ys > 1] =
∫ s

0
f (u)Φ

(
α−1

β

1− e−(s−u)√
1− e−2(s−u)

)
du (4.10)

where fou(x,sτ;x0) is probability density function of Xt for s = t/τ . The integral equation obtained

after equating the right hand side of (Equation 4.8) and (Equation 4.10) is [15]:
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Φ
(

α(1− e−s)−1√
1− e−2sβ

)
=
∫ s

0
f (u)Φ

(
α−1

β

1− e−(s−u)√
1− e−(s−u)

)
du (4.11)

The estimate α̂ , β̂ of the parameters α , β is based on the minimization of maximum Kolmogorov-

Smirnov statistical error calculated for the integral equation (Equation 4.11) [15]:

(α̂ , β̂ ) = argmin
α ,β

max
s∈R+

|RHSest(s)−LHS(s)| (4.12)

where, RHS and LHS are left and the right hand side of the equation (Equation 4.11), and consists

of ordered independent normalized FPT events t/τ , such that s1 ≤ s2 ≤ s3 ≤ s4 ≤........≤ sN . Based on

these ordered samples of s, the LHS(s) can easily be calculated as described in (Equation 4.11) but to

solve for RHSest(s) we used the approximate solution [15] for the integral equation:

RHSest(s) ≈
max{n:sn≤s}

∑
i=1

Φ

α−1
β

√
1− e−(s−si)

1+ e−(s−si)

 (4.13)

The estimates of the parameters µ̂ and σ̂ of dimensionless OUP is obtained by inverting the rela-

tionship in (Equation 4.9b), (Equation 4.9c) to obtain [15]:

µ̂ f ie =
α̂y0

τ
(4.14a)

σ̂ f ie =
β̂y0√

2τ
(4.14b)
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4.3.3 Other Commonly Used Stochastic Processes

The ISI distribution has also been modeled as a negative exponential distribution, arising from a PP,

or an inverse Gaussian (IG) distribution, resulting from BM with positive drift [80,81]. We compare the

performance of the proposed OUP model with those of the PP and BM.

4.3.3.1 The Poisson Process (PP).

When the spiking activity is modeled as a PP, the resulting ISI has a Negative Exponential (NE)

distribution.

fPP(x; µpp) =
1

µpp
e−x/µpp 1[x≥0] (4.15)

where µpp is the mean value of the ISI [17]. µpp is a parameter of the distribution, which happens to be

its expected value too. In the following, µ̂pp will denote the the maximum likelihood (ML) estimate of

µpp, which can be calculated as the sample mean of the measured ISI in (Equation 4.15).

4.3.3.2 The Brownian Motion (BM).

When the spiking activity is modeled as a BM with positive drift, the resulting ISI has an inverse

Gaussian (IG) distribution.

fBM(x; µbm,λbm) =

√
λbm

2πx3 exp
{
−λbm(x−µbm)

2

2(µbm)2x

}
1[x≥0] (4.16)

where µbm is the mean and µbm
3

λbm
the variance of the ISI [17]. In the following, µ̂bm and λ̂bm will denote

the the maximum likelihood (ML) estimate of parameters of the distribution in (Equation 4.16).
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4.4 Result

In this work the stochastic modeling of neuronal activity of STN in PD patients and VIM in ET

patients is performed based on neuronal spiking activities recorded during DBS implantation surgery.

For the stochastic modeling, we first calculated the ISI’s (difference between two consecutive spike

timestamps) from the recorded neuronal spikes and then based on calculated ISI’s we obtained the em-

pirical ISI probability distribution in which the bin width is calculated based on the Freedman Diaconis

rule [99] as

h =
IQR(x)
(n)1/3 (4.17)

Where h is the bin width, IQR(x) stands for inter-quartile range of the data x (in this case ISIs) and n

is the number of data samples. This empirical ISI probability distribution is referred to as measured ISI

distribution in the rest of the discussion of this article.

4.4.1 Numerical Estimation of OUP parameters and ISI simulation

For the numerical estimation of OUP parameters µ̂ , σ̂ in (Equation 4.7), (Equation 4.14), we assume

the resting membrane potential to be x0 = 0 (a non zero value for x0 can be incorporated in the long-term

mean value that depends on µ and τ) and the firing threshold y0 = 15mV (where 15 mV is the difference

between the neuron firing threshold and the neuron resting potential). As the physiological value of the

membrane time constant τ has been varied from 1 to 20ms [88], in our analysis τ ranges from 1 to 25ms

in time steps of 0.2ms. Finally, we obtain sets of estimated parameters µ̂ , σ̂ in (Equation 4.7) using the

RMM as discussed in Section 4.3.2.1 and by using the FIE method as discussed in Section 4.3.2.2. The
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box plot of estimated parameters µ̂ , σ̂ for ET and PD is shown in Figure 14. The statistical parameters

calculated based on the box plot comparison ( Figure 14) with some statistical dispersion parameters of

µ̂ and σ̂ for all ET and PD patients recordings in case of FIE and RMM are summarized in Table XIV.

Based on these estimated sets of parameters, we then proceed to simulate the ISI distributions by

numerically solving an integral equation as in [100] with x0 = 0, y0 = 15mV , and τ ranging from 1 to

25ms in time steps of 0.2ms. For each measured ISI distribution there are 121 simulated ISI distributions

corresponding to each value of τ . To quantify the goodness of the fit of the numerically simulated ISI

distribution with its measured ISI and to select the best set of parameters among all estimated sets of

parameters (corresponding to each value of τ) for a particular measured ISI distribution, we use the

Integral Square Error (ISE) as a performance measure [17]. The ISE is calculated as the sum of the

squared error between the measured ISI distribution and the numerically simulated ISI distribution at

each bin. The ISE does not require any prior knowledge about the underlying distribution that governs

the empirical ISI distribution. The value of τ was chosen as the one that minimizes the ISE for OUP.

4.4.2 Performance Comparison

The ISE summary results for ET and PD patients are reported in Table XV and Table XVI, respec-

tively, and discussed next. The Tables also report the ISE results for the PP and the BM. The visual

performance comparison of the different stochastic models is shown in 15(a) and 15(b) which is based

on Table XV and Table XVI.

Recordings from ET patients in 15(a), show that the FIE method produces the lowest ISE values

in all recordings. The BM shows very large ISE values compared to other stochastic processes for the

recordings 2, 5, 6, 8, 9, 14 and 15; similarly, the PP shows large ISE values for the recordings 12 and
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Figure 14. Parameter Comparison.
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TABLE XIV

STATISTICAL PARAMETERS CALCULATED BASED ON THE BOX PLOT COMPARISON (FIG.
7) AND THE STATISTICAL DISPERSION PARAMETERS OF µ̂ AND σ̂ FOR ALL ET AND PD

PATIENTS RECORDINGS IN CASE OF FIE AND RMM.
Pat- Pa- OUP- First Second Third Stan- Inter Median
tient ra- FPT Quartile Quartile Quartile dard Quartile Absolute

me- (Q1) (Q2) (Q3) Devi- Range Deviation
te- *103 *103 *103 ation (IQR) (MAD)
r *103 *103 *103

ET
µ̂

RMM -0.7690 0.5959 0.8649 1.5310 1.6339 0.4290
FIE 0.6352 0.8365 1.1210 1.0781 0.4858 0.2287

σ̂
RMM 0.0973 0.1230 0.1927 0.0983 0.0954 0.0299

FIE 0.0941 0.1202 0.1476 0.0693 0.0535 0.0272

PD
µ̂

RMM 0.6516 0.8418 1.3255 0.5657 0.6739 0.2568
FIE 0.9721 1.7524 2.1196 0.7102 1.1475 0.4365

σ̂
RMM 0.0985 0.1075 0.1240 0.0407 0.0255 0.0124

FIE 0.0855 0.0943 0.1069 0.0417 0.0214 0.0095

13. The performance of the RMM is better than the BM and PP in all recordings except recording 3, for

which the ISE is comparable to the least ISE value obtained from the BM. 15(a) shows that the lowest

ISE value is obtained from the FIE method for recording 19 and the maximum ISE value is obtained

from BM for recording 8. Amongst all the processes, the ISE values are the lowest for the FIE method,

indicating that it provides the best curve fit to the measured ISI distributions. In another case where the

parameters were extracted based on the first two FPT moments, OUP in general performs better than PP

and BM as shown in 15(a). Based on 15(a) we also found that the overall performance of PP is better

than BM.
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TABLE XV

ET PATIENT SUMMARY. ISE
Recording Patient# Hospital RMM FIE BM PP

Set# (Set#) Name ∗10−3 ∗10−3 ∗10−3 ∗10−3

1 ET1(1) UIC 0.0499 0.0192 0.1757 0.0818
2 ET1(2) UIC 0.2960 0.2360 3.1150 0.6910
3 ET2(1) UIC 1.1000 0.4410 1.3000 0.8840
4 ET2(2) UIC 0.0779 0.0209 0.0335 0.3495
5 ET2(3) UIC 0.1603 0.1507 2.5556 0.2126
6 ET2(4) UIC 0.2570 0.1140 3.3170 0.0770
7 ET2(5) UIC 0.4499 0.3370 0.3770 0.5325
8 ET2(6) UIC 0.3124 0.1796 4.4999 0.1796
9 ET2(7) UIC 0.4780 0.3392 5.8530 0.5801

10 ET2(8) UIC 0.2895 0.2818 0.3002 0.7154
11 ET2(9) UIC 0.7786 0.3282 1.6367 0.3811
12 ET3(1) UIC 0.0515 0.0467 0.0971 0.8111
13 ET3(2) UIC 0.1005 0.0943 0.1160 2.1311
14 ET3(3) UIC 0.1759 0.1585 2.1483 0.3461
15 ET3(4) UIC 0.1235 0.0736 4.0516 1.0488
16 ET4(1) RUSH 0.0793 0.0637 0.0621 0.3897
17 ET4(2) RUSH 0.0902 0.0533 0.0544 0.5009
18 ET5(1) UIC 0.3075 0.2030 1.0319 1.0128
19 ET5(2) UIC 0.0505 0.0101 0.4729 0.1254
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(a) Histogram Plot of ISE for all ET patients recordings.

(b) Histogram Plot of ISE for all PD patients recordings.

Figure 15. Histogram Plot for Performance Comparison.
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TABLE XVI

PD PATIENT SUMMARY. ISE
Recording Patient# Hospital RMM FIE BM PP

Set# (Set#) Name ∗10−3 ∗10−3 ∗10−3 ∗10−3

1 PD1(1) RUSH 0.0326 0.0162 0.0277 0.8338
2 PD1(2) RUSH 0.0710 0.0205 0.0228 0.4734
3 PD1(3) RUSH 0.0773 0.0350 0.0356 0.7082
4 PD1(4) RUSH 0.3250 0.1166 0.1344 0.3898
5 PD2(1) RUSH 0.0410 0.0076 0.0080 0.4121
6 PD2(2) RUSH 0.0116 0.0126 0.0148 0.2863
7 PD3(1) RUSH 0.1716 0.1023 0.1016 0.6598
8 PD4(1) UIC 0.2127 0.2505 0.2220 0.9263
9 PD5(1) UIC 0.2789 0.1410 0.4245 0.3956

10 PD6(1) RUSH 0.0263 0.0441 0.2487 0.1455

The histogram of ISE values for all processes and for all PD patients is shown in 15(b). The ISE

values obtained with the FIE method are lower than all the ISE values obtained with other processes

in all recordings, except for recording 8 in which the lowest ISE value is obtained with the RMM. ISE

values obtained from all processes were lower in PD than ET patients as the vertical axis scale in 15(b)

is smaller compared to that in 15(a). 15(b) shows that the maximum ISE values are obtained with the

PP in all recordings except numbers 9 and 10 in which the maximum ISE value is obtained with the BM.

The ISE values obtained with the BM are smaller than the ISE values obtained from the RMM in all

recordings except numbers 5 and 8 in which is the ISE values are comparable to those obtained from the

RMM, and recording number 9 and 10 in which the ISE values are greater than those obtained from the

RMM. Therefore, in PD, the performance of OUP with parameter extraction based on FIE, is superior
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to all other stochastic process as shown in 15(b). Based on the histogram plot for all ISE values ( 15(b))

in case of PD patients, the BM provides a better curve fit to the measured ISI distribution than the RMM

and PP.

4.4.3 Statistical Analysis

The descriptive statistical analysis of the performance of the different stochastic processes is based

on the box plot of ISE values as shown in 16(a) and 16(b) for ET and PD patients, respectively. For the

box plot analysis, we have calculated the first quartile Q1, the second quartile Q2 and the third quartile

Q3. The statistical parameters for dispersion are inter-quartile range, standard deviation and median

absolute deviation [19]. To avoid the effect of outliers on the ISE dispersion, we removed the outliers

while calculating the standard deviation. The points which are below the Q1−1.5(Q3−Q1) percentile

value and above the Q3 + 1.5(Q3 −Q1) percentile value are considered as outliers in our analysis.

These extreme high or low values of outliers can skew the direction of results. We also calculated the

median absolute deviation (MAD) [19], which is independent of the outliers. The statistical dispersion

parameters along with quantitative measures of the box plot of 16(a) and 16(b) are summarized in

Table XVII and Table XVIII, for ET and PD patients, respectively.

In 16(a) and 16(b) the center line of the box represents the median value (i.e., second quartile

or Q2 or 50th percentile), the lower horizontal line of the box represents Q1, or 25th percentile, while

the upper horizontal line of the box represents the third quantile Q3, or 75th percentile. The lower

whisker represents Q1−1.5(Q3−Q1) percentile value, the upper whisker represents Q3+1.5(Q3−Q1)

percentile value and the plus sign above the whisker denotes the outliers.
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(a) Box Plot comparison for the performance evaluation for all ET patients recordings.

(b) Box Plot comparison for the performance evaluation for all PD patients recordings.

Figure 16. Box Plot for Performance Comparison.
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TABLE XVII

STATISTICAL PARAMETERS CALCULATED BASED ON THE BAR CHART COMPARISON
(FIG.16A) AND THE STATISTICAL DISPERSION OF ISE VALUES FOR RMM, FIE METHOD,

PP AND WP.
Name Median First Third Inter- # of Standard Median

of ∗10−3 Quartile Quartile Quartile Out- Deviation Absolute
process (Q1) (Q3) Range liers [Without Deviation

∗10−3 ∗10−3 (IQR) Outliers] (MAD)
∗10−3 ∗10−3 ∗10−3

RMM 0.1759 0.0820 0.3112 0.2292 2 0.1393 0.1201
FIE 0.1507 0.0559 0.2704 0.2145 None 0.1295 0.0974
BM 1.0319 0.1309 2.9752 2.8443 None 1.7873 0.9698
PP 0.5009 0.2460 0.7872 0.5412 1 0.3116 0.2883

TABLE XVIII

STATISTICAL PARAMETERS CALCULATED BASED ON THE BAR CHART
COMPARISON(FIG.16B) AND THE STATISTICAL DISPERSION OF ISE VALUES FOR RMM,

FIE METHOD, PP AND WP.
Name Median First Third Inter- # of Standard Median

of ∗10−3 Quartile Quartile Quartile Out- Deviation Absolute
process (Q1) (Q3) Range liers [Without Deviation

∗10−3 ∗10−3 (IQR) Outliers] (MAD)
∗10−3 ∗10−3 ∗10−3

RMM 0.0742 0.0326 0.2128 0.1802 None 0.1140 0.0552
FIE 0.0396 0.0163 0.1166 0.1003 None 0.0782 0.0294
BM 0.0686 0.0228 0.2220 0.1992 None 0.1369 0.0572
PP 0.4428 0.3898 0.7082 0.3184 None 0.2493 0.1867
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The qualitative bar chart comparison of the performance of different stochastic processes is shown in

16(a) and the corresponding quantitative statistical parameter based comparison of different stochastic

processes is summarized in Table XVII for all ET patients’ data sets. The median of ISE values is

minimum in case of FIE method and is maximum in case of BM, therefore FIE method provides better

curve fit to measured ISI distributions compared to BM. There are two outliers for the RMM and one

outlier for PP. The length of two whisker ends is the greatest for BM and the shortest for FIE. Therefore

the dispersion of ISE values is highest in case of BM and lowest in case of FIE method. 16(a) shows

that the inter quartile range (IQR) of ISE values is the shortest in case of FIE method and the longest

in case of BM. From Table XVII, we conclude that the minimum dispersion of ISE values is obtained

with the FIE method. The maximum dispersion ISE values for IQR, standard deviation and MAD are

obtained with the BM. The ISE dispersion and median values are the lowest with FIE method which

indicates that the performance of the FIE method is superior among all processes and provides the best

curve fit to the measured ISI distribution. The performance of the RMM is better than that of BM and

PP as it has the lowest ISE median value and has the least ISE dispersion compared to PP and BM

distribution as shown in 16(a).

In case of PD patients, a similar qualitative box plot comparison is shown in 16(b) and the quanti-

tative comparison based on statistical parameters is summarized in Table XVIII. In PD, the median of

ISE values is minimum in case of the FIE method and maximum in case of PP. The minimum dispersion

ISE values for IQR, standard deviation and MAD are obtained with the FIE method. The dispersion of

ISE values is minimum in case of FIE method and maximum in case of PP. Therefore, among all the

modeling processes, the FIE method shows the best performance with the lowest ISE median values
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and with the lowest values for the different ISE dispersion parameters. Overall, for PD data sets, the

BM gives better curve fit to the empirical ISI distributions compared to the RMM and PP as shown in

16(b). The BM also shows a significant improvement in the performance for PD patients compared to

ET patients.

Finally, to determine whether the ISE values of one distribution were significantly higher or lower

than another, we performed a directional Wilcoxon rank test [101]. The directional Wilcoxon rank test

is a non-parametric statistical test which is used to compare the performance between two processes

based on ranking. This test is applied to low sample size problems when the underlying distribution of

the sample population is unknown. Four directional Wilcoxon rank tests were conducted for both ET

and PD patients to statistically compare the performance of different stochastic processes: (1) the first

test is performed to check whether the ISE values obtained from the FIE method are lower than those

obtained from the BM. (2) the second test is performed to check whether the ISE values obtained from

the FIE method are lower than those obtained from the PP, (3) the third test checks whether the ISE

values obtained from the FIE method are lower than those obtained from the RMM, and (4) the fourth

test is performed to check whether the ISE values obtained from the BM are less than those obtained

from the PP. The conclusion is made based on the p-value, i.e., if p-value is less than 0.05 then the null

hypothesis of equality is rejected. The results corresponding to all tests for both ET and PD patients are

summarized in Table XIX.

Test 1 shows that the ISE between the measured ISI distribution and the simulated OUP-FPT dis-

tribution using the FIE method is significantly lower than that between the measured ISI distribution

and the simulated BM. This establishes the superiority of the OUP-FPT distribution in which the model
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TABLE XIX

COMPARISON OF ISE VALUES CORRESPONDING TO DIFFERENT DISTRIBUTIONS BY
USING A DIRECTIONAL WILCOXON SIGNED RANK TEST.
Data Set Test1 Test2 Test3 Test4

ET FIE <BM FIE <PP FIE <RMM PP <BM
Results Yes Yes Yes Yes
p-value 0.0001 0.0001 0.0001 0.0392

PD FIE <BM FIE <PP FIE <RMM BM <PP
Results Yes Yes Yes Yes
p-value 0.0485 0.0027 0.0314 0.007

parameters were extracted using FIE method over the BM in fitting the measured ISI distributions. Test

2 shows that the ISE between the measured ISI distribution and the simulated OUP-FPT distribution

using the FIE method is significantly lower than that between the empirical ISI distribution and the PP.

Thus, the OUP-FPT distribution in which the model parameters were extracted using FIE method better

fits the measured ISI distributions than the PP. Test 3 shows that the ISE between the measured ISI dis-

tribution and the simulated OUP-FPT distribution using the FIE method is significantly lower than that

between the measured ISI distribution and the simulated OUP-FPT distribution using RMM, but OUP

based on FIE parameter extraction method offers a greater improvement over the OUP based on FPT

moment parameter extraction for the PD patients data set compare to the ET patients data set. Test 4

shows that the PP provides a better fit to the measured ISI distribution than the BM in case of ET patients

since the ISE corresponding to PP is significantly lower than that corresponding to the BM. In the PD

data set, the BM actually provides a better fit than the PP and is also very close to the performance of

the OUP-FPT in which parameter extraction was based on FIE method.
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Based on results from the four statistical tests, we can conclude that the overall performance of the

FIE method is superior amongst all stochastic process, i.e., it provides the best fit to all measured ISI

distributions for both PD and ET patients.

4.5 Conclusions

In this work we demonstrated the applicability of OUP to model the neuronal spiking activity in the

STN of PD patients and in the VIM of ET patients. The OUP requires less parameters compared to

a deterministic model for neuronal activity, therefore it is a computationally efficient method to model

neuronal activities. To extract the OUP parameters from the measured ISI distribution, we used the

FIE method. We compared the performance of OUP-FIE with OUP-RMM, BM and PP and concluded

that in case of PD and ET patients, the OUP-FPT distribution with parameters extracted using the FIE

method provides the best fit to all measured ISI distributions.

Comparing the performance of different stochastic processes in case of ET and PD patients, we

concluded that all stochastic processes performed better in case of PD patients compared to ET patients

and showed significant decrease in ISE values. There is a drastic improvement in the performance of

BM in case PD patients as there is approximately one order reduction in ISE values of BM in case of

PD patients compared to ET patients. Overall, the OUP-FPT distribution with the model parameters

extracted using the FIE method provides the best fit for both PD and ET data sets.

We performed different tests based on directional Wilkoxon rank test to statistically compare the

performance of different stochastic process. We concluded that the overall performance of the OUP

process with FIE-derived parameters is best amongst all stochastic processes considered, i.e., it provides

the best fit to all measured ISI distributions for both PD and ET patients.



CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this work we implemented various machine learning technique based automated tremor prediction

algorithms for PD and ET patients. First we implemented feed-forward back-propagation NN in case of

PD patients. As we were not able to achieve 100% sensitivity by using NN tremor prediction algorithms

therefore we explored other machine learning algorithms such as DT, TBAG and SVM for tremor pre-

diction. Finally, we did the performance comparison of various tremor prediction algorithms is done to

choose best among all tremor prediction algorithms. From all the results obtained from different studies

performed in this thesis work, we can make the following conclusions:

1. We implemented various machine learning techniques based automated tremor prediction algo-

rithms in case of four PD patients. All the algorithms achieved high accuracy and sensitivity with

low false alarm rate, but based on overall performance of DT based tremor prediction algorithm,

it turned out to be the best among all algorithms. Therefore, to design a fully automated closed-

loop DBS system, DT based tremor prediction algorithm appeared to be the best suitable option

in case of PD patients for commercial implementation.

2. In case of four ET patients we implemented five different automated tremor prediction algorithms

which are based on DT, TBAG and SVM. Two of them are two stage tremor prediction algorithms

in which first stage is a condition classifier stage which classifies between the movement and pos-

100
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tural condition followed by the tremor predictor stage which comprises of two tremor predictors

one for each condition. The DT based classifier is used to implement the conditions classifier in

case of ET patients. The remaining three are single stage tremor prediction algorithms. All the

five tremor prediction algorithms achieved an overall high accuracy and sensitivity. After perfor-

mance comparison we concluded that either a single stage DT tremor predictor or a single stage

TBAG tremor prediction algorithm are suitable for automated closed loop DBS design in case of

ET patients.

3. To extract the OUP parameters from the measured ISI distribution we used the FIE method. We

compared the performance of OUP-FIE with BM, PP and OUP-MOM using directional Wilkoxon

rank test and concluded that overall the OUP-FPT distribution with the model parameters ex-

tracted using the FIE method provides the best fit for both PD and ET data sets.

4. We concluded that all stochastic processes performed better in case of PD patients compared to

ET patients and showed significant decrease in ISE values. There is also a drastic improvement

in the performance of BM in case of PD patients as there is approximately one order reduction in

ISE values of BM in case of PD patients compared to ET patients.

5.2 Future Work

The results obtained from various studies show the applicability of the sEMG/Acc signal based

automated controlled closed-loop DBS system design using machine learning technique based tremor

prediction algorithms in case of PD and ET patients. Based on the findings the future research goals can

be as follows:
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1. Adaptation of tremor prediction algorithm parameters during online operations

2. Perform the smoothening of sEMG signal by using some other low pass filters such as Chebyshev

and Butterworth.

3. Parameter extraction from sEMG and Acc signals using some statistical methods such as Principal

Component Analysis (PCA), Factor Analysis (FA) and Component Analysis (ICA).

4. Optimization of parameters or options for various machine learning techniques used in this work.

5. Simulation of sEMG and Acc data set from the recorded sEMG/Acc signals based on the physio-

logical conditions of ET/PD patients.

6. Stochastic modeling of neuronal activities in case of PD and ET patients by using Feller process.

5.2.1 Adaptation of algorithm parameters during online operations

All the machine learning technique based tremor prediction algorithms structures are built off-line

during the training phase. The parameters to which the all the algorithms are trained will converge

and remain fixed in the testing phase. The parameters of all machine learning techniques based tremor

prediction algorithms will not adapt to the patients conditions. Therefore we can further design an

adaptive tremor prediction algorithm based on whose parameters will change during online operations.

5.2.2 Smoothening of sEMG signal by using some other low pass filters

The present work was carried out with data recordings of sEMG/Acc from PD and ET patients. The

sEMG signals from these recordings were first smoothed out to extract parameters for tremor prediction

algorithms. Smoothening is an important step as it filters out the high frequency oscillations and thus

extracts the low frequency tremor bursts. In this work smoothening is performed by using moving
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average filter. Therefore, the application of other low pass filters such as Chebyshev and Butterworth

can be tested in future studies to further improve the process of low pass filtering. The improved process

of low pass filtering may improve the performance of automated tremor prediction algorithms in case of

PD and ET patients.

5.2.3 Parameter extraction from sEMG and Acc signals using some statistical methods

In this study, the parameters extracted from smoothed sEMG and Acc signals are used for training

of various machine learning algorithms for tremor prediction. Our knowledge about the physiology of

disease and experience about intrinsic information of signals from sEMG/Acc were the major guiding

force for deriving these parameters. In this work, these parameters were extensively used and proved

to be excellent for prediction of tremors. Nevertheless, we can explore other statistical methods such

as PCA, FA or ICA to extract the optimum number of parameters from filtered signals. This exercise

will help us in retaining all useful independent parameters and removing the noise component of it. We

can also perform experiments to search for the physical basis of the independent parameters extracted

from PCA, FA or ICA. This exercise will give us insight to establish a relation (if any) between the

parameters used in present work and the parameters derived from PCA, FA or ICA.

5.2.4 Optimization of parameters or options for various machine learning techniques

Apart from focusing on pre-processing of signals, i.e. filtering and parameter extraction, a rigorous

exercise can be undertaken to find out the best combination of parameters or options for various machine

learning techniques used in this work. In the present work, Neural Network (NN), Decision Tree Classi-

fier (DTC), Support Vector Machine (SVM) and Tree Bagger is used for tremor prediction. In this work,

we implemented feed-forward back-propagation NN for tremor prediction algorithm. The feedforward
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NN architecture is one of the simplest type of NN architecture which can extract prediction information

from noisy signals. Also, the computatinal speed of this NN is high due to its parallel structure. This

NN is not transparent in nature therefore we can further investigate some other transparent NN such as

LAMSTAR to improve the tremor prediction performance in case of NN based tremor prediction algo-

rithm. Only DT and TBAG based classifiers are used in present work. DTC is the simplest tree based

classifier and Tree Bagger is the simplest ensemble based method for classification. Other advanced

ensemble methods such as boosting and random forests algorithms can be used to test its predictive per-

formance. SVM is another machine learning method which is used for tremor prediction. In SVM, only

radial basis kernel function with σ = 1.0 as kernel function and SMO as optimization method is used.

We chose SMO as optimization method for SVM tremor prediction algorithm as the convergence time

for this optimization method is turns out to be least in our preliminary tremor prediction analysis. A

separate study can be carried out to find out the best kernel function and optimization method for tremor

prediction. Perceptron and polynomial kernel functions can be tried. For optimization, least square and

non-linear optimization methods can also be used to test the impact on final accuracy.

5.2.5 Simulation of sEMG and Acc data set

The major limitation in improving the performance of various automated tremor prediction algo-

rithms in case of PD and ET patients is due to limited data set. This limitation stresses on devising

new methods or procedures to simulate a data set that encompasses all the possibilities and realistically

presents all the physiological conditions of ET/PD patients recorded through sEMG/Acc.
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5.2.6 Stochastic modeling of neuronal activities in PD and ET patients by using Feller process

In Chapter 4, we demonstrated the applicability of the OUP to model the neuronal spiking activities

recorded from VIM of thalamus of ET patients and the STN of PD patients during implantation of the

DBS electrodes. We can further investigate more complex stochastic process such as Feller process

with more dynamic parameters to model the neuronal spiking activities in case of PD and ET patients.

Finally, we can compare the performance of the OUP and Feller process in terms of their ISE values.

If Feller process provides a better curve fit to measured ISI distribution, we can obtain more accurate

stochastic neuronal modeling technique at the cost of the increased complexity of the process.
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