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SUMMARY

In recent years, diminishing fossil fuel, global warming, and environmental pollution have

become important global issues. The use of bio-based fuels is one of the alternatives to help

resolve these issues. Amongst all the biofuels, biodiesel is considered one of the best biofuel

candidates. Biodiesel is superior to diesel oil in terms of sulfur and aromatic content, and it

is environmentally safe, non-toxic, and biodegradable (1). One of the most common pathways

for producing biodiesel is the transesterification method, which is the formation of triglycerides

from vegetable oils with short-chain alcohols. Two operating modes can be used to produce

biodiesel: continuous or batch. For a batch process, a batch reactor can be employed whereas

for a continuous process, continuous stirred tank reactors (i.e. CSTR reactors) can be used. In

the first part of this research, a comparison between these operating modes is carried out. This

comparison is based on performance and economics. Although available literature and existing

computer tools mostly deal with optimal design of continuous processes, in this research it is

found that batch processes can be a good alternative over continuous processes since it can

handle the seasonal variability of feedstock. However, modeling and controlling batch processes

is complex due to their dynamic nature.

In the second part of this research, batch production of biodiesel is improved through dy-

namic optimization- also known as optimal control. This strategy consists of finding a control

policy that can change with time and maximize or minimize a performance index. Due to

xiv



SUMMARY (Continued)

the time dependent nature of these processes, optimal designs and control problems involve

differential and algebraic equations that can be difficult to solve. Optimal control problems en-

countered in biodiesel production can be formulated using various performance indices, namely,

maximum concentration, minimum time, and maximum profit. These problems involve de-

termining optimal temperature profile (as the control policy) so as to optimize these indices.

Such problems become even more complicated when uncertainties are taken into account. In

this thesis, a novel approach to solve optimal control of a batch reactor under uncertainties

in biodiesel production is presented. Feed stock variability is the commonly encountered un-

certainty in biodiesel production. These uncertainties can be characterized using probability

distributions as they are static uncertainties. However, they result in dynamic uncertainties

due to their dynamic nature. In this research, the time-dependent uncertainties are modeled

using Ito processes, which are also used in finance theory. The problem then becomes a stochas-

tic optimal control problem which is difficult to solve. A new approach is presented to solve

stochastic optimal control problems in which the stochastic dynamic programming formulation

is converted into a stochastic maximum principle. The main characteristic of this approach

is that the solution to the partial differential equations involved in the dynamic programming

formulation is avoided. Moreover, an efficient algorithm that combines the maximum principle

and Non-Linear Programming (NLP) techniques is also proposed to solve the maximum profit

problem. A brief chapter related to implementation of these temperature control profiles in a

jacketed batch reactor is also presented.

xv



CHAPTER 1

INTRODUCTION

The best of all things is to learn. Money can be lost or stolen, health and strength may fail,

but what you have committed to your mind is yours forever

-Louis L’Amour,1908-1988

1.1 Motivation

The need for energy is ubiquitous for development. As the population increases, the energy

requirements also increase thus becoming one of the most important issues in modern life.

This growing demand for energy has made a significant impact on our social and economic

development resulting in the depletion of fossil fuel reserves, rising petroleum prices, and the

alarming environmental concerns due to the climate change. Although it is projected that

around 85% to 90% of world primary energy consumption (projected until 2030) will continue to

be based on fossil fuels (2), the development of new technologies for renewable energy provides

an excellent opportunity for reduction of greenhouse gas emissions and mitigation of global

warming through substituting conventional energy sources. In this sense, the production of

energy from renewable sources has received wide attention among politicians, scientist and

engineers. For instance, the U.S congress has established in the Energy Independence and

Security Act of 2007 that mandates by 2022 the U.S. economy should be using 36 BGY (billion

gallons per year) of renewable transportation fuel which represents and enormous growth over

1
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the current production level of 13 BGY (3). On the other hand, researchers have been exploring

different alternatives such as plant-based fuels, plant oils, and fats as promising biofuel sources

that can secure the future energy supplies. Among those sources, biodiesel has been considered

one of the best alternatives to replace the conventional diesel fuel. As a result, in the last decade

a large expansion in biodiesel production along with research and innovation of production

techniques can be found. Figure 1 presents U.S. biodiesel production from 1999 to 2012. In

1999 biodiesel production was only 0.5 million gallons while in 2012 this value reached 2127

million gallons. Note: The values from 1999 to 2011 were obtained from (4) while the values

of 2012 were obtained from (5)

.

A biodiesel production plant involves a series of unit operations which can be operated in

continuous or batch mode. According to the ASEA (American Society of Agriculture Engineer-

ing), biodiesel production technology consists of a crude oil degumming section, refining sec-

tion,transesterification reaction section, water washing, glycerol refining section, and methanol

recovery (6). Most of the studies of biodiesel production have been done with continuous mod-

els since the existing computer software is built for continuous processes. However, in this work

it is argued that batch production provides a better alternative due to the flexibility of the

operation. Therefore, in the first part of this study, a comparison of batch versus continuous

production of biodiesel from soybean oil is proposed.
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Figure 1. U.S. Biodiesel production from 1999 to 2012

The biodiesel transesterification reactor resembles the heart of any biodiesel manufacturing

plant. The design of this reactor provides challenging problems with respect to basic function-

ality, safety product quality, and yield related issues (7). In addition, any drift that occurs

in a batch reactor under standard conditions will lead to significant changes in the process

variables and production quality specifications. In general, these types of reactors are excellent

at handling complicated materials which represent a helpful solution for many types of reac-



4

tions, and they are versatile for different applications that range from specialty chemical and

pharmaceutical manufacturing to agricultural, food and consumer products, and most recently

the constantly growing spectrum of biotechnology enabled products (8). Therefore, this thesis

concentrates on optimizing the reaction section of the batch biodiesel production. Since batch

reactors are inherently dynamic, their optimization results in dynamic optimization problems,

also known as optimal control problems. Optimal control problems encountered in biodiesel

production can be formulated using various performance indices, such as maximum concen-

tration of biodiesel, minimum reaction time, and maximum profit. To maximize or minimize

these performance indices, it is necessary to determine the optimal control policy, e.g. optimal

temperature profile. Depending on the downstream process requirement (i.e. plant schedule,

quality, quantity, etc.), any of these performance indices can be used. For example, for a fixed

batch time the Maximum Concentration Problem (MCP) maximizes the product, whereas if the

quality (or conversion) of the product becomes the main constraint in the process, the desired

product is achieved by solving the Minimum Time Problem (MTP). In this thesis, three optimal

control problems in biodiesel production are studied (i.e. Maximum concentration, minimum

time, and maximum profit problems (MPP). These problems become more challenging when

variability and uncertainty in any parameter is included. In biodiesel production, there are

inherent uncertainties arising due to variation in the initial composition, operating parameters,

and mechanical equipment design that can have a significant impact on the product quantity,

quality and process economics. One of the most influential uncertainties is the uncertainty due

to feed composition variability since the percentage and type of triglycerides in biodiesel com-
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position varies considerably. These uncertainties result in dynamic uncertainties which imply

the solution of stochastic optimal control problems. These problems are solved using a new

and efficient approach. In addition, deterministic versus stochastic results are compared and

practical implementation strategies are discussed.

1.2 Structure of the thesis

The first part of this work addresses the following research question: Is biofuel produc-

tion better in continuous or batch processes? Batch processes are dynamic processes

that arise from the requirement of generating high quality, and low volume products with great

flexibility. Although, in our opinion there are clear advantages to batch production of biodiesel,

most of the work and commercial facilities are moving towards continuous production thinking

that will provide cost advantages. Hence, Chapter 2 presents a detailed comparison of batch

and continuous production of biodiesel considering performance and economics. The economic

feasibility of biodiesel production and the plant configuration not only depends on technical

design aspects but also on other important factors such as seasonal variation of feedstock,

transportation costs, and storage costs of material. Therefore, the comparison presented here

involves size of the market, transportation distance from supplier to producer facility, and feed-

stock availability of soybean oil by allocation of raw material supply. It is found that batch

production is favored over continuous production in most of the cases. This chapter appears in

Environmental Progress and Sustainable Energy as an invited paper (9).
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Once batch processes are selected as an attractive option for biodiesel production, Chapter

3 answers the second research question: Can we come up with better operating policies

that can optimize this production? Although, batch processes offer the most attractive

and challenging problems, modeling and controlling these processes is complex due to their dy-

namic nature. Therefore, in this chapter dynamic optimization is studied to improve biodiesel

production in a batch reactor. This Chapter presents the deterministic optimal control problem

in biodiesel production where the three optimal control problems, namely, maximum concen-

tration, minimum time, and maximum profit are introduced. These problems are formulated

for the deterministic case, that is, no uncertainty is considered in the process. To solve these

problems, methods such as maximum principle and non-linear programming are employed. The

content of this Chapter appears as two papers in the journal of Fuel (10) and (11).

As stated earlier, biodiesel production is inherently uncertain. Therefore, Chapter 4 and 5

answers the question regarding uncertainties: Why is important to consider uncertain-

ties in biofuel production? Chapter 4 introduces Ito processes. Ito processes, also used

in financial theories, deal with time-dependent uncertainties in bio-processing. This chapter

presents methods and tools for characterizing, quantifying, and propagating time dependent

uncertainties. Following that,Chapter 5 presents various optimal control problems in the face

of feed composition uncertainties. These static uncertainties result in dynamic uncertainties

making the problem difficult to solve. New approaches are used to solve these problems. The

results of the stochastic optimal control problems are compared with deterministic results. This
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work appears in two papers in the journal of Fuel (11) and (12). The second paper recently

received a national award from American Institute of Chemical Engineering (AIChE) sustain-

ability engineering forum.

Chapter 6 describes some aspects regarding the implementation of the optimal temperature

control such as the reactor cooling/heating configuration, and energy balance. It has been

found that to control the temperature of the reaction in industrial batch reactors, a control

system manipulates the jacket reactor temperature through the coolant/heating fluid temper-

ature depending on the nature of the reaction (i.e. endothermic or exothermic). The cooling

and temperature profile for reactor jacket is presented here for the different optimal control

problems studied earlier.
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Figure 2. Overview of the thesis
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Finally, the last part of the thesis provides the summary and contributions of this study,

along with recommendations for future research. According to the research questions and ob-

jectives described above, the structure of the thesis is summarized in Figure 2. This Figure

shows the important points discussed in this thesis from Chapters 2 to Chapter 7.

1.3 Biodiesel background

During 1930s and 1940s, vegetable oils were used as emergency fuels (13). However, the

use of these oils and their blends were generally considered to be unsatisfactory because of

their high viscosity and low volatility properties that caused problems such as engine deposit,

injector coking, piston ring sticking, and thickening of lubricating oil (14). All these problems

were eliminated through the transesterification reaction of these vegetable oils with an alcohol

to form fatty acid methyl esters also known as biodiesel. The full exploration of biodiesel only

came into light in the 1980s after the oil crisis in 1970s. This situation revived the interest in

renewable (energy) sources for reducing greenhouse gas (GHG) emissions, and alleviating the

depletion of fossil fuel reserves. This made biodiesel as a good alternative for the replacement

of petroleum-based diesel. The most commonly used vegetable oil is soybean oil, and methanol

is widely considered the most cost-effective and readily available alcohol. This clean renewable

fuel is superior to diesel oil in terms of sulfur and aromatic content that allows biodiesel to

burn much cleaner than conventional diesel. Although the burning of biodiesel is a combustion

process that releases carbon dioxide (i.e.CO2) to the atmosphere, biodiesel consumption does

not add CO2 to the atmosphere because it is derived from plant sources which trap CO2 during
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photosynthesis (15). Several studies have compared the difference between biodiesel and diesel

fuel. For instance, Wu et al. (16) compared the performance of five methyl ester biodiesel

samples (i.e. palm oil, soybean, rapeseed, cottonseed, and waste cooking oil methyl esters).

These samples were run on a direct injection engine, and tested the emissions. Their studies

have shown that the reductions in particulate matter range from 53% to 69% dry soot ranges

from 79% to 83% hydrocarbons ranges from 45% to 67% and carbon dioxide ranges from 4%

to 16% compared with petroleum diesel. However, nitric oxides (NOx) showed slight increase

from 10% to 23%. The reasons for variations of the emission performance of each methyl ester

are associated with the oxygen content and viscosity of the methyl ester which further depend

on the properties of the feedstock. On the other hand, biodiesel can be used in any compression

ignition engine without the need of any modifications (17). The lubricant properties of biodiesel

are better than diesel, which can help to increase the engine life and improve their operations

even if it is used in very low concentrations of 1%. Biodiesel also raises the cetane number

of fuels which is the measurement of the combustion quality of diesel fuel during compression

ignition.

Some properties of biodiesel and diesel fuels are compared in Table I. As it can be seen,

biodiesel produced from various vegetables oils has viscosity values close to diesel. Moreover, the

volumetric heating values are a little lower, but they have high cetane numbers and flash points.
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TABLE I

PHYSICAL AND CHEMICAL PROPERTIES OF BIODIESEL
Vegetable Kinematic Cetane Lower heating Flash Density
oil viscosity(mm2/s) number value(MJ/L) point(0C) (g/l)

Soybean(a) 4.5(37.80C) 45 33.5 178 0.885

Soybean(b) 4.0(400C) 45.7-56 32.7 - 0.880(150C)

Peanut(a) 4.9(37.80C) 54 33.6 176 0.883)

Palm(b) 4.3-4.5(400C) 64.3-70 32.4 - 0.872-0.877(150C)

Rapeseed(b) 4.2(400C) 51-59.7 32.8 - 0.882(150C)
Diesel 12-3.5(400C) 51 35.5 - 0.830-0.84(150C)

JIS(c)-
2D(Gas
oil)

2.8(300C) 58 42.7 59 0.833

a(19);b(20);c(21)

Therefore, due to these similarities to diesel fuel, biodiesel is a strong candidate for replace-

ment (18).

Although in this work the focus is on biodiesel production through transesterification of

soybean oil with methanol, there are other routes that have been adopted for it production.

Four primary ways are shown in Table II (22) direct use and blending, micro-emulsions, ther-

mal cracking, and transesterification. These methods are available to minimize the viscosity of

vegetable oils, making them practical for use in internal combustion engines. As the name indi-

cates, the direct use and blending methods mix the raw oils directly into the existing diesel fuel.

Micro-emulsification disperses the vegetable oils into a solvent such as alcohol (e.g. methanol,

ethanol, or butanol), surfactant, and cetane improver in suitable proportions.
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TABLE II

DIFFERENT METHODS OF BIODIESEL PRODUCTION
Method Advantage Disadvantage Problems of using in en-

gines

Direct use and
blending

Liquid nature-
portability, heat
content(80% of diesel
fuel),readily available,
renewability

Higher viscosity, lower
volatility, reactivity of
unsaturated hydrocar-
bon chains

Coking and trumpet
formation, carbon de-
posits,oils ring sticking,
thickening and gelling of
the lubricating oil

Micro-emulsion Better spray patterns
during combustion,
Lower fuel viscosities

Lower cetane number,
Lower energy content

Irregular injector nee-
dle sticking,incomplete
combustion heavy car-
bon deposits increase
lubricant oil viscosity

Thermal cracking
(pyrolysis)

Chemical similar to
petroleum-derived
gasoline and diesel fuel

Energy intensive and
hence cost

-

Transesterification Renewability, higher
cetane number, lower
emissions, higher com-
bustion efficiency

Disposal of byproduct
(glycerol and waste wa-
ter)

-

Thermal cracking or pyrolysis involves heating the oil with catalyst in the absence of air or

oxygen. And finally, the transesterification reaction that involves heating the oil with a catalyst

and an alcohol to change its chemical structure.

The transesterification reaction can occur with the use of acid, alkali, or enzyme as catalysts,

or in a supercritical fluid system without catalyst. The most common technology used to pro-

duce biodiesel is alkaline homogeneous transesterification, with conversion efficiency of more

than 98%. However, the homogeneous transesterification has a disadvantage as it consumes
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large amount of water for wet washing to remove the salt produce from the neutralization

process, and the residual acid or base catalyst. On the other hand, heterogeneous biodiesel

production processes have less number of unit operations, with simpler separation and purifi-

cation steps of products as there is no neutralization process required. The effectiveness of this

technology depends on the effectiveness of the solid catalyst used. Table III summarizes the

different transesterification methods that can be used to produce biodiesel.
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TABLE III

DIFFERENT TRANSESTERIFICATION TECHNOLOGIES
Technology Classification Advantages/Disadvantages Reference

Homogeneous
catalyst
mediated
process

Homogeneous
alkali-
catalyzed
reaction

Special control for water content and free fatty acids
(FFA) contained in raw materials is required

(23);(24)

Homogeneous
acid-
catalyzed
reaction

Cheap and abundant since concentrated sulfuric acid is
used, however, it leads to serious issues such as severe
corrosion of the equipment and environmental concerns

(25)

Two step
catalytic
process with
acid and
alkali

Pre-esterification with an acid catalyst is conducted
prior to alkali catalyst-mediated transesterification. It
can be used with different oil feedstock. The economic
and environmental benefits are reduced due to the com-
plexity of the procedure.

(26);(27);(28)

Heterogeneous
catalyst
mediated
process

Heterogeneous
solid-alkali
catalyst
reaction

It can be reusable and easy to separate from the re-
action products. The performance is generally poorer
than that of the commonly used homogeneous catalysts

(29);(30)

Heterogeneous
solid-acid
catalyzed
reaction

This technology adapts well to feedstocks with high
FFA content, and has the advantage of easy separation,
but, the disadvantages are low activity, slow reaction
rate, high temperature, and poor yields.

(31);(32);
(33)

Lipase medi-
ated process

Immobilized
lipase medi-
ated trans-
formation

Need of use organic solvent systems to overcome the
negative effects on the lipase activity and operational
stability due to the poor solubility of methanol in oil
feedstocks. For this reason is a complicated method
for large-scale continuous biodiesel production. Mod-
erate reaction conditions, low alcohol to oil ratio, easy
product recovery, and environmentally friendly

(34);(35)

Whole-cell
mediated
alcoholysis

Avoid complex procedures of lipase fermentation, pu-
rification and immobilization, therefore it is potential
way of reducing the cost of the biocatalyst. Many chal-
lenges such as scaling up and process optimization need
to be investigated further

(36)

Liquid lipase
mediated al-
coholysis

Faster reaction rate and lower cost compared with im-
mobilized lipase biodiesel yield of over 90% could be
obtained after 8 h reaction. The recovery of lipase and
the enzymes performance during continuous running
need to be evaluated further.

(37)

Biodiesel
production
in a super-
critical fluid
system

- Fast reaction rate and high conversion yield. Methanol
is hydrophobic in supercritical conditions, and triglyc-
eride dissolves well in supercritical methanol. This
method is sensitive to operating temperature and pres-
sure variations

(38);(39);(40)

Algae-based
biodiesel
production

- Algae-based oil is non-edible oil that can avoid the
competition with food source. This biomass provides
higher yield production such as superior yield per
hectare over conventional oil crops, and more oil con-
tent. The higher cost performance compared with tra-
ditional biodiesel-soybean based production.

(41);(42)



CHAPTER 2

COMPARING CONTINUOUS AND BATCH PROCESS

PERFORMANCE FOR BIODIESEL PRODUCTION

2.1 Introduction

One of the most important decisions that an engineer has to face when designing a chemical

plant is the operational mode. This decision seeks to find the process which minimizes the costs

or maximizes the yield. Making this decision will affect the product quality and the viability

of the process. Therefore, several aspects must be considered, such as production rates, oper-

ational process, recycle options, hazardousness of chemicals, possibilities of energy integration,

and economic analysis (43). Many paths may be available to produce the same material, but the

remaining question is which one would be the best and under which conditions. This chapter

presents the biodiesel production and proposes performance and economic comparison between

continuous and batch processes. Recently, investigations on commercial biodiesel production

have focused on process technology and economical assessment. Available literature and exist-

ing computer tools mostly deal with optimal design of continuous processes. However, given

the variability of feedstock and seasonal variation batch processes can be a good alternative

over continuous processing because of their higher flexibility. Although very few people have

given attention to batch processing of biodiesel, these processes allow engineers

15
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to manipulate variations in feedstock and product specifications, making the process more

adjustable to the requirements of a specific design.

Comparisons between batch and continuous operation have received little attention in the

process engineering literature. Only some cases are available but they refer to specific chemical

process. For instance, Wagialla et al. (44) presented a comparison of some technical aspects

regarding batch vs. continuous refining of crude cottonseed oil. In this article, researchers

evaluated the percentage of refining loss, refined oil color, caustic soda consumption based on

the initial crude oil FFA content, and showed that continuous refining of cottonseed oil is more

efficient in each of these performance criteria, particularly the percentage of refining loss. In

Gorsek and Glavic (45), the objective was to highlight the important factors which govern the

selection of a simplified operation mode (i.e. batch vs. continuous) using a single-purpose

equipment. Such factors were production capacity, recycling and energy integration with heat

storage. As a result, it was shown that the most profitable operation mode, in terms of net

present worth (NPW ) was the continuous model with recycle loops and energy integration.

However, in a second part of the paper (46), the study was focused on the advantage of a batch

model with multi-purpose equipment. The same example was used to produce a specialty

chemical, and the results showed that batch process with multi-purpose equipment was more

profitable than a batch process with single-purpose equipment and even more profitable than

the continuous one. Finally, Fonseca et al. (47) compared the behavior of batch and continuous

processes using the reaction rate constants found in the open literature for transesterification
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of vegetable oils. In their study, they presented that a series of CSTRs can be an industrially

feasible choice for replacing batch transesterification reactors in large scale biodiesel plants;

however, the loss in productivity caused by changing from batch to continuous process was

compensated by using higher catalyst concentrations. Literature concerning only the estima-

tion of biodiesel production cost has been presented separately for continuous models by Myint

and El Halwagi (48), Zhang et al. (28) and Haas et al. (49), and for batch models by Sakai and

Kawashima (50). These works were based on capacity plant and different process technology,

such as energy integration, variation in catalytic processes or availability of raw material. As an

example, (50) showed a manufacturing cost comparison between continuous processes with the

production of biodiesel in a batch model. This comparison was based on the type of catalyst

(homogeneous and heterogeneous alkali) and method of purification of biodiesel. As a result, it

was shown that their batch processes were relatively expensive compared with the continuous

process shown by West et al. (51), but they were competitive when the glycerol credits were

considered.

As it can be seen, the literature of economic comparisons between batch and continuous

process for the production of biodiesel (especially from soybean oil) is limited. On the other

hand, previous literature, related to batch and continuous production, agreed that raw material

is the largest contributor to the production cost (49) and (48). This issue becomes more chal-

lenging when considering the market availability of soybean oil and distance to the biodiesel
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production facility.

Therefore, the comparison proposed here is based on the supply chain management of

biodiesel, having as the decision criteria: the size of the market, its distance, and feedstock

availability.

2.2 Biodiesel life cycle

The life cycle of biodiesel production is related to supply chain management which assesses

the challenges existing for bringing biodiesel production up to scale ((52); (53); (54)). Its

objective is to include the production and transportation of the feedstock from a farm to a

refinery in the most cost efficient manner. The life cycle of biodiesel is described graphically in

Figure 3.

Figure 3. Biodiesel life cycle
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In the first part of the life cycle, the feedstock production is considered. This section

comprises issues such as land availability, seeding, growing, yield and environmental impact

of growing the feedstock. Following to this section, there is the feedstock logistic. This stage

has four smaller steps which are harvesting, storing, preprocessing and transportation of the

feedstock from the cropland to refineries (53). Then biofuel production is the third step. Here

the feedstock (e.g. soybean) is converted through transesterification reaction into biofuel (e.g.

biodiesel). The last two stages are related to the transportation and end use of the biofuel

that focuses on how the consumers access the biofuel. The life cycle of biodiesel production

can affect significantly the economic assessment of biofuel production. For instance, the cost

incurred in the feedstock logistic stage is one of the major costs drivers, and it has received

minimal attention (52). This could also be one of the causes that the cost of raw material

contributes in 88% of the total estimate production cost. Banariee and Noguer (54) consider

three aspects regarding the economic evaluation of the feedstock logistic stage:

• Transportation vs. economy of scale: the cost of feedstock transportation and risk of

supply instability can be affected due to the inherent scale economics that encourage the

construction of large biomass refineries.

• Storage location: this aspect depends on the feedstock, the planted, and harvest season.

For example, most of the U.S. soybeans are planted in May and early June and harvested

in late September and October (55). The resulting biomass needs to be stored the rest of
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the year and this can be done either in the fields where feedstock is harvested or in the

refinery.

• Capital cost of inventories: the storing location of inventories is one of the key decisions

in the design of a supply chain for biofuels. This aspect evaluates convenient way to store

the inventories.

2.2.1 Soybean market

There are different types of oils and fats that may be used to produce biodiesel. Figure 4

includes various oils such as canola, cottonseed, coconut, edible tallow, lard, and others (corn,

palm, palm kernel, peanut, sunflower, and safflower). As it is shown in this figure, soybean

has been the most widely used in the U.S., contributing to 68% of the fats and oils consump-

tion of 2010. Besides, in 2010 soybeans represented 58% of world oilseed production and 35%

of those soybeans were produced in the U.S. (4). Finally, Soybeans are about 90% of U.S.

total oilseed production. Among other characteristics, soybean has expandable harvest areas,

cheapest feedstock among other vegetables oils and high quality due to its low FFA and high

purity. Therefore, in this work soybean is chosen as the feedstock for the production of biodiesel.

Three types of soybean oil can be encountered for the production of biodiesel: crude oil,

refined, and bleached. Although, high conversion can be achieved through conventional tech-

nology, it is only suitable when refined oils are employed (56). Therefore, refined oil is used in
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Figure 4. U.S. fats and oils consumption 2010

this work; besides, the kinetic model was obtained from refined and bleached soybean oil by

(57). Refined oil refers to the amount of Free Fatty Acid (FFA) which should be lower than

0.5% in order to avoid saponification, and to make the downstream processes of biodiesel after

the reaction section less complicated. The drawback of using refined oils is its price, around

1000 to 1234 U.S. $ per ton, while for crude oil, waste oil, or cooking oil, the price ranges can

be around 110 to 320 U.S. $ per ton but the amount of FFA is considerable high (56).

Soybean production cost may vary for each region in the U.S. For instance, the Midwest soy-

bean producers generally have higher yield and lower cost per acre than Southern and Easter

producers (55). Figure 5 (left side) shows the soybean production and price by state in 2010.

It can be seen that Iowa and Illinois have the highest production with 13.51 million tons and
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12.68 million tons, respectively; while West Virginia and Florida have the lowest production

both with 0.02 million tons. On the other hand, Figure 5 (right side) shows the price to farmers

by state, as it can be seen Illinois and North Carolina have the highest price with 457$/ton

and 452$/ton, respectively, while New York and Louisiana have the lowest price with 404$/ton

and 401$/ton, respectively. This is important information that can provide the investors with

criteria to find promising locations of biodiesel production plants.
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Figure 5. Soybean production and price by state 2010
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Figure 6. Soybean oil monthly prices in the U.S.

Figure 6 shows the monthly price of soybean oil. This data was reported by indexmundi.com

(58) which contains detailed country statistics and information of their agricultural commodi-

ties. The information presented in this figure involves average prices of soybean oil all around

the U.S. As it can be seen from this figure, the price of soybean oil has increased over the last

couple years from 0.38$/lb. in January of 2010 to 0.51$/lb. in February of 2013. Some of

the reason of this increase resulted from the increased worldwide demand, the global economic

recession, the fluctuating value of the dollar, and the increase edible oil competition from other

fats and oils (59).
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Figure 7. Normal distribution of soybean oil monthly prices in the U.S.

A statistical analysis is also shown in Figure 7. This figure shows the data of the monthly

prices of soybean oil which were fitted to a normal distribution with mean 0.50 and standard

deviation of 0.07.
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2.2.2 Soybean transportation

Transportation cost of feedstock plays an important role in the supply chain management,

especially in the feedstock logistics, because it influences economically the location of a biodiesel

facility. Generally, this cost is a function of the method of transportation used. The selection of

transportation depends on the availability of infrastructure, quality and distance. For instance,

trucks, rail, or barges may be used to move the feedstock along the supply chain, each with

a different cost per ton per distance. U.S. has an efficient rail system, extensive highway and

barge infrastructure that make the average cost of moving U.S. crops from farm to vessel the

lowest of any major grain and oilseed exporting country (57). Usually farmers move their pro-

duction by truck over farm to market roads. Many farmers own trucks capable to carry up to 30

metric tons and their most common practice is to truck soybeans by a grain elevator where the

soybeans are unloaded, combined with soybeans from other farms. The second transportation

mode is rail. Most soybeans and grains are moved in upwards of large hopper cars that carry

80 to 90 metric tons each.

Finally, barges moves over inland waterways. The U.S. has a widespread system of water-

ways that stretch from the Upper Mississippi River and its tributaries in Minnesota all the way

to the Gulf of Mexico. In this work, the transportation cost was determined based on the study

proposed by English et al.(60) where a comparison of transportation costs for various locations

is shown. Therefore, Figure 8 presents transportation costs for soybean oil vs. distance. A lin-

ear regression model was used to represents this information in to linear equations that relates
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Figure 8. Transportation cost for soybean and regression analysis

the transportation cost with distance depending on the method of shipping (i.e. truck or rail).

In order to obtain the transportation cost in units of $/mile, the distance d must be expressed

in terms of miles. In this work, the truck method was used as the transportation method which

is represented by the first equation shown in Table IV.
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TABLE IV

TRANSPORTATION COST FOR SOYBEAN REGARDING THE DISTANCE D

Method Unit ($/mile)
Truck 0.14d+3.10
Rail 0.04d+4.64

2.2.3 Biodiesel reaction

Fatty acid methyl esters, well known as biodiesel, are product of the transesterification

process. This process is achieved by the reaction of triglycerides which are contained in the

soybean oil, with an excess of alcohol (i.e. methanol) in the presence of an acid and alkaline

catalyst (i.e. Sodium hydroxide). The intermediate steps in biodiesel transesterification are

shown in Figure 9 (61).

The reaction consists of three stepwise and reversible reactions where in the first step the

triglycerides with one molecule of methanol are converted into diglycerides, then, the diglyc-

erides are converted into monoglycerides and this last one into one molecule of glycerol. In

addition, in each step a methyl ester (i.e. RiCOOCH3 ) is produced resulting in three molecules

of methyl ester from one molecule of triglycerides. Figure 10 shows the overall reaction which

summarizes the reaction scheme (48).
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Figure 9. Intermediate step in biodiesel transesterification
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Figure 10. Overall transesterification reaction

In the biodiesel reaction, the yield is affected by different parameters; however, researchers

have considered four main factors: molar ratio between alcohol and triglycerides, reaction time,

catalyst, and reaction temperature. For instance, an excess of alcohol can guarantee the com-

plete conversion of fats or oils to esters in a short time. Usually, the molar ratio employed is

6:1 in a presence of alkali catalyst. On the other hand, the conversion rate of fatty acids esters

increases with time and it has been found that the yield reaches a maximum at the reaction

time of less than 90 minutes (62). An excess of reaction time will decrease the yield due to

the backward reactions and it will cause more fatty acids to form soap (62). The catalyst also

plays an important role since its concentration increases the conversion of triglyceride, which

increases the yield of biodiesel. The most commonly used catalyst is sodium hydroxide. Fi-
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nally, a higher reaction temperature can decrease the viscosities of oil resulting in an increased

reaction rate and a shortened reaction time. Moreover, it is possible that the yield of biodiesel

decreases when the reaction temperature rises beyond the optimal level since it accelerates the

saponification reaction of triglycerides (22).

2.3 Batch vs. Continuous

As mentioned before, one of the most significant decisions an engineer has to do make is

regarding whether the process will be batch or continues process. A batch process is one in

which a finite quantity of product is made during a period of a few hours or days. In contrast,

in a continuous process, the feed is sent continuously to a series of equipment, with each piece

usually performing a single unit operation (43). In the literature, it has been found that one

of the most relevant differences between continuous and batch process is the size of operation;

although it is not the only aspect, it noticeably influences in the selection of the mode. Other

aspects have been found in comparison studies, such as seasonal demand, storage facilities, life

time of the product, hazard operation, and operation labor. One advantage of batch process

over continuous is its flexibility. For instances, in batch processes the same equipment can be

used for multiple operations and depending on the seasonal demand and, batch processes can

operate for only part of the year. On the other hand, the continuous processes to be profitable,

their plants need to be large and operate throughout the year, and the storage facilities can be

considered to overcome the feedstock availability and seasonal demand but the production cost
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TABLE V

DIFFERENCE BETWEEN BATCH AND CONTINUOUS MODELS
Factor Batch process Continuous process

Size Plant Capacity less than 500ton/yr Plant capacity great than 5000 ton/yr

Flexibility Often the same equipment can be used for
multiple operations. Some reactions are
so slow that batch processes are the only
reasonable alternative.

It is possible to build in to continuous pro-
cesses but often leads to inefficient use of
capital. This type of processes are de-
signed to produce a fixed suite of product
from well-defined feed material

Feedstock
availability

Batch processes are often preferred for
products with seasonal demand or the
feedstock availability is limited, which
make the plant to operate for only part
of the year.

In order to be profitable, continuous
plants need to be large and operate
throughout the year. Storage facilities can
be considered to overcome this issue but
the production cost will be increased.

Maintenance
and operat-
ing labor

Higher operating labor costs due to equip-
ment cleaning, preparation time and oper-
ation.

For the same process, operating labor will
be lower for continuous processes.

Processing
efficiency

Batch processes require strict scheduling
and control. Changes in the schedule can
cause serious problems with product avail-
ability for costumers. Besides, if the same
equipment is used to produce different
products, then the equipment cannot be
optimized. Energy integration, separation
and reuse of raw material are more diffi-
cult to do.

Generally, as the size increases, continu-
ous processes become more efficient. In
addition, recycle of unusual reactants and
the energy integration of energy, within
the process are standard practices and rel-
ative easy to achieve.

will increase. Table V presents some considerable distinctions between these two type models.

2.4 Process description

In general, the biodiesel production involves four important steps and one extra step for the

treatment of the byproduct, glycerol. The first step involves the reaction, where the transes-
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terification of triglycerides results in the formation of methyl ester (i.e. biodiesel) in presence

of an alkalis catalyst (e.g. sodium hydroxide). After the reaction process, the following step

(second step) is the separation of biodiesel from the rest of the products such as glycerol and

the remaining catalyst. This step is performed in a decanter resulting in two streams, one

directed to the glycerol separator (extra step) and the other stream directed to the methanol

separator (third step). Finally biodiesel purification by washing with water is the final step

(fourth step). For the purpose of this study, the biodiesel production flow sheet was based

on one of the separation configurations presented in (48). This configuration consisted on the

separation of biodiesel and glycerol first, and then water washing after removal the methanol.

This scheme is shown in Figure 11.
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Figure 11. Process flow schematic for biodiesel production
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2.4.1 Continuous model

The configuration for continuous production of biodiesel was simulated using (63). First,

the catalyst (i.e. NaOH) is mixed with methanol before it is charged into the reactor at 600C

and 1 atm. A CSTR type was used. It is important to highlight that the thermal decomposition

temperature for FAME and glycerol are 2500C and 1500C, respectively, so during the process

the temperature was remained below these levels. After the reaction process, the outlet stream

is sent to the heat exchanger at 1atm and 250C, the stream is then sent to the first decanter

(DECT1) for glycerol and biodiesel separation. The exit of glycerol stream has only 44 weight

percentage concentration; therefore, this stream is sent to the heat exchanger (HEX3) before

sending it to the glycerol distillation column (GLYDIs) in order to remove the glycerol. On the

other hand, the biodiesel stream (DEOIL1) from decanter (DECT1) is sent first to the heat

exchange (HEX4), then to the methanol distillation (METDIS) for removal of methanol. Then

bottom biodiesel stream from (METDIS) is cooled down in a heat exchanger (HEX5) and then

sent it to decanter (DEC2) where all the triglycerides (TRIOLR) remained from the reaction

is removed. Finally, the biodiesel stream is sent to the third decanter (DECT3) where water

washing take place. The resulting biodiesel stream has 99.67% purification which fulfills the

ASTM (American Society for Testing and Materials) standard requirements. This production

scheme can be seen in Figure 12.
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Figure 12. Continuous model for biodiesel production



37

2.4.2 Batch model

The batch model for production of biodiesel follows the same idea presented in the pro-

cess description. However, this model uses batch reactor and batch distillation columns for

separation of glycerol and methanol, and for purification of methyl ester. A general view of

this model is presented in Figure 13. The reaction part was simulated using FORTRAN for

the solution of differential equations resulted from the mass balance (10) while MultiBatchDS

software was employed to simulate batch distillation. MultibatchDS is a unique professional

batch distillation system that offers multiple levels of models for batch column configurations,

operating modes, fractions, and products (64). MultibatchDS includes various configurations of

batch distillation columns and examines the challenge involved in their dynamics. Some of the

configurations presented in MultiBatchDS are the rectifier (conventional column), middle vessel

and stripping column. In this work, the first configuration is employed to design the glycerol-

methanol separation as well as the methanol-methyl ester separation column. Table VI shows

the design conditions used for the purpose of this work.

2.4.3 Batch scheduling

The production of batch processes requires to be scheduled due to short life cycles of the

products and the multiproduct facilities in which the various products share the same equipment

(65). The manufacturing process of biodiesel follows a recipe specified by a set of processing

tasks with fixed operating condition and fixed processing times. These tasks can be represented

in a chart, usually known as Gantt chart, where the time activities are also involved at each
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Figure 13. Batch model for biodiesel production



39

TABLE VI

MULTIBATCHDS CONDITIONS PROCESS
Process Policy options Task Specifica-

tion
Model options Design Conditions

Glycerol-
Methanol
separation

Constant reflux
ratio

Simulation Semi rigorous Column: rectifier reflux
ratio: 1.05

Methanol -
Methyl ester
separation

Constant reflux
ratio

Simulation Semi rigorous Column: Rectifier re-
flux ratio: 1.5

stage of the process. Two kinds of operation can be found, non-overlapping in which each

batch is processed until the proceeding one is complete or overlapping operation in which the

idle times are removed in order to make batch production simultaneous. Figure 14 shows the

Gantt chart for biodiesel production and compares the two modes mentioned before. (Note: In

Figure 14: R represents the batch reactor, S1, S2, S2 are the Separator units, and METD is

the column distillation process for the methanol recovery).

Based on the processing time at each stage presented in Table VII, it can be seen in Figure 14

that with overlapping operation more batches per day can be performed which makes this

operation more efficient. Therefore, the over lapping operation is chosen. For simplicity, it is

assumed that the transfer times are negligible. The process time was developed on the basis of a

biodiesel production capacity of 2404.33kg/batch cycle, were the cycle time for the overlapping

operation is 1.67hr. The reaction and the distillation time processing were given to the solution

of mathematical models while the separator times were determined by heuristic knowledge (66).
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Figure 14. Gantt chart for biodiesel production
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TABLE VII

PROCESSING TIMES
Stage Batch time (h)

Reactor 1.67
Separator 1.23
Column distillation METD 1.35
Separator 2 1.1
Separator 3 0.42

Total time for 1 batch cycle 5.75

2.5 Economic assessment

Once again, the purpose of this work is to compare continuous with batch processes for

biodiesel production in terms of operation, capacity, transportation costs, and feedstock avail-

ability. Therefore, in this section we present an economic assessment which refers to the evalua-

tion of fixed capital cost, and total manufacturing cost to produce biodiesel. Initially, the plant

capacity is determined based on the designs of these two operation modes (showed in Section

2.4), for instance, in the continuous plant the production capacity is 20868.40ton/yr while in

one batch plant is 2404.33kg/batch. It was decided to distribute the capacity of the continuous

plant in three batch plants located in different states with different percentage of distribution.

The continuous plant will be located in the middle of these batch plants and the soybean oil

facilities. As a result, Iowa-OI- (Batch P1), Illinois-IL- (Batch P2), and Missouri-MO- (Batch

P3) are the three states for the batch plants, and at the same time, the location where the

feedstock will be provided for all plants. The selection of the batch plant locations was based



42

Figure 15. Distribution of the production plants

on the availability of the soybean production in the U.S. As mentioned before, Illinois and

Iowa are the two states with the highest production. Figure 15 shows the possible locations

of the four biodiesel production plants in the Midwest. Point A represents the location of the

continuous plant, while points B, C, and D are the locations Batch P1, Batch P2 and Batch

P3, respectively. The darker points are some crushing facilities located in the area. (Note:

Information of soybean facilities can be found at (60).

On the other hand, Figure 16 summarizes the raw material distribution for the continuous

plant as well as the production capacity of each batch plant. As it can be seen in the left

side of this figure, 30% of the soybean oil will come from Missouri while 35% from Illinois and

Iowa, respectively. Illinois and Iowa have the highest percentage since they have the highest
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Figure 16. Raw material and capacity distribution

production of soybean oil. In the right side, it can be observed that the same percentage is

distributed for the production capacity of each batch plants.

The total cost of soybean in the continuous plant includes the transportation and its pro-

duction costs. This information is shown in Table VIII where the distances (miles) from each

soybean oil facility to the continuous plant and their respective cost are presented. As it

can be seen, the soybean oil prices for each state are within the 95% confidence interval (see

Section2.2.1). Recalling Table VIII, it can be seen that transportation cost only represents the

4.4% of the total cost of soybean oil. This small percentage is the result of the high production
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TABLE VIII

TOTAL COST OF SOYBEAN
Origin Price

($/lb)
Distance
(miles)

Production
cost (mil-
lions$/yr)

Transportation
cost (millions
$/yr)

Total cost
(millions
$/ton)

% Trans-
portation
cost

Iowa (IA) 0.50a 447 9.07 0.52 9.59 5.5
Illinois (IL) 0.56b 296 10.06 0.35 10.42 3.4
Missouri (MO) 0.50a 336 7.77 0.34 8.12 4.2

Total 26.91 1.22 28.13 4.4
aAGP corporate
bADM company

cost of the soybean (i.e. 95.6%). Therefore, the effect of feedstock transportation in biodiesel

production is not significant in its cost.

In Addition to the feedstock costs for biodiesel production, other costs such as waste treat-

ment to protect the environment, cost of personnel, administrative, utilities, and equipment

costs can influence the manufacturing costs. These costs are included in the Direct Manu-

facturing Cost (DMC), Fixed Manufacturing Costs (FMC), and General Expenses (GE). The

DMC represents operating expenses that vary with production. Table IX shows the chemical

cost including raw material, catalyst, solvents, labor, and utilities costs for this economic as-

sessment. The utilities involve the cost electricity, steam and cooling tower water consumption.

On the other hand, the FMC comprise property taxes, insurances and depreciation along with

equipment costs and they are independent of changes of production rate. The third category

(GE) includes managements, sales, finances, and research founding. The sum of these three
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categories results in the total cost of manufacturing Equation 2.1.

COM = DMC + FMC +GE (2.1)

where each category can be computed as (see Table X):

DMC = CRM + CWT + CUT + 1.33 COL + 0.03 COM + 0.069 FCI (2.2)

FMC = 0.708 COL + 0.068 FCI + depreciation (2.3)

GE = 0.177 COL + 0.009 FCI + 0.16 COM (2.4)

Therefore, Equation 2.1 can be rewritten as:

COM = 0.180 FCI + 2.73 COL + 1.23 (CRM + CWT + CUT ) (2.5)

where COL is the cost of operating labor, CWT is the cost of waste treatment, CUT is the cost

of utilities, CRM the cost of raw material, and FCI is the fixed capital investment. This latter

value represents the cost of construction of a new plant, and involves the total direct plant

cost (e.g. purchase equipment, piping, electrical systems, building) and total indirect plants

cost (e.g. engineering and supervision, construction expenses, legal expenses). The complete

information of the annual costs of raw material, operating labor, utilities along with estimations

of the equipment costs and FCI are summarized in the Appendix A. Among the assumptions
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TABLE IX

OPERATING COST
Item Cost (U.S.$)

Raw materiala

Soybean oil (Triol) See Table VIII
Methanol $0.320/Kg
Hydrochloric acid (HCl) $0.176/kg
Sodium hydroxide (NaOH) $0.617/kg
Water $0.067/1000Kg
Utilitiesb

Electricity $0.06/kWh
Steam (10barg, 1840 C) $14.19/GJ
Cooling tower water (80F to 100F) $0.354/GJ
Additional operating cost
Plant operators base rate $12.50/h
Wastewater treatmentc $2.64e-3/kg
a(1,2),b(2),c(3)

used for the calculation of total manufacturing costs are: (I) the most economical available

option was chosen, for instance, the material of storage tank and reactors were specified to be

constructed of carbon steel. (II) The continuous process operating hours for biodiesel plant

were assumed to be 350days/yr. (III) The depreciation is assumed to be 10 percent of the FCI.

(IV) For equipment prices the Chemical Engineering Plant Index was I2010 = 552.5 (67).

2.5.1 Result and discussion

Table X shows details about data and equations used to estimate total manufacturing costs

and compares the two processes studied in this work: continuous and batch. As it can be seen,

the total DMC is 2.45% higher in the continuous process than batch processes due to higher

costs of feedstock, waste treatment, and utilities. For instance, the total cost of feedstock in
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continuous process represents 73% of the total manufacturing cost while in batch processes is

71%. On the other hand, it was found that the waste water stream in the continuous process

contains 85.97% more of methanol compared to the stream in batch process resulting in higher

waste treatment cost. The energy consumption was found higher in continuous process since

batch distillation is more effective in the separation process (i.e. requires lower value of distillate

X reflux ratio). In contrast, the operation labor cost was 65.66% higher in the batch plants due

to equipment cleaning, preparation time and operation of each unit. Figure 17 summarizes this

comparison.

Figure 18 shows percentage values of components of total manufacturing discussed in Ta-

ble X (e.g. DMC, FMC and GE ). It can be seen that the total DMC shows to dominate the

total manufacturing costs, for example, in continuous process this value represents 81.80% of

its total manufacturing cost while in batch processes is 80.65%. As mentioned before, this

difference corresponds to higher costs of feedstock, waste treatment, and utilities in the con-

tinuous process. On the other hand, the FMC in batch process represents 2.93% of its total

manufacturing cost while in continuous model is 2.05%. The reason why this category is higher

in batch processes is because this group includes the depreciation, local taxes and insurances

and the plant overhead costs that depend mostly on cost of operation labor which is higher in

these processes (see Table XI).
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TABLE X. MULTIPLICATION FACTORS FOR ESTIMATING MANUFACTURING COST
Factor Description Continuous Batch % Difference

Direct Manufacturing
Costs
Raw material CRM 29.93 28.66 4.44
Soybean oil - 28.14 26.87 4.5
Waste treatment CWT 0.02 0.01 38.48
Utilities CUT 0.39 0.14 184.24
Operating labor COL 0.32 0.96 -65.66
Direct supervisory 0.18COL 0.06 0.17 -65.66
Maintenance and re-
pairs

0.06FCI 0.21 0.17 20.19

Operation supplies 0.009FCI 0.03 0.03 20.19
Laboratory charges 0.15COL 0.05 0.14 -65.66
Patents and royalties 0.03COM 1.17 1.17 -0.97
total direct manufactur-
ing

CRM+CWT+CUT+1.33COL+0.03COM+0.069FCI 32.17 31.45 2.45

Fixed Manufacturing
Cost

FMC

Depreciation 0.1FCI 0.35 0.29 20.19
Local taxes and insur-
ance

0.032FCI 0.11 0.09 20.19

Plant overhead costs 0.708COL +0.036FCI 0.35 0.78 -53.99
Total Fixed Manufac-
turing costs

0.708COL + 0.068FCI + depreciation 0.81 1.16 -29.31

General Manufacturing
Expenses

GE

Administration costs 0.177COL+0.009FCI 0.09 0.20 -53.99
Distribution and selling
costs

0.11COM 4.31 4.27 0.97

Research and develop-
ment

0.05COM 1.96 1.94 0.97

Total General Manufac-
turing Costs

0.177COL + 0.009FCI + 0.16COM 6.35 6.41 -0.66

Fixed Capital invest-
ment

FCI 3.45 2.87 20.19

Startup cost 0.35 0.29 20.19
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Finally, the GE do not vary significantly since this category includes the administrative,

distribution and selling costs along with research and development that is calculated based on

the COM of each process.

The total capital investment was calculated using equipment and fixed capital costs (see

Appendix A Tables XXV and XXVI). Figure 19 compares the total capital investment of con-

tinuous and batch processes. Although three batch plants were needed to have the equivalent

production capacity to one continuous plant, it can be seen that the total capital investment is

still higher in the continuous plant. The dominated factor to estimate this parameter was the

purchased equipment costs where continuous process played an important role. For instance,

the storage for oil in the continuous plant represents 28.8% of the total purchased equipment

cost increases its fixed capital cost. This cost is consistent with results of storage facilities costs

shown in (49). In contrast, the storage facilities were not considered for soybean in the batch

plants since it was assumed that these plants were located in the same place where the feedstock

facility was located.

As it was mentioned before, the previous information was needed to compute the value of

COM. Therefore, once this information was defined and calculated, the annualized total man-

ufacturing cost of biodiesel was obtained. The results are summarized in Table XI. This table

compares the COM values in two forms: millions $/ton and millions $/yr between continu-

ous and batch processes. It can be observed that the manufacturing cost of the continuous
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Figure 17. DMC Comparison
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Figure 18. Comparison of the total manufacturing costs between continuous and batch
processes

plant is very close to the case when three batch plants are used. In other words, to produce

around 21000ton of biodiesel per year, continuous process needs $0.38 millions of dollars more

than having three batch plants. Although this difference represents a marginal increase (i.e.

0.98%), it favors the batch process showing potential consideration for the industry of biodiesel.

2.5.2 Sensitivity analysis

A sensitivity analysis was carried out in order to explore more possible scenarios where

the percentage of production capacity and raw material supply were more highlighted. This

analysis consisted on five scenarios where the fifth scenario is the base case (Figure 16). Thus,
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Figure 19. Comparison of the total capital investment

TABLE XI

COST OF MANUFACTURING (COM)

Total manufacturing
cost (COM)

U.S. Millions ($/Ton) U.S. Millions ($/yr)

CONTINUOUS 1.88e-3 39.15

BATCH P1 1.78e-3 14.04
BATCH P2 1.96e-3 13.68
BATCH P3 1.80e-3 11.03

TOTAL BATCH 1.84e-3 38.77
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to perform this analysis, the percentage of allocation of raw material supply for the continuous

plant and production capacity of each batch plants were changed. A summary of these results is

shown in Table XII. Before analyzing the detailed information of this assessment, five scenarios

were compared (Figure 20) based on its difference on the COM value. For instance, scenario

1 assumes that half of the biodiesel production is manufactured by Batch P2 and 50% of the

supply of soybean oil comes from Illinois, meaning that Illinois dominates the production of

biodiesel and supply of soybean. The remaining 50% is distributed equally between Iowa (Batch

P1) and Missouri (Batch P3) for production of each batch plant and supply of raw material. It

can be observe from Figure 20 that having half of the biodiesel production in Illinois and half of

the feedstock supply coming from the same state, the continuous plant requires 0.26 millions of

dollars more than three batch plants in order to produce around 21000ton of biodiesel per year

(see Table XII). On the other hand, if Missouri dominates production and supply, meaning

that half of feedstock supply comes from Missouri and half of production of biodiesel is manu-

factured in Batch P3 (scenario 4), the continuous plant would require 0.44 millions of dollars

more to produce the same among of biodiesel per year. Although both scenarios favor the batch

production, the latter one results more attractive. The reason why these scenarios favor batch

production more in one case than in the other is due to the cost of feedstock and distance to

the market (e.g. biodiesel plant). It is observed in scenario 1, that the cost of soybean oil is

higher in Illinois (see Table VIII) but the production facility is situated in same state where the

supply comes from, which means that the feedstock would travel less distance, while in scenario

4, the feedstock facility is located 336 miles away from the production facility although the
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Figure 20. Comparison of the distribution capacity and raw material supply among different
scenarios

price of soybean oil is lower in Missouri. Same analyses were made for the remaining scenarios

obtaining favorability for batch process in all of them. As a result, it was observed that when

the traveling distance from the facility to the market is high and the cost of feedstock is low,

batch processes become more attractive to produce biodiesel. This is a positive feature of batch

processing, especially when the feedstock supply is limited or variable due to, for example,

seasonal production.
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Moreover, Table XII shows the percentage of difference between continuous and batch pro-

cesses of other costs, such as soybean cost, utility costs, and so on (Note: positive values mean

that there is an increase favoring batch process while negative values mean the opposite situa-

tion). As expected, in terms of soybean oil cost, scenario 4 has the higher difference, that is, the

cost of soybean represents 4.8% more in continuous process than batch processes. It can also

be seen that in all scenarios the difference in utility cost as well as operating labor cost does

not have significant variation. In contrast, waste treatment varies from 14.42% to 38.48%. This

outcome shows the high influence that the scheduling of batch processes have in the calculation

of the waste treatment cost. It was observed when the percentages of production capacity

and supply of raw material were high; more batches per day were needed in a specific batch

plant. For instance, in scenario 1, batch plant P2 had the highest production so 12 batches

per day were needed, while batch plant P1 and P3 only 6 batches per day each (see Appendix

A Table XXVII). Therefore, delegating more production in the batch plant results in more

water consumption, meaning more water to be treated. However, this observation comes along

with the distribution of those percentages. Analyzing the base case scenario, the percentage

of difference of waste treatment is the highest since the distribution of capacity and supply is

relatively equal. Therefore, having better distribution in those percentages along the different

batch plants will favor the batch production. This conclusion adds another positive feedback

to batch processing giving the engineers more flexibility to set up the scheduling so the waste

treatment can be minimized.
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TABLE XII

PERCENTAGE OF DIFFERENCE AMONG DIFFERENT SCENARIOS
Case State % raw material

supply / produc-
tion capacity

% Soybean cost % Utilities % Waste treat-
ment

% Operating la-
bor

AI 25
1 IL 50 4.1 184.67 27.79 -65.58

MO 25

AI 40
2 IL 20 4.3 184.25 32.3 -65.66

MO 40

AI 50
3 IL 20 4.6 184.67 26.86 -65.58

MO 30

AI 40
3 IL 10 4.8 184 14.42 -65.58

MO 50

AI 35
Base IL 35 4.5 184.24 38.38 -65.66

MO 30

TABLE XIII

QUALITATIVE COMPARISON BETWEEN CONTINUOUS AND BATCH SCENARIOS
Scenarios Soybean cost Utility Waste treatment Operating labor Overall cost

1 Batch Batch Batch Continuous Batch
2 Batch Batch Batch Continuous Batch
3 Batch Batch Batch Continuous Batch
4 Batch Batch Batch Continuous Batch
base case Batch Batch Batch Continuous Batch

Table XIII summarizes the results of this comparison in terms of qualitative outcome of the

four different costs showed in Table XII and the overall cost. As it can be seen in most of the

cases, batch processes is the best process for biodiesel production.
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TABLE XIV

SCENARIOS FOR DIFFERENT PRICE OF SOYBEAN ($/YR)

Samples Iowa (AI) Illinois (IL) Missouri (MO)

1 0.51 0.56 0.86
2 0.62 0.50 0.39
3 0.65 0.58 0.40
4 0.65 0.39 0.62
5 0.51 0.62 0.46
6 0.60 0.40 0.49
7 0.58 0.45 0.63
8 0.59 0.42 0.58
9 0.45 0.50 0.60
10 0.42 0.50 0.38
Base case 0.50 0.56 0.50

2.5.3 Variability in the soybean oil price

In this last section, the variability in the soybean oil prices is also considered. As it was

showed in Section 2.2.1, price of soybean oil for the last three years has been fluctuating due to

its increasing demand and oil competition. Some statistical information such as average price

(0.50$/Lb) and standard deviation (0.07) was also presented (see Figure 7). Based on this

information, 10 random samples of soybean oil prices were generated for the three states (i.e.

IA, IL, and MO). This information is illustrated in Table XIV. The prices presented here vary

within 95% of the confidence interval showed in Figure 6.

Having these samples, costs of manufacturing (COM ) for the scenarios (including base case)

presented in Section 2.5.2 were computed, and once again the difference in the COM between
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TABLE XV

DIFFERENCE OF COM BETWEEN CONTINUOUS AND BATCH PROCESS BASED ON
THE VARIABILITY OF SOYBEAN PRICES

Scenario Difference of COM (Mil-
lions $/yr)Deterministic

Difference of COM
(Millions $/yr) Average

% difference

1 0.26 0.26 0
2 0.34 0.33 2.94
3 0.38 0.38 0
4 0.44 0.45 2.22
Base case 0.37 0.39 5.40

continuous and batch production was compared. These results are showed in Table XV. In

this Table, Average column refers to the mean value of COM when the price of soybean oils

varies based on Table XIV whereas deterministic column refers to the results showed in Fig-

ure 20, that is, when no variability is taken into account. As it can be observed, similar results

were obtained under instability of the soybean oil price, confirming the previous results: batch

plants are the best option to production of biodiesel. The last column shows the percentage of

difference between deterministic and the average case, it can be observed that under this un-

certainty of soybean oil price batch processes are even more favorable than continuous processes.

2.5.4 Conclusion

In this chapter, continuous and batch processing of biodiesel production from soybean oil

were compared. The aspects for this comparison were based on the supply chain management

for biofuels along with technical information concerning process utilities, waste treatment and

operating labor. Modeling and simulation of continuous process were performed using ASPEN
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plus while for batch processes, numerical methods and MultiBatchDS software were employed

for solution of batch reactor and batch distillation models. From the results obtained in this

chapter, it was found that batch processes favor biodiesel production over continuous processes

when the size of the market, distance, cost of feedstock, and its availability are taken into

account. The first results showed that the effects of feedstock transportation - which is taken into

account only in the continuous plant - represented 4.5% of total cost of soybean oil. Although

this effect is not significant in the calculation of raw material costs, it is considerable in the

total manufacturing cost, since soybean cost represents 73% in a continuous plant while in

batch plants is 71%. On the other hand, the flexibility of batch processes allows us to have

three batch plants located in the feedstock facilities and they were scheduled depending on the

feedstock supply and production capacity. Consequently, this scheme allows avoiding storage

costs for soybean and obtaining interesting results that favor batch processes. For instances,

it was found that the waste treatment and utility costs were lower in batch processes due to

fewer impurities in the waste water stream and less energy requirements due to lower distillate

rate in batch distillation. Therefore, based on the different scenarios studied in this chapter,

production of 21000ton of biodiesel per year with a continuous process involves higher costs

than doing it with three batch plants. Batch processing is therefore an attractive option to

produce biodiesel.



CHAPTER 3

DETERMINISTIC OPTIMAL CONTROL IN BATCH PRODUCTION OF

BIODIESEL

3.1 Introduction

Optimal control problems are mostly defined in the time domain and their solutions require

establishing an optimal operation policy that maximizes or minimizes a performance index.

This optimal operation policy is obtained using dynamic optimization techniques, and is com-

monly used to optimize the performance of batch reactors. Due to the dynamic nature of the

decision variables in batch processes, optimal control problems are much more difficult to solve

compared to normal optimization where the decision variables are scalars.

Optimization in batch processes can lead to different types of problems depending on the

objective of the process. The literature in this field has paid attention mostly on the solution

of maximum conversion or minimum time problems. Different approaches of optimal control

have been studied. For instances, one of the earliest works that considered the study of optimal

control in batch reactor was presented by (68). In this paper, the aim was to increase the

yield of the reaction by determining the optimum temperature profiles for cases where there

are competing side reactions. In (69), they considered the problem of finding an optimal time-

varying control policy for a fed-batch penicillin reactor. They applied a solution strategy based

60
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on successive quadratic programming (SQP) and orthogonal collocation on finite elements. In

(70), the optimal temperature in a completely mixed batch reactor was computed. In this

model, the approach was based on the adaptation of the Discrete Maximum Principle (DMP)

for the optimal control of non-linear continuous dynamics systems. Logsdon J. (71) presented

the maximization of the conversion for a desired product in a consecutive reaction. The ob-

jective was to find an optimal temperature profile using the two-point collocation method. In

contrast, Longsdon and Bliegler (72) solved the same optimization problem, but their solutions

were faster due to the use of a relaxed simultaneous approach. Luus (73) examined the viabil-

ity of using Iterative Dynamic Programming (IDP) for highly nonlinear system in four batch

reactor systems. His calculations showed that IDP was a very useful method for establishing

the optimal control policy of difficult problems and were also straightforward to execute since

no derivatives were required. Finally, Srinivasan, B. et al. (74) illustrated a general point of

view of batch processes from the characteristic of planning, production, and optimization of

the industrial perspective. Besides, he provided a unified view of the methods available to

solve dynamic optimization problems and presenting the major direction in which the field has

developed. However, most of these works in the area of batch reactors deal with deterministic

optimal control problems, but their applications are based on a general batch reactor and do

not consider biodiesel kinetics. In contrast, some research works such as (75); (76); (77), and

(78) have highlighted the best operating conditions that can affect the yield of the transester-

ification reaction through the optimization of the process, but their results depended on the

feedstock used. This Chapter presents three optimal control problems in a batch reactor for
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biodiesel production: maximum concentration of methyl ester (MCP), the minimum reaction

time (MTP), and the maximum profit problem (MPP). The purpose is to find a temperature

control policy that can change with time using the dynamic optimization. These problems are

addressed using the deterministic system of dynamic equations to calculate the optimal tem-

perature profile that achieves the desired objective.

As mention in Chapter 2, biodiesel is the result of the transesterification reaction that can

be carried out in a batch reactor. The control design of the biodiesel reaction is different from

plant to plant and basically depends on the production technology adopted. Some of the most

common control variables in chemical processes are temperature (e.g. temperatures of flow

rates of cooling water in the coil or heating fluid in the jacket), pressure, flow, and level. For

instances, in the Malaysia Palm Oil Board (MPOB) the reactant feed temperature and the

reaction pressure is used as the manipulated variables. The pressure is operated at pressure

higher than the atmospheric pressure and it is controlled in order to keep the methanol in the

liquid phase. On the other hand, the ASAE operates the transesterification reactor at atmo-

spheric pressure and the reactor temperature is the control variable (79). Papers like (80) and

(81) present typical optimization variables, control variables and performance index for optimal

control problems in batch operations. As it can be seen, temperature is most commonly use as

the control variable since this variable provides critical conditions for different processes such

and chemical reaction, and distillation. Therefore, the optimal control problems presented here
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are expressed so the reactor temperature will maximize or minimize a performance index.

3.2 Batch reactor

A Batch reactor is an essential unit operation in almost all batch-processing industries.

It can be used for small-scale operation, for testing new processes that have not been fully

developed, for manufacture of expensive products, and for processes that are difficult to convert

to continuous operations (82). In a batch reactor, there is no inflow or outflow of reactants

or products while the reactor is being carried out. The reactants are initially charged into

the vessel, are well mixed, and are left to react for a certain period or reaction time. Once

the reaction time is reached, the resultant mixture is then discharged. This process is an

inherently unsteady-state operation where the composition and the temperature change with

time. However, the common assumption is that at any instant these parameters remain uniform

throughout the reactor (83), also known as the perfect mixing conditions. Figure 21 shows a

general scheme of a batch reactor for biodiesel production. Initially, the reactor is charged

with triglycerides and methanol, then the reactants are left to react for about 100 minutes,

and finally, the product which is biodiesel and the by-product glycerol are discharged. Some

common operation conditions for biodiesel production are 1atm of pressure, 60 to 90 minutes

of reaction time, and constant temperature of 323K (48).
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Figure 21. Batch reactor scheme for biodiesel production

3.2.1 Biodiesel model

In this section, the mathematical model is presented based on the mechanism of transes-

terification for biodiesel reaction shown in Chapter 2 (Section 2.2.3). The reaction steps are

given by Equation 3.1 where k1 to k6 are the reaction constants which can be calculated by

Equation 3.3. The values of activation energy (ai) and frequency factors (bi) are shown in Ta-

ble XVI. The values of ai and bi are calculated from the Arrhenius Equation (Equation 3.3) and

the energy activation along with the values of ki are reported in (61) at constant temperature
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(323 K). The fourth equation (i.e Equation 3.2) represents the overall reaction. All reactions

are carried out at atmospheric pressure (61).

TG+ CH3OH k1, k2←−−→ DG+R1COOCH3

DG+ CH3OH k3, k4←−−→ MG+R1COOCH3

MG+ CH3OH k5, k6←−−→ GL+R1COOCH3 (3.1)

Overall reaction:

TG+ 3 CH3OH ←→ GL+ 3 R1COOCH3 (3.2)

where TG, DG, MG, R1COOCH3, CH3OH, GL are triglycerides, diglycerides, monoglyc-

erides, methyl ester (i.e. biodiesel), methanol, and glycerol respectively.

ki = ai exp(−
bi
T
) (3.3)

The mathematical model for the production of biodiesel in a batch reactor is governed by

the following Ordinary Differential Equations (ODEs) Equation 3.4 to Equation 3.9 derived

from the mass balance of the batch reactor (61).
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TABLE XVI

VALUES OF AI AND BI

a1 a2 a3 a4 a5 a6
3.92e7 5.77e5 5.88e12 098e10 5.35e3 2.15e4
b1 b2 b3 b4 b5 b6
6614.83 4997.98 9993.96 7366.64 3231.18 4824.87

F1 =
dCTG

dt
= − k1CTGCA + k2CDGCE (3.4)

F2 =
dCDG

dt
= k1CTGCA − k2CDGCE − k3CTGCA + k4CMGCE (3.5)

F3 =
dCMG

dt
= k3CDGCA − k4CMGCE − k5CMGCA + k6CGLCE (3.6)

F4 =
dCE

dt
= k1CTGCA − k2CDGCE +k3CDGCA − k4CMGCE+k5CMGCA− k6CGLCE (3.7)

F5 =
dCA

dt
= − dCE

dt
(3.8)
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F6 =
dCGL

dt
= k5CMGCA − k6CGLCE (3.9)

where CTG,CDG,CMG,CE ,CA,and CGL are the concentration of each component.

It has been shown in the literature that the optimal constant temperatures for transesteri-

fication reaction are between 323K to 333K at atmospheric pressure (22), but reaction temper-

atures from 241K can also be found (84). In this work, two base cases are taken into account:

1) constant temperature of 315K and 2) constant temperature of 323K. Figure 22 shows the

concentration profile for the six components for the case of 323K of reaction temperature, the

set of ODEs are integrated using the explicit Runge-Kutta Fehlberg (RKF) method (85). It

can be seen as the triglycerides and methanol are consumed biodiesel is produced.

3.3 Optimal control problem

Optimal control has become an interest topic in the industrial and academic field since it

provides useful information for designing and controlling the reaction process. In general, a

solution to these problems involves finding the time dependent profiles of the control variable

so as to optimize a particular performance index (86). To solve optimal control problems, direct

and indirect methods can be used (87). When direct methods are used, the problem can be

discretized into partial or full discretization depending on the level of discretization. In this

case, dynamic and NLP methods can be employed; but, since these types of problem are large,

they require large-scale NLP solvers and most of the time they need good initial values to
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TABLE XVII

OPTIMAL CONTROL PROBLEMS IN BIODIESEL PRODUCTION
Problem Concentration Batch time Objective

Maximum Concentration
(MCP)

Free Fixed Maximize CE

Minimum Time (MTP) Fixed Free Minimize tf
Maximum profit (MPP) Free Free Maximize

profit

converge. Among some methods, there are: maximum principle, dynamic programming, and

NLP algorithm with ODE discretization by collocation. However, using maximum principle,

the solution of partial differential equations and second order differential equations can be avoid

(68) as well as use of large-scales NLP solvers.

Maximum principle was proposed first by Pontryagin and coworkers (88); (89) and (90).

This method has been widely used to solve a variety of optimal control problems. In the fol-

lowing subsections, the three optimal control problems are formulated for the case study of

biodiesel production. All of them are solved using the maximum principle. Table XVII sum-

marizes these three problems.

3.3.1 Maximum Concentration Problem (MCP)

The formulation of the optimal control problem for maximum concentration of biodiesel

production in a batch reactor is presented in this subsection. In this problem, the objective is
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to maximize the concentration of biodiesel by finding the best temperature profile given reaction

time. For this case study, 100 minutes of reaction time is used to ensure that the maximum

yield is reached (84) and (22).

max J =

∫ tf

t0

k1CTGCA−k2CDGCE+k3CDGCA−k4CMGCE+k5CMGCA−k6CGLCE = CE(tf )

(3.10)

subject to:

State Equation 3.4 to Equation 3.9 given in the generalized form below:

dCi

dt
= f(Ci, T ) (3.11)

where Ci are the initial conditions for state variables and T (temperature) is the control

variable. In addition:

Initial time (t0) = 0 minutes

Final time (tf ) = 100 minutes

Ci (t0) = [0.3226; 0; 0; 0; 1.9356; 0] [mol/L]

In the maximum principle, the objective function is reformulated as a linear function in

terms of final values of state variables (Ci) and the constant values (Ai), thus, the objective
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function for this problem is shown in Equation 3.12:

maxJ =
n
∑

i=1

Ai Ci(tf ) = Āi
T
C̄i(tf ) = CE(tf ) (3.12)

where Ai’s are constant values for the linear representation of the maximum principle.

Therefore, A = [0; 0; 0; 1; 0; 0]

The maximum principle involves the addition of n adjoint variables (one adjoint variable per

state variable), n adjoint equations, and a Hamiltonian which satisfies the following relations

(91):

H(Z̄t, C̄t, T ) = z̄t
TF (C̄i, Tt) =

n
∑

i=1

ziFi(C̄t, Tt) (3.13)

dzi
dt

=
n
∑

j=1

zj
∂Fi

∂Ci
(3.14)

where n is the number of components (i.e. 6 components) and Fi is the right hand side of

differential equation for each component i (Equation 3.4 to Equation 3.9). Equation 3.15 shows

the extended form of the Hamiltonian from Equation 3.13:
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H = z1F1 + z2F2 + z3F3 + z4F4 + z5F5 + z6F6 (3.15)

The adjoint equations can be compute using Equation 3.14, as it is shown next:

dz1
dt

= −z1(−k1CA)− z2k1CA − z4k1CA − z5(−k1CA) (3.16)

dz2
dt

= −z1k2CA−z2(−k2CE−k3CA)−z3k3CA−z4(−k2CE+k3CA)−z5(k2CE−k3CA) (3.17)

dz3
dt

= −z2k4CE−z3(−k4CE−k5CA)−z4(−k4CE+k5CA)−k5(k4CE−k5CA)−z6k5CA (3.18)

dz4
dt = −z1k2CDG − z2(−k2CDG + k4CMG)− z3(−k4CMG +

k6CGL)− z4(−k2CDG − k4CMG − k6CGL)− z5(k2CDG + k4CMG +

k6CGL) + z6k6CGL (3.19)
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dz5
dt = z1k1CTG − z2(k1CTG − k3CDG)− z3(k3CDG

−k5CMG)− z4(k1CTG + k3CDG + k5CMG)− z5(−k1CTG − k3CDG +

−k5CMG)− z6k5CMG (3.20)

dz6
dt

= −z3k6CE − z4(−k6CE)− z5k6CE + z6k6CE (3.21)

The boundary conditions for the adjoint variable are zi (tf ) = [0; 0; 0; 1; 0; 0], which corre-

spond to the constant values of vector A. Using backward integration along with RKF method

these equations can be solved. Finally, the optimal decision vector T(t) can be obtained by

finding the extremum of the Hamiltonian at each time step, in other words, applying the opti-

mality condition:

dH

dT
|t = 0 (3.22)

3.3.1.1 Solution Technique: Steepest ascent Hamiltonian method

The maximum principle formulation results in two point boundary value problems because

the initial conditions for the state variables Ci are known, but the conditions for the adjoint

variables are only known at the final boundary. In order to obtain a solution, some iterative
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techniques including the shooting method and steepest ascent of the Hamiltonian method can

be used (91). To reduce the computational intensity, the optimal temperature trajectory for the

system is achieved by using the approach proposed by Diwekar and co-workers (91); (92) and

(93), which uses the maximum principle. This algorithm starts with the initial estimate temper-

ature T(t). Then, Equation 3.4 to Equation 3.9 and Equation 3.16 to Equation 3.21 are solved

by employing the RKF method (85) with a step size equal to 0.01. Next, the values of dH/dT

at each time are computed and then the convergence criterion (abs(dH/dT ) < tolerance) is

verified. If the convergence criterion is not satisfied, the temperature T(t) is updated using this

gradient, in such that the updated temperature profile improves the objective function, shown

in Equation 3.23. The value of M is a suitable constant that can be small enough so that no

instability will result, or large enough for rapid convergence. Figure 23 shows the flowchart

for this algorithm. In order to obtain the derivative of the Hamiltonian, a novel approach was

used. This approach involves new differential equations whose solutions result in the derivative

of the Hamiltonian. This is described in the Appendix B.

T (t)new = T (t)old +M

(

dH

dT
(t)

)

(3.23)

3.3.2 Minimum Time Problem (MTP)

For the minimum time problem, the objective is to minimize the batch time given a final

concentration. Although, the maximum concentration and minimum time problem result in
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Figure 23. Flowchart of the solution technique
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similar equations for maximum principle; one more equation is introduced due to the new state

variable t (i.e. time). The formulation for the minimum time problem is explained next.

The objective function:

min J ′ =

∫ CE(tf )

CE(t0)

dt

dCE
=

∫ CE(tf )

CE(t0)

1
dCE

dt

= t(CE(tf )) (3.24)

Subject to:

dCi

dCE
=

dCi

dt
dCE

dt

= FiGi (3.25)

where Fi are the differential Equation: Equation 3.4 to Equation 3.9 and G1 can be written as:

G1 =
dt

dCE
=

1

k1CTGCA − k2CDGCE + k3CDGCA − k4CMGCE + k5CMGCA − k6CGLCE

(3.26)

Therefore, this problem is subject to:

F ′
1 =

dCTG

dCE
=

−k1CTGCA + k2CDGCE

k1CTGCA − k2CDGCE + k3CDGCA − k4CMGCE + k5CMGCA − k6CGLCE

(3.27)
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F ′
2 =

dCDG

dCE
=

k1CTGCA − k2CDGCE − k3CTGCA + k4CMGCE

k1CTGCA − k2CDGCE + k3CDGCA − k4CMGCE + k5CMGCA − k6CGLCE

(3.28)

F ′
3 =

dcMG

dCE
=

k3CDGCA − k4CMGCE − k5CMGCA + k6CGLCE

k1CTGCA − k2CDGCE + k3CDGCA − k4CMGCE + k5CMGCA − k6CGLCE

(3.29)

F ′
4 =

dCE

dCE
=

k1CTGCA − k2CDGCE + k3CDGCA − k4CMGCE + k5CMGCA − k6CGLCE

k1CTGCA − k2CDGCE + k3CDGCA − k4CMGCE + k5CMGCA − k6CGLCE

(3.30)

F ′
5 =

dCA

dCE
=
−k1CTGCA + k2CDGCE − k3CDGCA + k4CMGCE − k5CMGCA + k6CGLCE

k1CTGCA − k2CDGCE + k3CDGCA − k4CMGCE + k5CMGCA − k6CGLCE

(3.31)

F ′
6 =

dCGL

dCE
=

k5CMGCA − k6CGLCE

k1CTGCA − k2CDGCE + k3CDGCA − k4CMGCE + k5CMGCA − k6CGLCE

(3.32)
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F ′
7 =

dt

dCE
=

1

k1CTGCA − k2CDGCE + k3CDGCA − k4CMGCE + k5CMGCA − k6CGLCE

(3.33)

Again, the application of the maximum principle involves the addition of n adjoint zi’ vari-

ables, n adjoint equations and a Hamiltonian (n, in this case is equal to 7), which satisfies the

following relations:

(

dzi
dt

)(

dt

dCE

)

=
dz′i
dCE

= −
n
∑

j=1

z′j

(

∂Fi

∂Ci

)

(3.34)

H(Z̄ ′
t, C̄t, T ) = z̄′t

T
F ′(C̄i, Tt) =

n
∑

i=1

z′iF
′
i (C̄t, Tt) (3.35)

For instance, to compute the adjoint variable for triglycerides the differential Equation 3.36

can be used:

dzTG

dCE
=

dt

dCE
(−zTG

dF1

dCTG
− zDG

dF2

dCTG
− zMG

dF3

dCTG
− zE

dF4

dCTG
− zA

dF4

dCTG

−zGL
dF6

dCTG
)− zt

d( dt
dCE

)

dCTG
(3.36)
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The minimum time problem resulted from this formulation can be solved using the same

approach presented in Section 3.3.1.1.

3.3.3 Maximum profit problem (MPP)

In the previous section, the formulation of minimum time problem using the maximum

principle and the application of the steepest ascent of the Hamiltonian method as the solution

technique was shown. In this section, the maximum profit problem is formulated. This problem

determines the optimum batch time and concentration of biodiesel while maximizing the overall

profit. Moreover, it is presented here that the maximum profit problem involves the solution

of the maximum concentration problem and both the maximum concentration and minimum

time problems which turn out to be special cases of the maximum profit problem.

The objective function for the maximum profit problem in the reaction section is represented

by Equation 3.37 (94)

Objective function:

max J ′′ =
MEPr −BoCo

t+ ts
(3.37)

where ME is the amount if product (kg), Pr is the sales value of the product ($/kg), Bo is

the amount of feed F (kg), Co is the cost of feed ($/kg), t is batch time (minutes) and ts is the

setup time for each batch. It can be seen that the energy term is not considered in this equation

because it does not affect in the same proportion as the raw material. As mentioned before,
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previous literature agreed that raw material is the largest contributor to the production cost.

One possible reason is that the transesterification reactions are exothermic, which increase the

temperature of the reactor by itself, so the energy required to heat the reactor is not significant.

In order to solve the complete optimization problem Equation 3.38 can be reformulated as:

Objective function:

max J ′′ = max
max(ME)Pr −BoCo

t+ ts
(3.38)

Table XVIII shows the information needed for profit function calculation. The amount of

feed involves the quantity of methanol and triglycerides at the beginning of the reaction while

the amount of product is the final concentration of methyl ester which is maximized by finding

a temperature profile.

3.3.3.1 Solution technique: Maximum principle and NLP

The maximum profit problem is solved as two level optimization problems. This algorithm

combines maximum principle and NLP techniques. The solution procedure is shown in Fig-

ure 24. As shown in this figure, there are two levels of optimization which are: NLP optimization

at the outer loop with the initial value of temperatures and the inner loop involving calculation

of the maximum concentration of biodiesel. In brief, it starts by giving the initial guess of

temperature and solving the MCP which consists on the system of differential equations for

the states and adjoint variables so the derivative of the Hamiltonian is calculated and a new



81

TABLE XVIII

INFORMATION FOR MPP
Item Data

Soybean oil (Triol)a $0.62/kg
Methanol $0.320/Kg
Biodiesel (Methyl ester) $3/gallon=$0.9/kg
Biodiesel density 0.88 kg/l
Triglyceride density 885.45 kg/l
Methanol density 32.04 kg/l
Setup time (ts) 10 min
Volume 10000 l
a(28) and (95)

temperature profile is obtained (i.e. Level 2). The integration and calculation of the control

variable T continues until the specific stopping criterion is met. This Level 2 is the same as

summarized in Section 3.3.1.1. Once, this criterion is reached, the optimal temperature profile

and maximum value of concentration calculated at the given time go to level 1 to compute the

objective function (Equation 3.38), then NLP optimization technique is used to find optimum

time corresponding to the criterion that the Kuhn Tucker error is less than an allowable toler-

ance (allowable Kuhn Tucker error), at this stage the algorithm stops, otherwise, a new value

of time is updated and the level 2 takes part in the algorithm again. This code uses SQP to

minimize (-J”). This approach was derived from the solution of optimal control problems in

batch distillation presented in (93).
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Figure 24. Combining maximum principle and NLP optimization techniques

3.3.4 Results and discussion

Results of the three optimal control problems for biodiesel production are shown in this

section. To start with, Figure 25 and Figure 26 present the profiles of derivatives of the Hamil-

tonian and the temperature per iteration. From these figures, it can be seen that as the profiles

of the gradients dH/dT decrease (Figure 25) the temperature profiles increase (Figure 26)

which improve the objective function (Equation 3.12). The solution technique presented in

this chapter proposes that the iterations proceed until the gradients reach a specific tolerance

(i.e. Tolerance less than 2e-3 ). The value of this tolerance was chosen based on the reaction

temperature. This temperature cannot exceed the boiling point of methanol (i.e. 338K at at-

mospheric pressure) due to the risk of leak out of alcohol through vaporization (22); therefore,
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Figure 25. Values of dH/dT for all iterations

twelve iterations were deemed to be sufficient.

Figure 27 shows the initial guess of temperature T(t)=323K and the optimal temperature

profile obtained after the stopping criterion was satisfied. This figure illustrates the significant

variation of temperature with reaction time: at time zero the temperature value starts with
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320.6K, then, as the reaction proceeds between 10 to 20 minutes, the temperature increases to

335.5K. According to (62); (84) and (96), if the temperature goes beyond the optimal level, the

yield of biodiesel product decreases because the saponification reaction of triglycerides acceler-

ates. Finally, when the reaction time is 100 minutes the temperature drops to 323.7K.
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Figure 28. Concentration profiles at the end of iterations

Figure 28 presents concentration profiles for the six components. The purpose of this figure

is to show that as the reaction precedes, the concentration of the desired product, methyl ester,

increases; however, after 65 minutes there is no significant change in these values. This situation

also happens with the rest of the components which no further change occurs after reaching

this time.
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Figure 29 illustrates the concentration profile of methyl ester(i.e biodiesel). Here the con-

centration profiles are compared at constant temperature and the values calculated at optimal

temperature profile. From this figure, it is observed how the behavior of the temperature is

reflected on the concentration of methyl ester, thus, when the temperature profile changes from

constant values to the optimal profile, the concentration of methyl ester also changes. This

situation is more significant when the optimal control is compared with base case 1. It can

be seen that at 100 minutes of reaction time, the concentration of methyl ester at optimal

control temperature reaches its maximum value, 0.79mol/L; while at constant temperature, the

maximum concentration is 0.73mol/L. On the other hand, for the base case 2 the maximum

concentration value at 100 minutes is 0.78mol/L. Comparing these values, there is an increment

of 8.46% with base case 1 and 1.47% with base case 2. For base case 2, the increment is not

significant since the constant profile at 323K belongs to the constant optimal profiles reported

in the literature (22). Alternatively, if we fix the concentration at 0.73mol/L, the reaction time

needed would be 69.5% less than it was at the beginning. In the base case 2, the reduction on

time represents 46% of the original reaction time if the concentration is fixed to 0.78mol/L. This

condition is the expected result from solving the minimum time problem. This improvement

does not affect the other components because at the 50th minute of the reaction time, their

concentration values are almost constant as shown in Figure 28.

The next part of this section is the minimum time problem (MTP) results. Figure 30 illus-

trates the time profile of methyl ester for the MTP. Here, we are comparing the concentration



88

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (min)

C
on

ce
nt

ra
tio

n 
of

 m
et

hy
l e

st
er

 (
m

ol
/L

)

 

 

Optimal control
Base case 1 (315K)
Base case 2 (323K)
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values at constant temperature (i.e. base cases) with the values calculated at optimal temper-

ature profile. As it can be observed, after fixed the concentration of methyl ester to 0.73mol/L

the minimum reaction time reached is around 30.6 minutes when optimal control approach is

applied, while in base case 1 and 2 their minimum time is reached at 100 and 54 minutes, re-

spectively. If this figure is compared with Figure 29, it can be easily shown that the maximum

concentration and minimum time problem results in similar equations for maximum principle

and also results in similar profiles.

Figure 31(a and b) compares the temperature profiles for MCP and MTP. The first figure

presents how temperature increases up to 336K at minute 16th and then starting to decrease

until 330K at minute 30.5th. This behavior is also reflected in the concentration profile (Fig-

ure 29) where most part of the reaction occurs in the beginning since this reaction is favored by

the increase of temperature (84). On the other hand, Figure 31b shows a different temperature

profile. In this case, the temperature decreases until 326K and then it reaches 342K at final

concentration of methyl ester (i.e. 0.73mol/L). Although, the optimal control profiles shown

in this figure for the two optimal control problems are significantly different, their results are

similar showing that this problem has multiple solutions.

Finally, the maximum profit problem results are presented next. Figure 32 compares the

concentration profile of methyl ester using optimal control problem (i.e. maximum profit prob-

lem) with the two base cases. It can be seen that at 50 minutes of reaction time, there is an
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TABLE XIX

COMPARISON OF THE OPTIMAL CONTROL PROBLEMS

Parameter Maximum
concentration
problem

Minimum
Time
problem

Maximum
profit
problem

Concentration of methyl Ester
(mol/L)

0.79 0.73 0.78

Time (min) 100 30.5 50
Profit ($/h) 103.10 32.89 149.83

increase of methyl ester concentration of 25.56% (for base case 1) and 8.50% (for base case 2).

Moreover, if the profit values of the MCP and MTP are computed (using Equation 3.38) and

then compared them with the profit value found in the MPP, there is an increment of 45.32%

and 355.58%, respectively; this information is summarized in Table XIX. These results show

that the MPP, which combines the maximum concentration and minimum time problem, give

better outcomes than employing the problems individually. The optimal temperature profile

of MPP is presented in Figure 33. As it is observed, this optimal profile has higher values of

temperature compared with the MCP profile (Figure 31a). This situation evidences what it

is shown in Figure 32, where the production of methyl ester is favored using optimal control

strategies since it can produce more of methyl ester in less time.
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3.3.5 Conclusion

This chapter presented three optimal control problems encountered in biodiesel batch pro-

duction. These problems involved determining the deterministic optimal temperature profile

so as to maximize or minimize performance indices, namely, concentration, time and profit.

The maximum principle along with the steepest ascent of the Hamiltonian method was used

to solve the optimal control problems. The advantage of this method is that avoids the so-

lution of second order differential and partial differential equations that are required in other

techniques, such as calculus of variation and dynamic programming. For the maximum con-

centration problem, numerical results showed that twelve iterations were enough to reach the

maximum concentration of methyl ester. The deterministic profile was compared with two base

cases: (I) constant temperature of 315K and (II) optimal temperature of 323K. As a result,

it was presented that at 100 minutes of reaction time the concentration value of methyl ester

increased 8.46% for base case 1 and 1.47% for base case 2 when the optimal temperature profile

was employed. On the other hand, it was shown that the methyl ester profile obtained can

reach the maximum concentration in less time when the optimal control of temperature is used;

in other words, the values of concentration reached 0.73mol/L at 30.5 minutes for base case 1

and 0.78mol/L at 54 minutes for base case 2, which implied a reduction of 69.5% and 46% in

batch time, respectively. Moreover, the solution of the MCP and MTP results in similar equa-

tions for maximum principle. It was also shown that the solution of maximum profit involves

the solution of maximum concentration in the inner loop and minimum time problem in the

outer loop, combining the maximum principle and NLP techniques. The maximum profit found
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using optimal control was 149.83$/h. For this reason, optimal control provides improvement

to the effectiveness of batch processing, specially, in the case of the maximum profit problem.

The MPP’s results indicated that solving this problem gives better results than solving the

maximum concentration and minimum time problem individually.



CHAPTER 4

UNCERTAINTY IN BIODIESEL PRODUCTION

4.1 Introduction

Uncertainty is present in all systems, from natural systems to industrial system with the

detailed process description. Modeling and managing uncertainty is important in any process

since the successful utilization of the resulted models relies heavily on the ability to handle

system variability. In the recent years, modeling, planning and scheduling under uncertainty

has received a lot of attention in the open literature from chemical engineering and operations

research communities (97).

There are two kinds in which uncertainties can be classified: static uncertainties and dy-

namic uncertainties. Examples of static uncertainties are variations observed in initial variables,

input conditions or model parameters while process conditions that change with respect to time

are described as dynamic uncertainties. Most of the time, static uncertainties can affect other

parameters in the process that change with time, which is an exclusive characteristic of dy-

namic processes. Therefore, static uncertainties lead to dynamic uncertainties. Processes that

explicitly consider randomness may be much more valuable and it can be more useful for actual

operation (98). For instance, in batch distillation, relative volatility is a thermodynamic pa-

rameter which provides the equilibrium relationship between the vapor and the liquid phases.

97
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This parameter changes with respect to time and at each plate due to the changes in the chem-

ical composition. However, to use faster and efficient optimal control calculation, the relative

volatility is assumed to be constant, as a result, the performance of the process is reduced (99).

This drawback may limit the usefulness of finding an optimal solution.

Models of uncertainty are predominant in many optimization problems of batch operations.

For instance, Fotopoulos et al. (100) presented an approach for modeling and optimization of

batch reactors using the tendency modeling techniques. Since this technique was an approxima-

tion of the stoichiometric and kinetic models, the introduction of the process model mismatch

may have significant effect on the success of the optimization involving the uncertainty in the

model parameters. Their methodology was to determine the sensitivity of the optimal input

policy to uncertain model parameters resulting in two point boundary value problems that are

solved using orthogonal collocation. In (101), an algorithm for generating stochastic optimal

adaptive controls for stochastic systems was illustrated. They studied an application to the tem-

perature control of a batch reactor with stochastic features arising from random noise. Ruppen

et al. (102) described a method for optimizing batch reactors when the models -at hand- are

characterized by parametric uncertainty using the method of orthogonal collocation. The nom-

inal optimization, minimax optimization, and robust worst-case optimization are investigated

as case studies, and for each case they assumed linear temperature profile. Furthermore, they

assumed that the uncertain values lie at the boundary of constraints. However, this approach

leaded to conservative results, according to (103). Finally, papers by Terwiesch et al. (104) and
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Srinivasan et al. (105) presented industrial viewpoints, requirements, and the corresponding

modeling and practices together with a selection of optimization methods and strategies that

take into account the characteristic uncertainties of batch models.

In this chapter, the main objective is to develop a general systematic approach to model

and characterize uncertainties found in batch reactor. The potential of this approach will be

explored in the case of biodiesel production where the effect of these uncertainties on optimal

control profiles will be studied in the following chapter.

4.2 From static to dynamic uncertainties

Modeling and control of batch reactors result in a difficult and challenging task due to several

consideration, such as time-varying characteristics, nonlinear behavior, constraint operations,

and presence of disturbances (81). In addition, due to the innovative characteristic of batch

products, only a minimum number of modeling runs are performed in the laboratory before

scale-up to the production plant (104) which reduces the possibility of having accurate infor-

mation. All these situations lead to factors of uncertainty, and consequently, in some associated

parameters, making significant the consideration of uncertainty in a model. For instance, the

kinetic parameters and the initial composition can be common source of uncertainty and good

examples of static uncertainties. Since they affect other process parameters that change with

time (i.e. concentration of reactants), these static uncertainties lead into dynamic uncertainties.

In this work, the static uncertainties are characterized using probability distribution functions



100

and propagated into the models using stochastic modeling iterative procedures, whereas the

dynamic uncertainties are represented by using stochastic differential equations in terms of

stochastic processes, namely Ito processes which originate from real options theory in finance

(106).

Before going into the details of stochastic modeling used to characterize the uncertainty in

biodiesel production, background information about uncertainty analysis and sampling, as well

as, various Ito processes are explained in the following subsections. For a more thorough discus-

sion on stochastic and Ito processes reader may refer to these sources in literature (106) and (91).

4.2.1 Uncertainty analysis and sampling

The probabilistic or stochastic modeling iterative procedure involves (I) specifying the un-

certainties in key input parameters in term of probability distributions, (II) sampling the dis-

tribution of the specified parameter in an iterative fashion, and (III) propagating the effects of

uncertainties through the process flow sheets (107).

4.2.1.1 Specifying uncertainties using probability distribution

In order to model a system under uncertainty, a quantitative description of the expected

variations must be established. Thus, probability distribution functions can be used to char-

acterize the uncertainty. These distributions define the rule for describing the probability

measures associated with the values of uncertain variable. Some of the most representatives
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distributions are: uniform, normal, triangular, and lognormal. The type of distribution chosen

for an uncertain variable reflects the amount of information that is available. For instance,

uniform and log-uniform distributions represent an equal likelihood of a value lying anywhere

within a specific range, on either a liner or logarithmic scales, respectively.

4.2.1.2 Sampling the distribution of the specified parameter in an iterative fashion

After assigning the probability distributions to the uncertain parameters, the next step is

to perform a sampling operation from the multivariable uncertain parameter domain. Alterna-

tively, one can use analytical methods to obtain the effects of uncertainties on the output; but,

these methods tend to be applicable to special kind of uncertainty distributions and optimiza-

tion surfaces only. The sampling approach, on the other hand, provides wider applicability.

Several techniques are available such as Monte Carlo technique (MCT), Latin Hypercube sam-

pling (LHS), Importance sampling, and Hammersley sequence sampling (HSS). MCT is the

most widely used sampling technique. This technique is based on the pseudo-random number

generator to approximate a uniform distribution (i.e. having equal probability in the range of

0 to 1). The specific values for each input variable are selected by inverse transformation over

the accumulative probability distribution. The LHS (108) is one form of stratified sampling

technique that can yield more precise estimates of the distribution function. The importance

sampling (109) is a stratified sampling technique that ensures more samples are generated from

high probability regions. Finally, the HSS (110) uses an optimal design scheme for placing N
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sample points on a K-dimensional hypercube. This scheme certifies that the sample set is more

representative of the population showing better uniformity in the multidimensional uncertainty

surface.

4.2.1.3 Propagation the effects of the uncertainties through the process flow sheets

The next step is to propagate the uncertainties through the model. The output variables

of interest are collected for the first iteration. Then, the simulation is repeated for a new set

of samples selected from the probabilistic input distributions. All observations are evaluated

through the simulation cycle for a specified number of times (e.g. typically 100) and the output

variables are used to generate an approximation of the cumulative probability density functions.

The stochastic simulation is run at each sample point, and hence, 100 samples are propagated

into the model.

4.2.2 Stochastic and Ito processes

A stochastic process is a variable that evolves over time in a way that is at least in part

random. One example of stochastic process is the temperature of a city. Its variation through

time is random and unpredictable. Figure 34 shows the variation of the temperature of Chicago

from the last 50 years.
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Figure 34. Average temperature of Chicago(Source:www.chicago.straightdope.com)
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Figure 35. Price of IBM stock(Source:financegourmet.com)

Another example is the price of IBM stock, which also fluctuates randomly (See Figure 35)

This variable is considered a non-stationary process since the expected value of this price can

grow without bound, and the variance of price Y years from now increases with Y whereas the

temperature values can be considered as stationary process.

These two variables are both continuous-time stochastic processes, in the sense that the time

index t is a continuous variable. Since stochastic processes do not have time derivative in the

conventional form, they cannot always be manipulated using the ordinary rules of calculus(111).

This is because, in general, the solution to a stochastic differential equation is not a single value

for the function, but rather is a probability distribution. Therefore, models under uncertainty
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can be portrayed through Ito processes that characterize their stochastic dynamics.

Ito processes are a large class of continuous time stochastic processes used in finance lit-

erature to price assets that exhibit dynamic uncertainties. One of the simplest examples of

a stochastic process is the random walk process in which a random variable that begins at a

known value, takes a jump in either direction with a 50% probability. The Wiener process, also

called a Brownian motion, is a continuous limit of the random walk and serves as a building

block for Ito processes, through the use of proper transformations. Three important properties

characterize a Wiener process:

• It follows the Markov property: the probability distribution for all future values of the

process depends only on its current value.

• It has independent increments: the probability distribution for the change in the process

over any time interval is independent of any other time interval.

• Changes in the process over any finite interval of time are normally distributed, with a

variance which is linearly dependent on the length of time interval, dt.

An Ito process can be defined by Equation 4.1:

dx = a(x, t)dt+ b(x, t)dz (4.1)

where dz is the increment of the Wiener process equal to εt
√
∆t, and a(x,t) and b(x,t) are

known functions. The random value εt has a unit normal distribution with zero mean and
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standard deviation of one. The simplest generalization of Equation 4.1 is the equation for the

Brownian motion with drift given by Equation 4.2:

dx = a(x, t)dt+ b(x, t)dz (4.2)

where α is called the drift parameter, and σ is the variance parameter. Over the time

interval ∆t, the change in x, denoted by ∆x, is normally distributed and has an expected value

variance:

E[∆t] = α∆t (4.3)

v[∆x] = σ2∆t (4.4)

For calculation of σ, the average value of the differences in x (i.e. E[xt -xt−1]) is computed.

Then this value is divided by the time interval ∆t to obtain α. On the other hand, for σ, is the

variance of the difference in x is found and divided by the interval time ∆t. Then the square

root of this value is computed.

Other examples of Ito processes are the geometric Brownian motion with drift and the mean

reverting process, which are represented in Equation 4.5 and Equation 4.6, respectively.
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dx = αxdt+ σxdz (4.5)

dx = η(x̄− x)dt+ σdz (4.6)

where η is the speed of reversion and x̄ is the nominal level that x reverts to.

In geometric Brownian motion, the percentage changes in x and ∆x/x are normally dis-

tributed (i.e. absolute changes are log normally distributed). While in the mean reverting

process, the variable may fluctuate randomly in the short run, but in the longer run it will

be drawn back towards the marginal value of the variable. Figure 36 (91) presents the sample

paths for the Brownian motion with drift and for the mean reverting process. For example,

Brownian motion can be used when the model has non-stationary behavior whereas the mean

reverting process is commonly used when the model has stationary behavior.
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Figure 36. Sample paths for two Ito processes
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Applications of Ito processes are prevalent in finance literature since provide a convenient

way of analyzing investment timing and option valuation problems. However, these processes

can also be used to represent the time dependent changes in a process parameter which are char-

acteristic of optimal control problems. It has been shown in previous works by (112); (113) and

(99) that in batch reactor and batch distillation static uncertainties can result in dynamic un-

certainties and these uncertainties can be represented by Ito processes. Thus, under uncertainty

conditions, these control problems are more difficult to solve since the mathematical model of

the process dynamic is not expressed in the conventional sense and techniques such as calcu-

lus of variation, dynamic programming, and maximum principle cannot be used. As a result,

we use the stochastic processes in order to solve these types of problems in biodiesel production.

4.3 Uncertainties in biodiesel production

Biodiesel production is subject to uncertainties arising out of different parameters that can

significantly affect the product quantity, quality, and process economics. Some of the sources of

uncertainties in the biodiesel production are the variation of feed composition of vegetable oils,

the ratio of methanol to oil, and the reactor operating parameters. Particularly, the feedstock

composition is highly variable and even in the same feedstock the range of a single component

is very broad (84); (114); (115). Moreover, the operation of the transesterification reactors in-

volves some difficulties that can be associated with frequent overshoot of reaction temperature,

oscillation of its internal pressure, the variation in the reactor conversion, and fluctuation in

the cooling jacket temperature (79), which are also considered as disturbances to the reactor.
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Figure 37. Types and percentage of hydrocarbon chains in soybean oil

In this work, the variation in the feedstock composition is considered as uncertain.

As it was shown in Chapter 2, the transesterification reaction consists of a number of con-

secutive reversible reactions wherein the triglycerides are converted stepwise to diglycerides,

monoglycerides and glycerol and one mole of ester is liberated at each step. As it can be seen in

Figure 37, the triglyceride composition existing in soybean is very broad and contains five types

of hydrocarbon chains which are tripalmitin 6-10%, tristearin 20-30%, triolein 2-5%, trilinolein

50-60% and trilinolenin 5-11% (115).
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The type and amount of triglycerides in the feedstock varies considerably because of nature

as a bio-based material (116). This variation is important to consider in the biodiesel produc-

tion since it can affect the design, modeling, and control of the process. The variability in the

feed composition turns out to be one of the most influential parameters in the process. As

mentioned before, this uncertainty can be modeled using probabilistic techniques, and can be

propagated using stochastic modeling iterative procedures, which involves the following steps

presented in Section 4.2.2. Therefore, the first part of this procedure is the representation of

the uncertainty in term of probability distribution. Figure 38 shows the probability distribution

for the composition of the five triglycerides presented in soybean. The probability distribution

used to represent the uncertainties in the feedstock composition is the modified form of uniform

distribution, which is uniform* (i.e. uniform Star). A more complete review of the character-

ization may be found in (107). According to (107), this distribution is better than a uniform

distribution because it allows several intervals of the range to be distinguished and captures

the range of values in a single feedstock source.

The second part of the stochastic modeling iterative procedure is related with the sampling

technique. In this work Latin Hypercube Sampling (LHS) technique was employed. As men-

tioned before, this technique provides precise estimates of the distribution function compared

with other techniques like Monte Carlo techniques. In the LHS method, a distribution is di-

vided into non-overlapping intervals of equal probability and one sample from each interval is

selected at random with respect to the probability density in the interval (91) and (117). LHS



112

Figure 38. Probability distribution for composition of triglycerides
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guarantees that the values from the entire range of the distribution are sampled in proportion

to the probability density of the distribution. The procedure to select samples using LHS is

described in (117). Thus, 100 samples for the feed composition (i.e. initial triglycerides con-

centration) were generated.

Finally, the uncertainty parameters (i.e. initial composition of the feedstock) are propa-

gated through the batch reactor model. Figure 39 presents the variation of concentrations for

each component with respect to time for each sample. It can be seen from the figure how the

variation in the feed composition affects the concentration for each component showing that

the static uncertainties result in dynamic uncertainties in concentration. For instance, in the

methyl ester case (biodiesel), at 100 minutes of reaction time the concentration can take values

between 0.42mol/L to 1.87mol/L. The thick black line in each profile represents the average

value of concentration which was the profile used in the deterministic case (Chapter 3).

4.4 Capturing the uncertainties with Ito process

As it was mentioned before, stochastic processes called the Ito process can be used to

represent dynamic uncertainties in batch reactor and batch distillation column. This section

deals with characterizing the time dependent uncertainties shown in Figure 39 as Ito processes so

that the optimal control problem under uncertainty can be solved using the stochastic maximum

principle.
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Figure 39. Concentration profiles for each component of biodiesel production
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For the case study, a simplification of Equation 4.1 is used to represent time dependent

uncertainties in the concentration for each component, known as the Brownian motion with

drift:

dCi = Fi(C, t)∆t+ giǫt
√
∆t (4.7)

where Ci represents the state variable, which is the concentration for each component.

Fi(C,t) is the right hand side of the differential equation shown in Chapter 3 (Equations 3.4 to

3.9) and gi is the variance parameters. As mention in Section 4.2.1, over any time interval ∆t,

the change in Ci is normally distributed and the value of gi can be calculated by computing

the square root of the variance of the differences in Ci and divided by the interval time ∆t :

gi =

√

var(∆Ci)

∆t
(4.8)

Therefore, the discrete form of Equation 4.7 is expressed for each component of the biodiesel

reaction as:

CTG(t+ 1) = CTG + F1(C, t)∆t+ gTGǫt
√
∆t (4.9)
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CDG(t+ 1) = CDG + F2(C, t)∆t+ gDGǫt
√
∆t (4.10)

CMG(t+ 1) = CMG + F3(C, t)∆t+ gMGǫt
√
∆t (4.11)

CE(t+ 1) = CE + F4(C, t)∆t+ gEǫt
√
∆t (4.12)

CA(t+ 1) = CA + F5(C, t)∆t+ gAǫt
√
∆t (4.13)

CGL(t+ 1) = CGL + F6(C, t)∆t+ gGLǫt
√
∆t (4.14)

where CTG, CDG, CMG, CE , CA, and CGL are the concentrations of triglycerides, diglyc-

erides, monoglycerides, methyl ester, methanol, and glycerol, respectively. These discrete equa-

tions are solved from t=0 to t= 100 minutes. Figure 40 shows the Ito process representation

(i.e. Brownian motion with drift) of time-dependent uncertainties in the concentration for each

composition. It can be observed that 95% confidence interval covers the range of these uncer-

tainties. The comparison of Figure 39 and Figure 40 show that the time dependent uncertainties

resulting from the feed composition can be easily captured by the Ito process represented by

Equation 4.9 to Equation 4.14.
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4.5 Conclusion

In this chapter, the importance of stochastic processes, represented by Ito processes, were

introduced. As an example, the uncertainties in biodiesel production in a batch reactor were

modeled using uniform* (star) distribution and propagated into the model. The static uncer-

tainties encountered in biodiesel production led to dynamic uncertainties and it was shown that

these dynamic uncertainties can be captured by the Ito processes.



CHAPTER 5

STOCHASTIC OPTIMAL CONTROL PROBLEM IN BIODIESEL

PRODUCTION

5.1 Introduction

In previous chapters it was shown that optimal control problems provide an improvement

to the effectiveness of batch processing; nevertheless, the scope of these problems was limited to

the deterministic case where no uncertainty was considered. This is not a realistic assumption

given that there are inherent uncertainties in biodiesel feed composition. Some papers have

included uncertainty in the manufacturing of biodiesel. For instance, (118) dealt with the un-

certainties of the facility location planning applied to biodiesel supply chain of vegetables oils.

They presented an integrated analysis of the biodiesel supply chain from family-owned farms

regarding the production and transport of grain and vegetable oils. Thus, the productivity

rate variability of the grain producers was considered as the uncertainty factor, mainly due

to climatic conditions. On the other hand, (119) described recent development in U.S. biofuel

markets and a set of market projections. Here a stochastic analysis was used to demonstrate

the wide range of possible outcomes for biofuel and agricultural market and its impact on high

energy prices and food security. The uncertainty was introduced through petroleum prices.

This study was developed by the Food and Agricultural Policy Research Institute (FAPRI).

They presented the FAPRI stochastic model of the US agricultural sector, which was based on

119
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a simplification of the deterministic model. Finally, (120) investigated whether a model-based

analysis allowed for a clear evaluation of biofuel policies despite prevalent uncertainties. These

uncertainties were represented in the rapid increase of both oil and feedstock prices in 2007 and

2008 and the performance and costs of advanced biofuels. In this work, a risk assessment was

applied to the biofuel model BioPOL, which was a recursive dynamic model that determines

the level of biofuel production in the European Union. However, none of the previous works

considered time dependent uncertainties as a result of the feed composition variability or con-

sidered time dependent decisions like temperature profile.

In this Chapter, the optimal control for biodiesel production in a batch reactor is extended

to a problem when uncertainty in the feed composition is considered. Under control of reactor

temperature, a numerical method is applied based on the Steepest Ascent of Hamiltonian to

solve the stochastic optimal control problem that involves the application of Ito processes and

the stochastic maximum principle. Two stochastic optimal control problems are formulated in

this chapter: the stochastic maximum concentration and the stochastic maximum profit prob-

lem.

5.2 Stochastic Maximum Concentration Problem (SMCP)

As it was mentioned in Chapter 3, the maximum principle can be employed to solve op-

timal control problems. This approach requires addition of adjoint variables, corresponding

adjoint equations, and the Hamiltonian (91). In this chapter, this approach is extended to the
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stochastic case since the model deals with uncertainties (i.e. stochastic processes). Therefore,

the optimal control problem for the stochastic maximum concentration problem is formulated

next. The objective is to maximize the expected value of concentration of biodiesel, considering

the uncertainties in the feed composition by finding the best temperature profile in a given

reaction time (i.e. 100 minutes).

Objective function:

max J = E

[
∫ tf

t0

(k1CTGCA − k2CDGCE + k3CDGCA − k4CMGCE + k5CMGCA − k6CGLCE) dt

]

(5.1)

In other words,

maxL = E [CE(tf )] (5.2)

Subject to an Ito process (Equations 4.9 to 4.14):

dCi = Fi(C, t)∆t+ giǫt
√
∆t (5.3)

where E [] is the expected value. The corresponding optimality condition for Equation 5.2

is:

0 = max
Tt

[

1

dt
E(dL)

]

(5.4)
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To work with stochastic processes, one must make use of Ito’s lemma which allows us to

differentiate and integrate functions of the stochastic process (91)and (106). This lemma is

called the fundamental stochastic calculus theorem and it is the stochastic calculus counterpart

of the chain rule in ordinary calculus. Therefore, Itos lemma is easier to understand as a Taylor

series expansion. For instance, suppose that x(t) follows the process of Equation 4.1 (i.e. Ito

process), and the idea is to find the total differential of this function dF. The usual rules of

calculus define this differential in terms of first-order changes in x and t, but suppose that the

high-order terms for changes in x are also included:

dF =
∂F

∂t
dt+

∂F

∂x
dx+

1

2

∂2F

∂x2
(dt)2 +

1

6

∂3F

∂x3
(dx)3 + ... (5.5)

In ordinary calculus, these high-order terms all vanish in the limit. For an Ito process

following Equation 4.1, it can be shown that the differential dF is given in terms of the first-

order changes in t and the second-order changes in x. Hence, Itos lemma gives the differential

dF by substituting Equation 4.1 and dz2=dt in Equation 5.5:

dF =

[

∂F

∂t
+ a(x, t)

∂F

∂x
+

1

2
b2(x, t)

∂2F

∂x2

]

dt+ b(x, t)
∂F

∂x
(dz) (5.6)

Thus, applying the Itos lemma to Equation 5.4 results in:

0 =
∂L

∂t
+

6
∑

i=1

∂L

∂Ci
Fi(Ct, Tt) +

6
∑

i=1

g2i
2

∂2L

∂C2
i

+
6
∑

i 6=j

g2i g
2
j

∂2L

∂Ci∂Cj
(5.7)
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where Tf represents the optimal solution to the maximization problem and gi is the variance

parameter of the state variable Ci. Note that if the uncertainty terms in Equations 4.4 to 4.9

are not correlated, the last term in Equation 5.7 can be eliminated.

0 =
∂L

∂t
+max[

∂L

∂CTG
F1 +

∂L

∂CDG
F2 +

∂L

∂CMG
F3 +

∂L

∂CE
F4 +

∂L

∂CA
F5 +

∂L

∂CGL
F6

g2TG

2

∂2L

∂C2
TG

+
g2DG

2

∂2L

∂C2
DG

+
g2MG

2

∂2L

∂C2
MG

+
g2E
2

∂2L

∂C2
E

+
g2A
2

∂2L

∂C2
A

+
g2GL

2

∂2L

∂C2
GL

] (5.8)

Where ∂L
∂Ci

and ∂2L
∂C2

i

are adjoint variables zi and ωi for triglycerides, diglycerides, monoglyc-

erides, methyl ester, methanol, and glycerol. The adjoint variables ωi come from the randomness

considered in the problem.

The Hamiltonian:

H = z1F1+z2F2+z3F3+z4F4+z5F5+z6F6+
g2TG

2
ω1+

g2DG

2
ω2+

g2MG

2
ω3+

g2E
2
ω4+

g2A
2
ω5+

g2GL

2
ω6

(5.9)

The adjoint equations to be solved in the stochastic maximum principle formulation are:
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dzj
dt

=
6
∑

i=1

[

zi
∂Fi

∂Cj
− 1

2

(

∂g2i
∂Cj

)

ωi

]

(5.10)

dωj

dt
=

6
∑

i=1

[

−2ωi
∂Fi

∂Cj
−−zi

∂2Fi

∂C2
j

− 1

2

(

∂2(g2i )

∂C2
j

)

ωi

]

(5.11)

where the boundary conditions are: z (tf ) = c(constant) and ω(tf ) = 0.

Once again, the stochastic problem leads to a two-point boundary value problem, in which

the initial conditions for the state variable Ci are known but the conditions for the adjoint

variables (i.e. zi and ωi) are unknown. Therefore, to obtain the solution of this problem, it

is necessary to use an iterative procedure (shown in Section 3.3.1.1). This approach works for

deterministic as well as stochastic, with the difference that in the stochastic case requires 6

additional equations due to the uncertainty parameters (Equation 5.11). Appendix A.3 shows

the calculation of the derivation of the Hamiltonian for the stochastic case.

Note: as it was presented in Chapter 3, the maximum concentration problem and the min-

imum time problem resulted in similar equations and formulation, therefore, the stochastic

minimum time problem was not studied for stochastic optimal control formulation.
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5.3 Stochastic Maximum Profit Problem (SMPP)

In this section, the stochastic maximum profit problem (SMPP) for the biodiesel production

is formulated. Now, the objective function is to determine the expected value of the maximum

profit subject to fluctuations due to the variability in the feedstock composition. Then, the

SMPP can be formulated as it is shown in Equation 5.12.

Objective function:

Objective function:

max J ′′ = E

[

max(ME)Pr −BoCo

t+ ts

]

(5.12)

where the values of Pr, Bo, Co and ts are the same values shown in Table XVIII. To solve

this problem, the strategy presented in Section 3.3.3.1 is used.

5.4 Results and discussion

The results of the stochastic maximum concentration problem are shown in the first part

of this section. To start with, the derivative of the Hamiltonian at different iterations is pre-

sented in Figure 41. As it is shown in this figure, the values of the derivatives decreases as the

iteration increases, until the stopping criterion is reached (i.e. when the gradients are less than

1.9x10-3 ). The reason of deciding this value is because the reaction temperature cannot exceed

the boiling point of methanol (i.e. 338K at atmospheric pressure) due to the risk of leak out

of alcohol through vaporization (22). Twelve iterations were sufficient to obtain the optimal
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Figure 41. Profiles of Hamiltonian gradients (dH/dT) for all iterations

temperature profile that is shown in Figure 42.

Figure 42 shows how the temperature varies with time. In the first two iterations the

temperature remains between 323K and 324K; however, from iteration three, the temperature

values start to have significant change. Thus, temperature values go higher between minutes

10 and 20, and then decrease until minute 80th. After 90 minutes, these values increase again,
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Figure 42. Temperature profiles for all iterations

especially for the last iterations. This behavior results from the values found of derivatives of

Hamiltonian as was presented in Figure 41. Comparing Figure 41 and Figure 42, it can be

observed that as the gradient profiles decrease the temperature profiles increase.

Figure 43 compares the optimal temperature profile found for the deterministic (shown in

Chapter 3) and stochastic case. These two profiles are similar at the beginning of the reaction;
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Figure 43. Temperature profiles comparison between deterministic and stochastic case

however, after 10 minutes the stochastic profile reaches higher temperatures due to the deriva-

tives of Hamiltonian reach lower values in the stochastic case. The maximum temperature

reached is 336.6K, which still lower than the boiling point of methanol, then the temperature

starts to decrease until 68 minutes, when, unlike to deterministic case, increases again.
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Figure 44 shows the comparison of concentration profiles between stochastic and determin-

istic optimal case. These profiles are obtained by propagating them through the stochastic

model for both cases. Further, these two cases are also compared with the base case constant

temperature profiles: 323K and 315K (using stochastic model). This figure shows how the

expected value of methyl ester concentration varies with respect of time and temperature for

the different cases. For instance, at 100 minutes of reaction time, the concentration of methyl

ester under uncertainty reaches its maximum concentration (i.e. 0.793mol/L). Comparing the

stochastic and deterministic case profiles, it can be seen that concentration values of stochastic

case are slightly greater than deterministic only between 10 and 50 minutes, where the temper-

ature values are also greater according to Figure 43. However, from this time to the moment

when the reaction finishes, no appreciable change is observed between these two cases and at

100 minutes of reaction time the increment is only 0.25% using the stochastic profile.

Table XX presents the expected values of concentration of methyl ester within 95% confi-

dence intervals. As it is shown in this table, the stochastic profile gives 7.82% improvement

to the constant temperature case (i.e. 315K) and 1.64% to constant temperature case (i.e.

323K). This latter percentage is not significant since is a constant optimal profiles reported in

the literature (22). However, if we consider the minimum time problem, the stochastic optimal

profile reaches the desired concentrations of the base cases (0.731mol/L and 0.780mol/L) at 27

minutes and 56 minutes, which represent a reduction of 73% and 43%, respectively. On the

other hand, to reach the concentration value of 0.780mol/L, the stochastic and deterministic



130

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (min)

E
xp

ec
te

d 
va

lu
e 

of
 c

on
ce

nt
ra

tio
n 

of
 b

io
di

es
el

 (
m

ol
/L

)

 

 

Stochastic case 

Deterministic case

Base case 2 (323K)

Base case 1 (315K)

Figure 44. Comparison of concentration profiles of methyl ester



131

TABLE XX

RESULTS OF COMPARISON BETWEEN STOCHASTIC, DETERMINISTIC AND
CONSTANT TEMPERATURE CASES

Case Expected value methyl
ester concentration (at
100 min)

% increment
(Compared to
Stochastic case)

Time to reach
0.731mol/L (min)

Time to reach
0.780mol/L (min)

Stochastic 0.793±0.055 N.A 27 56

Deterministic 0.791±0.056 0.25 30 56

Constant Temp
(315K)

0.731±0.059 7.82 100 N.A

Constant Temp
(323K)

0.780±0.058 1.64 55 100

case will take 56 minutes in both situations. The behavior of the two optimal cases is almost

the same, which shows that the uncertainty in the feed composition does not influence the final

optimal time even if the profiles are different. This shows that the stochastic optimal solution

is robust in feed composition uncertainties.

Finally, Figure 45 shows the expected value of biodiesel concentration and their minimum

and maximum bounds based on the 95% confidence interval. These bounds allow us to de-

termine the ranges of values that the biodiesel concentration can take in the process. At 100

minutes of reaction time the concentration of the stochastic case varies from 0.24mol/L to

1.35mol/L.



132

Figure 45. Minimum and maximum values of concentration for the stochastic case based on
the 95% CI
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TABLE XXI

SENSITIVITY ANALYSIS RESULTS

Case Actual value of
variance (gi)

Modification Concentration of
methyl ester at 100 min
(Stochastic case)

1 gTG=0.003 gTG=0.006 0.792
2 gDG=0.004 gDG=0.008 0.792
3 gMG=0.0016 gMG=0.003 0.790
4 gCE=0.005 gCE=0.009 0.791
5 gA =0.051 gA =0.090 0.795
6 gGL=0.012 gGL=0.020 0.791
7 h(step size)=0.01 h=0.005 0.789

In order to confirm the robustness of the optimal control profile, a sensitivity analysis is

carried out through a series of multiple runs by changing the variances (i.e. gi) Equations 4.9

to 4.14. Seven cases were studied. In the first six cases, the variance for each component was

changed; however, in the last case, only the step size was changed. These variations are summa-

rized in Table 5.2. The changes on the variance depend on the stochastic simulation presented

before. Therefore, these values were slightly changed with respect to the originals, taking in to

account that the profiles needed to remain within the boundaries presented in Figure 40. As

it can be observed from Table XXI, the new values of methyl ester concentration do not have

significant change compared with the original value (i.e. 0.793mol/L at 100 minutes of reaction

time).
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Another objective of this chapter is to show how the uncertainty in the feed composition

affects to maximum profit problem. Figure 46 presents the optimal temperature profile com-

parison between deterministic (Chapter 3) and stochastic case for this problem. Although three

curves are shown in this figure, the dashed curve is the smoothed version of the stochastic tem-

perature profile. It is observed two noticeable differences, one is that the temperature profile

from the stochastic cases (both) maintains higher values after minute 16th, and second, the

stochastic case finishes earlier than deterministic case (i.e. around 5 minutes earlier). These

two characteristics are reflected in the optimal profit value since there is an improvement of

6.7% in the stochastic case as compared to the deterministic case and a very significant im-

provement compare with the two base cases. In other words, as it is shown in Table XXII,

the stochastic maximum profit problem gives 10.01$/h more than the deterministic case of this

problem, and 148.18$/h and 76.97$/h more than base case 1 and 2, respectively. It can be

also seen that the profit value using both the original temperature profile and the smoothed

curve are presented in this table, and their values do not have significant difference. However,

the smoothed temperature profile is preferred since the ease to implement the control into

the process. Therefore, applying optimal control under uncertainty in the feed composition in

biodiesel production (batch reaction section) can provide a better reaction time to produce the

same amount of biodiesel compared to the deterministic case.
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TABLE XXII

COMPARISON BETWEEN STOCHASTIC, DETERMINISTIC AND CONSTANT
TEMPERATURE CASES FOR MPP

Parameter Concentration of
biodiesel (mol/L)

Time (min) Profit (within
95%confidence
intervals)($/h)

Base case 1
(315K)

0.732 100 11.20±10.97

Base Case 2
(323K)

0.777 92.65 82.41±10.95

Deterministic
Case

0.780 50 149.37±21.17

Stochastic Case 0.779 44.91 160.87±24.15
Stochastic Case
(smooth curve)

0.779 44.91 159.38±24.14

5.4.1 Conclusion

In this Chapter, two optimal control problems for biodiesel production under feed variabil-

ity were formulated. For the first problem, the stochastic maximum principle was employed

to determine the optimal temperature profile that maximizes the concentration. The second

problem used the stochastic maximum principle along with NLP optimization techniques so

the profit was maximized. The most important aspect of this chapter was to solve the stochas-

tic optimal control problem which involved the application of Ito processes, Ito’s lemma, and

the stochastic maximum principle. Both problems were compared with two base cases (i.e.

constant temperatures: 323K and 315K) as well as the deterministic case studied in Chapter
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3. When the maximum concentration problem was solved, the stochastic problem resulted in

a slightly different temperature profile compared with the deterministic case but the concen-

trations showed no major difference between them. Although, the application of an optimal

control strategy (regardless deterministic or stochastic) brought significant improvement in the

process when were compared with the base cases, the results showed that the optimal profiles

were robust in the presence of uncertainties in feed composition. Finally, it was found that the

stochastic maximum profit problem provided 6.7% improvement over the deterministic problem

and significantly greater improvement over the base cases as well the deterministic case.



CHAPTER 6

IMPLEMENTATION OF THE OPTIMAL TEMPERATURE CONTROL

6.1 Introduction

In the previous chapters, the mathematical model for the reactor temperature dynamic was

study under deterministic and stochastic conditions. It was found that through the optimal

control strategy (i.e. temperature control), the biodiesel concentration was maximized as well

as the profit value whereas the reaction time was minimized. However, these models were sim-

ple models since some operating conditions, such as reactor cooling/heating system, and energy

balance were not included. In this chapter, some aspects for the implementation of the optimal

temperature control in the biodiesel reactor are presented.

Several papers have studied control strategies for the reactor temperature control. For

instance, Cott et al. (121) developed a model-based controller for the initial heat-up and

subsequent temperature maintenance of exothermic batch reactors. Their model provided an

effective way of incorporating a nonlinear energy balance model of the reactor and the heat-

exchange apparatus into the controller. Therefore, their model consisted on a deterministic

on-line estimator used to determine the amount and rate of heat released by the reaction, with

this information they determined the change in jacket temperature set point in order to keep

the reaction temperature on its desired trajectory. Another example is presented by Louleh et

138
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al. (122). In their investigation, they worked on a multipurpose batch reactors using a cascaded

model based control to control the reactor temperature. This strategy was based on the use of

the thermal flux (i.e. heat load) as the manipulated variable, therefore, at each sampling time,

the master controller computed the thermal flux to be exchanged between the reactor content

and thermal fluid flowing inside the jacket. One of the advantages of their methodology was

the implicit management of several cooling/heating fluids by the control system, since based on

the heat load required by the reactor, the model-based supervisory allowed to choose the right

fluid according to the limit capacities of the different fluid configurations. As it can be seen,

the energy balance is an important issue to be considered for the determination of the overall

temperature control.

Therefore, the optimal control of the reactor temperature goes beyond the calculation of the

optimal reactor temperature profile. This temperature is affected by external heating or cooling

depending whether the reaction is endothermic or exothermic. As it was mentioned before, the

biodiesel reaction is an exothermic reaction. In this sense, to complete the optimization of the

batch reactor operation, a jacket configuration and operation of the coolant flow is also needed.

The coolant is the fluid used to maintain the optimal temperature and its conditions can be

determined by the energy balance in the batch reactor.
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6.2 Jacketed reactor configuration

In this section, the configuration parameters of the cooling jacket system are presented based

the reactor design. A typical batch reactor with associated heating and cooling configuration is

shown in Figure 47, this scheme consists of a reaction vessel with a jacket into which is injected

with either a mono-fluid heating or mono-fluid cooling (123). This decision depends on the heat

requirements of the reaction. In this case, the transesterification reaction generates heat which

tends to increase the reactor temperature (since it is exothermic reaction); therefore, a cooling

system is required. The cooling fluid, in this case water, can be injected into the reactor jacket

via nozzles which increases the annular velocity and improves the heat transfer coefficient to

the inner wall. This configuration has been found to work well for many applications. In indus-

trial batch reactors, it can be found that to control the temperature of the reaction mixture, a

control system manipulates the inlet jacket reactor temperature using an electrical resistance

and two plate heat heat-exchangers (124) or coolant/heating fluid temperature inside of the

jacket.

Table 6.1 summarizes the parameters of the design of the cooling jacket system. This table

also presents equations for calculation of some of these parameters. In this table, P is the

reactor design pressure (126.66562 KPa), S is the maximum allowable work stress (6900Kpa),

and Ej is the efficiency of the joints (0.85). More detailed information can be found in (125).
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Figure 47. Schematic diagram of a jacketed mixing batch reactor

Note: For simplicity, the physical parameters, such as density and the heat capacities, are

assumed to be constant.

6.3 Heat removal through reactor wall

One important consideration in the reactor is the heat load necessary to control the reactor

temperature. The heat can be removed from or added to the reactor through heat exchange
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TABLE XXIII

RESULTS OF COMPARISON BETWEEN STOCHASTIC, DETERMINISTIC AND
CONSTANT TEMPERATURE CASES

Parameter Equation Value

Volume of reactor Vr 3.9m
Length to diameter ratio LoD 3
Volume of cylinder (Vcyl) 1.2*Vr 4.68m3

Cylinder diameter (dcyl)
4Vcyl

LoDπ

1

3 1.25m
Cylinder height (hcyl) LoD dcyl 3.77m
Metal wall internal diameter
(ID)

dcyl+2tref1 1.46m

Wall thickness (twall)
P (ID/2)

(s Ej)+(0.6P ) 0.017m

Volume of the cylinder shell
(Vshell) / Volume of the jacket

πhcyl

(

(

ID
2 + twall

)2 −
(

ID
2

)2
)

0.297m3

Mass of the cylinder shell ρmetalVshell 2334.78Kg
Coolant flow rate Fc 3.648 m3 /h
Specific heat of coolant CpC 4.187KJ/Kg K
Density of coolant ρc 1000 Kg/m3

Heat transfer coefficient U 759.198 W/m2K
Initial coolant fluid tempera-
ture

TCO 303 K
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across the walls, that is, the heat exchanges between the reaction mixture and the jacket (126).

This heat load can be computed by Equation 6.1:

Q̇ = UAc (T − Tc) (6.1)

Where:

Q : The rate of heat removal from the reactor (KJ/min)

U : Heat transfer coefficient in energy per area (W/Km2)

Ac: Area across which heat exchange occurs between the reactor and coolant (m2)

T : Reactor Temperature (K)

Tc: Coolant temperature (K)

The rate of heat Q is considered to be positive since the temperature of the reactor is greater

that the temperature of the coolant, meaning that the heat flows from the reactor to the jacket.

On the other hand, the temperature of the coolant fluid can be to calculated using Equation 6.2

dTc

dt
=

Fc

Vc
(Tco − Tc) +

UAc(T − Tc)

CpcVcρc
(6.2)
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Where: FC ,VC ,Tco , U, AC ,Cpc, ρc are defined in Table XXIII. Therefore, to find temper-

ature profile of the coolant fluid, Equation 6.2 is solved. A Runge Kutta method was used to

solve this equation (85).

6.4 Results and discussion

Figure 48 presents the optimal control profiles as well as the cooling temperature profiles for

the three deterministic problems studied in this work (i.e. maximum concentration, minimum

time and maximum profit problem). For all cases, there was a significant rise of temperature of

the coolant fluid in the begging of the reaction, from 303K, which is the initial temperature of

the fluid, to 317K, 328K, and 321K, for the maximum concentration, minimum time, and max-

imum profit problems, respectively. After these raises, the temperature values of the cooling

fluid follow the same pattern of the optimal temperature profile. For example, Figure 48a shows

the profiles for the maximum concentration problem. It can be observed that the temperature

of the coolant fluid increases in the begging of the reaction as the result of the rise of the reactor

temperature. This increase is due to the exothermic nature of the transesterification reaction.

Similar behavior occurs with Figure 48c (i.e. maximum profit problem), when the reactor tem-

perature increases the coolant temperature also increases and vice versa. Temperature profiles

for the minimum time problem are shown in Figure 48b. In this case, the temperature of

the coolant smoothly falls at the same pace as the optimal temperature profile, but after the

5th minute both temperature increase proportionally. These outcomes were expected since the

main goal is to operate the coolant fluid temperature so the optimal temperature profile can



145

0 10 20 30 40 50 60 70 80 90 100
300

310

320

330

340
a) Maximum concentration problem

 

 

0 5 10 15 20 25 30
300

310

320

330

340

T
em

pe
ra

tu
re

 (
K

) 
   

   
   

   
   

T
em

pe
ra

tu
re

 (
K

) 
   

   
   

   
  T

em
pe

ra
tu

re
 (

K
)

b) Minimum time problem

0 5 10 15 20 25 30 35 40 45 50
300

310

320

330

340
c) Maximum profit problem

Time (min)

Reactor temp (K)
Coolant temp (K)

Figure 48. Coolant fluid temperature profiles for deterministic cases

be maintained throughout the reaction.

On the other hand, Figure 49 shows the rate of heat removal from the reactor to the coolant

fluid of the three deterministic problems. In the very beginning of the reaction, the heat rate

drastically drops for the three problems, especially for the minimum time problem profile where

the heat rate goes from 40000KJ/min to 8000KJ/min. This situation is attributed to the delay
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Figure 49. Rate of heat for deterministic cases

in the initial temperature of the coolant fluid shown in Figure 48. It can be observed for the

three problems that the response of the heat rate is linked with the behavior of the temperature

of the reactor. Thus, if this temperature increases, the heat rate also rises which allows the

heat load flowing from the reactor to the wall heating the fluid in the jacket resulting in the

increase of the coolant fluid temperature (See Figure 48).
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Figure 50 and Figure 51 present the temperature profiles and the heat rate for the stochas-

tic maximum concentration and stochastic maximum profit problem. The smoothed curve

showed in Chapter 5 was used to compute the coolant fluid temperature. Similar behavior was

found when comparing these profiles with the ones presented in Figure 48a and Figure 48c

and Figure 49a and Figure 49c. In other words, when reactor temperature raises the coolant

temperature also raises which affects the heat rate of the reactor by increases its values.

6.5 Conclusions

In this chapter, aspects for the implementation of temperature control were studied. In

order to control the temperature of the reactor, the temperature of the coolant fluid needs to be

manipulated due to the exothermic nature of the transesterification reaction, so the performance

indexes such as concentration, time, and profit can be optimize. In that sense, to maintain the

optimal temperature profile for the different optimal control problem, the temperature of the

cooling fluid and the heat rate were computed using the energy balance.



148

0 10 20 30 40 50 60 70 80 90 100
300

310

320

330

340
a) Maximum concentration problem

0 5 10 15 20 25 30 35 40 45
300

310

320

330

340
b) Maximum profit problem

T
em

pe
ra

tu
re

 (
K

) 
   

   
   

   
   

   
   

   
   

   
 T

em
pe

ra
tu

re
 (

K
)

Time (min)

 

 

Reactor temp (K)
Coolant temp (K)

Figure 50. Coolant fluid temperature profiles for stochastic cases
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CHAPTER 7

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

7.1 Summary and conclusion of the work

The intensification of human activities resulting from continuous technological, economic,

and social evolution has severely depleted and deteriorated the earth’s natural resources. This

situation has challenged the scientific, political, and social communities to explore alternatives

that allow them to understand and manage the effects of development. Their efforts have fo-

cused mainly on achieving an environmentally friendly industrial sector from waste treatment

and management to green engineering and green processes. One example of these efforts is

biodiesel production. Biodiesel is well accepted as a renewable energy, and it can be considered

one of the best alternatives to reduce the negative environmental impact of the conventional

fuels such as petroleum-based diesel due to the similarity of properties.

Biodiesel is getting more attention because of the extensive research and promising results

shown by industry and academia in the last decade. In order to produce biodiesel, optimal

processes are needed to make future energy production cost effective and efficient. This the-

sis was concentrated on biodiesel production. Currently, biodiesel is produced in continuous

plants, however, in the first part of this work, performance and cost of biodiesel production in

batch versus continuous plants was compared. Computer simulation of biodiesel batch plants
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as well as continuous plants was used and an economic assessment was performed. Based on

the different scenarios of batch capacities and soybean distribution to the continuous plant, it

was found that producing 21000ton of biodiesel per year using a continuous process involves

higher costs (e.g. higher utility, water waste treatment, and soybean oil costs) as compared to

performing this operation in three batch plants located in three different states (i.e. Missouri,

Illinois, and Iowa).

In the second part of this thesis, dynamic optimization (i.e. optimal control) was the main

subject of study. Batch processes offer the most interesting and challenging problems in model-

ing and control because of their inherent dynamic nature. In batch processes, batch reactors are

used. These types of reactors are important unit operations in biodiesel production. In fact,

they are considered the heart of any biodiesel manufacturing plant. Using optimal control,

a temperature control policy was developed so three objective functions, namely, maximum

concentration, minimum time, and maximum profit problem were optimize. Different methods

were employed for their solutions such as maximum principle and NLP techniques.

Another important contribution of this thesis regards optimization under uncertainty, which

is necessary for a realistic analysis. There are inherent uncertainties in biodiesel production, so

in order to obtain robust optimal control, feed composition uncertainties (i.e. variability) were

incorporated in the analysis. These static uncertainties led to dynamic uncertainties. Therefore,

the dynamic uncertainties in biodiesel production were modeled and incorporated into math-
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ematical formulations for time-dependent decision making. Ito processes were used to model

these dynamic uncertainties. In addition, Ito calculus and stochastic optimal control were also

used to derive robust optimal control strategies for the optimal control problems studied.

In the last part of this thesis, the focus of the study was regarding some aspects for the

implementation of the temperature control. It was found that the control of batch reactors is

strongly affected by the characteristic of the heating/cooling system. As a result, a jacket con-

figuration and the operation of the coolant flow were incorporated. This strategy was developed

to maintain the optimal temperature and its conditions were determined by energy balances in

the batch reactor.

In conclusion, the main contribution of this work was the demonstration of the successful

optimal control strategies for biodiesel production in batch process under deterministic and

uncertain conditions. These strategies were based on the calculation of reactor temperature

control which was achieved by the implementation of algorithms such as maximum principle

and NLP techniques as well as the use of numerical methods.

7.2 Recommendation for future research

The results obtained from this research can be applied to many different areas and can serve

as a starting point for future studies. In this section, several ideas are proposed that can be
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the building blocks for future research.

In Chapter 2, a comparison between continuous and batch processes for biodiesel produc-

tion was studied. It was shown that batch processes were more attractive to produce biodiesel.

This conclusion was confirmed with the sensitivity analysis of four additional scenarios which

were selected based on different batch capacities and raw material supply percentages. This

resulted in a supply chain management problem where optimization techniques can be imple-

mented to decide the best scenario to manufacture biodiesel. For example, a new problem can

be formulated to determine the conditions, in terms of capacity of batch plants and amount of

raw material supply for the continuous plant, such that the total manufacturing cost can be

minimized.

In Chapter 3, different optimal control problems were proposed for biodiesel production,

however, these problems were specific to the batch reactor operation. In that sense, new op-

timal control problems can also be proposed for other units of operation. For example, in the

batch distillation column considered in the separation process of glycerol, an operating policy

can be implemented in order to maximize the distillate (e.g. the amount of glycerol) in a given

time. The recovered glycerol can be sold and used for other purposes. This optimization prob-

lem can benefit biodiesel production since manufacturing costs become sufficiently competitive

as the glycerol credits are also considered in the economic analysis. Another problem that can

be studied, based on the supply chain management, is the minimization of the delivery time
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so the overall production profit can be improved. In this case, instead of focusing on the mini-

mization of reaction time in the batch reactor, other process conditions can be optimized such

as distillation time in the different distillation columns of the plant.

One of the major contributions of this work was to develop an approach to model and charac-

terize uncertainties in biodiesel production. As proposed in Chapter 4, the methods used in this

thesis for modeling time-dependent uncertainties using Ito processes, and incorporating them

into time-dependent decision making can be used as a premise for developing dynamic models

with uncertainties and optimal policies for other batch processes. These approaches enable us to

obtain a more realistic representation of the process and a control profile that improves the batch

performance. Therefore, another relevant application of batch production under uncertainty is

algae-based biodiesel production. As it has been found, biodiesel production has received a lot

of criticism by the experts of food industry since its production, especially from vegetable oils,

can lead to food crisis and price instability of the concerned food crops. Algae-based biodiesel

have received considerable attention in the last 5 years due to its non-edible nature. Its growing

interest is reflected in the higher yield per hectare over conventional oil crops since algae can

grow in bioreactors or open ponds. In addition, the cultivation period is between 5 to 7 days

compared to several months in case of soybean crops. The oil productivity of many microalgae

is greater than the oil productivity of the best oil crops, and algae can grow in flue gas environ-

ment giving opportunities in consuming greenhouse gas as a feedstock (127). Same as biodiesel

production from soybean oil, triglycerides obtained from algae have inherent uncertainties in
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the initial composition and the variation of the algae species can lead to different oil content

affecting the yield of the transesterification reaction. Although algae-based biodiesel represents

a lot of potential in the market, its production cost is the biggest obstacle in commercialization.

Consideration of other sources of uncertainty is a possible extension of this research. As it

was mentioned in this thesis, there are other parameters that can be considered uncertain in

batch reactors, such as kinetic parameters. The kinetic model characterized the chemical reac-

tions and their time scales. The exact kinetic model is rarely developed, in fact, it is assumed to

be available. When the reaction is developed, there are inherent uncertainties in the calculation

of kinetic parameters due to the empirical constants derived from experiments or the lack of

information. For instance, in complex reactions a satisfactory kinetic model is not available to

develop an optimum operating policy (128). Some of the parameters that describe the kinetic

of a reaction and that can be uncertain are: the activation energy (i.e. Ea) and the frequency

factor (i.e. A). These values play an important role since they define the course of chemical re-

action by determining the probability of occurrence of the reaction, its velocity, dependence on

temperature, and the catalytic effects. The initial composition uncertainties considered in this

work along with the kinetic parameter uncertainty are good examples of static uncertainties.

Moreover, since they affect some process parameters that change with time (e.g. concentration

of reactants) they lead to time-dependent uncertainties. Therefore, stochastic processes and Ito

calculus can also be used to model these uncertainties.
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Another recommendation for future research is related to the experimental work. As shown

in this thesis, different simulation programs as well as numerical methods were employed to find

solutions for the optimal control problems. However, the models presented here are reduced

versions of the reality, that is, a limited number of external influences such as the variability

in feedstock composition were included. From the industrial point of view, a model fitting

task is complicated since the process is subjected to data that is usually noisy and has other

disturbances. Therefore, it will be very interesting to observe how closely the optimal temper-

ature profile found in this thesis will lead to the predicted optimal concentration of biodiesel,

reaction time, and profit values, when applied in the industry. In other words, how closely the

simulation results mimic the experimental world.

Another idea for future research is the improvement of the properties of biodiesel so the

quantity of commercial blends, currently used in the market, can be increased. Biodiesel can

be blended and used in many different concentrations: B2, B5, B20, and B100. B2 corresponds

to 2% of biodiesel and 98% of petroleum diesel while B100 is pure biodiesel. However, the

ASTM develops specifications for commercial diesel fuel. These specifications allow biodiesel

concentration of up to 5% (i.e. low level) that will allow safe operation in any compression-

ignition engine, although B20% represents a good balance of cost, emissions, and cold weather

performance. Unfortunately, in the case of B100 there still are concerns about performance.

This biodiesel blend is less common than B5 or B20 due to a lack of regulatory incentives and
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pricing. As a result not all diesel engine manufactures cover biodiesel use.

Finally, the most interesting recommendation for potential extension of further research in

regards to the sustainability of bioenergy production for the planet. In this research, biodiesel

production was studied at the plant level, but the implication of having this production from

the ecosystem point of view was not considered. Biodiesel production is a great example of

what sustainable development has done during the last decade since it is a result of the efforts

that focus on green energy. Figure 52 (129) presents the extension of the framework from pro-

cess design, to industrial ecology leading to socio-ecosystem sustainability. At the center of this

framework is the green industry engineered with clean production, clean processes, green energy

and eco-friendly management in which biodiesel production can be placed. Thus, the goal of

sustainable development is looking for policies that enhance human well-being while protecting

the planet. To achieve this goal, efforts at various levels should be implemented. However, as

the world continues growing in terms of population with improving living standards, the long

term environmental protection will be difficult. Optimal control theory can be used to derive

policy guidelines and can provide enough tools to be able to observe how biodiesel production

affects human interactions. In a broad sense, it is important to study the sustainability when

bioenergy, in this case biodiesel production, is in the mix.
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Figure 52. Sustainability of planet when bioenergy is in the mix
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Appendix A

BIODIESEL ECONOMIC ASSESSMENT

As mentioned in Chapter 2, there are many elements that influence the cost of manufactur-

ing of specific products. The technical decisions regarding the operation and selection of raw

material, among others, can play an important role in the estimation of the total manufacturing

cost. The following tables present a list of important costs involved in the economic assessment

to produce biodiesel. As mentioned before, the total manufacturing cost is divided into three

categories, direct, fixed and general expenses. The direct costs involve the cost of raw material,

waste treatment, utilities, and operating labor. These values are shown in Table XXIV for the

annual production of biodiesel. This table is comparing each cost of one continuous plant with

three batch plants. The cost of utilities involves the electricity, steam and cooling tower water

consumption. The cooling water can be supplied from a central facility such as a cooling tower

while the steam can be produced by the evaporation at 10barg and 184oC. On the other hand,

operation labor requirements depend on the number of process units and whether the process

is continuous or batch these values change. In Timmerhaus et al. (130) gives a typical labor

requirements based on the units used in the process.

Table XXV illustrates the Equipment used in both continuous and batch plant and their

respective costs. The design and costs calculation of reactors, decanters, heat exchangers, and

coolers were based on the work by Hoffman (125) while distillation columns calculation was
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TABLE XXIV

ANNUAL COSTS FOR THE ANNUAL PRODUCTION OF BIODIESEL FROM SOYBEAN
Description Annual cost (US millions$/yr) Annual cost (US millions$/yr)

Continuos model Batch model

Direct manufacturing cost
Raw materials
Soybean oil (Triol) 28.139 26.867
Methanol 1.637 1.637
Hydrochloric acid (HCl) 0.010 0.010
Sodium hydroxide (NaOH) 0.145 0.145
Water 4.49e-4 4.51e-4
subtotal raw material 29.932 28.661

Utilities
Electricity 1.49e-3 5.13e-4
Steam (10 barg, 1840C) 0.374 0.133
Cooling tower water (800F to
1000F)

1.08e-2 5.02e-3

subtotal utilities 0.387 0.139

Others
Wastewater treatment 0.018 0.013
Operation Labor 0.319 0.957
Direct supervisory and cleri-
cal labor

0.057 0.172
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presented in (130). It was assumed that 12% of the total equipment cost went to pumps, vessels

and piping. Once the equipment cost was computed, the FCI (fixed capital investment) was

calculated. The results are shown for the case of continuous and one batch plant in Table XXVI.

Table XXVII presents the batch scheduling for each plant different scenario studied in the sen-

sitivity analysis, this is the result of variation in the percentages of production capacity and

supply of raw material.
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TABLE XXV

EQUIPMENT COSTS (MILLIONS $)

Type Description Continuous Batch
(one plant)

Reactor Transesterification 0.074 0.049
Storage tank (oil) Storage of feedstock 0.198 -
Decanters
Decanter 1 Separation glycerol/Oil 0.061 0.032
Decanter 2 Separation triol/biodiesel 0.043 0.029
Decanter 3 Biodiesel wash tank 0.026 0.017

Heat Exchangers Reactor preheater 0.011 0.004
GLYDIST1 tower preheater 0.003 1.61e-4
METDIST tower preheater 0.005 0.002
Water washing preheater 0.002 0.001
Total HEX 0.02 0.006

Coolers Decanter 1 cooler 0.026 0.009
Decanter 2 cooler 0.037 0.005
Total coolers 0.064 0.014

Columns Glycerol/Methanol separator
(GLYDIST)

0.110 0.013

Methanol/Biodiesel separator
(METDIST)

0.015 0.010

Total Columns 0.125 0.023
Pumps, vessels, piping 0.073 0.020

Purchased Equipment 0.685 0.190
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TABLE XXVI

ESTIMATION OF FIXED CAPITAL INVESTMENT (FCI) (MILLIONS $)

Fixed capital Investment Basis (% of purchased Equip-
ment)

Cost Cost

Continuous Batch (one plant)

Direct Costs
Purchased Equipment 100% 0.685 0.190
Purchased Equipment Instal-
lation

47% 0.322 0.089

Instrumentation and Control 36% 0.247 0.068
Piping 68% 0.466 0.129
Electrical system 11% 0.075 0.021
Buildings 18% 0.123 0.034
Yard improvements 10% 0.068 0.019
Services facilities 70% 0.479 0.133
Total direct plant cost 360% 2.465 0.684
Indirect Costs
Engineering and supervision 33% 0.226 0.063
Construction expenses 41% 0.281 0.078
Legal expenses 4% 0.027 0.008
Contractor’s fee 22% 0.151 0.042
Contingency 44% 0.301 0.084
Total indirect plant cost 144% 0.986 0.273
Fixed capital investment
(FCI )

504% 3.451 0.957

Working capital (15% of total
capital investment)

89% 0.609 0.169

Total Capital investment 4.061 1.126
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TABLE XXVII

BATCH SCHEDULING IN DIFFERENT SCENARIOS

Case State Production ca-
pacity

Batch/days

IA 25 6
1 IL 50 12

MO 25 6

IA 40 10
2 IL 20 5

MO 40 9

IA 50 12
3 IL 20 5

MO 30 7

IA 40 10
4 IL 10 2

MO 50 12

IA 35 9
Base Case IL 35 8

MO 30 7
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CALCULATION OF THE DERIVATIVE OF THE HAMILTONIAN:

DETERMINISTIC CASE

As it was mentioned before, the maximum principle is used in optimal control theory to find

the best possible control of a dynamic system. This approach states that the Hamiltonian must

be maximized over the control variable, in other words, it applies the optimality conduction

dH/dT < tolerance. In the next part, the derivative of the Hamiltonian is calculated in order

to determine the optimal temperature trajectory for this problem.

The Hamiltonian for the six components is presented as:

H = z1F1 + z2F2 + z3F3 + z4F4 + z5F5 + z6F6 (B.1)

This problem requires the use of the total derivative, which states that: if a continuous func-

tion z=f(x,y) of several variables (e.g. t, x, y, etc.) is derived with respect to one of its input

variables, e.g., t; then the derivative can be expressed in terms of a series of partial derivatives.

As a result, the rate change of ’z ’ with respect to t ’ can be calculated as:
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dz

dt
=

∂z

∂x

(

dx

dt

)

+
∂z

∂y

(

dy

dt

)

(B.2)

If we apply the total derivative concept to Equation B.1 shown in the previous paragraph,

then the derivative of the Hamiltonian can be calculated by Equation B.3:

dH

dT
=

6
∑

i=1

∂H

∂Ci
θi +

6
∑

i=1

H

zi
φi (B.3)

Where θi and φi are represented by equation (A.2.4) and (A.2.5).

θi =
dCi

dT
(B.4)

φi =
dzi
dT

(B.5)

Then, to calculate the values of θi and φi, we consider the following property, respectively:

d

dT

(

dCi

dt

)

=
d

dt

(

dCi

dT

)

=
dθi
dt

(B.6)
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d

dT

(

dzi
dt

)

=
d

dt

(

dzi
dT

)

=
dφi

dt
(B.7)

Where, the differential equations for θi and φi are given as:

dθi
dt

= f (Ci, θi, T ) (B.8)

dφi

dt
= f (Ci, θi, zi, φi, T ) (B.9)

As an example, the differential equation for θTG and φTG (Triglycerides) are shown in Equa-

tion B.10 and A2.11:

dθTG

dt
= −dk1

dT
CTGCA − k1θTGCA − k1CTGθA +

dk2
dT

CDGCE + k2θDGCE + k2CDGCθE (B.10)

dφTG

dt = θTGk1CA + z1
dk1
dT

CA + z1k1θA − θDGk1CA − z2
dk1
dT

CA − z2k1θA

−θEk1CA − z4
dk1
dT

CA − z4k1θA + θAk1CA + z5
k1
dT

CA + z5k1θA (B.11)



178

Appendix B (Continued)

Finally, a numerical method such as RKF is used to integrate the system of equations

represented by Equation B.8, with initial conditions: θ (t0) = [0; 0; 0; 0; 0; 0]. On the other

hand, to compute φi, backward integration and using again RKF method is also used to solve

the system of equation represented by Equation B.9, but in this case, the is boundary condition

are expressed as: φ (tf ) = [0; 0; 0; 0; 0; 0].
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CALCULATION OF THE DERIVATIVE OF THE HAMILTONIAN:

STOCHASTIC CASE

In this section, an analytical approach is presented in order to calculate the derivative of

the Hamiltonian to determine the optimal temperature trajectory. A similar approach was

presented in Appendix 2. Applying the stochastic maximum principle presented in Chapter 5:

The Hamiltonian:

H = z1F1+z2F2+z3F3+z4F4+z5F5+z6F6+
g2TG

2
ω1+

g2DG

2
ω2+

g2MG

2
ω3+

g2E
2
ω4+

g2A
2
ω5+

g2GL

2
ω6

(C.1)

where the adjoint equations are compute using Eq.4.19 and Eq.4.20, for instance, the adjoint

equation for triglycerides (i.e. z1) is represented by Equation (A3.2) and the adjoint equation

due to the randomness (ωi) by Equation C.3:

z1
dt

= z1k1CA− z2k1CA− z4k1CA+ z5k1CA−
1

2
((0)ω1 + (0)ω2 + (0)ω3 + (0)ω4 + (0)ω5 + (0)ω6)

(C.2)
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ω1

dt = 2ω1k1CA − 2ω2k1CA − 2ω4k1CA + 2ω5k1CA − z1(0)− z2(0)− z3(0)

−z4(0)− z5(0)− z5(0)− z6(0)−
1

2
((0)ω1 + (0)ω2 + (0)ω3 + (0)ω4 + (0)ω5 + (0)ω6)(C.3)

With the following boundary conditions:

zi(tf ) = [0; 0; 0; 1; 0; 0] ωi(tf ) = [0; 0; 0; 0; 0; 0]

Applying the total derivative on Equation C.1, we can calculate analytically the derivative

of the Hamiltonian as:

H

dT
=

6
∑

i=1

∂H

∂Ci

(

dCi

dT

)

+
6
∑

i=1

∂H

∂zi

(

dzi
dT

)

+
6
∑

i=1

∂H

∂ωi

(

dωi

dT

)

(C.4)

Considering the following expressions:

θi =
dCi

dT
(C.5)

φi =
dzi
dT

(C.6)
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ϕi =
dωi

dT
(C.7)

Substituting Equation C.5, Equation C.6 and Equation C.7 into Equation C.4 results in:

H

dT
=

6
∑

i=1

∂H

∂Ci
θi +

6
∑

i=1

∂H

∂zi
φi +

6
∑

i=1

∂H

∂ωi
ϕi (C.8)

Applying the following property for each component:

d

dT

(

dCi

dt

)

=
d

dt

(

dCi

dT

)

=
dθi
dt

(C.9)

d

dT

(

dzi
dt

)

=
d

dt

(

dzi
dT

)

=
dφi

dt
(C.10)

d

dT

(

dωi

dt

)

=
d

dt

(

dωi

dT

)

=
dϕi

dt
(C.11)

With the following boundary conditions:

θ(t0)= [0; 0; 0; 0; 0; 0]

φ(tf )= [0; 0; 0; 0; 0; 0]

ϕ (tf )= [0; 0; 0; 0; 0; 0]
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Finally, six differential Equation C.9, Equation C.10, and Equation C.11 are solve using a

numerical method, such as Runge Kutta Fehlberg. This method uses forward integration for

Equation C.9 and backward integration for Equation C.10 and Equation C.11.
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