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SUMMARY

We present computational methods addressing three key challenges in the quest to construct

a more complete picture of protein signaling pathways, namely, confident identification of pro-

teins in a sample, functional classification of large-scale proteomics data, and characterization

of the dynamic conformational changes in protein structures.

First, we develop a probabilistic protocol for identification of short peptide fragments char-

acterized by tandem mass-spectromety (MS/MS). A machine learning procedure for correctly

matching peptides with mass spectra was constructed. Further, we demonstrated how the de-

veloped model can be represented as an interpretable tree of rules, thereby effectively removing

the ’black-box’ notion often associated with machine learning classifiers, making the underly-

ing model clearer to end-users. Finally, using a probabilistic framework, a method for protein

identification based on the peptide predictions was proposed and tested.

Second, a genome-wide functional classification protocol for identifying dual specificity

membrane- and protein-binding domains was developed. Experimental characterization of 90

PDZ domains demonstrating that 40% had submicromolar membrane affinity was used for

building a model utilized to predict the membrane binding properties of 2000 PDZ domains

from 20 species. We demonstrate that reversible membrane binding is a key component in spa-

tially regulation protein interaction networks and further propose a mechanistic classification

of dual-specificity binding. As an extension to the PDZ domain models, we build a knowledge-

mining procedure for learning the general mechanisms of membrane-binding, using C1, C2, and

xii



SUMMARY (Continued)

PH domains as test-beds. We demonstrate how this method was able to uncover properties of

each family known to be important in membrane-binding.

Last, we present a method for modeling the changes in single molecule dynamics induced by a

signaling event as a discrete state Markov Chain model. Specifically, we use the partial unfolding

of so-called mechanical proteins by way of steered molecular dynamics to demonstrate how the

protein energy landscape is altered when different external mechanical forces are applied. By

probing the protein structure with a range of forces, we show that the transitions pathways

taking the protein structure from folded to partially unfolded vary significantly depending on

the external input. The constructed model is instrumental in explaining experimental single

molecule studies of the unfolding of the protein domain I27, as well as the changes in mechanical

properties of a number of I27 mutant structures.
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CHAPTER 1

INTRODUCTION

A fundamental principle of modern biology is that of homeostasis. The idea was first

formulated by French physiologist Claude Bernard in 1865 as milieu intérieur, or the internal

environment, referring to the dynamic changes in extracellular fluid composition ensuring a

stable environment for tissue and organs in multicellular organisms. Today we more broadly

define homeostasis as the ability of a biological system to regulate its internal environment such

that properties like temperature, pH, and salt concentrations are kept stable.

Formally, homeostasis is the property enabling an organism to efficiently adapt to a wide

range of conditions by responding properly to changes in its external environment. A home-

ostatic system is typically comprised of a receptor that monitors and responds to changes in

the environment by sending a signal to an effector (typically organs or muscles) which seeks

to counteract the deviation from acceptable levels of the property being monitored. Once the

desired response has been achieved the signal is usually suppressed by negative feedback.

An example illustrating a homeostatic system is the regulation of blood-glucose levels. The

blood concentration of glucose is to be kept at a dynamic equilibrium concentration at all times,

a feat achieved through constant monitoring of glucose levels by the cells in the pancreas’

Islets of Langerhans. To regulate deviations in sugar levels the pancreas releases the two

counter-balancing hormones insulin and glucagon, the former promoting the uptake of glucose

by muscle and liver tissue and the latter promoting the release of stored sugar back into the

1
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bloodstream. The concentration of both hormones is regulated by negative feedback loops such

that a reduction/increase in glucose levels will stop the release of insulin/glucagon.

A key discovery in understanding how the release of hormones and other messenger molecules

act to regulate the behavior of the organism on the cellular level was made in the 1970s by

Martin Rodbell. Studying the effects of glucagon on membrane receptors found in rat liver

cells, Rodbell found that guanosine triphosphate caused the disassociation of glucagon from

the membrane receptor, thereby stimulating the intracellular protein G and markedly changing

the the metabolic activity of the cell (166). What Rodbell observed is an example of one of

many modes of signal transduction.

Signal transduction is the process of mediating the message of an extracellular signal to

elicit the appropriate intracellular response. A diverse set of molecular interactions is deployed

in order to drive such information exchange, however, broadly described the process occurs

in two stages. First, an extracellular signaling molecule, or ligand, binds to a transmembrane

cell surface receptor such as G-protein-coupled receptors (GPCRs) or Receptor tyrosine kinase

(165; 91). The binding of a ligand causes a transient change in the stability of the receptor

protein, thereby inducing a conformation change in the structure of the receptor. Second, the

structural change of the cell surface receptor can either cause the direct structural modification

of one or more protein entities within the cell or indirectly affect key proteins through the

release of so-called second-messenger molecules (such as Calcium or IP3) into the cytosol. In

either case the initial modification of key proteins in the cell will set of a chain of alterations

in several interacting cytosolic proteins following receptor activation. The activation of such
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signal transduction pathways provides the opportunity for a further fine-tuning of the cellular

signaling response through signal amplification as well as the integration of information be-

tween a number of different signals known as cross-talk (172). Ultimately the activation of an

effector protein will result in a cellular response such as gene expression, cell proliferation, or

apoptosis. A conceptual depiction of a signaling transduction pathway is shown in Figure 1,

here a ligand binds to an extracellular transmembrane receptor triggering a phosphorylation

cascade, eventually activating a downstream effector target.

It is evident that to fully apprehend the complexity of living organisms, models of the signal-

ing dynamics that enable coordination of basic cellular activities such as growth, tissue repair

and immunity response are essential. Further, such models can form a basis from which errors

in information integration causing systemic diseases like cancer, diabetes, and autoimmunity

can be analyzed (93), thereby providing a starting point for rational selection of drug targets.

1.1 Signal transduction and Proteomics

Upon the completion of the human genome project, a complete library of all human genes

became available to the scientific community (102; 195). This feat has often been described

as ’unavailing the cellular blueprint.’ The genome is, however, only a starting point (if a very

powerful one) for understanding cellular dynamics, as it is the expressed manifestation of the

genes that determines the function of a given cell.

It is now widely recognized that the genome is more accurately described as a parts list

from which individual cells choose the subset of tools that fit their purpose in the organism. To

understand the cell in its functional state at a given point in time, it is necessary to know which
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Figure 1: A conceptual sketch of a signal transduction pathways resulting in gene
transcription. A ligand binds to an extracellular membrane receptor initiating a
signaling cascade through the consecutive activation of protein kinases by phos-
phorylation. The end result is activation of a transcription factor, resulting in
gene transcription.

genes have been transcribed and translated into a protein product. In fact, the full collection

of mature proteins including all splice-variants and post-translational modifications (e.g., phos-

phorylation, glycosylation, and methylation) cannot be known from the static genome (47). In

other words, the behavior of a protein population is dynamic, and layers of complexity not acces-

sible by simply knowing the rates of synthesis of its individual constituents exist. Consequently,

we need to directly study the expressed proteins to fully comprehend cell behavior.
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Figure 2 illustrates the different levels of complexity in the cellular machinery. At the

top level we find the genome, which provides the recipe for the protein entities making up the

proteomic profile of the cell. A further level of detail can be obtained by examining the complex

interaction networks formed by protein-protein associations. The highest level of detail is given

by the study of single protein domain dynamics and how the activation of these domains occur

through modification of the domain energy landscape.

ttag aactgaaaa ggcc ttag ggcttt caga gagaatat

expression

Genome

Proteome Protein Interactions

Inactive

Single molecule

Active P

Figure 2: Layers of complexity in cellular function. The genome constitutes a
parts list from which selected proteins are expressed to form the proteome. The
dynamic properties of the proteome depend on the specific interactions between
its constituents, which are ultimately guided by the specific functional state of
each protein entity.
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1.2 Signal transduction at the protein domain level

As alluded to above, the complexity of the proteome goes well beyond the sum of its parts.

Substantial progress in understanding the networks of interacting partners that make up the

pathways of cellular signal transduction has been made, giving rise to maps of so-called “inter-

actomes” (213; 163). While such interactomes offer a broad overview of physical protein-protein

contacts observed, deriving knowledge of the mechanisms behind the information flow requires

an understanding of the distinct structural entities making up the proteins present in a given

network.

The majority of genomic proteins are multi-domain units (more than 80% in multicellular

organisms) consisting of several independently evolving sub-sequences, each displaying a unique

fold and functional role within the context of the host-protein. To understand the role of the

host-protein in a broader context, knowledge of each of its individual functional units is key.

Traditionally, fold and biological function have been believed to display a one-to-one relationship

with the fold uniquely dictating the functional role of the domain (215; 27). While this assertion

holds true in some cases, it has been observed that even domains of highly similar fold can vary

greatly in function, in fact only 38% of homologous catalytic domains sharing more than 60%

sequence identity were found to be completely functionally identical, while 43% of these differ

substantially in both substrate and co-factor specificity (167).

Ultimately we are faced with the question: What are the characteristics of protein domains

that allow them to cooperate and form interactions with each other, giving rise to higher

level behavior? It has become increasingly evident that both the native state and dynamic
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shift in the protein domain structure induced by outside inputs are important factors. Thus,

just like protein folding is understood in terms of an ”energy landscape” with many meta-

stable conformational states visited before the native state is reached, so too should a protein

domain’s ability to respond and transmit signals be considered a feature of its energy landscape

(albeit one belonging to lower energy states than folding). To obtain a complete picture of

how a protein domain carries out its function we need a detailed picture of the ways its energy

landscape is modulated by other protein domains, small ligand and peptide molecules, and the

covalent binding of functional groups (i.e. phosphorylation) (181).

It is, however, in general not feasible to exhaustively describe a high-dimensional energy

landscape (76). Consequently, we must use methods for approximating key landscape features

when exploring functional properties. A sufficiently accurate picture may be obtained by simply

inspecting the protein sequence, deriving properties such as net charge, hydrophobicity score,

and detecting deviations from expected amino-acid propensities (though in many instances se-

quence information is not sufficient to infer function as previously mentioned). The next level

of energy landscape information can be found in the static structural data provided by x-ray

crystallography experiments. In example, solving the structure of blood protein Hemoglobin

made it readily apparent to researchers how the allosteric binding of oxygen occurred through

cooperative modulation of the protein structure (155). Finally, the dynamics of the energy

landscape can be explored by time-evolution simulation using molecular dynamics, and the dis-

tribution of various meta-states can be uncovered using Markov Chain Monte Carlo methods

(178). Whichever level of detail is necessary for a specific application, it is clear that our ability
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to understand and modulate signaling pathways ultimately relies on the development of com-

putational protocols that accurately capture the key energy features of cellular communication.

1.3 Motivation and Significance

The study of the molecular interactions that make up signal transduction pathways are key

in understanding the regulation of cellular function, a premise for rational design of treatment

regimens for a number of pathological conditions. Recent decades have seen an explosion in

experimental data from both large-scale proteomics studies and single molecule experiments

(2). Large challenges do, however, still exist in integrating and unifying such data into general-

ized models that can be used for predicting the behavior of similar biological systems without

conducting further experiments.

The motivation of this work is to bridge the gap between available experimental information

and biological knowledge, allowing for in silico experiments to serve as a complement to, or

a replacement of, more expensive wet lab methods. For example, consider the case where a

collection of surface plasmon resonance experiments have been conducted to characterize the

binding affinity of numerous protein domains for plasma membranes of varying composition.

When faced with the task of determining the binding behavior of a newly discovered protein

domain, by integrating the information from previous experimental work, the methods devel-

oped in this work allow us to predict membrane-binding properties of the new target without

performing further experiments.

In addition, if we find that a prediction protocol generalizes the known data examples well

(its predictions are accurate), analyzing the individual components of the model will provide
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insight into the mechanisms governing the higher level behavior. Consider again the example of

classifying membrane-binding protein domains. By inspecting the aspects of the model that lead

us to classify a given protein domain as membrane-binding, we can suggest specific mechanisms

important for membrane association. These insights can be used as a guide to experimentalists

in forming hypotheses and designing experiments (for example, the identification of key protein

residues can be used for suggesting mutation studies), thereby accelerating biological knowledge

discovery.

The above described large-scale classification of protein domains by means of statistical pro-

tocols could potentially be of utility in identifying candidates for modifying network behavior.

In the case of drug design, once a single regulation target has been chosen, designing a ligand

that will provide the desired regulation does, however, require further knowledge of the specific

structural domain components. To this end, the integrative view of the domain dynamics that

can be obtained from sampling multiple molecular dynamics trajectories simulating specific

interactions could provide valuable insights. A framework for representing molecular dynamics

trajectories as a comprehensive model summarizing all major dynamic aspects of a protein do-

main is the focus of the last part of this thesis. The example used for the development here was

so-called mechanical proteins, the method, should, however, be extendable to other systems.

In sum, the research described herein was carried out to address a number of major chal-

lenges in the study of signal transduction mechanisms using proteomics data. In this work we

propose computational methods addressing three key challenges in the quest to construct a

more complete picture of protein signaling pathways, namely, confident identification of pro-
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teins in a sample, functional classification of large-scale proteomics data, and characterization

of the dynamic conformational changes in protein structures.

1.4 Project Overview

The individual parts of this dissertation are tied together by the theme of uncovering sig-

naling methods from proteomics data, with Chapter 2 providing an in-depth description of

the computational methodologies used and biological systems studied. Even so, each chapter

has been written to read as a self-contained account of the project presented, complete with

background, discussion, and perspective. The chapters are organized as follows:

In Chapter 2 we review computational methods used for in silico studies of proteomics data.

Specifically, molecular dynamics, machine learning, and protein structure modeling are

discussed, the latter in the context of a protein structure prediction server, RaptorX,

developed in conjunction with the research presented. Further, we review two model

systems that are used for method development in the later chapters, namely Reversibly

membrane targeting domains and Mechanical protein domains.

This chapter is in part based on the publications:

1. Genchev, Källberg, Gursoy, Mittal, Dubey, Perisic, Fang and Lu. Mechanical Sig-

naling on the Single Protein Level Studied Using Steered Molecular Dynamics. Cell

Biochemistry and Biophysics. 1085-91,95. 2009.

2. Källberg, Wang, Peng, Zhiang, Lu, Xu. Template-based protein structure modeling

using the RaptorX web server. Nature Protocols. 2012. (Accepted)
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In Chapter 3 we present a probabilistic protocol for identification of short peptide fragments

characterized by tandem mass-spectromety (MS/MS). MS/MS provides a powerful plat-

form for characterizing the proteomic profile of a cell or a tissue sample in a given state.

It is, however, often difficult to validate the resulting protein list derived from such exper-

iments. In this work a machine learning procedure for correctly matching peptides with

mass spectra is developed. Further, we demonstrate how the developed model can be

represented as an interpretable tree of rules, thereby effectively removing the ’black-box’

notion often associated with machine learning classifiers, making the underlying model

clearer to end-users. Finally, a method for extending the developed peptide identification

protocol to give probabilistic estimates of the presence of a given protein in the sample is

proposed and tested.

This chapter is in part based on the publication:

1. Källberg and Lu. An improved machine learning protocol for the identification of

correct Sequest search results. BMC Bioinformatics. 11:591. 2010.

In Chapter 4 we present a machine learning protocol for genome-wide functional classification

of dual-specificity membrane- and protein-binding domains. Emerging evidence indicates

that membrane lipids regulate protein networking by directly interacting with protein

interaction domains. Experimental characterization of 90 PDZ domains showed that 40%

had submicromolar membrane affinity. Using a computational model built from these

data, we predict the membrane binding properties of 2000 PDZ domains from 20 species,
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showing that reversible membrane binding is a key component in the spatially regulation

protein interaction networks. The accuracy of the prediction was experimentally validated

for 26 PDZ domains.

This chapter is in part based on the publications:

1. Källberg and Lu. Structural Feature Extraction Protocol for Classifying Reversible

Membrane Binding Protein Domains. Conf Proc IEEE Eng Med Biol Soc.

6735-8. 2009.

2. Chen/Sheng/Källberg∗, Silkov, Tun, Bhardwaj, Kurilova, Hall, Honig, Lu, Cho.

Genome-Wide Identification and Functional Annotation of Dual Specificity Protein-

and Lipid-Binding Modules That Modulate Protein Interactions at the Membrane.

Molecular Cell. April 27., 2012. ∗Authors contributed equally to this work

In Chapter 5 we extend the machine learning protocol developed in chapter 4 to other protein

domain families, specifically C1, C2, and PH domains. We present a machine learning

protocol for determining membrane-targeting properties achieving 85-90% accuracy in

separating binding and non-binding domains within families. Our model is based on fea-

tures from both sequence and structure, thereby incorporation statistics obtained from

the entire domain family and domain specific physical quantities such as surface electro-

statics. By using the enriched rules in Alternating Decision tree classifiers we are able to

determine the meaning of the assigned function labels in terms of biological mechanisms.

The accuracy of the learned models and good agreement between the rules discovered
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using the ADtree classifier and mechanisms reported in the literature, reflect the value of

machine learning protocols in both prediction and biological knowledge discovery.

This chapter is in part based on the publication:

1. Källberg and Lu. A structure based protocol for learning the family specific mech-

anisms of membrane binding domains. Bioinformatics. 2012. (Accepted)

In Chapter 6 we present a method for modeling the changes in single molecule dynamics

induces by a signaling event as a discrete state Markov Chain model. Specifically, we

use the partial unfolding of so-called mechanical proteins by ways of steered molecular

dynamics to demonstrate how the protein energy landscape is altered when different

external mechanical forces are applied. By probing the protein structure with a range of

forces, we show that the transitions pathways taking the protein structure from folded to

partially unfolded vary significantly depending on the external input. The constructed

model is instrumental in explaining experimental single molecule studies of the unfolding

of the protein domain I27, as well as the changes in mechanical properties of a number of

I27 mutant structures.



CHAPTER 2

COMPUTATIONAL METHODS IN PROTEOMICS

In this chapter we review three computational methodologies used in the analysis of pro-

teomics data. First, the principles of Molecular Dynamics (MD) simulation used for modeling

the atomic level time-evolution of protein structures are reviewed, with specific focus on probing

of non-equilibrium mechanical systems by way of Steered Molecular Dynamics (SMD). Second,

we describe a collection of statistical methods for binary classification referred to as Machine

Learning (ML) algorithms and their use in accurate function classification of protein domains.

Third, we discuss the problem of protein structure modeling from a target amino-acid sequence.

Our discussion of the three methodologies is not intended as an exhaustive account of any tech-

nique, but rather meant to introduce the tools as a means by which one can conduct in silico

experiments exploring protein-driven signal transduction.

Two distinct biological signaling systems will serve as test-beds for the computational meth-

ods presented in this thesis. To better allow the reader to interpret the computational results

obtained using our methods, a brief background review of each system is included following the

relevant methodology section. The two systems that are used for this purpose are each charac-

terized by their own unique role in signal transduction. Model system I is so-called mechanical

protein domains that act as force-sensing messengers conducting signals through specific and

reversible unfolding when subject to mechanical strain. Model system II consists of membrane-

14
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targeting protein domains which partake in signaling networks by reversible translocation and

binding to membrane surfaces.

2.1 Molecular Dynamics

Molecular dynamics (MD) is a computational simulation technique for modeling time-

dependent physical quantities of a molecular system from the collective set of forces acting

on each atom in the system at discrete time-points. Here we will cover the principles of MD

as they apply to the modeling of biological macromolecules, specifically focusing on structures

of protein domains obtained from X-ray crystallography experiments. Further, we limit our

focus to describing the aspects of MD implemented in the simulation package NAMD (156; 83)

used with the CHARM++ package for parallel computing, while noting that a number of other

setups for carrying out MD simulations are available (43; 183).

Consider a protein structure consisting of N atoms with rN = (r1, r2, . . . , rN ) denoting the

set of 3N atomic position coordinates, and mi the mass of the ith atom. By numerically solving

the Newtonian equations of motion for every atom in the system we are able to determine the

position and velocity of each atom as a function of time, and thusly track dynamic changes of

the entire structure. Formally this notion can be expressed in the following set of differential

equations:

mi
∂2ri
∂t2

= fi (2.1)

fi = −
∂

∂ri
U i ∈ (1 . . . N) (2.2)
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To solve this set of equations, the forces acting on each atom, fi, are determined from a

potential energy function U(rN) dependent on the position of all atoms, thereby linking the

motion of the atoms together. The potential energy function, typically referred to as a “force

field,“ is most often decomposed into a number of additive terms each representing the effect of

a specific type of atomic interaction. For our purposes the force field is made up of the following

terms:

U = UV DW + U coulomb + U bond + Uangle + Udihedral (2.3)

The terms in Equation 2.3 can be subdivide into bonded terms (U bond, Uangle, and Udihedral)

and non-bonded terms (UV DW and U coulomb) accounting for interactions between atoms that

share covalent bonds and non-bonded long to medium-range electrostatic interactions, respec-

tively. Other so-called cross-terms representing complex interactions between the five base

terms mentioned have been developed for special application. For our purposes the force field

will, however, be limited to these basic interaction as they have been found to represent a good

trade-off between computational complexity and accuracy for macromolecules (156).

As alluded to above, carrying out an MD simulation can be reduced to these three task:

1. Determining a force field that truthfully represents all atomic interaction while remaining

computationally tractable in terms of complexity.

2. Numerically integrating the equations of motions for a fixed number of discrete time-step.

3. Using statistical mechanics methods for controlling macroscopic quantities such as tem-

perature and pressure in the simulations setup.
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The following subsections will address the details of each of these subtasks.

2.1.1 Force Field Functions

The three types of bonded interactions included in our force field refer to the stretching,

bending, and torsional rotation of molecular bonds,

U bond =
∑

bondi

kbondi (ri − r0i)
2 (2.4)

Uangle =
∑

anglei

kanglei (θi − θ0i)
2 (2.5)

Udihedral =
∑

dihedrali

kdihei [1 + cos(niθi − λi)], ni 6= 0 (2.6)

where bondsi denotes all covalent bonds, anglesi are all covalently linked 3-atom sets sharing

a central vertex, and dihedrali are all atom pairs separated by precisely three covalent bonds

with a central bond subject to a torsion angle. Figure 3(a) illustrates the three geometries

for the atom-set {1,2,3,4}. The metrics r23, θ234, φ1234 do in this case correspond to the bond

length, bend angle, and torsional angle, respectively, all of which have atom-specific equilibrium

values denoted by r0i, θ0i, and λi.

The two remaining terms making up Equation 2.3 both describe interactions between non-

bonded atom pairs:

UV DW (r) = 4ǫ

[

(σ

r

)12
−

(σ

r

)6
]

(2.7)

U coulomb(r) =
Q1Q2

4πǫ0r
(2.8)
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(a) A six atom chain molecule illustrating the geometric
terms needed to evaluate bonded potential functions. ri
is the inter-atomic distance between atoms 2 and 3; θi
is the bend angle between atoms 2, 3, and 4; and φi the
torsion angle between atoms 1 and 4 around the rotation
axis formed by atoms 2 and 3.

(b) Depiction of the different component making up
the Leonnard-Jones potential for modeling VDW forces.
The two distance attraction and repulsion component
(r−6 and −r−12) are shown as dashes lines along with
the truncated WCA model of the potential.

Figure 3: Conceptual illustration of force-field terms.
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UV DW accounts for van der Waal’s (vdW) forces as approximated by the 6-12 Leonard

Jones potential, which is repulsive when interaction atoms are in close proximity and attrac-

tive at longer distances (illustrated in Figure 3(b)). Further, U coulomb represents long-range

electrostatic interactions.

2.1.2 Boundary Conditions

Since simulations can only be carried out for a system of finite size, we have to deploy

measures to avoid artifacts at the boundaries of the simulation cell. To this end so-called

periodic boundary conditions are used by infinitely replicating the particles in the system cell

by periodic translation in all spatial dimensions. In this setup, any particle that exits the system

cell on one side reenters on the opposite side and is subject to the effects of all particles in all

cell copies, thereby eliminating any cell boundary effects. It is important to note that while

the effect of an infinite number of cells is present, in practical implementations the system need

only be represented in one copy making the method computationally practical.

There are, however, computational limitations in using periodic boundary conditions as

both VDW and electrostatic interactions exist between every pair of non-bonded atoms in all

periodic cells. Since carrying out the a full computation of all VDW forces is intractable,

these interactions are often truncated beyond a pre-specified cut-off distance. For long-range

electrostatic interactions a cut-off scheme is, however, likely to introduce artifacts as the energy

contribution of these terms drops off much slower than for VDW forces. To efficiently handle

this problem particle-mesh Ewald (PME) summation is used for computing the full contribution

of the electrostatic forces from all cells (156).
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2.1.3 Numerical Integration and Statistical Ensembles

The simulation of large-scale biological systems often requires millions of integration time-

steps, as the step-size in each iteration needs to be sufficiently small to adequately sample the

fast oscillating modes of the molecular bonds and long enough to investigate global structural

properties of biological interest. Often a highly accurate trajectory is less important than proper

sampling of the phase space. Therefore when carrying out simulations where preservation of

the particle count, energy, and volume of the system (the so-called NVE ensemble) is desired,

one chooses an integrator based on its ability to model fundamental dynamic properties such

as momentum, time-reversibility and energy.

To this end the Velocity-Verlet algorithm has proven useful. In this method, based on the

position and velocity at time n, (rn,vn), and the forces, Fn, one can obtain (rn+1,vn+1) by the

following computations:

Half-kick vn+1/2 = vn +M−1Fn ·∆t/2

Drift rn+1 = rn + vn+1/2∆t

Compute force Fn+1 = F (rn+1)

Half-kick vn+1 = vn+1 = vn+1/2 +M−1Fn+1 ·∆t/2
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In the above the vector M signifies the mass of all atoms in the system. Key advantages

of the Velocity-Verlet scheme are the conservation of linear and angular moment and the fact

that only one force evaluation is required per iteration. Further, for a fixed time-step the global

method error grows in proportion to ∆t2 (156).

For certain applications we may wish to simulate other statistical ensembles, such as NVT

(holding particle count, volume and temperature constant). This feat is achieved by modifying

the Newtonian equations to generate the correct ensemble distribution by coupling the system to

a thermal reservoir, thereby adjusting the forces by a factor proportionally to the kinetic energy

of the system. To this end the stochastic Langevin equation is used to ensure the produced

simulations adheres to the Boltzmann distribution for the canonical ensemble (NVT):

Mv̇ = f(r)− γv +

√

2γkbT

M
G(t), (2.9)

where M is the mass, F is the force, γ is a friction coefficient, kb is the Boltzmann constant,

v the velocity, T the temperature, and G(t) is univariate Gaussian random process. The thermal

coupling is thus achieved in part by adding a random fluctuation term (the later term) and a

scaling term (γv) for appropriate adjustment of the forces.

2.2 Model System I: Mechanical Proteins

Cellular signaling mechanisms are driven by a controlled transfer of energy, whether through

the buildup of a diffusion gradient, the conversion of chemical to electrical energy, or simply

by driving a chemical reaction by means of the cellular energy currency ATP. One physical

quantity in signal transduction that has gained attention within the last decade is that of
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mechanical force. Mechanical force plays a crucial role in many physiological processes by

regulating the reversible folding and binding of single protein domains (101; 85). Consequently,

protein domains involved in these processes need to respond properly to mechanical strain in

order to perform their function. Examples can be found in such diverse areas as stem cell

differentiation (126) and the differentiation of myotubes (54). A comprehensive understanding

of these processes on the molecular level will provide new insights into how a cell utilizes

mechanical energy in transmission of signals.

Through the development of single molecule measurement techniques such as atomic force

microscopy (AFM) (62; 162), optical tweezers (193), and surface force apparatus (107), me-

chanical behavior of a protein can be investigated on the single molecule level. Several single

molecule studies have focused on proteins which are stretched and can withstand strain under

physiological conditions (henceforth referred to as mechanical proteins). In example, mechani-

cal proteins exist in muscle cells, on the extracellular matrix (ECM), on cellular surfaces, and in

the cell nucleus. Specifically, muscle proteins such as titin control elastic behavior (113); ECM

proteins, such as tenascin, signal through binding of cell receptors (140); membrane bound

proteins such as cadherin, control cell adhesion through binding (51); lamins located in cell

nucleus such as retinoblastoma protein regulate the cell proliferation and differentiation (84).

In other words, proteins are responsible for numerous mechanical functions in the cell and a de-

tailed understanding of how proteins function and interact under mechanical stress will provide

unique insights into many areas of cellular function.
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Experimental methods only partially reveal the underlying mechanics when studying me-

chanical proteins; for example, measurements from an AFM experiment will only provide the

force at which the protein ruptures along with the extension length of the poly-peptide chain

(133). Thus, to achieve a detailed understanding of the mechanical properties of protein struc-

tures one has to rely on computer modeling. Computer simulation and theoretical modeling of

forced unfolding events have been addressed by a number of methods. Steered molecular dy-

namics (SMD) has been extensively applied in examining force induced protein unfolding events

in the titin immunoglobulin domain and fibronectin type III domains, among others (118; 96).

A so-called biasing potential, i.e., one that only exerts forces if a particle moves opposite a

specified direction, was used in studying fibronectin unfolding (142; 143). In addition, several

non-MD based methods are being actively pursued (such as a simplified description of protein

unfolding simulations using both lattice and off-lattice models) (94; 95). A GO-potential has

been used in studying titin I27 unfolding (39), and a generic contact potential has been ap-

plied to reveal details on ubiquitin unfolding (40). More recently, the Gaussian network model

framework, otherwise used for studying protein stability in the native state, was extended to

consider forced protein unfolding scenarios (56).

2.2.1 Steered Molecular Dynamics

SMD is intended to simulate the conformational changes occurring when a protein structure

is exposed to mechanical strain. This is achieved by adding an external force to conventional

force fields, thereby imitating the effect of mechanical strain on the protein domain. Many

molecular dynamics packages, such as NAMD, CHARMM, GROMACS, and AMBER (31; 183)
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provide a framework for performing SMD with various user specified force protocols. These tools

are often combined with molecular graphics programs such as VMD (80), used for illustrating

and analyzing the simulation results. Combining the NAMD package and VMD even allows for

real time mechanical manipulation of the system of interest, by means of so-called interactive

molecular dynamics (IMD) (72).

A typical SMD study is comprised of the following four steps: Solvation, energy minimiza-

tion/equilibration, simulation, and data analysis. First, the PDB structure of the system of

interest is placed in a box or sphere of solvent such as water as illustrated in Figure 4(a). In

order to avoid artifacts arising from the introduction of solvent molecules, energy minimization

and equilibration of the system is performed at room temperature to ensure that the system is

in a stable, near native state prior to data collection. Subsequently, one can apply a force to the

protein by fixing the position of one atom of the protein and adding a force to another atom.

Typical force application protocols include constant velocity pulling and constant force pulling

schemes. The resulting simulation trajectory and force recordings are analyzed by plotting

characteristics such as (force; N-, C-terminal extension)-curves for constant velocity pulling

or (time, N-, C-terminal extension)-curves for constant force pulling, as illustrated in Figure

4(b). In addition, key conformational changes such as hydrogen bond breakage and structural

rearrangements can be monitored by animating the simulation trajectory.

While SMD has proven highly successful in reproducing and explaining experimental find-

ings, the method does have certain potential limitations. For example, the current feasible

computational and data storage capabilities create a practical limit of the simulation timescale
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(a) Setup for pulling a protein structure at constant
force using SMD. One end of the structure is fixed while
a vectorial force is applied in a fixed direction.

(b) The N- C-terminal extension as a function of time in
I27. The extension plot of mechanical proteins display
a three-phase behavior each indicated by a “*” in the
plot.

Figure 4: The setup of mechanical unfolding of I27 using SMD and the N- C-
terminal extension as a function of time induced by forced unfolding.

that can be explored. In certain cases this requires application of a stretching force that is

many-fold higher than the force applied in AFM experiments. Additionally, a recent long

timescale (1 µs) folding study has suggested a bias in the potential force field towards mis-

folded states (64), meaning that results from very long simulations studying refolding pathways

may be representative of a biased energy landscape.

2.2.2 Titin I27

Proteins undergo dynamical changes in response to mechanical forces under physiological

conditions. It has been observed that the relative substructure placement, specific sequence

segments, and the vectorial direction of the applied force with respect to the structure of
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interest all play a role in the mechanical resistance of protein domains. A range of proteins

have had their mechanical properties characterized, among these are Titin Ig domains (I27,

I1,I32) (12; 69; 7) Fibronectin FnIII domains (141), Tenascin FnIII domains (137), Ubiquitin

(38), Protein G (114), Top7 (29), Barstar (176), Spectrin (111), GFP (48) among many others.

A key commonality between the majority of mechanical proteins is a collection of β-sheet at the

core of the structure forming a network of hydrogen bonds preventing mechanical unfolding.

Examples of the key hydrogen bond patches in Ubiquitin, I27 and Top7 are shown in Figure 5.

Here we will use the Titin 27th Ig domain to illustrate the current understanding of mechanical

resistance, henceforth referred to as I27.

Figure 5: Hydrogen bonding network of mechanical proteins.

When a striated muscle fiber is stretched as a result of muscle contraction, a counter force

develops, restoring the muscle fiber to its resting length. Titin, a major constituent of the
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muscle sarcomere, is responsible for the passive elasticity of muscle. In addition Titin plays

a key role in maintaining the integrity of the sarcomere against the shearing forces that arise

during stretching. Titin is a multi-domain protein spanning half of the sarcomere from the

Z disk to the M line. The I-band region of titin, responsible for the extensibility and passive

tension developed during stretching, is composed of tandem repeats of immunoglobulin (Ig)-like

domains and the small non-modular PEVK region. At the Z-disk of sarcomere, the N-terminal

region of titin comprised of Iglike Z1 and Z2 domains interacts with ligand telethonin, thus

anchoring titin to the Z-disc and preventing its shearing during muscle stretching. Protein

engineering and single molecule AFM have revealed the mechanical components that form the

elastic region of titin. While the PEVK region extends under weaker forces, it is the Ig domains

that unfold reversibly under high force and protect the protein from rupturing (113).

The I27 domain consists of two anti-parallel β-sheets extending from the N- and C-terminal

end of the structure, respectively. Applying two SMD protocols, one pulling with constant

velocity and one with constant force pulling (119), revealed the presence of a significant energy

barrier in this domain at an extension of ≈14 A (121) (measured as the distance between the

N- and C-terminal residues), constituting the key energy barrier preventing unfolding. These

results were consistent with AFM recordings, which revealed that each domain has a significant

mechanical unfolding barrier (124).

From further SMD studies it was determined that unfolding occurs as a three-phase process:

Phase I, the pre-burst extension, is signified by the breaking of H-bonds between β-strands A

and B resulting in a stable unfolding intermediate. Phase II is the burst event where separation
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of β-strands A’ and G occurs. It is associated with the highest resistance force during unfolding

due to the cooperative resistance offered by the hydrogen bonds formed between these two

strands. In Phase III, the post-burst extension, little further resistance to extension is observed

and all remaining hydrogen bonds are broken in a sequential manner (121). The SMD study of

I27 revealed a key feature of proteins with strong mechanical resistance: A shearing topology

connected by H-bond patches. Subsequent work revealed other distinct topologies displaying

mechanical resistance, which confirmed the initial insight gained from the I27 experiments,

namely that β-sheet folds do, in general, display stronger mechanical resistance than helix folds

(120).

2.2.2.1 Modeling the unfolding process

Given the above establishment of a central hydrogen-bond patch as the main energy barrier

preventing unfolding, the process has often been modeled as a simple two-state reaction with a

single well defined activation energy as the rate limiting step. Based on the results by Bell (16),

the force dependent unfolding rate, k(F ), can be described by k(F ) = A exp(∆G−F∆x
kbT

),with A

being a pre-exponential factor, T the temperature, kb the Boltzmann constant, ∆G the height

of the free energy barrier of the reaction under the absence of force, ∆x the physical distance

from native to transition state along the reaction coordinate, and F the pulling force. From this

relation we observe that force application serves to accelerate the unfolding process by lowering

the free-energy barrier. Assuming no significant refolding rate under force application, S(t)
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denotes the probability that a protein remains folded after time t, and can thus be determined

using a first-order rate equation:

dS(t)

dt
= −k(F )S(t) (2.10)

From Equation 2.10 we have that S(t) follows an exponential distribution. Recent work by Kuo

et al. has, however, shown this distribution to be a poor fit to experimental data, indicating

that the effect of force on the free-energy barrier is not well-modeled as a two-state process

(98). There is thus a need for a detailed model of the unfolding process to capture the details

of the energy landscape.

2.3 Machine Learning Methods

Machine learning collectively refers to a set of statistical procedures designed to approximate

a given target function for classification purposes either from a set of pre-labeled training data

(supervised learning) or from a set of uncategorized data (unsupervised learning).

2.3.1 Supervised Classification

Formally, the objective of a supervised classification protocol is to learn a function g from

a set of labeled examples (x, y) ∈ S assumed to be identically and independently drawn from

the same distribution D. In general we refer to examples as instances of the learning problem,

with each instance being made up of a feature vector, x, containing numerical values believed

to reflect key properties of the instance and a label, y, signifying the category the instance

belongs to. The objective is to determine a form and specific parameters of g such that the

function maps x ∈ R
n to values y ∈ Y with the smallest possible error.
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One of best characterized learning problems is that of binary classification. Binary classi-

fication refers to the special case where y ∈ {0, 1} and x has a fixed length for all instances.

A number of classification problems fall within this framework. For instance, consider an im-

age recognition application where one is interested in determining whether a specific object is

present in the image or not (e.g. a person or a bone fracture). In this case a human expert will

determine the label values for the training data and feature vectors can be derived from the

pixels of the image.

Since binary classification problems are very common, a number of algorithms have been

devised for discriminating two classes based on a set of features given a predefined form of

the function g (often referred to as the hypothesis space). The objective of all such methods

is to reduce the probability of misclassification with respect to a specific choice of g and the

distribution, D, from which the instances are drawn (though it is not necessary to know this

distribution to minimize the error). Formally, e(D, g) is given by:

e(D, g) = Pr(x,y),D(g(x) 6= y) (2.11)

In the following sections we cover a number of binary classification algorithms, all of which

are ultimately designed to minimize the expression in Equation 2.11.

2.3.1.1 Support Vector Machines

Support Vector Machines (SVM) classifier (44) is a so-called linearized learning scheme

which seeks to determine a hyperplane or a set of hyperplanes in the feature-space (or a space

of higher dimension than the feature-space) which can be used for classification or regression.
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In the case of binary classification, the idea is to determine the hyperplane that provides the

largest possible margin in separating two groups of data-points, as this hyperplane will be the

least sensitive to noisy data and consequently provide the most consistent model.

Formally, given labeled training data-points (xi, yi), with yi ∈ {−1, 1} and xi ∈ R
n, SVM

seeks to determine the parameters w and b for the planew·x+b = 0 that provides the maximum

margin between point for which yi = 1 and yi = −1, respectively. Assuming the training data

is linearly separable this plane can be found by finding the parameters maximizing the distance

between two hyperplanes parallel to w · x + b = 0, namely w · x + b = 1 and w · x + b = −1.

By use of geometry we find that this optimization problem can be solved by minimizing the

Euclidiean norm ||w||, subject to the constraints w ·x+ b ≤ −1 and w ·x+ b ≥ −1 for yi = −1

and yi = 1, respectively.

It is, however, rarely the case that experimental data is linearly separable, either due to

noisy data or to the fact that the two classes of data-points are not separable by a hyperplane

in the proposed feature-space. Two additions to the above outlined optimization problem are

made to accommodate these challenges. First, rather than requiring all data to be classified

with a margin of one, a so-called slack parameter, ξ, and a cost parameter C are introduced

to allow for data falling on the ’wrong side’ of the classification hyperplane. Further, by using

so-called kernel functions, Φ(x), to map the feature vectors into an alternative vector-space,

it is possible to construct classification hyperplanes in a higher-dimensional space, thereby

introducing non-linear classifiers in the original feature space. Including these two features

gives us the soft-margin formulation of the SVM classifier:
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minw,b
1

2
||w||2 + C

∑

i

ξi (2.12)

Subject to yn(w
TΦ(xn) + b) ≥ 1− ξi

ξi ≥ 0

In practice, the dual form of Equation 2.12 is often used, as this formulation only requires

one to define a closed-form expression for the dot-product of two feature vectors in a higher-

dimensional space rather than explicitly calculating the single vector representation. There are

a number of general families of kernel functions, including Gaussian, polynomial, and sigmoid,

that have been shown to be of great utility for constructing general purpose classifiers. De-

termining the appropriate parameters for a specific kernel function given a learning problem is

often done using a cross-validation procedure, through which the parameters that best tune a

validation metric can be chosen (see Section 2.3.3 for more details).

2.3.1.2 Decision Trees

A decision tree is a classification model structured as a binary tree where each internal

node denotes a split on a specific feature and each leaf node a classification. Algorithms for

constructing decision trees, such as C4.5, all work by iteratively finding the best axis-parallel

split on increasingly smaller subsets of the dataset in the feature space. This feat is achieved

through a greedy search with respect to some loss function (also called an impurity measure)



33

indicating how much the homogeneity in terms of classification label is increased if we split the

data set with respect to a specific feature.

Decision trees are simple interpretable models that are fast to construct. They do, however,

suffer from a number of short-comings mostly stemming from the simple hypothesis space

they work in. The fragmentation problem, in example, refers to the reduction in dataset size

occurring when the tree depth gets large and the resulting tendency of over-fitting. Essentially,

at some point there is too little data to reliably determine which feature to split on and what

the threshold for the split should be. As we shall see in the later section on meta-classifiers,

this tendency of over-fitting can to some extent be overcome through averaging over several

models built on the same dataset.

2.3.1.3 Alternating Decision Trees

The Alternating Decision tree (ADtree) algorithm (65) is an alternative to the traditional

decision tree in terms of mode of classification. In traditional decision trees each instance

will traverse a specific path in the tree, with the leaf node of that path determining the final

classification label. In the ADtree, on the other hand, each node is a voted stump classifier

that adds a piece of evidence in terms of a real valued score towards the final classification

decision; the final decision is then determined from the additive evidence of all stumps visited.

The weight each rule has in determining the final classification label is established using the

Adaboost algorithm discussed in Section 2.3.1.4.

The ADtree is thus not limited to the boolean logic characterizing decision trees, allowing

for the representation of both dependent and independent rules in one tree model, a feat that
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makes the ADtree a superior classifier to standard tree algorithms in many applications. An-

other advantage of the weighted voting scheme deployed by ADtrees is that they can often be

represented with a limited number of nodes (when compared to decision trees), thereby mak-

ing them more interpretable to human observers and thus suitable as a knowledge mining tool

(123).

2.3.1.4 Boosting, Bagging and Random Forest

Boosting, Bagging, and Random Forest are not in themselves classification algorithms, but

rather so-called meta-classifiers. A meta-classifier or ensemble classifier functions by combining

classification results from a collection of models through a weighted voting scheme. There are

several advantages to such strategies, especially for small datasets where a number of hypotheses

in a given hypothesis space may appear to me near optimal due to over-fitting. By using an

ensemble the average risk of choosing a inferior model is reduced. In addition, most often a

model constitutes a local rather than a global optima in the hypothesis space, thus by using

multiple starting points one is more likely to select a subset of models closer to the true unknown

function that is sought. Finally, the correct classification model may not be representable by

a single model in the chosen hypothesis space, but may be representable as a conjunction of

models.

The Bagging algorithm (short for bootstrap aggregation) (24) creates an ensemble of models

by iteratively creating a new model on a random sample of the original dataset. In each

bootstrap iteration the original dataset is sampled with replacement to create a modified dataset

of equal size. This type of ensemble construction is particularly advantageous when using
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classifiers that are susceptible to noise as the base model, since any ’noise’ in the original dataset

will be averaged out by the sampling procedure. In bagging the the expected performance on

unseen examples can be estimated using the ’out-of-bag’ examples, defined as the error in

classifying instances left out of the training dataset in each iteration, a feat that allows for

efficient parameter tuning.

The Random Forest algorithm (25) is similar to bagging in that it creates an ensemble of

classifiers by sampling the original dataset with replacement. The key difference between the

two methods is, that unlike bagging, random forest not only samples instances in the dataset

but also the feature space. The implication is that in any given iteration only a subset of the

available features are used in learning a model. By sampling both the feature and instance

space one is more likely to construct an ensemble of uncorrelated models. As with bagging

the optimal size of the feature subsets to be used in each iteration can be estimate from the

out-of-bag error.

The last, and arguably most successful, meta-classifier strategy is AdaBoost (short for

Adaptive Boosting) (66). AdaBoost works by training a collection of weak classifiers each

learned on a weighted distribution of the original dataset biased towards the instances wrongly

classified in the previous iteration. The reweighing of each instance is based on Equation 2.13,

where ǫm is the total error of the mth iteration over the entire dataset. The final classification

label of an instance is determined as a weighted sum over every classifier decision.

α =
1

2
ln

1− ǫm
ǫm

(2.13)
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2.3.2 Unsupervised Classification

In contrast to supervised learning procedure where a binary classification model is learned

by training on labeled example data, unsupervised learning is concerned with the problem of dis-

covering hidden structures in unlabeled data. Approaches that fall in the unsupervised learning

category include clustering techniques and methods for feature extraction and dimensionality

reduction (e.g. principle component analysis, single value decomposition, independent compo-

nent analysis) (77). Here we will focus on k-means clustering as an example of unsupervised

learning.

2.3.2.1 K-means clustering

Clustering refers to the task of partitioning a set of n data-points into subsets (called

clusters) such that objects within the same cluster are more similar to each other than to

objects in other clusters. In the case of the k-means partitioning the objective is to determine

the best partitioning of a dataset into k subsets such that each instance belongs to the cluster

with the nearest mean. While it is not computationally tractable to find a general partitioning

algorithm that will guarantee an optimal solution (the problem has been shown to be NP-hard),

there are heuristic procedures that will converge to a local optimum.

Formally, given a set of n instances, x = {x1, x2, . . . xn}, with each instance being a d-

dimensional real-valued feature vector, we wish to partition the instance set into k subsets

(k < n), S = {s1.s2, . . . sk}, such that the Within Cluster Sum of Squares (WCSS) is minimized:
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WCSS =

k
∑

i=1

∑

xj∈Si

||xj − µi||
2 (2.14)

The most common algorithm for minimizing the WCSS is Lloyd’s Algorithm (122). Follow-

ing an initialization step where k mean values {m1,m2, . . . mk} are determined by randomly

assigning data-points to clusters, the algorithm proceeds by alternating between an assignment

step and an mean update step. In the assignment step new clusters are formed by allocating

data-points to the cluster with the nearest mean-value as measured by a predefined distance

metric (often Euclidean distance), in the update step the cluster means are updated with respect

to the recent redistribution of data-points. These two steps are repeated for a fixed number of

iterations or until the process converges (the cluster assignments no longer change).

2.3.3 Evaluation of classifiers

A key challenge when constructing a binary classification models is to evaluate how well the

trained model can be expected to perform on unseen training data. In other words, to what

extent can we expect the observed performance on training data to generalize when predicting

the nature of new examples. Further, evaluation procedures are important in selecting the best

model from a collection of models.

Model evaluation proceeds in three steps: Partitioning of the original dataset into training

and test sets, calculation of evaluation metrics on the test set, plotting of evaluation metric

correlations over the test set.

Various procedures exist for dividing the original dataset into a training and a test set, each

appropriate for different dataset sizes. For large datasets the Holdout method, where 2/3 of



38

the dataset is used for training and 1/3 for evaluation is appropriate. If, however, the original

dataset does not have a sufficient number of instances, the resulting test set from a hold out

procedure may be too small and result in an overly pessimistic performance estimate. In this

case Cross-validation is a more appropriate procedure. In n-fold cross-validation the dataset

instances are distributed into n equally sized subsets. Subsequently n models are trained on a

training set comprised of n− 1 subsets and evaluated on the remaining subset. The extreme of

this procedure is the leave-one-out evaluation where only one instance is left out in each cross-

validation iteration. Most often, the leave-one-out method is too computationally expensive,

thus n ∈ {10 . . . 20} is commenly used.

2.3.3.1 Metrics

For binary classification there are four possible classification scenarios for an instance: True

Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). These metrics

are often summarized in a so-called confusion matrix:

N PPos PNeg

NP TP FN

NN FP TN

The sum of the columns in this table gives the count of positively (Ppos) and negatively

(PNeg) predicted instances, respectively. The sum of the rows indicate the actual counts for

positive (NP) and negative (NN) instances in the training data. N indicates the total number

of instances.
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The most common question we would want answered is ’How likely is an instance to be

predicted correctly?,’ or in other words, what is the Accuracy of the model. Equation 2.15

defines P (ŷ = y), where y is the true label of the instance and ŷ is the predicted label, as

the proportion of all instances predicted correctly. Similarly the error rate can be obtained as

1−Accuracy.

Accuracy = P (ŷ = y) ≈
TP + TN

N
(2.15)

The accuracy measure does, however, not tell us anything about how prediction errors are

distributed among the two prediction classes. Specifically, we want to know what the type I

and type II error rates that can be expected from a given model are. Sensitivity as defined

in Equation 2.16 estimates the conditional probability of a positive example being predicted

as positive, and is approximated by the number of TP instances divided by the number of all

known positive examples. The type II error of a model can be estimated as 1− sensitivity.

Sensitivity = P (ŷ = +|y = +) ≈
TP

NP
(2.16)

In the same manner, we define Specificity as the probability that a negative instance will be

predicted as negative. This probability is estimated as the proportion of correctly predicted neg-

ative examples divided by the total number of negative instances as indicated in Equation 2.17.

The type I error of a model can be estimated as 1− specificity.
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Specificity = P (ŷ = −|y = −) ≈
TN

NN
(2.17)

2.3.3.2 Plots

The above presented metrics do, however, suffer from the limitation that they are sensitive

to major skews in the class distribution of the dataset. This feat is overcome by so-called ranking

metrics which summarize the expected model performance for all possible class distributions

in one metric. One such metric is the receiver operating characteristic (ROC) curve. The

area under the ROC curve (AUC) is a measure of how good the confidence rated predictions

of a classifier are. Consider the case where two models both misclassify a single instance as

negative but with different confidence, say 0.8 and 0.41, respectively. Judging these two models

by accuracy, we would deem their performance equal. Using ROC, however, we would say that

the latter of the two performs the best. The logic behind this notion is that a classifier which

is less confident in its incorrect predictions is more desirable.

Figure 6 illustrates the use of ROC in classifier evaluation. The true positive rate (sensitiv-

ity) is shown as a function of the false positive rate (1-specificity), and is determined by either

sampling different class distribution from the dataset or ranking instances by confidence values

and calculating the metrics at threshold cut-offs. The better a classifier performs the closer

it will be to the top left-hand corner of the plot; a random classifier will produce a diagonal

line from the bottom left-hand corner to the top right-hand corner. A classifier is said to be
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strictly dominating another classifier if at every point of the curve it is to the left and above

the competing classifier.

Figure 6: An example of a ROC plot comparing three classifiers 1, 2, and 3.
Classifier 1 represents the worst possible classifier doing no better than random
for any FPR. Both classifier 2 and 3 dominate 1 over the entire range of FPR,
with 2 having the highest AUC ROC.

2.4 Model System II: Peripheral Membrane Targeting Domains

The majority of genomic proteins are multi-domain units (more than 80% in multicellular

organisms) consisting of several independently evolving sub-sequences, each displaying a unique
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fold and functional role within the context of the host-protein. To understand the role of the

host-protein in a broader context, knowledge of each of its individual functional units is key.

Traditionally, fold and biological function has been believed to display a one-to-one relationship

with the fold uniquely dictating the functional role of the domain (215; 27). While this assertion

holds true in some cases, it has been observed that even domains of highly similar fold can vary

greatly in function, in fact only 38% of homologous catalytic domains sharing more than 60%

sequence identity were found to be completely functionally identical, while 43% of these differ

substantially in both substrate and co-factor specificity (167).

Numerous cases of protein folds illustrating the feat of high functional discrepancy in spite

of structural similarity can be found among so-called Reversible Membrane Binding Domains

(RMBDs). RMDBs exist in a wide-array of cytosolic proteins, and serve the task of translocating

their host-protein to a membrane surface in response to a signal induced change in membrane

composition (see Figure 7). Given the diversity and complexity in membrane structures it is

not surprising that many membrane and lipid binding protein domains can be found in the

eukaryote proteome (82), in fact RMDBs have been observed in such diverse domain families

as C1 (33; 190; 210), C2 (33; 164; 134), PH (61; 109), FYVE (Fab1/YOTB/Vac1/EEA1)

(186), PX (phox) (209), ENTH (Epsin N-terminal homology)(28), ANTH (AP180 N-terminal

homology)(28), BAR (Bin/Amphiphysin/Rvs) (74; 188), FERM (Four point one-ezrin-radixin-

moesin) (26), tubby (30), and recently PDZ domains (68).

The reversible binding of RMDBs to membranes (plasma-membranes in particular) serves

to transiently compartmentalize the cytosolic space by clustering their host proteins at specific
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Figure 7: A PDZ (cyan) domain interacts with both membrane and other protein
domains (represented by ovals) thereby regulating protein interactions networks
at membrane surfaces.

membrane locations. This co-localization helps reduce the dimensionality of the space in which

proteins interact by effectively increasing the local concentration of interacting parties, thereby

allowing for greater efficiency and specificity in the signal transduction processes (127).

The recruitment to membranes can occur by both specific binding to lipid-head groups

and by non-specific binding to membranes (36). The first examples of lipid-specific membrane

binding were found in protein kinase C (PKC), a core component of several signaling pathways.

PKC contains two C1 domains that bind phorbol esters, diacylglycerol (DAG), and membranes

(158; 88) as well as a C2 domain binding Ca2+ (in the isoforms α,βI,βII,γ) thereby facilitating

binding to acidic phospolipid membranes by making the overall electrostatic profile of the

domain more positive. In general, a number of properties have been found to be of importance in
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membrane binding (albeit not all to the same extent in all domain families), these include: The

nonspecific electrostatic attraction between anionic membranes and cationic surface residues,

association of hydrophobic surface residues with the membrane hydrocarbon core, and the

specific interaction between key residues and lipid head-groups.

While experimental approaches have been successful in identifying novel RMBDs (33; 49),

and efforts using FRET (42) and spin labeling (9) have been valuable in shedding light on the

principles of lipid-binding, large scale identification and description of these domains remains

labors-intensive and expensive. Computational protocols offer an efficient alternative to exper-

imental identification procedures, allowing for rapid characterization of thousands of domains.

Membrane binding properties are, however, difficult to predict, as they are not determined

by well-defined sequence motifs or a specific structural composition. PH domains have, for

instance, been found to span a large range of binding affinities though being very similar struc-

turally (109; 180). For this reason a more sophisticated method for functional classification of

RMBDs is necessary.

2.5 Protein Structure Modeling

Functional properties of a protein domain, such as enzymatic activity (5) or the ability to

interact with other proteins (75), can often be derived from the approximate spatial arrangement

of its amino acid chain in the folded state. Knowing the structure of a newly discovered protein

is thus highly valuable in determining the role it plays in biological processes, and can serve

as an important stepping-stone in generating hypotheses or suggesting experiments to further

explore its nature. While the Protein Data Bank (PDB) (10) provides experimentally solved
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structural data for an increasing number of protein domains, solving protein structures remains

costly, time-consuming, and in certain instances, technically difficult. Consequently, the vast

majority of protein sequences available in public databases do not have a solved structure at

this point in time. More than ≈10 million unique protein sequences have been deposited, while

only a little more than 70,000 have had their structures solved. To bridge this gap, a wide

array of computational protocols for protein secondary and tertiary structure prediction from

a target sequence are continuously being developed.

2.5.1 Approaches to structure modeling

Computational structure prediction methods can in principle be divided into two cate-

gories, template-based and template-free modeling, with some composite protocols combining

aspects of both. Methods in the former group include Comparative Modeling methods (125),

which, given a target sequence, identify evolutionarily-related templates with solved structure

by sequence or sequence-profile comparison (e.g., BLAST and HHpred (191)), and construct

structure models based on the scaffold provided by these templates. Alternative methods build

on the observation that known protein structures appear to be comprised of a limited set of sta-

ble folds. It is thus often found that evolutionarily distant or unrelated protein sequences share

common structural elements, a feat utilized by threading methods, such as MUSTER (206),

SPARKS and RAPTOR (207; 208). It has been demonstrated that in some cases incorporating

structural information to match the query sequence to potential templates enables similarity in

fold to be detected despite lack of explicit evolutionary relationship.
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Template-based modeling can generate useful approximate models for a large number of

sequences with relative ease if close templates are available. Current methods do, however,

become unreliable when there are no homologs with solved structures in PDB or when templates

under consideration are distant homologs (6). Template-free methods offer an alternative for

modeling such difficult cases. Pure ab initio methods (117; 179; 205) aim at building a 3D model

using only primary structure information, the successful application of such methods is, however,

limited to short target sequences (<120 residues) at present. In addition, a number of semi-ab

initio approaches exist that assemble short structural fragments or use statistical information

to spatially restrain the building of a model structure. Finally, so-called composite-methods,

which combine subsets of the previously mentioned approaches, have been very successful in

recent Critical Assessment of Protein Structure Prediction (CASP) competitions, most notably

the TASSER methodology developed by Skolnick and Zhang (214).

While all of the aforementioned methods have made significant contributions to the field

of structure prediction, it remains challenging to accurately predict the structure of a target

sequence with a sparse sequence profile with no close homologs in the PDB. It has been esti-

mated that 76% of the 4.2 million models deposited in MODBASE (157), a database repository

for theoretical structure models, are built from remote homologs. Thus any improvement in

structure prediction methods addressing these cases will have a significant impact on the utility

of such theoretical models, and our ability to assign functional properties based on common

fold patterns.
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2.5.2 RaptorX: A server for protein structure prediction

For many of the computational protocols presented in this work, constructing a structure

model from a protein sequence is a key step. In this final section we present a public web-server,

RaptorX, developed in conjunction with other research projects, to automate the practical steps

necessary for constructing a structure model of a target sequence.

As a reference, Figure 8 outlines the work-flow of the three modeling tasks users can ac-

complish using the RaptorX server, namely tertiary structure prediction, secondary structure

prediction and custom alignment. Each task is decomposed into a number of timed conceptual

steps with the logical flow from one step to the next indicated by the connecting arrows.

Template-based modeling critically depends on the quality of the target-template alignment.

Previously, programs such as RAPTOR have been successful in efficiently optimizing the general

protein threading scoring function and are among the best structure prediction protocols avail-

able as demonstrated at previous CASP evaluations (207). RAPTOR and other state-of-the-art

threading programs are, however, limited by their linear scoring function, which cannot accu-

rately represent any correlation that may exist among the features used for assessing alignment

quality (for instance, secondary structure and sequence profile are known to be correlated).

Further, the application of structural information in the alignment process does not take into

consideration the level of similarity between target and template. Using structural information

when modeling a target with a high-similarity template might introduce noise, while structural

information becomes relatively more important when modeling a challenging target with sparse

sequence profile.
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Figure 8: RaptorX job flow. For each step details on the computation and ap-
proximate completion time for a 200 residue target sequence are given (for step
3 the indicated time is for a full template library scan). Blue boxes indicate
mandatory steps, green optional step, and grey resulting output. The blue, red,
and yellow directed paths indicate the flow for structure prediction, custom align-
ment jobs, and secondary structure prediction, respectively. Dashed/solid paths
indicate the following step to be optional/required.
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To better address cases where no close template exists, a number of novel modeling strategies

are introduced in the new software RaptorX (153), taking a completely different approach than

that used in RAPTOR. First, a profile-entropy scoring method, which takes into consideration

the number of non-redundant homologs available for the target sequence and template structure,

is used to assess the quality of information content in sequence profiles (151), thereby allowing

us to optimize the modeling strategy specifically to the target. Second, a Conditional Ran-

dom Fields (CRF) for integrating a variety of biological signals in a non-linear threading score

function not previously used by any threading software(150) is introduced. Finally, we have im-

plemented a multiple-template threading (MTT) procedure (152), enabling the use of multiple

templates to model a single target sequence. Unlike other MTT methods which mainly increase

the alignment coverage, our MTT method can partially correct errors in pairwise alignments

by exploiting inter-template similarity and thus improve the final model quality. To supple-

ment structure prediction, RaptorX also provides domain parsing of long protein sequences and

disorder prediction to help users interpret secondary and tertiary structure prediction results.

Aside from structure modeling, RaptorX server can be used to obtain custom pairwise

target-template alignments and to generate an arbitrary number (<1000) of alternative pairwise

alignments through probabilistic sampling as well as to generate single-target-multiple-template

alignments. Further, RaptorX also provides a Conditional Neural Fields (CNF) based prediction

protocol for determining the 3-state or 8-state secondary structure distribution for each residue

in a target protein.



CHAPTER 3

SCORING OF MASSSPECTRAL SEARCH RESULTS IN LARGE-SCALE

PROTEOMICS STUDIES

3.1 Introduction

The analysis of composite protein mixtures by use of mass spectrometry techniques has

become a standard methodology for characterizing the proteomic profile of a cell or tissue

sample (2). Mass spectral data has proven valuable in addressing complex problems such

as the reconstruction of metabolic pathways (8; 73) and protein-protein interaction networks

(71; 78), and is of great utility in applications spanning from the quantification of bacterial

proteomes (115) to the investigation of infectious states in soybeans (198).

The basic principles of tandem mass spectrometry (MS/MS) (1) experiment for protein

identification are illustrated in Figure 9. First, a protein sample is extracted from the cell

culture of interest and digested using one of a number of site specific digestion enzymes, such

as Trypsin. This process results in a mixture of short peptide fragments (typically on the order

of eight to ten residues) stemming from all proteins present in the sample. Before conducting

the mass-spectrometry analysis, a rough separation of protein fragments is typically done using

HPLC to group peptides of similar mass together.

In the mass spectrometer the peptides are ionized so that they will carry one or more charges

before being sent into the first mass analyzer. Here the mass of the individual peptides present

50
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in the sample is determined and based on the resulting mass spectrum. A second process

then iterates through the unique spectral peaks to characterize each of the peptide fragments.

A unique “spectral fingerprint,” by which the sequence of a fragment can be determined, is

obtained by breaking the peptide into its amino acid components and generating a second mass

spectrum from this fragmentation. The end result of the experimental procedure is a large

(often > 20000) collection of mass spectra each corresponding to a peptide fragment in the

original sample. To efficiently use the MS/MS technique in large scale protein characterization

studies, robust and consistent data analysis procedures are required in order to confidently

identify the originating peptide of a given spectrum and ultimately its parent protein. To this

end, the combination of spectral data and the vast amount of genomic sequence information

available in public databases has proven extremely rewarding. Algorithms such as Sequest (53),

Mascot (154), and X!Tandem (45) (amongst others (168; 135)) can correlate thousands of mass

spectra with theoretically derived peak lists from database peptide sequences, thus effectively

automating the interpretation of experimental data. For the above mentioned algorithms, the

result of a single spectrum searched against a database typically consists of a set of highly

correlated peptide sequences along with a correlation score and a number of additional metrics

intended for validation of the specific peptide-spectrum match.

There is, however, often no direct interpretation of these scores in terms of statistical sig-

nificance (161), therefore simply ranking well-correlated peptides by metrics provided from the

initial database search procedures and selecting a cut-off for filtering true matches from false

ones is not desirable. Depending on the choice of threshold such a procedure will either be too
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Figure 9: The principle steps of a tandem mass spectrometry experiment.

conservative or yield a high rate of false-positives (185). On the other hand, manual validation

of the large amount of data produced by MudPIT style (200) experiments would be time con-

suming and out-of-tune with the high-throughput experimental work-flow characterizing the

field at present. Thus, to ensure an effective production pipeline, a fully automated method

for confident validation of the results produced by the above mentioned search algorithms is

essential.

A number of procedures for validating peptide-spectrummatches have been suggested, either

as direct extensions of the Sequest or Mascot algorithms or as supplementary post-processing
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tools (182; 131; 169; 55). Our focus here will be on the analysis of the search results produced by

the Sequest algorithm (53), and how to efficiently improve the number of true peptide-spectrum

matches identified at a controlled false positive rate.

Currently, the most widely used tool for evaluating Sequest search results is the Peptide-

Prophet methodology developed by Keller et al. (90; 89). By use of an empirically determined

probabilistic mixture model based on the fitting of assumed distributions of various metrics (be-

lieved to reflect the reliability of the spectrum-peptide match) the search results are evaluated.

The procedure returns a probability estimate of a peptide being present given the database

search results. While giving much higher sensitivity measures than simple threshold based

methods, this approach does suffer from two short-comings: First, there is no theoretical work

supporting the assumptions made regarding the distributions used to fit the features utilized.

Second, the model may not be easily extendable when potentially discriminatory information

from novel types of data become available.

Machine learning provides an attractive platform for addressing the above concerns since

no prior assumptions about the distribution of the individual features have to be made. In

addition, the flexibility in feature handling of most machine learning algorithms makes further

improvement of predictive power and robustness straight forward as new information becomes

available. In recent years a number of bioinformatics problems have been addressed using

machine learning (104), for example, the prediction of protein-DNA interactions (14; 15; 106)

and protein-membrane interactions (16). Likewise, previous works have used machine learning

methods for identifying true peptide-spectrum matches through different formulations of the
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problem. Anderson et al. (4) were the first to apply such procedures to mass spectral data in

their study of Support Vector Machines (SVM) classification of Sequest search results from ion-

trap data. Razumovskaya et al. conducted a similar study demonstrating how a neural network

could improve the filtering of Sequest search results to be superior to simple threshold-based

procedures. In a study using ion-trap data, Elias et al. demonstrates how the identification

of peptide-spectrum matches can be improved through probabilistic modeling of fragment in-

tensities observed in the spectrum at hand (52). Ulintz et al. (194) developed an approach

using tree-based ensemble algorithms and demonstrated that these were superior to the SVM

protocol used in previous studies. A recent study has further demonstrated how physiochemical

properties of the peptide in question can provide discriminatory power between true and false

matches without using database search engine scores (59). Finally, it has been demonstrated

that so-called consensus approaches in which the combination of information from several dif-

ferent database search schemes can provide additional discriminatory power.

From the above review it is clear that a variety of supervised classification regimens, using

many different sources of information, have been tested thus far. Here we present a work that

improve on three separate aspects on the above mentioned machine learning procedures for

identifying correct peptide-spectrum matches from the Sequest database search procedure.

First, our classifier performs 6% better as measured by the area under the ROC compared

with results by Ulintz et al. (194) using the same dataset. The improvement is achieved by

introducing a number of global dataset features that take into consideration factors such as the

total number of peptide-spectrum matches belonging to a given protein and the percentage of
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potentially observable peptide sequences from a given protein actually appearing in the search

result.

Second, by using the Alternating Decision Tree (ADTree) (65) classification algorithm we

are able to represent the developed model as a tree with a limited number of nodes, thereby

rendering the model interpretable to humans. While this trade does not add anything in terms of

predictive power, interpretability of the model makes the procedure clearer to experimentalists

and allows us to compare the prediction rules to expert rule-of-thumb, giving an empirical

validation of such rules.

Third, we build a straight-forward probabilistic procedure for extending the machine learn-

ing identification of the peptide-spectrum matches into the protein prediction problem (i.e.

identifying the proteins contained in the initial sample) by converting the classification scores

into true probability estimates by means of logistic calibration. The latter of the two problems

is often of most interest to experimentalists, as one is interested in knowing the probability of

a protein being in the sample, not simply which peptide fragments were confidently identified.

3.2 Methods

3.2.1 Reference Dataset

Our method was tested using a publicly available MALDI MS/MS dataset obtained from

a sample of 246 known proteins (58) published on ProteomeCommons.org (57). The peaklists

were searched using the Sequest algorithm (53) on the IPI human FASTA database ver. 3.14

(for comparison with results reported by Ulintz et. al (194)) with the post-translational mod-

ification methylation, oxidation, and phosphorylation. Comparison with the PeptideProphet
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(90; 89) validation results of the Sequest output was done using output from ver. 4.1. The

PeptideProphet ROC curve and evaluation metrics reported below were obtained from this

output.

Figure 10: The Sequest rank distribution of correct database hits.

To correctly evaluate our approach the original dataset was split into two, one for method

validation and one for training the machine learning protocols. Each of these datasets consists of
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a total 43,348 examples of which 2,035 are correct peptide-spectrum matches. In contrast to the

comparison works by Ulintz et al., (194) all 10 top-ranked tentative peptide matches from each

spectrum searched are included in the training and testing set. Including all potential matches

is important, as 34% of the true matches have been found not ranked first as illustrated in

Figure 10. Furthermore, only including the top one or top five ranked matches will exclude

some potentially difficult to classify instances that may add valuable information for identifying

novel proteins.

3.2.2 Classification Algorithms

Models were constructed using four different binary classification procedures, namely Ad-

aBoost (66) applied to C4.5 (159) and Willow tree (103), Random Forest (25) applied to C4.5,

and Alternating Decision tree (65) (in the following denoted ABC4.5, ABWillow, RFC4.5, and

ADtree, respectively). All algorithms used in this study are supervised classifier, a model does

thus need to be trained on a labeled training dataset (training mode) and can thereafter be

used to predict new examples without further parameter tuning (prediction mode). Casting

the problem in a binary classification framework, we refer to each peptide-spectrum match as

an instance (in the dataset), with the ith instance consisting of a feature vector xi ∈ [1 × n]

and a label yi ∈ {0, 1}, with n denoting the feature count. All algorithms described construct

a function, g(x), that minimizes the empirical risk of misclassifying an instance, under the

assumption that all instances are drawn with respect to the same (unknown) probability dis-

tribution. In the following we limit ourselves to describing conceptual details of the utilized

algorithms, referring the reader to cited works for technical details.
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C4.5 and Willow tree are both decision trees algorithms iteratively growing a classifier tree

by finding splits of the dataset with respect to the feature value which results in the greatest

gain in Shannon entropy (a function used to quantify how homogeneous the instances reaching

a certain leaf node in a tree classifier are with respect to instance label). The procedure halts

when all instances in a leaf node are of the same class or a pre-defined stopping criterion has

been reached.

We apply two so-called meta-classifier techniques to the above mentioned tree algorithms,

namely AdaBoost (66) and Random Forest (25). Both work by training a collection of decision

trees over iteratively modified versions of the original training set and combining the prediction

power of these models into one superior ensemble-classifier. The AdaBoost procedure iteratively

updates importance weights for the dataset instances for each tree model constructed during

training. The distribution of weights is changed such that higher weight is given to instances

misclassified in the previous iteration. The final classification of an instance is made by the

majority vote on classes returned by the tree collection. In the case of Random Forest each tree

is trained on a bootstrap sample of the available instance and each node split only considers

a number m of the available features (where m << n). The final class label of an instance is

assigned by taking the mode of the class labels returned by the constructed tree set.

The ADtree algorithm also utilized the AdaBoost technique, but unlike ABC4.5 and AB-

Willow it has the advantage of producing models that are easily represented as a tree with a

limited number of nodes (less than 20). This property is achieved by constructing a tree that is

a conjunction of rules which all contribute real-valued evidence toward a given instance being
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classified as either true or false. Unlike traditional tree models the classification of instances by

ADtree is thus not determined by a single path traversed in the tree, but rather by the additive

score of a collection of paths. The ADtree is graphically represented with two types of nodes:

Elliptical prediction nodes and rectangular splitter nodes (see Figure 2 for an example). Each

splitter node is associated with a value indicating the rule condition: If the feature represented

by the node is less than or equal to the condition value for a given instance, the prediction

path will go through the left child node, otherwise the path will go through the right child

node. The final classification score produced by the tree is found by summing the values from

all the prediction nodes reached by the instance, with the root node being the precondition of

the classifier. If the summed score is greater than zero, the instance is classified as true.

In addition to providing a classification label, the tree score of an instance (the margin

score) is a measure of confidence in the classification label, a feature that makes it possible

to convert these into true probability estimates. To this end we use Logistic calibration (67),

providing a one-to-one mapping between the marginal score and a probability estimate.

3.2.3 Evaluation Metrics

All instances will be classified into one of the following categories: True Positive (TP),

False Positive (FP), True Negative (TN), or False Negative (FN). By determining the count of

instances in each category, the following quality metrics can be estimated:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN



60

Specificity =
TN

TN + FP

Net.prediction =
Sensitivity + Specificity

2

Additionally, the area under the curve (AUC) of the receiving operator characteristic (ROC) is

used to have a metric that is unbiased towards the class distribution of the dataset. The ROC

is defined as the (1-specificity, sensitivity)-curve, with each point corresponding to a specific

threshold for class separation. An AUC value of 1 corresponds to an error-free performance

over the entire range of thresholds, whereas a random classifier achieves an AUC value of 0.5.

In addition to the AUC measure we use Precession-Recall Curve (PRC) (precision = TP+TN
TP+FP

and recall=sensitivity) to judge whether a classifier is truly superior to another, as it has been

shown that domination in ROC-space does not always result in superiority in PRC-space (46).

3.2.4 Availability and requirements

The MALDI TOFTOF dataset used for constructing and validating the procedure is publicly

available on ProteomeCommons.org https://proteomecommons.org/dataset.jsp?i=71683

(57; 58). The code for constructing the models presented is freely available as part of our in-

house machine learning workbench, MALIBU (103), available at http://proteomics.bioengr.uic.edu

/malibu/. MALIBU is used for both training and validation of the classifiers. All algorithm

parameter tuning was done with standard settings for the MALIBU package(103).

3.3 Results

The developed machine learning protocol for identification of true peptide-spectrummatches

was constructed in three steps: calculation of features for representation of each instance in the
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dataset; construction of classification models based on the annotated instances; and evaluation

and interpretation of the resulting models. In the following, we present the details of each

step and describe a method for extending the developed protocol into a probabilistic protein

identification method.

3.3.1 Feature Calculation

A summary of the features utilized in this work can be seen in Table I. We divide the

features into three groups reflecting how they are derived. The Sequest group contains features

that can be obtained from the output of the Sequest algorithm, such as the correlation score

(Xcoor) between the theoretically calculated and experimentally obtained spectra and the

difference between parent ion mass and database peptide mass, (deltaMH) amongst others

(Sp, SpRank, deltaCn, ionfrac). As these values are well characterized elsewhere (90; 53) we

will not go into further detail here.

The Published group contains features that have been used in previously published results

on classifier construction for the problem at hand. The computations needed to derive these

features are self-explanatory given the description in Table I. We will refer the reader to the

study by Ulintz et. al. for further details on computation and the underlying intuition leading

to the inclusion of these features (194).

The Novel group consists of features not previously included in other machine learning

formulation of this classification problem, and includes features for quality assessment of the

spectral data as well as probability measures specifying the likelihood of observing the entire

dataset. Six novel features are calculated and their rationale is described below.
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Group Name Meaning Origin

SEQUEST

Xcoor Rank score from the SEQUEST search. SEQUEST
deltaMH Difference between mass of parent ion and

identified peptide mass.
SEQUEST

deltCn Difference between Xcoor of the highest
ranked peptide and the peptide in question

SEQUEST

SP score Preliminary score of peptide in search proce-
dure

SEQUEST

SP rank Initial rank of peptide based on SP-score SEQUEST
Ion fraction Percentage of ions in the mass spectra that

could be correlated with the spectrum
SEQUEST

Published

Number of tryptic Number of tryptic cleavage sites in the pep-
tide targets (NTT)

Calculated

Peptide lenght Residue count of the peptide Calculated
Summed Intesity Sum of peak intensities in the spectra Calculated
Mobil proton fac-
tor (MPF)

Measure of the proton mobility in peptide Calculated

C-terminal
Residue

Amino acid residue at c-terminal (Arg=1,
Lys=2, Other=3)

Calculated

Mass-window pep-
tides

# of DB peptides within prespecified mass-
window mass-window of the parent ion

Calculated

Proline count # of Pro residues in the peptide Calculated
Arginine count # of Arg residues in the peptide Calculated

Novel

Intensity Mean The mean of the peak intensities Calculated
Intensity Std. Std. of the peak intensities Calculated
Intensity bins The distribution of intensities in 20%-bins Calculated
Protein Hit Count
(PHC)

Probability score of observing x number of
peptides from parent protein

Calculated

Potential Cover-
age Ratio

The potential sequence coverage Calculated

PTM percentage The percentage of possible PTMs found in a
peptide

Calculated

TABLE I: Features used in the machine learning formulation. For each individual
feature we give a brief description and indicate whether the feature was obtained
from the output of the SEQUEST algorithm or calculated from the identified pep-
tide, the mass spectrum, or database statistics. The features have been divided
up into three subgroups SEQUEST, previous, and novel, denoting those features
that can be derived directly from the SEQUEST algorithm output, those used in
previous studies of the identification problem, and those introduced in this work,
respectively. A detailed explanation of the features can be found in the main
text.
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Intuitively, one would be more confident in identifying a borderline peptide-spectrum match

as being true if other peptides from the same parent protein are observed in the search result.

In other words, given prior knowledge, one would favor specific peptide-spectrum matches over

others with similar correlation values, due to our overall knowledge of the search result. This

intuition leads to the implementation of two novel features, namely the Protein Hit count (PHC)

and the Potential Coverage Ratio (PCR).

We formulate the PHC as the following probability: Given a database containing a certain

number of observable peptide D (with respect to the mass limitations of the instrument used

for analysis, the digestion enzyme utilized, and the post-translational modifications specified

in the database search) and a search result containing P samples from this database, we want

to calculate the probability that k or fewer observations of a given protein would be made by

randomly sampling from this database. For each peptide stemming from a protein that has

been matched k times in a search we will specify the PHC by the binomial distribution, where

n is the number of potentially observable peptides from this protein:

PHC =
k

∑

i=1









D

P









(
n

D
)i(1−

n

D
)P−i

The above probability is estimated using a Poisson distribution and is reported in negative

log-space in order to avoid numerical artifacts. Notice that since both the database size and

the number of spectra are included in the calculation of the above term, any learning algorithm

trained on a specific training set with given a database and a collection of spectra should work
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equally well on datasets obtained from a different database size searched with a different number

of spectra.

One concern that may be raised when utilizing information from the parent protein, as

is the case with PHC, rather than the peptide-spectrum match itself, is how such features

will handle the fact that some peptides can be mapped to several parent proteins due to the

existence of orthologs and homologs in the database searched. One should, however, recall that

a spectrum and a peptide fragment match provided by the Sequest protocol is always linkable

to the specific parent protein that gave rise to the theoretical peptide-fragment matched to

the spectra. Consequently there is never any doubt which parent protein the specific peptide-

fragment should be counted towards. In fact, in instances where two proteins (one present in

the sample and one not present) have a certain degree of sequence similarity the PHC may

actually help weed out false-positive hits from distant homologs, as hits from such homologs

will have a lower PHC (and PCR) than hits from the protein actually present in the sample.

The PCR is simply defined as the percentage of residues belonging to observable peptide

fragments that are observed in the set of peptide-spectrum matches from the Sequest search.

Further, we include the PTM percentage, which denotes the percentage of potential post-

translational modifications (given the current search settings) included by Sequest to obtain

the present correlation scores. The logic behind including the PTM percentage is as follows:

PTMs are often functional modifiers of proteins. The need for the hypothetical inclusion of

a high-percentage of the potential PTMs in a short peptide fragment in order to get a good

correlation with the spectra at hand could indicate that the match is not a true-positive as it
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seems unlikely to have a large number of functional modifiers close together in a relative short

peptide-fragment.

Previous works (11; 192) have shown that an automated quality assessment of the spectral

data can help validate peptide-spectrum matches by sorting out low quality spectra. The

simplest features incorporating this notion are Intensity mean and Peak count, which specify the

average intensity of all peaks in the raw spectrum and the total number of peaks, respectively.

Both of these values are often used in human assessment of spectral quality (92) and have

discriminatory power in sorting out spectra of poor quality (192).

3.3.2 Classifier Performance

We compare the performance of a collection of classification algorithms using datasets in-

cluding different subsets of features. One set includes the Sequest and Published feature-groups

from Table I and another one includes all features, referred hereinafter as the S+P dataset and

All dataset, respectively. Each dataset is divided into a training set for classifier construction

and parameter tuning (by means of cross-validation), and a distinct test dataset for evaluating

the classifier performance. We choose to evaluate our method using a test set rather than by

using cross-validation on the training set to ensure that dependencies between features from

different instances within the dataset do not inflate the performance metrics (this concern is

particularly relevant for the PHC feature).

Table II shows the performance of a number of classifiers on the S+P and All datasets.

The high ratio between negative and positive instances in the datasets means that accuracies

correlate strongly with prediction performance on negative cases. Consequently, the accuracy
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Feature groups Algorithm Accuracy Sensitivity Specificity AUC ROC Net pred.

All

ABWillow 0.97505 0.56504 0.99385 0.96379 0.77945
ABC4.5 0.97361 0.58815 0.99269 0.94821 0.79042
RFC4.5 0.97276 0.57212 0.99259 0.87901 0.78235
ADtree 0.97688 0.7248 0.98988 0.96923 0.86118

SEQUEST
ABWillow 0.96951 0.48762 0.99336 0.90723 0.74050
ABC4.5 0.97258 0.57018 0.99250 0.907084 0.78139

Published RFC4.5 0.97228 0.58961 0.99122 0.912744 0.79042
ADtree 0.96925 0.48762 0.99310 0.90604 0.74032

- PeptideProphet 0.9688 0.54 0.99 - 0.765

TABLE II: Validation metrics for a collection of machine learning algorithm runs
over testsets containing feature from the groups denoted in the feature table

and specificity metrics, which for both datasets are well above 98%, are not instructive for

comparing the performance. Better comparison can be made with Net Prediction and AUC,

as they are insensitive to skews in class distribution. Gauging these metrics, it is clear that

the novel features introduced in this work provide added discriminatory power between true

and false instances. The best performance is achieved by the ADtree algorithm with the All

dataset, giving a 6% higher AUC ROC than the best performing algorithm in an S+P dataset.

When comparing the performance of the same algorithm on the two dataset, we observe that

3 out of 4 algorithms perform better on the All than on the S+P dataset, a fact that is also

clearly illustrated in the ROC curves in Figure 11 (left). Here we observe that the ADtree

and ABwillow algorithms applied to All dataset outperform all other classifiers over the entire

range of False Positive Rates (FPR), whereas the ABC4.5 on the All dataset falls somewhere in

between these two and the results from classifiers trained on the S+P dataset. In addition, all
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classifiers trained on the All dataset perform better than the PeptideProphet procedure over the

entire FPR range. When comparing the classifiers trained on the S+P feature collection to the

PeptideProphet result, the picture is not as clear. As can be seen on the enlargement in Figure

1 (left), the machine learning algorithms do in general (regardless of feature set) perform better

than PeptideProphet at lower FPRs, while PeptideProphet gives better sensitivity at higher

FPRs (Note, the high FPR range is rarely used in real applications). We also note that the

results obtained on the S+P dataset containing the same features as utilized by Ulintz et al.

closely match the result reported on a preliminary version of mass spectral data used in this

study (194). The PRC depicted in Figure 11 (right) offers an alternative view of classifier

performance. The plot does not allow for judgment of which algorithm does better on a specific

dataset, as all show strengths and weaknesses at different recall values. It is, however, clear that

all algorithms trained on the All dataset do better than the ones trained on the S+P dataset,

confirming the discriminatory power of the new features introduced in this work.

3.3.3 An Interpretable Model

As observed above, the ADTree algorithm is among the strongest performers on the dataset

incorporating all features, rivaled only by ABWillow tree. In comparison with machine learning

algorithms such as SVM, the ADTree algorithm provides the advantage of being represented

as a collection of user interpretable rules. Figure 12 shows a graphical representation of the

ADTree model learned from the All dataset (see Methods for how to interpret the tree).

The base-rules in the tree are numbered in accordance with their order of discovery (the

number indicated in parenthesis after each feature name), which can be interpreted as the rule
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Figure 11: Receiver Operator Curves (ROC) (left) and Precision/Recall Curves
(PRC) (right). Classifiers trained with the novel set of features have the suffix
all, otherwise the suffix S+P is used (this does not apply to the curve for Pep-
tideProphet shown in the ROC plot). The ROC shows how the TPR varies with
the FPR, indicating what percentage of true hits one can expect to obtain at a
given false-positive-rate. The PRC given an alternate view of the classification
depicting the precision as a function of the recall (note PeptideProphet results
only shown in ROC).

importance or predictive power of the feature (65). Given that interpretation, surprisingly, the

PHC appears to have the strongest discriminatory power amongst true and false instances in

that a PHC > 15.9 adds significant weight towards a positive prediction (the final faith of an

instance satisfying this rule is of course also based on the other base rules involving PHC). Thus

the learned model suggests that a higher than expected number of peptides from one protein

in the Sequest search result, is indicative of these peptide-spectrum matches being true hits.

The second and third base rules discovered are cut-offs for the XCorr score and deltaCn, two of



69

the main attributes of the Sequest algorithm used for judging how well the theoretical peptide

spectrum correlates with the experimentally obtained spectrum. (It should, of course, be noted

that except for rules with the root node as parent, the prediction bias of a rule should always

be seen in context of its parent node(s)).

To better interpret the possible paths traversed by a dataset instance, subsets of base-rules

have been highlighted in color in Figure 2. We will now examine these paths more closely to see

how the classifier is able to discover meaningful knowledge, while at the same time providing

high accuracy classification results.

The blue path is made up only one feature, namely NTT. If the peptide has at most one

missed cleavage side, this provides evidence toward the hit being positive, though an instance

could still ultimately be classified as a false hit. If we examine the red path we see that a

PHC < 15.9 is negative evidence towards the hit being true, as it is unlikely that we would

observe only a few peptides from a protein that is indeed present in the sample. If the peptide-

spectrum match does, however, have a strong correlation score (XCorr > 2.45) this effect is

reversed, giving the path a net positive score. Interestingly, an XCorr score lower than the 2.45

threshold does not add significant evidence toward the match being false. Thus high XCorr

scores add evidence towards an instance being true, while scores below constitute a borderline

region where other factors determine the faith of the instance.

The fact that the PHC feature only comes into play when the XCorr score is below as

certain threshold is an important model feature, as the PHC score might otherwise “hurt“ the

classification of proteins with few ”mass specable” peptide-fragments. The PHC is, in other
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words, not used unless the quality metrics correlating the spectrum and the proposed peptide do

not provide sufficient evidence to conclusively determine whether the peptide-spectrum match is

correct. In situations where there are only one or two ”mass specable” peptides from a protein

one would want the quality metrics of matches to be highly confident when using them to

identify the parent protein, the strategy learned by the model is thus reasonable when handling

such instances.

A related mechanism is observed when following the green path, here deltaCn values of

at least 0.05 add evidence toward the instance being a true hit. The following XCorr filter

shows that correlation values below 1.71 are strong evidence towards the instance being negative,

values above this threshold do not add evidence towards the instance being positive. The yellow

path does not add any new features to the classifier, but simply acts as a further filter on the

PHC feature, constructing intervals with increasing summed evidence towards the instance

being positive. The purple path, on the other hand, adds two new features. If the instances

following this path has a deltaCn < 0.05, and at the same time an IonFrac value of less than

20.8%, there is substantial evidence towards the instance being false, whereas higher IonFrac

values are indicative of a true instance when combined with a low deltaCn. In other words,

small differences in the mass of parent ion of the mass spectrum and the theoretical mass of

the peptide that it has been matched with is a strong indicator of a true hit only if a certain

fraction of the spectral peaks are accounted for by that specific peptide.

We observe that none of the features intended to address the issue of spectral data quality

were found to be instrumental in significantly improving the classification accuracy for the
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ADtree model. This is somewhat surprising, since well above 85% of spectra were considered

to be of poor quality in studies addressing the problem of identifying such cases (11). Thus,

one would expect that a feature identifying such spectra would provide certain discriminatory

power. One possible explanation for this observation is that these cases are already covered by

other rules from the ADtree, thus including the spectral quality feature to the model would

not add additional predictive power. For instance, one might reason that cases with inferior

spectral quality will only give rise to database hits with low XCorr score, which would render

these cases false hits due to this feature.

The rules discovered above using the ADTree agree well with expert criteria previously

used as conservative estimates for identifying hits that would be true with high probability.

Washburn et al. (200) did, for instance, settle on the following conjunction of rules as criteria

for correct hits: XCorr > 2.2, deltaCn < 0.1 and the peptide has to be fully tryptic (meaning

NTT = 0). The classifier developed is comprised of rules with similar cut-off values for the

features used by experts, but does also utilize novel rules when making predictions, identifying

true instances that would otherwise have been missed. Take for instance the XCorr cut-off:

We found that values above 2.45 provide strong evidence towards an instance being a correct

match. If the value, on the other hand, is below this cut-off we did not find it to be significant

evidence toward the hit not being correct unless the value fell below 1.71, providing room for a

number of borderline instances that can be correctly classified using the additional features in

the model.
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Xcorr(5)
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Figure 12: Graphical representation of the alternating decision tree learned from
the dataset all. Prediction nodes are represented by ellipses and splitter nodes by
rectangles. Each splitter node is associated with a real valued number indicating
the rule condition, meaning: If the feature represented by the node is less than
or equal to the condition value the prediction path will go through the left child
node, otherwise the path will go through the right child node. The numbers
behind the feature names in the prediction nodes indicate the order in which the
different base rules were discovered, this ordering can to some extend indicate the
relative importance of the base rules. A detailed explanation on how to interpret
the ADTree is given in the main text along with a discussion of the colored paths
outlined.
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3.3.4 Extending the Peptide Prediction Protocol to Protein Prediction

The ultimate goal of MS/MS experiments is not necessarily the confident identification of

peptides, but rather determining a probability measure for the presence of their parent proteins

in the sample analyzed. One software application addressing this issue is the ProteinProphet

software (136) by Nesvizhkii et al., which identifies a minimal set of proteins accounting for the

observed peptides by use of the expectation-maximization algorithm. Following the formulation

in this work we show a straight-forward way of extending our peptide identification protocol to

a protein identification protocol.

A conservative estimate of the probability, P , that a given protein is present (meaning that

at least one of the peptide matched by the database search from this protein is correct) is given

by

P = 1−
∏

i

(1−max
j

p(+|Dj
i )) (3.1)

where the product index i is over all distinct peptides from this protein, the index j is over

all matches obtained for one specific peptide and p(+|Dj
i ) denotes the probability of the jth

identification of peptide i being a true match. We take the maximum overall identification

from all identical peptides, as these should not be considered independent. Note further that

this formulation theoretically allows for a specific peptide to be considered as evidence for two

distinct proteins.

By use of logistic calibration we convert the classification scores obtained from the ADtree

algorithm into probability estimates of a given peptide-spectrum match being correct (or in



74

other words we estimate p(+|Dj
i )). Combining these estimates with (Equation 3.1) we can

calculate probability estimates for each protein that has at least one peptide identified in the

database search actually being present. Using this relatively simple extension of the classifi-

cation framework we are able to identify 87% of the proteins present in the sample at false

positive rate 5%. In comparison, using the probability estimates from PeptideProphet only

achieved an identification rate of 85%. This is not surprising as we previously saw that the

ADtree procedure identifies more correct peptide-spectrum matches than PeptideProphet.

3.4 Discussion and Conclusion

Supervised machine learning provides an attractive platform for examining the peptide pre-

diction problem since no prior assumptions of the distribution of the utilized features have to be

made when constructing the model. This is in contrast to generative/unsupervised models such

as the PeptideProphet procedure, that assumes specific distributions (in this case Gaussian and

Gama distributions) when classifying matches. While it has been shown that the assumption

regarding a specific data distribution is reasonable (90; 136) in certain instances of the identifi-

cation problem there is no general evidence or theoretical framework supporting this claim for

all types of instrument or data. As conveyed in this work another attractive property of the

supervised machine learning framework is the relative ease with which the developed models

can be extended with novel features in order to improve predictive power. It thusly becomes

possible to construct a tailored peptide identification framework for specific experimental pro-

cedures and equipment choices, thereby providing stronger guarantees on the control of error

rates than would be possible with a generic setup. One drawback of the supervised learning
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approach is of course the need to construct a training dataset from a known protein sample

to do the initial parameter tuning of the model and determine the performance metrics. How-

ever, once the training is done the trained model will perform equally well on large scale and

sparse datasets, since one does not have to be concerned with having too little data to properly

estimate model parameters.

Since large-scale proteomics studies are often concerned with characterizing the proteomic

make-up of the cell in a number of states, a reliable probabilistic measure for the presence of

a given protein is essential. Above we demonstrated how predictions from the ADtree model

(or any other supervised learning algorithm providing marginal classification scores) combined

with logistic regression can be used in a simple probabilistic framework to give a high protein

identification rate at a low FPR.

In sum, we have improved on previously published machine learning procedures for iden-

tification of correct peptide-spectrum matches by introducing novel features adding to the

predictive power of all the tested algorithms. Furthermore, we have introduced the ADtree

procedure into the problem domain, constructing an interpretable model that correlates well

with previously published rules addressing the classification problem at hand. Finally, we show

how the protein prediction problem can be addressed within the presented framework.

In this work we demonstrate how a generic classification model for MS/MS data obtained by

use of the MALDI ionization can be constructed. In future work, we intend to extend the clas-

sification framework to take advantage of experiment specific parameters (ionization method,
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instrument type, pre-processing steps of the sample) creating models tailored specifically to the

instrumental set-up used to obtain the spectral data.



CHAPTER 4

GENOME-WIDE CHARACTERIZATION OF LIPID-BINDING IN

SIGNAL TRANSDUCTION: A CASE STUDY OF THE PDZ DOMAIN

FAMILY

In Chapter 3 we presented a method for probabilistic identification of the protein entities

making up proteomes from mass-spectrometry data. In this chapter we will turn our attention

to functional classification of the domain components making up the proteins in the proteome.

Specifically we present a computational protocol for genome-wide identification of protein in-

teraction properties with membrane.

The work presented in this chapter was done in collaboration with Yong Chen and Ren Sheng

who carried out all wet lab experiments under the supervision of Professor Wonhwa Cho, while

all computational protocols were developed by Morten Källberg. Here we will mainly focus on

the details of the computational protocols and conclusions reached from theoretical calculations

while referring the reader to the original publication for details on experimental procedures (32).

4.1 Introduction

Regulation of cellular processes, such as cell signaling, is driven by a large range of protein-

protein interactions which are in many instances mediated by modular protein-interaction do-

mains (PIDs), such as SH2, SH3, PDZ, and WW domains (18; 148; 149). Cellular membranes

constitute a unique local environment for protein-protein interactions and therefore serve as the

77
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main sites for protein complexes and networks (23; 35). Accumulating evidence suggests that

membrane lipids are key in protein complex formation or networking through direct interac-

tions with signaling proteins (35; 203). Membrane recruitment of cellular proteins is mediated

by lipid-binding domains or motifs through selective lipid interaction or non-specific interact

with the anionic membrane surface (36; 49; 110). Consequently, it is generally believed that the

interaction of proteins at the membrane involve the coordinated effort of distinct lipid-binding

domains (or motifs) and PIDs in the same molecules (110; 145). Novel studies do, however,

indicate that PIDs, such as PDZ domain (60; 217) and PTB domain (160; 216), can interact

directly with membrane lipids and facilitate both protein-protein and protein-lipid communica-

tion. In addition, it has been reported that some lipid-binding domains, such as the PH domain

(211) and the PX domain (108), can interact with proteins as well as lipids. This observation

indicated that PIDs and lipid-binding domains could possibly act as dual-specificity lipid- and

protein-binding modules which are key in protein networking. To test this hypothesis, we have

developed new experimental and bioinformatics tools to identify and describe dual-specificity

PIDs on a genomic scale and applied these tools to the study of PDZ domains.

The PDZ domains is ≈90 amino acid long modular PID which interacts with a 5-12 residue

C-terminal sequence of its target protein(s) (60; 177). The domain family was first found in

three unrelated proteins, postsynaptic density 95 (PSD95), disc large 1 (DLG1), and zonular

occludens 1 (ZO1), and has since been found in a large number of proteins. A SMART search

(174) returns 148 human proteins with more than 500 different PDZ domains, thereby making

them one of the most common PIDs in vertebrates. Most PDZ domain host-proteins display
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multiple PDZ copies, and can thus be considered prototype scaffold proteins that reversibly

interact with multiple binding partners to coordinate signaling complex formation facilitating

networking (60; 177). It has been demonstrated that PDZ domains can interact with negatively

charged model membranes and that, in certain instances, this PDZ-membrane interaction is

important for the cellular function of their host proteins (130; 144; 204; 217). It is, however,

still unknown if lipid binding is a general property of PDZ domains, and if they can act as

dual-specificity modules as part of a biological system. It should thus be clear that the PDZ

domain family is a good candidate for a first study of the genome-wide identification and

characterization of dual-specificity PIDs.

4.2 Methods

4.2.1 Dataset

Table III summarized the key properties of the dataset used for training the PDZ classifi-

cation protocol. Specific details on the construction of the dataset are given in Section 4.3

TABLE III: The binding affinity for the 70 experimentally tested PDZ domains
used for training the classification model. Start/Stop denotes the first and last
amino-acid belonging to the domain within the host protein, Domain number
(#) indicated the domain location in the sequence relative to other PDZ domain,
Kd is the mean ±SD binding affinity determined by SPR, Selectivity indicates
specific lipid selectivity, Wu et al. indicated binding results reported in (204),
Structure column denotes the PDB-identifier for the structure data used in feature
calculation.

Gene # Kd/nM Start/stop Selectivity Org. Wu et al. Structure

NHERF-1 1 20 ±1 14-91 low rabit -
DVL2 1 33 ±3 267-352 PI(4,5)P2 mouse -
DVL1 1 45 ±6 245-337 human -
DVL3 1 50±5 243-335 PI(4,5)P2 human -
Continued on Next Page
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Table III – Continued

Gene # Kd/nM Start/stop Selectivity Org. Wu et al. Structure

Tamalin 1 90 ±8 100-186 low mouse -
SAP102 3 140 ±5 404 -482 PI(4,5)P2 rat No binding -

PI(3,4,5)P3

LNX1 4 180 ±40 638-721 low mouse -
PDZK2 3 280 ±50 263-343 low mouse -
MAGI-1 5 290 ±10 998-1091 low human -
PDZ-GEF 1 290 ±32 385-470 low human -
β2-syntrophin 1 320 ±80 115-195 low human 2vrf
PDZK2 2 320 ±32 151-255 low mouse -
nNos 1 340 ±10 17-96 low human -
PSD95 3 390 ±30 313-391 low rat No binding 1tq3
INADL 6 480 ±190 1068=1160 low human 2ehr
Chapsyn110 3 510 ±50 421-499 low rat -
γ2-syntrophin 1 530 ±140 73-153 low mouse -
Harmonin 1 600 ±70 87-165 low mouse -
MAGI-3 5 610 ±190 1021-1100 low human -
SAP97 3 620 ±70 465-543 PI(3,4)P2 rat No binding 2i0i
LNX2 1 670 ±100 232-314 low mouse No binding -
MAGI-2 3 750 ±170 605-683 low human 1ujv
α1-syntrophin 1 860 ±70 81-161 low mouse Binding 1z86
MAGI-2 5 900 ±170 920-1007 low human 1uew
PSD95 2 930 ±120 160-244 low rat No binding 1qlc
PDZ-PhoGEF 1 950 ±110 47-120 low human 2dls
LNX1 1 960 ±120 278-360 low mouse -
ZO-1 PDZ-2 2 980 ±200 186-261 PI(3,4)P2 mouse

PI(4,5)P2

PI(3,4,5)P3

INADL 5 1070 ±110 686-772 human 2d92
β1-syntrophin 1 1440 ±180 538-613 human Binding -
Rhophilin-1 1 1440 ±160 111-191 mouse -
Syntenin1 1 2200 ±250 100-195 human
SAP102 1 4980 ±870 149-233 rat -
PSD95 1 - 65-149 rat No binding 1iu2
MAGI-2 2 - 426-492 human 1ueq
MAGI-2 4 - 778-859 human 1uep
SAP97 1 - 224-308 rat 1zok
Spinophilin 1 - 496-581 rat 2g5m
Neurabin 1 - 505-590 rat 2fn5
Continued on Next Page
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Table III – Continued

Gene # Kd/nM Start/stop Selectivity Org. Wu et al. Structure

NHERF-2 2 - 150-230 human 2he4
NHERF-2 1 - 11-88 human 2ocs
SAP97 2 - 318-402 rat 2awu
CAL 1 - 288-368 human 2dc2
PDZK1 3 - 243-320 mouse 2d90
PDZK1 1 - 9-87 mouse 2edz
MAGI-1 1 - 295-401 human 2ysd
MAGI-1 3 - 643-720 human 3bpu
PTPN3 1 - 510-595 mouse -
MALS-1 1 - 108-187 human -
E6TP1 1 - 953-1025 human -
LNX1 3 - 508-591 mouse -
LNX1 2 - 385-465 mouse -
Densin-180 1 - 1403-1493 rat -
MAGI-2 1 - 17-98 human -
MALS-3 1 - 93-172 mouse -
LNX2 2 - 338-418 mouse -
MAGI-1 2 - 472-554 human -
PDZK2 4 - 394-472 mouse -
Harmonin 2 - 211-289 mouse -
MAGI-3 1 - 410-476 human -
MAGI-3 3 - 726-807 human No binding -
MAGI-3 4 - 851-935 human No binding -
PDZK1 2 - 128-215 mouse -
PDZK2 1 - 85-177 rat -
MUPP1 6 - 996-1077 mouse -
MUPP1 7 - 1139-1231 mouse No binding -
MUPP1 8 - 1338-1421 mouse No binding -
MUPP1 12 - 1847-1933 mouse No binding -
MUPP1 13 - 1972-2055 mouse No binding -
MAGI-3 2 - 578-641 human -

4.2.2 Feature development

Previous analysis of membrane binding mechanisms suggested that certain common physical

properties enable the domain targeting of membranes. In particular, properties such as the
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non-specific electrostatic attraction between anionic membranes and cationic surface residues,

association of hydrophobic surface residues with the membrane hydrocarbon core, and the

specific interaction between key residues and lipid head-groups have been found to be of major

importance (35; 36; 82). In the following we will create a method for quantification of these

properties into a vector of numerical feature values, for use in the construction of machine-

learning protocols.

Two distinct sets of features are developed: A set representing structural information and

one that is solely based on sequence statistics. The definition of each is outlined in the sections

below.

4.2.2.1 Surface patch definition

The characteristic properties of the structure are captured by identifying continuous regions

of the solvent exposed surface, so-called surface patches, defined by physical or chemical quan-

tities (electrostatic potential, hydrophobicity etc.) common to the this specific area. The steps

of patch growing detailed below are outlined in Figure 13. The basic idea is as follows: First,

the surface is defined as a collection of neighboring triangles (see 13(a)), second, a numerical

representation of the quantity of interest is associated with each triangle (see 13(b)), and finally

the patches that are most highly correlated with the function of the structure are defined (see

13(c)).

By using the definition of solvent-excluded surface (SES) in (170), the topological boundary

defined by the Van der Waals radius of the atoms in the structure of interest is determined

by use of the MSMS algorithm developed by Sanner (170). The final SES is expressed by a
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(a) The solvent-excluded surface as

calculated by the MSMS (Maximal

Speed Molecular Surface) algorithm,

the coloring of the triangles rep-

resenting the surface represent the

number of probe contact made.

(b) Mapping of the electrostatic po-

tential onto the surface, dark-red re-

gions indicate higly negative poten-

tial values while dark-blue regions in-

dicate highly positive potential val-

ues.

(c) The patches grown on the sur-

face with parameter C = 60, red

regions indicate patches with nega-

tive potential value, purple regions

indicate patches with positive surface

value, and pink regions indicate loca-

tion with mixed potential values.

Figure 13: The three steps in determining surface patches for a certain quantity
for protein structure PDB-id 1a53, here illustrated with the electrostatic potential
of the structure.

triangulation procedure and thus results in a collection of neighboring triangles representing

the molecular surface.

For now let’s assume that each triangle on the surface is associated with a numerical value

corresponding to the quantity that forms the basis for patch growing. We will denote this

value for a triangle t by t.val and the distance between the centroids of triangles t1 and t2 by

dist(t1, t2). Furthermore, t.neigh will denote the neighbor triangles of t, meaning those that

share an edge with t, and t.included will be a boolean flag indicating whether a given triangle

has been included in a patch. The collection of patches is then found by repeating the following

recursive procedure until all surface triangle have been included in a patch: Choose a random

triangle that has not yet been included in a patch and extend the patch from here according
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GROW-PATCH(Seed triangle T):

for t1 in T.neigh:

if NOT t1.included AND

|t1.val - T.val|/dist(T,t1)<C:

Add t1 to the current patch

t1.included = TRUE

GROW-PATCH(t1)

Figure 14: Pseudocode for the patch growing procedure.

to the procedure outlined in the code below, repeat until all triangles have been included in a

patch (see Figure 14).

The constant C in the GROW-PATCH-method is used to determine if a patch should be ex-

tended in a given direction. An appropriate value for C needs to be set for each patch type of

interest. For this application the C-value was fixed manually by simple visual inspection of the

patches on the molecular surface. A value of C = 50 was chosen.

4.2.2.2 Mapping quantities onto the surface

In order to do the patch-growing we need to assign values from the quantity of interest to

each triangle on the SES. Here we give examples of how this can be done for both spatial and

residue/atom based data.

(1) The electrostatic potential of a structure can be calculated by solving the Poisson-

Boltzmann (PB) equation numerically using a finite difference scheme as implemented in APBS

(6). The spatial potential values are mapped onto the surface by taking a weighted average of
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the 8 discrete data points closest to the point 1 A from the triangle surface in the direction of

its normal vector. (2) Hydrophobicity values are assigned to the surface based on the Kyte-

Doolittle value of the amino acid that gave rise to the triangle of interest (99). (3) Hydrogen-

bonding is mapped to the surface by determining if an atom is capable of forming a hydrogen

bond, indicated by setting t.val = 1.

We include the following properties of the five largest positive electrostatic patches found as

features: Size, maximum/minimum potential value, and average potential value. Cumulative

size of the two largest, three largest, four largest, and five largest patches are included as

features. The hydrophobic patches are derived using the procedure specified above, and features

similar to those derived from the electrostatic patches were used in classification. Further, the

surface propensity of the 20 amino-acids is found by identifying the residues having at least

30% solvent exposure as defined by the DSSP (86) procedure are included.

4.2.2.3 Sequence feature - functional classification matrix

In addition to the patch-growing procedure we also construct a feature solely based on

statistics from a collection of domain sequences. We developed an approach obtaining a score

for each sequence by its similarity to other sequences in the dataset, this is done using a

recursive functional classification (RFC) matrix inspired by Park et. al (146). A multiple

sequence alignment of all domain sequences (both labeled and unlabeled) is created using a

Hidden Markov Model-profile (for the PDZ domain the PFAM model PF00595 is used) as

this procedure has been found to give a better alignment of structural elements than classical

alignment methods. Based on the alignment we can calculate the probability of observing amino
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acid a at location i in the alignment. Denoting the probability for binding and non-binding

cases by Pa,i,+ and Pa,i,−, respectively, each entry in the the RCF matrix is given by:

RCFa,i = log

(

Pa,i,+

Pa,i,−

)

Thus a positive/negative entry in the matrix indicates that the presence of amino acid a

at location i is evidence towards the domain being membrane binding/non-binding. We can

summarize the evidence for a giving domain sequence S as being binding in the following score:

RCF-score(S) =
∑

si∈S

RCFsi,i

When the RCF-score for a sequence is calculated, we do not include that sequence in the

calculation of the scoring matrix, furthermore a pseudo-count strategy is used starting out with

a distribution reflecting the overall amino-acids propensity in unrelated proteins.

4.2.2.4 Classifier: SVM and AdaBoost on C4.5

The Support Vector Machine (SVM) methodology first proposed by Vapnik (44) facilitates

the derivation of a classification hyperplane (a hyperplane separating positive and negative

cases) for non-linear problems by working in a vector-space of higher dimension than that

of the original feature space (using the so-called kernel-trick) (44). In this work, we tested

Gaussian, Sigmoid, and polynomial kernel functions and found that the Gaussian gave the best

results for this application. Thus, we exclusively used SVM with the Gaussian kernel function.

The other learning procedure used in this work is the C4.5 decision tree algorithm developed by
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Quinlan (159) combined with the AdaBoost technique for improving the overall classification

power of a collection of weak classifiers (a classifier with performance just slightly better than

random guessing) (173) as first proposed by Freund and Shapire (66). The combination of

these techniques is referred to as ABC4.5. A single decision tree was constructed through a

greedy procedure which iteratively finds splits of the dataset with respect to the feature value

that results in the greatest information gain, as defined by Shannon entropy. The Adaboost

algorithm iteratively constructs a collection of decision trees with each tree being learned on

a different weighting of the instances in the original dataset. After each learning cycle the

weight distribution on the dataset was updated in such a manner that higher weight is given

to instances misclassified in the previous iteration. The final classification of an instance was

made by the majority vote of the tree collection. We used our in-house machine learning

workbench MALIBU for the construction and validation of models, giving a uniform interface

for comparison and analysis of their performance (103).

4.2.2.5 Classifier evaluation

We measured the performance of the constructed classification models using the following

metrics: Accuracy (Acc) defined as the ratio of true prediction to the total number of pre-

diction, Sensitivity (Sen) defined as the percentage that a true example is classified as true,

Specificity (Spe) defined as the percentage that a negative example is classified as negative.

The classification result of an instance in a binary classification can fall into four categories:

True Positive (TP), False Positive (FP), True Negative (TN), False Negative (FN). Using these
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counts the three metrics are approximated by Acc = TP + TN/(TP + TN + FP + FN),

Spe = TN/(TN + FP ), and Sen = TP/(TP + FN).

Additionally, we used the area under the curve of the receiving operator characteristic

curve (AUC), a metric having the advantage of being insensitive to the class distribution of the

dataset. The AUC is defined as the area under the (1-specificity, sensitivity)-curve, with each

point corresponding to a specific threshold for class separation. The larger the AUC (between

0 and 1) is, the better the prediction method. A classifier having an AUC-value 1 performs

perfectly over the entire range of threshold values, whereas a random classifier will only achieve

an AUC-value 0.5. To provide a benchmark for the expected performance on unseen data

we performed several rounds of training and evaluation of each classifier using n-fold Cross

Validation (n-CV). In n-CV, we randomly divided the original dataset into n equally sized bins,

each classifier was then trained n times using n-1 of subsets. The omitted subset in each round

was used for estimating the evaluation metrics of interest, the average of which was thus based

on evaluation over all instances.

4.2.2.6 Homology modeling

The developed method relies on features calculated from both sequence and structure, there

is, however, only a limited number of experimentally determined structures for PDZ domains

available. We therefore have to rely on homology modeling methods in determining feature

values for the majority of the domains annotated in this work. All domains used could be

modeled based on a template with which it has at least 35% sequence similarity, thus the
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resulting structures are believed to be reliable representations of the domains. For modeling we

used the software Modeler version 9v4 maintained by Sali lab (63).

To ensure that the above assumption is correct we chose a set of five domains with known

structure, created novel structures based on homology modeling, calculated features and clas-

sified the domains. For all cases we found that both features and classification values corre-

sponded well (values vary less than 3% and classification labels were correct in all cases) to

those of the experimentally determined structures, lending credibility to the method.

4.3 Results

A published study measured the binding of 74 PDZ domains to negatively charged vesicles

using vesicle pelleting assay (204). While this work indicated the affinity of PDZ domains for

lipids, the qualitative nature of the data makes the systematic analysis of membrane-binding

properties of PDZ domains and of the interplay between their membrane and protein inter-

actions difficult. Consequently, it was necessary to collect a highly curated database of a

sufficient size for statistical and systematic analysis. All reported membrane-binding PDZ do-

mains interact with negatively charged membranes with low or no lipid head-group specificity

(130; 144; 204; 217). Further, most of PDZ domain proteins interact with protein partners that

are associated with the PM (60; 177) of which the cytosolic layer is highly negative due to the

presence of phosphatidylserine (PS) and phosphatidylinositiol-4,5-bisphosphate (PtdIns(4,5)P2)

(36; 129). Given this observation we choose the vesicles having a lipid composition mimicking

that of the inner PM (i.e., PM-mimetic vesicles) (36) as a model membrane and rigorously de-

termined the Kd values for 70 monomeric PDZ domains from 35 different mammalian proteins
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by surface plasmon resonance (SPR) analysis (34). We primarily choose uncharacterized PDZ

domains (i.e., 51) in this work but do also revisit some previously characterized PDZ domains

(i.e., 19) (204) in order to compare the results from the two competing experimental methods.

Figure 15: Plasma membrane localization of high-affinity PDZ domains. Those
PDZ domains showing the highest affinity for PM-mimetic vesicles were tran-
siently expressed in HEK293 cells as C-terminal EGFP-tagged proteins. Experi-
mental data collected by Yong Chen.

As shown in Table III, 28 out of 70 tested PDZ domains (≈40%) display submicromolar Kds

for the PM vesicles with the highest affinity being in the 10−8M range, thus being similar to that

observed in canonical lipid-binding domains (36). Synenin-1 PDZ domains (218) and the second

PDZ domain of ZO-1 (130), both of which have been found to have significant physiological

membrane affinity, show 1-3 µM Kds under our experimental conditions (see Table III). These

results indicate that membrane binding is a more common feature of PDZ domains than have

previously been assumed and that it could potentially be important in cellular re-localization
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(see Figure 15) and function. Table III further display a significant discrepancy between our

measurements and those of previous works (204). Specifically, 5 ( of 17) PDZ domains that had

been indicated to be non-membrane binding were shown to bind PM-mimetic vesicles with Kd

= 140-930 nM. For those PDZ domains with affinity measures in the submicromolar range for

the PM vesicles, we also measured the selectivity for phosphoinositides (PtdInsP), the majority

of PDZ domains did, however, not display measurable PtdInsP affinity.

4.3.1 Classification Model for Predicting Membrane-Binding

The presence of a large fraction of membrane-binding PDZ domains in our data set facil-

itated construction of a high-accuracy prediction model for other PDZ domains. The PDZ

domain does in general display a large degree of sequence similarity (60; 177). Our data does,

however, show that sequence similarity between any two PDZ domains does not nessacerily

translate into similar membrane-binding properties, thus making it a poor indicator for clas-

sification and prediction purposes. This is in contrast to other lipid-binding domains, such

as the FYVE domain, for which a good correlation between sequence similarity and relative

membrane affinity was observed (21). Given this observation it was necessary to construct a

more sophisticated model based on quantification of physical and chemical characteristics of

the domains.

We developed a machine learning-based prediction method for membrane-binding domains

that uses a numerical vector representation obtained from primary and tertiary structures of

proteins as input features and use a number of machine learning classifiers (16). To apply

this method to our current task of discriminating membrane-binding properties among highly
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Figure 16: (left) The scores obtained from the RFC matrix for the PDZ domain
PSD95. The green bars indicate the score for each residue in the domain while the
light-blue line indicate the cumulative score across the domain sequence. (right)
Structural representation of PDZ domain PSD95 with electrostatic isosurfaces at
+/- 3 e/Kt marked in blue and red, respectively. The residues with the highest
RCF score are marked in yellow.

homologous PDZ domains, we incorporated residue-specific features derived from the domain

sequence data in addition to the protein-level features from structural data. Protein-level fea-

tures enabling a domain to interact with membranes include nonspecific electrostatic attraction

between anionic membranes and basic protein residues (132), association of hydrophobic protein

residues with the membrane hydrocarbon core (184), and hydrogen bonds between key protein

residues and lipid head groups (36). To incorporate residue-specific features, we determined

the score of each residue and the cumulative score for a segment around it (146) by calculating

the recursive functional classification (RFC) matrix. This statistical scoring approach helps

identify residues that are more likely to be observed at certain positions in membrane-binding
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PDZ domains than in non-binding PDZ domains. Figure 16 depicts an example of this scoring

procedure, displaying the score of each residue and the cumulative score for the neighboring

segment of the rat PSD95-PDZ3 domain. Specific residues (i.e., R1, H5, T9, E19, D37, L38,

S39, E40, and Q72) show strong correlation with membrane binding of the domain. Interest-

ingly, these residues are not exclusively located in the electrostatically positive region, that is

most often the site of binding to anionic membranes, but in positively and negatively charged

areas. This pattern has also been observed in other membrane-binding PDZ domains. Those

residues located in the negative region could play different roles, some residues (e.g., E and D)

may form specific hydrogen-bonds with lipid-headgroups, a phenomenon also observe in PH

domains (50), while others could have an indirect role in orienting the domain relative to the

membrane. It should be noted that the identity and the relative contribution of membrane-

binding residues vary significantly among similar PDZ domains. This is demonstrated in residue

and cumulative scoring plots for three different PDZ domains, SAP102-PDZ3, rhophilin 2-PDZ,

and tamalin-PDZ (see Figure 17). A few high-scoring residues make a predominant contribution

for SAP102-PDZ3, whereas many residues contribute relatively evenly to membrane binding

for tamalin and rhophilin 2-PDZ domains.

We optimized the classification method for the prediction of membrane-binding PDZ do-

mains. To develop a binary classification method, one needs to define positive and negative

cases. Since PDZ domains have a wide range of continuous Kd values, it was necessary to

choose a specific Kd value as a threshold for physiologically significant membrane binding. In

general, it is not straightforward to predict the cellular membrane binding of a particular pro-
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tein from its Kd value for a model membrane. It is because membrane binding of a protein

is different from chemical binding of two species with well-defined binding sites (201) and be-

cause it is technically challenging to accurately determine the cellular lipid concentrations (212).

We have thus taken a combinatorial approach of determining the relative membrane affinity

(i.e., in terms of relative Kd) of a family of proteins by the SPR analysis and then measuring

their cellular membrane-binding properties to estimate the threshold Kd value for their cellular

membrane binding (21; 36). Since syntenin1-PDZ and ZO1-PDZ2, whose membrane affinity is

physiologically significant (130; 217), have 1-3 µM Kds, we set the threshold Kd of PDZ do-

mains to 1 µM. This threshold value divided our SPR-tested PDZ domains into 28 binding cases

and 42 non-binding cases. Lowering the cutoff Kd value to 0.5 µM would reduce the positive

cases to 15. For evaluation of prediction, we tested two machine learning algorithms that have

proven successful in diverse classification applications (13; 16), i.e., the kernel-based support

vector machine (SVM) methodology and the decision tree algorithm C4.5 combined with the

boosting algorithm AdaBoost (referred to as ABC4.5). Table IV summarizes the results from

these algorithms with 10-fold crossvalidations and with different feature sets. The prediction

was more accurate when structural and sequence features are used in combination rather than

independently. Between the two algorithms, the SVM did well on both the 0.5 and 1 µM Kd

cutoff data sets (see also Figure 18). Also, SVM algorithm achieved better accuracy (94%) with

balanced sensitivity and selectivity with 1 µM Kd-cutoff. We thus decided to use SVM with all

features and Kd = 1 µM as a threshold for the genome-wide prediction of membrane-binding

activity of PDZ domains.
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Algorithm/dataset Validation Accuracy Sensitivity Specificity AUC ROC

All features
SVM-500kd 10-CV 0.925373 0.846154 0.97561 0.954972
SVM-1000kd 10-CV 0.940299 0.846154 1 0.954034
ABC4.5-500kd 10-CV 0.895522 0.923077 0.878049 0.920263
ABC4.5-1000kd 10-CV 0.940299 0.923077 0.95122 0.952627

Structure features
SVM-1000kd 10-CV 0.893939 0.33333 0.982456 0.793372
ABC4.5-1000kd 10-CV 0.818182 0.22222 0.912281 0.730994

Sequence features
RCF matrix score 10-CV 0.823529 0.766667 0.832727 0.858182

TABLE IV: Comparison of the performance of the SVM and ABC4.5 classifiers
on a number of different datasets. The first column given the algorithm used
and the Kd-cut-off used when separating positive and negative instances in the
dataset. We have quantified the the classifier performance on three groups of
features to examine their relative importance, for the sequence features there is
only a single feature value available, here a simple cut-off strategy to find the best
value was used. For each metric the value for the best performing classifier(s)
has been highlighted in bold-face font.
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(a) Rhophilin2-PDZ (b) SAP102-PDZ3

(c) Tamalin-PDZ

Figure 17: Residue and cumulative scores obtained from the RFC matrix for
(A) SAP102- PDZ3, (B) rhophilin2-PDZ, and (C) tamalin-PDZ. Notice that a
few high scoring residues make predominant contribution to the highly positive
summed score for SAP102-PDZ3 whereas there is no single motif determining
binding for tamalin and rhopholin2 PDZ domains.
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Figure 18: The prediction value for the SVM-1 µM Kd classifier as a function
of the Kd value of domains. The yellow line denotes the Kd-cut-off for binding
versus non-binding and the red line denotes the classification threshold. The blue
regression line demonstrates the good correlation between the prediction and the
Kd values. The nomenclature used is “gene name”-“PDZ domain occurrence in
the gene” (e.g., SAP97-3 refers to the third PDZ domain in the SAP97 gene).
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4.3.2 Predictions for 2,000 PDZ Domains from 20 Different Species

By utilizing the learned protocol, we predicted the membrane-binding properties of all

2,000 PDZ domains found in 20 different species. Since we used both structural and se-

quence features, domains included in our prediction are from all sequences for which reliable

homology models could be generated. As seen in Figure 19, 30% of PDZ domains are pre-

dicted to have submicromolar membrane-binding affinity, although some degree of variation

is found among species. It thus seems evident again that membrane binding is a common

property among PDZ domains. The complete collection of the PDZ domains annotated in this

study can be found in our online resource MeTaDoR (Membrane Targeting Domains Resource)

(http://metador.bioengr.uic.edu/) (17). Several options for searching the collection are given,

among them host protein-name, organism, and binding annotation. There is also an option to

classify the domains with variable threshold Kd values. For each domain, the host protein and

the domain location in the host protein are given, along with relevant links to public databases.

4.3.3 Experimental Validation of Prediction

To further validate our prediction model, we choose 25 PDZ domains out of the collection

of 2,000 predictions and experimentally determine their membrane binding using SPR anal-

ysis. Similar to the first screening of PDZ domains, we primarily focus on uncharacterized

PDZ domains for validation while adding a few PDZ domains previously characterized (204).

Table V correlates experimental measurements, with the prediction values obtained from the

1 µM Kd cut-off. All the binding cases were classified correctly, while three nonbinding cases
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Domain Start Stop # Organism Kd/nM Prediction

C2PA (Q9DC04) 185 271 1 Mouse - -0.20
Chapsyn110 (Q63622) 98 182 1 Rat - -1.70
Chapsyn110 (Q63622) 193 277 2 Rat 510 ±50 0.17
GRIP (P97879) 252 333 3 Rat - -0.30
GRIP (P97879) 471 557 4 Rat - -0.30
GRIP (P97879) 572 654 5 Rat - 0.00
GRIP (P97879) 672 751 6 Rat - -0.70
InaD 17 103 1 Drosophila - -0.30
MUPP1 (Q8VBX6) 1614 1697 10 Mouse - -0.20
PAPIN (Q9QZR8) 85 177 1 Rat - -0.30
PAR3 (Q9Z340) 271 359 1 Rat - 0.05
PAR3 (Q9Z340) 590 681 3 Rat - -0.06
PTPN3 (P26045)* 510 595 1 Human 450 ±100 0.60
PTPN13 (Q64512) 1084 1167 1 Mouse - -0.10
SAP102 (Q62936)* 244 328 2 Rat - -0.50
Shank1 (Q9WV48) 663 754 1 Rat - -0.40
ZO-1 (P39447) 23 107 1 Mouse - -0.70
ZO-1 (P39447) 186 261 2 Mouse 590 ±130 0.40
ZO-1 (P39447) 421 502 3 Mouse - -0.70
ZO-2 (Q9Z0U1) 10 94 1 Mouse - -0.90
ZO-2 (Q9Z0U1) 287 365 2 Mouse 1200 ±400 0.10
ZO-2 (Q9Z0U1) 489 570 3 Mouse - -0.40
ZO-3 (Q9QXY1) 11 90 1 Mouse - -0.20
ZO-3 (Q9QXY1) 187 261 2 Mouse - 0.10
ZO-3 (Q9QXY1) 370 448 3 Mouse - -0.20

TABLE V: Experimental evaluation of our prediction for membrane binding of
PDZ domains. The prediction values were calculated using the 1 µM Kd-SVM
model. Positive values indicate membrane binding whereas negative values indi-
cate non-binding. The further away from zero, the more confident the prediction
is. Prediction values for three mis-classified cases were shown in bold.
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Figure 19: Membrane-Binding statistics for 2,000 PDZ domains found in 20
Species. Predicted percentage of membrane-binding PDZ domains is shown for
each species. SVM classifier was used for prediction with all features included
and Kd = 1 µM as a threshold.

were classified as binding ones. The overall accuracy on the test set was thus 90%, which is

comparable to the cross-validation accuracy observed. It is worth noting, that three misclassi-

fied cases for nonbinding PDZ domains (i.e., ZO-2-PDZ2, PAR3-PDZ1, and ZO-3-PDZ2) are

all border, low-confidence domains having prediction values 0.1, with 0 being the cut-off score

distinguishing binding and nonbinding domains. In particular, ZO-2-PDZ2 was predicted show

membrane binding, while the experimental Kd value (i.e., 1.2 ± 0.4 µM) is only slightly above

the 1 µM Kd threshold. Collectively, this evaluation demonstrates the accuracy and reliability

of our prediction. The selection of 70 domains used for the initial database and 25 domains used

for evaluation did not bias the outcome of our prediction: i.e., when PDZ domains in the two
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groups were interchanged, essentially the same results were obtained in terms of classification

and prediction accuracy.

4.3.4 Functional Classification

To systematically analyze the location of membrane-binding sites and the interplay between

membrane and protein-binding sites, we determine electrostatic potential at the solvent exposed

surface for all mammalian PDZ domains from either experimentally solved structures or ho-

mology modeled structures. This analysis indicated that the vast majority of PDZ domains

display at least one prominent surface cationic patch which may serve as an interaction site with

negatively charged lipids. Depending on the location of the cationic patch relative to the known

peptide-binding site, we could categorize the domains into two classes. Class A PDZ domains

which have a cationic patch (or two largest patches, in the case that two or more patches are

found), having little overlap with the peptide-binding site, and class B PDZ domains having the

positive region close to the peptide-binding pocket. We inferred that this structural distinction

had functional implications due to the main positive patch in each PDZ domain likely being

the lipid-binding site. We tested this assertion by determining the placement of lipid-binding

sites and the correlation of lipid and protein binding for domains found to belong to each class.

As a representative of class A PDZ domains, we chose SAP102-PDZ3 which displays a promi-

nent cationic patch (R449, R459, and R484) at the side opposing the peptide-binding pocket.

Further, this cationic patch also forms a pocket in the surface, making it a potential site for

specific binding of a lipid head-group. Molecular docking was used to determine the most ener-

getically favorable complex containing both the lipid-head group and the interacting peptide.
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Figure 20(a) illustrates the lowest energy complex, clearly indicating that peptide and lipid-head

group binding occur in two distinct non-overlapping locations. This model agrees well with our

SPR analysis that confirmed this PDZ domain has definite selectivity for PtdIns(4,5)P2 and

PtdIns(3,4,5)P3 over other PtdInsPs, shows PtdIns(4,5)P2 dependency in membrane binding,

and binds soluble inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). In addition, mutations of cationic

residues in the groove (e.g., R449E) significantly reduced affinity for PtdIns(4,5)P2-containing

vesicles. Finally, of the tested mutations none were found to decrease binding to the C-terminal

peptide of stargazin, which is a known interaction partner of SAP-102. Thus, this PDZ domain

has a clearly defined binding pocket for PtdIns(4,5)P2 and PtdIns(3,4,5)P3 that is distant from

the peptide-binding pocket, it can thus bind a PtdIns(4,5)P2 (or PtdIns(3,4,5)P3) and a pro-

tein molecule at the same time (experimental results not shown). From the above analysis we

propose class A PDZ domains having structurally distinct and functionally orthogonal lipid-

and protein-binding sites. This assertion is further supported by functionally independent lipid

and peptide-binding sites observed for two additional members of the class A family, PICK1-

PDZ (144) and NHERF1-PDZ1 (R.S., Y.C., H.Y. Gee, P.J. Lee, H.R. Melowic, E. Stec, N.R.

Blatner, M.P. Tun, M.K., T.K. Fujiwara, H.L., A. Kusumi, M.G. Lee,and W.C., unpublished

data).

To directly determine the interplay between lipid and peptide binding of class A PDZ do-

mains, we quantified the binding between SAP102-PDZ3 and the N-fluorescein-labeled stargazin

peptide in the presence and absence of PM vesicles (notice that they contain 1% PtdIns(4,5)P2

for which SAP102-PDZ3 shows selectivity) by fluorescence anisotropy measurements. As shown
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in Figure 21A, the presence of PM vesicles a very small effect on the peptide binding of SAP102-

PDZ3. As the majority of PDZ domain were vesicle bound in the present experimental setup,

the reuslt is consistent with SAP102-PDZ3 simultaneously being able to bind both membrane

and a protein molecules. Further, the presence of PM vesicles had no influence on the affinity

of SAP102-PDZ3 to other peptides, from which can be inferred that lipid-binding in class A

domains is not directly modulating protein specificity.

Class B PDZ domains are characterized by a positive patch in the area of the α2A helix

which constitutes the one side of the peptide-binding pocket. In this group we find domains

which have been reported to in part having overlapping (218) or mutually exclusive (130) lipid-

and peptide-binding sites. Since the peptide and lipid-binding modes of PDZ domains can vary

significantly, however, it is difficult to predict the degree of functional overlap between the two

sites based solely on structural examination. We therefore selected two members (rhophilin 2-

PDZ and tamalin-PDZ) of this family and investigate the localization of their lipid-binding sites

and range of their overlap with respective peptide-binding sites again using molecular docking.

Rhophilin 2-PDZ interacts non-specifically with negative lipid surfaces, including PtdInsPs. It

has two cationic residues (K576 and K579) placed similarly relative to the α2A close to the

C-terminal end which may be involved in anionic lipid binding. Doing a double mutation of

K576 and K579 (i.e., K576A/K579A or K576E/K579E) greatly reduced the affinity of Rhophilin

2-PDZ for PM vesicles, indicating that these residues may be specifically involved in binding.

Interestingly, these mutants bind the C-terminal peptide of ErbB2 as well as the wild-type

(WT), suggesting that the lipid-binding site does not overlap with the peptide-binding site
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(experimental results not shown). By sampling a collection of PDZ domain-binding peptides,

we identified this peptide as the best binding partner for the rhophilin 2-PDZ. Figure 20(b)

show the results from the molecular docking procedure which clearly confirm that rhophilin

2-PDZ can bind an anionic lipid head group and a peptide at the same time. To determine if

there is indeed a functional separation of lipid- and peptide-binding sites of rhophilin 2-PDZ,

we determine the affinity of rhophilin 2-PDZ for N-fluorescein-labeled peptides both when PM

vesicles are present and absent using fluorescence anisotropy analysis (Figure 21B). It was found

that the presence of PM vesicles doubled the observed affinity of rhophilin 2-PDZ for the ErbB2

peptide while modestly (i.e., <1.8-fold) decreasing the affinity for other peptides. We thusly

conclude that neighboring lipid- and peptide-binding sites of rhophilin 2-PDZ can bind to their

respective partners independently, but unlike what was observed for type A PDZ domains,

lipid-binding could potentially fine-tune the specificity of protein binding. Corporative binding

of neighboring lipid- and peptide-binding sites was also seen in Dvl2-PDZ (R.S.,Y.C., H.Y.

Gee, P.J. Lee, H.R. Melowic, E. Stec, N.R. Blatner,M.P. Tun, M.K., T.K. Fujiwara, H.L., A.

Kusumi, M.G. Lee, and W.C., unpublished data). We choose to label this mechanism of class

B PDZ domains as class B1.

The crystal structure of tamalin-PDZ showed that two phosphate ions are bound to the

N-terminal end of the α2A, suggesting that three cationic residues, R166, H167, and R168,

are involved in anionic lipid binding (189). We determined that tamalin-PDZ does not display

PtdInsP specificity. Mutation of any of the cationic residues to A or E reduced its binding to

the PM-mimetic (or PtdInsP-containing) membranes, indicating the this residue positions are
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instrumental in nonspecific negatively charged lipid binding. In contrast to rhophilin 2, these

mutants did greatly diminish binding activity to the C-terminal peptide of mGluR5, a known

interaction partner, which leads us to conlude that there is a significant overlap between the

two biding sites. The molecular docking confirmed this interpretation of experimental results

by showing a clear overlap between the lipid- and peptide-binding pocket (see Figure 20(c)),

in that the most energetically favorable placement of the peptide and lipid-headgroup interfere

with each other. (For this reason only the peptide is shown in the final model). The functional

overlap between the two binding sites is further verified by the finding that the presence of PM

vesicles significantly reduced the binding of tamalin-PDZ to the N-terminal fluorescein-labeled

mGluR5 peptide (Figure 21C) and other peptides. To distinguish these PDZ domains from

rhophilin-like class B1 PDZ domains, we designate them class B2 PDZ domains. Class A PDZ

domains are characterized by lipid- and peptide-binding sites that are topologically distinct and

have different function. For class B PDZ domains which have neighboring lipid- and peptide-

binding sites, functional analysis is, however, needed to pinpoint the role of lipid and peptide

binding.
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(a) The energy-minimized model structure of the

SAP102-PDZ3-peptide(RTTPV)-Ins(1,4,5)P3 ternary

complex. Electrostatic surface potential (left) and

the ribbon diagram (right) show the separation of the

peptide- and lipid-binding sites. In the ribbon diagram,

R449, R459, and R484 that form the cationic groove are

shown in space-filling representation and labeled.

(b) The energy-minimized model structure of the

Rhophilin 2-PDZ-peptide(EYLGLDVPV)-Ins(1,4,5)P3

ternary complex. Electrostatic surface potential (left)

and the ribbon diagram(right) show the proximity of the

peptide- and lipid-binding sites. In the ribbon diagram,

K576 and K579 in the α2A helix that are involved in

lipid binding are shown in space-filling representation

and labeled.

(c) The energy-minimized model structure of tamalin-

PDZ-peptide(IRDYTQSSSSL) binary complex. Because

of severe steric clash, an Ins(1,4,5)P3 molecule could not

be docked on the PDZ-peptide complex. In the ribbon

diagram, R166, H167, and R168 in the α2A helix that

constitute the lipidbinding site are shown in space-filling

representation and labeled.

Figure 20: Functional Classification of Membrane-Binding PDZ Domains.
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Figure 21: Effects of Lipid Binding of Each Class of the PDZ Domain on Its
Peptide Binding.(A) Binding of class A SAP102-PDZ3 to F-Ahx-RTTPV in the
absence (filled symbols) and presence (open symbols) of 150 µM PM-mimetic
vesicles. (B) Binding of class B1 rhophilin 2-PDZ to F-Ahx-EYLGLDVPV in
the absence (filled symbols) and presence (open symbols) of 150 µM PM-mimetic
vesicles. (C) Binding of class B2 tamalin-PDZ to F-Ahx-IRDYTQSSSSL in the
absence (filled symbols) and presence (open symbols) of 150 µM PM-mimetic
vesicles. The peptide concentration was 5 nM. Notice that for the class A and B1

PDZ domains, vesicles have a modest to no effect on peptide binding, whereas
for the class B2 PDZ domain, vesicles greatly interfere with the peptide binding.
Experimental results by Chen and Sheng.
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4.4 Discussion and Conclusion

This study describes genome-wide identification, characterization, and classification of mem-

brane binding PDZ domains. Experimental characterization of 95 PDZ domains confirms that

membrane binding is a common property of PDZ domains. Experimental measurements show

that PDZ domains display a wide continuous range (i.e., 20 nM to >10 µM) of affinity for

PM vesicles, making it difficult to arbitrarily distinguish membrane-binding domains from non-

binding ones. We developed a flexible and robust binary classification strategy in which a

threshold or cut-off Kd value is arbitrarily set and the domains are then divided into those

with higher affinity (binding) and those with lower affinity (non-binding). In our online re-

source users are given the option to set the threshold Kd value, and one can thus predict the

membrane-binding activity of PDZ domains in different affinity ranges. Our new classification

and prediction protocols represent an advancement in bioinformatics computation, because they

allow accurate prediction of membrane-binding proteins from a group of proteins with high se-

quence and structural similarity. We anticipate that a similar methodology can be utilized in

the prediction of any other membrane-binding PIDs that acting as dual-specificity protein- and

lipid-binding modules.

A recent study indicated that at least 80% of mouse PDZ domains have protein (or peptide)-

binding activity (187). Given that 30% of mouse PDZ domains have sub-micromolar affinity for

the PM membrane, the probability that a mouse PDZ domain is a lipid- and protein-binding

dual-specificity module is >24%. Also, if a PDZ domain is found to bind membranes, the

probability that it can also bind proteins is >90%. These are conservative estimates, and actual
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numbers might well be higher for PDZ domains from mice and other species. Thus, it is safe to

state that almost all lipid-binding PDZ domains are dual-specificity modules. To gain insight

into the evolution of lipid- and protein-binding activities of PDZ domains, we constructed

a dendrogram depicting the evolutionary relationship of a collection of PDZ domains. The

dendrogram shows that the binding to specific protein classes is somewhat preserved in the

tree, whereas membrane-binding properties vary even for evolutionary closely related PDZ

domains (e.g., Dvl and SAP97/PSD95/Chapsyn110 clusters).

Also, most PDZ domains have peptide-binding activity, and the location of their peptide-

binding pockets is highly conserved (177) in contrast to membrane-binding activity which dis-

plays a wide range of affinities and for which the locations of their lipid-binding sites are highly

variable. Taken together these findings indicate that dual-specificity lipid- and protein-binding

PDZ domains evolved from protein-binding ancestor PDZ domains through convergent evolu-

tion. Adding lipid-binding activity to the functionality of PDZ domains essentially allows for

an extra layer of regulation on the critical cellular functions of their host proteins.

Through electrostatic potential calculation of membrane-binding PDZ domains we were able

to determine two types of cationic surface patches, separating these domains into two groups.

Mutational and functional analysis confirmed that class A PDZ domains have structurally

distinct lipid and protein-binding sites. Thus, these PDZ domains can serve as dual-specificity

lipid- and protein-binding modules that mediate both membrane binding and protein interaction

simultaneously. Also, many class A PDZ domains have a fairly well-defined surface groove in

the cationic region, indicating that these sites may play a role in lipid head group selectivity
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(Table III) in contrast to most class B PDZ domains which do not display significant lipid

selectivity. While our results show that lipid binding of class A PDZ domains does not change

peptide affinity directly, under physiological conditions, however, lipid binding should enhance

affinity and specificity for their protein partners due to reduction in dimensionality (35; 128).

Thus, their dual specificity should be pivotal for the formation and regulation of membrane-

associated protein networking.

Essentially all class B PDZ domains show significant cationic patches in or close to the

α2A helix forming one wall of the peptide-binding site. It was observed that class B1 PDZ

domains have cationic patches confined near the C-terminal end of the 2A helix, while class B2

PDZ domains mainly have cationic patches in the N-terminal end of the helix. Since a protein

typically enters the pocket from the N-terminal end of the α2A helix to place its C-terminus

near the carboxylate-binding loop, it may be that lipid binding at the N-terminal end of the

α2A helix will prevent peptide binding by spatially restricting the entry way of the peptide into

the pocket. Class B1 PDZ domains are similar to class A PDZ domains in the sense that both

act as dual-specificity modules enabling protein networking through membrane-association by

coincident binding. In contrast to class A PDZ domains, lipid binding may promote peptide

binding specificity of class B1 PDZ domains, possibly through a structural rearrangement of the

peptide-binding pocket. Since lipid and peptide binding are mutually exclusive and compete

with each other for class B2 PDZ domains, lipids may act as a control mechanisms for the

accessibility of the protein-binding pocket to potential binding peptides.
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The key role of lipid binding is to spatially restrict its host-protein at the membrane. Con-

sequently, lipid binding of PDZ domains mainly serves to control trans-location to membranes

and the activity of their host proteins. For most reported class A and class B2 PDZ domains,

their lipid-binding activity appears to be important for the cellular localization of their host

proteins. Experimental results from Rhophilin 2 containing a class B1 PDZ domain indicate

that this is a common feature of all dual-specificity PDZ domains. It is, however, often not

straightforward to determine the correlation between membrane affinity and cellular membrane

trans-location, because membrane-binding is also affected by interactions with membrane pro-

teins or membrane-associated proteins. Take for example the yeast scaffold protein Ste5 for

which lipid binding was found to modulate the behavior of the protein at the PM to a much

greater extend than the trans-location to membrane in the first place (203). Similarly, the inter-

action with specific lipids of a group of PDZ domains may induced greater changes in dynamic

properties of the parent proteins at the membrane rather than driving the actual membrane

localization. In either case the prediction of PM affinity presented here will still serve as a

reliable indicator of the likelihood of a PDZ domain to interact with any cell membrane, due to

the fact that electrostatic interaction between the PDZ structure and the lipid-surface serves

as the main factor in binding to any cytosolic membrane. It should also be pointed out that

certain PDZ domains may have the ability to hetero- or homodimerize under physiological con-

ditions (60; 177), which may modulate their effective membrane affinity through an additive

crowd effect.
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In sum, the presented data clearly supports the notion that many PIDs interacting at

membrane surfaces are dual-specificity lipid- and protein-interaction modules. Further, lipid

binding of different classes of PDZ domains regulates the cellular function and their host proteins

by different mechanisms. It is thus becoming evident that the interpretation of complex data

studying protein-protein interaction and networking must take into account the membrane-

binding properties of PIDs.

The computational modeling of experimental measurements of PDZ domains will hopefully

be a valuable resource for other groups studying the protein networking properties of the PDZ

domain family. In addition, the methods developed in this chapter will hopefully be instrumen-

tal in functional characterization of novel PDZ domains as well PIDs from other families.



CHAPTER 5

LEARNING THE RULES OF MEMBRANE-BINDING

5.1 Introduction

Signal transduction networks formed by specific protein-protein and protein-lipid interac-

tions are a primary means by which the cell transmits information from its external environ-

ment to intracellular recipients. One vehicle driving the intracellular signal transduction speed

beyond that of simple diffusion is the selective and reversible binding of so-called peripheral

proteins to membrane surfaces within the cell (82; 147). By redistributing cytosolic proteins to

membranes in response to the onset of signaling events a de facto compartmentalization of the

cellular space takes place, allowing for greater proximity among communicating parties, thereby

facilitating interaction (81). The importance of this mode of signal transduction is underlined

by the fact that more than 10% of human protein kinases contain at least one lipid-binding

module (82). The ability to identify and understand peripheral proteins and the physical factors

causing their co-localization at membranes is thus pivotal in uncovering the dynamics governing

signaling regimens.

Peripheral proteins are most commonly scaffold proteins containing one or more domains

that associate with lipid-head groups, thereby anchoring the entire protein structure near

the lipid surface (36; 49; 147). An increasing number of ubiquitous and structurally dis-

tinct domains have been found to display lipid binding properties, collectively referred to

113
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as membrane-targeting domains (MTDs). MTDs have been identified in the following fami-

lies: C1 (33; 190; 210), C2 (33; 164; 134), PH (61; 109), FYVE (Fab1/YOTB/Vac1/EEA1)

(186), PX (phox) (209), ENTH (Epsin N-terminal homology)(28), and recently PDZ domains

(32). Despite their highly similar intra-family folds, not all domains in these families possess

membrane-targeting properties. In fact, a diverse array of overlapping intra-family functions

exist, spanning from protein-protein interaction to structural support and potentially enzymatic

activity (82).

Numerous experimental techniques have been used to identify novel MTDs (33; 49) reveal-

ing details on binding mechanisms and orientation (42; 9). Genome-scale identification and

characterization of MTDs does, however, remain labor-intensive and expensive. To this end

in silico protocols offers a high-throughput complement to wet-lab methods, allowing for rapid

characterization of thousands of domains. Membrane binding properties are inherently difficult

to predict, as they are often not determined by well-defined sequence motifs or a specific struc-

tural composition. PDZ domains were, for instance, found to have highly diverging membrane

binding behavior in spite of high sequence similarity (32), and PH domains span a large range

of binding affinities despite being structurally very similar (109; 180).

In previous works from our lab machine learning, protocols for distinguishing MTDs from

a general body of cytosolic protein domains known to have no membrane binding activity were

constructed using Support Vector Machines (SVM) (16) and later on extended using other

classifiers (105). By representing each domain as a numerical vector of feature-values derived

from structural data, a classification model achieving 90% accuracy in separating binding and
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Figure 22: Performance of a sequence based nearest neighbor classification pro-
cedure. Accuracy measures for classification of membrane binding properties for
five domain families using consensus of the three nearest neighbors for each do-
main. The accuracy for each family is depicted at varying levels of maximum
sequence similarity allowed between instances in dataset for each domain family.

non-binding domains was constructed. There are, however, two issues to be addressed regarding

this model. First, while performing well when separating MTDs from cytosolic protein domains

of unrelated fold, the model does not provide similar performance in separating binding and non-

binding domains within any specific family. As we will demonstrate, intra-family classification is

in fact a very hard problem as even highly similar domains display different membrane binding
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properties. Second, the constructed SVM model does, to a great extent, function as a ”black-

box” classifier giving little insight as to how the different calculated features play together in

producing the final classification of a domain’s binding properties.

In this work we construct a series of classification models for separating membrane binding

domains from domains with other activity within families. Our focus is on C1, C2, and PH

domain families, as domains from these three families have been found to be key players in a

number of signaling pathways. We are, however, not merely interested in constructing models

for classification, as such models are of limited utility in explaining the predicted behavior

in a manner that leads to experimentally testable hypotheses. Rather, we want to provide

both a confident assessment of a given domain’s binding behavior and a body of biological

evidence supporting the classification label. The goal is, in other words, to go from data

mining to knowledge mining, revealing the specific mechanisms responsible for observable higher

level behavior. To this end we take advantage of a new ensemble based classifier, namely the

Alternating Decision tree (ADtree) algorithm (65). The ADtree relates to other classification

tree algorithms like CART and C4.5 (159) by quantifying the relationship between features

as a combination of rules each representing a binary decision on a feature. The ADtree is

based on the boosting technique, but is at the same time a tree structure representable as a

conjunction of rules all contributing a real-valued additive evidence towards classification. The

final classification decision is thus determined by a committee voting scheme based on the real

values evidence presented by each rule traversed in the tree by a given domain. This scheme
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makes representation of the classifier as a spare and easily interpretable tree structure possible,

a feat that has made it the preferred tree classifier in a number of studies (70; 116).

The paper is organized as follows: First we give the intuition behind the features used to rep-

resent the individual domains in a form suitable for constructing machine learning protocols.

We then construct classification models based on SVM and ADtree to separate intra-family

binding and non-binding domains. Finally, we analyze the individual rules utilized in deter-

mining membrane targeting behavior in the three domain families in terms of experimentally

known binding mechanisms.

5.2 Methods

5.2.1 Dataset

Special care was taken when selecting the positive and negative examples in the datasets

utilized, as both the instance groups come from the same domain family (17). After reducing

the sequence identity to 70% using CD-HIT (79) of the full set of known domains, a total of

303 sequences were left. Each of these instances was then examined manually, and classified

as positive (binding) and negative (non-binding) based on their functions, sub-cellular location

and similarity with other sequences. The final statistic for the three datasets used for training

are given in Table VI. As a reference the total number of annotated domains for each family

in PFAM is also provided, to underline the ubiquitous nature of all three families. The 70%

cut-off was chosen since sequence similarity at this level does not result in conservation of

membrane-binding properties, as illustrated in the Results section.
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Only a subset of the domains in the constructed datasets has an experimentally solved

structure available. For the remaining cases we construct homology models using RaptorX for

modeling (153).

TABLE VI: Dataset statistics for the three domain families.

Domain Binding Non-binding MaxSimilarity PFAM

C1 33 22 70 % 1536
C2 63 27 70 % 4666
PH 70 88 70 % 4125

5.2.2 Classifiers and evaluation

Models were constructed using two binary classification procedures, namely Alternating

Decision tree (65) and Support Vector Machines (SVM) (44). Both are supervised classifier, for

which a model is trained on a labeled training dataset (training mode) and thereafter applied to

predict new examples without further parameter tuning (prediction mode). Casting the problem

in a binary classification framework, we refer to each protein domain as an instance, with the

ith instance consisting of a feature vector xi ∈ [1 × n] and a label yi ∈ {0, 1}, with n denoting

the feature count. Both algorithms described construct a function, g(x), that minimizes the

empirical risk of misclassifying an instance, under the assumption that all instances are drawn

with respect to the same (unknown) probability distribution. In the following we limit ourselves
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to describing conceptual details of the utilized algorithms, referring the reader to cited works

for technical details.

The SVM methodology facilitates the derivation of a classification hyperplane (a hyperplane

separating positive and negative cases) for non-linear problems by working in a vector-space

of higher dimension than that of the original feature space (using the so-called “kernel-trick“).

The separating hyperplane, wx+b, can be found by numerically solving the following quadratic

optimization problem:

min
w,ξi,b

1

2
w · w + C

∑

i

ξi Subject to

yi(φ(xi) · w + b) ≥ 1− ξi

ξi ≥ 0

Where C and ξi are cost parameters associated with misclassification and φ(xi) is a non-linear

mapping function. Rewriting the above problem in the dual form, the kernel-trick, specifying a

function giving the inner-product of two vectors in a higher dimensional vector-space, can then

be applied and an optimal separating hyperplane can be found in this new vector-space. In this

work we tested Gaussian, Sigmoid, and polynomial kernel function and found the Gaussian to

give the best results, thus whenever SVM results are reported it refers to SVM using a Gaussian

kernel function.
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The ADtree utilizes the boosting methodology (65) in the same manner as other successful

classification schemes such Adaboost C4.5 (159), but has the advantage of producing models

that are easily representable as a tree with a limited number of nodes (often fewer than 20),

without sacrificing predictive power. This is achieved by constructing a tree that is a conjunction

of rules which all provide an additive evidence toward a given instance being classified as positive

or negative, depending on the evaluation of the rules (True or False). In addition to providing

the classification label, the tree score of an instance (the margin score) can be interpreted as a

measure of confidence in the classification label. Unlike traditional tree models obtained from

algorithms such as C4.5, the classification of instances by ADtree is thus not determined by

a single path traversed in the tree, but rather by a collection of paths. The tree is made up

of two types of nodes prediction nodes, represented by ellipses, and splitter nodes, represented

by rectangles. Each splitter node is associated with a real valued number indicating the rule

condition: If the feature represented by the node is less than or equal to the condition value for

a given instance, the prediction path will go through the left child node, otherwise the path will

go through the right child node. The final classification score produced by the tree is found by

summing the values from all the prediction nodes reached by the instance, with the root node

being the precondition of the classifier. If the summed score is greater than zero, the instance

is classified as positive, otherwise, as negative.

We use our in-house machine learning workbench MALIBU for the construction and vali-

dation of models, giving a uniform interface for comparison and analysis of their performance

(105).
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We measure the performance of the constructed classification models using the following

metrics: Accuracy (Acc) defined as the ratio of true prediction to the total number of pre-

diction, Sensitivity (Sen) defined as the probability that a true example is classified as true,

Specificity (Spe) defined as the probability that a negative example is classified as negative.

The classification result of an instance in a binary classification can be fall into four categories:

True Positive (TP), False Positive (FP), True Negative (TN), False Negative (FN). Using these

counts the three metrics are approximated by: Acc = (TP + TN)/(TP + TN + FP + FN),

Sen = TP/(TP + FN), and Spe = TN/(TN + FP )

Further, we use the area under the curve of the receiving operator characteristic curve (AUC

ROC). AUC ROC is defined as the area under the (1-specificity, sensitivity)-curve, with each

point corresponding to a specific threshold for class separation; a value of 1 performs perfect

over the entire range of threshold values, with a random classifier having an AUC-value of 0.5.

To provide a benchmark for the expected performance we use n-fold Cross Validation (n-

CV). In n-CV one randomly divides the original dataset into n equally sized bins, each classifier

is then trained n times using n − 1 subsets. The omitted subset in each round is used for

estimating the evaluation metrics of interest, the average of which is thus based on evaluation

over all instances. For this work 20-CV was used.

5.2.3 Features

The association with membranes is known to be driven by a combination of general lipid

binding mechanisms and the binding of key-residues with specific lipid head-groups. The general

association mechanisms are modeled by quantifying the chemical and physical properties of the
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domain structure as a collection of “patches” on the solvent exposed surface (SES). A patch is

a well-defined area of a given property on the surface, i.e. an area of all positive electrostatic

potential or a region of conserved hydrophobicity; here we use the area of five largest patches in

each category. Further the surface propensities of the 20 amino acids are included as features for

a total of 35 structural features. The steps of patch growing detailed below are outlined in (100).

The basic idea is as follows: First, the surface is defined as a collection of neighboring triangles,

second, a numerical representation of the quantity of interest is associated with each triangle,

and finally the patches that are most highly correlated with the function of the structure are

defined.

Assume that each triangle on the surface is associated with a numerical value corresponding

to the quantity that forms the basis for patch growing. We will denote this value for a triangle

t by t.val and the distance between the centroids of triangles t1 and t2 by dist(t1, t2). Further-

more, t.neigh will denote the neighbor triangles of t, meaning those that share an edge with t,

and t.included will be a boolean flag indicating whether a given triangle has been included in

a patch. The collection of patches is then found by repeating the following recursive procedure

until all surface triangles have been included in a patch: Choose a random triangle that has

not yet been included in a patch and extend the patch by adding neighbor triangles that satisfy

|t1.val − t2.val| < C, where C is a constant.

In order to do the patch-growing we need to assign values from the quantity of interest to

each triangle on the SES. In this work we use three quantities: (1) The electrostatic potential

obtained from solving the Poisson-Boltzmann (PB) equation using APBS (6). The spatial
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potential values are mapped onto the surface by taking a weighted average of the 8 discrete

data points closest to the point 1 A from the triangle surface in the direction of its normal

vector. (2) Hydrophobicity values are assigned to the surface based on the Kyte-Doolittle value

of the amino acid that gave rise to the triangle of interest (99), (3) Hydrogen-bonding is mapped

to the surface by determining if an atom is capable of forming a hydrogen bond, indicated by

setting t.val = 1.

In addition to the patch-growing procedure, features solely based on statistics from the

full collection of domain sequences are used. A score for each domain sequence is obtained

by its similarity to other sequences in the dataset, this is done using a recursive functional

classification (RFC) matrix inspired by Park et. al (146). A multiple sequence alignment of all

domain sequences (both binding and non-binding) is created using a Hidden Markov Model-

profile (for the C1, C2 and PH domain the PFAMmodels PF00130, PF00168, and PF00169 were

used, respectively). Based on the alignment we calculate the probability of observing amino

acid a at location i in the alignment. Denoting the probability for binding and non-binding

cases by Pa,i,+ and Pa,i,−, respectively, each entry in the the RCF matrix is given by:

RCFa,i = log

(

Pa,i,+

Pa,i,−

)
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Thus a positive/negative entry in the matrix indicates that the presence of amino acid a

at location i is evidence towards the domain being membrane binding/non-binding. We can

summarize the evidence for a giving domain sequence S as being binding in the following score:

RCF-score(S) =
∑

si∈S

RCFsi,i

For the sequence features we do, however, choose to decompose the RFC matrix into a

series of residue subsequence features of lengths 3 to 6, to be able more specifically pin-point

the exact local variation that was evidence for classification. Rather than using all possible

rules, we include the 25 rules that provide the greatest degree of discriminatory power in the

training set. The rule locations are selected through an initial bootstrap generation of several

RFC matrices and a ranking of the rules that have the highest potential RCF score. The

subsequence rules are thus intended to complement general membrane-binding mechanisms

by identifying subsets of residues that correlate with specific binding modes. In general the

quantifying local environment conservation has been shown to be of great utility in identifying

remote similarity properties. Recently procedure focusing on local environment have been

utilized with great success in the identification of DNA-binding protein domains (106) the and

in more general purpose protocols for remote homology detection (19).

5.3 Results

The contribution of this work is two-fold. First, we show that machine learning models

based on the sequence and structure features introduced below perform significantly better
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than procedures based on sequence homology in separating MTDs from non-MTDs within

families. Second, we demonstrate how ADtree models not only perform comparable to SVM

based models, but also present us with specific evidence for the classification label allowing us

to interpret the model within the context of current experimental observations.

TABLE VII: Performance comparison of models for C1, C2, and PH domain
families.

Family Algorithm Acc. Sen. Spe. AUC ROC

ADTree 0.891 0.939 0.818 0.887
C1 SVM 0.907 0.909 0.909 0.957

Seq Sim 0.57 0.43 0.78 -

ADTree 0.856 0.889 0.778 0.879
C2 SVM 0.792 0.838 0.7 0.878

Seq Sim 0.63 0.61 0.7 -

ADTree 0.861 0.824 0.853 0.905
PH SVM 0.867 0.843 0.886 0.939

Seq Sim 0.64 0.64 0.62 -

To further illustrate the difficulty of the current classification task of intra-family separation,

a simple unsupervised classification scheme aimed at predicting the membrane binding behavior

of a domain based on the binding behavior of closely related homologs is fashioned. A sequence is

predicted to be binding or non-binding from the majority vote decision of its three closest related

sequence neighbors (as defined from a BLAST search(3)). Figure 22 depicts the prediction

accuracy for the procedure as a function of varying levels of the maximum sequence similarity
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allowed between domains in the dataset. It is evident that even at maximum sequence similarity

levels as high as 85%, accuracies of no more than 75% can be achieved for any family, indicating

the need for more sophisticated procedures to confidently identify MTDs within families.

5.3.1 Overall classifier performance

Table Table VII compares the performance of SVM, ADtree, and the sequence based nearest

neighbor protocol for three domain families. In all families the two structure-based machine

learning protocols perform significantly better domain separation than the sequence based near-

est neighbor procedure at the 70% sequence identity level. For C1 domains both SVM and

ADtree improve on the accuracy of the sequence based method by more than 30%-point, with

both achieving accuracy rates in the 90%-range. The SVM protocol does, however, have a 6%

better AUC ROC than the ADtree due to a better balance between sensitivity and specificity,

making it the strongest classifier for this family.

Inspecting the models constructed for C2 and PH domains we again observe a far better

performance of the machine learning methods over the sequence homology based classifier,

with accuracy improvements of 22 percentage points for both families. Comparing the SVM and

ADtree models for the C2 domain families, a similar performance over the entire specificity range

is observed as the AUC ROC of the two models is almost identical, although the ADtree achieves

a higher accuracy when comparing the points of best class separation for the two classifiers.

For the PH domain family we again observe the two classifiers performing comparably, with a

small advantage to the SVM algorithm of 3 percentage points as measured by AUC ROC. In

sum, the results show that for the problem at hand the ADtree models perform comparably or
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only slightly worse than SVM, indicating almost no loss in performance resulting from the use

of a model that provides the benefit of human interpretability.

Though not presented here, we have experimented with machine learning protocols relying

solely on sequence derived features. While these protocols did show better performance than the

nearest neighbor homology based procedure used as the bench-mark above, they never achieved

accuracies higher than 75%, which is significantly less than what was achieved by using both

sequence and structure based features.

5.3.2 Knowledge-mining

Here we use the ADTree model to discover the rules that distinguish binding and non-binding

domains. A graphical representation of the ADtree model constructed for the C1 domain family

is depicted in Figure 23, yellow and blue splitter nodes signify structure and sequence based

feature rules, respectively. Sequence based rules are divided into positive and negative patterns

indicating subsequences in the domain family alignment for which there is a high/low RCF-

score for binding/non-binding sequences. Feature names are followed by a number in parenthesis

indicating the order in which the rules are added to the model, a measure that can be interpreted

as an importance ranking of the rules. The fact that top-ranked rules are a mix of sequence

and structure based features, indicate that both groups are adding orthogonal predictive power

to the model, a feat also observed in the tree models for C2 and PH domains (not shown). In

the following subsections we will interpret key rules in the three classification models in terms

of their biological meaning in driving reversible membrane binding; the importance ranking is

used when referring to specific rules in each model.
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5.3.2.1 C1 model

Figure 23: The ADtree model constructed for the C1 domain family. A single
rule is represented by two elliptical prediction nodes and a rectangular splitter
nodes. Each splitter node is associated with a real valued number indicating the
rule condition, if the condition is true/false the path traversed by an instance
will go through the left/right child node and accumulate the score in this node
towards the overall classification of a domain. Splitter nodes colored in blue stem
from sequence feature while yellow ones stem from structure features.

C1 domains are cystine-rich modules of approximately 50 amino acids in length, first dis-

covered in Protein Kinase C (PKC) and subsequently found in signaling families such as PKDs,

chimaerins, RasGRPs, and diacyglycerol kinases (DGK) (41).

The sequence of the known binding case PKCδ-C1a is utilized in Figure 24 for illustrating

key rules learned for the entire C1-family. Membrane binding of C1 domains is known to be

driven by specific binding of diacylglycerol (DAG) and phorbol esters in the membrane as well

the association of key residue with the membrane surface and coordinated binding of Zn2+, these
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feature are highlighted in the PKC sequence. Rule 2 and 3 both overlap with the second group

of membrane and DAG binding residues, indicating that two different kinds of conservation

appear here one associated with membrane binding and one associated with other activity.

NegRule1 is observed to be high scoring if residues 11 and 13 are not aromatic, correlating well

with the experimental evidence for binding, as interfacial penetration of the lipid bilayer has

been found to be driven by aromatic residues (105; 184).

In addition to the conservation of specific sequence groups, two global structure mechanism

are also discovered by the C1 tree. Rule 4 and 6 indicate that if the cumulative size of the

five largest electrostatic patches and the size of the largest hydrophobic patch are greater than

specific threshold values it is indicative of membrane binding. This observation correlates well

with the fact that certain C1 domains are known to deeply penetrate the hydrophobic membrane

core upon binding, an interaction that is only energetically favorable if non-polar surface-residue

exists. Likewise, a somewhat positively charged surface is necessary for the initial recruitment

of the domain to anionic lipid surfaces (82). The two mechanisms are illustrated in the lower

part of Figure 24 by structure data from a binding and a non-binding C1 case, with electrostatic

positive and negative isosurfaces superimposed and hydrophobic residues highlighted in yellow.

For the binding case there is a large well-defined bulk of positive electrostatics and a cluster of

hydrophobic residues, while the non-binding only displays sporadic regions of positive charge.
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Figure 24: Rules learned for the C1-family. The sequence for PKCδ-C1a is used
for illustrating key rules, the residue coloring used is membrane-binding (blue),
DAG binding (red), and Zinc-binding (yellow). Structure models for a binding
case and non-binding case are shown, with the positive and negative electrostatic
isosurfaces color in blue and red, respectively. In addition, hydrophobic residues
are highlighted in yellow.
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5.3.2.2 C2 model

Figure 25: Rules learned for the C2-family. The sequence for PLCδ1 is used for
illustrating key sequence rules, the residue coloring used is Ca2+ binding side-
chain (blue) and Ca2+-binding region (red). Further four structure rules from
the C2 model are shown.

Most C2 domains require activation by divalent Ca2+ ions to bind to membranes with

high affinity and show low affinity towards lipids otherwise (36; 82). In the majority of cases

binding of Ca2+-ions dramatically enhances the positive electrostatic potentials around the
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Ca2+-binding region that mediates the association with the anionic lipids (termed as an elec-

trostatic switch) [10, 48] or induces a conformational change that accelerates binding (97; 175).

As illustrated in Figure 25, the discovered sequence rules from the C2 domain model all overlap

with Ca2+-binding regions. Interestingly, the first negative rules also overlap with regions sug-

gested to be involved in protein-protein interactions in PKCǫ (22) indicating the conservation

of functional properties other than membrane binding in this region.

Further, a number of structure rules are utilized in the C2 model. Cationic residues on

the surface (in corporation with Ca2+-bridging) are important for anionic-lipid selectivity (i.e.

Synaptotagmin) (36). We observe this in rules indicating a threshold on positive surface patches

and surface propensity on K. Finally, selectivity for the lipid-head group PC in C2 domains is

achieved through aromatic and aliphatic surface residues (i.e. observed in cPLA2), represented

in the model as high surface propensities of amino-acids H and W being indicative of membrane

binding (33).

5.3.2.3 PH model

PH domains are recruited to membranes by Phosphatidylinositol lipids such as Phosphatidyli-

nositol (3,4,5)-trisphosphate (PIP3) and phosphatidylinositol (4,5)-bisphosphate (PIP2), and

are, in example, found in βγ-subunits of heterotrimeric G proteins(199) and PKC (211). For

the PH domain family, binding often occurs in two steps, an initial association is driven by

non-specific electrostatic interactions followed by specific binding to anionic lipids (81). Key

rules from the PH family model, illustrated in Figure 26, agree well with this overall process

of membrane association. Two structure rules, both presenting minimum cut-offs on the size



133

of electrostatic patches, are present. As observed in other families, a large positive patch is

indicative of binding. Interestingly, a smaller negative patch is also positively associated with

binding in the case of PH domains. This apparent inconsistency (that both positive and neg-

ative charge promotes membrane binding) can be explained from the local arrangement of the

electrostatic potential depicted in Figure 26. Here we see that the negative region is on the

opposite side of the membrane associating surfaces, thus the repulsion of this side to a nega-

tively charged membrane can help correctly position the domain relative to the membrane, a

mechanism previously hypothesized (82).

In addition to the electrostatic mechanism for correct spatial orientation, sequence rules 1

and 2 overlap with residue experimentally determined to be important in Phosphatidylinositol

and general membrane binding (82). The third sequence rule mapped does not immediately

correlate with any known residues important for binding, thus making it a novel prediction,

but does contain two positively charged residues that may be important in binding.
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Figure 26: Rules learned for the PH-family. The sequence for PLCδ1 is used for
illustrating key rules, the residue coloring used is Membrane binding (blue) and
PIP3/PIP2 binding (red). A structure model for a binding case is shown with the
positive and negative electrostatic isosurfaces color in blue and red, respectively.
In addition, two key structure rules are depicted.
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5.4 Discussion and Conclusion

The present work touches on two key challenges of computational biology: How do we effi-

ciently organize and classify the vastly expanding body of data produced by experimentalists;

and of even greater importance, how do we transform this data into biological knowledge in

the form of testable hypotheses? It can be argued that simple rule mining would be an appro-

priate option to deduce classification rules. However, it is widely believed that discriminative

approaches are far superior to generative ones given their simplicity. Moreover, discriminative

classifiers have been shown to have a lower asymptotic error (20). Further, ADtrees have the

ability to elicit more uncorrelated rules (by definition) that cover diverse features of the data.

The graphical models built for the three families highlight the general rules and features that

set binding instances of peripheral proteins apart from non-binding ones. While some of these

features are in agreement with previous studies, novel features are also proposed. In general

we find that structural features, such as a specific cut-off for the size of positive electrostatic

surface patches, are found in models for all domains and thusly constitute general mechanisms

driving membrane binding. Sequence based features on the other hand, are more important in

expressing unique binding properties for each family as they are rooted in local regions of the

domains.

Characteristics elucidated from the rules learned in this work can be used to guide further

experimental studies. For example, mutation of certain amino acids that are statistically over-

represented in important rules could be suggested as pointers for experiments (such as Aromatic

residues for C1/C2 domains). Similarly, if feasible, features like overall charge on the domain
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could be tinkered with by multiple mutations of charged residues. Such guided studies are

expected to reduce the effort and time required to reveal the mechanisms and features used

by peripheral proteins and highlights the value of knowledge-mining over the “black-box“ type

approaches that are often used in classification of biological data.



CHAPTER 6

MODELING THE UNFOLDING OF MECHANICAL PROTEINS WITH

DISCRETE STATES

In previous chapters we covered methods for probabilistic identification of the protein enti-

ties making up proteomes from mass-spectrometry data as well as protocols for identification of

functional classes in large protein domain datasets. In this chapter we turn our focus to the role

of single domain dynamics in signaling. Specifically, we will use the atomic-scale time evolution

models available from MD simulations to gauge how domain structures rearrange themselves

in response to the onset of a signaling event. Understanding the elements of the protein struc-

ture responsible for structural stability as well as how these elements respond to changes in

the physical or chemical environment of the structure is a key stepping-stone in the design of

regimens for manipulation of protein behavior and by extension the higher level dynamics of

protein interaction networks.

6.1 Introduction

The set of stable structural conformations a protein will assume in its native state is guided

by the many local energy minima found in the complex energy landscape formed by the sum

of additive contributions made by interstructure atomic interactions. Figure 27 illustrates how

changing the chemical or physical environment of the protein structure alters the energy land-

scape and consequently biases the protein domain towards a new set of stable conformations,

137
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possibly rendering it enzymatically active or enabling it to interact with other protein domains.

Broadly defined, signaling mechanisms on the molecular level can thus be thought of as a con-

trolled transfer of energy from one communicating party to the next. This transfer may take

place through the build-up of a diffusion gradient as observed in the mithochondrial synthesis

of ATP, the conversion of chemical to electrical energy as seen in the generation of neural action

potential, or simply by cascades of phosphorylation events as observed in kinase networks (181).

Figure 27: Conceptual depiction of a protein structure energy-landscape. Upon
onset of a signaling event a dynamic shift in the relative likelihood of structural
conformations occurs, resulting in a larger segment of the protein population
being in the signal activated state.
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Any of the signaling mechanisms mentioned will introduce a dynamic shift in the energy

landscape of the involved protein entity and could thus potentially be studied by the methods

presented in this chapter. We will, however, for the purpose of method development, focus

on a completely different means of signaling, namely that of mechanical force. Mechanical

force has been found to play a crucial role in many physiological processes by regulating the

reversible folding and binding of single protein domains (101; 85). As a result, protein domains

involved in these processes need to respond properly to mechanical strain in order to perform

their function. Examples can be found in such diverse areas as stem cell differentiation (126),

phosphorylation rate determination (87),and the differentiation of myotubes (54) (see recent

reviews for a multitude of other examples (197)).

Mechanical proteins constitute a highly suitable model system for studying the dynamics

’rearrangements induced by the onset of signaling events (which in this specific case means

partial structural unfolding). First, there is a clearly defined parameter indicating when a

signaling event has taken place, namely the distance between the N- and C-terminal Cα atoms.

This metric extending beyond what is observed in the native state of the protein indicates that

partial unfolding of the protein domain has occurred. The completion of the signaling event

is thus readily observable by measuring the end-to-end extension of the polypeptide chain.

Second, there already exists a thoroughly tested computational protocol for imitating the effects

of mechanical strain on single protein molecules, namely that of Steered Molecular Dynamics

(SMD). Third, experimental single molecule measurements that can be used for verification of
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the behavior predicted by of our model already exist in the form of Atomic Force Microscopy

(AMF) (62).

Figure 28: A transition network superimposed on the underlying energy land-
scape. The blue node indicates the starting state and the orange the end state.
Each white node corresponds to a local energy minima. Stars indicate the poten-
tial crossing-over points for transitioning across the rate-limiting energy-barrier
separating start- and end-state. The red path indicates one possible transition
from start to end through the energy-landscape.

MD has already been utilized in numerous application for studying the dynamics of protein

behavior. Specifically in the case of mechanical proteins the use of SMD has proven valuable in

casting light on key events in mechanical unfolding of proteins. Many details of experimental

observations do, however, remain elusive when simply observing the data generated by SMD in
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the form of an animation of a single trajectory, or when plotting key quantities from a single

trajectory (such as the conservation of key hydrogen bonds or structural packing density).

One reason why it is difficult to capture the finer details of mechanical unfolding (or any

type of protein dynamics for that matter), is the stochastic nature of these processes. Figure 28

illustrates how a single trajectory will only sample one of many possible paths through a complex

energy landscape. Thus, even if all macroscopic inputs of the system under consideration are the

same (pressure, temperature, ion concentration etc.), one will not observe the same dynamics

behavior every time a simulation is carried out due small random perturbations in the starting

structure.

A single simulation thus only represents one of many possible routes between the starting

and end point in the structural rearrangement occurring during a signaling event. Consequently,

one will need to carry out numerous simulations to obtain a reasonable approximation of the

major routes through the energy landscape responsible for observed higher level behavior in

order to get a full picture of the underlying generative process. The development of computa-

tional procedures for modeling energy landscape dynamics have thus far mainly been focused

on protein folding dynamics of small peptides. Most notably is the work by Noe et al. uncov-

ering the folding states of Ala12 peptide from extended molecule to folded helix using multiple

molecular dynamics trajectories. Likewise Chodera et al. developed a protocol for determining

the metastable state in the folding of the engineered 12-residues β−haipin trpzip2 protein and

developed a kinetic model of the folding dynamics. These works do, however, not focus on the

dynamics of a full-size protein once it is in the folded state, and the dynamics of near-native
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conformations. Since functional properties of proteins occur in this part of the energy landscape

it is necessary to develop methods for modeling the structural changes occurring in a folded

protein.

We present a method for constructing integrative models in the form of a Markov Chain

Model (MCM) representing the major dynamic events taking place during the partial unfolding

of the muscle protein domain I27. We do so by grouping the observations from multiple SMD

trajectories into one network model representing all major transition paths as illustrated in

Figure 29. We use the developed framework to explore the effect of varying levels of mechanical

force on the unfolding dynamics of I27 and investigate the changes in unfolding pathways

observed in a number of mutant structures experimentally found to be of varying mechanical

stability. We find that numerous unfolding pathways are present in I27, all contributing to the

overall rate of unfolding at different levels depending on the mechanical pulling force applied.

The chapter is organized as follows: First, the theoretical framework needed for unifying

numerous time-evolution samples of the same mechanical unfolding process in one MCM is

developed. Second, we demonstrate the ability of SMD to correctly reproduce the ranking

of mechanical strength of a number of I27 mutant structures. Finally, we use the developed

framework to construct an unfolding network for I27 demonstrating the changes in the unfolding

energy landscape induced by different pulling forces and different mutant structures.
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(a) A collection of three single trajectory paths through
the state-space. Each trajectory progress through a col-
lection of the four states A, B, C, and D, representing
the transition through several local minima before com-
plete unfolding.

(b) Inferred state network from the collection of single
trajectories. Arrows indicate the possible transitions be-
tween states, the path in green corresponds to a tran-
sition from start to finish that is not observed in any
trajectory, but is revealed as possible by combining in-
formation from multiple trajectories.

Figure 29: The construction of a Markov Chain for modeling the dynamics of
a protein energy landscape of mechanical protein unfolding from a collection of
MD trajectories.
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6.2 Methods

Figure 30 provides an overview of the procedure for constructing the MCM from a collection

of SMD trajectories, in the following sections we will give details on the computations done in

each step.

Figure 30: Overview of the procedure for constructing the MCM from a collection
of SMD trajectories.

6.2.1 Markov Chains

The memoryless Master equation is often used to model the transition processes between

conformational sub-states in a multi-state system. Assume P (t) to be a m-dimensional vector

representing the probability that a system is in one of m substates at time t, and K to be a rate
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matrix, with Kij designating the transition rate constant from state i to j, then the transition

process is described by:

dP (t)

dt
= KP (t) → P (t) = eKtP (0) (6.1)

Alternatively, the transition dynamics can be modeled as a discrete-time Markov process

with transition matrix T(τ), where Tij denotes the probability of the system to be in state i

at time t and state j at time t+ τ . The analog to equation Equation 6.1 then becomes:

P (kτ) = T(kτ)P (0) = Tk(τ)P (0) (6.2)

The eigenstructure of the matrix T(τ) is particularly valuable in describing the dynamic

properties of the process it models (138; 139). We require T(τ) to be ergodic, meaning that

any state in the chain can be reached from any other state in a finite number of steps, resulting

in T(τ), having a unique eigenvector with eigenvalue 1. If we normalize this eigenvector we

get the stable equilibrium distribution of the system denoted π. The sign-structure of all

subsequent eigenvector, qi, describes a “transition-mode“ between states of the chain, while

the corresponding eigenvalue λi denotes the percentage of molecules that have undergone the

transition qi after time τ (due to the way T(τ) is constructed it will be positive-definite and

thus have strictly positive eigenvalues).

For the above assertions to hold, it is crucial that the system modeled is ”memoryless”

or Markovian. This implies that the future state of the system only depends on its current
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state and not past history. The most common cause of non-Markovian effects is the presence of

internal energy barriers within the discrete substates. Two parameters can be adjusted to avoid

such artifacts, the number of states in the model and the lag-time τ used when constructing the

transition matrix. For a reasonable definition of the state-space, any model will be Markovian

if sufficiently long lag-times are allowed. For the model to provide useful information on the

dynamics studied one does, however, want to identify the shortest possible timescale at which

the system becomes Markovian (37). To determine the minimal lag-time for a given topology

models a memoryless process, we use the fact that a model which is Markovian if the lag-time

τ was used for constructing the transitions matrix, will also be Markovian using lag-time τ ′,

with τ ′ > τ . Thus any kinetic properties will converge in τ . One such property is the so-called

implied timescales of the system, or the relaxation time of the different modes of the process,

given by the transitions matrix eigenstructure as described above. Combining Equation 6.2 and

Equation 6.1 we have T(τ) = eKτ . From this relation we can determine the implied timescale

of the ith transition mode, τ∗i , by:

τ∗i =
τ

ln(λi)
(6.3)

In practice, using the above described framework to construct a Markov chain from a col-

lection of SMD trajectories and ensuring Markovian properties of the derived model, requires

the completion of three steps:
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1. Determine a vector representation of conformations observed in trajectories and cluster

these into a number of metastable sub-states.

2. Determine a statistically stable transition matrix and find the lag-time at which the

process becomes Markovian.

3. If some states are not sufficiently sampled to provide a statistically stable transition

matrix, re-sample these states by restarting simulations from a conformation within the

state.

6.2.2 Defining the State Space

For the purpose of clustering the frameset from the trajectories into substates, a vectorial

representation of each state is needed. Since we are mainly concerned with the order in which

specific interactions are broken and formed during the course of the unfolding process, we use a

modified contact matrix representation of the structure. Each entry in this vector corresponds

to the euclidean distance between two residues (as measured from the center of mass of the

residue). To reduce the size of the vector (and thus the clustering space) we only include contacts

that are less than 8A in at least one trajectory frame. In example, only including short contacts

that are likely to influence the free energy level of the entire structure will reduce the clustering

space of a structure such as I27 from 3916 dimensions to around 500-600 depending on specific

parameter choices.

We use a k-means algorithm for clustering the trajectory frames. The main challenge here

is to determine the correct number of substates k from the data. Our strategy is to determine

a value for k that provides the most consistent clustering of similar structural conformations.
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More specifically, consider the two frame f1 and f2 which stem from the same state. Under the

correct k we would expect these two frames to appear in the same cluster consistently even if

small perturbations to the dataset are made. If this type of consistency is not observed it is

an indication that a substates has been split into two clusters (in other words, too large a k

has been chosen). To determine the cluster count that is most robust to perturbations in the

dataset we deploy the procedure outlined in Figure 31.

Data = full set of trajectories

for k from 2 to 200:

Create 20 bootstrap samples of Data called D = {d1...d20}

C = [] //list of clustering on data in D

for Sample in D:

- do k-means clustering on Sample

- store clustering of Sample in C

calculate adjusted Rand index for C

Figure 31: Pseudocode for SMD trajectory clustering procedure.

Briefly described the procedure generates 20 clusterings on bootstrap samples of the frame

data for each value of k in the range 2-200. For each k we calculate the Adjusted Rand index

(ARI), a measure ranging from 0 to 1, indicating cluster consistency corrected for chance events

(with few clusters it is more likely that two data points will cluster together by chance than
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with many clusters) (196). We choose the k that provides the highest ARI and use this k to

cluster the entire dataset.

6.2.3 Evaluation of clustering algorithms

To calculate the consistency between two clusterings of bootstrap samples from the same

dataset we use ARI. We first define the simple Rand Index, R, a measure for comparing the

consistency of two distinct partitions of a dataset into an arbitrary number of subsets. Consider

a dataset, S, containing N elements, and two partitions of S to be compared X = {x1 . . . xr}

and Y = {y1 . . . ys}. We define a as the elements in S that are in the same sets in X and the

same sets in Y , b as the elements in S that are in different sets in X and in different sets in

Y , c as the elements in S that are in different sets in X and the same sets in Y , and c as the

elements in S that are in the same sets in X and different sets in Y . The Rand Index is then

defined as

R =
a+ b

a+ b+ c+ d
=

a+ b
(N
2

) (6.4)

The Rand index does, however, suffer from one problem. For random data it will be higher

for low cluster counts than for higher simply because two data-points are more likely to be

clustered together by chance. The Adjusted Rand is a version of the Rand index corrected for

chance. The following contingency table denotes the common objects of two clusterings, with

nij denoting the number of common object in clusters xi and yj:
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y1 y2 . . . yn Sum

x1 n11 n12 . . . n1c a1

x2 n21 n22 . . . n2c a2

...
...

...
. . .

...
...

xn nr1 nr2 . . . nrc ar

Sum b1 b2 . . . bn

The ARI can be calculated as

ARI =
Index− ExpectedIndex

MaxIndex− ExprectedIndex
(6.5)

or formulated in terms of the contingency table

ARI =

∑
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6.2.4 Ensuring Markovian Properties of the Model

Once the substate-space is determined we can calculate the transition matrix entries for the

MCM at a given lag-time τ . For each pair of micro-state (i, j) the entry is computed as follows,

where transij(τ) denotes the the number of transitions from state i to state j in lag-time τ and

starti(τ) the number of times remaining in state i:

Tij(τ) =
transij(τ)

starti(τ)
(6.7)
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We need to determine the lag-time τ at which the transition process becomes Markovian to

construct a MCM that truthfully represents the dynamics of the process being modeled. This is

achieved by calculating the transition matrix at different lag-times (τ, 2τ, 3τ, . . .) and observing

the development of implied timescales as defined in Equation 6.3 as a function of lag-time. At

each lag-time we use a 10-fold bootstrap procedure to calculate a set of transition matrices

and from these a distribution of implied time-scales are calculated. We define the criteria for

convergence of the time-scale as the first lag-time at which the five following lag-times are not

statistically significantly different at level 5%. Further, to ensure that all transition probabilities

are sufficiently sampled we carry out a multiple hypothesis test to determine which probabilities

can be said statistically significantly different from zero.

6.3 Results

In this section we will first demonstrate the ability of SMD to correctly reproduce experimen-

tal observations regarding the relative strength of a number of I27 mutants pulled at constant

force. Thereafter we construct a MCM representing the diverse unfolding pathways of wild-type

I27 pulled at different forces and show how diverse sets of state transition sequences dominate

the unfolding process at low and high pulling forces. Finally, we utilize an MCM of four I27

mutants to explain the change in mechanical unfolding pathways induced by the changes in the

amino-acid sequence of the domain.

6.3.1 Diverse mechanical properties of I27 mutants predicted by SMD

It is well established that the mechanical stability of a protein domain cannot simply be

determined from its structural topology. While protein structures with anti-parallel β-strand of
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the N- and C-terminal residues, such as I27, protein-G, and Ubiquitin, all display a markedly

higher mechanical stability than almost all other known folds, there is still a high degree of vari-

ance in unfolding force within these topologically similar domains that remains unexplained.

There is, in other words, no well established model for determining how the unique sequence

features and local structural elements play together in determining the exact mechanical prop-

erties of otherwise highly similar protein domains.

This notion was established in an AFM study of four I27 mutants by Li et al (112). In this

work it was demonstrated how four different mutant structures of I27 displayed significantly

different unfolding properties. Figure 32 summarizes the maximum unfolding force observed

from constant velocity pulling at 0.6 nm/ms−1 (result for mutant V86A extrapolated from

(202)). The mutants V13P, V15P, and V86A display lower mechanical stability than wild-type

I27, while the mutant Y9P has a markedly higher peak force at 269 pN.

Mutant Unfolding force/pN Samples

Wild-type 204 266
V13P 132 384
V15P 159 259
Y9P 268 340
V86A 148 210

(a) Peak unfolding forces observed for WT I27 and four
mutants from constant velocity pulling experiments at
pulling speed 0.6 nm/ms−1.

(b) Spatial location of I27 mutations labeled on
the WT structure of I27 (PDB id 1TIT)).

Figure 32: Overview of kinetic properties for five I27 mutant species.
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These experiments clearly demonstrate that single-point mutations in the A’ and G β-

strands can serve as a means by which the mechanical properties of the structure can be tuned

to selectively unfold at specific forces. It is, however, not clear why some mutants make the

structure stronger while others weaken its ability to withstand mechanical strain. To explore

the mechanisms of unfolding we conduct a series of constant force SMD simulations at five

discrete forces. The number of simulations carried out for each protein mutant at each force are

summarized in Table VIII, with the cumulative simulation time indicated in parenthesis. Each

simulation is started at a random time point in a 30 ns equilibration simulation and stopped

once the N- C-terminal distance of the structure extends beyond 64A (corresponding to the

point at which all hydrogen-bonds between the G- and A/A’-strand are broken).

Protein Species Force/pN
250 300 400 500 600

WT 38 (120ns) 66 (197ns) 50 (117ns) 230 (386ns) 38 (70ns)
Y9P 1 (4ns) 18 (68ns) 28 (88ns) 34 (73ns) 20 (27ns)
V13P 20 (70ns) 30 (75ns) 32 (48ns) 32 (21ns) 32 (11ns)
V15P 16 (50ns) 28 (74ns) 34 (55ns) 34 (29ns) 32 (15ns)
V86A 22 (61ns) 22 (61ns) 32 (53ns) 34 (32ns) 32 (19ns)

TABLE VIII: Simulation statistics for WT I27 and four mutants. For each protein
species the number of simulations carried out at a given force along with the
cumulative time simulated in nanoseconds is indicated.
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Each simulation is thus characterized by a specific break-time, t, at which the structure

unfolds. This time is an indication of the specific mutant species’ ability to withstand the

pulling force applied, with higher average values of t indicating a stronger protein structure.

The box-plots in Figure 33 show the distribution of break-times for the five protein species. As

expected there is a clear correlation between break-time and the applied force, with break-times

growing shorter as the force is increased. In general wider distributions are observed at lower

forces, which may indicate that a larger range of different unfolding pathways is possible when

the force is lowered, whereas higher forces appear to only utilize a few pathways.

A full comparison of the unfolding time distributions for all mutants as a function of the

pulling force applied in the constant force protocol is depicted in Figure 34. When comparing

the unfolding time ranking with experimental results it is evident that our SMD simulations

reproduce the relative mechanical stability ranking of the five protein species. Any direct

comparison between SMD results and the experimental measurements is not possible as they

were obtained using different protocols (constant velocity and constant force pulling protocols,

respectively). The fact that the Y9P mutant displays significantly longer unfolding times at

all forces than wild-type I27, and the mutants V13P, V15P and V86A, display significantly

shorter unfolding times at all forces is indicative of SMD simulations correctly representing the

dynamics of the system. Thus it is likely that any mechanism we may find explaining differential

mechanical strength of the four mutants will be a reflection of the true dynamics observed in

wet-lab experiments.
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(b) Y9P.
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(c) V15P.
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(d) V13P.
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Figure 33: Overview of break-time distributions from constant force-pulling of
I27 mutants at five forces.
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Figure 34: The average unfolding time for I27-WT and 4 mutants. The average
unfolding time is indicated as a function of pulling force with the error bars
indicating the standard deviation of each data-point. Note that only one data-
point was obtained for Y9P at 250 pN.
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6.3.2 A model for the unfolding of WT I27

As demonstrated, the statistics derived from a large number of SMD simulations of I27

clearly show a correlation between unfolding time and pulling force. We will now construct an

MCM for the unfolding of wild-type I27 from simulations data obtained at forces in the range

250-600pN to uncover the unfolding pathway space dominant at different forces.

6.3.2.1 Determining the clustering space

The first step in constructing a network model from a collection of trajectories is to define

the set metastable states that exist in the unfolding process. To determine the state space of

the process each trajectory is split into an ordered sequence of snapshots of static structures by

storing the structural conformation assumed at discrete time points. It is assumed that each

metastable state is characterized by a collection of highly structurally similar conformations.

Thus to determine the correct number of metastable states we have to determine the number of

clusters that best partition the complete collection of structural snapshots from all trajectories.

First, a suitable/feasible vector-space for comparing the set of structure snapshots and

a metric for measuring the similarity between two structures need established. The simplest

choice would be to use the root mean square distance (RMSD) between two structure snapshots,

thereby measuring the overall average distance change between all residues. Using this metric

would, however, introduce certain complications that may lead to an incorrect picture of the

energy landscape. For instance, the change in position of a residue centrally located in the

structure will likely impact a high number of energy terms and thus cause a significant shift in

the energy landscape, while the change in position of a peripherally placed residue may have
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little influence; yet both changes would be treated similarly. To overcome this potential artifact

we instead use the ”contact-space” of the all trajectories under consideration. The contact-space

is determined as the complete set of residue-pair for which the distance between the center of

mass is within a pre-specified cut-off distance for any of the structures in the clustering analysis.

In other words, the contact-space is the full set of all residue-residue contacts observed in any

frame in any trajectory. Since the global energy landscape of a protein structure is mainly

defined by the set of non-bonded contacts, the suggested definition of contact space is believed

to better represent the changes in the energy landscape occurring, when the protein is plied

with mechanical force. Another key advantage of only using the set of contacts that are actually

observed to be within a given cut-off range (rather than the full contact matrix), is a significant

reduction in the clustering space.

Table IX summarizes the size of the contact-space for a number of simulation subsets at

contact cut-off definitions of 6, 7, and 8 A. As one would expect, for all subsets of trajectories

the contact count grows with the cut-off values. Comparing the number of contacts as a function

of the pulling force, we interestingly observed that a larger number of contacts occur at lower

forces indicating that at high forces the unfolding pathways do in general explore a smaller

region of the contact-space prior to unfolding. Another interesting observation is the number of

contacts found when determining the combined space of wild-type I27 and one or more mutants.

In these instances we also find an increase in the size of the contact space indicating that the

mutant explores different structural arrangements on the path to unfolding than wild-type I27.
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Cut-off/A
Protein Species Forces/pN 6 7 8

WT 250,300,400,500,600 642 858 1083

WT 300,400,500,600 522 725 930
WT,Y9P 300,400,500,600 617 834 1060
WT,V13P 300,400,500,600 565 771 979
WT,V15P 300,400,500,600 584 798 1022
WT,V86A 300,400,500,600 581 786 997
WT,All Mutants 300,400,500,600 674 904 1135

WT 250 556 764 980
WT 300 464 667 878
WT 400 344 558 679
WT 500 357 537 714
WT 600 321 512 667

TABLE IX: The interaction count for a number of protein species groups for dif-
ferent cut-off values. For each species the set of pulling forces used are indicated.
For comparison, the full contact matrix of I27 will have 3916 non-redundant
entries.

For the purpose of clustering we apply the k-means bootstrapping procedure outlined in the

Methods section to all wild-type trajectories using the contact-space defined by a cut-off value

of 7A. Figure 35 depicts the distribution of the ARI as a function of the the number of clusters.

It is evident that the highest average level of consistency among bootstrapped clusterings is

achieved for k = 18. For higher numbers of clusters a significantly lower consistency level is

observed; we will thus use the clustering with 18 states for further analysis.
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Figure 35: The adjusted Rand index depicted as a function of the k used in k-
means clustering. For each k the average and standard deviation of the index is
shown for a 20-fold bootstrap procedure.
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(a) CF 250 pN. (b) CF 500 pN.

Figure 36: The three longest normal modes for the 250 and 500 pN transition
matrices as a function of lag-time used in matrix construction.

6.3.2.2 Ensuring Markovian properties

To determine the lag-time at which the 18-state Markov chain becomes memoryless, meaning

the lag-time for which the implied timescale of the system converges, we calculate the implied

time-scale of the model for a number of transition matrices. Figure 36 shows development in

the three longest normal modes as a function of lag-time used for constructing the transition

matrix for forces 250 and 500 pN, respectively. For each lag-time the standard deviation of

the implied time-scale distribution from bootstrap generations of multiple transition matrices

is shown as error bars. For both the 250 and 500 pN cases we observe a convergence in the

time-scale at lag-time 50 ps, in further analysis we will use this lag-time when analyzing the

dynamics of the system.
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6.3.2.3 Unfolding networks at different forces

Although we have constructed MCMs for five different forces, our discussion here will mainly

focus on a comparison of the networks for 250 and 500 pN as comparing these are representative

of the key modifications that occur in the unfolding process when the pulling force is changed.

Figure 37 shows a graphical representation of the MCM constructed for the unfolding of

I27 at 250 pN. Each node in the network represents a metastable state in the network, with

the size of the node indicating the relative time spent in the state during the unfolding process.

The label in each node serves as a unique ID for the state, which we will use as reference in our

discussion of the network dynamics. Two special nodes are placed at the top and bottom of

the network, labeled “Native“ and ”Unfolded,” respectively, and serve to indicate the common

starting point for all trajectories and the point at which the protein structure can be said to be

completely unfolded. An edge in the network indicates that a transition between two states is

possible, or, more specifically, that a none-zero entry between the states exists in the transition

matrix representing the unfolding process.

Three different colorings of the network representing the mean distribution of the quantities

N-,C-terminal distance, mode partitioning, and hydrogen bonding energy for each state have

been used. In Figure 37(a) each state is shaded according to the average distance between the

two Cα atoms of the terminal residues. In agreement with the general understanding of the

unfolding process of I27 we observe that the nodes roughly fall into three distinct groups, an

initial stage observed in states 14 and 15 with an extension around 46-47 A (close to that found

in the native state), a large middle group with a distance in the interval 51 to 53, and a final stage
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where the distance extends beyond 54 A (states 1,7,9,17). Likewise, Figure 37(c) displaying

the average hydrogen bonding energy, agrees well with what we would expect from our current

knowledge of I27 unfolding. We observe that the near native states have the lowest energy,

with the energy increasing as we move closer towards the unfolded state. There are, however,

two important observations to be made when inspecting the distribution of hydrogen bonding

energy. First, we observe that the energy is more gradually diminished as we move closer to

the unfolded state, it thus evident that even though no or little observable change is seen in the

key reaction coordinate (the unfolding distance) there is a continuous structural rearrangement

going on as we transition through the network with a resulting increase in hydrogen bonding

energy. Second, the currently established model of mechanical protein stability focuses on a

patch of five key hydrogen bonds between the A’ and G strand being the main mechanical

barrier preventing unfolding, we do, however, observe that many more structural elements play

a role as the difference in hydrogen bond count between the native and unfolded is 38.

Finally, Figure 37(b) depicts the partitioning the of state-space according to modes of pro-

cess obtained from the eigenstructure of the transition matrix. The first mode, corresponding

to the slowest motion or largest energy barrier in the transition process, is colored in pink, the

second slowest mode is colored in purple. The pattern of a major and a minor energy barrier

is observed at all unfolding forces, albeit both are lowered when the pulling is increased.

A comprehensive view of the common elements found in mode decomposition is given in

Figure 38. Each node in the graph represents a state in the transition pathway with the

numbering indicating the node id. The coloring of the nodes are according to which sides of
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the major energy barriers they reside on. The slowest mode in the network is the transition

between pink nodes on one side and green+purple nodes on the other, while the second slowest

mode is defined by green and purple nodes, respectively. The blue and red nodes (nodes 15 and

9) are specific pathways only observed at low forces. Each edge indicates a transition across

an energy barrier. For each transition the forward rates are shown for the forces 250, 300, 400,

and 500 pN in blue, red, yellow, and purple, respectively. Unconnected nodes are states that

only serve interior meta-states in the basin on one side of an energy barrier.

The transition rates given from the native state to nodes 15, 14, and 6 indicate the proba-

bility of the unfolding process starting in each of these states when force is first applied. It is

evident that as the force is increased there is a redistribution from state 15 to 14. For instance,

37% of the trajectories generated at 250 pN start in state 15 a number that is reduced to 18% at

300 pN. As a result the propensity of trajectory starting points in state 14 go from 63% to 98%

when the pulling force is increased from 250 to 500 pN. When inspecting the general trends of

transition rates we observe that as the force is increased the transition rates across the energy

barriers increase as well for all transition, albeit not by the same factor. State transitions are

characterized by the same structural rearrangements regardless of pulling force, and thus the

path through the energy landscape. The higher transitions rates make it clear that force lowers

the height of the individual energy barriers between states, thereby making a transitions more

likely at higher force.
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(a) Coloring according to unfolding distance.

(b) Coloring according to mode partitioning. (c) Coloring according to cummulative hydrogen bond
energy.

Figure 37: Unfolding network for wild-type I27 pulled at 250 pN. Each node in
the graphs indicate a metastable state, with the size of the node representing the
relative time spend in the state during the unfolding process. An edge between
two states indicates that a transition is possible, the darker the edge the more
likely the transition. Two special nodes have been included at the top and bot-
tom of the graph, labeled Native and Unfolded, respectively. Native indicated the
starting point of all trajectories, whereas Unfolded is an artificial state all trajec-
tories go to when their N-,C-terminal extension exceeds 64 A. The node coloring
in the three networks represents the unfolding distance, the mode partitioning,
and the average hydrogen bond energy for each state, respectively.
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Figure 38: A unified representation of I27 unfolding at a number of pulling forces.
Each node in the graph represents a state in the transition pathway with the
numbering indicating the node id. The coloring of the nodes is according to
which sides of the major energy barriers they reside on. The slowest mode in the
network is the transition between pink nodes on one side and green+purple nodes
on the other, while the second slowest mode is defines by green and purple nodes,
respectively. The blue and red node (nodes 15 and 9) are specific pathway only
observed a low forces. Each edge indicates a transition across an energy barrier.
For each transition the forward rates are shown for the forces 250, 300, 400, and
500 pN in blue, red, yellow, and purple, respectively. Unconnected nodes are
states that only serve interior meta-states in the basin on one side of an energy
barrier.
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6.3.2.4 Key transition pathways

Inspecting the flow across the key barriers reveals four key mechanisms of unfolding in

wild-type I27, each dominating different ranges of the force spectrum.

A mechanism observed only at lower forces is the Inter-strand drifting unfolding pathway

illustrated in Figure 39. This mode of unfolding proceeds through two states: First, state

15 represents only a minor rearrangement relative to the native state with all key hydrogen-

bonds intact. The transition to state 9 is characterized by the drifting of 21 inter-strand bonds,

weakening the interaction between most key bonds connection the loop regions of the parallel β-

strands. This drifting procedure results in a moderate extension of the structure of 3 A putting

further strain on the bonds connecting the A’ and G strand eventually leading to complete

unfolding from state 9.

While the inter-strand drifting is most prominent at lower forces, as force increases the

peeling of A mechanism becomes gradually more important. As illustrated in Figure 40, this

mode of unfolding is characterized by three transitions. First, the transition from the state

13, 14, and 18 (all on one side of the energy barrier characterizing the second slowest mode of

unfolding) to 8 is characterized by an extension of the distance between the terminal structural

residues to 52 A. This extension is brought about by the breakage of hydrogen-bonds between

the A and B β-strand leading to a peeling of the A strand from the protein structure. The

transition from state 8 to 3 does not lead to any further extension of the structure, but is

characterized by the rearrangement of hydrogen-bonds between loop regions of the C, E and

F strand. Finally, unfolding is observed as the A’-G- strand bonds are broken. Interestingly,
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Native 15 Unfold9
Dist: 44->49
B:5-24,6-24,
15-87,25-54,

46-61,48-59,69-84
F: 33-74,34-41

Dist: 49->56
B: 11-83/85,

13-85 

Inter-strand drifting 

Figure 39: The inter-strand drifting unfolding pathway. Each state transition
is characterized by three key metrics changing between the two states: Dist in-
dicating the N-,C-terminal distance, B listing the residue-pairs between which
hydrogen bonds are broken, and F listing the residue-pairs between which hy-
drogen bonds are formed. In the structural depiction of each transition, residues
for which hydrogen bonds are broken and formed are highlighted in red and green,
respectively.
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the hydrogen-bonds between the A and B strand originally weakened are reformed in this step,

likely due to mechanical strain being transferred to other regions of the structure upon the

breakage of the central hydrogen-bond patch.

The peeling of the A strand pathway accounts for the majority of unfolding events, there is,

however, a minor fraction that occur through the Unravel from both ends pathway illustrated

in Figure 41, mainly at pulling forces of 300 and 400 pN. Unlike previous pathways described

this mode of unfolding works by compromising the structural integrity through destabilization

of hydrogen-bonds at both end of the structure simultaneously. First, the transition from state

6 to 10 results in a 1.5 A extension with weakening of hydrogen-bonds at both the N- and

C-terminal loop regions. A further extension from 51.5 to 52 A is seen in the transition from

state with further weakening of other loop-region hydrogen bonds, as well as the bond between

residues 11 and 83 in the main hydrogen-bond patch of the structure. As observed in other

pathways the final unfolding of the structure occurs through the breakage of the hydrogen-bond

pairs 11-83, 11-85, 13-85, and 15-87. Similar to the peeling of A strand pathway, the breakage

of the patch hydrogen-bond occur in conjunction with the re-connection of the A and B strand

sheet.

The final transition pathway to unfolding depicted in Figure 42 differs from the three path-

ways described above by not being directly reachable from the native state. Thus transition

into this pathway occurs through one of the other states on the same side of the transition

barrier as state 11, highlighting the fact that ’cross-talk’ is possible between different pathways.

This pathway is characterized by a rearrangement of the support strand network prior to the
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Native Unfold14 8 3 1

13

18

Dist: 44->52
B: 3-26, 6-24,9-83,

13-87,30-53
F: 33-74

Dist: 52->52
B: 11-83,30-53

69-84
F: 27-30

Dist: 52->55
B: 11-83/85,
13-85,15-87
F: 6-24,9-22,

69-84 

Dist: 50->52
B: 9-83,16-63, 

30-53
F: 33-74

Dist: 51->52
B: 9-83,30-53

F: 33-74

3HHOLQJ�RI�$¶�VWUDQG

Figure 40: The peeling of A’ strand unfolding pathway. Each state transition is
characterized by three key metrics changing between the two states: Dist indicat-
ing the N-,C-terminal distance, B listing the residue-pairs between which hydro-
gen bonds are broken, and F listing the residue-pairs between which hydrogen-
bonds are formed. In the structural depiction of each transition, residues for
which hydrogen bonds are broken and formed are highlighted in red and green,
respectively.
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Native Unfold6 10 16 1
Dist: 50->51.5 
B: 6-24,11-85,
30-53,75-78

F: 33-74

Dist: 51.5->52
B:30-53, 34-41
46-61,48-59,
69-84, 65-68

Dist: 52->55
B:11-83,13-85
15-87,71-82
F: 6-24,9-22,

48-59,

Unravel from both ends

Figure 41: The unraveling from both ends unfolding pathway. Each state tran-
sition is characterized by three key metrics changing between the two states:
Dist indicating the N-,C-terminal distance, B listing the residue-pairs between
which hydrogen bonds are broken, and F listing the residue-pairs between which
hydrogen-bonds are formed. In the structural depiction of each transition,
residues for which hydrogen bonds are broken and formed are highlighted in
red and green, respectively.



172

breakage of the key hydrogen-bond patch. Specifically, the transition from state 11 to states 2

and 4 is characterized in formation of a hydrogen-bond between 33 and 74 as well as weakening

of bond between residue pairs 6-24, 17-63, and 30-53, all of which are outside the core bonds

between the A/A’ and G strands. The transition from state 4 to 16 sees a further weaken-

ing of non-core hydrogen bonds as well as the patch bond 15-87. The structural weakening

induced by the rearrangement of the support strands shift the mechanical load onto the patch

hydrogen-bonds leading to unfolding from state 16.

6.3.3 Explaining the effect of the Y9P mutant on the mechanical stability of I27

As demonstrated in the MCM for the unfolding process of wild-type I27 at different forces,

the energy landscape of the protein structure is altered significantly at different modes of pulling,

leading to the preference of different unfolding pathways. We saw previously that SMD simu-

lations correctly predicted the relative strength of several I27 mutants. When interpreting the

effect of the two Pro mutants V13P and V15P in context of the unfolding pathways presented

above, it is not surprising that these mutant do not withstand force as well as wild-type I27.

Both of these mutations are of residues that are part of the central hydrogen-bond patch of

the structure, the breakage of which constitutes the key mechanical barrier to unfolding. The

replacement of Valine with Proline removes a backbone hydrogen-bond in the patch thus effec-

tively lowering the energy barrier preventing unfolding. The mutant V86A is also observed to

have lower mechanical resistance than wild-type I27. While the mutated residue is not directly

involved in any of the hydrogen-bonds constituting the mechanical barriers its surrounding



173

Native 11

4

2

16 Unfold

Dist:50.5->52
B: 6-24, 17-63,

30-53
F: 9-83, 33-74

Dist:50.5->51.5
B: 6-24,30-53,

 69-84
F: 33-74

Dist:51.5->52 
B: 6-24,15-87,
30-53, 46-61,
48-59, 69-84

Dist:52->56
B: 11-83/85,
13-85,15-87 

Support strand rearrangement

Figure 42: The support strand rearrangement unfolding pathway. Each state
transition is characterized by three key metrics changing between the two states:
Dist indicating the N-,C-terminal distance, B listing the residue-pairs between
which hydrogen bonds are broken, and F listing the residue-pairs between which
hydrogen-bonds are formed. In the structural depiction of each transition,
residues for which hydrogen bonds are broken and formed are highlighted in
red and green, respectively.
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residues 83,85,87,68, and 69 are all key in the mechanical resistance of the structure, thus it is

not surprising that the introduction of a novel amino-acid in this position could interfere with

the hydrogen-bonding network formed by these residues.

The most interesting of the four mutants is Y9P as it is observed to make the structure

stronger. One would expect that the introduction of a Pro residue at residue 9 would lower

the energy barrier preventing unfolding as there would one fewer hydrogen-bond to break (the

bond between residues 9 and 83 would be eliminated).

To uncover the change in unfolding pathway leading to a stronger structure we constructed

a second MCM model based on simulations from all wild-type and mutant trajectories. This

model has 23 metastable states indicating that the mutant structures do indeed explore addi-

tional structural conformation in their unfolding pathways compared with the wild-type struc-

ture. Figure 43 illustrates the most common unfolding pathway observed at a pulling force of

400 pN (the mutated residue is marked in yellow). The pathway differs from wild-type modes

of unfolding by leaving hydrogen-bonds formed by the A strand between the B and G strand,

respectively, intact in the initial stage. Instead we observe a marked structural rearrangement

of the E-F and C-F strand loop regions, eventually undermining the integrity of the top part

of the structure, resulting in the G strand being pulled free of the A strand and thus breaking

the main hydrogen-bond patch. We cannot say for sure why the bonds formed by the A strand

appear to be better preserved, thereby leading to an alternative (and more mechanically sta-

ble) mode of unfolding. It could, however, be hypothesized that the introduction of the more

rigid Pro residue in place of the substantially larger Tyr residue leads to a more stable strand
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arrangement, due to less thermal fluctuation being picked up by this smaller residue. Thus

the hydrogen-bond arrangement sees less random fluctuation and can consequently withstand

mechanical strain better.

Native Unfold2 5 7
Dist: 49->51.5 

B: 30-53,67-64,
69-84

F: 33-74

Dist: 51.5->52
B: 34-41, 48-59,

46-61,15-87

Dist: 52->56
B:11-83,11-85,13-85

Y9P pathway

Figure 43: The Y9P unfolding pathway. Each state transition is characterized
by three key metrics changing between the two states: Dist indicating the N-
,C-terminal distance, B listing the residue-pairs between which hydrogen bonds
are broken, and F listing the residue-pairs between which hydrogen-bonds are
formed. In the structural depiction of each transition, residues for which hydrogen
bonds are broken and formed are highlighted in red and green, respectively. The
mutated residue is marked in yellow in the first structure cartoon diagram.

6.4 Discussion and Conclusion

We have developed a method for modeling the changes in single molecule dynamics in-

troduces by a signaling event as a discrete state Markov Chain model. Specifically, we use
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the partial unfolding of so-called mechanical proteins by ways of steered molecular dynamics

to demonstrate how the protein energy landscape is altered when different external mechan-

ical forces are applied. By probing the protein structure with a range of forces, we show

that the transitions pathways taking the protein structure from folded to partially unfolded

vary depending on the external input. The constructed model is instrumental in uncovering

the specific structural changes associated with unfolding, allowing us to pin-point the specific

residue-interactions responsible for global structural properties.

We demonstrated how SMD simulations correctly predict the mechanical strength of ex-

perimentally characterized I27 mutants, and utilized a MCM constructed from several mutant

trajectories to characterize the main unfolding pathway of the Y9P-I27 mutant. In general, the

representation of the unfolding process as a network of discrete state with transitions charac-

terized by a the change in a few structural elements, allows us to suggest novel mutants that

will affect the global unfolding rate of the structure, thus providing a tool for guiding the design

of protein structures with specifically tuned mechanical properties. In example, the interaction

between residues 30 and 53 is observed to be broken in several of the unfolding pathways from

wild-type I27, while not being in the main hydrogen-bond patch constituting the major energy

barrier of the unfolding process. As preliminarily test we mutate residues 30 to Pro (mutant

V30P), thus removing any potential backbone hydrogen-bonds between the residue 30 and 53,

and pull the structure at 400 pN (7 samples). We do indeed observe slightly faster unfolding

rates than those in wild-type I27, though the decrease in unfolding time (mean unfolding time
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for the mutant 2278 ps) is not as dramatic as that observed in the other mutant structures

investigated.

In sum, the presented framework may be instrumental in characterizing the specific proper-

ties of structurally similar mechanical proteins responsible their mechanical strength, revealing

how structural elements play together in forming global mechanical properties. In principle, a

similar framework could be used for investigating the dynamics of structural change occurring

during any type of signaling event, assuming the system of interest can be sufficiently sampled

given the currently accessible simulation time-scales in MD studies. Alternatively, techniques

such as targeted molecular dynamics where a biased force-fields is used to drive the protein of

interest from it native conformation to a predefined end conformation may be used to reduce

the simulation time required for large system.

As the growth in computational power makes longer MD simulation time-scales feasible, rep-

resenting the energy-landscape dynamics of biological macromolecules as a network of discrete

states may become a standard concept in the analysis of protein dynamics. There are, however,

two key challenges that need addressed further to make this type of method generally applica-

ble. First, while observing the development of implied time-scales may give us an indication of

when a system becomes Markovian, there is no theoretical guarantee that the system is indeed

memoryless when convergence occurs. It would be desirable to have a method providing a more

rigorous test of this property. Second, in this work we assume that the contact space of the

protein structure can be used to approximate its energy-state and thus identify the meta-stable

state of the unfolding process. For the purpose of our application this approximation seems to
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be justified. This may, however, not always be the case, thus it would be desirable to have a

general purpose representation of the protein structure on which an algorithm for discovering

meta-stable states could be based.



CHAPTER 7

CONCLUSION

The study of the molecular interactions that make up signal transduction pathways are

key in understanding the regulation of cellular function. The research described in this thesis

was carried out to address a number of major challenges in the study of signal transduction

mechanisms using proteomics data. We have presented computational methods addressing

three key challenges in the quest to construct a more complete picture of protein signaling

pathways, namely, confident identification of proteins in a sample, functional classification of

large-scale proteomics data, and characterization of the dynamic conformational changes in

protein structures.

First, we developed a probabilistic protocol for identification of short peptide fragments

characterized by tandem mass-spectromety (MS/MS). A machine learning procedure for cor-

rectly matching peptides with mass spectra was constructed. Further, we demonstrated how

the developed model can be represented as an interpretable tree of rules, thereby effectively

removing the ’black-box’ notion often associated with machine learning classifiers, making the

underlying model clearer to end-users. Finally, using a probabilistic framework, a method for

protein identification based on the peptide predictions was proposed and tested.

Second, a genome-wide functional classification protocol for identifying dual specificity

membrane- and protein-binding domains was developed. Experimental characterization of 90

PDZ domains showing that 40% had submicromolar membrane affinity was used for building

179
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a model utilized to predict the membrane binding properties of 2000 PDZ domains from 20

species. We demonstrated that reversible membrane binding is a key component in the spa-

tially regulation protein interaction networks and further proposed a mechanistic classification

of dual-specificity binding. As an extension to the PDZ domain models, we build a knowledge-

mining procedure for learning the general mechanisms of membrane-binding, using C1, C2, and

PH domains as test-beds. We demonstrated how this method was able to uncover properties

of each family known to be important for binding.

Last, we presented a method for modeling the changes in single molecule dynamics induced

by a signaling event as a discrete state Markov Chain model. Specifically, we used the partial

unfolding of so-called mechanical proteins by way of steered molecular dynamics to demon-

strate how the protein energy landscape is altered when different external mechanical forces

are applied. By probing the protein structure with a range of forces, we show that the transi-

tions pathways taking the protein structure from folded to partially unfolded vary significantly

depending on the external input. The constructed model is instrumental in explaining experi-

mental single molecule studies of the unfolding of the protein domain I27, as well as the changes

in mechanical properties of a number of I27 mutant structures.

Many pathological conditions are the result of changes to signal transduction systems. In

some instances we are already able to provide treatment by administering drugs targeting

signaling proteins such as protein kinases (171). Our ability to further the development of

such treatment regimens depends on the availability of accurate functional prediction methods

regarding the role of proteins and the effects of modifying the protein networking properties in
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specific systems. It is the hope that the computational models presented in this thesis will be

a contribution towards this final goal.
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