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SUMMARY 

The vascularized ocular tissues are conjunctiva which covers the outer layer of 

the eye and the retina which is located in the back of the eye.  Conjunctival microvascular 

hemodynamic alterations due to systemic and vascular diseases have been reported.  

However, previous qualitative or semi-automated methods were limited for quantifying 

hemodynamics in a large number of vessels within the microvascular network.  Due to 

the high physiological variability and vessel density, there is a need for an automated 

image processing technique for quantitative and comprehensive assessment of 

hemodynamics in the conjunctival microvascular network.  Additionally, assessment of 

alterations in the conjunctival and the retinal vascular pattern provides a means for 

computerized disease diagnosis and discrimination.  Techniques have been developed for 

discriminating systemic and ocular diseases using retinal vascular images.  Nevertheless, 

a method for discriminating stages of disease based on conjunctival microvascular 

images has not been reported previously.  Finally, increased retinal vessel tortuosity is 

known to be among early indicators of various retinopathies.  However, previous 

techniques for quantitative assessment of retinal vessel tortuosity are limited in that their 

findings are not always consistent with the visual perception of tortuosity or might be 

scale dependent.  Therefore, the goal in this research study was to develop and apply 

image processing techniques for detection of hemodynamic, vascular pattern, and 

morphological alterations due to systemic and vision-threatening diseases.
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I. INTRODUCTION 

Conjunctiva is a densely vascularized tissue located on the surface of the eye and 

is available for non-invasive imaging.  Direct visualization of human microcirculation 

within the conjunctival arterioles and venules have provided a means for studying 

hemodynamic alterations due to systemic and vision-threatening diseases (1-9).  Current 

available methods for assessment of conjunctival microvascular hemodynamics are semi-

automated which may be subjective and not efficient for quantifying large number of 

microvessels within the network (10-14).  Therefore, quantitative and automated 

techniques that can provide comprehensive assessment of conjunctival microvascular 

network can be useful to better understand pathophysiology of the tissue in health and 

disease.  Additionally, studying intra-visit and inter-visit variability of conjunctival 

microvascular hemodynamics is crucial to determine sensitivity of the measurements for 

discriminating between true alterations from random fluctuations.  Intra-visit variability 

of conjunctival microvascular hemodynamics was reported (15).  Nevertheless, no 

previous study has reported inter-visit variability of the hemodynamics under health and 

disease conditions. 

Previous studies of conjunctival microcirculation in diabetic subjects showed 

alterations such as vasodilation, abnormal blood flow and hemorrhages in the 

microvascular network (8, 9, 16-18).  In fact, majority of previous studies determined a 

severity index (SI) based on presence of hemodynamic alterations in the conjunctival 

microvasculature of diabetes subjects.  Indeed, it was shown that the SI is useful for 

diagnosis and monitoring of the disease (8, 9, 17).  However, hemodynamic alterations in 
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the conjunctival microvascular network at progressive stages of diabetic retinopathy (DR) 

have not been reported previously. 

This thesis presents an automated image processing method for quantitative and 

comprehensive assessment of hemodynamics in the conjunctival microvascular network.  

The method provided measurements of microvascular diameter (D), blood velocity (V), 

blood flow (Q), wall shear rate (WSR) and wall shear stress (WSS) in different size 

microvessels.  Furthermore, inter-visit variability of conjunctival hemodynamic 

measurements in normal and subjects with clinical DR was studied using the automated 

method.  Finally, the method was utilized for detecting conjunctival microvascular 

hemodynamic alterations at stages of increasing diabetic microvasculopathy based on 

DR. 

Recently, a method was proposed providing fine structure analysis of brain 

magnetic resonance imaging (MRI) images and performed better than specialists in 

discriminating subjects with dementia from normal controls (NC) (19).  The method 

provided an opportunity for discriminating DR stage based on ocular images.  In diabetic 

subjects, discrimination of DR stages using conjunctival microvascular images have not 

been reported, instead images of retinal vasculature have been mainly used for detecting 

stages of DR (20-25).  Additionally, the automated method can become useful for 

discrimination of subclinical DR based on retinal images since no specific 

microvasculopathies are directly visible at this stage. 

We will validate in this thesis, application of the fine structure analysis for 

classification of conjunctival microvascular images and utilized it for automatic DR stage 
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discrimination.  Additionally, performance of the method was compared against 

experienced retinal specialists for discriminating stages of DR based on conjunctival 

microvascular images.  Finally, the fine structure analysis method was used for detecting 

subclinical DR from retinal images. 

Retinal vessel tortuosity alteration is among early signs of many retinopathies 

including DR and retinopathy of prematurity (26).  Additionally, previous studies have 

shown increased tortuosity in the retinal vasculature due to various pathologies (27-31), 

and correlation between retinal vascular tortuosity and demographics such as age and 

hematocrit (HCT) level (32).  Nevertheless, available tortuosity indices may be scale 

dependent or do not always match with visual perception of tortuosity (33).  Additionally, 

quantitative assessment of retinal vessel tortuosity alterations due to sickle cell 

retinopathy (SCR) in the parafoveal and perifoveal regions based on optical coherence 

tomography angiography (OCTA) has not been reported previously. 

In this thesis, we developed and validated a novel vessel tortuosity index (VTI) 

by extracting local and global featured from retinal vessel centerlines.  Variation of local 

angle changes, number of critical points, ratio of vessel length to its chord length for the 

entire vessel and between the inflection points (Ip) were used for VTI computation.  An 

image processing pipeline was developed for VTI quantification in retinal vasculature 

imaged by OCTA and was used for detecting tortuosity alterations in the parafoveal and 

perifoveal regions due to SCR.  
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II. BACKGROUND 

1. Conjunctiva 

Conjunctiva is located on the surface of the eye and covers the sclera as shown in 

Figure 2.1 (Left).  The main function of the conjunctiva is lubricating the eye through 

production of mucus and tears.  Additionally, the conjunctiva contributes to the immune 

system by precluding entrance of microbes into the eyes.  The blood supply to the 

conjunctiva is provided primary by the ophthalmic artery and/or external carotid artery 

(34).  The tissue is densely vascularized and easily accessible for studying of human 

microcirculation.  Conjunctival microvasculature can be categorized into arterioles, 

venules and capillaries based on direction of blood flow, providing an opportunity for 

studying each one independently.  In fact, the tissue is one of the limited locations 

through the body that can provide direct visualization of capillary beds.  Figure 2.1 

(Right) shows example image of conjunctival microvascular image in a NC subject. 

 

                

Figure 2.1.  Schematic view of the eye displaying location of the conjunctiva on the 

surface of the eye (Left) (acquired from https://myhealth.alberta.ca).  Example of 

conjunctival microvasculature image in a healthy human subject (Right). 
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2. Conjunctival Microvascular Hemodynamics 

Conjunctival microcirculation can be readily assessed due to ease of accessibility 

of the tissue.  The primary hemodynamic descriptors of the conjunctival arterioles and 

venules are D and V.  It was shown previously that D can be reliably measured using full 

width at half maximum (FWHM) of intensity profiles, established perpendicular to the 

vessel centerline (13).  As described previously, V can be determined by tracking 

movement of red blood cells (RBC) along the vessel centerline across registered image 

sequences using spatial-temporal image (STI) technique (13).  The STI shows variation 

of intensity values along the centerline over time due to RBC movements.  The slope of 

prominent bands in the STI can be used to determine V. 

Based on the measurement of D and V, average cross-sectional velocity (Vs) can 

be calculated as shown in Equation (2.1) (35, 36).  Erythrocytes deform by passing 

through narrow capillaries when the ratio of D to RBC diameter (Dc) is equal to 0.6, and 

hence allows considering equal values for V and Vs (37).  The same consideration can be 

made for microvessels with smaller D to the point that erythrocytes cannot pass through 

the microvessel.  However, for larger diameter microvessels, Vs can be approximated 

based on experimental studies that were described elsewhere (36, 37). 

 Vs =

{
 
 

 
 V                                                         

D

Dc
≤ 0.6

1.58(
V

1−e
−√

2D
Dc

)                                 
D

Dc
 > 0.6

   (2.1) 
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Based on D and Vs, Q and WSR can be computed as shown in Equations (2.2) 

and (2.3), respectively.  Finally, WSS can be determined based on Equation (2.4) by 

considering the effect of blood dynamic viscosity (η) (13, 38). 

 Q = Vs
πD2

4
 (2.2) 

 WSR =
8Vs

D
 (2.3) 

 WSS = ηWSR (2.4) 

Therefore, using fluid dynamics equations and experimental results from 

previous studies (36, 37), conjunctival microvascular hemodynamics can be assessed 

providing quantitative information regarding microcirculation within the network. 

3. Retina………..      

The retina is part of the brain which lies on the back of the eye and contains 

multiple cell layers (39).  Choroid layer is behind the retina and contains a vasculature 

network for oxygen and nutrition delivery to the tissue.  The pigment epithelium layer is 

attached to the choroid and contains a single layer of cells.  This layer provides nutrition 

and remove wastes from photoreceptor cells which are responsible for converting the 

light into electrical signal.  The horizontal cell layer is connected to the photoreceptors to 

improve integration of the information from multiple photoreceptors, and hence improves 

the visual acuity.  Bipolar cell layer is located beneath the horizontal cells to pass the 

information from photoreceptors to other retinal layers.  Finally, ganglion layer is located 

near the retinal surface.  Cells at this layer extend to form optic nerves and transfer the 

information to the brain.  Figure 2.2, shows a sagital and a coronal views of human eye 
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displaying locations of the retina and the optic nerve head.  The retina is a highly 

metabolic tissue requiring high level of nutrition and oxygen to be delivered by its 

vasculature (42).  In fact, the tissue has the highest oxygen consumption rate through the 

body and disruption in blood supply to the retina will result in vision loss within a few 

minutes (43).  Blood supply to retina is provided mainly through choroidal blood vessels 

and the central retinal artery from the optic nerve head (40, 41).  Studying retinal 

vasculature and metabolism can increase our understanding of systemic and vision-

threatening diseases, provide diagnostic biomarkers and contribute to development of 

new therapeutic treatments (44). 

 

                 

 
Figure 2.2.  Gross anatomy of the eye with major tissues labeled (Left) (acquired from 

http://webvision.med.utah.edu/book/part-i-foundations/gross-anatomy-of-the-eye).  

Coronal view of the retina displaying retinal vasculature and optic nerve head (Right) 

(acquired from Retinal STARE database). 

http://webvision.med.utah.edu/book/part-i-foundations/gross-anatomy-of-the-ey
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4. Fine Structure Analysis 

Fine structure analysis is an automated image discrimination method based on 

mathematical and statistical models (19).  The method was described previously and 

showed good potential for dementia detection based on brain MRI images.  The method 

uses all the information in the image rather than specific alteration which makes it 

suitable for diagnosis of diseases in which specific alterations are not readily visible by 

conventional clinical means.  Images are considered as solutions to partial differential 

equations such as the one in Equation (2.5).  Additionally, an ordinary least square (OLS) 

format of the equation can be obtained by using a Kronecker matrix-to-vector 

transformation (45).  Therefore, pixels of each image were shifted by 1 or 2 pixels row-

wise, column-wise and along the diagonal to provide 8 unique combination of the raw 

image.  Each of the shifted images was vectorized to create a 1D vector and formed one 

column of a matrix.  A model image (yi,j) was defined as weighted sum of the shifted 

images as shown in Equation (2.5). 

 yi,j = ∑ ∑ bk,lyi−k,j−l + ui,j
2
l=0

2
k=0  (2.5) 

where yi,j is the modeled image, yi-k,j-l are the shifted images, bkl are coefficients to be 

estimated, and ui,j is a 2D random process error with zero mean.  The OLS regression was 

performed to compute coefficients bkl by minimizing the variance of ui,j. 

Computed OLS coefficients for images in each group were assembled into 

matrices. Fisher’s Linear Discriminate (FLD) analysis was performed to compute a 

projection vector (v) which projects bkl parameters of each image onto a scalar z-

projection axis.  The maximum separation of sample means of projections was obtained 
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with v which satisfied the FLD eigenvector identity (46).  For 2 comparison groups of 

images, N1 and N2 subjects, let their respective OLS coefficients be assembled in matrices 

B1 and B2.  The “pooled sample” or combined matrix Bp is B1 stacked on B2.  For an n by 

k matrix B with n samples of k parameters let Bm be B with its column sample means 

subtracted.  Then the estimated covariance matrix of B is Ω = Bm
TBm/(n-1).  The 

optimizing projection vector v satisfies the eigenvector identity of the B1, B2, and Bp 

covariance matrices was computed using Equation (2.6). 

 (n1Ωp − n2Ω1 − n3Ω1)v = Ὑ1(n2Ω1 + n3Ω2)v (2.6) 

where γ1 is the only non-zero eigenvalue, n1 = N1+N2-1, n2 = N1-1, and n3 = N2-1.  The 

FLD vector v maximizes the absolute difference between the sample means of 2 groups 

normalized by the sum of the covariance of each group. 

The Kolmogorov–Smirnov (KS) test was used to verify that z-projections in each 

group were normally distributed (46), hence allowing the use of Kullback-Leibler 

discrimination (KLD) statistics which is a special case of the Neyman-Pearson log-

likelihood ratio hypothesis test.  Applied to 2 normally distributed z-projection density 

functions, f1(z) and f2(z), KLD statistics are values of a discrimination function L(z) 

given by Equation (2.7). 

 L1,2(z) =  Ln (
f1(z)

f2(z)
) =    Ln (

s2

s1
) +

(z−m2)
2

2s2
2 − 

(z−m1)
2

2s1
2  (2.7) 

where mi and si, i = 1,2 are sample means and standard deviations (SD) of the 

hypothesized z-projection distributions.  If the groups are perfectly separated, L1 values 

for all cases in group 1 will be positive and L2 values for all cases in group 2 will be 

https://en.wikipedia.org/wiki/Andrey_Kolmogorov
https://en.wikipedia.org/wiki/Nikolai_Smirnov_%28mathematician%29


10 

 

 

 

negative and L2,1 = -L1,2.  Misclassified group 1 z-projections have negative L1 values and 

misclassified group 2 z-projections have positive L2 values.  The larger L1 value is for a 

group 1 the more likely it is a true positive and the smaller L2 value is for a group 2 the 

more likely it is a true negative.  In this thesis, the fine structure analysis was used for 

discrimination of stages of DR based on conjunctival and retinal vascular images. 

5. Tortuosity 

Retinal vessels are generally straight or mildly curved in normal subjects.  

However, under certain pathologies, the vessels become twisted with many turns (26).  It 

was shown previously that tortuosity is among early alterations due to many retinopathies 

such as DR and hypertension (27, 33).  Figure 2.3, shows examples of retinal vasculature 

in a NC and a subject with DR, depicting presence of tortuous retinal vasculature due to 

the disease.  Studies of tortuous vessels have been reported qualitatively which are 

limited due to subjectivity and high inter-observer variability (47).  Therefore, 

quantitative methods are invoked to summarize information regarding tortuosity of retinal 

vessels. 

Quantitative measures of retinal vessel tortuosity have been performed on vessel 

centerlines by applying mathematical formula to extract information (26-31, 33, 48, 49).  

Regardless of the approach, any tortuosity index needs to correlate with visual perception 

of tortuosity.  It should be invariant to rigid transformations such as rotation, scaling and 

mirroring.  Also, a quantitative measure of tortuosity should increase with increase in 

magnitude and increase in frequency of centerline twists. 
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Figure 2.4 shows chord length of a simulated vessel centerline and location of Ip 

and critical points that can be used to summarize information regarding tortuosity of the 

centerline.  The distance measure (DM) as shown in Equation (2.8) is the ratio of 

centerline length (LA) to chord length (LC) of a vessel segment, and has been widely used 

for detection of tortuosity alterations (50-52).  Methods based on combination of DM and 

number of Ip have been proposed as shown in Equations (2.9) and (2.10) to improve DM 

and provide a more reliable tortuosity index (33, 53). 

 DM =
LA

LC
  (2.8) 

 ICM =  (Ip + 1)
LA

LC
 (2.9) 

 T = 
Ip−1

Ip
∑ [

LAsi
LCsi

− 1]
Ip
i=1  (2.10) 

                  

Figure 2.3.  Examples of retinal vasculature in a NC (Left) and a subject with DR (Right) 

displaying presence of highly tortuous vessels due to the pathology. 
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Examples of tortuosity indexes based on integral of curvature are shown in 

Equations (2.11) and (2.12), indicating integral measures of k over D domain as 

representative of variations in the direction of vessels (26, 54). 

 TC = ∫ |k(l)|dl
max (D)

min (D)
 (2.11) 

 DCI =  ∫ |
dk(l)

dl
|
2
dl

max (D)

min (D)
 (2.12) 

Finally, tortuosity indices based on sum of changes in the angles between 

centerline points are shown in Equations (2.13) and (2.14) (55, 56).  N in Equation (2.13) 

is number of sample points, n and θ are predefined fixed factor and the angle between 

lines connecting consecutive pairs of sample points, respectively. 

 MAC = 
1

N−2n
∑ θn
i=1 (i) (2.13) 

 TN = ∑ (θn
i=1 ≥

π

6
) (2.14) 

 

Figure 2.4.  An example of a simulated vessel centerline displaying vessel chord (dashed 

line), location of critical points (red circle) and locations of inflection point (blue 

squares) that can be used to summarize information regarding tortuosity of retinal 

vasculature. 
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Tortuosity can also be calculated based on combination of local and global 

features to better match with observer’s perception of tortuosity.  For example, 

combination of number of critical points and angle variations with DM can potentially 

provide a more sensitive measure of tortuosity while remaining invariant to rigid 

transformations.  Such an approach has been thought to be useful for detection of 

tortuosity alterations in diseases such as SCR, in which nonspecific tortuosity alterations 

were reported previously (57, 58).  It is important to note that quantification of retinal 

vessel tortuosity has been mainly performed based on 2D images.  However, tortuosity 

includes curvature in z direction which cannot be readily determined due to limitation of 

2D image acquisition.  
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III. QUANTITATIVE AND COMPREHENSIVE ASSESSMENT OF 

HEMODYNAMICS IN THE CONJUNCTIVAL MICROVASCULAR NETWORK 

AND INTER-VISIT VARIABILITY OF THE HEMODYNAMIC 

MEASUREMENTS 

1. An Automated Image Processing Technique for Quantitative and 

Comprehensive Assessment of Hemodynamics in the Conjunctival Microvascular 

Network 

The contents of this chapter have been published as: Khansari, Maziyar M., 

Justin Wanek, Anthony E. Felder, Nicole Camaro and Mahnaz Shahidi. "Automated 

assessment of hemodynamics in the conjunctival microvasculature network." IEEE 

transactions on medical imaging, 35, no. 2 (2016): 605-611. 

Introduction 

The bulbar conjunctiva is a densely vascularized tissue covering the sclera of the 

eye.  It is one of a limited number of locations in the human body where RBC movement 

within the microcirculation can be directly and non-invasively visualized.  Due to this 

characteristic, the conjunctival microcirculation has been utilized to assess microvascular 

alterations due to systemic disorders, such as sickle cell disease (1-4), Alzheimer’s 

disease (5), hypertension (6), hypotension (7), and diabetes mellitus (8, 9).  Furthermore, 

previous studies have found correlations between conjunctival microvascular 

hemodynamics and cerebral blood flow in dogs (59), and alterations in the conjunctival 
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microcirculation in subjects with unilateral stroke (60), and during internal carotid artery 

surgery (61).  Hence, quantification of conjunctival microvasculature hemodynamics may 

be of value for evaluating microvascular alterations in other tissues of the body. 

Several commercial instruments designed for evaluation of the retinal circulation 

have been modified for assessment of hemodynamic properties of the conjunctival 

microvasculature, including the Heidelberg Retinal Flowmeter (10), and Retinal 

Functional Imager (11).  However, these instruments do not provide absolute 

measurements of retinal blood flow (10), or evaluate vessel caliber (11).  Other 

techniques such as Orthogonal Polarization Spectral Imaging (12), slit lamp 

biomicroscopy (13, 14, 36), and intravital microscopy (3, 62), utilize semi-automated 

image analysis algorithms to measure blood velocity and diameter of microvessels, but 

require selection of vessels of interest, which may be subjective and time consuming. 

Due to the large number of microvessels and physiologic variability of blood 

flow in the conjunctival microvascular network, there is a need for an automated image 

analysis method to comprehensively and quantitatively assess hemodynamics.  Recently, 

a study evaluating the number of vessels required to reliably characterize the 

hemodynamic properties of the conjunctival microvasculature was published, reporting 

the need to obtain measurements in more than 15 venules (63).  In the current study, a 

fully automated algorithm is reported that provides a comprehensive hemodynamic 

assessment of the conjunctival microvascular network.  
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Materials and Methods 

Subjects 

The study was approved by an institutional review board of the University of 

Illinois at Chicago.  The study was explained to subjects and informed consents were 

acquired in accordance to tents of Declaration of Helsinki.  Conjunctival 

microvasculature imaging was performed in 15 healthy subjects (age; was 61±11 years) 

without any history of ocular or systemic diseases.  Each subject contributed to the study 

by one eye which was selected based on availability and quality of the images.  Subjects 

were seated while their head and chin were stabilized using a head and a chin support.  

An external fixation target was introduced to the fellow eye to minimize eye movement 

during image acquisition.  Imaging was performed at several temporal conjunctival 

regions.  In a separated group of 5 subjects, repeated imaging was performed in one 

conjunctival region. 

Image acquisition 

Conjunctival microvascular imaging was performed using a previously described 

non-invasive optical imaging instrument (EyeFlow) (13).  The system comprised a slit 

lamp biomicroscope coupled to a digital charged coupled device (CCD) camera (Prosilica 

GT, AVT, Exton, PA) for recording RBC movement within conjunctival 

microvasculature.  The magnification of the system was 5.1X and the camera active 

sensor size was 8.8 mm×6.6 mm.  The fill factor and quantum efficiency were 100% and 

approximately 50%, respectively.  The conjunctiva was illuminated using an external 
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light source passed through a green filter with a wavelength of 540 nm.  Several 1-second 

image sequences were acquired at a rate of 50 frames per second and an exposure of 20 

ms.  Each image consisted of 1360×550 pixels where each pixel was equal to 1.25 µm on 

the object plane. 

Image processing and analysis 

The automated method for assessment of conjunctival microvascular images 

consisted of multiple image processing steps as shown in Figure 3.1.1.  In summary, 

image registration was performed to compensate for eye movement, image segmentation 

was performed for vessel detection, centerline extraction and bifurcation detection was 

used for identifying individual vessel segments.  Finally, diameter measurement, blood 

flow detection, and axial blood velocity measurement were performed for each vessel 

segment.  The image processing steps were implemented in MATLAB (release 2014a, 

Mathworks, Inc., Natick, MA, USA) with image processing toolbox version 9.0.  Detail 

description of each step is provided in the following. 

Image Registration 

Image sequences were processed to remove frames corresponding to blinks and 

correct for eye movement by image registration.  Image frames were first examined for 

the presence of saturated pixels, which were removed by automated cropping of the 

image frames to the largest rectangular area with non-saturated pixels.  For each image, a 

sharpness score was quantified by calculating the average magnitude of the horizontal 

and vertical intensity gradients, which were calculated by determining pixel-to-pixel 

intensity changes.  To eliminate frames with insufficient sharpness due to blinks and 
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rapid eye motion, the longest consecutive series of image frames that had sharpness 

scores above a threshold were extracted.  This threshold was computed for each image 

sequence as the mean minus half the SD of the sharpness scores.  A reference frame was 

then assigned based on the highest sharpness score and the remaining frames were 

automatically registered to this frame by translation using the MATLAB function 

imregister.  This intensity-based image registration function uses an optimization 

algorithm to find the best transform to align 2 images. The minimum and maximum 

numbers of consecutive automatically registered image frames were 6 and 40, 

respectively. 

Vessel Segmentation 

Vessel segmentation was performed using Frangi filtering on the time-averaged 

image generated from the registered images.  This filtering method involved computing 

 

Figure 3.1.1.  Flow chart depicting steps for automated image registration, vessel 

segmentation and hemodynamic measurements of the conjunctival microvascular 

network. 
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eigenvalues of the Hessian matrix over multiple image scales σmin and σmax (blur levels) 

for the detection of vessel-like structures within the image, as described previously (64).  

Briefly, a vesselness measure (Vo) was derived for each pixel based on the normalized 

and sorted eigenvalues (λ1 and λ2) of the Hessian matrix computed over multiple image 

scales (σ) as shown in Equation (3.1.1). 

 V0(σ) =  {

0               if λ2 > 0

exp (−
RB
2 (σ)

2β2
)   (1 − exp (−

S2(σ)

2C2
)  )   

  

 (3.1.1) 

where RB(σ) = λ1(σ)/λ2(σ),  S(σ) = (λ1(σ) + λ2(σ))
0.5

, and β and C were constants 

set to the value of 1.   A vesselness image was then generated by assigning the maximum 

vesselness measure over the image scales to each pixel, as indicated in Equation (3.1.2). 

 V0  =    MAX σmin≤σ≤σmax   {V0(σ)} (3.1.2) 

To eliminate user interaction, the minimum (σmin) and maximum (σmax) image 

scales were set to 1 and 7, respectively.  To increase computation efficiency, σ varied 

between σmin and σmax using only odd values.  By varying σ in steps of 2 rather than 1, the 

computation time for Frangi filtering was reduced by approximately a factor of 2.  The 

vesselness image was then binarized using an empirically derived threshold value of 0.1, 

thereby providing segmentation of the conjunctival vessels.  This binary image was 

further processed by counting the number of connected pixels in each binary object and 

removing objects smaller than 50 pixels in size.  To fill holes in the vessels and smooth 

edges, a single step morphological closing operation was also performed using a disk 

shape structuring element with a radius of 4 pixels. 
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An example of a mean conjunctival microcirculation image, derived by 

averaging 12 registered images is shown in Figure 3.1.2A.  Vessel segmentation results 

obtained by Frangi filtering using a threshold of 0.1 and the minimum and maximum 

image scales of 1 and 7, respectively, are shown in Figure 3.1.2B.  The final binary image 

after removing small objects and morphological closing is shown in Figure 3.1.2C.  As 

shown in Figure 3.1.2, Frangi filtering was able to detect small and large caliber 

microvessels of the conjunctival microvasculature. 

Centerline Extraction and Bifurcation Detection 

To extract centerlines and detect bifurcations of the vessel segments, several 

steps were performed.  An iterative morphological thinning algorithm (65), was used to 

create a skeleton image by shrinking the segmented vessels to single lines corresponding 

to the centerlines of the vessel segments.  Small spurs created during the thinning 

procedure were removed by determining the number of connected neighbor pixels in a 

3×3 kernel for each pixel in the centerline.  The spurs were removed by repeatedly (20 

times) eliminating pixels that only had one connected neighbor, thereby removing spurs 

less than 20 pixels in length.  A value of 20 pixels was selected since this is 

approximately equal to the radius of the largest conjunctival vessels, and the length of 

spurs should not exceed the radius of the vessels.  Intersection points of the vessel 

centerlines at crossovers and bifurcations were detected to obtain the centerlines 

associated with each vessel segment.  The intersection points were found by first 

performing convolution of the skeleton image with a 3×3 unity kernel, then multiplying 

the result by the skeleton image and detecting pixel locations that had a value greater than 
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three (66).  Finally, centerlines of the vessel segments were labeled automatically based 

on the number of connected pixels of each centerline.  The lengths of the vessel segments 

were between 21 and 1078 pixels. 

Images of the conjunctival microcirculation displaying the detected centerlines 

after morphological thinning and spur removal are shown in Figure 3.1.3A and Figure 

3.1.3B, respectively.  Vessel intersection and bifurcation points are displayed in Figure 

3.1.3C.  In this example, 45 vessel segments in the conjunctival network were identified 

 

Figure 3.1.2.  (A) Mean conjunctival microcirculation image generated by averaging 

consecutive registered image frames; (B) Vessel segmentation by Frangi filtering of the 

mean image. (C) After removing small objects and a morphological closing operation. 
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after centerline extraction and bifurcation detection.  Hemodynamic properties of the 

vessel segments were then evaluated individually, as described below. 

Diameter Measurement 

Diameter (D) and boundaries of vessel segments were automatically determined 

by calculating the FWHM of intensity profiles of lines perpendicular to the vessel 

centerline, as previously described (67).  For each vessel segment, the length of the 

 

Figure 3.1.3.  Conjunctival microcirculation image displaying detected centerlines after 

(A) morphological thinning, (B) spur removal, (C) detection of bifurcations and 

intersection points (blue dots). 
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perpendicular lines was set to 3 times an approximated vessel diameter value, which 

ensured the perpendicular lines extended beyond the vessel walls by approximately 1 

diameter length in both directions.  The approximated vessel diameter was determined by 

plotting 3 perpendicular lines with a length of 80 pixels (100 microns) at 3 equally spaced 

points along each vessel centerline on the final binary image.  The perpendicular lines 

were established automatically by calculating the line normal to the centerline direction, 

which was determined based on linear regression of 5 local vessel centerline points.  The 

perpendicular line was computed by the negative inverse of the slope of the best fit 

regression line.  The number of pixels (length) on the 3 perpendicular lines within the 

vessel segment on the binary image were counted using Bresenham algorithm (68), then 

averaged to approximate the vessel diameter.  To determine the true vessel diameter and 

vessel boundaries, intensity profiles of lines perpendicular to the vessel centerline were 

established by averaging intensity data every 5 pixels (microns) along the centerline on 

the mean registered image.  This spacing was empirically determined to reduce noise in 

the intensity profiles but allow sufficient number of measurements along the vessel 

length, thereby increasing the reliability of diameter measurements.  FWHM of the 

intensity profiles were calculated using a previously described method (13), thereby 

determining the vessel diameter.  Vessel diameter measurements were then averaged to 

generate a mean D for each vessel segment. 

Blood Flow Detection 

Variance filtering was performed on each vessel segment in the registered image 

sequence to identify vessels that had detectable blood flow.  In general, vessels with 
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detectable blood flow had centerline pixels with large temporal variance due to the 

motion of RBC as compared to surrounding tissue.  To evaluate the local temporal 

variation, the SD of intensity for each pixel along the centerline was computed as a 

function of time over which the registered images were acquired.  These values were then 

averaged to calculate the mean SD of intensity values along the vessel segment (μvessel).  

Similarly, the mean SD of intensity values of non-vessel pixels (μbackground) was computed 

over time with the exclusion of vessel pixels detected by Frangi filtering.  The standard 

deviation of the SD values (σbackground) were computed to determine a threshold value 

(Thbackground= μbackground - σbackground).  Vessel segments with a μvessel greater than Thbackground 

were considered to have detectable blood flow and were included for axial blood velocity 

measurement. 

Figure 3.1.4A displays an example of a conjunctival microcirculation image with 

2 selected vessel segments.  Figure 3.1.4B shows the SD of intensity values plotted as a 

function of length for the vessel indicated by the blue centerline.  In this vessel, μvessel was 

lower than Thbackground, indicating the lack of discernable blood flow. In contrast, Figure 

3.1.4C shows the SD of intensity values plotted as a function of length for the vessel 

indicated by the red centerline.  The mean SD (μvessel) exceeded Thbackground, indicating 

detectable blood flow.  
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Figure 3.1.4.  (A) Conjunctival microcirculation image displaying the centerlines of 2 

selected vessel segments.  (B) SD of intensity values plotted as a function of length for 

the vessel indicated by the blue centerline.  Mean SD (μvessel) (blue horizontal line) is 

lower than the threshold (Thbackground) (black horizontal line), indicating the lack of 

discernable blood flow.  (C) SD of intensity values plotted as a function of length for the 

vessel indicated by the red centerline.  Mean SD (μvessel) (red horizontal line) is greater 

than the threshold (Thbackground) (black horizontal line), indicating detectable blood flow.  

Figure 3.1.4 (A) Insert: Spatial-temporal image (STI) generated for the vessel segment 

indicated by the red centerline.  The red line superimposed on the STI displays the 

calculated slope based on the prominent bands in the STI. 
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Axial Velocity Measurement/Direction of Flow 

Axial blood velocity (V) was measured in each vessel segment by tracking the 

motion of RBC along the centerline in consecutive registered image frames.  Tracking 

was performed by creating a STI that displayed the intensity variation along the length of 

the vessel segment as a function of time.  Axial blood velocity was derived by 

determining the slope of the prominent bands in the STI which was automatically 

determined by 1D cross-correlation between intensity data in the columns of the STI 

image.  For pairs of columns in the STI, 1D cross-correlation was performed, and the 

shift in position of the aggregated RBC between columns (RBCshift) was estimated based 

on the maximum of the cross correlation, as shown in Equation (3.1.3). 

 RBCshift  =  argmax  {(f ∗ g) (i)} (3.1.3) 

where ∗ denotes the cross-correlation operator, f and g are the intensity signals along the 

vessel centerline in 2 adjacent columns of the STI, and i indicates the lag in position of 

one intensity signal with respect to the other.  The slope of the STI (velocity) was 

obtained by averaging the RBCshift values derived from the column pairs, then dividing by 

the time increment (20 ms) between image frames.  A line with the calculated slope was 

superimposed on the STI for visual verification by the user.  An example of a STI for one 

vessel segment is shown as an insert in Figure 3.1.4A. 

Blood flow (Q) and wall shear rate (WSR) were computed based on D and V 

measurements using formulas previously published by Koutsiaris et al (36).  Flow 

direction in each vessel segment was determined based on the sign of the slope of the 

prominent bands in the space time images.  Figure 3.1.5 displays an example of vessel 



27 

 

 

 

diameter and axial blood velocity measurements derived from a registered image 

sequence.  The detected boundaries of the vessels are shown in blue.  The magnitude and 

direction of axial blood velocity are depicted by color-coded arrows.  Vessels were 

classified as arterioles or venules by visualizing the direction of blood velocity within the 

vessel and determining whether blood collected into another vessel (venules) or diverged 

into vessel branches (arterioles). 

 

Statistical analysis 

Statistical analyses were performed using SPSS software (version 22, SPSS, 

Chicago, IL, USA).  Multiple measurements at different locations along the same 

microvessel were removed to obtain one measurement per microvessel.  Measurement 

repeatability was assessed by the mean SD of repeated measurements averaged over all 

 

Figure 3.1.5.  Conjunctival microcirculation image displaying vessel boundaries (blue 

lines) and the magnitude and direction of axial blood velocity (color-coded arrows).  

Color bar represents velocity in units of mm/s. 
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subjects.  Hemodynamic measures were averaged over each subject and compared 

between arterioles and venules using paired t-tests.  Arterioles and venules were 

categorized into 1 of 4 diameter groups based on the 25%, 50%, and 75% quartiles of 

diameter measurements in all vessels, yielding cut points at 11 µm, 16 µm, and 22 µm.  

Hemodynamic measures obtained in each diameter group were averaged per subject and 

compared among diameter groups with one-way ANOVA.  Relationships between 

hemodynamic measures and D were determined by linear regression analysis. 

Significance was accepted at P<0.01 to correct for multiple comparisons. 

Results 

Repeated measurements were obtained in 43 microvessels of 5 subjects (8 to 10 

microvessels per subject).  Repeatability (SD) of conjunctival D and V measurements 

were 0.7 μm (range: 0.6-1.0 μm) and 0.17 mm/s (range: 0.11-0.21 mm/s), respectively. 

Conjunctival D and V measurements were obtained in a total of 204 arterioles.  

On average, measurements were obtained in 14 arterioles per subject (range: 3-27).  The 

minimum and maximum of conjunctival D measurements were 5.9 µm and 42.9 µm, 

respectively.  Conjunctival V ranged between 0.08 mm/s and 2.5 mm/s in arterioles. 

Conjunctival D and V measurements were obtained in a total of 836 venules.  On 

average, measurements were obtained in 56 venules per subject (range: 14-87).  The 

minimum and maximum D measurements were 6.0 µm and 51.6 µm, respectively.  

Conjunctival V ranged between 0.07 mm/s and 3.4 mm/s in venules. 
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The mean and SD of conjunctival hemodynamic measures in arterioles and 

venules in all subjects are listed in Table 3.1.1.  Conjunctival D and Q were significantly 

higher in venules than arterioles (P<0.003).  Conjunctival V was lower in venules than 

arterioles, but this difference was marginally significant (P=0.05).  Conjunctival WSR 

was significantly lower in venules than arterioles (P=0.001). 

Mean and SD of conjunctival hemodynamic measures in arterioles and venules, 

categorized by diameter groups, are provided in Table 3.1.2 and Table 3.1.3, respectively.  

Conjunctival V was not statistically different among diameter groups in arterials (P=0.1), 

but increased with larger diameter groups in venules (P<0.001).  As expected, in both 

arterioles and venules, Q increased with larger diameter groups (P<0.001).  WSR was 

higher in the small diameter group in both arterioles and venules (P<0.001).  

Conjunctival V was linearly correlated with D in venules (P<0.001), but not in arterioles 

(P=0.6).  Q and WSR were correlated with D in both arterioles and venules (P<0.001). 

TABLE 3.1.1 

 CONJUNCTIVAL HEMODYNAMIC DESCRIPTORS. 

Vessel Type N D (µm) V (mm/s) Q (pl/s) WSR (s-1) 

Arterioles 15 15±3 0.63±0.17 86±33 320±132 

Venules 15 18±2 0.54±0.13 140±55 190±46 

P-value  <0.001 0.046 0.003 0.001 
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TABLE 3.1.2 

CONJUNCTIVAL HEMODYNAMIC DESCRIPTORS IN ARTERIOLES, STRATIFIED 

BY DIAMETER GROUPS. 

Diameter 

Groups (µm) 
N D (µm) V (mm/s) Q (pl/s) WSR (s-1) 

<11 13 9±1 0.70±0.3 40±27 488±194 

11-16 13 14±1 0.62±0.2 69±26 279±99 

16-22 13 19±1 0.54±0.2 111±45 163±77 

>22 10 26±3 0.87±0.5 299±155 193±117 

P-value  <0.001 0.125 <0.001 <0.001 

 

TABLE 3.1.3 

CONJUNCTIVAL HEMODYNAMIC DESCRIPTORS IN VENULES, 

STRATIFIED BY DIAMETER GROUPS. 

Diameter 

Groups (µm) 
N D (µm) V (mm/s) Q (pl/s) WSR (s-1) 

<11 14 9±1 0.41±0.1 23±7 281±65 

11-16 15 14±1 0.44±0.1 51±16 194±57 

16-22 15 19±1 0.50±0.1 103±26 147±38 

>22 15 28±2 0.80±0.4 356±181 162±87 

P-value  <0.001 <0.001 <0.001 <0.001 
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Discussion 

Due to physiological variations in microvascular blood flow, comprehensive 

assessment of a large number of microvessels is required to fully characterize the 

hemodynamic properties of the conjunctival microvascular network.  In the current study, 

an automated image analysis method for quantitative assessment of hemodynamics in the 

conjunctival microvasculature network was reported. 

In conjunctival venules of similar diameter, blood velocity measurements were in 

agreement with our previous published values obtained semi-automatically (1), and 

values reported by Jiang et al (14), but were slightly lower than values reported by 

Koutsiaris et al (69), which may be attributable to differences in techniques.  The 

maximum velocity that can be measured by our system is estimated to be approximately 

3.8 mm/sec, based on tracking movement of aggregated RBC along a 0.3 mm vessel 

segment over 4 consecutive image frames acquired at 50 Hz. 

Previous studies have reported pulsation in conjunctival arterioles (70, 71).  In 

these studies, a significantly larger number of frames were acquired at a higher frame rate 

which allowed measurements of velocity variations in arterioles during a complete 

cardiac cycle.  However, in the current study, this velocity variation was not observed in 

the STI (as evident by the presence of linear rather than curved bands), which is likely 

attributed to the limited imaging time interval.  Although image sequences were acquired 

over a 1 second time interval, the number of consecutive image frames that could be 

registered was limited by eye motion and blinks.  Therefore, velocity measurements were 

obtained from different intervals of the cardiac cycle over an average time interval of 0.3 



32 

 

 

 

sec, which was less than a complete cardiac cycle.  Lack of synchronization of image 

acquisition with the cardiac cycle may have increased the variability of velocity 

measurements.  However, within subject variability was reduced by averaging data 

obtained in multiple same size vessels in each subject. 

Currently available techniques for assessment of hemodynamics in conjunctival 

microvasculature utilize manual or semi-automated methods (13, 14, 36, 62), that 

necessitate user input and interaction.  Therefore, application of these techniques to 

evaluate a large number of microvessels may be inefficient and time consuming.  In 

contrast, fully automated vessel segmentation and blood flow detection by our method 

allows rapid and objective measurements of conjunctival hemodynamic properties in both 

arterioles and venules within the conjunctival microvascular network. 

Assessment of microvascular hemodynamics has been reported in non-ocular 

tissues, including nail fold (72), sublingual mucosa (73), and buccal mucosa (74), with 

the use of CapiScope, a commercially available device.  Although, this device is capable 

of automated blood vessel diameter measurements, evaluation of blood velocity requires 

manual drawing of a line along a target vessel.  Automated hemodynamic assessment of 

human sublingual microcirculation was demonstrated (75), but there are no reports of 

automated assessment of the conjunctival microvasculature network.  The automated 

method for vessel segmentation and blood flow detection presented in the current study 

allows quantitative assessment of hemodynamics in the conjunctival microvascular 

network and can be potentially applied to microcirculation images of other tissues.  Due 

to the inherent heterogeneity in hemodynamics of the microcirculation, this method is 
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well suited for detection of microvascular hemodynamic abnormalities and advancing our 

understanding of microvascular pathophysiology. 
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2. Inter-Visit Variability of Conjunctival Microvascular Hemodynamic 

Measurements in Healthy and Diabetic Retinopathy Subjects 

Introduction 

The bulbar conjunctiva is a vascularized mucus membrane covering the outer 

layer of the eye.  Conjunctiva has gained attention in literature due to the ease of 

accessibility and visibility of blood flow within the microvascular network.  Conjunctival 

microvasculopathy and hemodynamic responses to systemic diseases such as 

Alzheimer’s disease (5), hypertension (6), hypotension (7), diabetes (8, 16, 17, 76), and 

sickle cell disease (1, 3, 4, 77), have been reported.  Additionally, a recent study showed 

a significant decrease in conjunctival blood flow, vessel density, and non-perfused areas 

in brain dead compared to normal subjects (78).  Furthermore, abnormal conjunctival 

microcirculation was reported during internal carotid artery surgery (79). 

The study of conjunctival microvasculature may help elucidate information 

relevant to the study of microcirculation in other human organs.  Conjunctival 

microvascular complications due to diabetes have been reported (8, 16, 76), similar to 

those reported in the retina (80, 81).  Additionally, conjunctival blood flow has shown to 

be correlated with sublingual microcirculation in rats (82), and with cerebral blood flow 

in dogs (59). 

Imaging modalities including orthogonal polarization spectral imaging (12), slit-

lamp stereomicroscope (13, 14, 36, 83), and intravital microscopy (3, 62), have been 

developed for assessment of conjunctival microvascular hemodynamics.  Furthermore, 

http://www.merriam-webster.com/dictionary/aberrant
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commercial devices such as retinal functional imager (11), and Heidelberg retinal 

flowmeter (10), have been modified to perform the same measurements. 

Since systemic diseases can cause alterations in the conjunctival microvascular 

hemodynamics, studying inter-visit variability of the measurements is crucial to 

determine their sensitivity for detection of changes due to diseases.  In fact, 

understanding the sensitivity is essential for diagnosis, monitoring and assessing 

treatment efficiency.  Previous studies of inter-visit variability of blood flow in native 

arteriovenous fistula in chronic hemodialysis subjects and oxygen saturation in the retinal 

vasculature of healthy subjects have showed fluctuation in the measurements (84, 85).  In 

conjunctiva, intra-visit variability of hemodynamics has been demonstrated within one or 

multiple sessions during a single day (10, 15, 83).  Nevertheless, to the best of our 

knowledge, inter-visit variability of conjunctival microvascular hemodynamics was not 

reported previously.  The purpose of the current study was to determine inter-visit 

variability of conjunctival microvascular hemodynamics measured quantitatively in non-

diabetic and diabetic subjects at clinical stage of diabetic retinopathy (DR). 

Materials and Methods 

Subjects 

This study protocol was approved by an institutional review board of University 

of Illinois at Chicago.  The study was explained to subjects and informed consents were 

obtained according to the tenets of Declaration of Helsinki.  The study population 

included 17 subjects: 7 non-diabetic control (NC) (4 males and 3 females), 10 with 
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diabetic retinopathy (DR) (6 males and 4 females).  Diagnosis was based on retinal 

examination performed by retinal specialists.  Subjects’ age (mean ± SD) were 36±19 

years and 57±13 years in NC and DR subjects, respectively (P=0.01).  Subjects with 

stroke or myocardial infarction within 3 months of imaging, active angina, age-related 

macular degeneration, clinical diagnosis of glaucoma, dry eye syndrome, retinal vascular 

occlusions, history of intraocular surgery, or cataract surgery within 4 months of imaging 

were excluded from this study.  Before imaging, subjects were asked to sit for roughly 10 

minutes to facilitate a cardiovascular and respiratory resting state.  During imaging, 

subjects were seated in front of the slit lamp biomicroscope with their head fixed with a 

forehead support.  An external fixation target was introduced to the fellow eye to 

minimize eye movements.  The same imaging protocol was performed on the selected 

eye on a follow-up visit.  The follow-up durations (Mean±SD) were 11±15 and 22±8 

weeks in NC and DR subjects, respectively (P=0.06).  Each subject contributed to the 

study with one eye with a minimum of 3 repeated vessel segments in the 2 visits. 

Image acquisition 

Image acquisition was performed by our previously established non-invasive 

imaging system, EyeFlow (83).  The system was built upon a traditional slit lamp bio-

microscope coupled to a CCD camera (Prosilica GT, AVT, Exton, PA).  Imaging was 

performed on the conjunctival regions temporal to the limbus.  Several 1-second high 

magnification image sequences were recorded at 5.1X with a rate of 50 Hz (exposure of 

20 ms).  High magnification images were composed of 1360×550 pixels with a pixel 

resolution of 1.25 µm on the object plane.  Contiguous low magnification images of 
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conjunctival microvasculature were acquired in the single-shot at 2X.  Low magnification 

images were composed of 1024×1360 pixels with a pixel resolution of 3.12 µm on the 

object plane.  High (5.1X) and low magnification (2X) images covered approximately a 

conjunctival region of 1.7 mm×0.8 mm and 3.2 mm×4.2 mm, respectively. 

Image processing and analysis 

High magnification image sequences were analyzed quantitatively using our 

previously developed automated method (83).  In summary, from recorded image 

sequences, on average 17 (range; 6-41) consecutive frames were registered using an 

intensity based image registration technique to correct for eye motion.  A mean image 

was generated by averaging the registered image sequences.  Different size conjunctival 

microvessels were then segmented using Frangi vesselness filter applied to the mean 

image.  Vessel caliber (D) and axial blood velocity (V) assessment was performed using 

FWHM and spatial-temporal image (STI) techniques, respectively.  The slope of 

prominent bands in the STI was used to compute V.  Average cross-sectional blood 

velocity (Vs) was computed from measurements of D and V.  Blood flow (Q=VsπD2/4) 

and wall shear rate (WSR = 8Vs/D) were computed from Vs and D.  Finally, wall shear 

stress (WSS = ηWSR) was determined based on dynamic blood viscosity (η) which was 

calculated from clinical hematocrit value as described previously (13, 36). 

A conjunctival mosaic image was generated per subject per visit as we described 

previously (83).  Briefly, contiguous low magnification conjunctival microvasculature 

images were processed using MosaicJ, a semi-automated plug-in for ImageJ (ImageJ 

1.48V), to form a mosaic image.  A human observer then used the best quality mosaic 
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image from the 2 visits to locate conjunctival microvascular regions covered by each of 

the registered image sequences.  Figure 3.2.1 Shows example of the areas covered by 

image sequences overlaid on a mosaic image of a NC subject in the 2 visits. 

Image sequences acquired from similar conjunctival regions were further 

explored to find repeated vessel segments with a minimum of approximately 50% overlap 

between the 2 visits.  Conjunctival hemodynamic measurements (D, V, Q, WSR and 

WSS) were then compared between each pairs of repeated vessel segments to determine 

inter-visit variability of the measurements.  An example of conjunctival image sequences 

showing the same microvasculature between 2 visits in the same subject as in Figure 

3.2.1, is displayed in Figure 3.2.2.  Vessel segments were numbered automatically and 

detected vessel walls were highlighted by red lines, representing D.  Direction of RBC 

 

Figure 3.2.1.  Example of a conjunctival mosaic image with area of image sequences 

overlaid by white boxes for (a) the first and (b) the second visits of a NC subject.  

Overlapping regions between the 2 visits are shown by similarly numbered black 

arrows.  The mosaic image from the first visit was used to locate area of image 

sequences in both visits. 
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movement within microvasculature which was determined based on sign of slope of 

prominent bands in the STI is shown by white arrows. 

Statistical analysis 

Compiled data from all subjects were analyzed using Excel software (Microsoft 

Corp., Redmond, WA, USA).  Inter-visit variability of hemodynamic measurements was 

quantified in NC subjects as mean and 95% confidence interval (CI) of difference of each 

repeated measurement, averaged per subject.  The percentage number of DR subjects 

with D, V, Q, WSR and WSS difference beyond CI of NC subjects between the 2 visits 

was determined. 

Results 

In NC, a total of 67 repeated vessel segments were identified with D and V 

ranging from 11 µm to 38 µm and from 0.1 mm/s to 2 mm/s, respectively.  In DR, a total 

 

Figure 3.2.2.  Example of mean conjunctival microvascular images obtained by 

averaging registered image sequences for a NC subject in (a) the first and (b) the second 

visit.  Vessel segments were numbered automatically and detected vessel walls were 

highlighted by red lines, representing D.  Direction of RBC movements were shown by 

white arrows.  Vessel segments 1 to 5 were representing repeated microvascular 

between the 2 visits. 
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of 48 repeated vessel segments were identified with D and V ranging from 10 µm to 48 

µm and from 0.1 mm/s to 2.8 mm/s, respectively. 

Inter-visit variability of conjunctival microvascular D is shown in Figure 3.2.3A, 

with mean difference of 0.2 µm and CI from -0.7 µm to 1.2 µm.  As can be seen from 

3.2.3A, 60% of DR had D difference beyond normal 95% CI.  However, directions of D 

changes were not consistent across DR subjects.  Inter-visit variability of conjunctival 

microvascular V is shown in Figure 3.2.3B, with mean difference of -0.01 mm/s and CI 

from -0.3 mm/s to 0.3 mm/s.  As can be seen from Figure 3.2.3B, 20% of DR had V 

difference higher than normal 95% CI. 

Inter-visit variability of conjunctival microvascular Q is shown in Figure 3.2.4A, 

with mean difference of -8 pl/s and CI from -99 pl/s to 83 pl/s.  As can be seen from 

Figure 3.2.4A, 40% of DR had D difference beyond normal 95% CI.  Similar to D, 

directions of Q changes were not consistent across DR subjects.  Inter-visit variability of 

conjunctival microvascular WSR is shown in Figure 3.2.4B with mean difference of -3 s-1 

and CI from -93 s-1 to 87 s-1.  As can be seen from Figure 3.2.4B, 20% of DR had WSR 

difference higher than normal 95% CI.  Finally, inter-visit variability of conjunctival 

microvascular WSS is shown in Figure 3.2.4C, with mean difference of -0.14 dyne/cm2 

and CI from -2 dyne/cm2 to 2 dyne/cm2.  As can be seen from Figure 3.2.4C, 20% of DR 

had WSS difference higher than normal 95% CI. 



41 

 

 

 

  

 

Figure 3.2.3.  Inter-visit variability of conjunctival microvascular D (A) and V (B) 

using Bland and Altman analysis.  Mean against inter-visit changes in the 

hemodynamic measurements, averaged per subjects are shown for NC (black circles) 

and DR (gray diamond) subjects.  Mean of differences (solid line) and 95% CI (dashed 

lines) of NC subjects are also indicated. 
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Figure 3.2.4.  Inter-visit variability of conjunctival microvascular Q (A), WSR (B) and 

WSS (C) using Bland and Altman analysis.  Mean against inter-visit changes in the 

hemodynamic measurements, averaged per subjects are shown for NC (black circles) and 

DR (gray diamond) subjects.  Mean of differences (solid line) and 95% CI (dashed lines) 

of NC subjects are also indicated. 
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Discussions 

Alterations in the conjunctival microvascular hemodynamics can be readily 

quantified due to ease of microcirculation accessibility within the network (3, 5, 8, 18, 

77, 83, 86, 87).  Furthermore, conjunctival microcirculation can provide information 

regarding pathologies and biological conditions that can alter systemic circulation (59, 

78, 79, 82).  In the current study, inter-visit variability of conjunctival microvascular 

hemodynamics (D, V, Q, WSR and WSS) was reported in NC and subjects at clinical 

stage of DR.  The results showed, as expected, some DR had higher hemodynamic 

variability as compared to NC subjects.  Therefore, considering measurements variability 

is essential for discriminating between true hemodynamic alterations and random 

fluctuations.  Additionally, performing multiple repeated measurements may become 

useful to better characterize hemodynamics in the conjunctival microvascular network. 

Previous studies have reported no significant intra-visit variability of 

conjunctival microvascular hemodynamics (15, 83).  However, no previous study, to our 

knowledge, reported inter-visit variability of conjunctival microvascular hemodynamics 

in NC and diabetic subjects at clinical stages of DR.  The primary conjunctival 

microvascular hemodynamic representatives are vessel caliber and blood velocity (13, 

36).  Q and WSR are determined based on D and V (36), and hence their inter-visit 

variability depend on changes of the 2 primary measurements.  WSS however, is affected 

by dynamic blood viscosity which was shown to increase with progression of DR (88). 

D and Q variability were higher in majority of DR than NC subjects (i.e. 60% 

and 40%).  Nevertheless, direction of changes from based line to follow-up visit were not 
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consistent.  The inconsistency could be possibly due to either treatments or physiological 

response to environmental conditions.  To minimize non-pathological variation, subjects 

were asked to seat for roughly 10 minutes to reach a stable respiratory and circulation 

state.  However, other factors such as diet and stress could have influenced the 

hemodynamics measurements (89, 90).  The inter-visit variability of V, WSR and WSS 

was higher in 20% to 40% of DR as compared to NC subjects, which could be due to 

progression of the disease.  We showed in a previous study that WSR and WSS decrease 

due to DR (86).  However, a decreasing trend was not observed in the follow-up visit of 

DR subjects in the current study.  It might be that a window larger than 13 to 33 weeks 

that was used in the current study is required to detect the reduction in WSS and WSR. 

The current study had limitations.  First, the number of subjects and repeated 

measurements in each group were limited.  In fact, finding same vessels across the visits 

was difficult due to presence of large number of microvasculature and limited number of 

image sequences that could be acquired from each subject due to lose of fixation.  

Nevertheless, a minimum of 3 repeated measurements were obtained per subject to 

improve reliability of the result.  Second, arterioles and venules were not discriminated in 

the current study since branching of the vessel segments could not be visualized in some 

of the image sequences, precluding reliable vessel type detection.  Nevertheless, 

measurements were averaged per each eye to minimize variation due to arteriole pulsatile 

blood flow (69).  Future studies can be helpful in determining inter-visit variability of 

conjunctival microvascular hemodynamics differentially in arterioles and venules.  

Additionally, future studies with larger number of subjects can be useful for determining 

the effect of duration of the disease on inter-visit variability of the hemodynamic 
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measurements in DR subjects.  Finally, a larger clinical study can help with determining 

the range of D that can minimize inter-visit variability of hemodynamics within 

conjunctival microvascular network.  Nevertheless, the current study showed that 

conjunctival microvascular hemodynamics can be measured reliably in NC subjects.  

However, slight hemodynamics variability exists between the 2 visits in NC subjects that 

needs to be considered for discriminating between true alterations from random 

fluctuations.  Also, the hemodynamic measurements in some DR tend to have more 

variability than NC subjects which could be due to progression of the disease.  



46 

 

 

 

IV. ASSESSMENT OF CONJUNCTIVAL MICROVASCULAR 

HEMODYNAMICS IN STAGES OF DIABETIC MICROVASCULOPATHY 

The contents of this chapter have been published as: Khansari, Maziyar M., 

Justin Wanek, Michael Tan, Charlotte E. Joslin, Jacob K. Kresovich, Nicole Camardo, 

Norman P. Blair and Mahnaz Shahidi. "Assessment of Conjunctival Microvascular 

Hemodynamics in Stages of Diabetic Microvasculopathy." Scientific Reports 7 (2017). 

Introduction 

Diabetes was the seventh cause of death in the US in 2010 (91).  The prevalence 

of diabetes among US adults is projected to increase from 14% in 2010 to 21% by 2050 

(92), representing a significant burden on the population.  Previous studies have reported 

a high prevalence of microvascular disease in diabetic subjects (93, 94), and indeed the 

most common cause of morbidity and mortality among diabetics is related to 

vasculopathy (95, 96).  Alterations in circulation due to diabetes adversely affect various 

organ systems, causing complications such as, DR, nephropathy, neuropathy, 

cardiovascular disease, genitourinary problems, amputations and foot ulcers (97).  

Therefore, assessment of microvascular hemodynamics can be useful for evaluation and 

monitoring of complications due to diabetes. 

Microvascular hemodynamic alterations due to diabetes have been reported in 

various tissues, including the brain, heart, foot, sublingual tissues, nail fold, retina, and 

conjunctiva (3, 8, 17, 18, 75, 98-111).  Due to the accessibility of the conjunctiva for 

direct visualization of microcirculation, alterations in the conjunctival microvasculature 
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due to diabetes have been reported based on determination of a severity index (SI) (3, 8, 

18, 110).  The SI incorporated several factors, including the number of blood vessels with 

abnormal morphometry, blood vessel diameter, arteriole to venule ratio, blood velocity 

and viscosity.  However, these studies did not provide assessment of conjunctival 

hemodynamic alterations at progressive stages of diabetic microvasculopathy. 

Since DR stage is thought to parallel progressive levels of diabetic 

microvasculopathy in other tissues (83, 112), assessment of the conjunctival 

hemodynamics at stages of DR may become useful for gaining a better understanding of 

diabetes pathophysiology, and potentially allow diagnostic evaluation of diabetic 

microvasculopathy.  Additionally, conjunctival and retinal hemodynamics may be 

comparable as suggested by a previous report of similarities in diabetic-related 

microvasculopathies between the conjunctiva and the retina (109).  The purpose of the 

current study was to provide a comprehensive and quantitative assessment of alterations 

in conjunctival hemodynamic descriptors at progressive stages of diabetic 

microvasculopathy by application of our previously established conjunctival 

microcirculation imaging technique (83). 

Materials and Methods 

Subjects 

The study was approved by an institutional review board of the University of 

Illinois at Chicago.  The study was explained to subjects and written informed consents 

were obtained from participants according to the tenets of the Declaration of Helsinki.  
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The cohort consisted of 161 subjects (58 males and 103 females) with ages ranging from 

21 to 87 years old.  Based on a complete clinical history and ocular examination, 

including a dilated fundus examination, the subjects were categorized into one of four 

groups: NC (N=34) and 3 diabetic groups of increasing microvasculopathy severity: no 

DR (NDR; N=47), non-proliferative DR (NPDR; N=45) and proliferative DR (PDR; 

N=35).  Twelve (5 NDR, 2 NPDR, 5 PDR) and 115 (42 NDR, 43 NPDR, 30 PDR) 

subjects had type 1 and 2 diabetes, respectively.  Exclusion criteria were inability to give 

informed consent or participate in the study, stroke or myocardial infarction within 3 

months of imaging, active angina, dry eye syndrome, conditions that can affect the ocular 

surface, clinical diagnosis of glaucoma, age-related macular degeneration, retinal 

vascular occlusions or any other retinal, choroidal or optic nerve disease that could 

interfere with the staging of DR, history of intraocular surgery within 4 months of 

imaging, or cataract surgery within 4 months of imaging.  Glycated hemoglobin 

(HbA1c), HCT, systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart 

rate (HR) were measured at the time of imaging.  Mean arterial pressure (MAP) was 

computed as (SBP+2DBP)/3.  Data from one eye per subject was included in the study 

based on the exclusion criteria, ability to maintain fixation during imaging, and image 

quality.  If both eyes qualified, the eye with the larger number of acquired images was 

selected.  During imaging, a headrest and forehead support was used to stabilize subject’s 

head, and a fixation target was presented to the fellow eye to minimize eye movement.  

Subjects were asked to suspend blinking during the one-second duration of image 

acquisition, and then allowed to blink normally. 

http://www.merriam-webster.com/dictionary/throughout
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Image Acquisition 

Imaging of the conjunctival microcirculation was performed using our previously 

described non-invasive optical imaging system (EyeFlow) (83).  Briefly, the imaging 

system comprised a slit lamp biomicroscope and a CCD camera (Prosilica GT, AVT, 

Exton, PA) for the acquisition of image sequences of RBC motion through the 

conjunctival microvasculature.  The slit lamp light source, fitted with a narrow band 

optical filter with a transmission wavelength of 540±5 nm, was used to illuminate the 

conjunctival microvasculature.  One-second image sequences were captured from the 

superficial conjunctival microvasculature at a rate of 50 frames per second with 5.1X 

magnification.  Each image consisted of 1360×550 pixels with a pixel resolution of 1.25 

µm on the object plane.  This process was repeated to acquire image sequences from 

multiple non-overlapping conjunctival microvascular regions temporal to the limbus that 

encompassed up to 10 mm×13 mm areas. 

Image Processing and Analysis 

Conjunctival image sequences were automatically analyzed with our previously 

validated method (83), using customized software written in MATLAB (Release 2015b, 

MathWorks, Inc. Natick, MA, USA).  The automated method for measuring conjunctival 

hemodynamics consisted of several steps including image registration, vessel 

segmentation, centerline and bifurcation extraction, diameter measurement, blood flow 

detection and axial blood velocity measurement.  Briefly, an intensity-based image 

registration algorithm was employed to correct for eye movement in image sequences.  

Frames with blinks, large eye motion, or illumination artifacts were eliminated from each 
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image sequence, then the longest consecutive number of frames were registered.  A time-

averaged image was then generated from the registered image set, and Frangi filtering 

was performed for segmentation of conjunctival vessels.  Vessel centerlines were 

extracted by thinning the segmented vessels, then bifurcation points were identified to 

define centerlines of all individual vessel segments.  To ensure adequate sampling and 

reliability of measurements, only vessel segments with centerline lengths above 50 

microns were included for hemodynamic analysis.  Variance filtering was performed on 

the remaining vessel segments to distinguish vessels with detectable blood flow.  D and 

vessel boundaries were measured by computing the FWHM of intensity profiles, 

established perpendicular to the centerline direction at every 5 pixels along the 

microvessel.  V was determined by tracking the movement of RBC along the vessel 

centerline in the registered image sequences using STI (83).  The STI showed variation of 

intensity values along a vessel centerline over time due to RBC motion.  V was calculated 

by determining the slope of the prominent bands in the STI.  Vs from D and V, Q = 

VsπD2/4, WSR = 8Vs/D, η from HCT and D, and WSS = ηWSR were determined using 

previously described formulas (36, 38). 

Microvessels were categorized as arterioles or venules by visualization of the 

direction of blood flow within the vessels and distinguished if the flow diverged into 

smaller vessel branches (arteriole) or collected into a larger vessel (venule).  If multiple 

measurements were obtained along the same vessel, data from the vessel segment with 

the longest centerline were included for analysis.  Image acquisition was not 

synchronized with the heart rate, and hence arteriolar and venular hemodynamic 
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measurements were obtained at different time points during the cardiac cycle, though 

hemodynamics in venules are less dependent on the cardiac cycle (70). 

Statistical Analysis 

Compiled data consisting of one value per hemodynamic descriptor (D, V, Q, 

WSR and WSS) per vessel per subject were analyzed using Stata version 12 (College 

Station, TX: StataCorp LP).  Demographic and systemic physiologic data were compared 

among groups using the Chi-Square test or ANOVA.  Mean conjunctival hemodynamic 

descriptors were computed and compared among NC and stages of DR (NDR, NPDR and 

PDR) using ANOVA.  A generalized linear mixed model (GLMM) with random 

intercepts was used to estimate beta (β) and 95% confidence intervals (CI) and examine 

associations between DR stage and each hemodynamic descriptor outcome.  Fixed effects 

were analogous to standard regression analysis and estimated directly.  The model 

assumed a Gaussian error distribution.  Unadjusted models regressed the DR stage group 

(categorical) on the hemodynamic descriptors with no additional fixed effects.  The 

random intercepts were established by identification of the individual study participants 

using their study id number.  The adjusted models regressed the DR stage group 

(categorical), and the following fixed effects: age (continuous), race (categorical), sex 

(categorical), MAP (continuous), HR (continuous), HCT (continuous) and HbA1C 

(continuous) on the hemodynamic descriptors.  Again, the random intercepts were 

established by identification of the individual study participants using their study id 

number.  Since race was not matched between groups of subjects, race differences were 

adjusted in the models according to well-established statistical data analysis 
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methodologies.  Eye examined was not considered as a covariate in the model because it 

was not associated with hemodynamic descriptors.  The association between V 

(dependent variable) and D (independent variable) was determined in each group and 

compared to NC subjects while accounting for multiple measurements per subject in both 

adjusted and unadjusted models.  The estimated β value (denoted by slope) derived by the 

model represented the increase in V per one-unit increase in D.  Statistical tests were 2-

sided and significance was accepted at P≤0.05. 

Results 

Demographic and Physiologic Data 

Subjects’ demographics and physiologic data are reported in Table 4.1.  Sex, 

MAP, and eyes examined were not different among DR stages (P≥0.3).  However, age, 

race, HR, HCT, and HbA1C were different (P≤0.03). 

Conjunctival Hemodynamic Descriptors in Arterioles 

Conjunctival hemodynamic measurements were obtained in a total of 1861 

arterioles.  The Mean±SD number of arteriole measurements was 10±5, 9±4, 9±4, and 

8±5 in NC, NDR, NPDR, and PDR subjects, respectively.  There was no difference in the 

number of arteriole measurements among the groups of subjects (P=0.2). 

Mean and SD of unadjusted conjunctival arteriolar D, V, Q, WSR and WSS 

stratified by DR stage are provided in Table 4.2.  D and Q were similar (P≥0.8), while V, 

WSR, and WSS were different among DR groups (P≤0.03). 
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Estimates of DR stage differences from the statistical model with and without 

adjusting for age, race, sex, MAP, HR, HCT, and HbA1C are shown in Table 4.3.  D and 

Q were not different between NC and stages of DR with and without adjusting for 

covariates (P≥0.3).  V, WSR, and WSS were lower in NDR than NC subjects with and 

without adjusting for covariates (P≤0.01).  Additionally, unadjusted WSR and WSS were 

lower in NPDR than NC subjects (P≤0.04), but the adjusted differences were not 

significant (P≥0.2).  Similarly, unadjusted WSS was lower in PDR than NC subjects 

(P=0.05), but not after adjusting for covariates (P=0.3).  After adjusting for covariates, V 

and WSR were lower in NDR as compared to NPDR subjects (P≤0.02; results not shown 

in Table 4.3) and V was lower in NDR as compared to PDR subjects (P=0.02; results not 

shown in Table 4.3). 

The associations between conjunctival arteriolar V and D stratified by DR stage 

with and without adjusting for age, race, sex, MAP, HR, HCT, and HbA1C are provided 

in Table 4.4.  After adjusting for covariates, the associations between V and D were 

significant in NC, NDR, and PDR.  The associations between V and D were weaker in 

NPDR and PDR as compared to NC subjects (P≤0.006). 

Conjunctival Hemodynamic Descriptors in Venules 

Conjunctival hemodynamic measurements were obtained in a total of 9027 

venules.  The Mean±SD number of venule measurements was 24±11, 21±7, 22±8 and 

20±7 in NC, NDR, NPDR, and PDR subjects, respectively.  There was no difference in 

the number of venules measurements among the groups of subjects (P=0.2). 
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Mean and SD of unadjusted conjunctival venular D, V, Q, WSR and WSS 

stratified by DR stage are provided in Table 4.5.  D, V and Q were similar among groups 

(P≥0.08), whereas WSR and WSS were different (P≤0.05). 

Estimates of DR stage differences from the statistical model with and without 

adjusting for age, race, sex, MAP, HR, HCT, and HbA1C are shown in Table 4.6.  Q was 

not different between NC and stages of DR with and without adjusting for covariates 

(P≥0.1).  D was higher in NDR than NC subjects with and without adjusting for 

covariates (P≤0.03).  WSR and WSS were lower in NDR than NC subjects with and 

without adjusting for covariates (P≤0.01).  D was higher in NPDR than NC subjects, 

regardless of the effects of age, race, sex, MAP, HR, HCT, and HbA1C (P≤0.02).  WSR 

was lower in NPDR than NC subjects after adjusting for covariates (P=0.05).  WSS was 

lower in NPDR than NC subjects with and without adjusting for covariates (P≤0.02).  V 

was lower in PDR than NC subjects after adjusting for covariates (P=0.04).  WSR and 

WSS were lower in PDR than NC subjects with and without adjusting for covariates 

(P≤0.02).  After adjusting for covariates, V and Q were higher in NPDR as compared to 

PDR subjects (P≤0.04; results not shown in Table 4.6). 

The associations between conjunctival venular V and D stratified by DR stage 

with and without adjusting for age, race, sex, MAP, HR, HCT, and HbA1C are provided 

in Table 4.7.  After adjusting for covariates, the associations between V and D were 

significant in all groups.  The association between V and D was stronger in NPDR as 

compared to NC subjects (P=0.01). 
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TABLE 4.1 

SUBJECTS’ DEMOGRAPHICS AND PHYSIOLOGIC DATA. 

P-values derived by Chi square (a) or ANOVA (b).

 

Total (N=161) NC (N=34) NDR (N=47) NPDR (N=45) PDR (N=35) P-value 

N               %             %                       %                         %                             % 

Sex 
 

 
  

0.3a 

Male 58 36 24 34 40 46 

Female 103 64 76 66 60 54 
 

Race 
      

<0.001a 

AA 74 46 12 62 51 51 
 

White 48 30 77 21 16 14 
 

Hispanic 39 24 12 17 33 34 
 

Eye Examined 
      

0.8a 

Right 108 67 74 64 64 69 
 

Left 53 33 27 36 36 31 
 

Age (years) 57±12 61±11 55±14 58±10 53±9 0.03b 

MAP (mmHg) 91±13 89±10 92±11 91±13 94±17 0.4b 

Heart Rate (BPM) 75±11 69±9 73±10 78±12 78±11 0.001b 

Hematocrit (%) 41±6 44±5 42±5 40±5 37±6 <0.001b 

HbA1C (%) 7.4±1.9 5.5±0.5 7.4±1.5 8.4±1.7 8.2±2 <0.001b 

HbA1C (mmol/mol) 57±21 37±6 57±16 68±19 66±22 <0.001b 
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TABLE 4.2 

CONJUNCTIVAL HEMODYNAMIC DESCRIPTORS IN ARTERIOLES STRATIFIED BY DR STAGE. 

*P-value determined by ANOVA. 

Hemodynamic 

Descriptor 

NC (N=34) NDR (N=47) NPDR (N=45) PDR (N=35) P-value* 

D (µm)       

    Mean±SD 18±5                                                                                                                                                                                        

8 ± 5 

19±4 18±4 18±5 0.9 

    [Min–Max] [6–61] [7–53] [7–47] [7–58]  

V (mm/s)      

    Mean±SD 0.70±0.23 0.54±0.22 0.62±0.24 0.64±0.27 0.03 

    [Min–Max] [0.08–3.02] [0.07–24] [0.07–3.27] [0.08–3.44]  

Q (pl/s)      

    Mean±SD 144±118 124±98 135±90 146±115 0.8 

   [Min–Max] [5–1672] [3–2306] [4–1234] [2.6–1566]  

WSR (s-1)      

    Mean±SD    280±115 193±87 232±109 245±106 0.003 

    [Min–Max] [15–2288] [18–1310] [15–1365] [24–1563]  

WSS (dyne/cm2)      

    Mean±SD 8.6±5.0 5.4±3.2 6.2±3.3 6.6±3.7 0.003 

    [Min–Max] [0.03–3.2] [0.03–6.3] [0.03–5.0] [0.04–6.0]  

Arterioles sample size 

    Mean±SD 10±5 9±4 9±4 8±5 0.2 

    [Min–Max] [4–32] [4–33] [4–27] [3–31]  
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TABLE 4.3 

COMPARISON OF CONJUNCTIVAL HEMODYNAMIC DESCRIPTORS IN ARTERIOLES BETWEEN NC AND DR 

SUBJECTS IN UNADJUSTED (MODEL 1) AND ADJUSTED (MODEL 2) MODELS. 

*Unadjusted. 

**Adjusted for age, race, sex, mean arterial pressure, heart rate, hematocrit, and hemoglobin A1C. 

 D (µm) V (mm/s) Q (pl/s) WSR (s-1) WSS (dyne/cm2) 

 β P β P β P β P β P 

Intercept 18 <0.001 0.69 <0.001 144 <0.001 278 <0.001 8.6 <0.001 

Model 1: DR Stage Effect*       

NC Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. 

NDR 0.7 0.5 -0.16 <0.001 -21 0.3 -87 <0.001 -3.2 <0.001 

NPDR 0.7 0.4 -0.07 0.2 -6 0.8 -47 0.04 -2.4 0.01 

PDR 0.4 0.7 -0.04 0.4 8 0.7 -32 0.2 -1.8 0.05 

           Intercept 21 <0.001 0.98 <0.001 575 <0.001 755 <0.001 19.3 <0.001 

Model 2: DR Stage Effect**       

NC Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. 

NDR 0.1 0.9 -0.11 0.01 -16 0.4 -60 <0.001 -2.2 <0.001 

NPDR 0.8 0.4 0.02 0.7 14 0.5 -15 0.5 -1.1 0.2 

PDR 0.9 0.4 0.00 0.1 13 0.6 -18 0.4 -0.9 0.3 
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TABLE 4.4 

COMPARISON OF ASSOCIATION BETWEEN CONJUNCTIVAL V AND D IN 

ARTERIOLES BETWEEN NC AND DR SUBJECTS IN UNADJUSTED (MODEL 1) 

AND ADJUSTED (MODEL 2) MODELS.  SLOPES OF THE REGRESSION LINES 

RELATING V AND D ARE PROVIDED. 

aSignificant association between V and D. 
bAssociation between V and D significantly different than NC (ref). 

*Unadjusted. 

**Adjusted for age, race, sex, mean arterial pressure, heart rate, hematocrit, and 

hemoglobin A1C.

 
Slope (s-1) 95% CI P-value* 

Model 1: DR Stage Effect  

NC 3 -4–9 Ref 

NDR 11a 6–15 0.05b 

NPDR 3 -2–9 0.9 

PDR 5 -1–11 0.5 

Model 2: DR Stage Effect  P-value** 

NC 15a 7–22 Ref 

NDR 19a 14–24 0.1 

NPDR 5 -1–11 0.001b 

PDR 10a 3–17 0.006b 
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TABLE 4.5 

CONJUNCTIVAL HEMODYNAMIC DESCRIPTORS IN VENULES STRATIFIED BY DR STAGE. 

*P-value determined by ANOVA.

Hemodynamic 

Descriptor 

NC (N=34) NDR (N=47) NPDR (N=45) PDR (N=35) P-value* 

D (µm)      

    Mean±SD 20±2 21±3 21±3 20±3 0.08 

    [Min–Max] [6–75] [7–71] [7–68] [7–74]  

V (mm/s)      
    Mean±SD 0.59 ±0.17 0.54±0.17 0.57±0.13 0.52±0.19 0.3 

    [Min–Max] [0.06–4.55] [0.07–4.39] [0.05–6.34] [0.04–4.9]  

Q (pl/s)      

    Mean±SD 175 ± 64 175 ± 79 195 ± 61 173 ± 94 0.5 

   [Min–Max] [3–3197] [3–7855] [3–5408] [3–7937]  

WSR (s-1)      

    Mean±SD 183±56 154±47 164±52 153 ± 52 0.05 

    [Min–Max] [15–2218] [17–1406] [10–2722] [13–1405]  

WSS (dyne/cm2)      

    Mean±SD 4.8 ±1.8 3.8±1.2 3.9±1.6 3.6±1.3 0.005 

    [Min–Max] [0.03–9.88] [0.03–4] [0.02–9.5] [0.02–5.6]  

Venules sample size 

    Mean±SD 24±11 21±7 22±8 20±7 0.2 

    [Min–Max] [14–108] [26–101] [19–150] [18–81]  
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TABLE 4.6 

COMPARISON OF CONJUNCTIVAL HEMODYNAMIC DESCRIPTORS IN VENULES BETWEEN NC AND DR 

SUBJECTS IN UNADJUSTED (MODEL 1) AND ADJUSTED (MODEL 2) MODELS. 

*Unadjusted. 

**Adjusted for age, race, sex, mean arterial pressure, heart rate, hematocrit, and hemoglobin A1C.

 D (µm) V (mm/s) Q (pl/s) WSR (s-1) WSS (dyne/cm2) 

 β P β P β P β P β P 

Intercept 20 <0.001 0.59 <0.001 173 <0.001 183 <0.001 4.8 <0.001 

Model 1: DR Stage Effect*       

NC Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. 

NDR 1.2 0.03 -0.05 0.2 5 0.8 -29 0.01 -1.1 0.001 

NPDR 1.4 0.02 -0.01 0.7 25 0.1 -19 0.1 -0.9 0.008 

PDR 0.4 0.52 -0.06 0.1 4 0.8 -29 0.02 -1.2 <0.001 

           Intercept 19 <0.001 0.49 0.004 151 0.05 185 0.001 3.4 0.03 

Model 2: DR Stage Effect**       

NC Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. 

NDR 1.4 0.03 -0.06 0.2 7 0.7 -33 0.01 -1.1 0.004 

NPDR 2.1 0.006 -0.03 0.6 26 0.2 -29 0.05 -1.1 0.02 

PDR 1.1 0.19 -0.11 0.04 -6 0.8 -47 0.003 -1.4 0.002 
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TABLE 4.7 

ASSOCIATION BETWEEN CONJUNCTIVAL V AND D IN VENULES BETWEEN 

NC AND DR SUBJECTS IN UNADJUSTED (MODEL 1) AND ADJUSTED (MODEL 

2) MODELS.  SLOPES OF THE REGRESSION LINES RELATING V AND D ARE 

PROVIDED. 

aSignificant association between V and D. 
bAssociation between V and D significantly different than NC (ref). 

*Unadjusted. 

**Adjusted for age, race, sex, mean arterial pressure, heart rate, hematocrit, and 

hemoglobin A1C.

 
Slope (s-1) 95% CI P-value* 

Model 1: DR Stage Effect  

NC 18a 16–21 Ref 

NDR 18a 16–19 0.6 

NPDR 22a 20–23 0.01b 

PDR 21a 19–23 0.1  

Model 2: DR Stage Effect   

NC 18a 16–21 Ref 

NDR 18a 16–19 0.5 

NPDR 22a 20–23 0.01b 

PDR 21a 19–23 0.1 
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Discussion 

In the current study, a comprehensive and quantitative assessment of alterations 

in hemodynamic descriptors (D, V, Q, WSR and WSS) within the conjunctival network 

was reported differentially in arterioles and venules at progressive stages of DR.  In 

arterioles, V was reduced in NDR subjects, consistent with a previous finding (17), 

though arterioles and venules were not differentiated in this study.  Arteriolar WSR were 

reduced only in NDR subjects, suggestive of a potential early marker of diabetic 

microvasculopathy.  Conjunctival microvascular hemodynamic abnormalities were more 

frequent in venules than arterioles, similar to a previous report that used a non-

quantitative method (111).  In venules, vasodilation was observed in NDR and NPDR 

subjects, consistent with previously studies (9, 113), though these studies did not 

differentiate dilation in arterioles and venules and reported vasodilation in the entire 

conjunctival microvascular network.  Increased vascular endothelial growth factor 

(VEGF) expression is known to cause vasodilation (114, 115), and VEGF expression has 

been previously reported to be elevated in conjunctival macrophages, epithelial, 

endothelial, and fibroblast cells in NPDR and PDR subjects (116).  Therefore, the finding 

of venular vasodilation in NPDR may be attributed, at least in part, to the elevation of 

VEGF expression.  Further combined studies of vascular caliber and VEGF levels are 

needed to investigate the potential effect of VEGF expression on conjunctival 

vasodilation.  In venules, WSR was reduced at all stages of DR, which is likely attributed 

to the observed vasodilation in NDR and NPDR subjects, and decreased V in PDR 

subjects.  Reduction in V is supported by previously reported increased blood viscosity in 

diabetic subjects (117). 
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There is no previous study, to the best of our knowledge, that reported alterations 

in conjunctival Q in a quantitative manner due to diabetes.  In the current study, no Q 

alteration was detected in the conjunctival arterioles or venules of DR as compared to NC 

subjects.  This finding is in agreement with a previous study that compared the nail fold 

microcirculation between diabetic and non-diabetic subjects (118).  However, previous 

studies of the retinal circulation have reported conflicting results of increased Q in early 

DR (98), unaltered Q in NDR or early DR (99), decreased Q in NPDR (100), decreased Q 

in PDR (101), and unaltered Q in PDR (102).  Future studies are needed to evaluate Q in 

both retina and conjunctiva of the same subjects to determine whether conjunctival and 

retinal Q are related. 

WSS is an important hemodynamic parameter in cardiovascular pathophysiology 

(119), and affects endothelial functions, such as migration of leukocytes, adhesion, 

control of vessel diameter, cytoskeletal structure, and energy metabolism (119-122).  

WSS is generally lower in subjects at risk of vascular diseases (123), and causes vessel 

wall remodeling and pathophysiology (124, 125).  Reduced WSS in the retinal arterioles 

of subjects with early DR (126), and in the carotid and branchial arteries of diabetic 

subjects (71, 127) was previously reported.  No previous study, to our knowledge, has 

reported WSS in conjunctival microcirculation of diabetic subjects.  In the current study, 

WSS was lower in conjunctival arterioles of NDR subjects and in venules at all stages of 

DR, as compared to non-diabetic subjects. 

Reduced WSS may promote endothelial dysfunction (126), and contribute to the 

development of microvasculopathy and DR (128, 129).  Furthermore, previous studies 
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have found an association of reduced WSS with increased vascular cellular adhesion 

molecules-1 (VCAM-1) (130, 131) and upregulation in the expression of VCAM-1 and 

intercellular adhesion molecules-1 (ICAM-1) in DR which leads to leukocytes 

accumulation in the retinal microcirculation (132-134).  Therefore, assessment of WSS in 

the conjunctival microcirculation may be potentially useful for evaluating 

microcirculatory abnormalities due to diabetes with and without clinical DR. 

Murray’s law (135), predicts a linear relationship between V and D under a 

normal physiological condition.  The large sample size in the current study allowed us to 

test the linearity of this relationship in the conjunctival microcirculation.  A positive 

linear association was found between V and D in both arterioles and venules in NC 

subjects.  This finding is in agreement with a previous study that showed a trend of 

increased V with larger D (69).  Furthermore, alterations in the dependence of V on D 

were present in NPDR and PDR subjects that suggest physiological abnormalities in 

conjunctival arterioles and venules at clinical stages of DR. 

In the current study, the number of venules was greater than arterioles which is 

primarily due to the conjunctiva anatomy in which arterioles are less numerous than 

venules, as previously reported (3, 8).  The lower sampling of arterioles could also be 

attributed by the fact that arterioles tend to have lower image contrast compared to 

venules.  Despite the difference in vessel sampling, the findings of the current study are 

based on a very large sample size of approximately ten thousand arterioles and venules. 

There were limitations in the current study.  First, the imaging system was not 

synchronized with the cardiac cycle to account for velocity changes in arterioles due to 
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pulsatility which was reported previously (70).  However, variability of V measurements 

due to pulsatility was reduced by averaging multiple arteriole measurements per subject.  

In the future, synchronization of imaging system with the cardiac cycle will enable 

assessment of conjunctival hemodynamics at peak systolic and diastolic blood pressure 

and should improve reliability of arteriole measurements.  Second, identification of 

arterioles and venules was performed manually.  Although human error in the 

identification of vessel type cannot be completely eliminated, the error was likely 

minimal since the direction of blood flow was clearly visualized in the image sequences.  

Third, motion of RBC was detectable in superficial vessels that were in the focal plane of 

the instrument and between 6 and 70 microns in diameter. 

In summary, in non-clinical DR, arteriolar V was decreased and venular D was 

increased, while venular V was decreased in advanced DR and D was increased in 

clinical DR.  At all stages of DR, venular WSS was decreased.  Future studies are needed 

to determine the association between retinal and conjunctival hemodynamic alterations 

and substantiate the value of conjunctival microcirculation imaging as a surrogate for 

screening and monitoring of DR.  Additionally, further investigation is warranted to 

relate alterations in conjunctival microvascular hemodynamic descriptors with incidence 

of complications due to diabetic microvasculopathy.  Overall, assessment of conjunctival 

hemodynamic alterations has the potential for diagnostic evaluation and longitudinal 

monitoring of diabetic microvasculopathy complications.  
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V. AUTOMATED FINE STRUCTURE IMAGE ANALYSIS FOR 

DISCRIMINATION OF DIABETIC RETINOPATHY STAGE USING 

CONJUNCTIVAL AND RETINAL MICROVASCULATURE IMAGES 

The contents of this chapter have been published as: Khansari, Maziyar M., 

William O’Neill, Richard Penn, Felix Chau, Norman P. Blair and Mahnaz Shahidi. 

"Automated fine structure image analysis method for discrimination of diabetic 

retinopathy stage using conjunctival microvasculature images." Biomedical optics 

express 7, no. 7 (2016): 2597-2606. 

1. An Automated Fine Structure Image Analysis Method for Discrimination 

of Diabetic Retinopathy Stage Using Conjunctival Microvasculature Images 

Introduction 

Diabetic retinopathy (DR) is the leading cause of vision loss in working age 

adults in the US (91).  DR is considered a microvascular disease and the earliest signs of 

microvasculopathies occur at the level of the small blood vessels or capillaries.  In fact, 

retinal tissue ischemia due to capillary non-perfusion and macular edema due to increased 

vascular permeability cause vision loss in DR.  Currently, discrimination of stages of DR 

is based on clinical visual examination of the retinal tissue for signs of microaneurysms, 

hard exudates, hemorrhages, and other pathologies.  Additionally, clinical fluorescein 

angiography (FA) allows visualization of retinal vascular perfusion and leakage, and 

optical coherence tomography (OCT) provides quantitative assessment of retinal 
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thickening due to macular edema.  In recent years, several research imaging techniques 

have been developed to assess retinal microvasculature abnormalities in diabetic subjects 

(20-25). Furthermore, methods for fractal analysis have been developed that relate the 

pattern of major retinal blood vessels to age, blood pressure, and diabetes (136-138).  

Recently, OCTA has become available for imaging of the retinal microvasculature (46, 

139).  Application of this technology to DR subjects has demonstrated alterations in the 

retinal microvasculature, including capillary non-perfusion, microaneurysms, and pre-

retinal neovascularization (140-142). 

Since diabetes is a systemic disease, it is expected that microvasculopathies 

present in the retinal tissue to be also evident, at least in part, in the microvasculature of 

other tissues.  One such tissue is the conjunctiva, a densely vascularized mucus 

membrane covering the sclera of the eye with a unique advantage of accessibility for 

direct visualization and non-invasive imaging.  Indeed, several studies have evaluated 

and reported microvascular abnormalities in the conjunctiva of diabetic subjects, similar 

to those reported in the retinal tissue (16-18, 76, 109, 113, 143). 

Several techniques have been developed for imaging of the conjunctival 

microvasculature, including retinal functional imager (11), orthogonal polarization 

spectral imaging (12), slit lamp biomicroscopy (13, 36), and intravital microscopy (3, 

62).  Furthermore, conjunctival microvasculature has been assessed quantitatively using 

automated (83), and semi-automated (13, 83), software.  However, methods for 

discrimination health and disease based on evaluation of conjunctival microvasculature 

have not been reported.  In the current study, we present application of a method (19), for 
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fine structure analysis of conjunctival microvasculature images for discriminating 

subjects at progressive stages of DR. 

Materials and Methods 

Subjects 

The study was approved by an institutional board of the University of Illinois at 

Chicago.  The study was explained to subjects and informed consents were obtained with 

accordance to declaration of Helsinki.  A total of 76 subjects participated in the study.  

The subjects underwent a dilated retinal examination by a retinal specialist who used the 

conventional clinical categories to classify each retina as NC (N=22), NDR (N=17), 

NPDR (N=17) or PDR (N=20).  The subjects were 27 males and 49 females.  Images of 

one eye of each subject were included.  The subjects’ ages (Mean±SD) were 63±12 years, 

57±13 years, 62±8 years and 53±10 years in NC, NDR, NPDR and PDR groups, 

respectively (P=0.02).  PDR subjects were significantly younger than NC subjects 

(P=0.03). 

Image Acquisition 

Imaging was performed using our previously described system EyeFlow (83), 

consisting of a slit lamp biomicroscope (2X magnification) coupled to a CCD camera 

(Prosilica GT, AVT, Exton, PA).  Active camera sensor size was 8.8 mm×6.6 mm with a 

fill factor of 100%, and approximate quantum efficiency of 50%.  The conjunctiva was 

illuminated by white light passed through a green filter (540±4 nm) which enhanced 

image contrast.  Each image was 1024×1360 pixels at 3.12 µm/pix on the object plane, 
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and thus covered a 3.2 mm×4.2 mm area of the conjunctiva.  Contiguous conjunctival 

microvasculature images with approximately 10% overlap were acquired at regions 

temporal to the limbus. 

Image Processing 

Conjunctival microvasculature images were montaged to generate a single 

mosaic image using MosaicJ software, a semi-automated image processing plug-in for 

ImageJ (ImageJ 1.48V).  Final adjustments to generate a seamless mosaic image were 

performed by the plug-in.  The mosaic image displayed a conjunctival microvasculature 

region up to 9.6 mm×12.6 mm area.  An example of a cropped conjunctival mosaic image 

in a diabetic (PDR) subject is shown in Figure 5.1.1.  Presence of light illumination 

artifacts and image blur due to eye movement precluded the use of entire mosaic for 

analysis.  Thus, from the mosaic image, a conjunctival region of interest (ROI) 

(1000×1000 pixels) covering a 3.1 mm×3.1 mm area was selected.  The ROI showed a 

dense vascularized region with good focus and devoid of illumination artifacts.  

Examples of 2 selected ROIs are outlined by squares overlaid on the mosaic image shown 

in Figure 5.1.1. 

Automated Image Discrimination 

Conjunctival image discrimination was performed based on a previously reported 

fine structure image analysis method (19), using a customized algorithm written in 

MATLAB (Release 2015b, MathWorks, Inc., Natick, MA, USA).  The motivation for the 

method is the long and successful history of time series analysis (TSA) in being able to 
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rigorously model multiple time series data which are visually indistinguishable (144).  

The mathematical basis of TSA is ordinary differential equations identified by applying 

OLS regression to difference equation approximations (145).  It is shown in (19), that 

images can be considered as solutions to partial difference equations such as the general 

autoregressive one given in Equation (5.1.1).  Further, it is shown that a Kronecker 

matrix-to-vector transformation applied to Equation (5.1.1) results in an OLS format of 

the equation to which TSA can be applied (45).  Briefly, pixels of each conjunctival ROI 

were shifted by 1 or 2 pixels row-wise, column-wise, and along the diagonal to yield 8 

unique combinations of the original image.  Shifting the pixels allows evaluation of 

fluctuation in intensity values over a pixel's neighborhood.  Since these shifts are at most 

2 pixels out of a thousand, each image appears visually identical, quite analogous to the 

TSA visual experience.  Each of the shifted images was vectorized by stacking columns 

 

Figure 5.1.1.  An example of a cropped mosaic image of the conjunctiva of a diabetic 

(PDR) subject.  Regions with light illumination artifacts and blur are visualized.  Two 

3.1 mm×3.1 mm regions of interest (ROIs) that were selected for analysis are outlined by 

squares. 
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of the 2D image into a 1D vector which occupied one column of a matrix.  A new column 

of ones was incorporated to the foremost left column of this matrix to account for sample 

means which improved discrimination because it removes the parameter estimation bias 

attributable to a nonzero sample mean (144).  The model image was defined as the 

weighted sum of shifted images, as shown in Equation (5.1.1). 

 yi,j = ∑ ∑ bk,lyi−k,j−l + ui,j
2
l=0

2
k=0  (5.1.1) 

where yi,j is the modeled image, yi-k,j-l are the shifted images, bkl are coefficients to be 

estimated, and ui,j is a 2D random process error with zero mean.  The OLS regression was 

performed to compute coefficients bkl by minimizing the variance of ui,j.  If y0 is the 

vectorized matrix yi,j and X = [x0 x1… x8] a matrix of vectorized yi-k,j-1 shifted images and 

x0 a columns of ones, then the vector b of bkl parameters can be determined as shown in 

Equation (5.1.2). 

 b =  (XTX)−1XYy0 (5.1.2) 

Computed OLS coefficients for images in each group of size Ni, i = NC, NDR, 

NPDR, and PDR were assembled into matrices (of size Ni subjects by 9 estimated bkl 

parameters) to be use for discrimination.  For every 2 groups of subjects, FLD was 

employed to compute a projection vector (v) which projects bkl parameters of each image 

onto a scalar z-projection axis.  The maximum separation of sample means of projections 

was obtained with v which satisfied the FLD eigenvector identity (46).  For 2 comparison 

groups of images, N1 and N2 subjects, let their respective OLS coefficients be assembled 

in matrices B1 and B2.  The “pooled sample” or combined matrix Bp is B1 stacked on B2.  

For an n by k matrix B with n samples of k parameters let Bm be B with its column 
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sample means subtracted.  Then the estimated covariance matrix of B is Ω=Bm
TBm/(n-1).  

The optimizing projection vector v satisfies the eigenvector identity of the B1, B2, and Bp 

covariance matrices was computed using Equation (5.1.3). 

 (n1Ωp − n2Ω1 − n3Ω1)v =  Ὑ1(n2Ω1 + n3Ω2)v  (5.1.3) 

where γ1 is the only non-zero eigenvalue, n1 = N1+N2-1, n2 = N1-1, and n3 = N2-1.  The 

FLD vector v maximizes the absolute difference between the sample means of 2 groups 

normalized by the sum of the covariance of each group. 

The K-S test was used to verify that z-projections in each group were normally 

distributed (46), hence allowing the use of KLD statistics.  KLD statistics are a special 

case of the Neyman-Pearson log-likelihood ratio hypothesis test.  Applied to 2 normally 

distributed z-projection density functions, f1(z) and f2(z), for example as seen in Figure 

5.1.2 through Figure 5.1.4, KLD statistics are values of a discrimination function L(z) 

given by Equation (5.1.4). 

 L1,2(z) =  Ln (
f1(z)

f2(z)
) =    Ln (

s2

s1
) +

(z−m2)
2

2s2
2 − 

(z−m1)
2

2s1
2  (5.1.4) 

where mi and si, i = 1,2 are sample means and SD of the hypothesized z-projection 

distributions.  If the 2 groups are perfectly separated, L1 values for all cases in group 1 

will be positive and L2 values for all cases in group 2 will be negative and L2,1=-L1,2.  

Misclassified group 1 z-projections have negative L1 values and misclassified group 2 z-

projections have positive L2 values.  The larger L1 value is for a group 1 the more likely 

it is a true positive and the smaller L2 value is for a group 2 the more likely it is a true 

negative. 
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The automated method was applied to images obtained in 4 groups of subjects, 

namely, NC (group 1), NDR (group 2), NPDR (group 3), and PDR (group 4).  This 

resulted in comparison of 6 group pairs.  The discrimination rate of each group pair was 

calculated by the ratio of number of misclassifications to the total number of cases. 

Image Discrimination Validation 

Two tests were performed to establish the validity of the method.  First, the effect 

of ROI selection on the discrimination rate was investigated by applying the method 

twice for discrimination of all group pairs, using 2 different non-overlapping ROIs for 

each subject.  Second, a negative control test was performed by applying the 

discrimination method to subgroups of group 1 (NC).  The subgroups (groups 1a and 1b) 

were created by randomly dividing the group 1 into 2 groups of equal size. 

Human Observer Image Discrimination 

Expert retinal specialists with experience in retinal vascular diseases served as 

human observers and performed image discrimination.  The human observers were 

masked to the grouping of the subjects and the result of the automated discrimination 

method.  They visually inspected images of the conjunctival microvasculature in paired 

groups and assigned each image to one of the 2 groups.  The discrimination rates were 

calculated similar to the automated method. 

Results 

The K-S test verified normal distribution of z-projections in all groups 

(p<0.0001).  Figure 5.1.2 shows probability densities of z-projections, and the KLD 
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statistics between non-diabetic and diabetic groups.  Figure 5.1.2A, displays 

discrimination results between group 1 (NC) and group 2 (NDR).  The automated method 

discrimination rate was 72% (28/39) with 4 and 7 misclassifications in group 1 and group 

2, respectively.  The range of L1 values for correctly discriminated cases in group 1 was 

between 0 and 2. The range of L2 values for correctly discriminated cases in group 2 was 

between -5 and 0.  Figure 5.1.2B, displays discrimination results between group 1 (NC) 

and group 3 (NPDR).  The automated method discrimination rate was 90% (35/39) with 2 

misclassifications in each group.  The range of L1 values for correctly discriminated 

cases in group 1 was between 0 and 9. The range of L3 values for correctly discriminated 

cases in group 3 was between -3 and 0.  Figure 5.1.2C, displays discrimination results 

between group 1 (NC) and group 4 (PDR).  The automated method discrimination rate 

was 95% (40/42) with 0 and 2 misclassifications in group 1 and group 4, respectively.  

The range of L1 values for correctly discriminated cases in group 1 was between 0 and 5. 

The range of L4 values for correctly discriminated cases in group 4 was between -11 and 

0. 

As listed in Table 5.1.1, using a second set of ROIs, the discrimination rates were 

72%, 85%, and 93% between group 1 (NC) and group 2 (NDR) and between group 1 

(NC) and group 3 (NPDR) and between group 1 (NC) and group 4 (PDR), respectively.  

The difference between discrimination rates determined using different ROIs was on 

average 2%.  As expected, the discrimination rate was lowest between NC and NDR with 

no retinopathy, and highest between NC and PDR with the most advanced retinopathy. 
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Figure 5.1.3 shows probability densities of z-projections, and the KLD statistics 

between diabetic groups.  Figure 5.1.3A, displays discrimination results between group 2 

(NDR) and group 3 (NPDR).  The automated method discrimination rate was 91% 

(31/34) with 1 and 2 misclassifications in group 2 and group 3, respectively.  The range 

of L2 values for correctly discriminated cases in group 2 was between 0 and 6.  The range 

of L3 values for correctly discriminated cases in group 3 was between -11 and 0.  Figure 

5.1.3B, displays discrimination results between group 2 (NDR) and group 4 (PDR).  The 

automated method discrimination rate was 84% (31/37) with 2 and 4 misclassifications in 

group 2 and group 4, respectively.  The range of L2 values for correctly discriminated 

cases in group 2 was between 0 and 4.  The range of L4 values for correctly discriminated 

cases in group 4 was between -7 and 0.  Figure 5.1.3C, displays discrimination results 

between group 3 (NPDR) and group 4 (PDR).  The automated method discrimination rate 

was 95% (35/37) with 0 and 2 misclassifications in group 3 and group 4, respectively.  

The range of L3 values for correctly discriminated cases in group 3 was between 0 and 3.  

The range of L4 values for correctly discriminated cases in group 4 was between -23 and 

0. 

As listed in Table 5.1.1, using a second set of ROIs, the discrimination rates were 

82%, 82%, and 97% between group 1 (NDR) and group 3 (NPDR) and between group 2 

(NDR) and group 4 (PDR) and between group 3 (NPDR) and group 4 (PDR), 

respectively.  The difference between discrimination rates determined using different 

ROIs was on average 4%. 
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Results of discrimination obtained by the negative control test in group 1a (NC) 

and group 1b (NC) is shown in Figure 5.1.4.  The automated method discrimination rate 

was 54% (12/22) with 6 and 4 misclassifications in group 1a and group 1b, respectively.  

The range of L1a values for correctly discriminated cases in group 1a was between 0 and 

4.  The range of L1b values for correctly discriminated cases in group 1b was between -2 

and 0. 

Conjunctival image discrimination rates derived by the automated method and 

both human observers are summarized in Table 5.1.1.  The 2 human observers’ 

discrimination rates between NC and each of 3 diabetic groups, NDR, NPDR, and PDR, 

were 56% and 56%, 56% and 59%, and 45% and 67%, respectively.  The human 

observers’ discrimination rates comparing NDR with NPDR and NDR with PDR were 

59% and 62% and 62% and 57%, respectively.  Comparison of NPDR and PDR groups 

yielded discrimination rates of 59% and 54% for the 2 observers.  The human observers’ 

discrimination rates were on average 56% and 59%, meaning similar to discriminating 

images by chance.  The discrimination rates derived by the automated method were 

consistently higher than those determined by both human observers.  
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Figure 5.1.2.  Probability densities of z-projections, and L1, L2, L3, and L4 values 

between non-diabetic subjects (NC, squares) and diabetic subjects (NDR, NPDR, and 

PDR, triangles).  (A) NC group 1 and NDR group 2, (B) NC group 1 and NPDR group 3, 

(C) NC group 1 and PDR group 3.  Misclassified cases in group 1 have negative L1 

values and misclassified cases in groups 2, 3, and 4 have positive L2, L3 and L4 values, 

respectively.  The larger L1 values and the smaller L2, L3 and L4 values denote more 

likely true positive and true negative cases, respectively. 
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Figure 5.1.3.  Probability densities of z-projections, and L2, L3, and L4 values between 

diabetic groups.  (A) NDR group 2 (squares) and NPDR group 3 (triangles).  

Misclassified cases in groups 2 and 3 have negative L2 values and positive L3 values, 

respectively.  (B) NDR group 2 (squares) and PDR group 4 (triangles).  Misclassified 

cases in groups 2 and 4 have negative L2 values and positive L4 values, respectively.  (C) 

NPDR group 3 (squares) and PDR group 4 (triangles).  Misclassified cases in groups 3 

and 4 have negative L3 values and positive L4 values, respectively.  The larger L2 values 

denote more likely true positive cases and the smaller L3 and L4 values denote more 

likely true negative cases, except for comparison of groups 3 and 4, in which the larger 

L3 values denote more likely true positive cases. 
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TABLE 5.1.1 

DISCRIMINATION RATES DERIVED BY THE AUTOMATED METHOD AND 

BOTH HUMAN OBSERVERS. 

Group Pairs Total Number 

of Images 

Discrimination Rate (%) 

Automated Method 

Discrimination Rate (%) 

Human Observer 

NC-NDR 

NC-NPDR 

NC-PDR 

NDR-NPDR 

NDR-PDR 

NPDR-PDR 

NC-NC 

39 

39 

42 

34 

37 

37 

22 

72 (72ɑ) 

90 (85ɑ) 

95 (93ɑ) 

91 (82ɑ) 

84 (82ɑ) 

95 (97ɑ) 

54 

56 (56b) 

56 (59b) 

45 (67b) 

59 (62b) 

62 (57b) 

59 (54b) 

N/A 
aDetermined using a different set of selected ROIs. 
bDetermined by the second human observer. 

 

Figure 5.1.4.  Probability densities of z-projections, and L1a, L1b values between non-

diabetic groups.  Images in NC subjects were randomly stratified into 2 groups of equal 

size, group 1a (squares) and group 1b (triangles).  Misclassified cases in groups 1a and 

1b have negative L1a values and positive L1b values, respectively.  The larger L1a 

values and the smaller L1b values denote more likely true positive and true negative 

cases, respectively. 
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Discussion 

Assessment of the conjunctival microvasculature can potentially provide 

information about microvascular abnormalities due to systemic vascular diseases.  In the 

current study, we demonstrated application of an automated method for discrimination of 

conjunctival microvasculature images according to stages of DR.  Furthermore, 

quantitative assessment of the strength of discrimination (i.e. the likelihood that an image 

is correctly discriminated) was demonstrated using KLD statistics.  The automated 

method was validated by first demonstrating the discrimination is independent of the 

selected ROIs, and second, by showing a considerably lower discrimination rate between 

2 groups of control subjects. 

The accuracy of discriminating PDR subjects was over 90% by the automated 

method, similar to the previously reported application of the method for classification of 

MRI between normal and demented brain (19).  The discrimination rates of the 

automated method for clinical and non-clinical DR were over 80% and 70%, 

respectively.  All automated discrimination rates were higher than rates determined by 

the human observers.  The lower discrimination rate obtained by the human observer 

suggests that the automated method can identify alterations in the microvasculature 

undetected by a trained observer. 

Since DR is a progressive microvascular disease, it is important to detect and 

monitor the presence of abnormalities at early stages of retinopathy.  Current clinical 

techniques require dilated retinal exam by a specialist, which may not be accessible or 

affordable to many diabetic people.  The availability of a non-invasive conjunctival 
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microvasculature imaging and an automated image analysis technique can be potentially 

useful for quick and frequent screening of subjects and referral to specialist for 

monitoring and treatment. 

Previous studies have reported conjunctival microvascular alterations in diabetic 

subjects (16-18, 76, 109, 143).  However, the current study is the first to our knowledge 

to apply a fine structure analysis method for discrimination of conjunctival 

microvasculature images according to DR stages.  Compared to retinal examination, 

conjunctival imaging takes a few seconds, does not require pupil dilation, and is more 

cost efficient.  Another advantage of the method is the rapid image analysis which 

required less than 4 seconds to analyze all images in the group pairs on a 1.3 GHz system 

with 8 GB RAM.  This enables classification of very large image datasets. 

The discrimination method detects global alterations that are not visually 

detectable in the microvascular network to determine the probability that an image 

belongs to a certain group.  The method consists of in-depth mathematical and statistical 

analysis of pixel-by-pixel intensity variations in the entire image, enabling a computer-

based discrimination to detect features and their pattern that may not be visually 

discernable by human observers.  Considering each pixel as an independent variable, 

each image contains 106 features that can contribute to image classification.  Therefore, 

the automated method of image discrimination is different from trained retinal specialists 

who examine the gross anatomy of blood vessels such as vessel dilation, obliteration, and 

increased tortuosity.  For example, the method may detect features such as vessel wall 

thickening and stiffening which are not evident by visual inspection of images, but can 
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influence the results obtained by the automated discrimination method.  Future studies by 

simulating specific microvasculopathies are needed to determine the image features that 

influence automated image discrimination rates.  Additionally, the application of the 

method requires good conjunctival image quality which can be affected by eye movement 

and curvature.  A potential solution is to incorporate a more rapid image acquisition 

system coupled with an autofocus lens.  In the current study, there was a significant 

difference in age between NC and PDR subjects.  Future studies are needed to determine 

the effects of age and other confounding factors on the discrimination results.  Finally, 

further studies in larger sample sizes are needed to validate these preliminary results and 

also establish the sensitivity of the method for screening of DR subjects.  Nevertheless, 

the findings of the current demonstrated the feasibility of successful application of an 

automated image analysis method to the conjunctival microvasculature images for 

discrimination of stages of DR.  Due to the accessibility of conjunctiva for direct 

imaging, this method shows promise for DR screening and monitoring.  
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2. Discrimination of Subclinical Stage of Diabetic Retinopathy from Normal 

Controls Using Fine Structure Analysis of Retinal Fundus Images 

Introduction 

Diabetic retinopathy (DR) is the leading cause of vision loss among working age 

adults in the US and the EU (146, 147).  A population-based study showed that the 

prevalence of DR in subjects with over 15 years of diabetes is over 97% (148).  Although 

DR is a vision-threatening disease, its progression can be substantially controlled with 

early diagnosis, intensive glycemic management and other systemic treatments (149-

151).  Microaneurysms and dot hemorrhages are the earliest signs of DR by conventional 

clinical means.  Nevertheless, the ocular therapeutics are generally administered after 

occurrence of damage and functional deficits to the retina (152, 153), which require 

advanced treatments such as laser, intravitreal steroid, intravitreal anti-VEGF or vitreous 

surgery (154).  These treatments, however, carry risks (155).  Therefore, it would be 

valuable to have less invasive treatments that can be used in earlier subclinical DR.  By 

subclinical, we mean a stage in DR development when retinal alterations are present, but 

not detectable by direct visualization.  Detection of retinal vascular alterations at this 

early stage can also prompt early, more intensive systemic treatment to prevent other 

complications such as renal disease, amputations, heart disease and neuropathy.  

Nevertheless, subclinical DR detection is challenging since there are no clinically visible 

signs to be used for diagnosis. 

Computerized clinical DR detection by processing retinal images for detection of 

microvasculopathies such as microaneurysms, hemorrhages, hard exudates and leakage 
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have been proposed (156-159).  Additionally, capillary drop out was shown to be a useful 

marker of early DR (160).  In diabetic subjects without DR (NDR), capillary density and 

foveal avascular zone (FAZ) size alterations were reported (161).  However, these 

findings were not detected in another study (162).  Previous studies have also reported 

alterations in diameter, tortuosity, branching angles and length to diameter ratio of retinal 

vasculature in subclinical DR (154, 163).  However, to the best of our knowledge, 

automatic subclinical DR detection based on retinal fundus images was not reported 

previously. 

The usefulness of DR screening based on automated analysis of retinal vascular 

images for detection of abnormalities and their severity was reported previously (164).  

Therefore, development of automated techniques for detecting subclinical pathologies 

due to diabetes may also become valuable.  Such a diagnosis allows early treatment and 

monitoring complications of the disease.  Additionally, detection of retinal vascular 

alterations in subclinical DR can serve as a marker for presence of vascular disease 

through the body organs.  In fact, diabetic-related microvascular alterations in various 

tissues such as brain, nail fold, retina, conjunctiva and sublingual have been reported 

previously (16, 98, 106, 165, 166).  We showed in a previous study that fine structure 

analysis of conjunctival microvascular images can be useful for quantitative DR stage 

discrimination (83).  Indeed, it was shown that the method is highly sensitive to changes 

such as vasodilation, vaso-obliteration, and vaso-constriction in the microvascular 

network (86).  The purpose of the current study was to examine application of the fine 

structure analysis (19) for quantitative discrimination of subjects with subclinical DR 

from normal controls. 
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Materials and Methods 

Image acquisition 

An institutional review board of the University of Illinois at Chicago approved 

the current study.  The study was explained to the subjects and informed consents were 

obtained in accordance to the declaration of Helsinki.  A total of 33 subjects including 6 

females and 27 males participated in the study.  Subjects underwent a comprehensive 

clinical and retinal examination and were classified into non-diabetic control (NC; N=16) 

and diabetic without clinical retinopathy (NDR; N=17).  Subjects’ age (Mean±SD) were 

56±9 years and 53±10 years in NC and NDR subjects, respectively (P=0.2). 

Image acquisition and processing 

Imaging was performed by a commercially available fundus camera system with 

a 60º field of view.  Images were acquired in color and each one consisted of 2392×2048 

pixels covering optic nerve head and the macula.  A circular area of interest (ROI) with 

3.6 mm (1000 pixels) radius centered on the fovea was selected from each fundus image 

and converted to grayscale for analysis.  Selection of this area allowed analysis of 

consistent regions between the subjects and was based on the assumption that retinal 

vascular alterations in subclinical stage of DR are more likely to be detectable in smaller 

vessels and capillaries (154).  Examples of selected ROIs outlined by a yellow circle 

overlaid on the fundus images and converted to grayscale of the ROIs in a NC and a 

NDR subject are shown in Figure 5.2.1. 
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Fundus image discrimination was performed by a previously described fine 

structure image analysis method using a custom algorithm written in MATLAB (Release 

2015b, MathWorks, Inc., Natick, MA, USA) (19).  Detail description of the method was 

published previously (19), and has been provided in chapter 5.1 of the current thesis.  

Similar to chapter 5.1, the discrimination rate was determined as percentage ratio of the 

number of correctly discriminated images to the total number of the images in the NC 

and NDR groups. 

 

                                  (A)                                                             (B) 

Figure 5.2.1. (A)  Examples of selected ROIs from fundus images of a NC (Top row) and 

a NDR (Bottom row) subject.  A circular ROI with diameter of 3.6 mm centered on the 

fovea that was selected for discrimination analysis is outlined by a yellow circle (left 

column).  (B) Converted grayscale images of the ROIs in the NC and NDR subjects. 
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Human Observer Image Discrimination 

An experienced retinal specialist masked to subjects’ diagnosis and the result 

obtained by the automated discrimination served as human observer and performed 

image discrimination.  Each of the images was visually inspected and assigned to one of 

the 2 groups.  The discrimination rate for the human observer was calculated using the 

same formula as that used for the automated method. 

Results 

The K-S test results showed that the distribution of z-projects in NC and NDR 

subjects were normal (P<0.001).  The automated discrimination rate was 88% (29/33) 

with 1 and 3 misclassifications in NC and NDR subjects, respectively.  The KLD 

statistics between the NC and NDR subjects are shown in Figure 5.2.2.  The range of L1 

values for correctly classified images in group 1 was between 0.1 and 4, while the range 

of L2 values for correctly classified images in group 2 was between -0.2 and -6.  

Discrimination rate by the human observer between NC and NDR subjects was 45%. 

Discussion 

In the current study, application of an automated image discrimination method 

(19) based on fine structure analysis of retinal images was performed for quantitative 

subclinical DR discrimination.  Additionally, the likelihood of accurate discrimination for 

each of the images in the 2 groups of subjects was demonstrated. 



88 

 

 

 

 

The rate of subclinical DR discrimination using the automated technique was 

higher than the rate obtained by the human observer, suggesting that the method can 

detect retinal alterations which cannot be visualized by a trained observer.  Detection of 

abnormalities in this early stage may prompt assessment of optimized glycemic control 

and possibly new treatment to prevent or delay DR progression.  Moreover, these early 

stage alterations may suggest presence of abnormalities in other critical organs such as 

brain or heart.  Thus, the method shows promises to improve monitoring and managing 

diabetic-related disorders throughout the body.  Furthermore, early subclinical DR 

diagnosis can reduce the expenses by providing better disease management and 

precluding costly treatment due to progression of the disease. 

DR is a progressive complication of diabetes that leads to blindness if not treated 

promptly (167).  However micro and macro-maculopathies are usually present with 

 

Figure 5.2.2.  Probability density of z-projections, L1 and L2 values between non-diabetic 

control (NC; group 1) and diabetic without retinopathy (NDR; group 2) subjects.  

Correctly classified images in group 1 had positive L1 values, while correctly classified 

images in group 2 had negative (L2) values.  The larger L1 value for an image in group 1 

and the smaller L2 value for an image in group 2 are indicators of more likely true positive 

and more likely true negative discrimination, respectively. 
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varying level of severity at the time of diagnosis (168).  Therefore, comprehensive dilated 

retinal examination on a regular basis has been recommended for people with diabetes for 

early detection and treatment to avoid further complications.  Changes in inter-capillary 

area, capillary density and FAZ size were shown to be correlated with progression of DR 

(154, 169, 170).  Furthermore, retinal imaging by an adaptive optics system combined 

with a confocal scanning laser ophthalmoscope (171) showed a significant increase in 

tortuosity of retinal arteriovenous channels at subclinical DR (154).  Additionally, 

previous studies have shown changes in retinal oxygenation, resistive index and blood 

flow in NDR subjects (169, 170, 172).  These and other retinal physiological alterations 

can cause vasodilation, vessel wall stiffening, and mild tortuosity alterations in 

subclinical DR which may not be visually detected by traditional clinical evaluations.  

However, techniques such as the fine structure analysis which use all the information in 

the image rather than specific microvasculopathies can be useful for detecting subclinical 

DR. 

We believe that shortly after diabetes, abnormalities begin to develop and reach a 

threshold over years manifested by DR.  The fine structure analysis is highly sensitive to 

these early abnormalities, and hence provides early diagnosis on the course of the 

disease.  Moreover, the KLD statistics provide quantitative representation of severity of 

abnormalities rather than only on an ordinal scale.  Furthermore, the algorithm has the 

advantage of requiring short computational time (e.g. less than 5 seconds on a 1.3 GHz 

system with 8 GB RAM).  High efficiency of the technique provides substantial potential 

for its application on very large image sets.  In fact, the method can become useful for 
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subclinical DR detection in near future with the expected increase in prevalence of 

diabetes and shortage in the number of qualified screening health care providers (173). 

It is important to note that it is unlikely that the fine structure method detects 

subclinical DR in early days of diabetes since diabetic-related abnormalities develop over 

time (174).  It is probable that for some period there is no abnormality in the retina that 

can be picked by the method.  In fact, conversion from normal to abnormal based on the 

fine structure analysis would be useful encouraging information for subjects to make 

extra effort to attain glycemic control. 

In the current study, a region including retinal microvasculature in the macula 

was selected for analysis to include mostly smaller caliber vessels that are more 

vulnerable to the disease than the larger ones (154).  Additionally, selection of this region 

allowed analysis of a consistent area among the subjects.  In future, inclusion of different 

size retinal regions in the analysis can be useful for determining the effect of region on 

the discrimination rate.  Furthermore, the effect of other pathologies such as hypertension 

that can be associated to diabetes was not considered in the current study.  Future studies 

are warranted to assess the effects of present pathologies in addition to diabetes on the 

discrimination rate.  Also, to further confirm the results of the current study, a future 

study with a larger number of subjects needs to be undertaken.  Future longitudinal 

studies are also needed to determine the predictive value of the method.  Nevertheless, 

the finding of the current convincingly showed potential for the fine structure analysis to 

detect subclinical DR based on retinal vascular images.  
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VI. A METHOD FOR QUANTITATIVE ASSESSMENT OF RETINAL 

VESSEL TORTUOSITY IN OPTICAL COHERENCE TOMOGRAPHY 

ANGIOGRAPHY APPLIED TO SICKLE CELL RETINOPATHY 

The contents of this chapter have been published as: Maziyar M. Khansari, 

William O’Neill, Jennifer Lim and Mahnaz Shahidi. "Method for Quantitative 

Assessment of Retinal Vessel Tortuosity in Optical Coherence Tomography Angiography 

Applied to Sickle Cell Retinopathy." Biomedical Optics Express, 8(8), (2017): 3796-

3806 

Introduction 

Sickle cell disease (SCD) is a genetic life-long chronic illness (175), 

characterized by sickle shape erythrocytes (176).  Sickle cell retinopathy (SCR) is a 

major complication of SCD which is known to affect peripheral and macular retinal 

vascular beds and can lead to vision loss in the progressed stages due to focal 

nonperfusion and formation of new vessels (57, 177).  Furthermore, frequent presence of 

retinal hemorrhages, schisis cavities and black sunbursts have been reported to be 

associated with SCR (57, 177). 

Fluorescein angiography (FA) has been used as a gold standard in the past 

decades for clinical evaluation of microvasculopathy due to SCR (178).  However, FA 

has been mainly performed for advanced proliferative stages of SCR and is known to be 

non-quantitative and invasive with limited applicability for subjects with small pupil 

(179).  Previous studies using spectral domain optical coherence tomography in SCR 
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showed temporal and central macular thinning (180, 181), and indeed macular thinning 

was found to be associated with proliferative SCR (181).  Lately, OCTA became 

available and offered an alternative to FA by providing high-resolution non-invasive 

imaging of capillary network in different retinal layers (182-184).  Recent studies in SCR 

using OCTA in parafoveal regions showed microvasculopathies such as decreased 

superficial and deep retinal capillary density (48, 58, 178), enlarged foveal avascular 

zone (FAZ) (48, 178, 185), capillary non-perfused areas (178, 186) and disruption of the 

perifoveal anastomotic capillary arcade (178). 

Tortuosity is an important geometric vessel parameter which has been considered 

as a risk factor of multiple retinal pathologies (26), and increased vessel tortuosity is 

known to be among the first microvascular alterations due to many retinopathies such as 

DR (27).  In SCR, increased retinal vessels tortuosity has been observed, but not 

considered as a pathognomonic sign.  Non-specific increased tortuosity has been reported 

in more than 32% of SCR subjects by qualitative analysis of large retinal vessels (187).  

Furthermore, increased tortuosity of major retinal vessels has been commonly observed 

in a majority of SCR subjects with HbS/HbS (SS) genotype (57, 58).  Finally, a recent 

analysis of OCTA images of parafoveal regions showed vessel tortuosity is more 

sensitive than thickness for SCR detection (48). 

There is no widely accepted mathematical definition for tortuosity (188), and 

tortuosity evaluation has been mainly performed subjectively by clinicians.  However, 

sensitivity and repeatability of visual tortuosity evaluation is limited due to high inter-

observer variability (47), and indeed qualitative evaluation is inefficient for large studies.  
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Quantitative assessment of tortuosity alterations has been reported in various retinal 

pathologies (27-30), using one or combination of distance measure (DM) (i.e. the ratio of 

vessel length to its chord length) (27, 28, 30, 48), curvature or integral of curvature (26, 

29, 31, 49) and number of inflection points (33, 53).  However, these methods are limited 

since they cannot always accurately estimate vessel tortuosity (26-31, 48, 53, 189-191), 

or are scale-dependent (33, 49).  More recently, a measure of tortuosity based on slope 

chain coding (SCC) was proposed which is invariant to rigid transformations (192).  

However, as suggested in (193), SCC depends on length of linear elements which needs 

to be carefully selected for accurate tortuosity quantification. 

In the current study, a method for assessment of retinal vessel touristy is 

proposed and shown to be invariant to rigid transformations and perform better than 

previous tortuosity metrics when compared with the evaluation of human observers.  VTI 

does not require any parameter tuning, is computationally efficient and more sensitive to 

changes in vessel curvature than methods that rely only on DM.  Additionally, OCTA 

images in both parafoveal and perifoveal regions were analyzed for detection of 

alterations in retinal vessel tortuosity due to SCR. 

Materials and Methods 

The study was approved by an institutional review board at University of Illinois 

at Chicago.  Informed consents were obtained from subjects in accordance to the tenets of 

Declaration of Helsinki.  The study was performed in 2 cohorts of subjects based on size 

of the imaged retinal region (i.e. 6 mm×6 mm (perifoveal); 3 mm×3 mm (parafoveal)).  

Perifoveal comprised 41 subjects (13 males and 28 females) with ages ranging from 15 to 
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62 years.  Parafoveal comprised 10 subjects (5 males and 5 females) with ages ranging 

from 27 to 56 years.  Based on a complete clinical history and ocular examination, 

subjects were categorized into 2 groups of NC (N=12; 7 OD and 5 OS) or SCR (N=29; 

15 OD and 14 OS) in perifoveal region, and NC (N=5; 1 OD and 4 OS) or SCR (N=5; 3 

OD and 2 OS) in parafoveal region.  Three NC and 2 SCR subjects were in both cohorts.  

Subjects demographics and clinical data has been shown in Table 6.2.  Exclusion criteria 

were inability to give informed consent or participate in the study, diabetes mellitus, 

glaucoma, or any other retinal disease.  Each subject contributed data to the study by one 

eye with the best image quality. 

Image acquisition 

Imaging was performed by a commercially available OCTA instrument (Optovue 

Inc, Fremont, California, USA).  The laser wavelength was 840±45 nm with an axial scan 

rate and axial scan depth resolution of 70 KHz and 5 µm, respectively.  B scans were 

acquired from identical retinal locations to generate blood flow map based on motion of 

RBC.  Each B-scan was comprised of 304 A scans.  Images of the superficial retinal 

vessels and capillary network were generated in perifoveal (6 mm×6 mm) and parafoveal 

(3 mm×3 mm) regions centered on the fovea.  The superficial layer was defined by the 

Optovue software and displayed the retinal vasculature in the nerve fiber and ganglion 

cell layers with minimal flow projection and shading effects.  
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Image processing and analysis 

Assessment of superficial retinal vessel tortuosity was performed using several 

image-processing steps as shown in Figure 6.1.  The algorithms were developed in 

MATLAB (Release 2015b, MathWorks, Inc., Natick, MA, USA) with image processing 

toolbox version 9.0. 

Vessel segmentation 

Segmentation of vessels in the perifoveal and the perifoveal regions in OCTA 

was performed using a k-means clustering algorithm (194), similar to a previous study in 

which human observers performed the classification based on Horton-Strahler schemes 

(195).  K-means clustering is an iterative process for dividing data into k clusters where k 

is a positive integer.  Clusters were found to minimize the least square error as shown in 

Equation (6.1). 

  E = ∑ ∑ ‖xi − µi‖
2

xi∈ci
k
j=1  (6.1) 

where E is the error, x is intensity value of pixels, and µ is the centroid of clusters.  The 

algorithm starts with K randomly selected initial centroids.  The distance between 

intensity value of each pixel to the centroids was computed to assign the pixel to a cluster 

 
Figure 6.1.  Flow chart depicting steps for VTI assessment in retinal vessels in OCTA. 
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with the closest centroid.  A new set of clusters were computed in the next iteration based 

on assignment of pixels to the clusters in the previous one.  This process was repeated to 

the point that the centroids were not changed between 2 consecutive iterations.  The k-

means clustering algorithm was used in the current study with k equals to 2 for 

classifying pixels either as vessel or background pixels to generate a binary image. 

The binary image obtained from the k-means clustering was enhanced by a series 

of morphological operations.  Filling was performed to eliminate any hole within the 

vessels, thickening was performed to bridge between separated vessel branches, objects 

smaller than 100 pixels, computed by counting the number of pixels in each binary 

object, were removed to eliminate noise and capillaries.  Finally, dilation was performed 

using a disk shape structuring element to smooth vessel walls.  Vessel centerlines 

between each pair of bifurcation points were extracted using distance transform through 

manual endpoint selection.  The vessel endpoints were selected by simultaneous 

visualization of the grayscale and binary images in 2 separate windows.  The grayscale 

image was used to identify bifurcations and the binary image was used to more accurately 

locate them with respect to the vessel boundaries and centerline.  Cubic smoothing spline 

was utilized with a regularization parameter of 0.01 to obtain an adequate centerline and 

avoid aliasing.  Vessel tortuosity index (VTI) was then computed for each of the 

centerlines as described in the following section. 

Vessel tortuosity assessment 

The most frequent tortuosity measures found in the literature were based on DM 

which is the ratio of arch length to chord length of a vessel segment (27-30).  Despite the 
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fact that DM is a simple and quick approach for vessel tortuosity quantification, there are 

circumstances where it fails to accurately determine the tortuosity due to its simplicity 

(190).  A tortuosity measure by combination of DM and number of inflection points was 

suggested by Bulliet et al (53), which was shown not always match with visual 

perception of tortuosity (33).  Additionally, tortuosity density index (DT) defined as 

multiplication of number of inflection points with sum of DM determined between points 

of changes in centerline curvature was proposed by Grisan et al (33).  The main 

drawback of this method was scale dependency. 

Tortuosity measures based on curvature or integral of curvature have been 

proposed and applied in various pathologies (26, 31, 191).  Hart et al, showed that the 

sum of squared curvatures along retinal vessel centerline perfectly match with tortuosity 

perception of experts for classifying their data set into tortuous and non-tortuous blood 

vessels (26).  However, these methods can lead to misrepresentation of vessel tortuosity 

without considering changes in the sign of the curve, which is an important parameter 

used by clinicians for tortuosity evaluation (33). 

Tortuosity assessment based on local angle changes was proposed previously 

(55, 56, 196).  Grisan et al, showed limitation of these methods which computed the same 

tortuosity for a semi-circumference and a curve obtained by juxtaposition of its 2 arcs.  

The 2 have the same mean angle changes but different tortuosity. 

A method based on SD of distribution of vessel centerline incremental lateral 

displacement was proposed earlier by Wenn et al (197).  Nevertheless, their method does 
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not consider the magnitude of the curve, which plays an important role in clinical 

evaluation of vessel tortuosity. 

Recently, Lisowaka et al, compared performance of 5 different retinal vessel 

tortuosity measures against sampling rates of vessel centerlines on a public data set (193).  

Performance comparison of DM (26), DT (33), SCC (193) and 2 curvature based 

measures (26) showed that the overall performance of DT was good, but not always the 

best.  They suggested that attention to numerical details and standardization is essential 

before choosing a tortuosity index.  Further details on available tortuosity measures is 

beyond the scope of the current study and can be found elsewhere (33, 190). 

Comparatively little work has been conducted for quantitative assessment of 

retinal vessel tortuosity in OCTA.  The VTI presented in the current study is sensitive to 

small changes in tortuosity, and hence is suitable for detecting tortuosity alterations in 

retinal vessels in OCTA.  For each point along the centerline, the angle (θ) between a line 

tangent to the centerline and a reference axis was determined.  SD of absolute θ values 

(SDθ) along each centerline was computed, representing variation of local angle changes.  

The number of critical points at which the first derivative of centerlines vanishes (N) was 

quantified for each centerline based on frequency of changes in sign of the slope of the 

tangent lines.  The N value was set to 1 for centerlines with no critical point to avoid zero 

tortuosity due to the lack of critical points.  Inflection points at which the second 

derivative of centerlines vanishes (Ip) along the centerline were identified by detecting 

changes in the sign of curvature (k) where k was calculated using Equation (6.2).  

Magnitude of vessel centerline (M) was estimated as mean ratio of arch length (LA) to 
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cord length (LC) between pairs of inflection points including centerline end points as 

shown in Equation (6.3). 

  k(l) =
dx(l)d2

dl

y(l)

dl2
 − 

d2x(l)d

dl2
y(l)

dl

((
dx(l)

dl
)
2
+(

dy(l)

dl
)
2
)
3/2 (6.2) 

 M = 
1

Ip+2
∑

LAi

LCi

Ip+2
i=1  (6.3) 

The tortuosity index was multiplied by vessel length (LA) since LA increases with 

tortuosity, and was normalized by vessel chord length (Lc) to allow comparison of vessel 

segments with variable chord length.  The mathematical derivation and visual 

demonstration of VTI is given in Equation (6.4), and Figure 6.2, respectively. 

 VTI =  
0.1.SDϴ.N.M.LA

LC
 (6.4) 

VTI is unitless similar to previous tortuosity metrics (26, 33, 193).  The 

minimum value for VTI is equal to 0 for an ideal straight line with zero SD of local angle 

changes.  In theory, there is no maximum value for VTI since it increases with higher 

variation in angles, number of critical points, and the magnitude of curve.  However, VTI 

in OCTA was generally lower than 1.  NC and SCR example of perifoveal OCTA, vessel 

segmentation, and extracted centerlines for tortuosity analysis are shown in Figure 6.3. 

VTI Validation 

VTI was validated by (i) using sinusoidal curves with variable magnitudes and 

angular frequencies, and (ii) by quantitative comparison against performance of human 

observers (MS, WO and MK). 
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Two sets of sinusoidal curves were generated, the first set had constant angular 

frequency (1.25 rad/sec) and variable magnitudes between 0 and 6.  The second set had 

constant magnitude of 1 and variable angular frequencies between 0 rad/sec and 6.3 

rad/sec.  A dependable tortuosity index should rise with increasing magnitude and 

increasing angular frequency coequal with visual perception of tortuosity. 

Quantitative comparison of VTI and human observers’ grading was performed 

using a set of 25 sinusoidal curves generated from randomly selected magnitudes 

between 0.1 and 5, and randomly selected angular frequencies between 0.6 rad/sec and 4 

rad/sec.  The random magnitudes and frequencies were generated using Mersenne 

Twister pseudo-random number generator (198).  VTI and 4 previously established 

tortuosity indices, namely DI, Tnl (199), DM and integral of absolute curvature (Tc) were 

 

Figure 6.2. Visual demonstration of parameters extracted from a vessel centerline for 

VTI computation.  (A)  Angle between a line tangent to the centerline and a reference 

axis for the first centerline point.  (B) Tangent lines for points along the centerline.  SD 

of angles between each tangent line and the reference axis was computed.  (C) Critical 

points (red circles) were determined based on changes in sign of slope of the tangent 

lines.  (D) Magnitude of curve as ratio of arch length (LA) to the chord length (LC) 

between pairs of inflection points including centerline end points (red squares). 
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computed for the curves and sorted in an ascending order.  Similarly, human observers 

visually evaluated the curves and arranged them in an ascending order.  

Statistical analysis 

Statistical analysis was performed using SPSS (version 22, SPSS, Chicago, IL, 

USA) and statistical analysis codes written in MATLAB applied separately to data from 

the perifoveal and parafoveal regions.  The association between VTI and performance of 

the human observers was determined using Spearman’s rank correlation.  Subjects’ 

demographics were compared using Chi-square or t-test.  Correlation between VTI and 

age in NC subjects was assessed using weighted Pearson’s correlation analysis.  Finally, 

generalized least squares (GLS) was used to determine the effect of disease (NC and 

SCR) on VTI with and without adjusting for covariates (age (continuous) and race 

(categorical)).  Statistical significance was accepted at P≤0.05. 

Results 

VTI Validation 

The validation tests using sinusoidal curves showed that VTI increased 

exponentially with increasing magnitudes and angular frequencies.  The Spearman’s rank 

correlation statistics for comparison of VTI and the 4 previous methods with performance 

of human observers is shown in Table 6.1.  VTI was correlated better with all human 

observers’ evaluations than tortuosity indices derived from previously established 

methods. 
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Demographic Data 

Subjects’ demographics are summarized in Table 6.2.  In perifoveal region, age 

and eye examined were not different among NC and SCR subjects (P≥0.3), while sex and 

race were different (P<0.03).  In parafoveal, age, sex and eye examined were not different 

among NC and SCR subjects (P≥0.2), while race was different (P=0.008).  

 

Figure 6.3.  (A) OCTA images acquired in a NC (top row) and SCR (bottom row) 

subject in perifoveal regions.  Example of a vessel segment endpoints is shown with red 

arrows (A; top row) (B) Vessel segmentation using k-means clustering.  Example of a 

vessel segment endpoints selected on the binary image for centerline extraction are 

shown by red dots (B; top row). (C) Vessel endpoints (yellow circles) and centerlines 

(red lines) for VTI assessment.  Mean VTI in the perifoveal region in the NC and SCR 

subjects were 0.41 and 0.71, respectively. 
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TABLE 6.1 

SPEARMAN’S RANK CORRELATION OF HUMAN OBSERVES VS 5 

TORTUOSITY MEASURES FROM A SET OF 25 RANDOMLY GENERATED 

SINUSOIDAL CURVES.  VTI (VESSEL TORTUOSITY INDEX), DENSITY INDEX 

(DI), NON-LINEAR CURVATURE (TNL), DISTANCE MEASURE (DM), AND 

INTEGRAL OF ABSOLUTE CURVATURE (TC). 

Tortuosity Measure Observer 1 Observer 2 Observer 3 

VTI 0.89 0.91 0.93 

DI 0.88 0.91 0.91 

Tnl 0.88 0.86 0.90 

DM 0.82 0.77 0.80 

Tc 0.74 0.77 0.81 

TABLE 6.2 

SUBJECT’S DEMOGRAPHICS.  M AND F ARE ABBREVIATIONS FOR MALE 

AND FEMALE, RESPECTIVELY.  W, AA AND A STAND FOR WHITE, AFRICAN 

AMERICAN AND ASIAN, RESPECTIVELY.  OD AND OS ARE RIGHT AND LEFT 

EYE, RESPECTIVELY.  SS, SC, AND SΒ STAND FOR SICKLE CELL GENOTYPE 

HBS/HBS, HBS/HBC, AND HBS/BETA THALASSEMIA, RESPECTIVELY. 

 Perifoveal Parafoveal 

 NC 

(N=12) 

SCR 

(N=29) 

P-value NC 

(N=5) 

SCR 

(N=5) 

P-value 

Sex (M/F) 7/5 6/23 0.03a 3/2 2/3 0.9a 

Race (W/AA/A) 11/0/1 0/29/0 <0.001a 4/0/1 0/5/0 0.008a 

Eye (OD/OS) 7/5 15/14 0.7a 1/4 3/2 0.5a 

Age (years) 37±12 35±14 0.3b 41±10 48±12  0.2b 

SCR Type (SS/SC/Sβ) 17/9/3  2/2/1 

SCD Stage 

(O/I/II/III/IV) 

1/1/19/7/1  0/0/3/1/1 

P-value determined by Chi-square (a) or t-test (b).  
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VTI in perifoveal and parafoveal regions 

In the perifoveal region, VTI was assessed in 1026 and 2444 vessel segments in 

NC and SCR subjects, respectively.  Mean VTI per subject ranged from 0.25 to 0.9 in 

perifoveal region.  There was a negative correlation between VTI and age in NC subjects 

(r=-0.4, P<0.001, N=12).  Finally, VTI was significantly higher in SCR (0.61±0.11) than 

NC (0.31±0.04) subjects with or without age and race adjustment (P<0.001). 

In the parafoveal region, VTI was assessed in 181 and 154 vessel segments in 

NC and SCR subjects, respectively.  Mean VTI per subject ranged from 0.3 to 0.9 in 

parafoveal region.  Finally, VTI was significantly higher in SCR (0.69±0.18) than NC 

(0.40±0.04) subjects with or without age and race adjustment (P≤0.001). 

Discussion 

In the current study, a quantitative vessel tortuosity index was formulated by 

extracting multiple parameters from vessel centerline.  This method is similar to human 

observer’s evaluation because variation of local angle changes, number of critical points, 

and magnitude of curve, each contribute to visual perception of tortuosity and were 

included in VTI formula.  The method was applied to OCTA images obtained in 

perifoveal and parafoveal retinal regions and tortuosity alterations in superficial retinal 

vessels due to SCR were demonstrated. 

VTI increased exponentially with higher magnitude and angular frequency of 

sinusoidal curves, consistent with visual perception of tortuosity.  More importantly, VTI 

was shown to match with visual perception of tortuosity and its performance was better 
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than other commonly used methods such as DI and DM.  Furthermore, VTI has several 

advantages for assessment of retinal microvasculature.  First, it is invariant to rigid 

transformations such as translation, rotation, and scaling because these transformations 

have no influence on any of its components (SDθ, N, M, LA/Lc).  This is important since 

rigid transformations are common in clinical applications in which different instruments 

with variable setting are used for image acquisition.  Second, VTI was normalized with 

respect to chord length which is necessary for detection of tortuosity alterations in retinal 

tissue which is densely vascularized and contains vessels with variable lengths.  Third, 

VTI incorporates vessel length which can contribute to tortuosity.  In fact, retinal vessels 

can become tortuous due to longitudinal stretching or shortening of distance between 

their tethering points (26, 200).  Although the pathophysiology of vascular stretching is 

not well established, the assumption is that the tone of smooth vascular muscles which 

determines vessel length and consequently tortuosity can be altered by mediators, blood 

gas and metabolism due to pathology (201). 

The proposed and many previously established methods do not account for the 

influence of vessel caliber on tortuosity.  Therefore, the findings may misrepresent 

tortuosity of the entire network since small caliber and highly tortuous vessels can 

increase the overall tortuosity of the network.  Attempts have been made to consider 

vessel width information in retinal tortuosity quantification (49), and to detect type of 

tortuosity alteration in 3D models of intracerebral vessels (53).  However, large clinical 

studies are required to determine the effect of vessel size on clinical perception of 

tortuosity to provide a deterministic weight factor to aggregate the impact of vessel size 

on tortuosity of the network.  Although the effect of vessel caliber was not considered in 
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the VTI formula, the k-mean clustering algorithm used in the current study automatically 

eliminated capillaries with diameter smaller than 20 µm, and hence tortuosity was 

assessed in relatively larger size vessels within the network which are mainly evaluated 

by clinicians for detection of tortuosity alterations. 

In the current study, increased retinal vessel tortuosity due to SCR was reported 

in perifoveal and parafoveal regions.  This finding is in agreement with previous 

qualitative (57, 58, 187) and quantitative (48) reports of increased retinal vessels 

tortuosity in SCR.  Despite the report of a moderate increase (17%) in tortuosity of 

parafoveal vessels (48), we found a marked increase in tortuosity in both the perifoveal 

(98%) and parafoveal (70%) regions.  The difference in findings can be attributable to 

differences in techniques. 

Retinal vessels tortuosity in the perifoveal region was negatively correlated with 

age in NC subjects, consistent with a previous study (32) that quantified tortuosity in 

major retinal arterioles and venules.  This finding suggests that age has an independent 

effect on retinal vessel tortuosity and needs to be matched in future studies for detection 

of retinal tortuosity alterations. 

There were some limitations in the current study.  Accurate junction point (i.e. 

bifurcation and crossover) detection in retinal images is crucial for tortuosity evaluation 

since they define vessel course and their misdetection can result in inaccurate tortuosity 

measure.  In the current study, a human observer (MK) visually inspected images and 

selected junction points.  Despite FA and FP where bifurcation points can be more easily 

detected as shown in (202, 203), presence of numerous junction points and a dense 
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capillary network in OCTA increases complexity and decreases reliability of automatic 

junction point detection.  Future research is warranted for developing methods for 

automatic junction point detection in OCTA which can improve the efficiency and 

increase repeatability of tortuosity assessment.  Retinal arteries and veins were not 

separated since there is no reliable method to distinguish between them in OCTA.  In 

fact, previous studies have shown that there is a difference in tortuosity of arteries and 

veins (32).  Nevertheless, tortuosity measurements were averaged per subject in the 

current study to reduce variability due to vessel type.  Additionally, we assumed the 

parameters used in the VTI formula had equal weight toward tortuosity and indeed the 

strong correlation between VTI and initiative perception of tortuosity further confirmed 

this hypothesis.  Nevertheless, large clinical studies are useful to determine the effect of 

each parameter on visual perception of tortuosity and make adjustment if necessary.  In 

the current study, the feasibility of application of the method was demonstrated in a 

relatively uniform population of subjects, predominately with SS genotype and stage II 

retinopathy.  Future studies in larger cohorts of subjects are needed to investigate the 

effect of genotype and stage of SCR on tortuosity alterations.  Additionally, future studies 

would be useful to investigate the relation of blood vessel tortuosity alterations with other 

retinal vascular and anatomical abnormalities detected by multimodal imaging (204). 

Assessment of retinal vessel tortuosity alterations shows promise for clinical 

diagnostic evaluation and longitudinal monitoring of microvasculopathies due to SCR.  

Furthermore, the method presented in the current study can be potentially applied to 

microvascular images of other tissues for quantitative assessment of vessel tortuosity. 
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