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SUMMARY

This thesis examines the feasibility of building the next generation of deep brain stimulation

(DBS) protocol by developing the theoretical aspect behind modifying the existing stimula-

tion paradigm to overcome some of its shortcomings. This innovative technology is based on

closed-loop ON-OFF control of DBS using physiological signals measured from patients with

pathological tremor. The main objectives are as follows:

• Model the neuronal dynamics at the DBS target. This model can be used to determine

optimal stimulation parameters for the DBS-ON period.

• Design an algorithm using non-invasively measured physiological signals, to predict an

impending tremor during the DBS-OFF period .

DBS is a surgical treatment involving the implantation of electrodes and a pacemaker,

which sends electrical impulses to specific parts of the brain (1). DBS in select brain regions

has provided remarkable therapeutic benefits for otherwise treatment-resistant movement and

affective disorders such as Parkinsons Disease (PD), Essential Tremor (ET), chronic pain and

dystonia (2). Despite the long history of DBS (3), its underlying principles and mechanisms are

still not clear. DBS directly changes brain activity in a controlled manner and its effects are

reversible (unlike those of lesioning techniques). The Food and Drug Administration (FDA)

approved DBS as a treatment for ET in 1997, for PD in 2002, and for dystonia in 2003. DBS is

also routinely used to treat chronic pain and has been used to treat various affective disorders,

including major depression. The FDA approved DBS systems operate open-loop, i.e., the
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SUMMARY (Continued)

physician sets the stimulation parameters with visual feedback from the patient. Stimuli are

provided continuously and stimulation parameters remain constant over time.

This thesis concentrates on using neuronal, surface-EMG (sEMG) and acceleration (acc)

signals recorded from PD and ET patients for designing an adaptively controlled ON-OFF DBS

system. The results would however have far reaching implications on the treatment of a number

of neurological and behavioral conditions such as depression, chronic pain, epilepsy, obsessive

compulsive disorder, traumatic brain injuries, Alzheimer’s disease, etc. which recently have

been considered good candidates for DBS-type treatments where similar modeling techniques

can be applied for adaptively controlling stimulation.

The thesis starts by introducing two major movement disorders, PD and ET that debilitate

a considerable proportion of the population and how DBS has emerged as a popular surgical

method in relieving them. It also includes some existing literature on the possible mechanisms

underlying the therapeutic effects of DBS.

The second chapter deals with modeling of neuronal firing activity recorded from the affected

areas of the brain, from patients undergoing surgery for DBS. A simple Ornstein-Uhlenbeck

Process (OUP) is used to model the spike activity recorded from the subthalamic nucleus

(STN) of PD patients and that from the ventral intermediate nucleus of the thalamus (VIM) of

ET patients at the time of implantation of the electrodes for DBS. This model is shown to have

superior performance in general than other simpler stochastic process models. A good predictive

model of the neuronal activity can be used to simulate the neuronal membrane potential at the

xiii



SUMMARY (Continued)

DBS target which is not otherwise measurable and will thus help determine the effect of a range

of DBS parameters on the simulated quantity of interest.

The third chapter introduces a modified model as described in chapter 2 to include the

effects of stimulation parameters on the modeled neuronal dynamics. It also includes three

possible metrics that can be used to assess the effect of different stimulation parameters on the

neuronal dynamics. Some preliminary simulation results are presented based on two ET data

sets.

The fourth chapter explores the possibility of using sEMG and acc signals for adaptive ON-

OFF control of DBS. To achieve this, sEMG and acc signals recorded in ET and PD patients

during and after DBS stimulation is analyzed. At the end of each stimulation period, there

emerged a period when there is no tremor even with the stimulation off. Using a set of param-

eters extracted from the sEMG and acc signals, a prediction algorithm is designed. This allows

predicting onset of tremors at end of the tremor-free DBS-OFF intervals and establishes the

feasibility of noninvasive ON-OFF control of DBS in certain ET and PD patients. By adapt-

ing in real-time the DBS-OFF duration, we envisage that intermittent stimuli will achieve the

same benefits of current non-adaptive continuous stimuli at a reduced level of injected electrical

charge in the brain. This will (a) diminish brain over-stimulation, thus reducing the possibility

of damage to healthy neurons and (b) lower power consumption, thus prolonging DBS battery

life.

The thesis concludes by pointing out interesting directions of future work. On the long

term, we envisage that our DBS technology based on closed-loop feedback control can be op-

xiv
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erated wirelessly from the neuro-stimulator (that can now be worn as portable device) to the

implanted electrode. This will eliminate the need to surgically implant the neurostimulator and

connectiong wire to the electrodes, and will allow for an almost complete flexibility in adjusting,

adapting and upgrading future DBS technologies.

xv



CHAPTER 1

INTRODUCTION

Deep Brain Stimulation (DBS) is a form of treatment that uses a surgically-implanted

battery-operated medical device that delivers high-frequency electrical stimulation (HFS) to

targeted areas in the brain that control movement. The stimulation blocks the abnormal nerve

signals that cause tremor either during voluntary movement (as in ET and PD) or during rest (as

in PD) as well as other PD symptoms such as rigidity and akinesia. DBS underlying principles

and mechanisms are not fully understood yet. However, unlike pre-DBS surgical techniques

such as lesion surgery, DBS directly changes the brain activity in a controlled manner and its

effects are reversible.

1.1 Parkinson’s disease and DBS

Parkinson’s disease (PD) is a progressive degenerative disorder of the central nervous sys-

tem that impairs motor skills. The estimated prevalence is 0.3% in the whole population in

industrialized countries, rising to 1% in those over 60 years of age and to 4% in the population

over 80 (4). The main symptoms include tremor, rigidity, imbalance and slowness of movement.

Parkinsonian tremor is generally a mild resting tremor with slow, regular oscillations of 4-6 Hz.

It might also be present during posture or voluntary movements (postural/action tremor) which

is typically in the 7-11 Hz frequency range. PD is caused by degeneration of cells in the basal

ganglia, an area in the brain that controls movement, which leads to decreased levels of the

1
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neurotransmitter, dopamine. The depletion of dopamine leads to abnormal synchronized firing

of neuronal groups that oscillate at frequencies below 30Hz. These oscillations cause tremor

and disrupt normal motor functions (5). Dopamine replacement therapy, using the dopamine

precursor levodopa, is the mainstay of therapy in PD and is effective for many years. However,

as the disease progresses, the response to each dose of levodopa shortens and becomes associated

with excessive involuntary movements called dyskinesias (6). For these advanced PD patients

a surgical procedure called deep brain stimulation (DBS) can provide significant benefit for all

motor symptoms while reducing or eliminating dyskinesias and improving quality of life (5; 7).

The Food and Drug Administration (FDA) approved DBS for PD in 2001.

1.1.1 Mechanisms and Effects of DBS

DBS underlying principles and mechanisms are still uncertain. Neurons within the globus

pallidus (GPi) and the subthalamic nucleus (STN) in the basal ganglia system form a functional

network that ordinarily in healthy subjects resonates at around 70 Hz (8). This is important for

optimal organization of voluntary movement. With reduced dopamine levels, the STN/GP net-

work seems to oscillate at frequencies below 30 Hz. These oscillations are related to tremor and

are believed to disrupt normal motor functions. Neurons directly affected by DBS would thus

represent a barrier for the transmission of synchronized low frequency oscillations throughout

the basal ganglia network.

DBS is thought to mask the underlying activity of neurons surrounding the electrode, in-

dependent of their original mode of operation (9; 10). This masking can result from either a

suppression of intra-neuronal activity (5) or from a locking of the firing to the stimulus fre-
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quency (8). It is further hypothesized that DBS produces a pattern of excitation and inhibition

in the entire basal ganglia network that depends on a number of factors, such as the frequency

of excitation, the excitation location, the distance of the cell from the stimulating electrodes,

etc (11; 12; 13; 14). The mechanism of excitation or inhibition produced might not be the same

for all the neurons. Both the inhibition and excitation actually lead to a single effect on the

basal ganglia neurons: disrupting the existing pattern in the basal ganglia network (5). It is

still uncertain what disrupts the disruption. The disruption could be achieved by inhibiting

the existing deleterious synchronization pattern which is like a noisy signal to the brain. This

would imply that the absence of a noisy signal from which the brain possibly cannot decode

any information is better than its existence. The disruption could also be caused by a new

firing pattern superimposed to the noisy one. This new firing pattern is not due to the network

interactions but due to the constant external stimulation. In either case, the firing patterns

of neurons directly affected by DBS are no longer regulated by their network interactions, but

instead by the continuous and unchanging stimulation (15).1

1.2 Essential Tremor and DBS

Essential Tremor (ET) is a progressive neurological disorder characterized by a rhythmic

tremor (4-12 Hz) that is present only when the affected muscle is exerting effort and can be

in the arms, head (neck), jaw and voice as well as other body regions (16). ET is the most

1General therapeutic stimulations parameters for DBS are (13): amplitude: 1-5 V, (square wave)
pulse duration: 60-200 micro-seconds, and frequency: 120-180 Hz. Frequency is the most important
parameter. It has been shown that stimulation in the 120-180 Hz range is useful, stimulation in the
10-50 Hz range does not produce improvement, while stimulation in the 5-10 Hz range worsens PD
symptoms.
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common movement disorder, with a prevalence of approximately 4% in persons over age 40 and

about 5% among those over age 60 (17). The incidence of ET is approximately ten times that

of PD. The pathophysiology of ET is not known. However, clinical, physiological and imaging

studies point to an involvement of the cerebellum and/or cerebello-thalamocortical circuits

(18). More specifically, ET is thought to arise from oscillatory activity within a central network

or cell group that becomes unregulated, allowing spinal reflex loop oscillations. It has also

been proposed that stretch loop circuits may become unstable and drive muscle contractions to

produce tremor as in ET (19). There is no cure for ET, but there are treatments that give relief

and improve quality of life. These include drug therapies such as propranolol and primidone

(20) and surgical procedures. If the tremor is severely disabling and drugs do not relieve the

symptoms, surgery may be an option. Two types of surgery used to treat ET are DBS (21) and

thalamotomy (22). In thalamotomy, a lesion is placed on a small part of the thalamus and is

irreversible. In DBS, an electric probe is placed in the Ventral Intermediate Nucleus (VIM) of

the thalamus which is connected to a pacemaker placed near the collarbone. It stimulates the

thalamus with pulses of electricity, which are thought to block the brain activity that causes

tremor, and is reversible. However, the mechanisms of DBS and its beneficial effects on ET

patients are not well understood.

1.3 Current Open-Loop DBS system

A DBS system consists of three components: the lead, the extension, and the neurostimula-

tor. The lead is a thin insulated wire/electrode implanted in the brain. The lead contains 4 thin

insulated electrodes whose tips are positioned within the targeted brain area (electrodes 0, 1,
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2, 3). The neurostimulator, similar to a cardiac pacemaker, is implanted under the skin below

the collarbone or over the abdomen. The extension is an insulated wire that is passed under

the skin and connects the lead to the neurostimulator. Once the system is in place, electrical

impulses are sent from the neurostimulator up along the extension wire and the lead and into

the brain. The preferred target sites in the brain for placement of stimulating electrodes are

the internal segment of the globus pallidus (GPi) and the subthalamic nucleus (STN) for PD

patients depending on the dominant symptoms, and ventral intermediate nucleus (VIM) of the

thalamus for ET patients.

The only FDA approved DBS system for PD/ET is manufactured by Medtronic, Inc. Their

Activa system operates open-loop.The Activa system has 4 electrodes per lead, with their ex-

posed contacts separated by 0.5 mm. In monopolar stimulation mode, the case of the pulse

generator is the anode and one or more of the 4 electrodes can be the cathode(s); in bipolar

stimulation mode, the cathode(s) as well as the anode(s) are provided by the electrodes. The

clinician chooses the optimal electrode combination and sets the stimulation parameters (pulse

amplitude, duration and frequency). DBS programming is based on subjective and objective

clinical observations to ensure that the patient receives maximal benefit and minimal side ef-

fects. DBS is provided continuously over time and the stimulation parameters remain constant

over time until the next visit of the patient to the clinician. Thus, the current DBS technology

is neither adaptive to the patients’ needs nor to the patients’ disease progression over time.
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1.4 Next Generation Closed-Loop DBS system

In order to adapt to the patients’ condition, current DBS systems must be redesigned so

as to include a closed-loop feedback control where the patients’ symptoms are continuously

monitored and the stimulation is adapted in response to its variations. To design an adaptively

controlled closed-loop DBS system, it is necessary to find a suitable physiological signal that

can be easily measured and has predictive information on tremor reappearance once DBS is

OFF. One such feedback signal could be the actual neuronal brain activity measured from

individual neurons (micro-recording) represented by the cell firing, or a group of neurons (macro-

recording) represented by the local field potential, at the site where the DBS electrodes are

implanted. However, the measurement of these signals by means of DBS electrodes (during

DBS-OFF times) requires changes to the current FDA approved DBS system. Such a neuronal

activity-based closed-loop DBS system would then require long testing and approval times thus

delaying its commercialization. Alternatively, muscular activity measured by means of surface-

electromyogram (sEMG) and accelerometer (acc) signals can be recorded non-invasively from

the patient’s symptomatic extremities. These signals are known to carry predictive information

on tremor reappearance (23) and hence can be used for adaptive closed-loop ON-OFF control

of DBS.

1.5 Goals, merits and impacts

The main goal of this dissertation is to provide the proof of principle for the next genera-

tion of closed-loop DBS systems. Our innovative approach markedly differ from current DBS
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technology: it is based on time-adaptive, closed-loop control of the DBS-OFF duration based

on signals measured in real-time from PD and ET patients.

We challenge the prevailing open-loop paradigm for two main reasons:

1. Delivering short packets of HFS just before PD/ET symptoms are predicted to reappear

has the same beneficial effects of high-frequency continuous stimulation but at a much

lower cost in terms of electrical current injected in the brain;

2. DBS can be used to treat pathologies that do not present clear visible symptoms, such as

tremor or slowness in movements. For those diseases, it is imperative to be able monitor

in real-time the brain response to electrical stimulation, to adapt the stimulation to the

brain’s ever changing conditions and drive its response to match the desired healthy one.

Any open-loop technology is doomed to fall short of achieving these two ambitious goals.

In order to design a closed-loop ON-OFF DBS system, the following goals were set:

1. Develop an accurate yet simple mathematical model of the area of the brain that controls

movements;

2. Verify the mathematical modeling assumptions by using signals measured from PD and

ET patients at the time of implantation of the DBS electrodes;

3. Extract features from real-time measured signals such as sEMG and acc that correlate

with the beneficial effect of DBS and use them to predict the reappearance of tremor

during the DBS-OFF period.
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This novel closed-loop DBS technology will minimize the devices’ power requirements, thus

prolonging battery life as well as diminish over stimulation of the brain cells surrounding the

electrodes, thus reducing the possibility of destroying healthy cells. The potentials of the

findings of this research however go well beyond advancing treatments for pathological tremor

suppression. They have the potential to extend to a number of neurological and behavioral

conditions which are thought to benefit from DBS-type electrical stimulation, and thus will

serve humanity in the long-term.

1.6 Summary of the contributions

1. A simple stochastic model (OUP) was fitted to the neuronal activity measured from the

DBS target in patients with PD and ET.

2. The goodness of fit was quantified and compared with other simpler stochastic models.

The OUP model performed better in general than the others used for comparison. Thus

the OUP can indeed serve as a simple model for spike generation in the STN and VIM

neurons of PD and ET patients respectively.

3. A simple way of including the effect of stimulation parameters in the OUP model was

proposed and some simulation results based on the modified model showed that it can be

used to determine an optimal set of stimulation parameters.

4. sEMG and acc measured non-invasively from tremor affected muscles of ET and PD

patients were shown to contain predictive information that can be used to design a tremor

prediction algorithm.
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This forms the basis of designing an adaptively controlled ON-OFF DBS system. The proposed

sEMG/acc based tremor predictor can be used as an add-on sub-system for the FDA-approved

DBS system by leveraging the currently available telemetry capabilities of DBS 1. Indeed, the

external sEMG/acc sensors and the implanted neurostimulator can exchange data through the

existing telemetry/wireless link.

1Medtronic DBS system comprises a device called the physician programmer through which a clin-
ician can adjust DBS parameters and transmit these changes via radio telemetry to the implanted
neurostimulator.



CHAPTER 2

MODELING OF NEURONAL ACTIVITY IN THE ABSENCE OF

EXTERNAL STIMULATION IN PARKINSON’S DISEASE AND

ESSENTIAL TREMOR PATIENTS

The contents of this chapter has been published in biological cybernetics (24) and in the

proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (25)

2.1 Background and motivations

The brain consists of neuronal clusters densely interconnected in complex ways. These

interconnections are not fully understood yet. Neuron clusters form groups by means of bidi-

rectional and/or unidirectional connections. Synchronized firing between clusters is thought to

be one form of signaling used by the brain to perform correlated tasks (26). However, in cer-

tain movement disorders neuronal clusters within particular loops are rhythmically active in an

abnormal way (8; 27) causing pathological tremor. The three commonest forms of pathological

tremor are parkinsonian tremor, essential tremor, and cerebellar intention tremor. The distinc-

tive neurophysiological pathways for these tremors have been surprisingly difficult to decipher

(28).

10
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In PD, the death of dopaminergic nigrostriatal neurons causes abnormal neuronal oscilla-

tions in the loop linking the cortex, basal ganglia, and thalamus (28). Levy et al. (29) showed

that an increase in synchronization between neurons in the basal ganglia contributes to the

clinical features of PD. Synchronized neuronal oscillatory activity may severely impair normal

brain functions. Several studies indicate that PD resting tremor (3-7Hz) is caused by a clus-

ter of neurons located in the STN that fire synchronously at a frequency close to that of the

tremor (27; 30; 31; 32). Under normal conditions, these neurons would fire incoherently. In

particular, synchronous activities between pairs of neurons in the globus pallidus and in the sub-

stabtia nigra in patients with limb tremor at tremor frequency (3-7Hz) and in the beta range

(15-30Hz) was reported (29). Depth recordings from PD patients by Weinberger et al. (33)

demonstrated coherence between neuronal discharge and local field potential (LFP) in the beta

range (15-30Hz), thus confirming that beta range oscillatory activity in the STN is dramatically

increased in PD and may interfere with movement execution. In light of these studies, it is

conjectured that DBS alleviates PD symptoms by disrupting the low-frequency synchronized

oscillatory activity of the basal ganglia network.

A sizeable body of experimental data indicates enhanced olivocerebellar oscillation as a

possible pathophysiology behind ET, even though necropsies have revealed no abnormalities

(34). Lesions in the cerebellum and thalamus (35) greatly reduce ET, which suggests that

abnormal oscillation is transmitted to the motor cortex via the cerebellum and its projection

to the ventrolateral thalamus. The ventrolateral thalamus has abundant reciprocal connections

with the motor and supplementary motor cortex, and functional MRI studies have shown
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activation of the motor cortex in patients with ET (36). However, it was reported that there

was no tremor-related coherence between the cortical magnetoencephalogram (MEG) and the

EMG of contralateral fingers in six patients with ET (37). This finding however does not imply

that the primary motor cortex is not involved in generation or maintenance of ET. Failure to

find significant coherence between MEG and EMG could be due to inadequate sensitivity of

the former or to inadequate sampling of the affected muscles (28). Intraoperative recordings

typically reveal tremor-correlated oscillation in about 30% of all ventrolateral thalamic neurons

(38) which indicates that only small subpopulations of oscillating thalamic neurons are involved

in the tremor of a particular muscle at any given time. Hellwig et al. (39) showed that using

simultaneous EEG-EMG recordings, there was significant corticomuscular coherences at the

tremor frequency in ET. The results suggest that the sensorimotor cortex is involved in the

generation of ET, in a similar way to that previously shown in parkinsonian resting tremor (40).

The pathophysiology of PD, ET, and cerebellar intention tremor affects different parts of

the motor system, but the collective rhythmicity of widely distributed neuronal networks seems

to be necessary for the clinical expression of tremor. The thalamocortical loop may not be the

main site of oscillation in ET, but may simply facilitate tremor through neuronal entrainment

(the drawing of additional cortical neurons into oscillation) and reverberation. Similarly, the

basal ganglia could be the principal source of oscillation, as hypothesized for PD, or might also

promote oscillation that is generated elsewhere (28).

The lack of fundamental understanding of the pathophysiology behind generation of tremor

and other symptoms in PD and ET is reflected in the absence of a good predictive mathematical
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model of the neuronal activity in the affected areas (STN, thalamus). Such a model would shed

light into the mechanisms, and thus the beneficial effects of DBS in alleviating PD and ET

symptoms in patients (41). The model parameters extracted from the measured data could be

used as an indicator of the pathological state of the patient. In particular, their time variation

would be related to the re-appearance of symptoms when DBS is stopped. By predicting the

effect of DBS parameters, such as the amplitude, frequency, and waveform shape, the model

parameters would serve as an index for optimizing DBS parameters (42; 26; 43; 44; 45). An

optimal DBS would adapt to each and every individual patient’s need and administer electrical

stimuli to the brain only when actually needed. Hence, a good mathematical model that

captures the system dynamics responsible for the generation of neuronal signals in the affected

brain regions, which at the same time is not too complex to be of practical use, is indeed a

prerequisite to designing the next generation of DBS systems.

2.1.1 Selecting a model

There have been numerous efforts in modeling either a single or a group of neurons, from

the simple Hodgkin-Huxley model to mimic a single neuron (46), to complex neural networks

for modeling a network of neurons (47). These computational models involve a large number

of parameters and require an accurate and detailed microscopic knowledge of the interactions

among all the neurons involved (48). One desirable approach is to develop a macroscopic model

for a neuron and a neuron cluster that does not rely on the microscopic detailed knowledge of all

possible interactions between neurons. Since neurological data is highly stochastic in nature,

stochastic models of neuronal activity are a natural choice. Stochastic models have several
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advantages over their deterministic counterparts: they involve lesser parameters and are robust

to uncertainty in the exact parameter values (49).

Several linear stochastic models, with various degrees of complexity, have been proposed

to model the neuronal activity from different parts of the human brain. One of the earliest

stochastic models for neuronal spiking used in neurophysiology is the Poisson Process (PP) (50;

51). A PP has a simple mathematical description in terms of a single parameter that represents

the average inter-spike interval. Unfortunately, the PP does not capture the mechanism of a

spike generation (52). It has also been reported that a log-normal distribution fits better the

measured inter-spike interval histograms than the exponential distribution resulting from a

PP (53). A Wiener Process (WP) has also been used to model neuronal spiking (52). The

main advantage of the WP is that the inter-spike interval distribution has a simple closed form

expression which is the inverse gaussian distribution. Unfortunately, the WP does not predict

the exponential decay in the membrane potential in between two subsequent input impulses to

the neuron. An even more general point process model for neural spiking activity (54) requires

the estimation of 28 parameters.

Nonlinear stochastic processes have also been used to model a group of neurons (26) where

the neurons are modeled as coupled phase oscillators driven by random forces. Although well

posed, Tass’ model (26) suffers from the drawback of a difficult parameter extraction problem

since the neuronal cluster phase is difficult to estimate from measured data.

Neuronal dynamics has also been modeled as a chaotic system (55). Sarbaz et. al (56)

proposed that signals obtained from a healthy person have a chaotic nature while in the patho-
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logical condition, the system is less chaotic nature and DBS restores the chaotic nature thus

ameliorating disease symptoms. This approach could be potentially used for modeling of ag-

gregate activity such as LFP and sEMG.

In this chapter, a simple Ornstein Uhlenbeck Process (OUP) (57) is considered for modeling

the spiking activity of neurons in the STN and VIM of thalamus. The OUP was first proposed

as a model for the neuronal potential dynamics in (58) and is now widely accepted (59; 60)

because it has many advantages over simpler stochastic models, namely:

a) it accounts for the spike generation mechanism,

b) it predicts the exponential decay in the membrane potential in between two subsequent input

impulses to the neuron,

c) it only involves the specification of two parameters along with a third free parameter , and

d) the two model parameters can be easily identified from measured data.

The OUP thus strikes a balance between an oversimplified model, such as the PP (50), and

more complicated models (54; 26). However, the OUP might not model satisfactorily every

type of neuronal activity in different parts of the brain (61). The model parameters of the OUP

are identified from the recorded neuronal data that contains information about the spike times

of a single neuron. The fit of the proposed model to the measured data is then assessed by

quantifying its capacity of predicting the inter spike interval distribution. The model is also

compared with two other simpler stochastic models.
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2.2 The Orsnstein Uhlenbeck Process as a model of neuronal firing activity

The neuronal activity as recorded from the STN/thalamus consists of neuronal spikes (ac-

tion potentials) produced by a single cell with superimposed background aggregate activity of

neurons in the vicinity and measurement noise. The spike times provide information about

the inter-spike interval (ISI) distribution of the neuron while the background activity is the

membrane potential of a group of neurons surrounding the electrode’s measuring tip, which is

essentially the time varying aggregate input to the neuron. Here, an Orsnsten Uhlenbeck process

(OUP) was used to model the membrane potential across a single neuron. When the membrane

potential exceeds a certain threshold, the neuron fires. Thus, the spike times, or equivalently

the ISIs, are related to the level crossing problem of the membrane potential process.

2.2.1 The Ornstein-Uhlenbeck Process

The OUP is a stochastic process, Xt governed by the following Langevin equation:

dXt = (µ− (Xt/θ))dt+ σdWt, (2.1)

where θ > 0, µ and σ > 0 are the model parameters, and Wt denotes the standard Wiener

process, i.e., dWt is a zero-mean white Gaussian process with variance dt. The parameter µθ

represents the equilibrium or mean value; σ represents degree of volatility around the mean;

1/θ represents the rate by which the volatility dissipates and the variable reverts towards the

mean. In the OUP, the drift term (µ − (Xt/θ)) depends on the current value of the process

Xt as opposed to the classical Wiener process where the drift is constant. This fact has the
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following implication: if the current value of the process Xt is less than the mean µθ, the drift

(µ− (Xt/θ)) is positive and the process is “pushed-up” towards the mean. On the other hand,

if the current value of the process is larger than the mean, the drift is negative and the process

is “pushed-down” towards the mean. This feature is the reason why the OUP is known as the

“mean reverting” process.

The Langevin equation in (Equation 2.1) can be solved using Ito’s lemma (62; 63) with

function f(X, t) = Xet/θ, thus giving

df(X, t) = µet/θdt+ σet/θdWt. (2.2)

By integrating (Equation 2.2) from 0 to t and by multiplying both sides by e−t/θ we get:

Xt = µθ + (x0 − µθ)e−t/θ + σ

∫ t

0
e−(t−s)/θdWs, t ≥ 0, (2.3)

where x0 is the value of Xt at time t = 0.

Let fOU (x, t) denote the probability density function of Xt in Equation 2.3, that is, fOU (x, t)

is the probability that at time t the random variable Xt has value arbitrarily close to x. The

Fokker-Planck equation that governs the dynamics of the distribution fOU (x, t) is given by:

∂fOU (x, t)

∂t
=

1

θ

∂ {(x− µθ)fOU (x, t)}
∂x

+
σ2

2

∂2fOU (x, t)

∂x2
. (2.4)
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The analytical solution of Equation 2.4 can be obtained by using a Fourier transform (60) and

is given by:

fOU (x, t) =

√
1

θ[1− e−2t/θ]πσ2
· exp

{
−[(x− µθ)− (x0 − µθ)e−t/θ]2

[1− e−2t/θ] θσ2

}
, t ≥ 0. (2.5)

The time dependent distribution in Equation 2.5, in the limit for t → ∞ has a Gaussian

distribution of mean µθ and variance θσ2/2 as stationary distribution, that is,

fOU (x,∞) =

√
1

πθσ2
exp

{
−(x− µθ)2

θσ2

}
. (2.6)

A process like the OUP in Equation 2.1 can be assumed to be responsible for the spike gen-

eration in a single neuron model, as is described in (59; 60). Indeed, the state of a neuron can be

described by a random variable Xt, representing the variation of the potential difference across

its membrane. Let x0 be the resting potential of the membrane, and θ be the membrane’s time

constant. In the absence of any input, Xt spontaneously decays to µθ according to Equation 2.3

with σ = 0. Consider now a dendritic input that consists of sequences of Poisson distributed

impulses that can be excitatory or inhibitory with rates αe and αi, respectively. Let there be p

excitatory input dendrites and q inhibitory input dendrites and for simplicity we assume that

the input impulse rate for each dendrite is the same. The membrane potential Xt changes by

e or i depending on the type of input, that is

Xt+dt = Xt + e, e > 0,
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for excitatory impulse and

Xt+dt = Xt + i, i < 0,

for inhibitory impulse.

It can be shown (59) that the transition density function of the membrane potential can be

described by an OUP with parameters θ given by the membrane’s time constant and

µ = pαee+ qαii;σ =
√
pαee2 + qαii2.

2.2.2 The First Passage Time problem

In order to identify the model parameters in (Equation 2.1), a sample path of the process

is required. That is, recordings of the intracellular membrane potential without any other

superimposed “background activity” signal is required. The background activity will be referred

to as noise in the rest of the chapter. With in vivo extra-cellular recording, it is not possible

to obtain a noise-free signal. The model parameters in Equation 2.1 can still be identified

by using information about the spike timings available from the extracellular single neuronal

activity recording, which is described in more details in Section 2.4. By taking the difference

among the timing of two consecutive spikes, samples of the inter-spike interval (ISI) can be

calculated. The ISI is related to the First Passage Time (FPT) problem as described next.

Consider the Ito stochastic differential equation of the form (Equation 2.1) governing the

process Xt. Let y0 be a deterministic constant. The FPT is a random variable T defined as the
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time t after time t0, at which Xt first hits y0 starting from some initial value Xt0 smaller than

y0. Formally, T is defined as:

T = inf{t ≥ t0 : Xt ≥ y0, Xt0 < y0}. (2.7)

The FPT distribution function is thus:

fT (t;x0, y0) =
∂

∂t
P [T ≤ t], (2.8)

where T is defined in (Equation 2.7) and Xt0 = x0. Although a closed form expression for

fT (t;x0, y0) is not available, its moments can be numerically approximated by using the Laplace

transform, gλ of fT (t;x0, y0) with respect to t (64) as

mn(x0, y0) , E[Tn|Xt0 = x0 < y0] = (−1)n
dngλ
dλn
|λ=0, (2.9)

where gλ satisfies (65) :

σ2

2

d2gλ
dx2

0

+ (
x0

θ
− µ)

dgλ
dx0
− λgλ = 0 (2.10)

lim
x0→S

gλ = 1

lim
x0→−∞

gλ = 0
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It is well known that a neuron releases a spike whenever its membrane potential Xt exceeds a

threshold y0 which is assumed to be constant over time. After spiking, the membrane potential

is reset to x0 < y0. The FPT in the context of neuronal activity is thus the time in between

two consecutive spikes, that is, T is the inter spike interval (ISI). The density of the FPT, or

of the ISI, thus depends on five parameters: µ, σ, θ, y0 and x0. The first two parameters (the

drift µ and the diffusion σ) are the input parameters and are related to the neuronal membrane

potential dynamics that are to be extracted from recorded data. The last three parameters (the

membrane time constant θ, the firing threshold y0 and the membrane resting potential x0) are

intrinsic parameters of the neuron and are set to biologically plausible values. Since the mean

(i.e., n = 1 in Equation 2.9) and power (i.e., n = 2 in Equation 2.9) of the ISI distribution

is all that is needed to extract the drift and diffusion coefficients, the problem of parameter

identification for the OUP reduces to that of computing the sample mean and sample power

from the recorded data and then solving the corresponding two equations from Equation 2.9

for µ and σ as will be discussed in Section 2.3. Thus, the complexity of extracting µ and σ

in Equation 2.1 boils down to a sample mean and sample variance estimation from the measured

ISI samples.

2.3 Methods

2.3.1 Data Set

For the numerical results presented in this section, data was collected during routine record-

ing of neuronal activity in PD and ET patients undergoing surgery for DBS as a part of surgical

mapping during DBS electrode implantation. This recording is done by the surgeon to pre-
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cisely locate the target of DBS electrode insertion by assessing the neuronal spike form as

well as the neuronal firing rate at different depths from the target (66). An IRB approval

(2008-0176, UIC) was obtained for accessing the data recorded and stored during surgery for

DBS implantation on PD patients. The recording was performed with a MicroTARGETING

micro-electrode manufactured by FHC, Inc. (Bowdoinham,ME) and processed/ recorded us-

ing NeuroTrek micro-recording device manufactured by AlphaOmega Engineering (Alpharetta,

GA). The data was sampled at 25.21 KHz and was high pass filtered at 200Hz to cut off low

frequency noise.

A single recording consists of neuronal activity in the form of potential difference across the

membrane of a neuron. Since the recording is extra-cellular, there is some background activity

superimposed with the spikes generated by a single neuron. It is practically impossible to

separate in vivo the activity of a single neuron from the background activity. The background

activity is typically generated by neighboring neuronal activity and some measurement noise.

The timestamps of spike occurrences in the recorded data are determined by the surgeon at

the time of recording by adjusting a threshold. The software automatically records the time

instants when the voltage crosses the set threshold to yield these timestamps. This determines

the firing frequency (average number of action potential pulses per second). The high-pass

filtering eliminates all action potentials with a duration greater than 5 ms (corresponding to

200 Hz) (67).

The ISI required for the parameter extraction from the recorded spike timings is calculated

as the difference between the consecutive spike timings. The empirical ISI probability distribu-
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tion is then estimated from the calculated ISI using a bin width determined by the Freedman

Diaconis rule (68) according to which:

h = 2
IQR(x)

n1/3
, (2.11)

where h is the bin width, IQR is the inter-quartile range of the data x and n is the number

of data samples. This distribution is referred to in the rest of the section as the measured ISI

distribution.

2.3.2 OUP Parameter Extraction

The parameters of the model in Equation 2.1 µ (the drift coefficient) and σ (the diffusion

coefficient) can be considered constant over the recording interval (in the order of seconds or

minutes) for a data set at a particular target. Hence, the mean and standard deviation (std) of

the ISIs are calculated over the entire data segment for parameter extraction. This is further

verified by calculating the mean and std over non-overlapping windows of around 1 s. µ and

σ are estimated for different values of θ (the membrane time constant) and fixed values of x0

and y0 by following the method proposed in (69) which is described briefly in the following

paragraph.

The OUP as in Equation 2.1 involving five parameters, µ, σ, x0, y0, θ is first normalized to

reduce the number of parameters. The following transformation is used:

X ′ =
√

2/σ2θ(x− µθ), t′ = t/θ (2.12)
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which transforms Equation 2.1 to the normalized OUP which satisfies:

dX ′(t′) = −X ′(t′)dt′ +
√

2dW (t′) (2.13)

ξ =
√

2/σ2θ(x0 − µθ)

η =
√

2/σ2θ(y0 − µθ),−∞ < ξ < η <∞

where ξ is the new initial state and η is the new threshold. The OUP-FPT distribution,

g′(η, t′/ξ) and the n-th moment, Mn(ξ, η) of the normalized OUP is related to those of the

OUP according to:

g(y0, t/x0) = g′(η, t′/ξ)/θ (2.14)

mn(x0, y0) = θnMn(ξ, η)

The first two moments of the OUP-FPT can be evaluated as (64):

M1(ξ, η) = φ1(η)− φ1(ξ) (2.15)

M2(ξ, η) = 2φ2
1(η)− φ2(η)− 2φ1(η)φ1(ξ) + φ2(ξ), η ≥ ξ
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where,

φ1(z) =
k

2

∞∑
n=1

(
√

2z)n

n!
Γ(n/2) (2.16)

φ2(z) =
k

4

∞∑
n=1

(
√

2z)n

n!
Γ(n/2)(ψ(n/2)− ψ(1))

Γ(z) =
∫∞

0 tz−1e−tdt and

ψ(z) = Γ′(z)/Γ(z) being the gamma and the digamma functions respectively.

Let m1 and m2 be the first and the second moments of the measured ISIs which are equated

to the first two moments of the OUP-FPT distribution as in Equation 2.14 and Equation 2.15:

θM1(ξ, η) = m1 (2.17)

θ2M2(ξ, η) = m2

Equation 2.17 is then solved (using the fsolve function in MATLAB which finds a root of a set

of nonlinear equations) for fixed values of x0 = 0 (the resting membrane potential), y0 = 15mV

(the firing threshold), and θ (the membrane time constant) ranging from 1ms to 25ms in steps

of 0.2ms to determine ξ and η. The physiological value of θ can be 1− 20ms (70) and can serve

as a guide to choose θ. However, it is a free parameter in the model and uniquely determines

µ and σ from ξ and η (Equation 2.13) to match the first two moments as calculated from the

measured samples.



26

2.3.3 Evaluating performance of the Proposed Approach

The OUP parameters are identified by simply matching the first two moments and hence are

not optimized according to any criterion. In order to choose the best set of values for (θ, µ, σ)

that would produce the same set of mean and variance as that measured from the samples, we

proceed as follows. Once the parameter values are extracted, the ISI distribution is simulated

by numerically solving an integral equation as in (71) with x0 = 0, y0 = 15mV, and θ ranging

from 1ms to 50ms in steps of 0.2ms. This numerically simulated ISI distribution is referred to in

the rest of the work as the simulated ISI distribution. Without any prior knowledge about the

underlying distribution that governs the real ISI distribution, two types of distance measures

were considered:

1) An integral squared error (ISE) of distribution as a metric to compare the simulated ISI

distribution with the measured one. This quantifies the goodness of fit instead of just a graphical

illustration as in (69). The ISE is obtained by calculating the sum of the squared error between

the values of the measured and simulated ISI distribution at each bin. At each bin, the value

of the simulated probability distribution is calculated as the value of the simulated probability

density at the bin center times the bin width. A better fit would correspond to a lower value

of ISE.

2) KullbackLeibler (KL) divergence (72) is a non-symmetric measure of the difference between
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two probability distributions. For probability distributions P and Q of a discrete random

variable, their KL divergence is defined as:

DKL(P ||Q) =
∑
i

P (i)log
P (i)

Q(i)
. (2.18)

where Q is the simulated distribution, P is the measured isi distribution and the summation is

over the bins which have non-zero distribution values. Lower the value of DKL, better the fit

is.

3) A cumulative distribution function (CDF) from the simulated ISIs following (Equation 2.1)

was calculated and compared with the one estimated from the recorded data. A Kolmogorov-

Smirnoff (KS) test (73) was performed between the measured ISI samples and the simulated

CDF of the OUP-FPT distribution. This tests the null-hypothesis that the recorded data

are from the simulated distribution against the hypothesis that the samples are not from the

simulated distribution. A higher p-value indicates a greater probability of recorded ISI samples

having the same underlying distribution as the simulated one. Hence the p-value is an indicative

of the goodness of fit.

2.3.4 Comparison with other approaches

To compare the OUP model with existing stochastic models, the measured ISI distribution

was fitted to the exponential distribution arising from a Poisson Process (PP) and to an inverse

Gaussian (IG) distribution arising from a random walk model (52). The PP model of neuronal



28

membrane potential would generate ISIs distributed according to the exponential distribution

which is defined as:

fPP (x;µ∗ex) =
1

µ∗ex
e
− x
µ∗ex 1[x≥0] (2.19)

where µ∗ex in (Equation 2.19) is the mean of the distribution. µ∗ex can be estimated from the

sample ISIs as the maximum likelihood (ML) estimate (maximizing the log likelihood function)

or by minimizing the ISE criterion as described in section 2.3.3. The ML estimate of µmlex is the

sample mean ISI (not to be confused with the mean of the OUP process Xt, which is indicated

with the symbol µ). µ∗ex was also estimated by minimizing the ISE and is denoted as µmiseex and

referred to as the MISE parameter estimate. This is done by using the lsqcurvefit function in

MATLAB and using the ML estimate as the initial value.

The random walk model for the neuronal membrane potential, which is essentially a (Gaus-

sian) Wiener Process (WP) has the following Langevin equation:

dX(t) = µwpdt+ σwpdW (t), (2.20)

where dW (t) is a zero-mean white Gaussian process with variance dt. The FPT distribution of

the is an IG distribution (52) given by:

fIG(x;µ∗ig, λ) =

√
λ

2πx3
exp

{
−λ(x− µ∗ig)2

2(µ∗ig)
2x

}
1[x≥0], (2.21)
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where µ∗ig is the mean and (µ∗ig)
3/λ is the variance of the IG distribution . The IG parameters

are related to the parameters of the generated WP as: µwp = y0/µ
∗
ig, σwp = y0/

√
λ∗ig, y0 is the

threshold. The maximum likelihood estimation method proposed in (74) is used for estimating

the model parameters µ∗ig and λ as µmlig and λml, respectively. Using a similar technique as for

the exponential distribution parameter (minimizing the ISE), µmiseig and λmise are also estimated

and are referred to as the MISE parameter estimates.

The performance analysis as discussed in Section 2.3.3 was also performed for the simulated

exponential and IG distributions with respect to the measured ISI distribution.

2.4 Results and Discussion

2.4.1 PD data

The neuronal data used for modeling was recorded from the left and right STN of a PD pa-

tient undergoing surgery for DBS. The recorded segments selected for analysis by the neurosur-

geon was based on the purity of signal recorded in the operating room, uniformity of recorded

discharges, and a typical discharge pattern (in terms of discharge amplitude, frequency and

presence of irregular bursts) corresponding to expected activity in parkinsonian STN (66). The

average firing rate was 56 and 54 spikes/s on the left and the right STN respectively.

An enlarged portion of the recorded segments are shown in Figure 1. The calculated ISI

from the recorded data were then used to obtain the empirical ISI probability distribution using

bin width determined according to the Freedman Diaconis rule.
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Figure 1. An enlarged portion of the recorded signal on the (left) left STN and (right) right
STN. The dashed line is the threshold set by the surgeon to determine the spikes.

Left STN data

The sample mean and sample standard deviation of the measured ISIs on the left STN over

the entire data segment of 11s, were found to be 17.8ms (i.e., the firing rate is 56 spikes/second)

and 22.7ms, respectively. Further, the data was divided into 3 non-overlapping windows of 4,

4 and 3 seconds duration, and the sample mean and standard deviation were calculated over

these 3 windows as shown in Figure 2 (top left). As seen from Figure 2, the mean and the

standard deviation have very similar values over the three windows, thus the assumption of

data stationarity (at least up to the second moment) over the recording interval is valid.

Figure 2 (top left) and Figure 2 (bottom left) show µ in mV/s and σ in mV/
√

s, respectively,

plotted against the membrane time constant θ in millisecond for the left STN dataset. Thus,

for each value of θ, the value of µ and σ as in Figure 2 constitute a set of µ, σ, θ that would

generate an ISI distribution with the same mean and std as the those of the measured ISI. The

calculated ISE corresponding to θ values from 5ms to 25ms are plotted in Figure 2 (bottom left).

From Figure 2, it can be seen that any value of θ between 14−25 ms will produce an ISE in the
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Figure 2. left: (top)The mean and standard deviation of measured ISIs over 3
non-overlapping data windows of 4,4 and 3 seconds, (bottom)ISE between measured and

simulated ISI distribution plotted against the membrane time constant θ in ms; right:
(top)Model parameter µ in mV/s, (bottom)σ in mV/

√
s plotted against the membrane time

constant θ in ms. All the data corresponds to left STN.
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range (0.202− 0.250)× 10−3. Figure 3 shows the ISI distribution calculated from measured left

STN data (solid line) along with the simulated ISI distribution (in dashed line) corresponding

to θ = 15ms and θ = 20ms. The x-axis shows the time in seconds while the y-axis shows the

probability distribution function. We observe that a low ISE value (an objective performance

measure) indeed corresponds to a good “visual fit”.

Figure 4 shows the ISI CDF calculated from measured left STN data (dashed line) along

with the simulated ISI distribution (in solid line) corresponding to θ = 15ms and θ = 20ms. The

x-axis shows the time in seconds while the y-axis shows the cumulative probability distribution

function (CDF).

For the exponential distribution in (Equation 2.19), the parameters identified were: µmlex =

0.0178s and µmiseex = 0.0100s. The IG distribution (Equation 2.21) parameters µ∗ig and λ were

estimated to be µmlig = 0.0178s, λml = 0.0068s, µmiseig = 0.0349s and λmise = 0.0075s. All the

model parameters are included in Table II. The exponential and the IG probability distribution

were simulated using both the respective ML and MISE parameter estimates and the ISE

between the measured and the simulated distributions are tabulated in Table I.

The OUP-FPT distribution clearly performs better than the exponential and the IG (cor-

responding to the ML parameter estimates) distributions in terms of the ISE and DKL values.

However, the OUP-FPT and the IG (corresponding to the MISE parameter estimates) distri-

butions have comparable performance.

Both OUP and WP (corresponding to the IG distribution) with corresponding estimated

parameters were used to simulate the membrane potential to verify the firing pattern. The
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TABLE I

ISE VALUES FOR THE OUP-FPT, EXPONENTIAL AND IG DISTRIBUTIONS.
Distributions ISE values DKL

OUP-FPT(θ = 14− 25ms) (0.20− 0.25)× 10−3 0.0313− 0.0317

exponential(ML) 0.93× 10−3 0.1344

exponential(MISE) 0.37× 10−3 0.1636

IG(ML) 0.22× 10−3 0.0622

IG(MISE) 0.20× 10−3 0.0679

TABLE II

MODEL PARAMETERS FOR LEFT STN DATA.
OUP-FPT

θ in ms µ in mV/s σ in mV/
√
s

20 389.53 213.32

Inverse Gaussian

µmlig λml µmiseig λmiseig

0.0178 s 0.0068 s 0.0349 s 0.0075

Exponential

µmlex µmiseex

0.0178 s 0.01 s
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membrane potential was simulated by using Equation 2.1 with sampling time set to 0.04ms.

At each time point, the voltage Xt of the membrane was calculated using Equation 2.1. At

the times the voltage exceeds the threshold value y0 = 15 mV a randomly selected action

potential waveform from a dictionary of five types of action potential waveform extracted from

the measured data was put at that time instant, and Xt was reset to the resting potential

x0 = 0. The value of Xt thus simulated is the sub-threshold activity, i.e, the membrane potential

that does not cross the threshold of 15 mV, of a single neuron in isolation. As remarked in

Section 2.3.1, it is not possible to record in vivo the time evolution of the membrane potential

of single neuron in isolation, since the measurements also include a “background noise” given

by the aggregate activity of the surrounding neurons.

Figure 6 shows a part of the simulated signal (top left) as well as the average firing rate

(number of spikes/second) (bottom left) calculated over the entire duration of 11s. The MISE

parameter estimates corresponding to the IG distribution (which produced similar ISE values

as the OUP-FPT) were also used to simulate the membrane potential which evolves in time

following the corresponding WP in Equation 2.20. Figure 6 shows a part of the simulated

signal following the WP (top right) as well as the average firing rate (number of spikes/second)

calculated over the entire duration of 11s. The n-th point (n = 1, 2, ..., 11) in Figure 6 (bottom)

corresponds to the number of spikes during (n− 1)-th to n-th second interval in the signal.

The OUP produces an average firing rate of (52 ± 10.4) spikes/s while the WP produces

an average firing rate of (25.7± 8) spikes/s, the measured average firing rate being (56± 9.45)

spikes/s. This is because the MISE parameters are estimated such that the mean-squared error
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between the measured and the IG distribution is minimized, and hence does not take into

account the first and second moments of the measured ISI samples. These parameters will also

be highly dependent on the bin selection.

Right STN data

The neuronal data recorded from the right STN was used to calculate ISI samples which were

in turn used to identify the OUP parameters, θ, µ, σ, the IG parameters, µmlig , λ
ml
ig as well as the

exponential parameter, µmlex . The MISE parameters corresponding to the IG and exponential

model were not calculated for this data set because as was seen for the left STN data set, these

parameters do not conserve the mean of the measured ISI samples. Additionally, a KS test

was performed to test if the recorded ISI samples are drawn from the fitted OUP-FPT, IG or

exponential distribution which produced a p-value.

Table VI shows the different model parameters while Table V shows the ISE, DKL and

p-value for the three fitted distributions. For each case, the distribution that has the best

performance is marked in bold. It can be seen that the OUP-FPT performs the best for all the

cases.

Since the OUP FPT distribution closely follows the empirical ISI distribution as well as

the OUP generates similar firing rates as the measured one, the OUP (Equation 2.4) can be

used to model the neuronal activity of the STN in PD patients. The parameters are however

expected to vary for different recording targets in the same patient, for different patients and

might as well vary over long time intervals (with progression of disease) for the same location

in a particular patient.
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TABLE III

ISE, DKL AND P-VALUES (FROM K-S TEST) FOR THE OUP-FPT, EXPONENTIAL
AND IG DISTRIBUTIONS FITTED TO THE RIGHT STN DATA.

Distributions ISE values DKL p-value

OUP-FPT(θ = 6.5ms) 0.28× 10−3 0.0736 0.05

exponential(ML) 0.4× 10−3 0.0789 2× 10−7

IG(ML) 0.42× 10−3 0.0821 1.8× 10−8

TABLE IV

MODEL PARAMETERS FOR RIGHT STN DATA.
OUP-FPT

θ in ms µ in mV/s σ in mV/
√
s

6.5 1485.4 110.4

Inverse Gaussian

µmlig λml

0.0184 s 0.0157 s

Exponential

µmlex
0.0184 s

2.4.2 ET data

This recording was performed during surgical implantation of DBS electrode into the VIM

of thalamus of an adult (awake) ET patient at the UIC Medical Center as an IRB-approved

research project. The surgery was performed on both sides of the patient’s brain in one session.

Recording of neuronal electrical activity was performed before, during and immediately after

applying test electrical stimulation to the VIM in thalamus. Standard microrecording electrodes

(Alpha-Omega Engineering, Nazareth Illit, Israel) was used, that allow delivering stimulation



37

through the tip of the microelectrode (microstimulation) or through the integrated guiding

cannula ring (macrostimulation) located 3 mm above the microelectrode tip (67). The procedure

of stimulation/recording was performed on both sides, first on the left, and then on the right

side. During the surgical mapping process, two identical microelectrodes were inserted at a

distance of 2mm from each other (referred as Electrodes 1 and 2). Both of them were used

for simultaneous recording while the macrostimulation was delivered from Electrode 1, with

effective distance between recording and stimulation sites of 3mm and 3.6mm for Electrodes 1

and 2, respectively.

Theoretically, a macroelectrode records the low frequency local field potential while a micro-

electrode records the high frequency firing activity from a single neuron. However, when either

of them is used for stimulating, the same contact cannot record; the recording from the other

contact of same electrode is saturated due to the high stimulus voltage. Hence, when stimu-

lating, the other neighboring electrode is used for recording. In this case, the microelectrodes

served to continuously record the neuronal activity of the thalamus before, during and after

stimulation. The recording was made using NeuroNav device (Alpha-Omega Engineering), at

a sampling rate of 24kHz. Stimulation was applied at two pulse rates, namely, at 130Hz and at

160Hz and with a pulse width of 60 microseconds. Pulse trains of durations of 15, 30 and 40sec

were applied at varying intervals between trains on both the left and right VIM of thalamus.

In the absence of an external stimulus, the timestamps of spike occurrences were detected

by setting a threshold that was determined by the neurosurgeon by visual inspection of the

recorded data. When a train of high frequency pulses was applied, spikes could be extracted
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from the voltage recorded by the electrode adjacent to the stimulating electrode. The recording

still had stimulation artifacts. By subtracting the stimulation artifacts, the spikes in between

stimulus pulses could be recovered. In the latter case, only the time interval when there was

no stimulus artifact was considered since it is not possible to determine if there were spikes

embedded in the artifacts. The ISI required for parameter extraction were obtained from the

detected spike timings as the difference between consecutive spike times.

Analysis of the following recorded data are presented: (a) before, during and after 30s

train of stimulus on the left side, and (b) before, during and after 40s train of stimulus on

the right side. In both cases the stimulation was at 160Hz and was applied through the outer

macroelectrode 1 while the data was recorded by microelectrode 2. Portions of the recorded

data before, during and after stimulation are shown in Figure 8.

For each set of data, ISIs were calculated from the spike times and the CDF was estimated

(with the Matlab function ecdf). The probability distribution was estimated by binning the

sample ISIs with bin size determined according to Equation 2.11. The OUP parameters µ, σ

as described in Section 2.3.2 were estimated for a wide range of θ depending on whether the

recorded signal is with or without stimulus. The set of parameters that produced the best fit are

tabulated in Table V together with the mean and standard deviation of the recorded data. The

parameters of the IG (µmlig , λml) and of the exponential (µmlex ) distribution were ML estimated

as in (74). The µmiseig , λmise, µmiseex were not considered for this data set because, although it

produces a good fit to the empirical distribution, it is highly dependent on the bin size as well

as it changes the mean and std of the simulated distribution as was seen in the PD dataset.
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TABLE V

OUP PARAMETERS FOR ET DATA SET.
Data type µou [mV/s] σ [mVs−1/2] θ [sec] mean±std

Left VIM

Before stim. 656.33 82.92 0.0167 0.0336±0.0272

During stim. 201.77 92.54 0.1218 0.0609±0.0726

After stim. 860.64 62.13 0.0241 0.0241±0.015

Right VIM

Before stim. 754.69 125.47 0.0085 0.0256±0.0228

During stim. 2.57 65.98 0.2720 0.2720±0.3718

After stim. 360.59 63.90 0.0500 0.0498±0.0415

In order to establish which distribution best fit the recorded data, a KS test was performed

between the measured ISI samples and the simulated CDF of the three distributions. The

p-values obtained from the test corresponding to each distribution are tabulated in Table VI.

A higher p-value indicates a greater probability of the simulated samples and the recorded data

having the same underlying distribution. Hence the p-value is an indicative of the goodness of

fit. Additionally, the ISE and DKL values were calculated for each distribution, a lower value

of ISE and DKL corresponding to better fit. Figure 9 and Figure 10 show the simulated CDF

for the three distributions fitted to ISIs measured from the right and the left VIM respectively.

Table VI shows that the OUP-FPT has either comparable or much higher p-values than the

other two distributions for ISI samples measured from both sides and under all conditions. The

exponential performs relatively better for samples during stimulus while the IG has a good

performance for samples without stimulus on the left side. The IG however has very poor
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TABLE VI

P-VALUES FROM THE KS TEST FOR DIFFERENT DISTRIBUTIONS.
Data type Exponential IG OUP-FPT

Left VIM

Before stim. 0.42×10−16 0.20 0.23

During stim. 0.05 0.53×10−41 0.04

After stim. 0.57×10−15 0.746 0.835

Right VIM

Before stim. 0.034 6.87×10−7 0.568

During stim. 0.087 0.373×10−41 0.130

After stim. 0.112×10−15 0.73×10−45 0.170

TABLE VII

ISE AND DKL VALUES FOR DIFFERENT DISTRIBUTIONS.
Data type ISE (×10−4) DKL

OUP-FPT IG exponential OUP-FPT IG exponential

Left VIM

Before stim. 0.52 0.97 0.81 0.030 0.049 0.132

During stim. 8.14 48.0 3.06 0.353 0.840 0.187

After stim. 0.97 1.18 21 0.063 0.062 0.302

Right VIM

Before stim. 2.37 4.02 3.48 0.045 0.056 0.051

During stim. 7.64 36.0 4.56 0.114 0.238 0.124

After stim. 0.89 40.0 10.0 0.047 0.445 0.177
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performance for the right side with very low p-values. Table VII shows a similar trend with the

ISE and DKL values. In Table VI and Table VII, the winners in each category are in bold which

shows that the OUP-FPT has the best performance in maximum number of cases. The better

performance of the OUP can be explained as follows: the free parameter θ has the power of

tuning the OUP parameters to obtain a good fit. θ also offers a good indication of the presence

and absence of stimulus, or the transition from ON to OFF stimulation states (notice the wide

difference in the values of θ for data with and without stimulus in Table V). The exponential

and the IG have comparable performances for selected cases but in general cannot produce

good fits for all ranges of the recorded data. Figure 9 and Figure 10 corroborate these facts and

we can see a direct correlation between a high p-value and a good visual fit.

Neurological data is highly stochastic in nature. Stochastic models of neuronal activity

are thus a natural choice, and they are much more robust and require lesser parameters than

their deterministic counterparts. The Fokker-Planck equation provides an efficient method of

formulating a deterministic evolution equation that governs the dynamics of the probability

density function. The major drawback of this approach is that analytical solutions to the

Fokker-Planck equation are seldom found. Hence, efficient numerical algorithms must be devised

to solve the (generally tough) reverse problem of the model parameter extraction.

The OUP (57) is fairly simple and yet captures the main physiological characteristic of the

neuronal firing process.

The model parameter identification can be done quickly and efficiently following the method

by (69) from the sample mean and sample variance of the measured ISI. This method is however
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not optimized according to any criterion and is simply matching of the first two moments.

Hence, with an accurate model of the neuronal activity of PD and ET patients and with an

efficient and fast algorithm to identify its parameters, the OUP model can be used to predict

the effects of DBS stimulation. This will enable the design of time-adaptive DBS stimulation

that can be tailored to the needs of each individual patient. However, to reach this goal, the

model must be modified to include a forcing function mimicking the effect of an external input

such as a train of high frequency pulses as is used in DBS to test its effect on the firing activity.

Alternatively, the model parameters can be altered to account for stimulation.
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(a) θ = 15ms.

(b) θ = 20ms.

Figure 3. ISI probability distribution of the measured PD data (in solid line) and of the
simulated OUP (in dashed line), (a) for θ =15ms. (b) for θ =20ms.



44

(a) θ = 15ms.

(b) θ = 20ms.

Figure 4. ISI cumulative distribution of the measured PD data (in dashed line) and of the
simulated OUP (in solid line), (a) for θ =15ms. (b) for θ =20ms.
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(a) Simulated distributions for ML parameter estimates.

(b) Simulated distributions for MISE parameter estimates.

Figure 5. A comparison between IG (line with triangular markers),exponential (dash-dot line)
and OUP-FPT(dashed line) distributions fitted to ISI distribution of recorded data (line with

circle markers) from PD patient. (a) corresponding to θ = 20ms for OUP-FPT and ML
parameter estimates of the exponential and IG distribution. (b) corresponding to θ = 20ms

for OUP-FPT and MISE parameter estimates of the exponential and IG distribution.
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Figure 6. top: part of the simulated membrane potential according to (left)OUP
(Equation 2.1), (right)WP (Equation 2.20) for PD patient; bottom: The number of

spikes/second over a duration of 11 s for (left)OUP, (right)WP. The dotted line indicates the
average firing rate over the entire interval.
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Figure 7. Comparison of different distributions fitted to ISI samples measured from the right
STN. (left) Probability distribution, (right) Cummulative distribution function.
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(a) Signal before stimulation. (b) Signal during stimulation.

(c) Signal after stimulation.

Figure 8. A portion of the signal measured from the right VIM of ET patient. (a) Before
applying any stimulus. (b) During a train of 160 Hz pulses for 40s. (c) Immediately after the

stimulus.
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(a) Before stimulation. (b) During stimulation.

(c) After stimulation.

Figure 9. Comparison between IG, exponential and OUP-FPT CDFs fitted to the measured
ISIs from the left VIM of ET patient. (a) Before applying any stimulus. (b) During a train of

160 Hz pulses for 30s. (c) Immediately after the stimulus.
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(a) Before stimulation. (b) During stimulation.

(c) After stimulation.

Figure 10. Comparison between IG, exponential and OUP-FPT CDFs fitted to the measured
ISIs from the right VIM of ET patient. (a) Before applying any stimulus. (b) During a train

of 160 Hz pulses for 40s. (c) Immediately after the stimulus.



CHAPTER 3

SIMULATING THE EFFECTS OF STIMULATION ON NEURONAL

ACTIVITY

3.1 Including stimulation effects in the Ornstein Uhlenbeck Process model

It was shown in Chapter 2 that an OUP can be used to satisfactorily model the neuronal

activity in the STN of a PD patient and in the VIM of thalamus in an ET patient. For the

PD data set, neuronal recording was done in the absence of any external stimulation. In the

ET data set, neuronal activity was recorded at the stimulation target both in the absence and

presence of external test stimulation. In Chapter 2, it was shown that the OUP-FPT satis-

factorily models the ISI distribution in general. However, during stimulation the exponential

distribution performs as well as the OUP-FPT distribution. It was also shown that the set of

OUP parameters during stimulation was very different from those without stimulation. In this

chapter, we will account for the difference in such parameters specially the drift, µ and the

diffusion, σ by using DBS parameters, current amplitude and frequency in particular.

µ and σ are the parameters in the OUP model that depend on inputs to the neuron in terms

of excitatory and inhibitory impulse trains in the following way:

µ = pαee+ qαii; (3.1)

σ =
√
pαee2 + qαii2.

51
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where, αe and αi are rates of Poisson distributed impulses that can be excitatory or inhibitory

respectively. p and q are the number of excitatory and inhibitory input dendrites respectively.

The membrane potential changes by e > 0 or i < 0 depending on the type of input. Based

on Equation 3.1, it can be expected that the stimulation changes µ and σ through its amplitude

and frequency. If θ is the membrane time constant and assumed to be an intrinsic membrane

parameter, then it should be fixed to the value used to model the neuronal activity without

stimulation. However, in Chapter 2 it was seen that a higher value of θ was necessary to model

the ISI distribution in the presence of stimulation. This change in θ can be due to a combination

of the stimulation pulse width and the stimulation artifact which typically last for 1 − 2 ms

after each stimulation pulse. The duration of the stimulation artifact can in turn depend on

the stimulation amplitude. Hence, we consider 2 values of θ: a)the value used to model ISI

distribution without stimulation, b)the value in a) increased by 2 ms.

3.1.1 Modified OUP

The effect of the stimulation parameters can be included in the OUP model as follows: Let

I, f be the magnitude of the stimulation current and frequency. The voltage at the recording

electrode can be calculated as:

V = (
ρ

4πr
−K(f))I. (3.2)

where ρ is the resistivity and can be set to 5000Ωmm (75), K(f) is a function of f to be

estimated and r = 3.6mm is the distance of the recording site from the stimulation site. K(f)
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accounts for the frequency dependent capacitive impedance. The effect of I, f can be included

in µ, σ as:

µon = µof − V.G(f); (3.3)

σ2
on = σ2

of + V 2G(f).

where, µon, µof, σon, σof can be identified from ISI samples recorded with and without stimula-

tion. G(f),K(f) are functions of f which can be estimated from ISIs measured using a range

of stimulation frequencies such as 120, 130, 160, 180Hz. Thus the change in the model input

parameters, µ, σ depend on the product of a function of the stimulation current and frequency.

This form is motivated by the original formulation of µ, σ as in Equation 3.1. From Equation 3.2

and Equation 3.3,

K(f) =
ρ

4πr
+

σ2
on − σ2

of

I(µon − µof)
; (3.4)

G(f) =
(µon − µof)

2

σ2
on − σ2

of

.

Although θ is an intrinsic parameter, from the results for the ET data set, it seems to be

dependent on the stimulation. As discussed before, it can be modeled to be a function of the

stimulation pulse width (pw) and amplitude (I). Hence, it can be modeled as:

θon = θof +H(pw, I). (3.5)
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Due to lack of data at more than one values of I, pw, it is assumed that, H(pw, I) = 2ms.

3.2 Method

3.2.1 Data Set

Data collection was done as described in Chapter 2. Neuronal activity recorded from the

left VIM of thalamus of an ET patient was used. The first data set consists of recording before

and during stimulation with I = 1.5mA and f = 160Hz and the second data set consists of

recording before and during stimulation with I = 1.5mA and f = 130Hz.

3.2.2 Parameter extraction

Using the parameter extraction method as described in Chapter 2, µof, σof, τof were iden-

tified from data collected before stimulation. Similarly, µon, σon were identified from data

collected during stimulation with θon = θof and/or θon = θof +0.002s. Then using Equation 3.4,

K(130),K(160), G(130), G(160) were calculated. Since we just have two data points for K(f)

and G(f), a linear function of f were calculated for both K and G as:

G(f) = G(130) +
G(160)−G(130)

30
(f − 130); (3.6)

K(f) = K(130)− K(130)−K(160)

30
(f − 130).

where, f ∈ [130, 135, 140, 145, 150, 155, 160] Hz.
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3.2.3 Possible metrics for evaluation of optimum stimulation parameter(s)

For each value of f , µof, σof, µon, σof were calculated using Equation 3.3 for I ∈ [1, 1.5, 2.5, 3, 3.5]

mA. The corresponding OUP-FPT distribution was simulated (71) and the following were cal-

culated:

1. The mean firing rate (Fmean): Fmean = 1/E[fou], where E[fou] is the mean of the OU-FPT

distribution.

2. The ISE between OU-FPT (fou)and an exponential distribution (fex) where,

fex = Fmeane−xFmean .1[x≥0], x denoting the bin centers at which the distribution is calcu-

lated.

3. Entropy of ISI distribution (Hisi) calculated as: Hisi = −
∑

i pilog(pi), where pi is the

probability of the ISIs in the i− th bin.

A better stimulation might correspond to a lower mean firing rate (7) and/or a lower value of

ISE (neuronal dynamics driven towards a Poisson Process)and/or a lower value of entropy (76).

3.3 Results and Discussion

Figure 11 shows G(f),K(f) as a function of frequency. G(f) is proportional to f in the

range of frequency considered here, which is typically the therapeutic range. K(f) on the other

hand is inversely proportional to f . This is because K(f) accounts for the frequency dependent

component of capacitive impedance which is inversely proportional to frequency. With just two

data points, any function could be fit to G(f),K(f). A linear function was fitted for simplicity.

Figure 12 shows a bunch of OUP-FPT distributions simulated for I = 1.5mA, θon = 0.011s
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Figure 11. G(f) ∝ f as a linear function of f (top), K(f) ∝ 1/f (bottom).

(left) and I = 3mA, θon = 0.013s (right) at different frequencies. The distributions tend to get

a higher peak value at a smaller ISI value as f is increased as well as I increases. This might

indicate that a higher amplitude and higher frequency tends to drive the neuron to fire more

frequently at a steady rate.

Figure 13(a) shows the mean firing rate (Fmean) (left) and the ISE between the simulated

OUP-FPT and exponential distribution (right) for different set of stimulation parameters. If

we consider that a lower mean firing rate corresponds to a better state, then only the first three

set of parameters: I = 1− 1.5mA, f = 130− 160 would produce a mean firing rate thats lower

than without stimulation. Increase in f also shows an opposite effect on the mean firing rate for

I = 1− 1.5mA and I = 2.5− 3mA, while for I = 3.5mA, increasing f first increases Fmean and
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Figure 12. The OU-FPT distribution with two sets of stimulation parameters. The time axis
(x-axis) is shown in the logarithmic scale.

then reduces it. From Figure 13(a) and all the parameter sets considered, I = 1mA, f = 160Hz

would produce the lowest value of Fmean. On the other hand, if a lower value of ISE corresponds

to a better state, then higher I and lower f or higher f and lower I would be more optimal.

The set I = 3.5mA, f = 130Hz attains the lowest ISE value amongst all the sets considered.

A lower ISE would mean that the spike arrival times during DBS can be assumed to follow a

Poisson process. This might indicate that DBS eliminates burst firing rather than just reducing

the average firing rate. Figure 13(b) shows that a high current and higher frequency produces

lower values of entropy.

The OUP can be modified to include stimulation effects. One way of doing that was proposed

in this chapter. Some preliminary simulation results were shown. In order to determine an

optimal set of stimulation parameters, we should have neuronal recordings at atleast 3 to 4

stimulation frequencies in order to determine K(f), G(f). We also should have a good cost

function to determine which value of the cost function corresponds to a therapeutic state.
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This can be determined be assessing the patient during stimulation at different frequencies and

current amplitudes. Here, we used three metrics based on literature and results in previous

section. This metric will potentially be patient specific.
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Figure 13. Possible performance metrics for determining optimal stimulation parameters
(frequency, current amplitude). (a) Mean firing rate (left) and ISE with respect to exponential

distribution (right) for OU-FPT simulated for different sets of stimulation parameter. (b)
Entropy of OUP-FPT distribution. The black dashed line shows the corresponding values

before stimulation.



CHAPTER 4

ADAPTIVELY CONTROLLING DBS VIA SURFACE EMG AND

ACCELERATION SIGNALS

The content of this chapter has been published in neurological research, proceedings of the

32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society

(77; 23) and has been submitted for publication in the IEEE transactions on neural systems and

rehabilitation engineering

4.1 Background and motivations

In this chapter, we discuss an algorithm for predicting tremor onset during a DBS-OFF

period. This is required for the design of an automatic and self-adaptive ON-OFF control for

DBS in PD and ET. For this to be feasible, it is necessary that:

• After the cessation of a DBS-ON period (train or packet of HFS pulses), there would exist

an interval of reasonable DBS-OFF duration that is tremor-free before tremors re-appear.

• There must be a means to predict a tremor event during the DBS-OFF period, before

it actually re-appears, in order to switch stimulation back on, as is essential for smooth

tremor-free control.

• The information to facilitate this prediction should, if at all possible, be noninvasive, fast

and simple to retrieve.

60
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A natural choice for a non-invasively acquired signal that could be an indicative of the presence

or absence of tremor is sEMG and acc mesured from tremor-affected extremities of a patient.

It has been shown that thalamic cells have tremor frequency firing patterns that are linearly

related to sEMG signals during tremor in ET (78).

4.1.1 Surface EMG

Surface Electromyography (sEMG) is a technique to measure muscle activity noninvasively

using surface electrodes placed on the skin overlying the muscle (79). sEMG differs from

needle EMG (nEMG) and fine-wire EMG (fwEMG) with respect to technical requirements and

electrical properties. nEMG examines only a small muscle volume, as for a muscle biopsy. Such

a sample is not necessarily statistically indicative of the general state of the muscle, and large

differences may be observed between two sites in the same muscle (80). Unlike nEMG, sEMG

electrodes record from a wide area of muscle territory, have a relatively narrow frequency band

(20–500 Hz), have low-signal resolution, and are highly susceptible to movement artifact. Thus

single fibre EMG, nEMG, macro EMG, and sEMG examine areas that are progressively larger,

and the measurements become decreasingly selective and increasingly representative. sEMG

electrodes typically are approximately 10 mm in diameter and usually are passive (i.e., they

are simple conductive surfaces requiring low skin resistance). They can, however, be active,

incorporating skin resistance and improve the signal-to-noise ratio (SNR). sEMG can record

both voluntary and involuntary muscle activity in addition to externally stimulated muscle

action potentials such as motor evoked potentials after central or peripheral nerve stimulation.
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sEMG has been successfully used as the information source for closed-loop control in sev-

eral other areas of medicine, such as control of high-above-elbow prostheses (81), electrical

stimulation in paraplegics (82), and to predict the onset of sleep apnea events (83).

4.1.2 Acceleration

An accelerometer is a sensor, or transducer, which generates an electrical signal in response

to acceleration (or deceleration) (84). A piezoelectric accelerometer employs either natural

quartz crystals or man-made polycrystalline ceramics as its sensing element (85). Frequency

and amplitude related variables extracted from acceleration (acc) signals are widely used for

quantifying physiological as well as pathological tremor (86; 87).

4.1.3 Past Work

The design of a closed-loop DBS controller has been a highly pursued field over the past

decade because of the fact that although the current paradigm is highly successful, it is not

adaptive to the patients’ condition. Research towards this goal (88) is mainly concentrated in

optimizing the stimulation pattern, such as phase resetting and delayed feedback (89; 26), feed-

back using local field potential (LFP) and neuronal activity (75) and on using a pulse train with

random frequency (43). However the results of these efforts are solely based on computational

models and, if tested on human subjects, would require measurement of neuronal signals from

the implant site in the brain. There has also been trials on non-human primates, where the

neuronal activity from the motor cortex and Gpi were used as feedback (90). The design of a

device for generating the phase resetting stimulation (89; 91), requires measurement of neuronal

signals from the brain. Measuring the brain activity would require redesigning/updating the
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stimulation electrodes. For this reason, our initial approach to the design of a closed-loop DBS

system is to avoid measuring signals from the brain.

Our approach consists of first updating the existing FDA approved DBS system by using

non-invasively measured signals, such as sEMG and acc, as feedback signals to predict re-

emergence of tremor when DBS is OFF. Since this does not modify the actual stimulation

generator, it can be used with the existing system as well as with future systems. We showed

that the lower frequency bands of the sEMG signal, reconstructed by using a discrete wavelet

transform, contains predictive information about tremor re-appearance in an ET patient with

DBS implants, after the stimulation is switched OFF (23). We also showed that by using a

combination of two types of entropy measures, tremor onset could be successfully predicted from

sEMG recordings from an ET patient (77). Both these work were based on limited number of

trials recorded from one ET patient. The use of wavelet coefficients (23) and entropy measures

(77) were sufficient to predict tremor for those few trials.

4.1.4 Main contributions

A tremor prediction algorithm for closed-loop ON-OFF control of DBS is proposed. The

predictor must achieve the following objectives:

• Goal 1: Tremor onset should be predicted just a few seconds before it is actually detected

so that the patient does not experience any discomfort due to tremor.

• Goal 2: Voluntary movement and posture initiation in the absence of tremor should not

be predicted as tremor.
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This will produce a novel add-on system to the existing DBS device, that will turn the stimula-

tion ON for a fixed time interval, switch it OFF and track a set of parameters calculated from

the sEMG and acceleration in real time. It will automatically turn the stimulation back ON be-

fore the patient experiences any discomfort due to tremor such that the tremor-free DBS-OFF

duration is maximized.

The algorithm uses a set of parameters extracted from sEMG and acc signals to predict

tremor onsets. The designed prediction algorithm successfully predicts tremor (Goal 1) during

DBS-OFF period for all the trials considered (with data collected from human subjects). At

the same time it does not predict too early (Goal 2) for 80.2% of the PD trials and 85.7% of

the ET trials.

4.2 Parameter Definition

In this section, parameters that will be extracted from sEMG and acc signals are defined.

These parameters will be used as inputs to the tremor predictor.

4.2.1 Spectral measures

Consider a time series x(t), t ∈ {1, ..., L}, L = Tfs where fs and T are the sampling

rate and time duration of x(t), respectively. Let Pk be the power of x(t) at frequency bands

centered around fk, k ∈ {1, ..., N} calculated by using a Fourier transform, where fN − f1 is

the signal bandwidth. Furthermore, let x(t) be decomposed into M frequency bands using a

discrete wavelet transform (DWT), with xj(t) representing x(t) in the j-th frequency band,

j ∈ {1, ...,M}. Then the following parameters are calculated.
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1. Mean Frequency:

Fmean =

∑N
k=1 fkPk∑N
k=1 Pk

. (4.1)

This is a commonly used sEMG parameter (92) and represents the expected value of the

frequency distribution over the spectrum range considered.

2. Power at peak frequency: Let B < N where fB represents the highest frequency content

of the time series x(t) and therefore fB − f1 is the bandwidth of interest. Define

j? = arg max
j∈{1,...,B}

{Pj}, (4.2)

as the index of the frequency with maximum power in the bandwidth of interest. We

define the power (Pmax) at peak frequency (Fmax) as

Pmax =
Pj?∑

j∈{B+1,...,N} Pj
, (4.3)

Fmax = fj? . (4.4)

The meaning of these quantities is as follows. The low frequency contents of the sEMG

and acc signals are of interest as tremor components are expected to lie in this band.

Let fB represent an estimate of the highest frequency content of interest (for example,

for the sEMG and acc signal fB is around 18Hz). Fmax is the frequency with the largest

power within the bandwidth of interest, while Pmax is the power at Fmax. Note that

Pmax (Equation 4.3) is normalized by the power of the recorded data signal outside the
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main signal bandwidth of interest. This is so because the power at Fmax must be compared

over different trials/recordings, which might have significantly different power outside the

range of interest. In a way, the quantity in Equation 4.3 can be interpreted as a SNR.

3. Mean power in the j-th wavelet band:

Pj =
1

L

L∑
t=1

|xj(t)|2. (4.5)

Pj captures the average signal content in the j-th frequency band over an interval of

duration T .

4.2.2 Entropy measures

Wavelet Entropy has been widely used for analyzing electroencephalogram (EEG) signals to

measure degree of similarity between different segments of the signal (93), for detecting different

events such as seizures in epileptic patients (94); it has also been used to analyze electrocardio-

gram (ECG) signals for detecting myocardial infarction (95). It has been shown that tremor

is characterized by an increased regularity in the corresponding sEMG signal as compared to

sEMG without tremor which can be captured by the Approximate Entropy measure (86). It

has also been used for similar analysis of EEG signals (96) and heart rate signals (97). Based

on these two types of entropy measures, wavelet entropy is used to capture information relating

to power shifts in different frequency bands and sample entropy to quantify the regularity and

complexity of a time series signal (98). These two measures are however not directly compara-

ble.
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1. The (Shannon) entropy is a measure of unpredictability and is often used to quantify the

amount of order/disorder in a signal. In information theory, the entropy of a discrete

random variable (RV), X is defined as (99):

H(X) = −
K∑
i=1

pi log pi (4.6)

where pi = P[X = xi], i ∈ {1, ...,K}, is the probability mass function and K is the number

of possible outcomes for X. Based on Equation 4.6, the wavelet entropy at time t of the

time series signal x(t), indicated as Hwt(t), is defined as follows (93):

Let x(t) be first decomposed into M frequency bands, indicated as xj(t), j ∈ {1, ...,M}

by using a DWT. The normalized power of xj(t) is computed as:

fj(t) =
|xj(t)|2∑M
k=1 |xk(t)|2

, j ∈ {1, ...,M}. (4.7)

At each time instant t, {fj(t), j ∈ {1, ...,M}} can be treated as a probability mass

function whose entropy is given by:

Hwt(t) =
M∑
j=1

fj(t) log
1

fj(t)
. (4.8)

2. Sample entropy was developed to overcome some shortcomings of the approximate entropy

statistics such as bias, relative inconsistency and dependence on the sample length (98).

It is calculated as the negative logarithm of an estimate of the conditional probability that
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a data series of a given length that match point-wise within a given tolerance also match

when the length is increased by one. The computation of the sample entropy, denoted

as SpEn(U,m, r), for a given time series U = {x(i), i ∈ {1, ..., L}} of length L involves

two input parameters m and r, which are the pattern length and the similarity criterion,

respectively. SpEn(U,m, r) is evaluated as follows. Let xm(i) = [x(i), ..., x(i+m− 1)] for

i ∈ {1, ..., L−m+ 1} be a set of length m vector sequences constructed from U . The `∞

distance between two such sequences x(i) and x(j) is

d∞[x(i),x(j)] = max
k∈{1,...,m}

|x(i+ k − 1)− x(j + k − 1)|.

Let

Bm
i (r) = |{j : d∞[xm(i),xm(j)] ≤ r}| (4.9)

for i, j ∈ {1, ..., L−m}, i 6= j and let

Bm(r) =

L−m∑
i=1

Bm
i (r), Am(r) =

L−m∑
i=1

Bm+1
i (r). (4.10)

SpEn(U,m, r) is then defined as:

SpEn(U,m, r) = lim
L→∞

− log
Am(r)

Bm(r)
. (4.11)
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where Am(r)/Bm(r) is the conditional probability that two sequences that are similar for

m points remain similar within a tolerance r at the next point. A lower SpEn(U,m, r)

value reflects a high degree of regularity.

In the tremor prediction algorithm, sample entropy is used to overcome some of the shortcomings

of estimating the conditional probability using approximate entropy as described before (98).

4.2.3 Recurrence quantification analysis

Classical spectral characteristics of sEMG have some diagnostic value for quantification

of motor unit synchronization (100). Since sEMG signals are nonlinear in nature, nonlinear

time-series analyses of sEMG can potentially provide additional information on the underlying

motor strategies (101). Recurrence Quantification Analysis (RQA) (102) is one such efficient

time-series analysis pertaining to the class of non-linear dynamics time-domain processing. It

has been extensively used for analysis of sEMG for detecting hidden characteristics that cannot

be detected by linear analysis (92; 101). Different variables can be extracted from a recurrence

plot (103) which has been shown to correlate with synchronization in the signal and is more

sensitive to changes in the degree of synchronization than linear variables such as mean/median

frequency (101).

Computation of a recurrence matrix (RM) Ri,j , (i, j) ∈ {1, ..., P}, P = L− (M − 1)τ , for a

time-series, x(t) of length L involves the following parameters

1. The embedding dimension M ,

2. The time delay τ ,
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3. A norm ‖ · ‖ (which could be minimum norm, maximum norm, and Euclidean norm),

4. Radius r.

RM is then calculated as:

Ri,j = Θ(r −Di,j), (i, j) ∈ {1, ..., P}, (4.12)

Di,j =
‖xi − xj‖

dav
, xi ∈ RM , (4.13)

dav =
2
∑P

i=1

∑P
j=1Di,j

P (P − 1)
(4.14)

where, Θ is the Heaviside function and

xi = [x(i), x(i+ τ), ..., x(i+ (m− 1)τ)], i ∈ {1, ..., P}; is a vector of length m.

From Ri,j , the recurrence rate R is calculated as:

R =
1

P 2

∑
i,j

Ri,j . (4.15)

4.3 Data Collection and Signal Preprocessing

4.3.1 Subjects

Four PD and two ET patients were recruited for this study from the Movement Disorder

Clinic at Rush University Medical Center and two ET patients from the University of Illinois

at Chicago hospital. Patient details are listed in Table VIII. Informed consents for this study’s

protocol approved by the IRB of respective institutes were obtained from all patients. The four

PD patients had DBS electrodes (Medtronic DBS lead model 3389) stereotactically implanted
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in the STN while the four ET patients had the electrodes placed in the VIM of the thalamus.

All patients had significant tremor in one or both arms and their symptoms were well controlled

by a combination of stimulation and medication.

TABLE VIII

PATIENT DETAILS
Patient# age gender DBS parameter active DBS hand

amplitude frequency pulse width contacts implant tested
PD1 46 M 2.8 V 180 Hz 80 µs 1-0+ 2008 R
PD2 45 M 2.5 V 185 Hz 60 µs 1-2-C+ 2002 L
PD3 52 F 2.8 V 185 Hz 120 µs 0-C+ 2004 R
PD4 60 F 2 V 145 Hz 60 µs 1-3-C+ 2009 R
ET1 64 M 2 V 150 Hz 90 µs 2-C+ 2002 L
ET2 67 M 1 (L), 130 Hz 120 µs 1-C+(L), 2010 L,R

1.4 V(R) 5-6-C+(R)
ET3 51 M 2.3 V 185 Hz 60 µs 9-C+ 2010 R
ET4 62 F 2 V 185 Hz 90 µs 0-C+ 2007 R

4.3.2 Experimental setup

All PD patients and three ET patients had one recording session each and one ET patient

had two recording sessions (one for each arm) in the Neural Control of Movement Laboratory

(NCML) at the University of Illinois at Chicago. On the testing day, the patients were on their

usual medication and a series of sEMG recordings were obtained from the extensor digitorum

communis (EDC) and the flexor digitorum profundus (FDP) of the forearm with worst tremor.

For one ET patient, sEMG was recorded from both forearms (over two recording sessions).
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The EDC is the muscle that produces extension at the wrist and fingers, and muscle activity

in the FDP results in wrist and finger flexion. Electrode placement was determined by muscle

palpation during active wrist and finger extension and flexion. Correct placement was confirmed

by inspecting sEMG output on a digital oscilloscope. The recording setup was as in (86; 104).

The sEMG signal was amplified (gain set to 1,000) and bandpass filtered between 20Hz and

450Hz (Delsys Inc., Boston, MA). Along with sEMG, acc data were recorded with a calibrated

Coulbourn type V94-41 miniature solid-state piezoresistive accelerometer. It was taped to the

hand (2 cm proximal to the middle of the first metacarpophalangeal joint). The accelerometer

resolution was 0.01g. Both sEMG and acc were sampled at fs = 1000Hz.

In the beginning of the experiment, the patient was comfortably seated in an upright position

on a chair. A table with an adjustable height was positioned by the side of the chair and served

as the supportive surface for the subject’s forearm. The height of the table was adjusted to be

level with the subject’s hand when the wrist and fingers were extended parallel with the floor.

The table served as the visual target to enable the subject to maintain the wrist in a neutral

position. With DBS-ON, three trials each of 30s duration were recorded with the patient doing

the following:

R: Resting, with the forearm and hand muscles completely relaxed and the hand dangling

unsupported over the edge of the supportive surface.

P: Holding a posture, by maintaining the wrist and hand in a neutral, extended position

while keeping it level with the table surface.
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A: Performing some voluntary action/movement, such as reaching for his opposite shoulder

and/or extension and flexion of the wrist.

This produced baseline data with DBS-ON. Figure 14 shows the sEMG and acc sensors during

R and P. After that the stimulation was switched OFF for sometime and then a total of 15

to 32 trials were recorded. Each trial was of 50-100 seconds in duration and consisted of an

interval with DBS-ON followed immediately by the rest of the trial interval with DBS-OFF.

After stimulation was switched OFF, the first instant when tremor visibly re-appeared was

noted. This was also verified using a threshold of 0.15 − 0.2mm/s2 on the acc data for states

R and P. In state A, Figure 16 shows that sEMG bursts with tremor (bottom) consist of

smaller segregated bursts within them. This feature was used to verify the instant when tremor

started. PD patients were tested under all 3 conditions (R, P, A) whereas ET patients only

performed P and A since none of the ET patients had resting tremor. In P and A, the posture

holding/movement was initiated either before or after switching the stimulation OFF.

4.3.3 Surface EMG data pre-processing

For final analysis, only the extensor sEMG was used as by visual inspection of the data it had

a higher SNR than the flexor sEMG especially in the R and P state. During A, extensor sEMG

bursts are preceded by flexor bursts, hence any predictive information is expected to be in the

extensor sEMG earlier than in the flexor sEMG. This was also verified by considering parameters

calculated from the flexor sEMG, whose addition did not improve the algorithm’s performance.

The raw extensor sEMG signal (indicated as x(t)) was first smoothed by calculating its power

over windows of 50ms (equivalent to 50 samples) duration that slid over every sample. The
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Accelerometer sensor sEMG sensor for extensor 

sEMG sensor for flexor 

Figure 14. Hand position with sEMG and acc sensors during rest (R) (left) and posture (P)
(right).

smoothed sEMG signal will be denoted as xs(t). The sEMG was smoothed to extract the lower

frequency tremor bursts by averaging out the higher frequency oscillations inside the sEMG

bursts. This is equivalent to rectification and low pass filtering. The following parameters as

described in Section 4.2 were calculated using windows of 1s (equivalent to 1000 samples) of

xs(t) with an overlap of 0.75s thus producing a sample every 0.25s after an initial delay of 1.05

s for the first parameter sample. After that,

• A 512-point Fourier transform was used to calculate the power spectral density (PSD)

of each window of xs(t). Then the mean frequency (F
(sEMG)
mean (Equation 4.1)) and power
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(P
(sEMG)
max (Equation 4.3)) at peak frequency (F

(sEMG)
max (Equation 4.4)) were calculated for

each such window. Since, the smoothed sEMG signal had most of its power concentrated

in the 0-40 Hz range, only frequency components in the 2− 40Hz band were considered,

that is N = 37 and B = 16 (Equation 4.4). The 0-2 Hz band was omitted to account for

the DC value and very low frequency movement artifacts. Fmax is the frequency in the

3-18 Hz range (typical tremor frequency range) with the largest power, while Pmax is the

power at Fmax.

• xs(t) was decomposed into 10 frequency bands using a Daubechies4 DWT. The mean

power in the 8−16 Hz band were computed using Equation 4.5 which will be referred to as

P4. This particular band was considered because it was seen to contain the most predictive

information (23) which can distinguish between tremor and voluntary movement. More-

over this band also overlaps with the typical action/postural tremor frequency band. The

wavelet bands, xs,j(t) were also used to compute the wavelet entropy, Hwt (Equation 4.8).

• xs(t) was used to calculate sample entropy SpEn(U,m, r) according to Equation 4.11 with

U = xs(t), m = 2, r = 0.15σ, where σ is the standard deviation (std) of the signal window

considered. Since the window length L = 1000 should be 10m − 30m (105), m = 2 was

chosen. For m = 2, values of r range from 0.1 to 0.25 times the std (97).

• xs(t) was used to calculate recurrence rate R according to Equation 4.15 with M = 5, τ =

3, r = 0.33. These values were chosen based on guidelines for parameter selection outlined

in the “crptool” MATLAB toolbox (106). M was estimated using the nearest-neighbor

methodology, that is the minimum embedding dimension value which maximizes system
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information; τ was estimated by finding the first minimum in the mutual information

function and r was chosen such that R < 1 (102).

4.3.4 Acceleration data pre-processing

The acc signal was used to calculate the mean frequency (F
(acc)
mean in Equation 4.1) and power

(P
(acc)
max in Equation 4.3) at peak frequency (F

(acc)
max in Equation 4.4) similar to that described

before for the sEMG signal xs(t).

Figures 15(a) and 15(b) show a typical PD rest trial and an ET postural trial, respectively.

In each of these figures, the dashed vertical line indicates time when stimulation was switched

OFF while the solid vertical line shows the time when tremor was detected visually as well as

from the acc data. Note that in the postural tremor (Figure 15(b)), the posture was initiated

at 40s and there is slight tremor around 50s, which becomes stronger around 80s. From the two

figures, it can be easily seen that the change in sEMG power when tremor starts is more visible

in the smoothed (middle) signal xs(t) than in the raw (top) signal x(t). A typical action burst

for a PD patient with and without tremor is shown in Figure 16, where one sees that the burst

with tremor (bottom) has a more regular structure than the one without it (top). Although

both have almost same number of smaller bursts (about 8) in them, the one with tremor has

the bursts much more well defined and easily visible in the smoothed sEMG signal.

4.4 Prediction Algorithm

For both PD and ET, the stimulation is ON for a fixed time for each DBS ON-OFF cycle,

for each patient. This fixed stimulation duration for each patient can be estimated as the

DBS-ON duration that maximizes the average ratio of the delay in tremor re-appearance to
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the total DBS ON-OFF duration (23). This ratio, Rdt is described later in Section 4.4.4. In

practice, an optimum DBS-ON period can be estimated either during a patient’s clinic visit or

during programming of the DBS device. When the stimulation switches OFF, after this fixed

duration, the prediction algorithm starts operating. Figure 17(a) shows an overall block of the

signal flow for the entire prediction process.

4.4.1 Prediction Algorithm for ET

For ET patients, the prediction involves two steps:

1. Classification of patient’s state (P/A): This is done based on the sEMG and acc

signal power by setting some thresholds as shown in Figure 17. The threshold values

[ηc1, ηc2, ηc3, ηc4, ηc5, λ] for deciding the patient’s state is chosen by using data during the

DBS-ON interval. The following steps are done:

i) If the power of sEMG (xs(t)) over 2s just before and 1.5s immediately after stimu-

lation is switched OFF is less than ηc1, then go to ii). Else the state is A.

ii) Calculate the power of acc (indicated with Pac) over 1.5s immediately after stimula-

tion is switched OFF. If Pac ∈ [ηc2, ηc3], the state is P. If Pac < ηc2, go to iii) else go

to v).

iii) The state is R and in that case, the sEMG and acc are tracked until acc(tvm) > λ

where tvm is the time instant when acc exceeds threshold λ.
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iv) Calculate power of sEMG(xs(t)) over intervals [tvm, tvm +0.5] and [tvm +0.5, tvm +1]

which are denoted as P1 and P2 respectively. If P2 < ηc4, state is P else if P2 > ηc4

and P1 < ηc5, state is P. If P2 > ηc4 and P1 > ηc5, state is A.

v) Over the 1.5s interval after stimulation is switched OFF, find if at any instant,

{tvm : acc(tvm) > 2λ}. If there is such an instant then go to iv) else the state is A.

2. Based on the classifier output, proceed as follows. If holding a posture (state

P), the parameter (Iw1=1 × SpET) is tracked. If performing an action/movement (state

A), the parameter (Iw2=1 × SaET) is tracked as shown in Figure 17(b). Here I is the

indicator function, w1 and w2 are weights and can either be 0 or 1. SpET, S
a
ET are the set

of parameters as described in Table IX and are a subset of the parameters introduced in

the sEMG and acc data analysis in Section 4.3. Whenever, one of the parameters in SpET

(for P) or SaET (for A) meets its corresponding prediction criterion or the DBS-OFF time

exceeds a preset value, the stimulation is turned ON. The two sets of parameters and

their corresponding prediction criterion are tabulated in Table IX. A description of the

threshold values used in the prediction criterion are listed in Table XI. A default preset

value is a safety measure to ensure that the stimulation turns ON after sometime in case

the algorithm does not predict any tremor event. This value can be decided based on the

average time the tremor takes to come back for a particular patient.
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4.4.2 Prediction Algorithm for PD

For PD, the prediction is done similarly to that proposed for ET. The main difference is

that there is no preceding classification step as in ET and a set of parameters extracted from

the acc signal is also used in the prediction along with those extracted from the sEMG signal

(SPD). Omission of a state classification is to avoid confusion between rest tremor and change in

state from R to P/A. Moreover, state classification would also require three sets of parameters

for the three states in PD, thus further complicating the algorithm. Hence for the PD cases,

1s after stimulation is turned OFF, (Iw=1 × SPD) is tracked; whenever a prediction criterion

is met or the DBS-OFF time exceeds a preset value the stimulation is turned ON. The set of

parameters SPD and their corresponding prediction criterion are tabulated in Table X.

4.4.3 Classification of prediction outcomes

To analyze the prediction performance, each considered trial is classified based on the pre-

diction outcome as follows:

As shown in Figure 18, let Ttot be the total duration of a trial, and ton and toff be the times

when stimulation was switched ON and OFF, respectively. Furthermore, let tdt and tpr be the

times when tremor was detected during the DBS-OFF period and tremor was predicted using

the algorithm, respectively. The trials can be classified as:

1) Tremor Detected (TD) (Trials 1 and 2 in Figure 18): These are trials where tremor was

detected over the recorded DBS-OFF period, i.e ttr < Ttot.

• If [(tdt > tpr) and (tdt− tpr) < max(5, 0.4(tpr− toff))s] or [(tdt < tpr) and (tpr− tdt) < 1s],

then the algorithm successfully predicts tremor and this outcome is classified as a true
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positive (TP).

This is a bit different from the classical TP definition, in that we require that the prediction

be at most 40% of the tremor free DBS-OFF period or 5s (whichever is greater) before

actual tremor reappears. This allows penalizing too early prediction outcomes. The

maximum between 40% of (tpr − toff) and 5s is considered to account for trials where the

tremor delay is very short (< 10s) for which a prediction 5s ahead in time is good enough

to be classified as a TP. We also allow for prediction at most 1s after detection. This

will take care of situations when the tremor re-appears almost immediately (within 1-2

seconds) after stimulation is switched OFF.

• If [(tdt > tpr) and (tdt − tpr) > max(5, 0.4(tpr − toff))s], then the prediction is too early

and the outcome is classified as false positive (FP).

• If [(tdt < tpr) and (tpr − tdt) > 1s], then the prediction is too late and the outcome is

classified as false negative (FN)

2) No-Tremor Detected (NTD) (Trials 3 and 4 in Figure 18): These are trials where tremor

was not detected over the recorded DBS-OFF interval, i.e tdt ≥ Ttot.

• If the algorithm does not predict any tremor over the entire interval Ttot − toff, then its

classified as true negative (TN)

• If the algorithm predicts tremor over the entire interval Ttot − toff, then its classified as

false positive (FP)
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4.4.4 Analysis of prediction outcomes

For the algorithm to perform well, the total number of TP and TN must be maximized while

minimizing FP and eliminating FN. This would achieve the maximum “tremor-free” DBS-OFF

interval. To quantify this, the following performance metrics are defined:

A =
#TP + #TN

#TP + #TN + #FP + #FN
, (4.16)

S =
#TP

#TP + #FN
, (4.17)

FA =
#NTD −#TN

#NTD
. (4.18)

mcc =
(#TP )(#TN)− (#FP )(#FN)√

(#TP + #FP )(#TP + #FN)(#TN + #FP )(#TN + #FN)
(4.19)

• The parameter A in Equation 4.16 is the accuracy of the prediction algorithm, which is

the ratio of the correctly predicted trials to the total number of trials. For our application,

we aim to have a high accuracy (above 80%).

• The parameter S in Equation 4.17 defines the sensitivity of the prediction algorithm. It

relates to the algorithm’s ability to correctly predict tremor in TD trials. This value has

to be very high (as close to 100% as possible) for the application since we want to avoid

missing any tremor event.

• The parameter FA in Equation 4.18 is the false alarm rate, which expresses the ratio of

NTD trials that are falsely predicted. This relates to the algorithm’s ability to correctly

identify the absence of tremor when there is no tremor. We aim to have a low FA value

so that the tremor-free DBS-OFF interval is maximized.
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• The parameter mcc in Equation 4.19 is the Matthews correlation coefficient (107), which

is a measure of the quality of a binary classifier. It is generally regarded as a balanced

measure and is used even if the classes are of very different sizes. It has a value in the

range -1 to 1, where 1 represents a perfect prediction, 0 no better than random prediction

and -1 indicates total disagreement between prediction and observation. It is related to

the chi-square statistic for a 2× 2 contingency table

χ2 = N ×mcc2 (4.20)

where the χ2 statistic can be used to calculate the p-value in order to accept/reject the null

hypothesis that the predictions were completely random. The p-value is the probability

that X > |χ2|, where X is a random variable with a χ2 distribution with 1 degree of

freedom. A p-value less than α indicates the the prediction outcome is significantly

different from a random prediction with α being the significance level and is often chosen

to be 5% or less .

For this application, S should be very high (over 90%) because we want to avoid missing any

tremor event. At the same time, a high A and a low FA are desired. This ensures that the

algorithm not only correctly predicts tremor events, but also avoids early predictions. The

mcc value should be close to 0.5 or higher and should produces a p-value that is less than 5%.

Additionally, three ratios are defined as:
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Rpd =
∑

(tpr − toff)/
∑

(tdt − toff), (4.21)

Rdt =
∑

(tdt − toff)/
∑

(tdt − ton), (4.22)

Rpt =
∑

(tpr − toff)/
∑

(tpr − ton), (4.23)

where the summation is over all the trials for each patient. Rdt and Rpt are calculated for trials

where the stimulation on duration (toff − ton) < 55s while Rpd is calculated for all trials. Since

for the NTD trials the exact time when tremor would come back is not known, we set tdt = Ttot

and tpr = min(Ttot, tpr). In a practical scenario, Ttot would be the time when the stimulation

switches ON automatically in the absence of a prediction. Hence, to determine the fraction of

time the stimulation is OFF, we can consider Ttot− toff to be the time interval when stimulation

is OFF for NTD trials.

Furthermore, Rpt is calculated only for trials where the DBS-ON duration, T ∗on = (toff−ton),

is the one that maximizes the ratio

R∗ =
tdt − toff

T ∗on

.

denoted as :

R∗pt =
tdt − toff

tpr − toff + T ∗on

. (4.24)

Rpd is the ratio between the predicted delay to the actual delay in tremor, hence Rpd provides

a measure of how good the prediction is, i.e., a higher value indicates that the predicted delay

is closer to the actual delay which is desirable. In a similar way, Rdt and Rpt provide a measure
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of the fraction of time the stimulation is OFF with an ideal predictor (which would predict

the exact time when tremor re-appeared) and the one designed. Rdt values can be used to

assess if a particular patient is well suited for this type of application. If Rdt is very low, i.e.,

if the stimulation is OFF for just 10% of the total time then it is better just to have DBS-ON

continuously. R∗pt provides a measure of the fraction of total trial time that the stimulation

would be OFF if the predictor worked only for the optimum stimulation duration, T ∗on . The

goal of our tremor predictor is to maximize Rpd as well as R∗pt since with a higher R∗pt, the

patient will have a high percentage of “tremor-free” DBS-OFF interval. T ∗on can be chosen as

outlined in (23).

4.5 Results and Discussion

4.5.1 Parameter selection

For both PD and ET trials, the prediction parameter thresholds are listed in Table XII

and Table XIV, respectively. The classification parameters for ET are listed in Table XIII. The

prediction parameter thresholds were decided as follows: For each patient, all parameter values

as described in Section 4.3 were first calculated for the baseline data and for the training trials

(around 40% of the total trials as in Section 4.3.2). The calculated parameters for intervals of

no tremor (in baseline and training trials) were compared with those in the training trials when

tremor started to build up. Based on the difference between the parameter values with and

without tremor, a threshold was decided for each parameter such that each of the training trial

produced a desired prediction output (TP or TN). Only those parameters were included in the
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set as in Table XII and Table XIV, which produced desired output for the maximum number

of training trials using the same threshold.

4.5.2 Prediction performance

Based on the prediction time tpr, each trial was then classified as described in Section 4.4.4.

For each patient, A, S,FA in Equation 4.16, Equation 4.17, Equation 4.18; Rpd, Rpt, Rdt in Equa-

tion 4.21, Equation 4.23, Equation 4.22; and mcc in Equation 4.19 were calculated as in Ta-

ble XV. For patients with NTD< 5, FA was not calculated (NC). An overall A,S,FA and mcc

were calculated based on all trials in PD and in ET shown shown in Table XV. Table XVI

shows some of the trials for ET1 and PD1 with the corresponding DBS-ON time (toff − ton),

actual tremor delay detected (tdt − toff), predicted delay (tpr − toff), total trial duration Ttot,

and the prediction outcome classification (TP,FP,TN,FN).

Table XV shows that the predictor does not miss any tremor event (S = 100%) and that

it achieves a high accuracy (A > 80) for 6/8 patients. Out of the 8 patients, PD1 and PD3

had high tremor amplitude with a lower value of Rdt, as is also reflected from the values of

NTD. For both of them the A, S is quite high, which is desirable. PD4 was the only PD patient

who had long delays in tremor with 11/32 NTD trials. The lower A and relatively high FA is

because of the fact that the algorithm predicted a tremor either in the NTD cases or predicted

a tremor too early for the TD cases. PD2 had moderate tremor amplitude and all the FP’s

except one are due to early prediction in the TD cases. ET3 and ET4 had almost no tremor

during holding a posture but had tremor while performing an active movement. ET2 had very

low amplitude tremor on the right hand. The FA could not be calculated for every patient
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because some of them had very few or no NTD trials. Hence an overall FA value was also

calculated for ET and PD by considering all ET and PD trials respectively. It should be noted

that for this application, we aim to achieve S as close to 100% as possible. Hence, for patients

who have relatively higher delays in tremor re-appearance and/or lower tremor amplitude, the

algorithm predicts early tremor events for some of the trials resulting in a higher value of FA.

The mcc value was calculated for each patient, except PD3 due to an indeterminate form

produced by TN = FN = 0. For all the 7 patients, the mcc value was close to or greater

than 0.5 and the overall mcc for both PD and ET were above 0.5. This indicates 50% or

higher correlation between predicted and actual classification for each patient(PD/ET) and for

overall PD and ET trials. The mcc was further used to calculate the χ2 test statistics according

to Equation 4.20 in order to determine the corresponding p-value. Each p-value (both individual

and overall) was less than α = 5%, which indicates that the null hypothesis that the prediction

is completely random can be rejected.

4.5.3 Overall performance

The overall S for both ET and PD is 100% which means that for all TD trials in ET and

PD, the predictor does not miss any tremor event during the DBS-OFF interval. The overall

A for ET is 85.7% while for PD is 80.2%, which indicates that in 85.7% of all ET trials and

in 80.2% of all PD trials, the algorithm correctly predicts tremor. Correct tremor prediction

means that, in the TD trials, tremor is predicted not too early while in the NTD trials, tremor

is not predicted. The overall FA for ET is 11.6% and for PD is 29.4%, which means that in

11.6% of the ET NTD trials and in 29.4% of the PD NTD trials, the algorithm predicts tremor.
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The performance for ET is in general better than that for PD with higher overall A and

lower FA because of a preceding classification step that allowed to choose different parameters

for each state. A classification in PD is more challenging due to the fact that a change in power

in the sEMG/acc from the rest state could either be due to tremor or movement while for ET

it is certain that there is no tremor during rest and hence an increase in power is certainly due

to some movement initiation which might be accompanied by tremor.

4.5.4 Practical considerations

In this study, we have shown that an adaptively controlled ON-OFF DBS can be designed

as an add-on system to the existing one by using non-invasively measured sEMG and acc from

the tremor affected extremities of patients with pathological tremor such as in PD and ET. The

application would however be patient specific and might not be beneficial to certain patients

with severe tremor and short delay in tremor, such as PD3, who had the lowest value of Rpt.

For all other patients, R∗pt > 30% respectively which means that with the optimal stimulation

duration, T ∗on, the proposed adaptive ON-OFF DBS controller achieves a “tremor free DBS-

OFF period” that is greater than 30% of the total ON-OFF duration as shown by the R∗pt values

in Table XV. We acknowledge that this type of DBS controller specially takes into account

only the tremor symptom while PD patients also suffer from rigidity and slowness of movement.

However, for most PD patients who have tremor, it is the symptom that re-appears the earliest

after the DBS is switched OFF (108). For ET patients, this type of DBS controller may have

additional benefit beyond just extending battery life, as it has been shown that for some ET

patients the stimulation benefits decrease over time (109). It was also seen that for some such
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ET patients, restarting the stimulation after its temporary discontinuation resensitized them

to stimulation (110). Hence lesser and discontinuous current injection might actually help in

prolonging the therapeutic effects of DBS in ET.
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(a) PD Rest (R).

(b) ET posture (P).

Figure 15. Raw extensor sEMG (top), smoothed extensor sEMG (middle) and acceleration
(bottom) recorded from (a) a PD patient at rest. (b)an ET patient while holding a posture

(initiated at 40s). The dashed line shows time of turning stimulation OFF while the solid line
shows the time when tremor is detected based on visual inspection as well as acceleration

data. Note that at 50s, tremor was of low intensity and it increased at around 79s.
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Figure 16. Raw extensor sEMG (left), smoothed extensor sEMG (right) during a voluntary
movement performed by a PD patient. The top burst is without tremor while the lower one is

with tremor.
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Figure 17. (a) A block diagram showing how the two signals, sEMG and acc are used in the
algorithm for ET (top) and PD (bottom) (b) Classification (left) and prediction (right) for the

ET algorithm described in Section 4.4.1 and shown in (a).



92

TABLE IX

PARAMETER SET FOR ET.
# Parameter Set, SpET Predict tremor at time t

1 SpEn and P4 Let (i− 1) is a local min and k < i is a local max
over (k − 1, i), if SpEn(k) ∈ (ηl1, ηh1) &

SpEn(i− 1) ∈ (ηl2, ηh2) & P4(l) > ηp,
l ∈ (k − 6, i+ 4), t = max(i, l)

2 R Let (i− 1) is a local max and k < i is a local min
over (k − 1, i), R(i− 1)− R(k) ∈ (ρl, ρh),t=i

3 P
(sEMG)
max and F

(sEMG)
max If F

(sEMG)
max (i) ∈ (fl, fh) and P

(sEMG)
max (i) > fp, t=i

# Parameter Set, SaET Predict tremor at time i

1 R Let (i− 1) is a local max and k < i is a local min
over (k − 1, i),R(i− 1)− R(k) ∈ (ρl, ρh), t=i

2 F
(sEMG)
mean If F

(sEMG)
mean (i) ∈ (fl, hh), t=i

TABLE X

PARAMETER SET FOR PD.
# Parameter Set, SPD Predict tremor at time t

1 SpEn & P4 Let (i− 1) is a local min and k < i is a local max
over (k − 1, i), if SpEn(k) ∈ (ηl1, ηh1) &

(SpEn(k)− SpEn(i− 1)) ∈ (ηl2, ηh2) & P4(l) > ηp,
l ∈ (k − 6, i+ 4), t = max(i, l)

2 R Let (i− 1) is a local max and k < i is a local min
over (k − 1, i), R(i− 1)− R(k) ∈ (ρl, ρh),t=i

3 P
(sEMG)
max & F

(sEMG)
max If F

(sEMG)
max (i) ∈ (fl1, fh1) and P

(sEMG)
max (i) > fp1, t = i

4 P
(acc)
max and F

(acc)
max If F

(acc)
max (i) ∈ (fl2, fh2) and P

(acc)
max > fp2, t = i

5 Hwt Let Hwt(i− 1) and Hwt(i) ∈ (hl, hh), t=i

TABLE XI

THRESHOLD DEFINITION.
# Parameter Thresholds Description

1 SpEn and P4 ηl1, ηh1 lower and upper thresholds for maximum SpEn
ηl2, ηh2 lower and upper thresholds for minimum SpEn

in ET and decrease in SpEn for PD

ηp lower threshold for P4(l)

2 R ρl, ρh lower and upper thresholds for increase in R

3 P
(sEMG)
max and F

(sEMG)
max fl, fh lower and upper thresholds for F

(sEMG)
max ,

fp lower threshold for P
(sEMG)
max

4 F
(sEMG)
mean fl, fh lower and upper thresholds for F

(sEMG)
mean

5 P
(acc)
max and F

(acc)
max fl2, fh2 lower and upper thresholds for F

(acc)
max

fp2 lower threshold for P
(acc)
max

5 Hwt hl, hh lower and upper thresholds for Hwt(i− 1, i)
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Figure 18. Timing points for events from DBS-ON time (ton) to tremor detection time (tdt)
marked in bold line. There are 4 possible scenarios: 1,2 are TD trials, in 1 the tremor is

predicted before its detection (TP/FP) and in 2 tremor is predicted after its detection (FN);
3,4 are NTD trials, in 3 tremor is not predicted over the entire interval TN and in 4 tremor is

predicted FP. Notation: Ttot is the total duration of a trial, ton and toff are the times when
DBS was switched ON and OFF respectively, tdt and tpr are the times when tremor was

detected and predicted using the algorithm, respectively.
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TABLE XII

PARAMETER THRESHOLD FOR PREDICTION ALGORITHM FOR PD.
Patient# Parameters with w = 1 threshold

PD1

SpEn and P4 (ηl1, ηh1) = (0.2, 0.35); (ηl2, ηh2) = (0.11, 0.2); ηp = 15;
SpEn and P4 (ηl1, ηh1) = (0.35, 0.4); (ηl2, ηh2) = (0.14, 0.34); ηp = 15;
R (ρl, ρh) = (0.2, 0.22)
P sEMG

max and F sEMG
max fp1 = 28; (fl1, fh1) = (4, 10)

PD2
SpEn and P4 (ηl1, ηh1) = (0.2, 0.32); (ηl2, ηh2) = (0.1, 0.16); ηp = 28;
Hwt (hl, hh) = (0.31, 0.35)

PD3
Hwt (hl, hh) = (0.32, 0.36)
P acc

max and F acc
max fp2 = 30; (fl2, fh2) = (4, 7)

PD4
SpEn and P4 (ηl1, ηh1) = (0.25, 0.34); (ηl2, ηh2) = (0.15, 0.22); ηp = 25;
Hwt (hl, hh) = (0.275, 0.295)
P acc

max and F acc
max fp2 = 30; (fl2, fh2) = (4, 7)

TABLE XIII

THRESHOLD FOR STATE CLASSIFICATION IN ET.
Patient# threshold

ET1 ηc1 = 0.35, ηc2 = 0.6, ηc3 = 1.2, ηc4 = 0.15, ηc5 = 0.2, λ = 0.2
ET2 ηc1 = 0.06, ηc2 = 0.5, ηc3 = 3, ηc4 = 0.4, ηc5 = 0.15, λ = 0.2
ET3 ηc1 = 0.1, ηc2 = 0.6, ηc3 = 3, ηc4 = 0.07, ηc5 = 0.01, λ = 0.1
ET4 ηc1 = 0.5, ηc2 = 1.1, ηc3 = 1.6, ηc4 = 0.1, ηc5 = 0.15, λ = 0.2

TABLE XIV

PARAMETER THRESHOLD FOR PREDICTION ALGORITHM FOR ET.
Patient# Parameter with threshold

w1, w2 = 1

ET1

SpEn and P4(w1) (ηl1, ηh1) = (0.25, 0.3); (ηl2, ηh2) = (0.18, 0.22); ηp = 10;
P sEMG

max and F sEMG
max (w1) fp = 22(fl, fh) = (5, 10)

R(w2) (ρl, ρh) = (0.3, 0.35)
F sEMG

mean (w2) (fl, fh) = (10, 11)

ET2(left)
P sEMG

max and F sEMG
max (w1) fp = 20(fl, fh) = (4, 10)

R(w2) (ρl, ρh) = (0.3, 0.4)

ET2(right)
SpEn and P4(w1) (ηl1, ηh1) = (0.45, 0.5); (ηl2, ηh2) = (0.1, 0.2); ηp = 10;
F sEMG

mean (w2) (fl, fh) = (11, 12)

ET3
SpEn and P4(w1) (ηl1, ηh1) = (0.3, 0.4); (ηl2, ηh2) = (0.16, 0.18); ηp = 50;
R(w2) (ρl, ρh) = (0.4, 0.48)
F sEMG

mean (w2) (fl, fh) = (11, 12)

ET4
SpEn and P4(w1) (ηl1, ηh1) = (0.78, 0.98); (ηl2, ηh2) = (0.38, 0.48); ηp = 20;
P sEMG

max and F sEMG
max (w1) fp = 22(fl, fh) = (5, 10)

R(w2) (ρl, ρh) = (0.3, 0.34)
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TABLE XV

PREDICTION PERFORMANCE WITH RATIOS EXPRESSED IN %. NOTE: NC MEANS
NOT CALCULATED; FA FOR PD4 AND FOR OVERALL PD ARE NOT SAME

BECAUSE ALTHOUGH FA WAS NOT CALCULATED FOR PD(1-3), PD(1-2) HAD A
FEW NTD TRIALS WHICH WERE INCLUDED IN THE CALCULATION OF OVERALL

FA.
Patient# NTD TP,TN,FP,FN A S FA (%) Rpd Rpt, Rdt T ∗

on, R
∗
pt mcc,p-value

PD1 2 14,1,1,0 93.6 100 NC 77.6 28.6,34.1 30-35,34.2 0.68,0.006
PD2 4 16,3,7,0 73.1 100 NC 67.0 28.5,37.7 20-40,31 0.46,0.02
PD3 0 15,0,2,0 88.2 100 NC 68.8 11.5,15.9 NA NA
PD4 11 16,8,8,0 75.0 100 27.3 80.7 34.3,39.3 20-40,42.4 0.53, 0.003

All PD 17 61,12,18,0 80.2 100 29.4 NC NC NC 0.56,9× 10−9

ET1 3 10,2,3,0 80.0 100 NC 80.2 35.2,40.4 20-40,37.4 0.55,0.03
ET2 14 13,14,3,0 90.0 100 0 89.8 36.8,39.3 20-40,39.1 0.82,0
ET3 6 10,5,1,0 87.5 100 16.7 79.1 32.8,38.1 30-42,32.8 0.87,0.0005
ET4 20 7,17,6,0 80.0 100 15 88.7 48.3,51.3 15-40,48.3 0.63,0.0005

All ET 43 40,38,13,0 85.7 100 11.6 NC NC NC 0.71,0

TABLE XVI

SOME TYPICAL TRIALS FOR PD1 AND ET1. LEGEND: R (REST), P (POSTURE), A
(ACTION), ND (NOT DETECTED), NP (NOT PREDICTED).

Trial# toff − ton tdt − toff tpr − toff tpr − tdt N o/p type
PD1
R1 41 14 11.5 2.5 80 TP
R2 31 21 17.25 3.75 70 TP
P1 41 18 15 3 80 TP
P2 31 10.5 5.5 5 70 TP
A1 31 ND 14.5 NA 70 FP
A2 31 ND NP NA 70 TN

ET1
P1 37 30 25.75 4.25 80 TP
P2 28 17 4.75 12.25 70 FP
A1 38 ND 37.25 NA 80 FP
A2 23.75 28.25 26 2.25 70 TP



CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

To conclude, the following has been shown:

1. An OUP can be used to model the dynamics of a single neuron at the site of DBS elec-

trode implantation. From the ISIs calculated from measured neuronal activity during

DBS surgery, the OUP model parameters can be extracted. The simulated OUP-FPT

distribution using the identified parameters was shown to follow the empirical ISI distri-

bution closely in terms of two distance measures. The OUP provides a balance between an

oversimplified model such as the PP and one involving too many parameters that require

precise physiological values. The parameter θ (membrane time constant) provides flexi-

bility to fit data recorded under different conditions (with/without external stimulation).

An interesting observation is that an exponential distribution actually fits better than the

OUP-FPT during DBS-ON intervals. This indicates that the spike arrival times during

DBS follows a poisson process. This might indicate that the effect of DBS on neuronal

firing is to make it more regular and thus eliminate burst firing.

2. The OUP model can be modified to account for the effect of external stimulation (DBS)

on the neuronal firing activity. Such a model could be used to determine an optimal set

of stimulation parameters which would drive the firing pattern to a more desirable state
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(reduced firing rate, firing times following a Poisson process, lower entropy of the ISI

distribution.).

3. Non-invasively measured sEMG and acc can be used for designing an adaptively controlled

ON-OFF DBS paradigm which can be added on to the existing DBS system. A set of

frequency related and entropy type parameters can be used to successfully predict a tremor

event during a DBS-OFF interval, before it becomes a discomfort for the patient. The

PD prediction algorithm does not include a preceding state classification as in the one for

ET. The algorithm also requires determining the optimal set of parameters and setting

their thresholds for each patient which requires some training and manual intervention.

4. By combining the two parts, a new DBS paradigm can be established which does not

require changing the FDA approved electrode or pacemaker design. The optimal stimu-

lation parameters during DBS-ON period can be determined using the proposed model.

During DBS-OFF period, muscular and kinematic signals can be used for predicting an

incoming tremor event. This information can be wirelessly transmitted to the implanted

pacemaker from sEMG/acc sensors implanted on the tremor affected muscles.

5.2 Future Work

This work opens up the following interesting directions of future research:

1. Determining optimal DBS parameters from the model of neuronal activity.

2. Adapting parameters of the tremor prediction algorithm over time.

3. Use of both neuronal activity and sEMG/acc for DBS ON-OFF control.
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5.2.1 Optimal DBS parameters

It was shown in Chapter 2 that an OUP can be used to satisfactorily model the neuronal

activity in the STN of a PD patient as well as the one in the VIM of thalamus in an ET patient.

However, this needs to be tested on more patient data which solely depends on the number

of PD and ET patients undergoing surgery for DBS. Since it is not possible to measure the

membrane potential of a single neuron extracellularly, we can only estimate a model governing

its dynamics and identify parameters from observable events such as spike generation.

It was also shown in Chapter 3 that the effects of the stimulation parameters (amplitude and

frequency) can be included in the OUP model. More work needs to be done in this direction

which are as follows:

1. In order to satisfactorily estimate the function K(f), G(f), recordings at 4-5 frequencies

need to be done.

2. A good metric to indicate a therapeutic state needs to be determined as this is crucial for

determining the optimal set of stimulation parameters.

3. To include the stimulation pulse width into the model, recordings using atleast 3-4 stim-

ulation pulse width is required.

4. Effects on the LFP spectrum can also be determined by simulating LFPs with and without

DBS can by aggregating over a neuronal population distributed over a sphere centered

around the recording tip (75).
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A wide range of stimulation parameters can be used to simulate neuronal activity (single cell

firing and/or LFP). An optimal set of DBS parameters can be determined as the one that drives

the simulated neuronal dynamics to the desired state. This desired state can be a reduced firing

rate, reduced variability (low entropy) of the ISI distribution or a reduction in the LFP power in

certain low frequency bands (7). This will thus help determine an optimal stimulation strategy.

Another direction of future work would be to use a more optimal OUP parameter identifi-

cation strategy which takes into account the entire distribution rather than just the first two

moments as was used in this work.

5.2.2 Adaptively modifying tremor prediction thresholds

It was shown that sEMG and acc recorded from a patients with ET and PD have features

that allow predicting onset of tremor to facilitate starting of a next stimulation packet before

tremor reappears. This establishes the feasibility of sEMG/acc-based predictive ON-OFF con-

trol of DBS in certain ET and PD patients. However, the proposed tremor prediction algorithm

depends on one or two threshold(s) for each parameter used. These thresholds were determined

based on some training data and were fixed for all the trials considered. Since, both ET and PD

are progressive disorders, it is expected that these thresholds would change over time. Hence

they need to be recalibrated after certain periods of time. Hence an interesting direction of

future work would be to adapt the thresholds automatically based on signals measured during

the DBS-ON periods. Another alternative would be to use a neural network type predictor

(111) for the tremor prediction which can train itself over regular intervals of time.
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The PD prediction algorithm does not include a preceding state classification as in the

one for ET. Hence designing a 2 or 3 state classifier preceding the predictor might improve

prediction results for PD patients.

5.2.3 Use of multiple signals for control

Neuronal activity in the form of single cell recordings have only been considered. However

such signals are accessible only during surgery. Hence, although it is good for modeling purposes,

it is not a good candidate for use in a real time system. Other types of neuronal activity such

as LFP, EEG must be considered for adapting the stimulation parameters in real time. Thus

modeling such signals and determining the effect of stimulation parameters on them is another

interesting direction of future work.

The only dominant symptom in ET is kinetic tremor (tremor during voluntary movement),

hence, sEMG/acc signals would be sufficient for tremor prediction. However, finding a rela-

tionship between the effect of stimulus on measured neuronal activity and sEMG/acc from the

same patient will help determine if detectable changes in the neuronal activity immediately

after stimulus is stopped corresponds to the no-tremor period. This would also help relating

changes in model parameters from DBS-ON to DBS-OFF state with the reappearance of disease

symptoms. Although, sEMG/acc can be used to detect an incoming tremor, neuronal activity

can be used to determine optimal stimulation parameters and duration which can be updated

in real time.

Use of multiple signals is more important for PD patients as PD symptoms are not limited

to rest/kinetic tremor which can be detected by sEMG/acc. Other dominant PD symptoms
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such as bradykinesia and rigidity cannot be detected by sEMG/acc alone and requires the

measurement of neuronal activity. PD symptoms have been shown to be correlated with an

increase in beta band (12-30 Hz) power in LFP measured from the STN of PD patients (27) and

an increased firing rate in STN neurons (5; 13), both of which are reduced by DBS (7). Changes

in such characteristics of neuronal activity could thus serve as a good metric for determining

stimulus switching on time for an adaptive control. Thus combining both type of signals, ie

signals measured from the brain and that measured non-invasively from the muscles would

provide a more holistic understanding of the effect of stimulus on disease symptoms and will

help design a more efficient adaptive ON-OFF DBS control algorithm.
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