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SUMMARY

The expression for the lifetime of optical phonons in bulk material has been well researched;
however, there aren’t enough estimations for the theoretical lifetime of optical phonons in
confined structures. In this research, the expression for lifetime of a confined optical phonon

decaying in to two acoustical phonons in GaAs double heterointerface structures was derived.

For this scope of research, the anharmonic decay which is the three phonon decay process, where
an optical phonon decays into two acoustic phonons is considered. The expression for the
displacement of the optical phonons and acoustic phonons in three phonon decay process is used
to estimate the Hamiltonian of the anharmonic decay. Using this Hamiltonian and the Fermi
golden rule which gives the transition probability, the rate of transition and theoretical lifetime of

phonon has been calculated.

We considered the sandwiched AlAs/GaAs/AlAs structure to study the optical phonons confined

in GaAs. The estimation shows that the decay rate of phonon in confined GaAs structures has

been reduced by half.

viii



CHAPTER 1 INTRODUCTION

1.1 Motivation

Phonons and the interpretation of lattice dynamics are important to study the physical properties
of crystals. These physical properties are studied in terms of phonon infrared scattering spectra,
neutron scattering, Raman scattering, etc.

The following are some cases where the study of phonons and its lifetime are important. In
semiconductors, the saturation velocity of the carriers depends upon the electron energy loss by
LO phonon emission which measures the speed of a device. In a quantum well semiconductor
laser, the electron must lose energy —which it can rapidly do by optical phonon emission events
to be captured in the active region. Therefore, the switching time of such a device and of the
quantum well laser depends on the decay rate of the emitted phonon since the optical phonon
may reabsorb the emitted phonon until they decay into weakly coupling acoustic phonons. Also,
the heat transport in a crystal is by the shorter wavelength phonons, which are of high frequency
and transport the heat energy and help maintain a thermal equilibrium. The mean travel path of
such phonons determines the heat energy transport. These are some cases where the relaxation

time of phonon plays a significant role.

The lifetime of a decaying optical phonon explained by Cowley [10], estimates the strength of

interaction of phonons and numerically summed it to determine the overall interaction strength.



Klemens [2] estimated the theoretical lifetime of decaying optical phonon into two acoustical
phonons. He also estimates the interaction strength and rate of change of the occupation number
using which he derives the lifetime. Klemens theory has the advantage that it can be modelled
analytically while and Cowley’s has greater precision. Nonetheless, there hasn’t been significant

work on the lifetime of anharmonic decay of optical phonon in confined GaAs structure.

In this research we have considered double interface hetero-structure. With advancements in the
fields of semiconductors, where the device size has been shrunk to few nanometers, leading to a
high density of semiconductor interfaces. Therefore, it is important to study about the phonons

that are confined in these nanostructures.

1.2 Thesis Outline

The basic phonon properties and the various models to describe the phonons are explained in
Chapter 2, with some emphasis on dispersion relations for optical and acoustic phonons. In
Chapter 3, the anharmonic decay of phonons has been explained along with the Klemens channel
and Ridley channel for the bulk material and the lifetime of bulk phonon has been studied.
Chapter 4 brings out the prerequisites needed for lifetime of confined phonons like the
interaction Hamiltonian, conservation of the anharmonic decay process, the displacement of
optical and acoustic phonons in confined GaAs structure and the matrix element. Then the
lifetime of the confined optical phonons in GaAs is derived. Chapter 5 is a brief conclusion on

lifetimes of confined optical phonon with that of bulk phonons. In Chapter 6 the importance of



phonons in designing the current semiconductor devices has been explained based on industrial

experience at Intel.



CHAPTER 2 PHONON PROPERTIES AND MODELS

2.1 What is a Phonon?

The crystals have periodic arrangement of atoms across its lattice. There are various kinds of
forces acting between the atoms of a crystal, ideally at equilibrium these forces cancel out each
other. However, in non-ideal case, considering the lattice to be an elastic arrangement of atoms,
excitation of an atom causes a collective excitation. The quantum description of this collective
excitation is called phonon. Compared to a photon which is a quantum of electromagnetic
oscillation, the phonon is quantized lattice vibration. The phonon can be called as the “quantum
of the lattice vibrations” and the energy of the phonon is Aw where w is the angular frequency of
the excitation. In simple description phonon is a normal mode of vibration or simply lattice
vibrations. Phonons have properties of wave-particle duality of quantum mechanics. The atoms
that vibrate out of phase with each other are called optical phonons and acoustic phonons are
those which vibrate in same phase. The optical phonons are of higher frequency, and the acoustic
phonons are of lower frequency but cover a larger range of frequencies. The longer wavelength
acoustic phonons with lower frequency give rise to sounds. The smaller wavelength phonons

which have higher frequencies, contribute to heat transport in the crystal.

The study of phonons has become increasingly important in the field of heat transport, solid state
physics, quantum electronics, optoelectronics and superconductivity.  Also, the phonon

interactions have significant effect on thermal conductivity and electrical conductivity.



2.1.1 Dispersion Relation of optical and acoustic phonons in bulk structures

To understand more about phonons, it is important to know about the dispersion relation of
phonons (Born and Huang, 1988, P55) [3]. Let us consider a one dimensional diatomic crystal,
which would be like a linear chain of atoms as shown in figure [1]. In diatomic crystal, the two
atoms of different masses are placed alternatively across the chain with uniform separation ‘a’.
There are various forces acting keeping each atom attracted to each other atom. In such a case,
the displacement of one atom will disturb the position of its neighboring atom which has strong
force acting between them. For simplicity let us consider only the adjacent neighboring atoms
are coupled. The atoms coupled to each other have forces interacting between them, which is like
that of a spring with spring constant ‘k’ connecting the two atoms. This is described by Hooke’s

law, where the system can be considered to that of a harmonic oscillator.

Figure 1: Linear chain model of atoms

The Hooke’s law states that F=-ks, where k is the spring constant, F is the force, and s is the
displacement [24]. In case of the phonons force is given by mass times acceleration. The
displacement of two types of atom is given by equation 1 and 2.

Uy = Alei(qua—a)t) )



and

— i[(2r+1)qa—wt
Uprpy = Ape!lPTH14 ]

@

where w is the frequency and q is the phonon wave vector. Considering the mass m and M and

substituting equation 1 and 2 in Hooke’s law we get equation 7 and 8

m(dzqu/dtz) = —a(Uyyr — Upp_q) — A(Upp —Uppy1)

= a(Uppyq + Ugpg — 2Uyp,)

and
M(dzuZT/dtz) = —a(Uzrs1 — Upyr) — A(Uppyq — Uppy2)
= a(Uppyp + Uny — 2Uppyq)
—mw?A; = ad, (e + e71%) — 204,

and

—Mw?4, = ad,(e"® +e71%) — 2a4,

Simplifying the above equations, eliminating A1 and A2 we get the frequency as

2 11 1 1\2  4sinqa]*’?
W =a(—+—)ia (—+—) -
m ' M m ' M mm

(©)

4

®)

(6)

@)

®)

9)
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Figure 2: Dispersion Relation of phonons

In figure [2] it is shown that, the optical modes are of higher frequency but have short ranges of
frequency whereas the acoustic phonons have lower frequencies but a wider range of
frequencies.

The harmonic (Sakurai 1994) expression used here ignores the higher order terms of crystal
potential (n>2) [8]. This approximation works well for the phonon dispersion curve. In our

research as we deal with anharmonic decay we consider anharmonic or the higher order terms.

2.1.2 Phonon number, Creation and Annihilation Operator
The number of phonons at a given state having wave vector q is represented by ng. The phonon

occupation number is given by



1
hwg(ng + E) (10)

it can also be rewritten as

1
ng = SRwq/RgT_; (11)

The creation operator a]; increases the number of phonons n, in a given state by one and the

annihilation operator a, decreases the number of phonons n, by one.

q 2n 4 2hmwg 4

and

Q
I

T Mmwgq . 1
aq 2h Uq + lw/thwq bq (13)
aqu = |\/ ng+1 |Nq +1) (14)

aq|N > ,/nq|Nq - 1) (15)
The change in phonon occupation number from an initial state to a final state represents the

number of phonons decayed during the change of state.

2.1.3 Phonon Amplitude

The normal mode phonon displacement is given by



_ h t
Ug = " (aq + aq) (16)

where a, and a;r are the operators for creation and annihilation.
The amplitude of a phonon is represented by square of i/2mw,q with the creation and

annihilation operator which represents the number of phonons. From Stroscio and Dutta, 2001

we have

1 [ a7 A Y oior A
ulr) = i YqXi=123 2wy (age'é,; +age'ié, ;) 17)

where N is defined as the number of crystals unit cells [7]

2.1.4 Frohlich interaction

The relative displacement of negative and positive ions produces electric polarization p(r). The
carrier phonon scattering occurs when charge carrier interacts with this polarization[2]. In GaAs,
the carrier scattering at room temperature is by polar optical phonon scattering. This scattering is
known as the Frohlich interaction. The potential energy due to this Frohlich interaction is

denoted as @r(r) and is given by

V2pp (1) = 4meV.P(1) (18)

The above equation can be rewritten in terms of the creation operator and the annihilation

operator as

. d3q iq.r t,—igr  *
P(r) = €Zj=1,2,3f(2n)3 (aqge'eq; + age €q,j (19)
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where

4nV.P(r) = 4mil Y ;- 123f(2n)3 (age'®eq; + a emiarer (20)
the Frolich interaction Hamiltonian is given by the potential energy that is associated with the

frolic interaction

Hee = §pe(r) = [ 2% (agei” — afe~iar) @

the electric polarization P(r) may be written as

1 h
uy(r) = 75 2q Xj=123 m (23)

m+M

h wLO 1 ]
( \/2wL0 41 6(00) €(0) 24)
and
— 2nezhww[ 1 L] 1 iqr _ T ,—iqr

Hp, = l\/ " pro Rl qu(aqe age ") (25)

2.1.5 Deformation potential
The lattice distortion gives rise to local changes in energy band which in turn represents the
deformation potential interaction. One of the most important interaction in recent semiconductor

devices is the deformation potential interaction. It was introduced by Bardeen and Shockley
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(1950) [9]. It is dependent on the origin of the displacement which are caused by phonon
interaction. The energy of the valence band or conduction band will change by an amount
Ev = Ev(a) - Ev(a + u)

E. = Ec(a) - Ec(a + u) (26)

where u is the displacement produced by the phonon mode and a is the lattice constant. Since
a>>u it follows that

AEc,v (a) = (dEc,v (a)/da)u (27)

Deformation potential represents the important scattering in non-polar semiconductors. Most of
the sources of electron energy loss in electronic devices made of semiconductor is due to
deformation potential interaction. The energy is generalized as

AEc,v(a) = (dEc,v(a)/dV)AV (28)

Where V is a volume element and AV is the change in the volume element. For an isotropic

medium it becomes

dECV( )
AE ., (a)=V (Ta) Au 29)

Hgye = AEc,(a) = Ef"Au (30)
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2.1.6 Piezoelectric Interaction

The polar crystal lacking an inversion symmetry have piezoelectric interaction. There is a
macroscopic polarization in piezoelectric crystals when electric field is applied. This
macroscopic polarization is by the acoustic phonons. The piezo electric interaction in cubic
crystal is given in rectangular coordinates using the piezoelectric coupling coefficient and strain

tensors as

_(1 ow | Ov 1 ou , odw) 1 ou ov
P_{Z €xa (ay + az) ) €xa (62 + ax)' 2 €xa ((')y + 6x)} (1)

2.2 Phonon Model

2.2.1Phonons Dielectric Continuum Model

In polar material the optical phonon is modeled in dielectric continuum model. As the name
indicates it is associated with the polarization produced by the lattice vibration. The potential is

given by P(r) (Kim and Stroscio,1990)

ViD(r) = 4nV.P(1) (32)
E(r) = —Vo(r) (33)
P(r) = xn(w)E(r) (34)

Xn(w) = [En(w) - 1]/47T (35)



Using the Lyddane sachs Teller relation we get,

€n (@) = €, (o0 )‘“ ~“ion
,n

w? wLOnawz wLOnb
eE,W) = €
n(w) = €,(00) = I

for a medium n where the displacement field is related to E(r) and P(r)
_ﬂnwzun(r) = _.unw(%nun (T‘) + e;Elocal(r)
P(r) = nner*Lu(n)r + Ny @ Erocai (1)

n,, is the number of unit cells in region n.

w, =21 s the reduced mass.
n Mn

a,, is the electronic polarizability per unit cell.

by Lorentz relation,
Erocat(r) = E(r) + 2P (r)
for a ternary medium AC(BC) we have,
~lim,a )@ Um,ap) (1) = —Un®fm acpyUm,aw) ) + €m acvyErocar (1)

P(T‘) =Ny [ye;;l,aum,a (T‘) + (1 - Y)er*n,bum,b (T‘)] + nmanElocal(r)

For a diatomic polar material we get

1

= —wiou+ (MZN)EJE(O) — €(o0) wroE
P= (%) \€(0) — €(0) wrou + [E(oo) 1] E

For the Uniaxial wurzite structures we have

13

(36)

@37

(38)

(39)

(40)

(41)

(42)

(43)

(44)



Uypp= _w%O,J_,nuJ_n i, N\/E(O)J_n E(OO)J_,anO,J_,nEJ_,n

P = (”nN) \/G(O)J_n €(0) | W10 L plly p + [e(ooljt,n—l] Epn

1n(w) = €, n(c0) (570s2)

“’TO,J_,n

Uy n = —WFo,nthin + /4 iV €Oyn — €(@)y @10,

UnN 1/2 €(oo)n—1
Pin = (_) VEO) 1 — €(00) 0o nlhyn + [—421 ]Eu.n

4tV

n(w) = €, () (M)

2
w wTOIIn
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(45)

(46)

(47)

(48)

(49)

(50)

For the case of no free charge, these equations must be supported by the following electrostatics

equation
E(r) = -Ve¢(r)

D(r) = E(r) + 4nP(r)

=€, (WE (1)p + ¢ (w)E(r)Z

V.D(r) =0
The above equation describes the carrier optical scattering in wurzite crystals

The perpendicular(parallel) displacement to the ¢ axis is given by

7
u()iqy = Z q2j=123 / qji(ll)(a +a—q)elqr

¢ iy = Zq P (@ 1ne™”

(51)

(52)

(53)

(54)

(55)

(56)



Em) gy = Vo) ay = iq g d(@) 1y e'™”

2 2 h 4 T
(WTo,Lq) — wq)\/zuanq €qjrn(aqg +ay)

= N*/ (0 Lgyn = €(0) Ly nwr0,L000 (=D a1 P ()

0) L (n,n—€(®) L(NnWTO, LD
2mh . )
’ - eq}(ll)(“a"‘“—q) \[ 2 GO,

WFo 1 (yn~ @

For the isotropic case[] , the Lynddane-Sachs-Teller relation states that

2 —€( 2
%(Qq+aiq) ——g? {|e(on e( mwm,Lsinzg}(pz(q)

2 2
(wToJ__wq)z

—€e(oo 2
=—q? {|€(0)||26( )||2|wTo,|| 60529} $2(q)

— 2
(wTO" wq)

2mh
d(q) = l\/ q7T (aq + a—q)(wTOJ_ - wq)(a’To I wé)

X{[E(O)J_ - E(OO)J_](U%O'J_((U%O’” - (Dé)zSilee

2 -1
+[e(0)y — e(@)y]who (wFor — wé) cos*6} 2

H=3Y,(-e)¢(q@e' " (a, +al,)

1

4mepy—1 1 +
=1 -e'(a, +al
Zq {( )[e(w)lsm26+e(w)”c0529} q ( a q)
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(67

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)
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. . |2me2hwio [ 1 1 1 iqr t_—iqr
Hp, = —l\[— [—E(oo) - E—O)] an(aqe —aqe ") (66)

2.2.3 Elastic Continuum Model

The elastic continuum models of phonons are used to well describe the acoustic phonons. It
models the acoustic phonons of confined nanostructures of two atomic monolayers. From
Hooke’s law “ T=Ye where Y is the proportionality constant also known as youngs modulus”.
Consider an element dx between x and x+dx along a structure. U(x,t) is the elastic displacement

along the x axis of a 1-D structure. Strain is given as e=du/dx. The force is given by Newton’s

second law:
p()Adx ZEED = [T (x + dx) - T()]4 -
Tx+dx)—T(x) = (%) dx = (}%e) dx = (Y ZZTZ) dx (68)
the S;j are given by
S1 =S =50 =5y =00  S3=5,=0 ©
Sy =Sy, =5, = ;(Z—Vy” +2) (70)

G+5) @

1(0u , dv
Se = Sxy =Syx =3 (@ + 5) 72
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and Ti are of
Ty =Tw; T, =Ty T3 =T
Ta=Ty, =Tpy; Ts=Ty =Tz Te=Tyy =Ty
for cij=cji, therefore instead of 36, only 21 unique elements are necessary to define the 6 x 6

matrix of cij. For example in cubic crystal

C11 €12 C12 0 0 O

/Clz €11 C12 0 0 O \

| €12 Ci2 €11 0 0 O |

| 0 0 O Ca4 0 0 |

\ 000 O ¢4 O /

0 00 0 0y

in wurzite crystal

€11 €12 (13 0 0 0
€12 €11 (13 0 0 0 \
| C13 €13 C33 0 0 0 |

0 0 0 Caq 0 0

0 0 O 0 Cas 0
0 0 0 0 0 (c11-¢12)/2

However, for zincblende crystal, only 3 distinct elements are needed ci1. C22 and cas. For

isotropic cubic medium, the cij can be represented using two constants lambda and mu which are

known as Lame’s constant
A =C13 = €13 = Cy = Cp3 =C31 =C3p (73)
_ _ _ 1
U = Cyy = C55 = Cgg = 5(011 — C12) (74)

A+ 2 =111 =Cpp =C33 (75)



it follows that for an isotropic case we have

Tex = M(Sux + Syy + Szz) + 2uSxy = AV + 21Sy,,

T
Tyz = A(Sxx + Syy + Szz) + 2uS,, = AV + 2uS,,

Tyz = USyz,  Tox = USzxs Tay = USxy

three dimensional generalizations are given by

62u _ aTxx aTyx 6sz _ 0A 2
a2z~ ox T dy T 9z (’H'“)ax-”‘v u

0% _ Oy | Oy Oy _

A 2
(/1+u)ay+qu

at2 0x oy dz
2w _ 6sz 6Tyz OTZZ _ oA 2
Pacz = ox ay+az_(}‘+“)az+“vw
The three force equation is also given as
azu(x _ aTaB
atz OTB

where,

Ta/g = /15““5,15 + 2,[150_,3

vy = A(Sxx + Syy + Szz) + 2uS,,, = AV + 2uS,,,

18

(76)

W)

(78)

(79

(80)
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The solutions for the displacement field of acoustics are described in terms of potential function,

through
u = ap , 0w, 0¥y
T ox dx 9z
v = ap | oW, 0V,
T ay 9z ax
a v v
w=20, %% 0%
0z ox dy
where
2, _ 10%¢
v ¢ clz at2
vy = L%
AT 'Y

¢t =@A+2)/p

ct=2/p

(82)

(83)

(84)

(85)

(86)

(87)

(88)

The non-rotational solution is referred to as longitudinal acoustic modes and rotational is referred

to as transverse

mode



CHAPTER 3 ANHARMONIC DECAY OF PHONONS IN BULK CRYSTALS

3.1 Anharmonic Decay

The phonon vibration in crystal is assumed to be that of a harmonic oscillator, however there are
higher order terms that represent anharmonic interactions which are important to describe the
process of phonon decay. The crystal potential is given by Taylor expansion series with
quadratic terms and higher order terms. The quadratic term represents the two phonon process,
which are harmonic. The higher order term for example the cubic term represents the three
phonon process as shown in figure [3]. Considering the the three phonon process in which an

optical phonon decays into two acoustical phonons. The cubic term can be written as

! — 1 TR AT B A
H q.j;q.jnqrjrr — ﬁP(Q']' q,]:9,] )uq,juql,jluqu,ju (89)

Where u,represents the displacement optical phonon which was annihilated and ', and u”, are

the displacements of two acoustical phonons created.

3.2 Klemens Channel
The anharmonic decay of the zone center LO phonons have been well studied theoretically and
experimentally [1],[10] and [20]. The longitudinal optical phonons have the highest energy

among all phonon types, so the decay process of this longitudinal optical phonon mode could be
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into two low energies acoustical phonon or a TO and LA. Klemens (1966) [1] predicts that the
zone center longitudinal optical (LO) phonons can decay into two transverse acoustical(TA) or
longitudinal acoustical (LA) phonons like LO=LA+LA or LO= TA+TA, which is termed

Klemens Channel, as shown in Figure [4] and [5]

Creation of phonon g Annihilation of phonon q
.'!__L_Im 1
o ‘,, o VLWL AL 3 -
Nl 4 I"'L.._
-L-l.-\. n

"

Figure 3:The three-phonon process of phonons

Ko = Kpa1 + Kpaz (90)

H' = L3k L : " q" T al eila—a'-q")
iqringin — = |\ T——— a,a,,d,,e
q.J:q3:q', )1 VN A\l 2m (wqwq/a)qu) P(q' 9.9 ) q=qr—qr (91)
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Figure 4: LO phonon decay into two LA phonons

Figure 5: LO phonon decay into two TA phonons
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3.3 Ridley Channel

In 1996, Ridley discussed the same scenario in GaN. The LO phonons of GaN is greater than
twice the LA phonon energy therefore the LO=LA+LA is not feasible. Therefore, the decay
process is give by LO-> TO+LA/TA. This process is called Ridley channel.

TO phonons has also been studied and the decay is only through two acoustic phonons in case of

Ridley decay channel. [11]

TA

- mla 0 nl/a

Figure 6: Ridley’s channel, LO phonon decay into LA and TA phonons
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3.4 Klemens Anharmonic decay and lifetime estimation
Klemens estimated the theoretical lifetime of anharmonic decay of optical phonon. In his work,
he considered the optical phonon at g=0 of frequency w, which decays into two acoustical

phonon by anharmonic process.

w, =0 +w" 92)
and momentum,
q=q +q" =0 (93)
1 il 111 % "
H' = Yqq,q0 507070 %@04") % a(q)a*(q")a’ (4" (94)
from standard perturbation theory,
dN c?h®  1-cosAwt
tE =2 Zj’,j”,q’ M3ww'w!" Aw? (%)

x [(N + 1)N'N" = N(N' + 1)(N" + 1)]

1 1dN

TS Tha ©

] 2 ha)o a3 (A)g

- woﬁy Mv2 v3 @7
3.5 Lifetime of Optical phonon

Bhatt and Stroscio [12] studied the lifetime of longitudinal optical phonons(LO) in zinc blende
semiconductors. Using the theory of elasticity, the crystal anharmonic potential is calculated

based on this the lifetime of LO phonon which decays into two acoustical phonon is estimated as

a function phonon wave vector and that of the lattice temperature.
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The Hamiltonian of three phonon process is given by

’ _ 1 T A /A
H q.j;q.jnqr,jr — \/—NP(CI,], q.,];q ;j)uq_juql,jluqu,ju (98)

where k, k' and k' represent the phonon wave vector, P is the phonon coupling and N is the
number of unit cells.

The displacement of the phonon is given by u, ;

1

— h 2 iq.r t _-iqr
Ugj = (mek) eqj(aq et + ag i€ ) (99)

where a, ; and a,t jare the annihilation and creation operator respectively.

ey ; 1S the polarization vector and m is the average mass of the lattice atoms

1_

1 1
ey + 2 (100)
M1 and M2 mass of atom 1 and atom 2 in the crystal lattice.

The Hamiltonian for this process becomes

’ 1 h\3/2 1 1/2 o t i(q—q'—q")T
H ot qn = \/_N( ) _ X P(q,q9,q )aqaq,aq,,e o1

2m WqWqrwgqrr

The matrix element was defined as

2 hBUZ 1
|M|* = ng(mg, + DY(gn + 1644 +qn (102)

8Nm3 WaWqrWqrr



26

The transition rate is given by
=23 ,.1|M?8(hw, — ho, — hw, ) (103)
n ~4q'q q q q
The lifetime of LO phonon was given by

- 3
Tp 4NmMm

1 h2U2 1
Loym ) (Ut 112000801208 (heog = o = hogr) o

WaWqrWqrr



CHAPTER 4 LIFETIME OF CONFINED PHONONS IN GaAs

GaAs is a important semiconductor for technological improvements. They are of interest
because they are used in the manufacturing of devices like IC’s- high frequency IC’s and various
optimal diodes. In most these devices the decay rate of optical phonon play a major role, like the
switching time of the laser depends on how rapidly the LO phonons decay into 100 times weaker
acoustic phonons. Some properties of GaAs are superior to the properties of those of Si for
example it has high saturated electron velocity and mobility, this aids in the functioning of
transistors at slightly above 250 GHz frequencies. Because of these properties quantum devices
are manufactured using GaAs therefore its of interest to study about the lifetime of phonons

confined in these GaAs devices.

4.1 AlAs/GaAs/AlAs

The case of confined GaAs is considered to study the lifetime of confined phonons. To achieve
the confinement, GaAs is sandwiched between the AlAs crystal. Therefore an ultrathin structure
of GaAs(2D) is achieved, and phonons are confined in the confinement. This interface structure

and the crystal structure has been explained in this section.
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4.1.1 GaAs Crystal Structure

Gallium Arsenide is a polar semiconductor, which belongs to the elements gallium of group il
and arsenic of group V making it 111-V element with direct band gap semiconductor. The crystal
structure of GaAs is zinc blende. It has ionic bonding which results in charge transfer from the
Group V toms which have five electrons in the outer shell to the group Il atoms which have
three atoms in the outer shell. Therefore, gallium atoms receive net negative charge and the

arsenic receives positive charge.

A4

© @

Figure 7: GaAs crystal structure.

4.1.2 Dispersion Relation of confined phonons in GaAs
A dispersion relation relates the wavelength of a wave with the frequency of the wave. For

dispersion relation of bulk phonons has been explained in section [].
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In dispersion relation of confined phonons, the curves are quantized with discrete points

n=1,2,3... The dispersion relation of GaAs in brillouin zone is given by Bardeen and Shockley

[9] as shown in figure.

400 ,
lGaAsI i
E =
S, 200
% 100 : ﬁ.
op KX r L X W L

Figure 8: Dispersion curve of GaAs — Image from Bardeen and Shockley [9]

4.1.3 Double Heterointerface structures- AlAs/GaAs/AlAs

The interfaced that occurs between two layers of region of different crystal is called
heterointerface. In AlAs/GaAs/AlAs, the GaAs is sandwiched between AIlAs along the z
direction as shown in figure [9] Thus the GaAs is confined in z direction however assumed to be

infinite in the directions along x and y axis. Quantization of optical phonons affect the electrical,

optical and thermal properties of ultra thin structures.
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AlAs GaAs AlAs

-al2 al?2

Figure 9: Double interface heterostructures

4.2 Anharmonic decay of optical phonons confined in GaAs
The optical phonons decays into two acoustical phonons in anharmonic decay as explained in
sec[]. To study about the lifetime of optical phonon it is very important to consider is three

phonon decay process.



31

4.2.1 Energy and momentum conservation

For the anharmonic decay process to occur in confined phonons, the energy and momentum
should be conserved in this process. From the figure [8] and [10], we can see that the energy and
momentum is conserved and is given by

how = ho' + hw” (105)

-wfa

Figure 10: Decay of LO phonon in confined structure

4.3 Estimation of Lifetime of LO confined phonon
The interaction strength of this three-phonon process is given by Hamiltonian obtained from
Taylor series expansion with quadratic, cubic and higher order terms. The quadratic term is

generally considered for simplification however, the cubic or anharmonic term which represent
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the three-phonon process is important for estimation of lifetime time of optical phonon. This is
because most of the optical phonons decay into two acoustical phonons.

The Hamiltonian representing this process is given by
1 . . .
H’q,j;q/,j/;qr/,jr/ = ﬁp(q,], CI';]; q”’])uq,juq/,jluqu,ju (106)

where P(q,j; q',j;q",j) represents the anharmonic coupling coefficient, u, i, ug, i, u are

q.j’ “qrjr “qr,jrr
the displacement of the optical phonon and two acoustic phonons involved in the anharmonic

decay process respectively.

The interface mode’s optical phonon displacement in the AlAs/GaAs/AlAs structure is
given by the transfer matrix model of multi interface hetero structure [14]. The displacement is

related to the electric polarization which is given by

ui(q,2) = nlei*[Hai:i?’_zz)(wgi_wz)] (107)
where P;(q, z) is the electric polarization, it follows
Pi(q,2) = —xi(@)[iq®,(q, ) + 2422 2] (10)
it follows that
—xi()[iq®i(q.)+22192 ‘(qZ) Z]
uia,2) = T o] (109)
®,(q, z) is the carrier-optical phonons interaction’s electrostatic potential which is given as
®;(q,2) = A(ci_e™ ¥ + c;,.e™9%) = Ap;(q, 7) (110)

where A is the normalization constant given by
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2wL? 4720 dw

-1/2
}) (111)

1/2
A= (L) (Z 11 ael(w) dez{q |(Pl(q,2)|2 + |a‘Pt(qZ)

In the case of AlAs/GaAs/AlAs of thickness a (z=-a/2 to +a/2), the phonon potential decreases
exponentially for z tending to infinity and the phonon potential in the quantum well is a
combination of increasing and decreasing exponentials. Considering even potential, the dielectric

constant in the quantum well is €; (w) and the AIAS as €, (w).

Then,
a
Y(q,2) = e+q(z+5) forz< —% (112)
2coshqz
¥ .(q,2) = coshaa for |z| < (113)

Y. (q,z) = e+a(z+3) forz>

a
> (114)
represents the envelope for the phonon potential.
It follows that,
Jro 2 (q [Wo(q, 2)I” + |W°(q 2 ) =q ws)
le dz (q W, (q,2)|* + |6‘P1(qz) ) = 2q tanhqd/2 (116)




)

¥, (q,
frp @7 (0219, (q, ) + [P

0z

substituting the above equation in A we get

_ n\Y2r11 deg(w) 1 deq(w) qd —1/2
A= ( ) [——Zq Ly 2qtanh7]

2wl? 20 Ow 2w

The acoustic phonons in double interface heterostructures
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(117)

(118)

is given by Wendler and Grigoryan (1988) [13]. They classified the acoustic modes as symmetric

shear horizontal waves and antisymmetric shear horizontal waves.

u(x,y,z) = u(z).expli(q;x — wt)]

the shear vertical (SV) modes with two non-zero component is given as

u(z) = (u1(2),0,u3(2))
and shear horizontal (SH) modes with one non-zero component
u(z) = (0,uz(2),0)
For symmetric modes
u;(z) = u;(—2)
For antisymmetric modes
ui(2) = —uy(-2)
the displacement of Symmetrical shear waves(SSV) is given by

5 exp(—1122) + B3 exp(—1)22) z>af2
ui(z) = A3 coshn;;z + Bf coshnyyz % >z > —%
A3 exp(1122) + B3 exp(122) z< —a/2

(119)

(120)

(121)

(122)

(123)

(124)



- | M2 q|
( i [q—” 2exp(—nipz)+; ~B; eXp(—mzZ] 7>
={ i|™aSsi — A ps g a _a
us) =1 ([2A7 sinhngz — L Bf sinhnyz] 432> -
a
i [2245 exp(np2) - L BS exp(nz)| 2573
I Nt2

The displacement of Antisymmetric shear vertical modes is given by

A% exp(—1;22) + Bf exp(—1):22) z>af2
ui'(z) = A% sinhn;,z + B§ sinhn,, z % >z> —%
A% exp(n;22) + B3 exp(1),2) z<—a/2
i1z 1A _ Y _
( i o A2exp(=Mi2)+ 1 - By exp( Ne2?)] z>%
uf(z) = 4 i [—Z—lulA‘f coshn z — %B{‘ coshntlz] % >z > —%
a
i ['Z%Aé‘ exp(1127) — 2L Bf exp(1,27) | Z<73
I Nt2

Where

2 2
mi = (q,° _%)1/2 and 1y = (q)° —%)1/2

The shear horizontal modes are given as

SSH modes:
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(125)

(126)

(127)



Diexp(—nnz) 2> @/2
us(z) =<{ D$ cos B, 2) S>z>—=
D3 exp(—1¢22) z< —a/2

and ASH modes,

Di'exp(—1,2) z>a/2
uf(z) ={ D{sinb,, 2) §>Z>—§
—Df exp(—1122) z<—a/2

where,

0r1 = N
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(129)

(130)

from the Fermi golden rule, we have, the transition probability also known as decay probability

which is related to the inverse of the mean lifetime [15].

In general,
2 e
I =22 (FIH'10)%p

Where, (f|H'|i) is the matrix element

For a phonon process

1 _2m

T ?l(nphonon + 1|H’|nph0n0n t 1>|2P

Where (n|la*|n) =vn+1 /L
2mw

the matrix element of a three phonon process is given by,

(131)

(132)
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S S Ei i i
M = (ng, ng, ng, |H'|ng, n&, niyi) (139)

Considering the entire phonon decay process in a crystal, Matrix element average with boundary

condition g, = i?and q, = i’z_”
y z

a
Mé,, = %f_zg cos?(q,z)dz (134)
2

Mévg =1/2 (135)
therefore, the decay rate of optical phonon confined in the quantum well is half of the mean

decay rate of the unconstrained phonon.



CHAPTER 5 CONCLUSION

5.1 Comparison with bulk phonon
From the above equation, we can conclude that the lifetime of confined phonon is twice the

lifetime of phonon in bulk crystals.

5.2 Conclusion

The lifetime of optical phonon is doubled by the confinement; this makes the confinement better
in the manufacturing of semiconductor device. Since the decay rate of phonons is reduced, the
lifetime of optical phonon is more. Thus the optical phonon decay slower into acoustical

phonons which are much weaker than optical phonon.
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CHAPTER 6 INDUSTRY LEARNINGS ON THE IMPORTANCE OF PHONONS IN

CONFINED STRUCTURES

6.1 Industry exposure

One of the vast field that as moved to the nanoscale is VLSI. For further reduction by few
nanometer, there are property changes or limitation of nanoscience. At Intel, 1 worked as
Physical Design engineer to understand the various problems faced while designing the chip and
during fabrication. In this role, | worked from RTL to GDS of the ASIC design. The Physical
design flow is as follows - Synthesis, Placement, routing, Clock tree synthesis, Timing, DRC,
LVS, RC extraction, GDS and tape out. I also got the chance to work on the analysis of the chip

like IR drop, Signal EM and Power EM.

Synthesis is where the RTL netlist is obtained from the designers and then with the help of tools
the netlist is synthesized to gate level netlist which is then placed on the chip and routing is done.
After which the clock tree is built and accurate timing is calculated. The timing check includes
the setup time and hold time analysis. Then the DRC check and the LVS check is performed on

the design. The design is then validated in Redhawk for hotspots, IR Drop and EM checks.

6.2 Issues faced in VLSI

On working at Intel, | got an insight of the major problems in very large scale integrations. The

current technology used in the industries are between 10nm and 28nm. The technology defines
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the channel width or the smallest feature of the design on the chip. The Moore’ s law states that

the number of transistors doubles every year.

As the transistor density of the chip keeps increasing we hit certain limitations due to the
following issues. The power required for the chip in a small area increases, leading to failure of
the IR drop. <need to add more on hotspot> However, the most important checks for a chip to
tape-out is the DRC check and Timing requirements to be met which becomes more and more
difficult as we scale down a few nanometers. Also, there are fabrication issues due to scaling

which leads to increased design rule checks.

6.3 How phonons play a role

As we have discussed earlier, the phonons play a major role on the operating speed of the device
as the carrier mobility of electrons depends on phonons. The design constraints of the chip is
used determine the timing requirements. In turn the design constraints are dependent on the
frequency the chip is going to be operated on. Each cells in the design contribute to a delay due
to its switching speed. Phonons determine the carrier mobility or the switching speed of the
device. A small improvement on the switching speed of the device would cause huge impact in

the industry as timing is one of the most essential check for tape out.

Also, the acoustic phonons determine the heat transport in the material. Another major issue is

the hotspots in the design.
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Thus, this study about lifetime of phonons in confined structures is very important to overcome

the obstacle of scaling down the <chip as described in the Moore’s law.
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APPENDIX

Fermi-golden rule
Fermi’s Golden rule is an equation to estimate the probability of transition per unit time or
constant transition rate from initial state to final state of a quantum system. It provides a

perturbative result to estimate phonon-phonon interaction rate or carrier-phonon interaction rate.

Consider an unpertubated system with Hamiltonian H and in eigenstate, |i) and the effect of a
pertubated Hamiltonian H’. There are two cases for H’, which is time-independent and time-
dependent. In the case of time independent H’, the system goes only to continuum states that
have energy equal to the initial state. In cases where H’ is time dependent with angular frequency

o, the system goes to states with energies that changes by /i from the initial state.

However, the transition probability from initial state |i) to final states |f) per unit of time is a

constant. It is given by the first order of perturbation as follows

2r .
linp = 7|(f|H 1))|%p
Where, p is the density of final state

|{(f|H'|i)|? is the square of the matrix element or [M|?
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APPENDIX (Continued)

Since in transition the phonon decays the transition probability is also know as the decay

probability, inverse of which is the mean lifetime.

Derivation for computing the lifetime of phonons

For a phonon process

% = 2?” |(nphonon + 1|H,|nphonon + 1)|2 (132)

Where (nla*|n) =vn+1 /%

the matrix element of a three phonon process is given by,

— AL B L gyl i i
M= (nq,nq,,nq,,|H [nk,nk, n,,) (133)

Considering the entire phonon decay process in a crystal, Matrix element average with boundary

condition g, = i?and q, =t

nm
—_ Ly

a
Mz, = %f_zg cos?(q,z)dz (134)
2

N

1
= —f cos?(q,z)dz
a

N[ Q

1 2 1+ cos2q,z
[frrester,

al a 2
2
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APPENDIX (Continued)

a

1 (2

=22 a 1+ cos2q,zdz
2
1 in 2 z
sin 2q,z72
-
2a 2q, a
la a
=2alz+3]
1
= Z_a[a]
MG,y =1/2 (135)

therefore, the lifetime of optical phonon confined in the quantum well is half of the mean

lifetime of the unconstrained phonon.
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