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SUMMARY

This document attempts to provide a numerical solution to the Eigenvalue Problem for the

2-Hessian operator. The topics covered are as follows:

Chapter 1 introduces the k-Hessian eigenvalue problem. It also discusses what can be be accom-

plished with the work done in this thesis which is to solve numerically the eigenvalue problem

for the 2-Hessian operator on various convex domains in R3 and display their log-concavity

properties.

Chapter 2 discusses the Poisson equation and gives numerical solutions in both two and three

dimensions.

Chapter 3 discusses the Laplacian eigenvalue problem and gives numerical solutions in both

two and three dimensions.

Chapter 4 discusses the Monge-Ampère equation and gives numerical solutions in two dimen-

sions.

Chapter 5 discusses the multivariate Newton’s method and gives a numerical solution to the

Monge-Ampère eigenvalue problem using Newton’s method in two dimensions.

Chapter 6 discusses the eigenvalue problem for the Monge-Ampère equation and gives numeri-

cal solutions in two dimensions using several iterative techniques.

All the Octave codes required to implement the numerical solutions in this document are pro-

vided in the appendix.

vi



CHAPTER 1

INTRODUCTION

1.1 A Nonlinear Eigenvalue Problem

We look at a nonlinear eigenvalue problem which involves the k-Hessian operator. The Hessian

matrix is a square matrix of second-order partial derivatives of a function. It describes the local

curvature of a function of several variables. The k-Hessian is the k-trace, or the kth elementary

symmetric polynomial of eigenvalues of the Hessian matrix. When k = 1 the k-Hessian reduces

to the Laplace operator and when k ≥ 2, the k-Hessian equation is a fully nonlinear partial

differential equation.

1.1.1 Overview

For a C2 function u on a bounded connected open set Ω of Rn, let λ1, . . . , λn denote the

eigenvalues of the Hessian D2u. The k-Hessian operator, 1 ≤ k ≤ n is defined as

Sk(D
2u) =

∑
i1<i2...<ik

λi1 · λi2 . . . λik .

Notice that for k = 1, S1(D2u) reduces to the Laplacian operator ∆u. The Laplacian is a

linear operator in the Euclidean n-space which will be further discussed in Chapter 3. On the

contrary, when k = n (for n ≥ 2), Sn(D2u) is the Monge-Ampère operator detD2u. This is a

special type of nonlinear second order partial differential equation which will be discussed in

Chapters 4, 5 and 6.

1
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1.1.2 Eigenvalue Problem for the 2-Hessian Equation

We want to consider the following eigenvalue problem

Sk(D
2u) = λ(−u)k in Ω, u = 0 on ∂Ω. (1.1)

It is known that the first eigenfunction of the Laplacian (for k = 1) is log-concave (Korevaar,

1983), that is its logarithm is concave for u ≥ 0. However if u is not positive in Ω, we have

to choose the values x, y in Ω and check the inequality u(tx + (1 − t)y) ≥ u(x)tu(y)1−t to

determine whether the function u is log-concave. The result is open for other values of k on

an arbitrary convex domain. There are results in (Wang, 1994; Gavitone, 2009) but for special

domains not necessarily convex. One can contribute to the resolution of this problem by solving

numerically the eigenvalue problem on various convex domains in R3 for k = 2 and displaying

their log-concavity properties.

To provide the groundwork for this task we look at a simpler problem. We pose the question:

is the finite difference solution of

det(D2u) = λu in Ω, u = 0 on ∂Ω, (1.2)



3

log concave?

It turns out that for the related Dirichlet problem for the Monge-Ampère equation

det(D2u) = f in Ω, u = 0 on ∂Ω, (1.3)

where f ≥ 0, Newton’s method typically fails. It was proposed in (Awanou, 2010a) to use the

sequence of Poisson problems

−ν∆up+1 = −ν∆up + det(D2up)− f in Ω, u = 0 on ∂Ω, (1.4)

where ν > 0. It is reasonable to try to solve (Equation 1.2) by the sequence of Poisson equations

−ν∆up+1 = −ν∆up + det(D2up)− λpup in Ω, u = 0 on ∂Ω. (1.5)

However it is not clear how to update λ. For the moment a very good initial guess for λ would

be necessary. Extending this approach to the three dimensional problem should not be very

difficult but the problem of updating λ would remain.

1.2 Outline of the Thesis

I began by writing a finite difference method for the two dimensional Poisson equation by up-

dating the basic code in (Sauer, 2006). Then I extended the code to solve the three dimensional

Poisson equation. Another problem similar to (Equation 1.2) is the eigenvalue problem for the

Poisson equation, also known as the Lapacian eigenvalue problem. This is solved in this thesis
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in both two and three dimensions. It can be used as an initial guess for (Equation 1.2). The

iterative method for the Monge-Ampère equation is implemented in Chapter 4 using the two

dimensional finite difference code written for this thesis. The nonlinear problem (Equation 1.2)

is solved in Chapter 5 by a finite difference method that reduces to a nonlinear system of equa-

tions that is numerically solved by Newton’s multivariate method. This suggests a strategy

to update λk. In the final chapter, we look again at (Equation 1.2) by using the approach in

(Equation 1.5) and experimenting with several strategies for updating λk.



CHAPTER 2

THE POISSON EQUATION

The Poisson equation is a partial differential equation (PDE) of elliptic type. An elliptic PDE

is one that models steady states. For example, the steady state distribution of heat on a plane

region whose boundary is being held at specific temperatures is modeled by an elliptic equation.

Time is usually not a factor in elliptic equations and they have a broad utility in electrostatics,

mechanical engineering, theoretical physics, etc.

The Poisson equation is named after the French mathematician, geometer and physicist Simon-

Denis Poisson. It is a very powerful tool used for modeling the behavior of electrostatic systems,

but unfortunately can be solved analytically only for very simple models (Haberman, 2004).

Consequently, numerical simulation must be utilized. Although there are several algorithms for

achieving this goal, one of the simplest and more straightforward of these is the finite difference

method.

The solution of the Poisson equation in a domain requires the specification of certain conditions

that the unknown function must satisfy at the boundary of the domain. When the function

itself is specified on the boundary, we have a Dirichlet boundary condition; when the normal

derivative of the function is specified on the boundary, we have a Neumann boundary condition.

A problem with Neumann boundary conditions specified on the entire boundary has a unique

solution up to a constant. In some problems, a linear combination of the function and its

normal derivative is specified; this is known as a Robin boundary condition (Sauer, 2006).

5
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We seek a solution to the Poisson equation subject to Dirichlet boundary conditions. That is

we consider the following problem:

∆u = f in Ω

u = g on ∂Ω,

with f and g continuous on Ω.

2.1 Finite Difference Method for the Two-Dimensional Poisson Equation

We assume Dirichlet boundary conditions on a rectangle [xl, xr] x [yb, yt] in the plane. Let M

and N be the number of grid steps in the x and y directions respectively. Then h = (xr−xl)/M

and k = (yt − yb)/N are the mesh sizes in the x and y directions. The solution is known on

the boundary, so the solution will need to be computed at mn points, where m = M − 1 and

n = N − 1.

The Poisson equation is

∆u = ∂2u
∂x2

+ ∂2u
∂y2

= f(x, y).

By the definition of a derivative we have

∂u
∂x ≈

1
2∆x [u(x+ ∆x, y)− u(x−∆x, y)].

Then the second derivative is

∂2u
∂x2
≈ 1

∆x [∂u∂x(x+ ∆x/2, y)− ∂u
∂x(x−∆x/2, y)].

Applying the definition of a derivative again we get

∂2u
∂x2
≈ 1

∆x [u(x+∆x,y)−u(x,y)
∆x − u(x,y)−u(x−∆x,y)

∆x ].
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Which simplifies to

∂2u
∂x2
≈ 1

∆x2
[u(x−∆x, y)− 2u(x, y) + u(x+ ∆x, y)].

Similarly,

∂2u
∂y2
≈ 1

∆y2
[u(x, y −∆y)− 2u(x, y) + u(x, y + ∆y)].

Since ∆x = h and ∆y = k, the finite difference approximation for the Poisson equation is

u(x−h,y)−2u(x,y)+u(x+h,y)
h2

+ u(x,y−k)−2u(x,y)+u(x,y+k)
k2

≈ f(x, y).

Defining r = h2/k2 and writing in discretized form we have

ui−1,j + ui+1,j − 2(1 + r)uij + r(ui,j−1 + ui,j+1) = h2f(xi, yj),

where

xi = xl + ih

yj = yb + jk.

We divide the mesh points into three distinct classes depending on their four neighboring mesh

points. The inner core of points have no neighbors on the boundary. They consist of uij with

1 < i < m, 1 < j < n. The outer ring of points have one neighbor on the boundary. This

happens when exactly one of the following holds: i = 1, i = m, j = 1 or j = n. The remaining

points are the four corners which have two neighbors on the boundary. These are the points:

(x1, y1), (x1, yn), (xm, y1) and (xm, yn).

We introduce an alternate numbering system for the approximate values. We set
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uij = vi+(j−1)m,

which leads to the finite difference form

vi−1+(j−1)m + vi+1+(j−1)m − 2(1 + r)vi+(j−1)m + r(vi+(j−2)m + vi,jm) = h2f(xi, yj).

The vk are determined by solving a matrix equation Av = b. The rows of the matrices A and

b are filled in a straightforward way as shown in the following example.

2.1.1 Example

Apply the finite difference method with M = N = 4 to estimate the solution of the Poisson

equation ∆u = f on [0, 1] x [0, 1] with the following Dirichlet boundary conditions:

u(x, 0) = x4 for 0 ≤ x ≤ 1

u(x, 1) = (x2 + 1)2 for 0 ≤ x ≤ 1

u(0, y) = y4 for 0 ≤ y ≤ 1

u(1, y) = (1 + y2)2 for 0 ≤ y ≤ 1.

We will use the correct solution u(x, y) = (x2 + y2)2 to compare with the approximation at the

grid points for a finite difference based on a nine point stencil. Here the right hand side of the

Poisson equation is f(xi, yj) = 16(x2
i + y2

j ). Since M = N = 4, the mesh sizes h = k = 1/4 and

r = h2/k2 = 1.

The only inner core value is u22 which corresponds to v5. Its finite difference equation is

u12 + u32 − 2(1 + r)u22 + r(u21 + u23) = h2f(x2, y2).

In the alternate numbering system, this equation is
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v4 + v6 − 2(1 + r)v5 + r(v2 + v8) = h2f(x2, y2).

The corresponding row of the 9× 9 matrix A is

[0 r 0 1 -2(1+r) 1 0 r 0].

The corresponding row of the 9× 1 matrix b is h2f(x2, y2). Thus, we get

h2f(x2, y2) = h2[16(x2
2 + y2

2)] = 1/16[16((1/2)2 + (1/2)2)] = 1/2.

If we look at one of the outer ring values u21 which corresponds to v2, it appears in the equation

u11 + u31 − 2(1 + r)u21 + r(u20 + u22) = h2f(x2, y1).

Because u20 lies on the boundary, it takes the boundary value:

u20 = u(x2, y0) = u(1/2, 0) = 1/16.

So the finite difference equation becomes

u11 + u31 − 2(1 + r)u21 + ru22 = h2f(x2, y1)− r/16.

In the alternate numbering system, this equation is

v1 + v3 − 2(1 + r)v2 + rv5 = h2f(x2, y1)− r/16.

The corresponding row of the 9× 9 matrix A is

[1 -2(1+r) 1 0 1 0 0 0 0].

The corresponding row of the 9× 1 matrix b is h2f(x2, y2)− r/16. Thus, we get
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h2f(x2, y1)− r/16 = h2[16(x2
2 + y2

1)]− r/16 = 1/16[16(1/4 + 1/16)]− 1/16 = 1/4.

We continue this pattern to find the other rows in both matrices A and b and end up with the

following matrix equation:



−4 1 0 1 0 0 0 0 0

1 −4 1 0 1 0 0 0 0

0 1 −4 0 0 1 0 0 0

1 0 0 −4 1 0 1 0 0

0 1 0 1 −4 1 0 1 0

0 0 1 0 1 −4 0 0 1

0 0 0 1 0 0 −4 1 0

0 0 0 0 1 0 1 −4 1

0 0 0 0 0 1 0 1 −4





v1

v2

v3

v4

v5

v6

v7

v8

v9



=



0.11719

0.25000

−0.82031

0.25000

0.50000

−0.75000

−0.82031

−0.75000

−3.75781



.

Solving the matrix equation Av = b we obtain the following nine values for u:
0.02637 0.11133 0.40137

0.11133 0.26758 0.67383

0.40137 0.67383 1.27637

 .

It compares well with the exact solution at the same points:
0.01562 0.09766 0.39062

0.09766 0.25000 0.66016

0.39062 0.66016 1.26562

 .
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We get a maximum error over the grid points of 0.017578. To decrease our maximum error we

must also decrease the size of our mesh by increasing M and N . We wrote an Octave program

possion2d.m to solve any two dimensional Poisson equation given the right hand side of the

Poisson equation, f , and exact solution, g. We show the numerical results for the Poisson

equation for increasing M and N in the following section.

2.1.2 Numerical Results

We let i be a number where i ≥ 2 and M = N = 2i. We get the following error table for the

finite difference method for a two-dimensional Poisson equation.

i M = N h = k error convergence rate

2 4 1/4 0.017578

3 8 1/8 0.0045489 1.950181307

4 16 1/16 0.0011476 1.986897847

5 32 1/32 0.0002876 1.996484292

6 64 1/64 0.0000719 2

2.2 Finite Difference Method for the Three-Dimensional Poisson Equation

We assume Dirichlet boundary conditions on a cube [x1, x2] x [y1, y2]x [z1, z2]. Let M , N and

P be the number of grid steps in the x, y and z directions respectively. Then h = (x2−x1)/M ,

k = (y2 − y1)/N and c = (z2 − z1)/P are the mesh sizes in the x, y and z directions. The

solution is known on the boundary, so the solution will need to be computed at mnp points,

where m = M − 1, n = N − 1 and p = P − 1.

The Poisson equation is
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∆u = ∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

= f(x, y, z).

By the definition of a derivative we have

∂2u
∂x2
≈ 1

∆x2
[u(x−∆x, y, z)− 2u(x, y, z) + u(x+ ∆x, y, z)],

∂2u
∂y2
≈ 1

∆y2
[u(x, y −∆y, z)− 2u(x, y, z) + u(x, y + ∆y, z)],

and

∂2u
∂z2
≈ 1

∆z2
[u(x, y, z −∆z)− 2u(x, y, z) + u(x, y, z + ∆z)].

Since ∆x = h, ∆y = k and ∆z = c the finite difference approximation for the Poisson equation

is

u(x−h,y,z)−2u(x,y,z)+u(x+h,y,z)
h2

+ u(x,y−k,z)−2u(x,y,z)+u(x,y+k,z)
k2

+ u(x,y,z−c)−2u(x,y,z)+u(x,y,z+c)
c2

≈

f(x, y, z).

Defining r = h2/k2, q = h2/c2 and writing in discretized form we have

ui−1,j,l + ui+1,j,l − 2(1 + r + q)uijl + r(ui,j−1,l + ui,j+1,l) + q(ui,j,l−1 + ui,j,l+1) = h2f(xi, yj , zl),

where

xi = x1 + ih

yj = y1 + jk

zl = z1 + lc.

We divide the mesh points into four distinct classes depending on their four neighboring mesh

points. The inner core of points have no neighbors on the boundary. They consist of uijl with
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1 < i < m, 1 < j < n and 1 < l < p. The first outer ring of points have one neighbor on the

boundary. This happens when exactly one of the following holds: i = 1, i = m, j = 1, j = n, l =

1 or l = p. The second outer ring of points have two neighbors on the boundary. This happens

when exactly two of the following holds: i = 1 or i = m, j = 1 or j = n, and l = 1 or l = p. The

remaining points are the eight corners which have three neighbors on the boundary. These are

the points: (x1, y1, z1), (x1, yn, z1), (x1, y1, zp), (x1, yn, zp), (xm, y1, z1), (xm, yn, z1), (xm, y1, zp) and

(xm, yn, zp).

We introduce an alternate numbering system for the approximate values. We set

uijl = vi+(j−1)m+(l−1)m2 ,

which leads to the finite difference form

vi−1+(j−1)m+(l−1)m2 + vi+1+(j−1)m+(l−1)m2 − 2(1 + r + q)vi+(j−1)m+(l−1)m2 +

r(vi+(j−2)m+(l−1)m2 + vi+jm+(l−1)m2) + q(vi+(j−1)m+(l−2)m2 + vi+(j−1)m+lm2) = h2f(xi, yj , zl).

The vk are determined by solving a matrix equation Av = b. The rows of the matrices A and

b are filled in a straightforward way as shown in the following example.

2.2.1 Example

Apply the finite difference method with M = N = P = 4 to estimate the solution to the Poisson

equation ∆u = f on [0, 1] x [0, 1] x [0, 1] with the following Dirichlet boundary conditions:

u(x, 0, z) = x4 for 0 ≤ x ≤ 1, 0 ≤ z ≤ 1

u(x, 1, z) = (x2 + 1)2 for 0 ≤ x ≤ 1, 0 ≤ z ≤ 1

u(0, y, z) = y4 for 0 ≤ y ≤ 1, 0 ≤ z ≤ 1
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u(1, y, z) = (1 + y2)2 for 0 ≤ y ≤ 1, 0 ≤ z ≤ 1

u(x, y, 0) = (x2 + y2)2 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

u(x, y, 1) = (x2 + y2)2 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

We will use the correct solution u(x, y, z) = (x2 + y2)2 to compare with the approximation at

the twenty seven mesh points of the cube. Then the right hand side of the Poisson equation

is f(xi, yj , zl) = 16(x2
i + y2

j ) Since M = N = P = 4, the mesh sizes h = k = c = 1/4,

r = h2/k2 = 1 and q = h2/c2 = 1.

The only inner core value is u222 which corresponds to v14. Its finite difference equation is

u122 + u322 − 2(1 + r + q)u222 + r(u212 + u232) + q(u221 + u223) = h2f(x2, y2, z2).

In the alternate numbering system, this equation is

v13 + v15 − 2(1 + r + q)v14 + r(v11 + v17) + q(v5 + v23) = h2f(x2, y2, z2).

The corresponding row of the 27× 27 matrix A is

[0 0 0 0 q 0 0 0 0 0 r 0 1 -2(1+r+q) 1 0 r 0 0 0 0 0 q 0 0 0 0].

The corresponding row of the 27 × 1 matrix b is h2f(x2, y2, z2) where f is the right hand side

of the Poisson equation. Thus, we get

h2f(x2, y2, z2) = h2[16(x2
2 + y2

2)] = 1/16[16((1/2)2 + (1/2)2)] = 1/2.

If we look at one of the outer ring 1 values u122 which corresponds to v13, its finite difference

equation is
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u022 + u222 − 2(1 + r + q)u122 + r(u112 + u132) + q(u121 + u123) = h2f(x2, y2, z2).

Because u022 lies on the boundary, it takes the boundary value:

u022 = u(x0, y2, z2) = u(0, 1/2, 1/2) = 1/16.

So the finite difference equation becomes

u222 − 2(1 + r + q)u122 + r(u112 + u132) + q(u121 + u123) = h2f(x2, y2, z2)− 1/16.

In the alternate numbering system, this equation is

v14 − 2(1 + r + q)v13 + r(v10 + v16) + q(v4 + v22) = h2f(x2, y2, z2)− 1/16.

The corresponding row of the 27× 27 matrix A is

[0 0 0 q 0 0 0 0 0 r 0 0 -2(1+r+q) 1 0 r 0 0 0 0 0 q 0 0 0 0 0].

The corresponding row of the 27× 1 matrix b is h2f(x1, y2, z2)− 1/16. Thus, we get

h2f(x1, y2, z2)− 1/16 = h2[16(x2
1 + y2

2)]− 1/16 = 1/16[16(1/16 + 1/4)]− 1/16 = 1/4.

We continue this pattern to find the other rows in both matrices A and b. We end up with the

matrix equation Av = b where A is a 27× 27 square matrix with negative sixes on the diagonal

and ones on the tridiagonal. Solving the matrix equation we obtain the following twenty seven

approximate values for u.

For z = 1, the numerical solution is:
0.02237 0.10593 0.39737

0.10593 0.26026 0.66843

0.39737 0.66843 1.27237

 .
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For z = 2, the numerical solution is:
0.02390 0.10792 0.39890

0.10792 0.26287 0.67042

0.39890 0.67042 1.27390

 .

For z = 3, the numerical solution is:
0.02237 0.10593 0.39737

0.10593 0.26026 0.66843

0.39737 0.66843 1.27237

 .

It compares well with the exact solution at the same points.

For z = 1, the numerical solution is:
0.01562 0.09766 0.39062

0.09766 0.25000 0.66016

0.39062 0.66016 1.26562

 .

For z = 2, the numerical solution is:
0.01562 0.09766 0.39062

0.09766 0.25000 0.66016

0.39062 0.66016 1.26562

 .

For z = 3, the numerical solution is:
0.01562 0.09766 0.39062

0.09766 0.25000 0.66016

0.39062 0.66016 1.26562

 .
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We get a maximum error over the grid points of 0.012868. To decrease our maximum error

we must also decrease the size of our mesh by increasing M , N and P . We wrote an Octave

program possion3d.m to solve any three dimensional Poisson equation given the right hand side

of the Poisson equation, f , and exact solution, g. We show the numerical results for the Poisson

equation for increasing M , N and P in the following section.

2.2.2 Numerical Results

We let i be a number where i ≥ 2 and M = N = P = 2i. We get the following error table for

the finite difference method for a three-dimensional Poisson equation.

i M = N = P h = k = c error convergence rate

2 4 1/4 0.012868

3 8 1/8 0.0034324 1.906498247

4 16 1/16 0.0008731 1.974998883



CHAPTER 3

THE LAPLACIAN EIGENVALUE PROBLEM

The Laplace operator or Laplacian is a differential operator given by the divergence of the

gradient of a function on the Euclidean space. In a Cartesian coordinate system, the Laplacian

of a function is given by the sum of second partial derivatives of the function with respect to

each independent variable.

The Laplace operator is named after the French mathematician Pierre-Simon de Laplace (1749

- 1827), who first applied the operator to the study of celestial mechanics. The Laplacian

occurs in differential equations that describe many physical phenomena, such as electric and

gravitational potentials, the diffusion equation for heat and fluid flow, wave propagation, and

quantum mechanics (Sauer, 2006). The Laplacian eigenvalue problem is

∆u = λu in Ω

u = 0 on ∂Ω.

We will solve this problem using a finite difference method on the domain Ω = [0, 1]m that

will be reduced to a simple matrix eigenvalue problem. We start by introducing the matrix

eigenvalue problem.

3.1 The Matrix Eigenvalue Problem

The matrix eigenvalue problem has many applications in both pure and applied mathematics.

It is used in matrix factorization, quantum mechanics, and many other areas. The problem

18
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states that an eigenvector of a square matrix A is a non-zero vector x that when multiplied by

A, yields the original vector multiplied by a single number λ; that is:

Ax = λx (x 6= 0).

The number λ is called the eigenvalue of A corresponding to the eigenvector x.

It can be shown that if A is an n×n matrix, then det(A - λI) is a polynomial in the variable λ

of degree n. We call this polynomial the characteristic polynomial of A. To find the eigenvalues

of A we must find the roots of the characteristic polynomial. Thus we must solve the equation:

det(A - λI) = 0.

To find the eigenvectors corresponding to each eigenvalue, we need to solve the equation

(A - λI)x = 0,

for each λ.

3.1.1 Example

We want to find the eigenvalues and eigenvectors of the following matrix. Consider the following

matrix:

A =

2 2

5 −1

 .
To find the eigenvalues of A, we must compute det(A - λI), set this expression equal to 0, and

solve for λ. Note that:

A− λI =

2− λ 2

5 −1− λ

 .
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The determinant of this 2 x 2 matrix is given by:

det(A - λI) = λ2 − λ− 12.

Solving the characteristic equation λ2 − λ− 12 = 0 for λ, we get that λ = −3 or 4. These are

the two eigenvalues of A.

Now we want to find the eigenvectors of A so we want to solve(A - λI)x = 0 when λ = −3 or 4.

Note that if det(A−λI) = 0 then the equation (A−λI)x = b has either no solution or infinitely

many. When we take b = 0 however, it is clear by the existence of the solution x = 0 that

there are infinitely many solutions (i.e. we may rule out the ”no solution” case). If we continue

using the matrix A from the example above, we can expect infinitely many nonzero solutions

of the equation Ax = λx precisely when λ = −3 or λ = 4. Let us proceed to characterize such

solutions.

To find the eigenvectors corresponding to λ = −3, we need to solve:

(A+ 3I)x = 0.

This becomes

Ax = −3x where x =

x1

x2

 .
So we get the matrix equation

2x1 + 2x2

5x1 − x2

 =

−3x1

−3x2

 .
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Here we have two equations and two unknowns. We use elementary algebra techniques to solve

and get that x1 = −2/5x2. This means that, while there are infinitely many nonzero solutions

(solution vectors) of the equation Ax = 3x, they all satisfy the condition that the first entry x1

is −2/5 times the second entry x2. Thus all solutions of this equation can be characterized by

 2t

−5t

 = t

 2

−5

 ,

where t is any real number. The nonzero vectors x that satisfy Ax = −3x are the eigenvectors

associated with the eigenvalue λ = −3. One such eigenvector is

u1 =

 2

−5

 ,

and all other eigenvectors corresponding to the eigenvalue λ = −3 are simply scalar multiples

of u1. That is u1 spans this set of eigenvectors.

Similarly, we can find eigenvectors associated with the eigenvalue λ = 4 by solving Ax = 4x

2x1 + 2x2

5x1 − x2

 =

4x1

4x2

 ,
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which reduces to x1 = x2. Hence the set of eigenvectors associated with λ = 4 is spanned by

u2 =

1

1

 .

Note that this can be done numerically using the Octave command [V,D] = eig(A). This

command returns two outputs that satisfy the equation, Ax = λx where A is an n× n matrix,

x is a column vector of length n, and λ is a scalar. The output matrix V is a matrix whose

columns are eigenvectors of A. The output matrix D is a diagonal matrix containing the

eigenvalues of A along the main diagonal. We will use this command to numerically solve the

Laplacian eigenvalue problem in the following section.

3.2 Finite Difference Method for the Two-Dimensional Laplacian Eigenvalue Problem

We want to use a finite difference method to solve the two-dimensional Laplacian eigenvalue

problem.

∆u = λu in Ω

u = 0 on ∂Ω.

We assume Dirichlet boundary conditions on a rectangle [xl, xr] x [yb, yt] in the plane. Let M

and N be the number of grid steps in the x and y directions respectively. Then h = (xr−xl)/M

and k = (yt − yb)/N are the mesh sizes in the x and y directions. So the equations will be
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solved on the same rectangular mesh described in Section 2.1.

The Laplacian eigenvalue problem

∆u = ∂2u
∂x2

+ ∂2u
∂y2

= λu(x, y),

has the following finite difference form:

u(x−h,y)−2u(x,y)+u(x+h,y)
h2

+ u(x,y−k)−2u(x,y)+u(x,y+k)
k2

≈ λu(x, y).

Defining r = h2/k2 and writing in discretized form we have

ui−1,j + ui+1,j − 2(1 + r)uij + r(ui,j−1 + ui,j+1) = h2λuij .

We use the alternate numbering system introduced in Section 2.1 and set

uij = vi+(j−1)m,

which has the finite difference form

vi−1+(j−1)m + vi+1+(j−1)m − 2(1 + r)vi+(j−1)m + r(vi+(j−2)m + vi,jm) = h2λvi+(j−1)m.

The vk and λ are then determined by solving the matrix eigenvalue problem (1/h2A)v = λv as

shown in the following example.

3.2.1 Example

Apply the finite difference method with M = N = 4 to estimate the solution to the Laplace

eigenvalue problem ∆u = λu on [0, 1] x [0, 1]. Since M = N = 4, the mesh sizes h = k = 1/4

and r = h2/k2 = 1. For this type of problem, u = 0 on the boundary thus we will use the

correct solution u(x, y) = sin(πx) sin(πy) to compare with the approximation at the nine mesh
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points of the square. We can input our correct solution into the Laplacian eigenvalue problem

to find λexact which will be used for comparison. Since

uxx = −π2 sin(πx) sin(πy),

uyy = −π2 sin(πx) sin(πy),

we have

∆u = uxx + uyy = λu

−2π2 sin(πx) sin(πy) = λ sin(πx) sin(πy).

Thus,

λexact = −2π2 ≈ −19.7392088.

We also want to find uexact = u((xl + ih), (yb + jk)) over the grid points. We compute this and

get the following vector:

uexact =



0.50000

0.70711

0.50000

0.70711

1.00000

0.70711

0.50000

0.70711

0.50000



.

Now we look at our numerical solution. The only inner core value is u22 which corresponds to

v5. The corresponding finite difference equation is
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1/h2(u12 + u32 − 2(1 + r)u22 + r(u21 + u23)) = λu22.

In the alternate numbering system, this equation is

1/h2(v4 + v6 − 2(1 + r)v5 + r(v2 + v8)) = λv5.

The corresponding row of the 9 x 9 matrix A is

1/h2[0 r 0 1 -2(1+r) 1 0 r 0].

If we look at one of the outer ring values u21 which corresponds to v2, it appears in the equation

1/h2(u11 + u31 − 2(1 + r)u21 + r(u20 + u22)) = λu21.

Because u20 lies on the boundary, it takes the boundary value:

u20 = 0.

So the finite difference equation becomes

1/h2(u11 + u31 − 2(1 + r)u21 + ru22) = λu21.

In the alternate numbering system, this equation is

1/h2(v1 + v3 − 2(1 + r)v2 + rv5) = λv2.

The corresponding row of the 9 x 9 matrix A is

1/h2[1 -2(1+r) 1 0 1 0 0 0 0].
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Notice that the left hand side of the equation is the same as in Example 2.1 scaled by a factor

of 1/h2 = 16. Thus, we take 9 x 9 matrix A and multiply it by 16. We have the following

matrix eigenvalue problem



−64 16 0 16 0 0 0 0 0

16 −64 16 0 16 0 0 0 0

0 16 −64 0 0 16 0 0 0

16 0 0 −64 16 0 16 0 0

0 16 0 16 −64 16 0 16 0

0 0 16 0 16 −64 0 0 16

0 0 0 16 0 0 −64 16 0

0 0 0 0 16 0 16 −64 16

0 0 0 0 0 16 0 16 −64





v1

v2

v3

v4

v5

v6

v7

v8

v9



= λ



v1

v2

v3

v4

v5

v6

v7

v8

v9



.

We can easily solve this matrix eigenvalue problem using the method described in Section 3.1

and we get the following

λk =



−109.255

−86.627

−86.627

−64.000

−64.000

−64.000

−41.373

−41.373

−18.745



,
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and

vk =



0.25000 −0.21758 0.45018 0.50662 0.00000 0.34400 −0.17054 −0.47002 0.25000

−0.35355 −0.16447 −0.47218 −0.05387 0.49072 0.07934 0.21176 −0.45294 0.35355

0.25000 0.45018 0.21758 0.14943 0.11073 −0.58344 0.47002 −0.17054 0.25000

−0.35355 0.47218 −0.16447 0.05387 −0.49072 −0.07934 −0.45294 −0.21176 0.35355

0.50000 −0.00000 0.00000 −0.65605 −0.11073 0.23944 −0.00000 0.00000 0.50000

−0.35355 −0.47218 0.16447 0.05387 −0.49072 −0.07934 0.45294 0.21176 0.35355

0.25000 −0.45018 −0.21758 0.14943 0.11073 −0.58344 −0.47002 0.17054 0.25000

−0.35355 0.16447 0.47218 −0.05387 0.49072 0.07934 −0.21176 0.45294 0.35355

0.25000 0.21758 −0.45018 0.50662 0.00000 0.34400 0.17054 0.47002 0.25000



,

where λk are the eigenvalues of A and the matrix vk are the corresponding column eigenvectors

of A.

Notice that the numerical solution λ9 and v9 corresponds to our exact solution. Here v9 is in

the span of our exact eigenvector since uexact = 2v1. Also, λ9 is a good approximation for the

exact eigenvalue since λexact ≈ λ1 − 1. However, we want to decrease the error on λ so in the

following section we compute the numerical solutions to the Laplacian eigenvalue problem over

smaller mesh sizes. We wrote an Octave program lapacian2deig.m to solve any two dimensional

Laplacian eigenvalue problem given the exact solution, g.

3.2.2 Numerical Results

We let i be a number where i ≥ 2 and M = N = 2i. We get the following error table for the

finite difference method for a two-dimensional Laplacian eigenvalue problem.
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i M = N h = k λ errorλ convergence rate

2 4 1/4 -18.745 0.994208802

3 8 1/8 -19.487 0.252208802 1.97893025

4 16 1/16 -19.68 0.059208802 2.090735058

5 32 1/32 -19.72 0.019208802 1.624044118

6 64 1/64 -19.735 0.004208802 2.190285999

3.3 Finite Difference Method for the Three-Dimensional Laplacian Eigenvalue Problem

We want to use a finite difference method to solve the three-dimensional Laplacian eigenvalue

problem.

∆u = λu in Ω

u = 0 on ∂Ω.

We assume Dirichlet boundary conditions on a cube [x1, x2] x [y1, y2] x [z1, z2]. Let M , N and

P be the number of grid steps in the x, y and z directions respectively. Then h = (x2−x1)/M ,

k = (y2 − y1)/N and c = (z2 − z1)/P are the mesh sizes in the x, y and z directions. So the

equations will be solved on the same cubic mesh described in Section 2.2.

The Laplacian eigenvalue problem

∆u = ∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

= λu(x, y, z),

has the following finite difference form:
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u(x−h,y,z)−2u(x,y,z)+u(x+h,y,z)
h2

+ u(x,y−k,z)−2u(x,y,z)+u(x,y+k,z)
k2

+ u(x,y,z−c)−2u(x,y,z)+u(x,y,z+c)
c2

≈

λu(x, y, z).

Defining r = h2/k2, q = h2/c2 and writing in discretized form we have

ui−1,j,l + ui+1,j,l − 2(1 + r + q)uijl + r(ui,j−1,l + ui,j+1,l) + q(ui,j,l−1 + ui,j,l+1) = h2λuijl.

We use the alternate numbering system introduced in Section 2.2 and set

uijl = vi+(j−1)m+(l−1)m2 ,

which has the finite difference form

vi−1+(j−1)m+(l−1)m2 +vi+1+(j−1)m+(l−1)m2−2(1+r+q)vi+(j−1)m+(l−1)m2 +r(vi+(j−2)m+(l−1)m2 +

vi+jm+(l−1)m2) + q(vi+(j−1)m+(l−2)m2 + vi+(j−1)m+lm2) = h2λvi+(j−1)m+(l−1)m2 .

The vk and λ are determined by solving the matrix eigenvalue problem (1/h2A)v = λv as shown

in the following example.

3.3.1 Example

Apply the finite difference method with M = N = P = 4 to estimate the solution to the

Laplace eigenvalue problem ∆u = λu on [0, 1] x [0, 1] x [0, 1]. Since M = N = P = 4, the mesh

sizes h = k = 1/4, r = h2/k2 = 1 and q = h2/c2 = 1. For this type of problem, u = 0 on the

boundary thus we will use the correct solution u(x, y, z) = sin(πx) sin(πy) sin(πz) to compare

with the approximation at the twenty seven mesh points of the cube. We can input our correct

solution into the Laplacian eigenvalue problem to find λexact which will be used for comparison.

Since
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uxx = −π2 sin(πx) sin(πy) sin(πz)

uyy = −π2 sin(πx) sin(πy) sin(πz)

uzz = −π2 sin(πx) sin(πy) sin(πz),

we have

∆u = uxx + uyy + uzz = λu

−3π2 sin(πx) sin(πy) sin(πz) = λ sin(πx) sin(πy) sin(πz).

Thus,

λexact = −3π2 ≈ −29.6088132.

We also want to find uexact = u((x1 + ih), (y1 + jk), (z1 + lc)) over the grid points. We compute

this and get the following:

uexact =



0.35355

0.50000

...

0.50000

0.35355


.

Now we look at our numerical solution. The only inner core value is u22 which corresponds to

v5. Its finite difference equation is

1/h2(u122 + u322 − 2(1 + r + q)u222 + r(u212 + u232) + q(u221 + u223)) = λu22.

In the alternate numbering system, this equation is
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1/h2(v13 + v15 − 2(1 + r + q)v14 + r(v11 + v17) + q(v5 + v23)) = λv5.

The corresponding row of the 27× 27 matrix A is

1/h2[0 0 0 0 q 0 0 0 0 0 r 0 1 -2(1+r+q) 1 0 r 0 0 0 0 0 q 0 0 0 0].

If we look at one of the outer ring 1 values u122 which corresponds to v13, its finite difference

equation is

1/h2(u022 + u222 − 2(1 + r + q)u122 + r(u112 + u132) + q(u121 + u123)) = λu122.

Because u022 lies on the boundary, it takes the boundary value:

u022 = 0.

So the finite difference equation becomes

u222 − 2(1 + r + q)u122 + r(u112 + u132) + q(u121 + u123) = λu122.

In the alternate numbering system, this equation is

v14 − 2(1 + r + q)v13 + r(v10 + v16) + q(v4 + v22) = λv13.

The corresponding row of the 27× 27 matrix A is

1/h2[0 0 0 q 0 0 0 0 0 r 0 0 -2(1+r+q) 1 0 r 0 0 0 0 0 q 0 0 0 0 0].

Notice that the left hand side of the equation is the same as matrix A in Example 2.2 scaled

by a factor of 1/h2 = 16. Thus, we take 27× 27 matrix A and multiply it by 16. Now we have
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a simple matrix eigenvalue problem. When solved using the methods described in Section 3.1

we get the following:

λk =



−163.882

−141.255

...

−50.745

−28.118


,

and

vk =



0.12500 ... −0.12500

−0.17678 ... −0.17678

... ... ...

−0.17678 ... −0.17678

0.12500 ... −0.12500


,

where λk are the eigenvalues of A and the matrix vk are the corresponding column eigenvectors

of A.

Notice that the numerical solution λ27 and v27 corresponds to our exact solution. Here v27 is in

the span of our exact eigenvector since uexact = −2.828v27. Also, λ27 is a good approximation

for the exact eigenvalue since λexact ≈ λ1 − 1.5. However, we want to decrease the error on

λ so in the following section we compute the numerical solutions to the Laplacian eigenvalue

problem over smaller mesh sizes. We wrote an Octave program lapacian3deig.m to solve any

three dimensional Laplacian eigenvalue problem given the exact solution, g.



33

3.3.2 Numerical Results

We let i be a number where i ≥ 2 and M = N = P = 2i. We get the following error table for

the finite difference method for a three-dimensional Laplacian eigenvalue problem.

i M = N = P h = k = c λ errorλ convergence rate

2 4 1/4 = -28.118 1.4911

3 8 1/8 -29.230 0.37855 1.977821241

4 16 1/16 -29.514 0.095004 1.994423706



CHAPTER 4

THE MONGE-AMPÈRE EQUATION

The elliptic Monge-Ampère equation is a fully nonlinear partial differential equation (PDE)

first described in the late eighteenth century. Since then, the equation has arisen in a number

of important applications and the associated regularity theory has received a great deal of

attention. Despite the importance of the Monge-Ampère equation, until recently, very little

progress had been made in actually solving the equation numerically.

The last several years have seen an explosion of interest in numerical methods for solving this and

other fully nonlinear PDEs. Several methods have been developed for approximating solutions

of the Monge-Ampère equation (Awanou, 2010a). However, the richness and complexity of

the equation also lead to a number of important challenges that place limitations on these

numerical methods. Consequently, the development of numerical methods for this PDE remains

a challenging problem. The development of methods powerful enough to handle these challenges

would have important implications for several interesting applications.

The Monge-Ampère operator is given by

Sn(D2u).

34



35

4.1 Finite Difference Method for the Two-Dimensional Monge-Ampère Equation

We want to write a finite difference code to solve the two dimensional Monge-Ampère equation

detD2u = f in Ω

u = g on ∂Ω,

by an iterative method with initial guess

∆u0 = 2
√
f in Ω

u0 = g on ∂Ω.

We assume Dirichlet boundary conditions on a rectangle [xl, xr] x [yb, yt] in the plane. Let M

and N be the number of grid steps in the x and y directions respectively. Then h = (xr−xl)/M

and k = (yt − yb)/N are the mesh sizes in the x and y directions. The equations will be solved

on a rectangular mesh of points. The solution is known on the boundary, so the solution will

need to be computed at mn points, where m = M − 1 and n = N − 1.

We start by looking at the two dimensional Hessian matrix, D2u, which is a square matrix of

second-order partial derivatives of u(x, y). We have

D2u =

uxx uxy

uyx uyy

 ,
and the determinant is

detD2u = uxxuyy − u2
xy.

The second order partial derivatives have the following finite difference form:
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(uxx)ij ≈ 1/h2(ui+1,j − 2ui,j + ui−1,j)

(uyy)ij ≈ 1/h2(ui,j+1 − 2ui,j + ui,j−1)

(uxy)ij ≈ 1/4h2(ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1).

Our goal is to solve the equation

(detD2u)ij = (uxx)ij(uyy)ij − (uxy)
2
ij = f(xi, yj),

where xi = xl + ih, yj = yb + jk.

We divide the mesh points into three distinct classes described in Section 2.1. We compute the

determinant, detD2u, at each of the mesh points and use the iterative method

∆up+1 = ∆up − 1/ν(detD2up − f),

to solve the Monge-Ampère equation.

4.1.1 Example

Apply the finite difference method with M = N = 4 to estimate the solution to the Monge-

Ampère equation on [0, 1] x [0, 1] with the following Dirichlet boundary conditions:

u(x, 0) = x4 for 0 ≤ x ≤ 1

u(x, 1) = (x2 + 1)2 for 0 ≤ x ≤ 1

u(0, y) = y4 for 0 ≤ y ≤ 1

u(1, y) = (1 + y2)2 for 0 ≤ y ≤ 1.

We will use the correct solution u(x, y) = (x2 + y2)2 to compare with the approximation at

the nine mesh points of the square. We can input our correct solution into the Monge-Ampère

equation to find the right hand side which will be used for comparison.
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detD2u(x, y) = uxxuyy − u2
xy.

Since uxx = 12x2 + 4y2, uyy = 12y2 + 4x2 and uxy = 8xy we get

detD2u(x, y) = 48(x2
i + y2

j )
2 = 48u.

Now we look at our numerical solution. We start by using our two dimensional Poisson solver

poisson2d.m with right hand side 2
√
f = 2

√
16(x2 + y2) to find our initial guess u0. We get

u0 =


0.06822 0.22092 0.54862

0.22092 0.48384 0.92354

0.54862 0.92354 1.54989

 .

We can now find the determinant of u0 by computing the second partial derivatives at the nine

mesh points.

The only inner core value is u022 which has the following finite difference equations for its partial

derivatives

u0xx(2, 2) = 1/h2(u3,2 − 2u2,2 + u1,2) = 2.82843

u0yy(2, 2) = 1/h2(u2,3 − 2u2,2 + u2,1) = 2.82843

u0xy(2, 2) = 1/4h2(u3,3 + u1,1 − u1,3 − u3,1) = 2.08346.

If we look at one of the outer ring values u021 its partial derivatives have finite difference

equations

u0xx(2, 1) = 1/h2(u3,1 − 2u2,1 + u1,1)

u0yy(2, 1) = 1/h2(u2,1 − 2u2,1 + u2,0)

u0xy(2, 1) = 1/4h2(u3,2 + u1,0 − u1,2 − u3,0).
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Because u010 , u020 and u030 lie on the boundary, they take the boundary values:

u010 = u(x1, y0) = u(1/4, 0) = 1/256

u020 = u(x2, y0) = u(1/2, 0) = 1/16

u030 = u(x2, y0) = u(3/4, 0) = 81/256.

So the finite difference equations become

u0xx(2, 1) = 1/h2(u3,1 − 2u2,1 + u1,1) = 2.80006

u0yy(2, 1) = 1/h2(u2,1 − 2u2,1 + 1/16) = 1.67208

u0xy(2, 1) = 1/4h2(u3,2 + 1/256− u1,2 − 81/256) = 1.56049.

We continue this pattern and get the following matrices for u0xx , u0yy and u0xy

u0xx =


1.41421 1.67208 2.28325

2.80006 2.82843 4.02292

4.04130 3.18818 4.24264

 ,

u0yy =


1.41421 2.80006 4.04130

1.67208 2.82843 3.18818

2.28325 4.02292 4.24264

 ,

and

u0xy =


1.43536 1.56049 0.56464

1.56049 2.08346 2.43951

0.56464 2.43951 5.43536

 .
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Since detD2u0 = u0xxu0yy − u2
0xy we get

detD2u0 =


−0.0603 2.2468 8.9085

2.2468 3.6592 6.8746

8.9085 6.8746 −11.5431

 .

By our iterative method we have

∆u1 = ∆u0 − 1/ν(detD2u0 − f(xi, yj)).

We let ν = 50 and successfully simplify the right hand side of the equation getting a 3 × 3

matrix we call F1. We get the following matrix

F1 =


2.84463 4.52095 6.52139

4.52095 5.82367 7.70736

6.52139 7.70736 9.93114

 .

Note that we can use the Octave program RightHand2d.m to compute the second partial

derivatives of u0 at the mesh points and to compute F1.

Now we have the Poisson equation

∆u1 = F1.

We solve this by using an alternate form of the finite difference solver called poisson2dv2.m. In

this alternate form, the right hand side of the Poison equation is an m× n matrix.

We get the following nine values for u1
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u1 =


0.06302 0.21103 0.53701

0.21103 0.46416 0.89928

0.53701 0.89928 1.51517

 .

It compares well with the exact solution at the same points:
0.01562 0.09766 0.39062

0.09766 0.25000 0.66016

0.39062 0.66016 1.26562

 .

Notice that u1 is overall a better approximation than u0. We create a loop that repeats the

above steps until the data converges and/or the error increases. For this example, we loop

through the steps a total of 116 times and get the following estimate for u:

u116 =


0.02363 0.11074 0.40198

0.11074 0.26769 0.67395

0.40198 0.67395 1.27531

 .

Here we get a maximum error over the grid points of 0.017693. We want to decrease the error

on u so in the following section we compute the numerical solutions to the Monge-Ampère

equation over smaller mesh sizes.

4.1.2 Numerical Results

We let i be a number where i ≥ 2 and M = N = 2i. We get the following error table for this

finite difference method for the two-dimensional Monge-Ampère equation.
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i M = N h = k it count error convergence rate

2 4 1/4 116 0.017693

3 8 1/8 123 0.0046767 1.919615899

4 16 1/16 1001 0.0011644 2.005904141

5 32 1/32 1001 0.00029213 1.994904318



CHAPTER 5

NONLINEAR EQUATIONS BY NEWTON’S METHOD

Newton’s method is a way to find the solution of systems of nonlinear equations. We will use

Newton’s method to solve the nonlinear two-dimensional Monge-Ampère eigenvalue problem.

The two-dimensional Monge-Ampère eigenvalue problem is given by

detD2u = λu in Ω

u = 0 on ∂Ω.

5.1 Multivariate Newton’s Method

Recall the one-variable Newton’s Method

xk+1 = xk −
f(xk)

f ′(xk)
.

This method builds a recursive sequence that converges to the root. This provides the main

outline of the Multivariate Newton’s Method (Sauer, 2006). If we let

f1(u, v, w) = 0

f2(u, v, w) = 0

f3(u, v, w) = 0,

42
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be three nonlinear equations in three unknowns u,v and w, the vector valued function F (u, v, w) =

(f1, f2, f3) and F (x) = 0 where x = (u, v, w). The derivative of f is replaced by the Jacobian

Matrix defined by

DF (x) =


∂f1
∂u

∂f1
∂v

∂f1
∂w

∂f2
∂u

∂f2
∂v

∂f2
∂w

∂f3
∂u

∂f3
∂v

∂f3
∂w

 .

The Taylor expansion for vector-valued functions around x0 is

F (x) = F (x0) +DF (x0)(x− x0) +O(x− x0)2.

Since Newton’s method is based on a linear approximation we ignore the O(h2) terms. We let

x = r be the root and x0 be the current guess. Then

0 = F (r) ≈ F (x0) +DF (x0)(r − x0)

or

r ≈ x0 − (DF (x0))−1F (x0).

Then the multivariate Newton’s method is

x0 = initial vector

xk+1 = xk − (DF (xk))
−1F (xk).
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5.1.1 Example

Use Newton’s method with starting guess (1,2) to find a solution of the system

v − u3 = 0

u2 + v2 − 1 = 0.

Since f1(u, v) = v − u3 and f2(u, v) = u2 + v2 − 1, the Jacobian matrix is

DF (u, v) =

−3u2 1

2u 2v

 .

Using the starting point x0 = (1, 2) we have

x1 =

1

2

−
−3 1

2 4


−1 1

4

 =

1

2

 +
1

14

 4 −1

−2 −3


1

4

 =

1

1

 .

We continue this pattern and get

x2 =

1

1

−
−3 1

2 2


−1 0

1

 =

7
8

5
8

 .

The exact solution to the system is (0.8260, 0.5636) so we see that x2 is a better approximation

than x1. We will look at how to apply Newton’s method to solve a Monge-Ampère eigenvalue

problem in the following section.
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5.2 Newton’s Method for the Two-Dimensional Monge-Ampère Eigenvalue Problem

We want to create a finite difference method using Newton’s multivariate method to solve the

two dimensional eigenvalue problem for the Monge-Ampère eigenvalue problem

detD2u = λu in Ω

u = 0 on ∂Ω.

Therefore we want to solve

detD2u− λu = 0

uxxuyy − (uxy)
2 − λu = 0.

To solve this method over an M ×N grid we must explicitly find the determinant at each grid

point. So we have M − 1 equations and M unknowns. To use Newton’s method we must have

an equal number of equations and unknowns so we add the equation v1 + v2 + ... + vm = 1 in

order to solve the problem using the methods described in Section 5.1. Here v1, v2,..., vm are

the the approximate solutions on the M ×N grid.

5.2.1 Example

Apply the Newton’s method with M = N = 3 to estimate the solution to the Monge-Ampère

eigenvalue problem detD2u = λu. Since M = N = 3, the mesh size is h = k = 1/3. For this

type of problem, u = 0 on the boundary. We will use Newton’s multivariate method to estimate

λ and u at the four mesh points of the square.
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First we use the following finite difference equations to compute the second order partial deriva-

tives at the grid points for any uij .

(uxx)ij = 1/h2(ui+1,j − 2ui,j + ui−1,j)

(uyy)ij = 1/h2(ui,j+1 − 2ui,j + ui,j−1)

(uxy)ij = 1/4h2(ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1).

For u11 = v1 we have

(uxx)ij = 1/h2(u2,1 − 2u1,1 + u0,1) = 1/h2(−2v1 + v2)

(uyy)ij = 1/h2(u1,2 − 2u1,1 + u1,0) = 1/h2(−2v1 + v3)

(uxy)ij = 1/4h2(u2,2 + u0,0 − u0,2 − u2,0) = 1/4h2(v4).

Then

detD2v1 − λv1 = 1/h4(4v2
1 − 2v1v3 − 2v1v2 + v2v3 − 1/16v2

4)− λv1 = 0.

We follow similar steps to compute the determinant at the other three grid points and end up

with the following five equations.

f1 = 1/h4(4v2
1 − 2v1v3 − 2v1v2 + v2v3 − 1/16v2

4)− λv1 = 0

f2 = 1/h4(4v2
2 − 2v1v2 − 2v2v4 + v1v4 − 1/16v2

3)− λv2 = 0

f3 = 1/h4(4v2
3 − 2v1v3 − 2v3v4 + v1v4 − 1/16v2

2)− λv3 = 0

f4 = 1/h4(4v2
4 − 2v2v4 − 2v3v4 + v2v3 − 1/16v2

1)− λv4 = 0

f5 = v1 + v2 + v3 + v4 − 1 = 0.

(5.1)
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Since we have five equations and five unknowns, v1, v2, v3, v4 and λ, we can now use Newton’s

method to find an approximate solution. We end up with the following solution to the Monge-

Ampère eigenvalue problem

vk =



0.250000000000000

0.250000000000000

0.250000000000000

0.250000000000000


,

and

λ = 18.98437499999997.

It has been demonstrated that Newton’s method typically fails in solving this type of problem.

However Newton’s does suggest an update for λ that will be helpful in the methods used in

Chapter 6. We will derive λk in the following section.

5.2.2 Lambda Update Suggested by Newton’s Method

In the previous section, we obtained (Equation 5.1) based on a 3 × 3 mesh. Using simple

algebraic techniques we can solve for λ based on the unknowns v1, v2, v3 and v4. We get

λ = 1
h4

[4v1v2 + 4v1v3 + 4v2v4 + 4v3v4 − 2v1v4 − 2v2v3 − 63
16(v2

1 + v2
2 + v2

3 + v2
4)].

We extend this approach to find a solution for λ given any i and j on a M ×N mesh and get

the following:

λk+1 =
1

h4
∑

ij uij

∑
ij[(ui+1,j − 2ui,j + ui−1,j)(ui,j+1 − 2ui,j + ui,j−1)−
(ui+1,j+1+ui−1,j−1−ui−1,j+1−ui+1,j−1)

16 ].
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We will use this update for λ in the following chapter where we aim to find a numerical solution

to the eigenvalue problem for the Monge-Ampere equation.



CHAPTER 6

THE EIGENVALUE PROBLEM FOR THE MONGE-AMPÈRE

EQUATION

In this chapter, we aim to find numerical solutions to the Monge-Ampere eigenvalue problem.

We will use a finite difference method to solve this type of problem.

The Monge-Ampère eigenvalue problem is given by

Sn(D2u) = λ(−u)n.

6.1 Finite Difference Method for the The Two-Dimensional Eigenvalue Problem

for the Monge-Ampère Equation

We want to write a finite difference code to solve the two dimensional eigenvalue problem for

the Monge-Ampère equation

detD2u = λu in Ω

u = g on ∂Ω,

by an iterative method with initial guess

∆u0 = 2
√
f in Ω

u0 = g on ∂Ω,
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for f to be specified.

We evaluate the detD2u using Dirichlet boundary conditions over the same mesh described in

Section 4.1. However, we use the following iterative method:

∆up+1 = ∆up − 1/ν(detD2up − λpup), in Ω, u = 0 on ∂Ω,

to solve the eigenvalue problem for the Monge-Ampère equation.

In attempting to derive an appropriate iterative method, one faces the difficulty of how to

update λ in the iterations. We look at three different approaches:

1. A simple average

2. An update suggested by Newton’s method

3. An exact λ.

We will try theses approaches in the following three examples.

6.1.1 Example 1

We begin by attempting to solve the Monge-Ampère eigenvalue problem using the iterative

method

∆up+1 = ∆up − 1/ν(detD2up − λpup),

where

λp+1 =mean(detup/up).

We apply the finite difference method withM = N = 4 to estimate the solution to the eigenvalue

problem for the Monge-Ampère equation on [0, 1] x [0, 1] with the following Dirichlet boundary

conditions:
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u(x, 0) = x4 for 0 ≤ x ≤ 1

u(x, 1) = (x2 + 1)2 for 0 ≤ x ≤ 1

u(0, y) = y4 for 0 ≤ y ≤ 1

u(1, y) = (1 + y2)2 for 0 ≤ y ≤ 1.

We will use the correct solution u(x, y) = (x2 + y2)2 to compare with the approximation at

the nine mesh points of the square. In Section 4.1 we found that the right hand side of the

Monge-Ampère equation is 48(x2
i + y2

j )
2 = 48u. Thus the exact λ for this problem is 48.

First we use our two dimensional Poisson solver poisson2d.m with right hand side 2
√
f =

2
√

16(x2 + y2) to find our initial guess u0. We get

u0 =


0.06822 0.22092 0.54862

0.22092 0.48384 0.92354

0.54862 0.92354 1.54989

 .

Since the left hand side of our equation hasn’t changed we compute the detD2u0 = u0xxu0yy −

u2
0xy exactly as we did in Section 4.1 and get the following

detD2u0 =


−0.0603 2.2468 8.9085

2.2468 3.6592 6.8746

8.9085 6.8746 −11.5431

 .

By our iterative method we have

∆u1 = ∆u0 − 1/ν(detD2u0 − λ0u0),

where
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λ1 =mean(detu0/u0).

We let ν = 50 and λ0 = 48 and successfully simplify the right hand side of the equation getting

a 3× 3 matrix. We call this matrix F1. We get the following matrix

F1 =


3.1699 5.0307 7.1945

5.0307 6.6741 8.9931

7.1945 8.9931 12.1300

 .

Note that we can use the Octave program RightHand2deig.m to compute the second partial

derivatives of u0 at the mesh points and to compute F1. Now we have the Poisson equation

∆u1 = F1.

We solve this by using an alternate form of the finite difference solver called poisson2dv2.m. In

this alternate form, the right hand side of the Poisson equation is an m× n matrix.

We get that λ1 = −6.6514 and following nine values for u1
0.03859 0.17233 0.50159

0.17233 0.40106 0.83836

0.50159 0.83836 1.45035

 .

It compares well with the exact solution at the same points:
0.01562 0.09766 0.39062

0.09766 0.25000 0.66016

0.39062 0.66016 1.26562

 .
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Notice that u1 is overall a better approximation than u0. We create a loop that repeats the above

steps until the data converges and/or the error increases. For this example, we loop through the

steps a total of 1 time and the estimate for u remains the same. We get a maximum error over

the grid points of 0.18473. We want to decrease the error on u so in the following section we

compute the numerical solutions to the Monge-Ampère eigenvalue problem over smaller mesh

sizes.

6.1.1.1 Numerical Results

We let i be a number where i ≥ 2 and M = N = 2i. We get the following error table for this

finite difference method for the two-dimensional Monge-Ampère equation.

i M = N h = k it count λ erroru

2 4 1/4 1 -6.6514 0.18473

3 8 1/8 1 -11.654 0.046801

4 16 1/16 1 -11.453 0.43146

5 32 1/32 4 23.059 0.45483

6.1.2 Example 2

We now attempt to solve the Monge-Ampère eigenvalue problem using the iterative method

∆up+1 = ∆up − 1/ν(detD2up − λpup),

where

λ = 1
h4

∑
u2ij

∑
[(ui+1,j − 2ui,j + ui−1,j)(ui,j+1 − 2ui,j + ui,j−1)

− (ui+1,j+1+ui−1,j−1−ui−1,j+1−ui+1,j−1)

16
].
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We use the Octave program RightHand2deig.m and simply adjust the update for λ. When we

run the code we get very large error on both λ and u so we conclude that this approach does

not work.

6.1.3 Example 3

We now attempt to solve the Monge-Ampère eigenvalue problem using the iterative method

∆up+1 = ∆up − 1/ν(detD2up − λup),

where

λ = 48.

We use the Octave program RightHand2deig.m and simply set λ constant at 48. The numerical

results are given in the following section.

6.1.3.1 Numerical Results

We let i be a number where i ≥ 2 and M = N = 2i. We get the following error table for this

finite difference method for the two-dimensional Monge-Ampère equation.

i M = N h = k it count erroru convergence rate

2 4 1/4 49 0.010732

3 8 1/8 1255 0.0028463 1.914759325

4 16 1/16 956 0.000737 1.949214185

5 32 1/32 538 0.00018512 1.99334087



CHAPTER 7

CONCLUSION

Our goal was to find a numerical solution to the following nonlinear eigenvalue problem

det(D2u) = λu in Ω, u = 0 on ∂Ω,

using the iterative method

−ν∆up+1 = −ν∆up + det(D2up)− λpup in Ω, u = 0 on ∂Ω.

We encountered a problem when trying to find a strategy for updating λ. We looked at three

different approaches:

1. A simple average

2. An update suggested by Newton’s method

3. An exact λ.

The first approach produced small error on u however the error on λ was still large and the

error on u was increasing. The second approach produced large error on both λ and u so we

concluded that it was not accurate. The third approach used the exact λ and produced small,

deceasing error on u. Thus once one figures out the correct strategy to update λ, the work done

in this thesis would immediately lead to a solution of the problem.

The methods of this paper can be applied to find numerical solutions for both the 2-Hessian

equation and 2-Hessian eigenvalue problems.
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Appendix A

CODE FOR 2D POISSON EQUATION

Finite difference solver for a 2D Poisson equation with Dirichlet boundary conditions on a

rectangle. The input is on a rectangle domain [xl, xr]× [yb, yt], covered by an M ×N grid. The

output is matrix w holding solution values on an M ×N grid.

1 function w=poisson2d(xl,xr,yb,yt,M,N,f,g,caseNumb)

2 m=M−1;n=N−1;

3 h=(xr−xl)/M;h2=hˆ2;k=(yt−yb)/N;

4 r=h2/kˆ2;s=2*(1+r);

5 x=xl+(xr−xl)*(0:M)/M;

6 y=yb+(yt−yb)*(0:N)/N;

7 z=zeros(1,m−2);

8 a=zeros(m*n,m*n);b=zeros(m*n,1);

9 % inner core

10 for i=2:m−1

11 for j=2:n−1

12 a(i+(j−1)*m,:)=[zeros(1,i−1+(j−2)*m) r z 1 −s 1 z r zeros(1,(n−j)*m−i)];

13 b(i+(j−1)*m)=h2*f(x(i+1),y(j+1),caseNumb);

14 end

15 end

16 % outer ring
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Appendix A (Continued)

17 j=1;

18 for i=2:m−1

19 a(i+(j−1)*m,:)=[zeros(1,i−2) 1 −s 1 z r zeros(1,(n−j)*m−i)];

20 b(i+(j−1)*m)=h2*f(x(i+1),y(j+1),caseNumb)−r*gbottom(x(i+1),yb,caseNumb);

21 end

22 j=n;

23 for i=2:m−1

24 a(i+(j−1)*m,:)=[zeros(1,i−1+(j−2)*m) r z 1 −s 1 zeros(1,m−i−1)];

25 b(i+(j−1)*m)=h2*f(x(i+1),y(j+1),caseNumb)−r*gtop(x(i+1),yt,caseNumb);

26 end

27 i=1;

28 for j=2:n−1

29 a(i+(j−1)*m,:)=[zeros(1,i−1+(j−2)*m) r z 0 −s 1 z r zeros(1,(n−j)*m−i)];

30 b(i+(j−1)*m)=h2*f(x(i+1),y(j+1),caseNumb)−gleft(xl,y(j+1),caseNumb);

31 end

32 i=m;

33 for j=2:n−1

34 a(i+(j−1)*m,:)=[zeros(1,(j−1)*m−1) r z 1 −s 0 z r zeros(1,(n−j)*m−i)];

35 b(i+(j−1)*m)=h2*f(x(i+1),y(j+1),caseNumb)−gright(xr,y(j+1),caseNumb);

36 end

37 % four corners

38 i=1;j=1;

39 a(i+(j−1)*m,:)=[−s 1 z r zeros(1,(n−1)*m−1)];

40 b(i+(j−1)*m)=h2*f(x(i+1),y(j+1),caseNumb)− r*gbottom(x(i+1),yb,caseNumb)− ...

gleft(xl,y(j+1),caseNumb);

41 i=m;j=1;
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Appendix A (Continued)

42 a(i+(j−1)*m,:)=[z 1 −s 0 z r zeros(1,(n−2)*m)];

43 b(i+(j−1)*m)=h2*f(x(i+1),y(j+1),caseNumb)− r*gbottom(x(i+1),yb,caseNumb)− ...

gright(xr,y(j+1),caseNumb);

44 i=1;j=n;

45 a(i+(j−1)*m,:)=[zeros(1,(n−2)*m) r z 0 −s 1 zeros(1,m−2)];

46 b(i+(j−1)*m)=h2*f(x(i+1),y(j+1),caseNumb)− r*gtop(x(i+1),yt,caseNumb)− ...

gleft(xl,y(j+1),caseNumb);

47 i=m;j=n;

48 a(i+(j−1)*m,:)=[zeros(1,(n−1)*m−1) r z 1 −s];

49 b(i+(j−1)*m)=h2*f(x(i+1),y(j+1),caseNumb)− r*gtop(x(i+1),yt,caseNumb)− ...

gright(xr,y(j+1),caseNumb);

50 v=a\b; % solve for solution

51 w=zeros(m,n);

52 for i=1:m % put solution into mesh

53 for j=1:n

54 w(i,j)=v(i+(j−1)*m);

55 end

56 end

57 %boundary conditions

58 function u=gbottom(x,yb,caseNumb) % bottom of rectangle

59 u=g(x,yb,caseNumb);

60 function u=gtop(x,yt,caseNumb) % top of rectangle

61 u=g(x,yt,caseNumb);

62 function u=gleft(xl,y,caseNumb) % left side of rectangle

63 u=g(xl,y,caseNumb);

64 function u=gright(xr,y,caseNumb) % right side of rectangle
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Appendix A (Continued)

65 u=g(xr,y,caseNumb);
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Appendix B

CODE FOR 3D POISSON EQUATION

Finite difference solver for a 3D Poisson equation with Dirichlet boundary conditions on a cube.

The input is on the cubic domain [x1, x2] × [y1, y2] × [z1, z2], covered by an M × N × P grid.

The output is matrix w holding solution values on an M ×N × P grid.

1 function w=poisson3d(x1,x2,y1,y2,z1,z2,M,N,P,f,g,caseNumb)

2 m=M−1;n=N−1;p=P−1;

3 h=(x2−x1)/M;

4 k=(y2−y1)/N;

5 c=(z2−z1)/P;

6 h2=hˆ2;r=h2/kˆ2;q=h2/cˆ2;

7 s=2*(1+r+q);

8 x=x1+(x2−x1)*(0:M)/M;

9 y=y1+(y2−y1)*(0:N)/N;

10 z=z1+(z2−z1)*(0:P)/P;

11 a=zeros(m*n*p,m*n*p);b=zeros(m*n*p,1);

12 % inner core

13 for i=2:m−1

14 for j=2:n−1

15 for l=2:p−1

16 d1=i−1+(j−1)*m+(l−1)*mˆ2;
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17 d2=i+1+(j−1)*m+(l−1)*mˆ2;

18 d3=i+(j−1)*m+(l−1)*mˆ2;

19 d4=i+(j−2)*m+(l−1)*mˆ2;

20 d5=i+j*m+(l−1)*mˆ2;

21 d6=i+(j−1)*m+(l−2)*mˆ2;

22 d7=i+(j−1)*m+l*mˆ2;

23 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

24 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb);

25 end

26 end

27 end

28 %Outer ring 1 values

29 i=1;

30 for l=2:p−1

31 for j=2:n−1

32 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 0 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

33 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

g5(x1,y(j+1),z(l+1),caseNumb);

34 end

35 end

36 i=m;

37 for l=2:p−1
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38 for j=2:n−1

39 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

40 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

g6(x2,y(j+1),z(l+1),caseNumb);

41 end

42 end

43 j=1;

44 for l=2:p−1

45 for i=2:m−1

46 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) 0 ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

47 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

r*g1(x(i+1),y1,z(l+1),caseNumb);

48 end

49 end

50 j=n;

51 for l=2:p−1

52 for i=2:m−1

53 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) 0 zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

54 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

r*g2(x(i+1),y2,z(l+1),caseNumb);
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55 end

56 end

57 l=1;

58 for i=2:m−1

59 for j=2:n−1

60 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d4−1) r zeros(1,d1−d4−1) 1 ...

zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 zeros(1,d5−d2−1) r ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

61 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g3(x(i+1),y(j+1),z1,caseNumb);

62 end

63 end

64 l=p;

65 for i=2:m−1

66 for j=2:n−1

67 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,m*n*p−d5)];

68 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g4(x(i+1),y(j+1),z2,caseNumb);

69 end

70 end

71 %Outer ring 2 values

72 i=1;j=1;

73 for l=2:p−1



65

Appendix B (Continued)

74 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) 0 ...

zeros(1,d1−d4−1) 0 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

75 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

g5(x1,y(j+1),z(l+1),caseNumb)− r*g1(x(i+1),y1,z(l+1),caseNumb);

76 end

77 i=m;j=n;

78 for l=2:p−1

79 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 ...

zeros(1,d5−d2−1) 0 zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

80 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

g6(x2,y(j+1),z(l+1),caseNumb)− r*g2(x(i+1),y2,z(l+1),caseNumb);

81 end

82 j=1;l=1;

83 for i=2:m−1

84 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d1−1) 1 zeros(1,d3−d1−1) −s ...

zeros(1,d2−d3−1) 1 zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q ...

zeros(1,m*n*p−d7)];

85 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g3(x(i+1),y(j+1),z1,caseNumb)− r*g1(x(i+1),y1,z(l+1),caseNumb);

86 end

87 j=n;l=p;

88 for i=2:m−1
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89 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,m*n*p−d2)];

90 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g4(x(i+1),y(j+1),z2,caseNumb)− r*g2(x(i+1),y2,z(l+1),caseNumb);

91 end

92 i=1;l=1;

93 for j=2:n−1

94 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d4−1) r zeros(1,d1−d4−1) 0 ...

zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 zeros(1,d5−d2−1) r ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

95 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g3(x(i+1),y(j+1),z1,caseNumb)− g5(x1,y(j+1),z(l+1),caseNumb);

96 end

97 i=m;l=p;

98 for j=2:n−1

99 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 ...

zeros(1,d5−d2−1) r zeros(1,m*n*p−d5)];

100 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g4(x(i+1),y(j+1),z2,caseNumb)− g6(x2,y(j+1),z(l+1),caseNumb);

101 end

102 i=m;l=1;

103 for j=2:n−1
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104 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d4−1) r zeros(1,d1−d4−1) 1 ...

zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 zeros(1,d5−d2−1) r ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

105 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g3(x(i+1),y(j+1),z1,caseNumb)− g6(x2,y(j+1),z(l+1),caseNumb);

106 end

107 i=1;l=p;

108 for j=2:n−1

109 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 0 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,m*n*p−d5)];

110 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g4(x(i+1),y(j+1),z2,caseNumb)− g5(x1,y(j+1),z(l+1),caseNumb);

111 end

112 j=1;l=p;

113 for i=2:m−1

114 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) 0 ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,m*n*p−d5)];

115 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g4(x(i+1),y(j+1),z2,caseNumb)− r*g1(x(i+1),y1,z(l+1),caseNumb);

116 end

117 j=n;l=1;

118 for i=2:m−1
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119 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d4−1) r zeros(1,d1−d4−1) 1 ...

zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 zeros(1,d5−d2−1) 0 ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

120 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g3(x(i+1),y(j+1),z1,caseNumb)− r*g2(x(i+1),y2,z(l+1),caseNumb);

121 end

122 i=1;j=n;

123 for l=2:p−1

124 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 0 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) 0 zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

125 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

r*g2(x(i+1),y2,z(l+1),caseNumb)− g5(x1,y(j+1),z(l+1),caseNumb);

126 end

127 i=m;j=1;

128 for l=2:p−1

129 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) 0 ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

130 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

r*g1(x(i+1),y1,z(l+1),caseNumb)− g6(x2,y(j+1),z(l+1),caseNumb);

131 end

132 % eight corners

133 i=1;j=1;l=1;

134 a(i+(j−1)*m+(l−1)*mˆ2,:)=[−s zeros(1,d2−d3−1) 1 zeros(1,d5−d2−1) r ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];
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135 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

r*g1(x(i+1),y1,z(l+1),caseNumb)− q*g3(x(i+1),y(j+1),z1,caseNumb)− ...

g5(x1,y(j+1),z(l+1),caseNumb);

136 i=m;j=1;l=1;

137 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d1−1) 1 −s zeros(1,d2−d3−1) 0 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

138 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

r*g1(x(i+1),y1,z(l+1),caseNumb)− q*g3(x(i+1),y(j+1),z1,caseNumb)− ...

g6(x2,y(j+1),z(l+1),caseNumb);

139 i=1;j=n;l=1;

140 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d4−1) r zeros(1,d1−d4−1) 0 ...

zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 zeros(1,d5−d2−1) 0 ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

141 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g3(x(i+1),y(j+1),z1,caseNumb)− r*g2(x(i+1),y2,z(l+1),caseNumb)− ...

g5(x1,y(j+1),z(l+1),caseNumb);

142 i=1;j=n;l=p;

143 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 0 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,m*n*p−d2)];

144 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

r*g2(x(i+1),y2,z(l+1),caseNumb)− q*g4(x(i+1),y(j+1),z2,caseNumb)− ...

g5(x1,y(j+1),z(l+1),caseNumb);

145 i=1;j=1;l=p;
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146 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) 0 ...

zeros(1,d1−d4−1) 0 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,m*n*p−d5)];

147 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g4(x(i+1),y(j+1),z2,caseNumb)− g5(x1,y(j+1),z(l+1),caseNumb)− ...

r*g1(x(i+1),y1,z(l+1),caseNumb);

148 i=m;j=1;l=p;

149 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) 0 ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 ...

zeros(1,d5−d2−1) r zeros(1,m*n*p−d5)];

150 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g4(x(i+1),y(j+1),z2,caseNumb)− g6(x2,y(j+1),z(l+1),caseNumb)− ...

r*g1(x(i+1),y1,z(l+1),caseNumb);

151 i=m;j=n;l=1;

152 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d4−1) r zeros(1,d1−d4−1) 1 ...

zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 zeros(1,d5−d2−1) 0 ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

153 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

q*g3(x(i+1),y(j+1),z1,caseNumb)− g6(x2,y(j+1),z(l+1),caseNumb)− ...

r*g2(x(i+1),y2,z(l+1),caseNumb);

154 i=m;j=n;l=p;

155 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s];

156 b(i+(j−1)*m+(l−1)*mˆ2)=h2*f(x(i+1),y(j+1),z(l+1),caseNumb)− ...

g6(x2,y(j+1),z(l+1),caseNumb)− r*g2(x(i+1),y2,z(l+1),caseNumb)− ...

q*g4(x(i+1),y(j+1),z2,caseNumb);
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157 v=a\b; % solve for solution

158 w=zeros(m,n,p); %numerical solution at grid points

159 for i=1:m

160 for j=1:n

161 for l=1:p

162 w(i,j,l)=v(i+(j−1)*m+(l−1)*mˆ2);

163 end

164 end

165 end

166 %Boundary Conditions

167 function u=g1(x,y1,z,caseNumb)

168 u=g(x,y1,z,caseNumb);

169 function u=g2(x,y2,z,caseNumb)

170 u=g(x,y2,z,caseNumb);

171 function u=g3(x,y,z1,caseNumb)

172 u=g(x,y,z1,caseNumb);

173 function u=g4(x,y,z2,caseNumb)

174 u=g(x,y,z2,caseNumb);

175 function u=g5(x1,y,z,caseNumb)

176 u=g(x1,y,z,caseNumb);

177 function u=g6(x2,y,z,caseNumb)

178 u=g(x2,y,z,caseNumb);
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CODE FOR 2D LAPLACIAN EIGENVALUE PROBLEM

Finite difference solver for a 2D Laplacian eigenvalue problem with Dirichlet boundary condi-

tions on a rectangle. The input is on a rectangle domain [xl, xr]× [yb, yt], covered by an M ×N

grid. The output is matrix w holding solution values on an M ×N grid.

1 function [w,lamb]=laplacian2deig(xl,xr,yb,yt,M,N,g,caseNumb)

2 m=M−1;n=N−1;

3 h=(xr−xl)/M;h2=hˆ2;k=(yt−yb)/N;

4 r=h2/kˆ2;s=2*(1+r);

5 x=xl+(xr−xl)*(0:M)/M;

6 y=yb+(yt−yb)*(0:N)/N;

7 z=zeros(1,m−2);

8 a=zeros(m*n,m*n);

9 % inner core

10 for i=2:m−1

11 for j=2:n−1

12 a(i+(j−1)*m,:)=(1/h2)*[zeros(1,i−1+(j−2)*m) r z 1 −s 1 z r zeros(1,(n−j)*m−i)];

13 end

14 end

15 % outer ring

16 j=1;
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17 for i=2:m−1

18 a(i+(j−1)*m,:)=(1/h2)*[zeros(1,i−2) 1 −s 1 z r zeros(1,(n−j)*m−i)];

19 end

20 j=n;

21 for i=2:m−1

22 a(i+(j−1)*m,:)=(1/h2)*[zeros(1,i−1+(j−2)*m) r z 1 −s 1 zeros(1,m−i−1)];

23 end

24 i=1;

25 for j=2:n−1

26 a(i+(j−1)*m,:)=(1/h2)*[zeros(1,i−1+(j−2)*m) r z 0 −s 1 z r zeros(1,(n−j)*m−i)];

27 end

28 i=m;

29 for j=2:n−1

30 a(i+(j−1)*m,:)=(1/h2)*[zeros(1,(j−1)*m−1) r z 1 −s 0 z r zeros(1,(n−j)*m−i)];

31 end

32 % four corners

33 i=1;j=1;

34 a(i+(j−1)*m,:)=(1/h2)*[−s 1 z r zeros(1,(n−1)*m−1)];

35 i=m;j=1;

36 a(i+(j−1)*m,:)=(1/h2)*[z 1 −s 0 z r zeros(1,(n−2)*m)];

37 i=1;j=n;

38 a(i+(j−1)*m,:)=(1/h2)*[zeros(1,(n−2)*m) r z 0 −s 1 zeros(1,m−2)];

39 i=m;j=n;

40 a(i+(j−1)*m,:)=(1/h2)*[zeros(1,(n−1)*m−1) r z 1 −s];

41 lambda=eig(a);

42 [V,D]=eig(a); % solve for solution
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43 lamb=lambda(n*m,1);

44 v=V(:,n*m);

45 w=zeros(m,n);

46 for i=1:m % put solution into mesh

47 for j=1:n

48 w(i,j)=v(i+(j−1)*m);

49 end

50 end

51 %boundary conditions

52 function u=gbottom(x,yb,caseNumb) % bottom of rectangle

53 u=g(x,yb,caseNumb);

54 function u=gtop(x,yt,caseNumb) % top of rectangle

55 u=g(x,yt,caseNumb);

56 function u=gleft(xl,y,caseNumb) % left side of rectangle

57 u=g(xl,y,caseNumb);

58 function u=gright(xr,y,caseNumb) % right side of rectangle

59 u=g(xr,y,caseNumb);
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CODE FOR 3D LAPLACIAN EIGENVALUE PROBLEM

Finite difference solver for a 3D Laplacian eigenvalue problem with Dirichlet boundary condi-

tions on a cube. The input is on the cubic domain [x1, x2] × [y1, y2] × [z1, z2], covered by an

M ×N × P grid. The output is matrix w holding solution values on an M ×N × P grid.

1 function [w,lamb]=laplacian3deig(x1,x2,y1,y2,z1,z2,M,N,P,g,caseNumb)

2 m=M−1;n=N−1;p=P−1;

3 h=(x2−x1)/M;

4 k=(y2−y1)/N;

5 c=(z2−z1)/P;

6 h2=hˆ2;r=h2/kˆ2;q=h2/cˆ2;

7 s=2*(1+r+q);

8 x=x1+(x2−x1)*(0:M)/M;

9 y=y1+(y2−y1)*(0:N)/N;

10 z=z1+(z2−z1)*(0:P)/P;

11 a=zeros(m*n*p,m*n*p);

12 % Inner core

13 for i=2:m−1

14 for j=2:n−1

15 for l=2:p−1

16 d1=i−1+(j−1)*m+(l−1)*mˆ2;
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17 d2=i+1+(j−1)*m+(l−1)*mˆ2;

18 d3=i+(j−1)*m+(l−1)*mˆ2;

19 d4=i+(j−2)*m+(l−1)*mˆ2;

20 d5=i+j*m+(l−1)*mˆ2;

21 d6=i+(j−1)*m+(l−2)*mˆ2;

22 d7=i+(j−1)*m+l*mˆ2;

23 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

24 end

25 end

26 end

27 %Outer ring 1 values

28 i=1;

29 for l=2:p−1

30 for j=2:n−1

31 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 0 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

32 end

33 end

34 i=m;

35 for l=2:p−1

36 for j=2:n−1
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37 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

38 end

39 end

40 j=1;

41 for l=2:p−1

42 for i=2:m−1

43 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) 0 ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

44 end

45 end

46 j=n;

47 for l=2:p−1

48 for i=2:m−1

49 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) 0 zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

50 end

51 end

52 l=1;

53 for i=2:m−1

54 for j=2:n−1
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55 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d4−1) r zeros(1,d1−d4−1) 1 ...

zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 zeros(1,d5−d2−1) r ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

56 end

57 end

58 l=p;

59 for i=2:m−1

60 for j=2:n−1

61 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,m*n*p−d5)];

62 end

63 end

64 %Outer ring 2 values

65 i=1;j=1;

66 for l=2:p−1

67 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) 0 ...

zeros(1,d1−d4−1) 0 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

68 end

69 i=m;j=n;

70 for l=2:p−1

71 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 ...

zeros(1,d5−d2−1) 0 zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

72 end



79

Appendix D (Continued)

73 j=1;l=1;

74 for i=2:m−1

75 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d1−1) 1 zeros(1,d3−d1−1) −s ...

zeros(1,d2−d3−1) 1 zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q ...

zeros(1,m*n*p−d7)];

76 end

77 j=n;l=p;

78 for i=2:m−1

79 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,m*n*p−d2)];

80 end

81 i=1;l=1;

82 for j=2:n−1

83 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d4−1) r zeros(1,d1−d4−1) 0 ...

zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 zeros(1,d5−d2−1) r ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

84 end

85 i=m;l=p;

86 for j=2:n−1

87 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 ...

zeros(1,d5−d2−1) r zeros(1,m*n*p−d5)];

88 end

89 i=m;l=1;

90 for j=2:n−1
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91 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d4−1) r zeros(1,d1−d4−1) 1 ...

zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 zeros(1,d5−d2−1) r ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

92 end

93 i=1;l=p;

94 for j=2:n−1

95 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 0 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,m*n*p−d5)];

96 end

97 j=1;l=p;

98 for i=2:m−1

99 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) 0 ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,m*n*p−d5)];

100 end

101 j=n;l=1;

102 for i=2:m−1

103 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d4−1) r zeros(1,d1−d4−1) 1 ...

zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 zeros(1,d5−d2−1) 0 ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

104 end

105 i=1;j=n;

106 for l=2:p−1
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107 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 0 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) 0 zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

108 end

109 i=m;j=1;

110 for l=2:p−1

111 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) 0 ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

112 end

113 % eight corners

114 i=1;j=1;l=1;

115 a(i+(j−1)*m+(l−1)*mˆ2,:)=[−s zeros(1,d2−d3−1) 1 zeros(1,d5−d2−1) r ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

116 i=m;j=1;l=1;

117 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d1−1) 1 −s zeros(1,d2−d3−1) 0 ...

zeros(1,d5−d2−1) r zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

118 i=1;j=n;l=1;

119 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d4−1) r zeros(1,d1−d4−1) 0 ...

zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 zeros(1,d5−d2−1) 0 ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

120 i=1;j=n;l=p;

121 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 0 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,m*n*p−d2)];

122 i=1;j=1;l=p;
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123 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) 0 ...

zeros(1,d1−d4−1) 0 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 1 ...

zeros(1,d5−d2−1) r zeros(1,m*n*p−d5)];

124 i=m;j=1;l=p;

125 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) 0 ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 ...

zeros(1,d5−d2−1) r zeros(1,m*n*p−d5)];

126 i=m;j=n;l=1;

127 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d4−1) r zeros(1,d1−d4−1) 1 ...

zeros(1,d3−d1−1) −s zeros(1,d2−d3−1) 0 zeros(1,d5−d2−1) 0 ...

zeros(1,d7−d5−1) q zeros(1,m*n*p−d7)];

128 i=m;j=n;l=p;

129 a(i+(j−1)*m+(l−1)*mˆ2,:)=[zeros(1,d6−1) q zeros(1,d4−d6−1) r ...

zeros(1,d1−d4−1) 1 zeros(1,d3−d1−1) −s];

130 lambda=eig((1/h2)*a);

131 [V,D]=eig((1/h2)*a); %solve for solution

132 lamb=lambda(n*m*p,1);

133 v=V(:,n*m*p);

134 w=zeros(m,n,p); %numerical solution at grid points

135 for i=1:m

136 for j=1:n

137 for l=1:p

138 w(i,j,l)=v(i+(j−1)*m+(l−1)*mˆ2);

139 end

140 end

141 end
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142 %Boundary Conditions

143 function u=g1(x,y1,z,caseNumb)

144 u=g(x,y1,z,caseNumb);

145 function u=g2(x,y2,z,caseNumb)

146 u=g(x,y2,z,caseNumb);

147 function u=g3(x,y,z1,caseNumb)

148 u=g(x,y,z1,caseNumb);

149 function u=g4(x,y,z2,caseNumb)

150 u=g(x,y,z2,caseNumb);

151 function u=g5(x1,y,z,caseNumb)

152 u=g(x1,y,z,caseNumb);

153 function u=g6(x2,y,z,caseNumb)

154 u=g(x2,y,z,caseNumb);
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CODE FOR 2D MONGE-AMPÈRE EQUATION

Finite difference solver for a 2D Monge-Ampère Equation with Dirichlet boundary conditions

on a rectangle. The input is on a rectangle domain [xl, xr]× [yb, yt], covered by an M ×N grid.

The output is matrix w holding solution values on an M ×N grid.

E.1 Part 1

1 function U1=Monge2d(xl,xr,yb,yt,nu,M,N,f,g,sqrt2f,caseNumb)

2 %initial guess

3 U0=poisson2d(xl,xr,yb,yt,M,N,sqrt2f,g,caseNumb);

4 cvg = 0;

5 it count = 0;

6 max it = 1000;

7 tol = 1.0E−10;

8 oldErr = inf;

9 newErr = 10000;

10 m=M−1;n=N−1;

11 xl=0;yb=0;

12 h=1/M; k=1/N;

13 %Exact solution

14 utrue = zeros(m,n);
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15 for i=1:m

16 for j=1:n

17 utrue(i,j) = g((xl+i*h),(yb+j*k),caseNumb);

18 end

19 end

20 while ¬cvg & (it count ≤ max it) & abs(newErr) ≤ abs(oldErr)

21 F1 = RightHand2d(xl,xr,yb,yt,M,N,nu,U0,f,g,caseNumb);

22 U1=poisson2dv2(xl,xr,yb,yt,M,N,F1,g,caseNumb);

23 oldErr = newErr;

24 newErr = norm(U1−utrue,inf);

25 cvg = norm(U1−U0,inf) ≤ tol;

26 it count = it count + 1;

27 U0 = U1;

28 end;

E.2 Part 2

1 function F1 = RightHand2d(xl,xr,yb,yt,M,N,nu,U0,f,g,caseNumb)

2 m=M−1;n=N−1;

3 h=(xr−xl)/M;k=(yt−yb)/N;

4 x=xl+(xr−xl)*(0:M)/M;

5 y=yb+(yt−yb)*(0:N)/N;

6 U0xx=zeros(size(U0));U0xy=U0xx;U0yy=U0xx; %initialization

7 %inner core

8 for i=2:n−1
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9 for j=2:m−1

10 U0xx(i,j) = 1/hˆ2*(U0(i+1,j)−2*U0(i,j)+U0(i−1,j));

11 U0yy(i,j) = 1/hˆ2*(U0(i,j+1)−2*U0(i,j)+U0(i,j−1));

12 U0xy(i,j) = 1/(4*hˆ2)*(U0(i+1,j+1)+ U0(i−1,j−1)− U0(i−1,j+1)− ...

U0(i+1,j−1));

13 end

14 end

15 %four corners

16 i=1;j=1;

17 U0xx(i,j) = 1/hˆ2*(U0(i+1,j)−2*U0(i,j)+gleft(xl,y(j+1),caseNumb));

18 U0yy(i,j) = 1/hˆ2*(U0(i,j+1)−2*U0(i,j)+gbottom(x(i+1),yb,caseNumb));

19 U0xy(i,j) = 1/(4*hˆ2)*(U0(i+1,j+1)+ gleft(xl,yb,caseNumb)− ...

gleft(xl,y(j+2),caseNumb)− gbottom(x(i+2),yb,caseNumb));

20 i=n;j=1;

21 U0xx(i,j) = 1/hˆ2*(gright(xr,y(j+1),caseNumb)−2*U0(i,j)+U0(i−1,j));

22 U0yy(i,j) = 1/hˆ2*(U0(i,j+1)−2*U0(i,j)+gbottom(x(i+1),yb,caseNumb));

23 U0xy(i,j) = 1/(4*hˆ2)*(gright(xr,y(j+2),caseNumb)+ ...

gbottom(x(i),yb,caseNumb)− U0(i−1,j+1)− gright(xr,yb,caseNumb));

24 i=1;j=m;

25 U0xx(i,j) = 1/hˆ2*(U0(i+1,j)−2*U0(i,j)+gleft(xl,y(j+1),caseNumb));

26 U0yy(i,j) = 1/hˆ2*(gtop(x(i+1),yt,caseNumb)−2*U0(i,j)+U0(i,j−1));

27 U0xy(i,j) = 1/(4*hˆ2)*(gtop(x(i+2),yt,caseNumb)+ ...

gleft(xl,y(j),caseNumb)− gleft(xl,y(j+2),caseNumb)− U0(i+1,j−1));

28 i=n;j=m;

29 U0xx(i,j) = 1/hˆ2*(gright(xr,y(j+1),caseNumb)−2*U0(i,j)+U0(i−1,j));

30 U0yy(i,j) = 1/hˆ2*(gtop(x(i+1),yt,caseNumb)−2*U0(i,j)+U0(i,j−1));
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31 U0xy(i,j) = 1/(4*hˆ2)*(gright(xr,yt,caseNumb)+ U0(i−1,j−1)− ...

gtop(x(i),yt,caseNumb)− gright(xr,y(j),caseNumb));

32 %outer ring

33 j=1;

34 for i=2:m−1

35 U0xx(i,j) = 1/hˆ2*(U0(i+1,j)−2*U0(i,j)+U0(i−1,j));

36 U0yy(i,j) = 1/hˆ2*(U0(i,j+1)−2*U0(i,j)+gbottom(x(i+1),yb,caseNumb));

37 U0xy(i,j) = 1/(4*hˆ2)*(U0(i+1,j+1)+ gbottom(x(i),yb,caseNumb)− ...

U0(i−1,j+1)− gbottom(x(i+2),yb,caseNumb));

38 end

39 j=m;

40 for i=2:m−1

41 U0xx(i,j) = 1/hˆ2*(U0(i+1,j)−2*U0(i,j)+U0(i−1,j));

42 U0yy(i,j) = 1/hˆ2*(gtop(x(i+1),yt,caseNumb)−2*U0(i,j)+U0(i,j−1));

43 U0xy(i,j) = 1/(4*hˆ2)*(gtop(x(i+2),yt,caseNumb)+ U0(i−1,j−1)− ...

gtop(x(i),yt,caseNumb)− U0(i+1,j−1));

44 end

45 i=1;

46 for j=2:n−1

47 U0xx(i,j) = 1/hˆ2*(U0(i+1,j)−2*U0(i,j)+gleft(xl,y(j+1),caseNumb));

48 U0yy(i,j) = 1/hˆ2*(U0(i,j+1)−2*U0(i,j)+U0(i,j−1));

49 U0xy(i,j) = 1/(4*hˆ2)*(U0(i+1,j+1)+ gleft(xl,y(j),caseNumb)− ...

gleft(xl,y(j+2),caseNumb)− U0(i+1,j−1) );

50 end

51 i=m;

52 for j=2:n−1



88

Appendix E (Continued)

53 U0xx(i,j) = 1/hˆ2*(gright(xr,y(j+1),caseNumb)−2*U0(i,j)+U0(i−1,j));

54 U0yy(i,j) = 1/hˆ2*(U0(i,j+1)−2*U0(i,j)+U0(i,j−1));

55 U0xy(i,j) = 1/(4*hˆ2)*(gright(xr,y(j+2),caseNumb)+ U0(i−1,j−1)− ...

U0(i−1,j+1)− gright(xr,y(j),caseNumb));

56 end

57 %right hand side of the monge−ampere equation evaluated at the grid points

58 fmonge = zeros(m,n);

59 for i=1:m

60 for j=1:n

61 fmonge(i,j) = f((xl+i*h),(yb+j*k),caseNumb);

62 end

63 end

64 DetU0 = U0xx.*U0yy−U0xy.ˆ2;

65 F1 = (U0xx+U0yy)−(1/nu)*(DetU0−fmonge);

66 %boundary conditions

67 function u=gbottom(x,yb,caseNumb) % bottom of rectangle

68 u=g(x,yb,caseNumb);

69 function u=gtop(x,yt,caseNumb) % top of rectangle

70 u=g(x,yt,caseNumb);

71 function u=gleft(xl,y,caseNumb) % left side of rectangle

72 u=g(xl,y,caseNumb);

73 function u=gright(xr,y,caseNumb) % right side of rectangle

74 u=g(xr,y,caseNumb);
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CODE FOR 2D MONGE-AMPÈRE EIGENVALUE PROBLEM

Finite difference solver for a 2D Monge-Ampère eigenvalue problem with Dirichlet boundary

conditions on a rectangle. The input is on a rectangle domain [xl, xr] × [yb, yt], covered by an

M ×N grid. The output is matrix w holding solution values on an M ×N grid.

F.1 Part 1

1 function U1=Monge2deig(xl,xr,yb,yt,nu,M,N,f,g,sqrt2f,caseNumb)

2 %Example 1 Initial guess

3 U0=poisson2d(xl,xr,yb,yt,M,N,sqrt2f,g,caseNumb);

4 lambda0= 48;

5 %Example 2 Initial guess

6 [U0,lambda0]=laplacian2deig(xl,xr,yb,yt,M,N,g,caseNumb)

7 cvg = 0;

8 it count = 0;

9 max it = 1000;

10 tol = 1.0E−10;

11 oldErr = inf;

12 newErr = 10000;

13 m=M−1;n=N−1;

14 %True solution

15 xl=0;yb=0;
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16 h=1/M; k=1/N;

17 utrue = zeros(m,n);

18 for i=1:n

19 for j=1:m

20 utrue(i,j) = g((xl+i*h),(yb+j*k),caseNumb);

21 end

22 end

23 while ¬cvg & (it count ≤ max it) & newErr ≤ oldErr

24 [F1,DetU0,lambda1] = RightHand2deig(xl,xr,yb,yt,M,N,nu,U0,lambda0,g,caseNumb);

25 U1= poisson2dv2(xl,xr,yb,yt,M,N,F1,g,caseNumb);

26 oldErr = newErr;

27 newErr = norm(U1−utrue,inf);

28 cvg = norm(U1−U0,inf) ≤ tol;

29 it count = it count + 1;

30 U0 = U1;

31 lambda0 = lambda1;

32 end;

F.2 Part 2

1 function [F1,DetU0,lambda1] = ...

RightHand2deig(xl,xr,yb,yt,M,N,nu,U0,lambda0,g,caseNumb)

2 m=M−1;n=N−1;

3 h=(xr−xl)/M;k=(yt−yb)/N;

4 x=xl+(xr−xl)*(0:M)/M;
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5 y=yb+(yt−yb)*(0:N)/N;

6 U0xx=zeros(size(U0));U0xy=U0xx;U0yy=U0xx; %initialization

7 %inner core

8 for i=2:n−1

9 for j=2:m−1

10 U0xx(i,j) = 1/hˆ2*(U0(i+1,j)−2*U0(i,j)+U0(i−1,j));

11 U0yy(i,j) = 1/hˆ2*(U0(i,j+1)−2*U0(i,j)+U0(i,j−1));

12 U0xy(i,j) = 1/(4*hˆ2)*(U0(i+1,j+1)+ U0(i−1,j−1)− U0(i−1,j+1)− ...

U0(i+1,j−1));

13 end

14 end

15 %four corners

16 i=1;j=1;

17 U0xx(i,j) = 1/hˆ2*(U0(i+1,j)−2*U0(i,j)+gleft(xl,y(j+1),caseNumb));

18 U0yy(i,j) = 1/hˆ2*(U0(i,j+1)−2*U0(i,j)+gbottom(x(i+1),yb,caseNumb));

19 U0xy(i,j) = 1/(4*hˆ2)*(U0(i+1,j+1)+ gleft(xl,yb,caseNumb)− ...

gleft(xl,y(j+2),caseNumb)− gbottom(x(i+2),yb,caseNumb));

20 i=n;j=1;

21 U0xx(i,j) = 1/hˆ2*(gright(xr,y(j+1),caseNumb)−2*U0(i,j)+U0(i−1,j));

22 U0yy(i,j) = 1/hˆ2*(U0(i,j+1)−2*U0(i,j)+gbottom(x(i+1),yb,caseNumb));

23 U0xy(i,j) = 1/(4*hˆ2)*(gright(xr,y(j+2),caseNumb)+ ...

gbottom(x(i),yb,caseNumb)− U0(i−1,j+1)− gright(xr,yb,caseNumb));

24 i=1;j=m;

25 U0xx(i,j) = 1/hˆ2*(U0(i+1,j)−2*U0(i,j)+gleft(xl,y(j+1),caseNumb));

26 U0yy(i,j) = 1/hˆ2*(gtop(x(i+1),yt,caseNumb)−2*U0(i,j)+U0(i,j−1));
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27 U0xy(i,j) = 1/(4*hˆ2)*(gtop(x(i+2),yt,caseNumb)+ ...

gleft(xl,y(j),caseNumb)− gleft(xl,y(j+2),caseNumb)− U0(i+1,j−1));

28 i=n;j=m;

29 U0xx(i,j) = 1/hˆ2*(gright(xr,y(j+1),caseNumb)−2*U0(i,j)+U0(i−1,j));

30 U0yy(i,j) = 1/hˆ2*(gtop(x(i+1),yt,caseNumb)−2*U0(i,j)+U0(i,j−1));

31 U0xy(i,j) = 1/(4*hˆ2)*(gright(xr,yt,caseNumb)+ U0(i−1,j−1)− ...

gtop(x(i),yt,caseNumb)− gright(xr,y(j),caseNumb));

32 %outer ring

33 j=1;

34 for i=2:m−1

35 U0xx(i,j) = 1/hˆ2*(U0(i+1,j)−2*U0(i,j)+U0(i−1,j));

36 U0yy(i,j) = 1/hˆ2*(U0(i,j+1)−2*U0(i,j)+gbottom(x(i+1),yb,caseNumb));

37 U0xy(i,j) = 1/(4*hˆ2)*(U0(i+1,j+1)+ gbottom(x(i),yb,caseNumb)− ...

U0(i−1,j+1)− gbottom(x(i+2),yb,caseNumb));

38 end

39 j=m;

40 for i=2:m−1

41 U0xx(i,j) = 1/hˆ2*(U0(i+1,j)−2*U0(i,j)+U0(i−1,j));

42 U0yy(i,j) = 1/hˆ2*(gtop(x(i+1),yt,caseNumb)−2*U0(i,j)+U0(i,j−1));

43 U0xy(i,j) = 1/(4*hˆ2)*(gtop(x(i+2),yt,caseNumb)+ U0(i−1,j−1)− ...

gtop(x(i),yt,caseNumb)− U0(i+1,j−1));

44 end

45 i=1;

46 for j=2:n−1

47 U0xx(i,j) = 1/hˆ2*(U0(i+1,j)−2*U0(i,j)+gleft(xl,y(j+1),caseNumb));

48 U0yy(i,j) = 1/hˆ2*(U0(i,j+1)−2*U0(i,j)+U0(i,j−1));
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49 U0xy(i,j) = 1/(4*hˆ2)*(U0(i+1,j+1)+ gleft(xl,y(j),caseNumb)− ...

gleft(xl,y(j+2),caseNumb)− U0(i+1,j−1) );

50 end

51 i=m;

52 for j=2:n−1

53 U0xx(i,j) = 1/hˆ2*(gright(xr,y(j+1),caseNumb)−2*U0(i,j)+U0(i−1,j));

54 U0yy(i,j) = 1/hˆ2*(U0(i,j+1)−2*U0(i,j)+U0(i,j−1));

55 U0xy(i,j) = 1/(4*hˆ2)*(gright(xr,y(j+2),caseNumb)+ U0(i−1,j−1)− ...

U0(i−1,j+1)− gright(xr,y(j),caseNumb));

56 end

57 DetU0 = U0xx.*U0yy−U0xy.ˆ2;

58 F1 = (U0xx+U0yy)−(1/nu)*(DetU0−lambda0*(U0));

59 %Example 1 update for $\lambda k$

60 lambda1 = (mean(mean(DetU0/U0)));

61 %Example 2 update for $\lambda k$

62 lambda1=(1/((hˆ4)*(sum(sum(U0.ˆ2)))))*(sum(sum((U0xx*U0yy)−((U0xy.ˆ2)/16))));

63 %boundary conditions

64 function u=gbottom(x,yb,caseNumb) % bottom of rectangle

65 u=g(x,yb,caseNumb);

66 function u=gtop(x,yt,caseNumb) % top of rectangle

67 u=g(x,yt,caseNumb);

68 function u=gleft(xl,y,caseNumb) % left side of rectangle

69 u=g(xl,y,caseNumb);

70 function u=gright(xr,y,caseNumb) % right side of rectangle

71 u=g(xr,y,caseNumb);
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