
Software-Defined Network Overlays

BY

OLUWAMAYOWA ADE ADELEKE

B.TECH., Ladoke Akintola University of Technology, 2010

THESIS

Submitted as partial fulfillment of the requirements

for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the

University of Illinois at Chicago, 2015

Chicago, Illinois

Defense Committee:

 Hulya Seferoglu, Chair and Advisor

 H. Y. David Yang

 Natasha Devroye

 ii

To my Father, Jesus, and the Holy Spirit.

To all individuals and organizations that are working towards making communication networks

more efficient.

 iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Seferoglu, whose continuous encouragement and

counsel has made this thesis possible. Also, I would like to thank my thesis committee members;

Professor Yang and Professor Devroye for their time and insightful comments.

I would like to thank the Electrical and Computer Engineering administrators, particularly Tina

Alvarado, Ala Wrobleski, and Erica Plys, whose timely advice has kept me on track while

completing this thesis.

I would like to thank the PhantomNet-Emulab team at the University of Utah, particularly

Professor van der Merwe as well as Kirk Webb, Binh Nguyen, Junchuk Cho. They have given

me the opportunity to work on the test-bed, and kindly and patiently replied to all my questions.

My thanks also go to Pastor Lanre Otukoya and Pastor Shola Olaiya, whose words and prayers

have made my Chicago days easier. I also appreciate all members of the Winners Chapel,

Chicago for helping me not to miss my family too badly.

My big thanks go to my uncle and his family; Uncle Matt, Aunt Biola, Yemisi and Dolapo. I

really appreciate that they have hosted me during my final year. Finally, I really thank my

family; my father; Dn Surv Adetunji Adeleke, my mother; Dns FM Adeleke, and my sisters;

Deola, Bukky, and Damola. I would like to thank them for being there for me all the time; I love

you. I also thank my dear Kehinde; I sincerely appreciate your prayers and constant support.

 iv

ACKNOWLEDGEMENTS (continued)

Most importantly I thank God, the Almighty, for helping me to complete my MS thesis at UIC

within the expected time frame.

OA

 v

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION ..1

1.1 Motivation and Problem Statement .. 1

1.2 Objectives ... 2

1.3 Thesis Outline ... 3

2. OVERVIEW OF SOFTWARE-DEFINED NETWORKING ..4

2.1 The Need for Software-Defined Networks .. 4

2.2 Software-Defined Networking Architecture .. 5

2.2.1 The Data Plane ... 7

2.2.2 South Bound API - OpenFlow Protocol .. 8

2.2.3 Control Plane ... 10

3. OVERLAY TECHNOLOGIES AND HYBRID SDN ...13

3.1 The Concept of Overlays ... 13

3.2 Overlay Networking Technologies .. 13

3.3 Benefits of SDN Network Overlay Networks ... 16

3.4 Approaches to Hybrid SDN ... 17

3.4.1 Google B4 .. 18

3.4.2 Open Source Hybrid IP/SDN (OSHI) .. 19

3.4.3 SDX.. 19

4. METHODOLOGY AND IMPLEMENTATION .. 21

4.1 Methodology .. 21

4.1.1 TheEmulabTest-bed ... 23

4.2 Experiments Description .. 24

4.2.1 Legacy Network ... 24

4.2.2 Full SDN Network ... 26

4.2.3 SDN Overlay Network ... 30

4.3 Comparing Legacy, Full-SDN and SDN-Overlay Network Throughput 34

5. CONCLUSION ...36

5.1 Conclusion ... 36

5.2 Future Directions ... 36

 vi

TABLE OF CONTENTS (continued)

CHAPTER PAGE

REFERENCES ...38

APPENDICES ...42

VITA ..52

 vii

LIST OF TABLES

TABLE PAGE

1. COMPARISON OF SDN OVERLAY NETWORK PERFORMANCE WITH FULL

LEGACY AND FULL SDN NETWORKS ... 35

 viii

LIST OF FIGURES

FIGURE PAGE

1. Software-defined network architecture ... 6

 2. A VLAN overlay network. .. 14

 3. The VXLAN frame ... 15

 4. A SDN overlay network. ... 21

 5. The prototype SDN overlay network with two SDN switches and two legacy routers. . 22

 6. Full legacy network prototype. .. 25

 7. Throughput vs. time graph for the full legacy network. ... 25

 8. UDP jitter and percentage of dropped packets vs. time for the full legacy network. 26

 9. The full SDN network topology. ... 27

 10. Throughput vs. time for the full SDN topology. ... 27

 11. UDP jitter and percentage dropped packets vs. time for the full SDN network. 28

 12. Simultaneous transmission full SDN network. ... 29

 13. The hybrid SDN topology 30

 14. Throughput vs. time in SDN overlay network .. 32

 15. UDP jitter and percentage of dropped packets vs. time for the SDN overlay network. .. 33

 16. Simultaneous transmission in hybrid SDN network. .. 33

 17. Throughput comparison of SDN overlay with full SDN and full legacy network. 34

 ix

SUMMARY

The focus of this study is on software-defined overlay networks, that is, networks which

accommodate both legacy network components such as conventional switches and routers as

well as SDN-enabled network components. Design and development of software-defined overlay

networks have potential to lead to incremental SDN deployment, which reduces the initial

deployment costs and encourages the network operators to switch to SDN. Our goal is to

understand and develop software-defined overlays, particularly focusing on the question of

which network components should be SDN-enabled so that the benefits of SDNs are fully

exploited. Towards this goal, we first conduct a comprehensive review of SDNs. Then, we focus

on software-defined overlay networks. Finally, we implement a prototype networks to compare

software-defined overlays with pure SDN (where all network components are SDN-enabled),

and legacy networks (where none of the network components are SDN-enabled) via experiments

conducted using the Emulab networking test-bed.

We observe from our experiments that software-defined overlay networks are able to exploit the

full potential of SDNs, if the SDN-enabled switches are deployed by taking into account network

topologies. The performance of the SDN overlay network is comparable to the performance of

the full SDN and the full legacy network. We believe that our results would provide useful

insights on the incremental deployment of SDNs on top of the existing legacy networks.

1

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Statement

 The usage of computer communication networks, especially the Internet, has increased

significantly over the last few decades both in terms of number of users and average data traffic.

In the last decade, the number of Internet users increased from about nine hundred million users

to almost three billion, which is quite significant. Furthermore, the number of devices connected

to the Internet is estimated to be around seven billion based on the current world population [1].

 The growth in total traffic is also significant; in the last decade, the amount of annual IP

traffic over the Internet has increased by more than one thousand five hundred percent from 780

petabytes to more than 34,000 petabytes [2]. In the Unites States, in the same time period, the

amount of monthly Internet traffic increased from 140,00 Terabytes to 4,100,000 terabytes.

These statistics keep increasing and it is estimated that by 2018, the global Internet IP traffic will

increase to 84,000 petabytes [3].

 This exponential increase in data demand has made it necessary for network operators

and service providers to find new mechanisms of handling traffic and network management.

Software-defined networking (SDN) is a new paradigm in computer networking [4], and it has a

potential of handling larger and increasing traffic in today’s networks by providing more and

better control functionalities.

 In conventional networks, the control plane and the data plane are implemented, and

closely bound together, so they require individual configuration of each network element to

provide any additional functionalities. On the other hand, SDNs propose to separate the

2

data-plane from the control plane, and move the control plane functionalities to a central

controller [5], which is equipped with a global view of the network [6]. This makes it possible to

develop simple applications that run on the controller to perform any required functionalities.

 The SDN paradigm has introduced new aspects in research and industry by (i) providing

more granularity in network control, (ii) faster implementation of new services, (iii) elimination

of the need for specialized middle boxes, (iv) better security control, and (v) easier mechanisms

to test, develop, and deploy new services.

 However, majority of research on SDN assumes full SDN deployment; i.e., all the

network components should be SDN-enabled. Yet, this may not be possible in today’s networks,

where legacy devices, in addition to SDN-enabled devices, are commonly used. This thesis

focuses on software-defined networking overlays, which is a hybrid network where SDN-

enabled switches co-exist with legacy network components. This approach has a potential of

increasing the deployment of SDN networks as it provides incremental development and

deployment of SDNs. This approach also reduces high initial implementation costs of pure

SDNs. Legacy routing algorithms are robust to link failures and have fast convergence time.

SDN overlays can help network operators to benefit from these advantages of legacy networks

while enjoying, to some degree, the flexibility provided by SDNs. This thesis explores how

conventional legacy networks can be updated with SDN-enabled network components to create

SDN overlays.

1.2 Objectives

 The goal of this thesis is to understand and develop software-defined overlays,

particularly focusing on the question of which network components should be SDN-enabled so

3

that the benefits of SDNs are fully exploited. Towards this goal, we first conduct a

comprehensive review of SDNs, then we focus on software-defined overlay networks. Finally,

we implement a prototype to compare the performance of software-defined overlays with pure

SDN (where all network components are SDN-enabled), and legacy networks (where none of the

network components are SDN-enabled) via experiments conducted using the Emulab networking

test-bed.

1.3 Thesis Outline

 This thesis is organized as follows: Chapter one presents the problem statement, the

objectives, and the outline of the thesis. Chapter two presents a comprehensive review of

software-defined networking; it describes the SDN architecture, giving details of the SDN-

enabled switch data plane, OpenFlow, SDN controllers and a summary of network programing

languages. The third chapter gives a review of network overlay technologies and presents some

existing research in hybrid SDN. The fourth chapter gives the project methodology and it

presents the software and test-bed used in carrying out the experiments. The fourth chapter also

gives a detailed description of the experiments performed, presenting prototype topologies and

the results of the experiments. The final chapter provides our conclusions and future research

directions.

4

CHAPTER 2

OVERVIEW OF SOFTWARE-DEFINED NETWORKING

2.1 The Need for Software-Defined Networks

 Legacy networks are inherently difficult to manage and update, because most of the time

each single network element needs to be configured to run often-proprietary, complex,

distributed algorithms. These algorithms are usually integrated in the hardware and may not be

compatible with devices from other vendors. This makes the change or modification of such

algorithms difficult, if not impossible.

 Unlike conventional legacy networks in which the intelligence and control are distributed

across all network elements, SDN moves all the intelligence and control to a centralized

controller, which is equipped with a global network view. This makes it possible to develop

customized software on the controller side (control plane) to manage the network components

(data plane), i.e., it makes network components, hence networks, programmable. Thus, in the

core of SDN there is a highly intelligent controller, which manages the forwarding behavior of

the “dumb” network elements or switches in the data plane [7].

 SDN provides a programmatic, logically centralized interface to control the data-plane

network. Through this interface, a software program acts as a network controller by

implementing several rules, including forwarding, by possibly reacting to topology and traffic

variations [8]

 In SDN, the idea of software–hardware separation and dynamic network programmability

on a central controller have several advantages. First, data traffic can be grouped into fine-

5

grained classes (flows) based on a combination of all parameters that cuts across the protocol

stack and each of these flows can be treated differently at each switch. Hence the flow-based

nature of SDN offers more granularity (increased level of detail) in network control, i.e. in an

SDN-enabled switch, packets can be dropped, forwarded, or re-routed based on any combination

of parameters that cut across protocol stack. Second, due to the fact that the data plane elements

do not have to be intelligent, SDN network components cost less than the conventional network

components. SDN also removes the need for specialized, expensive middle-boxes, because all

middle-box functionalities can be programmed on the SDN controller. Furthermore, network

management is made much easier, because SDN networks do not have to run complex

distributed software. Advanced traffic engineering, network slicing, network virtualization, and

several other network functionalities can be realized in a simple manner via SDN. In addition,

the separation of the network software from the hardware implies that the two aspects can evolve

separately and at a faster rate, hence leading to a faster rate of innovation in network research.

2.2 Software-Defined Networking Architecture

 A simplified SDN architecture, as described by the Open Networking Foundation [9] -

the regulatory organization for OpenFlow, is shown in Figure 1. The SDN architecture separates

the network into the data plane, the control plane, and the application layer, which is

implemented above the control layer [10].

 The interfaces between the control layer and the infrastructure layer are referred to as the

southbound interfaces. OpenFlow [7] is just one example of such interfaces, although it is the

most popular, because it is an open source protocol. Another southbound interface is the Cisco

proprietary OpFlex protocol [11].

6

Figure 1. Software-defined networking architecture

7

 The northbound interfaces provide communication between the control plane and the

application programs [6]. High-level programs developed by using various languages can

communicate with the controller through these northbound APIs. Each of the layers and

interfaces in the SDN architecture are discussed in the subsequent sections.

2.2.1 The Data Plane

 In general, the data plane (also referred to as the forwarding plane) consists of all

physical devices that are involved in processing and forwarding of packets. These devices can be

switches, routers, firewalls, gateways, and all middle-boxes. In conventional networks, these

devices are pre-programmed or configured to carry out required specialized functions. However,

in SDN data plane, all these devices are replaced with simple SDN-enabled switches. An SDN

switch can be viewed as a switching device that can make forwarding decisions based on any

combination of parameters from layers 2, 3 and 4 of the network stack, utilizing flow-based

switching.

 SDN switches are often classified as software or hardware switches. The most popular

OpenFlow enabled software switch is the Open vSwitch [12], which can be installed on Linux-

based devices to make them function as a virtual switch with interfaces of the Linux-based

device as the switch’s interfaces. The Open vSwitch can also be installed on ASIC switches.

Other OpenFlow enabled software switches include the Pantou/OpenWrt switch, the

Ofsoftswitch, and the Indigo. Pantou OpenWRT can be installed on some commercial wireless

routers to convert them into OpenFlow enabled wireless switches, the Ofsoftswitch [13] can also

8

be installed on Linux machines while Indigo [14] can be installed on commercial switch ASICs,

to make them function as SDN-enabled devices.

In this thesis we use Open vSwitch software running on the Linux platform, to implement our

SDN-enabled switches. The Open vSwitch can also be ported to the NetFPGA platform to get

cheaper switching gear for research purposes and small-scale applications. There are also

implementations for wireless routers via OpenWrT on some supported simple access points.

 On the other hand, there are also a number of commercially available SDN-enabled

hardware switches by Cisco, Big switch, Arista, Brocade, Dell, HP, and many others [15].

2.2.2 South Bound API - OpenFlow Protocol

 In the SDN architecture, the southbound API defines the means of communication

between the control and data planes. A number of southbound protocols have been created, some

of which are open source, while the others are vendor-proprietary. Due to the extensive use of

the OpenFlow protocol in research and industry, we provide a detailed explanation of OpenFlow

next.

 The OpenFlow protocol was introduced by [7]. The initial purpose for developing the

OpenFlow protocol was to boost innovation in campus networks. It was also created to enable

computer networking research experiments to be tested on real networks, alongside regular

network traffic without causing disruption. In addition, it was also created to enable real-time

programmatic control of networks.

 OpenFlow is a protocol that enables communication between a centralized controller(s)

and the OpenFlow enabled switches in the SDN architecture. The controller defines the functions

9

including the forwarding behavior of all switches. The first packet of each new incoming flow

into a controller’s domain is transferred from the switch of entry into the controller on a secure

interface via OpenFlow protocol. The controller determines the appropriate behavior for all

connected SDN switches for that specific flow based on instructions specified in the application

layer. Then, the controller forwards control messages with appropriate flow entries to all the

switches in the network, and sends the packet back to the switch of entry, again via OpenFlow.

After this setting, all matching packets in the flow are forwarded directly by the switches based

on the flow entries that have been specified, without connecting to the controller, until specified

idle time-out or hard time-out expires [16].

 It is proposed in [7] that OpenFlow enabled switches must have an interface through

which they can receive control messages from the controller and a secure communication

channel, to transfer data and commands between the control plane and the forwarding plane.

 Furthermore, OpenFlow switches must have a flow table. Rules in the flow tables, called

flow entries, consist of match fields and corresponding actions that specify how the switch

handles each incoming flow. The flow table operates in a match-action processing. OpenFlow

match fields include destination and source MAC addresses, IP addresses, port numbers, VLAN

tag and several other fields. The OpenFlow switch specification 1.4 [17] gives a list of forty-two

flow marching fields.

 Each flow is specified by any possible combination of matching fields and will have

actions associated with it. The set of flow actions include output (to select the physical output

port through which packets should be sent out of a switch), drop (to drop all packets

corresponding to that flow entry), set (to change the source & destination IP, MAC, Port, VLAN

10

etc. for all packets in that flow) and many others. The full list can be found in [17].

2.2.3 Control Plane

One of the basic functionalities of OpenFlow is to connect the data plane to the control

plane. The control plane in an SDN is a logically centralized entity that performs all calculations

based on a global view of the network and sets flow entries on all switches. The controller is

responsible for maintaining all network functionalities and for distribution of appropriate

instructions to the network devices. Also, it is responsible for determining how to handle packets

without valid flow entries [18].

 In SDN, all the intelligence in the network is abstracted into the controller, which is in

charge of installing and deleting flow entries from tables. The controller decides the routes that

each packet takes by specifying the appropriate output ports for all incoming flows. Usually, data

plane elements send the first packet in a flow to the controller, the controller then decides the

appropriate paths for all packets that belong to the flow by processing this packet, then the

controller sends appropriate flow entries which show what to do with the packets to the data

plane elements.

 In this setup, an administrator can effectively control the flow of packets within the

network, great flexibility by developing software programs on top of the controller. There are

several controller platforms that have been developed in the literature; some of these are open-

source and available for free while others are not. A comprehensive listing of popular SDN

controllers are provided in [15].

 Due to the fact that the controller platform of choice for our implementations (provided in

chapter 4) was the POX controller, which is an extension of NOX, a detailed description of the

11

NOX and POX controllers is given below.

2.2.3.1 NOX

 One of the first OpenFlow standard controller platforms is the NOX controller [19]. It

was proposed as an open source network operating system, and was developed mainly in C++,

by Nicira - a company started by the initial inventors of the OpenFlow protocol.

 In a NOX controlled network, a set of switches is connected to one or more controllers

where the network management software applications run. NOX provides a network view that

includes switch level topology, locations of user hosts, middle-boxes, and all network elements

and services. It also provides a reasonable level of flow-based granularity. NOX works perfectly

with OpenFlow; if a packet doesn’t match flow entries on a switch, it is forwarded to one of the

control processes on the NOX [16].

 Applications that are created on the NOX controller use information from the packets to

determine whether or not to forward traffic and generate the appropriate set of actions. In NOX,

events can be generated directly by OpenFlow messages such as switch join, switch leave, packet

received, and switch statistics received. Other events can also be generated directly from NOX

processes [16].

2.2.3.2 POX

 POX was developed as an extension of the NOX controller [20]. It can be basically

considered as a Python version of NOX. It is used as a conventional teaching platform for

software-defined networking. The POX controller is targeted for research purposes and is

extensively used in combination with Mininet: a prototyping and virtualization software that can

be used to emulate SDN networks containing many hosts and switches in a personal computer.

12

Therefore, in this project, POX has been selected as our controller platform.

 Having presented a brief overview of SDN, we go on to discuss overlay networks and

hybrid SDN technologies in the next chapter.

13

CHAPTER 3

OVERLAY TECHNOLOGIES AND HYBRID SDN

3.1 The Concept of Overlays

Software-defined network overlays combine SDN with overlay networking concept. An overlay

network is a logical or virtual network built on top of an underlying physical network [21].

Overlay networks are composed of nodes, which are a subset of the nodes in a physical network,

and are connected by virtual/logical links that correspond to paths on that physical network.

 Overlay networks can be used to provide specialized routing, isolation, security,

multicast, mobility and several other services on legacy networks by modifying legacy devices or

adding new network devices. By deploying overlays, new services can be enabled in existing

networks without expensive hardware costs that may be associated with installation of the new

services. In this setup, only the specific nodes that require specialized services need to be

configured. Overlay networks are often built over existing networks using tunneling or

encapsulation to provide new services in networks with little or almost no changes to the

network infrastructure. Since our proposed SDN overlay networks will combine overlay

technologies with SDN, we present a brief description of overlay networking in the following

sections.

3.2 Overlay Networking Technologies

 In large datacenters, customers may require dedicated nodes in an isolated network. In

such networks, several customers may share the same physical infrastructure. However, each

customer will have a logically separate network that will be incapable of communicating with

14

other customers’ networks, even when they use the same physical nodes and links. By deploying

overlay networks, the problem can be easily solved and the physical network can provide

connectivity among nodes, while the overlay network handles high-level network policies using

tunnels and encapsulation to isolate traffic for each customer.

 One of the simplest methods of implementing overlay networks is by using virtual local

area networks (VLANs). VLANs can be used to separate a physical network into two or more

isolated logical networks, each with a unique VLAN identifier. The network devices or ports

with the same VLAN identifier can communicate, while the network elements with different

VLANs cannot communicate.

Figure 2: A VLAN overlay network. The VLAN in the overlay plane consists only of shaded

nodes in the underlying physical network. Un-shaded nodes cannot communicate with the

shaded nodes even though they may be physically connected.

15

VLANs are adequate for creating overlays in most small-scale enterprise networks. However, in

today’s datacenter networks, the most popular overlay network technologies are the Virtual

Extensible Local Area Network (VXLAN) and the Network Virtualization using Generic

Routing Encapsulation (NVGRE) overlay technologies. The two techniques are able to handle a

larger number of overlay networks, overcoming the limitations of VLAN.

 In VXLAN, an IP/UDP packet encapsulates the Ethernet frame. Frame encapsulation is

done at virtual tunnel endpoints (VTEP). VXLAN uses a 24-bit VXLAN header in the

encapsulation process providing up to 16 million virtual L2 networks. The VXLAN frame is

presented below.

 VXLAN Packet Original Frame

MAC
DA

MAC
SA

802.1Q
Tag

IP
DA

IP
SA

MAC
DA

MAC
SA

802.1Q
TAG

PAYLOAD

Figure 3. The VXLAN frame, showing how the original frame is encapsulated in another layer of

layer 3 and layer 2 headers.

 Network Virtualization using Generic Routing Encapsulation (NVGRE) [22] is another

popular overlay technology. At the sending end, NVGRE encapsulates an Ethernet Frame in an

additional IP header, appending a twenty-four bit TNI, and then sends it through an IP tunnel.

The receiving endpoint removes the encapsulation and forwards the packet to the actual

destination MAC, thus enabling the creation of virtual Layer 2 networks that can span multiple

16

physical Layer 3 IP networks.

3.3 Benefits of SDN Overlays

Having discussed the two main enabling technologies for our proposed SDN overlays (i.e.

SDN technology and network overlay technologies), we briefly discuss the potential benefits of

having software-defined overlay networks in this section.

The advantages of SDN, which are discussed in the previous chapter, make it crucial to

deploy SDN in legacy networks. Although, full SDN deployment offers the best of benefits in

terms of flexibility and programmability, a lot can be gained by deploying SDN infrastructure

alongside legacy network hardware, either in the form of overlays.

 An overlay of SDN on a legacy network will enable the implementation of specialized

policies and functions on traffic that flows through the SDN-enabled devices in such networks.

SDN overlays can be designed to ensure that the SDN-enabled devices handle the higher level

policy decisions, leaving the underlying legacy network to do the work of maintaining simple

connectivity across the network data path [8]. With this design, the hybrid or overlay network

can make use of almost all the benefits associated with full SDN.

 An advantage is that without much change to existing network, overlay SDN can make it

possible to restructure the physical networks, and upgrade them without much change to the

SDN controller policy. Since the legacy network is focused on maintaining connectivity, in the

event that there are minor changes or upgrades, the network will not be affected or require

changing of policies on the SDN-enabled devices. An SDN overlay can be designed to have very

fast response to link failures. Since routing algorithms on legacy devices with individual control

plane can quickly react to failures by making local decisions [23]. In the event of a link failure in

17

the underlay network, the distributed routing algorithms will quickly respond with alternative

routes in the SDN overlay network.

 Another major benefit for the deployment of SDN overlay networks is that it enables

incremental deployment of SDN on legacy networks. This is important for organizations with

existing legacy networks in the process of migration to SDN, especially because replacing all

equipment in an existing network might be prohibitively expensive.

3.4 Approaches to Hybrid SDN

 Before we discuss our methodology for implementing software-defined network

overlays, we examine some related work in hybrid SDN in this section. Hybrid SDN networks

are networks that contain both legacy and SDN-enabled devices. We define SDN overlay

network as a type of hybrid SDN network where overlay technologies are used to maintain

communication between SDN and legacy devices. Four types of hybrid SDN deployment

models: topology-based, service-based, class-based and integrated hybrid SDN are presented in

[23].

The topology-based SDN requires a physical separation of nodes within the network into

two zones: SDN zones and legacy network zones. Each node in the network belongs to only one

zone. An example is Google’s B4 network [24], which we discuss later in this section.

In the service-based model, both SDN and legacy networks are used to provide specific

services across the network. In this setup, it is possible for a single node to be part of both the

SDN and the legacy network. For instance, the legacy network may handle basic network

connectivity functions, while SDN is used to provide special services like traffic engineering,

18

access control, load balancing etc. [23]. An example of service based SDN is the OSHI [25].

 In the class-based hybrid SDN model, all devices in the network have both legacy and

SDN functionality. That is, each device can act as a legacy router and as a SDN switch

simultaneously. However, the SDN controller and the legacy routing algorithm are designed to

control distinct slices or classes of traffic flows. For instance, an SDN may be used to move all

HTTP traffic across a network while all other traffic is controlled by legacy routing techniques.

 Integrated hybrid SDN refers to networks in which SDN-enabled and legacy devices

operate together. In integrated hybrids, SDN communicates directly with the legacy routing

protocol and uses the legacy protocol to either inject routes into the node information base, or to

modify legacy network settings [23]. Examples of integrated hybrids in research are route flow

and software-defined exchange points (SDX) [26].

3.4.1 Google B4

 The Google B4 is a good example of topology-based SDN. B4 is the Google private

WAN network that connects all Google’s internal datacenters across the globe. Although Google

maintains legacy networking for its customer-facing network, it uses the B4 SDN network for

internal communication among its datacenters. The two isolated portions of the network

communicate at selected points creating a form of topology-based hybrid. At each node on the

Google B4 network, specialized servers enable distributed routing and central traffic engineering

as a routing overlay [24]. In the B4 network, the Quagga open-source routing daemon running

BGP/ISIS was used in conjunction with a SDN Routing Application Proxy (RAP) [24].

19

3.4.2 Open Source Hybrid IP/SDN (OSHI)

 OSHI is an implementation of hybrid SDN that utilizes an open source software switch,

which supports both SDN and legacy networking on the same device. The OSHI node combines

Quagga routing daemon for OSPF routing and the open vSwitch software for flow-based

switching on a Linux box. The SDN Capable Switch (SCS) is connected to the set of physical

network interfaces belonging to the integrated IP/SDN network, while the IP forwarding engine

is connected to a set of virtual ports of the SCS [25].

 OSHI uses VLAN tagging to distinguish between traffic to be processed by either SDN

or IP routing. OSHI have been deployed and tested on Mininet [27] and on the Ofelia test-bed

[26].

3.4.3 SDX

Software-defined Internet exchange SDX [26] applies SDN to legacy BGP WAN

networks to give better control and flexibility to BGP interconnections between ISPs at Internet

exchange points where multiple BGP networks meet. SDX uses an integrated hybrid SDN

approach, in which legacy routers running BGP communicate with the open flow enabled SDX

switch.

 The SDX switch has two main components; a policy compiler and a route server,

operating simultaneously on the same switch. The SDN component of the switch is the policy

compiler. It is a SDN controller application based on pyretic programming language (a

programming language for the POX controller platform). The route server serves as the legacy

network component. The route server used was ExaBGP: a python based router software for

Linux machines [26]. ExaBGP was configured to run the BGP routing protocol. When the route

20

server receives BGP adverts from participating ASes, it processes them and computes best paths

to each destination. The route server then sends the routes to the SDX policy compiler. The best

allowed paths, as determined by the SDX policy compiler application running on the SDN

controller, are then advertised back to the connected ASes via the route server [26].

 In summary, a common property of all the technologies described in this section is that

all of them utilize a route server or daemon (running a distributed routing protocol), in

conjunction with one or more SDN controller programs. However the link between the SDN and

legacy networks are implemented using various techniques. OSHI uses VLANs; Google B4

employs specialized software in conjunction with IP in IP tunneling. Our implementation of

SDN overlays relies on virtual extensible local area network (VXLAN) overlays to bridge

between SDN and legacy routing algorithms.

21

CHAPTER 4

METHODOLOGY AND IMPLEMETATION

4.1 Methodology

Our goal in this project is to understand the benefits of SDN in a legacy network without

replacing all devices in the network with SDN-enabled switches. To achieve this goal, we

consider SDN overlay networks. In this section, we show how SDN overlays can be

implemented by combining techniques drawn from our review of hybrid SDN technologies with

VXLAN overlay technology. We also show that the SDN overlay network can utilize all benefits

of SDN, without hurting throughput performance. Deploying SDN overlay networks provides

incremental deployment from full legacy network to a full SDN network. A simple sketch of the

proposed topology of an SDN overlay network is given in Fig. 4.

Figure 4: An SDN overlay network in which SDN switches interact with legacy networks

through VXLAN tunnels.

22

In Fig. 4, all SDN switches are connected to a central controller (which not shown to make the

figure clear) and they communicate with legacy devices using VXLAN tunnels.

We carried out a series of experiments on the Emulab test-bed [28] to demonstrate the

feasibility of our proposed SDN overlay network using a prototype. The topology of our

prototype SDN overlay network is presented in Fig.5. We carried out further experiments to

compare the operation of the system with legacy networks and SDN networks, which we discuss

later in this chapter. In particular, we implemented prototypes for a SDN overlay network, a full

SDN network and a full legacy network, using physical devices on the Emulab test-bed and

PhantomNet Testbed. Our experiments use open source software including Mininet [27], Quagga

[29], POX controller [20], the Open vSwitch [30] and Iperf [31].

Figure 5. The prototype SDN overlay network with two SDN switches and two legacy routers.

23

In our test-bed (Emulab), SDN switches are implemented as open vSwitches running on

Linux machines. The controller (POX) runs on a Linux device that has a direct connection with

all the SDN switches. To enable legacy routing, we use the Quagga routing daemon to enable

the open shortest path first (OSPF) routing protocol on our routers. All our devices are

implemented as Linux operating devices in the Emulab test-bed. In the next sub-section, we

provide a brief description of the Emulab test-bed environment, and we provide detailed

descriptions of our experiments afterwards.

4.1.1 The Emulab Test-bed

The Emulab test-bed is operated by the Flux Research Group of the University of Utah.

The test-bed allows researchers to develop, debug, and evaluate their research projects on

physical hardware from remote locations. It is incorporated in GENI and Planet lab test-beds

[28]. To use Emulab, an arbitrary network topology specified with a ns2 tcl [32] file, defines

specification of the nodes and links in the network. The operating systems for each node, the

properties for each link (bandwidth and delay), IP addresses and routing algorithm can also be

specified for all devices using the topology file.

When an experiment is initiated on the Emulab test-bed, each node in the topology file is

assigned to a physical device on the test-bed, and the required functionalities are activated. The

links, specified delay and bandwidth in the topology file are realized by using Ethernet

interfaces. After the initiation, necessary codes can be installed and run on any of the nodes to

provide additional functionalities. Software to implement routing, SDN switching and any other

functionalities may be installed on any node.

24

4.2 Experiment Setup

Three representative topologies were implemented out to evaluate the feasibility and

performance benefits of the proposed SDN overlay networks. The detailed descriptions for each

topology, and the results obtained are presented in this section. The topologies include the full-

legacy, full SDN and SDN overlay networks. The experiments with these topologies help us to

understand the performance of our proposed SDN overlay and compare it with full-legacy and

full SDN deployments. Next we provide a description of the full-legacy network topology.

4.2.1 Legacy Network

 The topology implemented for the case of a legacy network is shown in Fig.6. Four

legacy routers are implemented using Linux machines. The ns2 file that specifies the topology, is

provided in Appendix 1. Note that by specifying the command “$ns rtproto Manual” on the

topology file, we instruct Emulab to apply no routing algorithm on the network. After the

experiment was initiated, we installed the Quagga routing daemon on each of the routers and the

open shortest path first (OSPF) routing protocol is configured on all of them.

Routers r1 and r4 are physically connected via two paths. A fast path through r2 have

1Mbps links with 0ms delay, drop tail queuing and loss rate of 0.01%. The second path through

r3 have 500kbps links with 0ms delay, drop tail queuing and loss rate 0.01%, implying that the

path through r2 is much better than the path through r3.

We installed the Iperf throughput performance measurement software on the two end hosts to

generate and measure throughput across the network. The results of TCP and UDP throughput

tests are presented in Fig. 7. In this setup OSPF finds the best route, which is via r2. Fig. 7

confirms that, and OSPF selects the 1Mbps routes between h1 and h2. Fig. 8 provides the jitter

25

and the percentage of dropped packets.

Figure 6. Full legacy network prototype, showing routers r1 and r4 connected through two paths:

a 1Mbps path through r2 and a slower 500Kbps link through r3.

Figure 7. Throughput vs. time graph for the full legacy network, showing UDP and TCP

throughputs. As expected, the legacy network selects the 1000Mbps path between r1 and r4.

26

Figure 8. UDP jitter and percentage of dropped packets vs. time for the full legacy network.

4.2.2 Full SDN Network

 The topology we consider for the case of full SDN network is shown in Figure 9. The

specification of the topology using ns2 is presented in Appendix 2a. On Emulab, we

implemented the SDN switches with open vSwitch software running on a computer with a

SMORE-SDN disk image. In the topology h1 and h2 are end hosts, c1 is the SDN controller, and

ofs1, ofs2, ofs3 and ofs4 are SDN switches. As in the full legacy prototype network, there are

two paths between switches ofs1 and ofs4. That is, there is a high-speed path through ofs2 with

transmission rates 1Mbps, and a slower path through ofs3 with transmission rates of 500kbps.

The controller c1 is connected to each of the SDN switches through dedicated interfaces on a

different network.

 After initiating the experiment, we ran Open vSwitch on the SDN nodes. Afterwards, a

POX controller application is created in the controller c1, to manage the routing of end-to-end

traffic between the two hosts. The controller configuration codes are presented in Appendix 2b.

We designed our controller application to forward all http traffic (TCP port 80) through the high-

27

speed path (1Mbps) and all other traffic through the slower path (500kbps).

Figure 9. The full SDN network topology. Dotted lines indicate a direct connection from each

SDN switch to a central controller through dedicated interfaces.

Figure 10. Throughput vs. time for the full SDN topology. HTTP traffic (port number 80) are

routed through the 1000Mbps path while other traffic is forwarded through the 500Mbps path.

0

200

400

600

800

1000

1200

0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(k

p
b

s
)

Time (secs)

Throughput
Full SDN Network

Port 80 - TCP Throughput
Other Port - TCP traffic

28

After installing the Iperf software for network performance measurement on hosts h1 and

h2, we measured TCP and UDP throughput as a function of time (Fig. 10). As expected all http

traffic is routed through the high-speed path and other traffic was routed through the slower path.

The graphs for the throughput, jitter and percentage dropped packets are presented in Fig. 11.

Figure 11. UDP jitter and percentage dropped packets vs. time for the full SDN network. There

is more jitter and more packet are dropped for the non-HTTP traffic because they are routed

through a lower speed path.

 In the next sets of experiments, to show additional benefits of SDN over legacy networks,

we simultaneously transmit a file on TCP port 80 and on another file through an arbitrary port

29

(port 87) from h1 to h2. We start by transmitting on port 80. After 30 seconds we start

transmitting on port 87. We observe from the results in Fig. 12 that the SDN Controller is able to

transmit both of the two flows simultaneously via independent paths. The file transmitted on

TCP port 80 is sent via ofs2 at 1Mbps and the second file transmitted on TCP port 87 is sent via

ofs3 at 500Kbps. The additional data transmitted TCP port 87 does not adversely affect the

transmission via TCP port 80. Thus the throughput between hosts h1 and h2 is increased to a

maximum of 1.5Mbps as compared to 1Mbps observed in the legacy network implementation.

Figure 12. Simultaneous transmission full SDN network. We start by sending HTTP data on port

80 (1000Mbps), after 30 seconds, we begin to transmitting data with other port number

simultaneously. SDN enables simultaneous transmission of the two traffic classes making total

throughput 1500Mbps possible.

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 71 81 91

T
h

ro
u

g
h

p
u

t
(k

p
b

s
)

Time (secs)

Simultaneous TCP throughput
Full SDN network

Port 80 - TCP throughput Other Port - TCP traffic

30

4.2.3 SDN Overlay Network

In the final experiment, we consider a topology of an SDN overlay network on the

Emulab Testbed. The topology is shown in Fig. 13 and the configuration file for the network is

presented in Appendix 3a.

Figure 13. The hybrid SDN topology, showing VXLAN overlay tunnels across the legacy

network. When a controller is connected to switches ofs1 and ofs4, the configuration makes the

controller see the tunnel endpoints on each switch as Ethernet interfaces, with ofs1 and ofs2

appearing as if they are directly connected.

 In this set of experiments, we implement the SDN switches by installing open vSwitch

software on ofs1 and ofs4. We then configured an underlay legacy network by creating

appropriate routes on ofs1, ofs4, r2 and r3 to enable independent layer 3 communications

between ofs1 and ofs4, on the fast 1Mbps path and on the 500Kbps path. Afterwards, we created

31

VXLAN tunnels between ofs1 and ofs4 through the previously configured legacy network. The

commands used to create the tunnels are presented next.

ofs1# ovs-vsctl add-port br0 vtep -- set interface vtep type=vxlan

options:remote_ip=10.1.5.3 ofport_request=10
ofs1# ovs-vsctl add-port br0 vtep2 -- set interface vtep type=vxlan

options:remote_ip=10.1.6.3 ofport_request=20

ofs2# ovs-vsctl add-port br0 vtep -- set interface vtep type=vxlan

options:remote_ip=10.1.3.3 ofport_request=10
ofs1# ovs-vsctl add-port br0 vtep2 -- set interface vtep type=vxlan

options:remote_ip=10.1.4.3 ofport_request=20

 The first set of commands, show the configuration of two VXLAN tunnel end points

labeled vtep, and vtep2 on the SDN switch ofs1. The tunnel endpoints are configured with the IP

address of the destination switch interfaces to which packets will be delivered. The first tunnel

endpoint, vtep, sends packets through the 1Mbps path, while vtep2 sends packets through the

500Kbps path. The next set of commands is also applied on ofs2 to create similar VXLAN

endpoints on it.

After creating VXLAN tunnel endpoints on each switch, we configure the open

vSwitches on ofs1 and ofs2 with virtual interfaces (including the VXLAN endpoint). We then

connected the SDN switches to the POX controller. The controller program is similar to the one

used for implementing our full SDN topology; it contains modifications to support the VXLAN

interfaces used in the SDN overlay topology. The controller code we developed is also presented

in appendix 3b. After creating the topology, Iperf tests are performed to measure the throughput

between host 1 and host 2. Note that, our goal is to see if the SDN overlay topology can perform

exactly as the full-SDN topology. The results obtained are explained next.

 Based on observations of throughput in Fig. 14., the performance of the SDN overlay

32

topology is very similar to the performance of the full-SDN prototype. HTTP packets (port 80)

are routed through the high-speed links (1Mbps) as specified in the controller instructions, while

other packets are routed through the slower links (500 Kbps) as expected. The throughputs for

simultaneous transmission of traffic on port 80 and traffic on other ports are also measured. The

results (shown in Fig 16) are similar to that of the full SDN network in Fig. 12.

Figure 14. Throughput vs. time in SDN overlay network. HTTP traffic (TCP port 80) is routed

through the 1Mbps path while other traffic is forwarded through the 500Mbps path. The results

are comparable with that of the full SDN topology in Fig. 10.

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(k

p
b

s
)

Time (secs)

Throughput
SDN overlay network

Port 80 - TCP Throughput Other Port - TCP traffic
Port 80 - UDP Throughput Other Port -UDP Throughput

33

Figure 15. UDP jitter and percentage of dropped packets vs. time for the SDN overlay network.

The results are similar to those obtained for full legacy and full SDN provided in Fig. 8 and 11.

Figure 16. Simultaneous transmission in hybrid SDN network. We start by sending HTTP data

on port 80 (1Mbps), after 30 seconds, we begin to transmitting data with other port number

simultaneously. The overlay SDN enables simultaneous transmission of the two traffic classes

making total throughput 1.5Mbps possible. This result is very similar to what was obtained for

the full SDN topology in Fig. 12.

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70 80 90

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

time (secs)

Simultaneous TCP throughput

SDN overlay network

Throughput Port 80 Throughput - Other Ports Total Throughput

34

4.3 Comparing Legacy, Full-SDN and SDN-Overlay Network Throughput

In this section, we provide a comparison of the performance for HTTP traffic on legacy

network, full SDN, and overlay SDN. The graph presented in Fig. 17. compares the UDP

throughput for the three networks, while Table 1. gives a comparison the average values of TCP

throughput, UDP throughput, jitter, percentage of dropped packets and throughput for

simultaneous transmission of two flows.

Figure 17. Throughput comparison of SDN overlay with full SDN and full legacy network.

0

200

400

600

800

1000

1200

9 19 29 39 49 59

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Time (secs)

UDP Throughput

Full Legacy Full SDN Overlay SDN

35

Table 1: Comparison of SDN overlay network performance with full legacy and full SDN

networks.

Full legacy

network

Full SDN

network

SDN overlay

network

Average TCP throughput (Kbps) 738.37 881.93 758.70

Average UDP throughput (Kbps) 943.23 955.33 898.93

Average jitter (seconds) 1.64 1.57 1.83

Average dropped packets (%) 9.94 8.87 14.04

Average throughput for simultaneous

flows transmission (Mbps)

734.00 1288.53 1056.60

Fig. 17. and Table 1. show that the performance of the proposed SDN overlay network is

found to be comparable with that of full SDN and full legacy networks. The TCP throughput and

UDP throughput for the overlay network are compatible with the full SDN and full legacy

network. The jitter, the percentage of dropped packets and the throughput for simultaneous

transmission also show comparable behavior. The overlay network seems to have a slightly

smaller UDP throughput. The very little difference could be attributed to additional processing

required to perform the overlay functions, and can be ignored since the overlay system is able to

take full advantage of the benefits of SDN to easily implement specialized services like traffic

engineering and load-balancing without replacing all devices with SDN switches.

36

CHAPTER 5

CONCLUSION

5.1 Conclusion

In the previous chapters, we carried out a study of SDN and overlay technologies. We

examined existing research in hybrid SDN and gave descriptions of some Hybrid SDN

architectures that have been proposed in literature. We presented an SDN overlay architecture

that combines SDN and OSPF legacy routing with VXLAN overlay technology. We

implemented a prototype of the SDN overlay, and we carried out experiments to determine the

performance of the network. We also compared its performance with similar full legacy and full

SDN networks.

 In our experiments, we observe that the performance of the SDN overlay network is

comparable to the performance of the full SDN and the full legacy network. We also observe that

we were able to implement all the functionalities of a full SDN network on the SDN overlay.

Therefore, we conclude that by deploying SDN overlays, it is possible to have full SDN

functionality on a network without replacing all legacy devices with SDN-enabled switches. This

result helps to save cost for organizations that seek to migrate to SDN

5.2 Future Directions

We intend to carry out further research to improve on SDN overlays by considering other

overlay technologies besides VXLAN. We will create experiments on more complex topologies

and we will also consider specific applications of SDN overlays to wireless networks. Methods

37

investigated, and finally, we will develop a means of automating the configuration of SDN

overlays on networks.

38

REFERENCES

[1] Statista inc., "Number of worldwide internet users from 2000 to 2014 (in millions)," 2014.

[Online]. Available: http://www.statista.com/statistics/273018/number-of-internet-users-

worldwide/. [Accessed 2014].

[2] Wikipedia, 2014. [Online]. Available: http://en.wikipedia.org/wiki/Internet_traffic..

[3] Cisco, 2014. [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html.

[4] A. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv, M. Schapira and A.

Valadarsky, "VeriCon: towards verifying controller programs in software-defined networks",

Proceedings of ACM SIGPLAN Conference, 2014.

[5] F. Bari, A. R. Roy, S. R. Chowdhury, Q Zhang, M. F. Zhani, R. Ahmed, and R. Boutaba,

"Dynamic Controller Provisioning in Software-Defined Networks", 9th CNSM and Workshops,

2013.

[6] W. Braun, M.Menth, "Software-Defined Networking Using OpenFlow: Protocols, Applications

and Architectural Design Choices". Future Internet, 2014.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker

and J. Turner, "Openflow: enabling innovation in campus networks," in ACM SIGCOMM Comp.

Commun. Rev. 38 (2), 2008.

[8] D. Levin, M. Canini, S. Schmid and A. Feldman, "Panopticon: Reaping the Benefits of Partial

SDN Deployment in Enterprise Networks," in USENIX ATC, 2014.

[9] Open Networking foundation, "Software-Defined Networking: The New Norm for Networks,"

2012. [Online].

[10] P. Wang, J. Luo, W. Li, Y. Qu, "NCPP: A Network Control Programmale Platform of

Trustworthy Controllable Network," IEEE International Conference on Distributed Computing

Systems Workshops, 2009.

[11] Cisco Systems inc., "OpFlex: An Open Policy Protocol," 2014. [Online]. Available:

http://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-

infrastructure/white-paper-c11-731302.pdf. [Accessed 2014].

39

 REFERENCES (continued)

[12] Open vSwitch, "Production Quality, Multilayer Open Virtual Switch," 2014. [Online].

Available: http://openvswitch.org/. [Accessed 2014].

[13] CPqD, "CPqD OpenFlow 1.3 Software Switch," 2014. [Online]. Available:

http://cpqd.github.io/ofsoftswitch13/. [Accessed 2014].

[14] Big Switch, "Indigo Project," 2014. [Online]. Available:

http://www.projectfloodlight.org/indigo/. [Accessed 2014].

[15] B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka and T. Turletti, "A Survey of

Software-Defined Networking: Past, Present, and Future of Programmable Networks," HAL-

INRA 00825087, version 5, 2014.

[16] Nicira Networks, Inc., "Evolution Of The Ethane Architecture", Technical Report AFRL-RI-

RS-TR-2009-41 For The Air Force Research Laboratory, Information directorate new york,

2009.

[17] Open Networking Foundation, "Openflow switch specification v1.4," 2013. [Online].

[18] M. Jammala, T. Singh, A. Shami, R. Asalb and Y. Lic, "Software-Defined Networking: State of

the Art and Research Challenges," Elsevier’s Journal of Computer Networks, 2013.

[19] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown and S. Shenker, "NOX:

towards an operating system for networks," in ACM SIGCOMM, 2008.

[20] noxrepo.org, "About POX," 2012. [Online]. Available: http://www.noxrepo.org/pox/about-

pox/. [Accessed 2014].

[21] J. Qadir1, N. Ahmed and N Ahad, "Building programmable wireless networks: an architectural

survey", URASIP Journal on Wireless Communications and Networking, 2014.

[22] A. Wang, M. Iyer, R. Dutta, G.N. Rouskas and I.Baldine, "Network Virtualization:

Technologies, Perspectives, and Frontiers" IEEE Journal of Lightwave Technology, vol.31,

no.4, pp.523,537, Feb.15, 2013

[23] S. Vissicchio, L. Vanbever and O. Bonaventure, "Networks, Opportunities and Research

Challenges of Hybrid Software-Defined Networking," Computer communication Review, 2014.

40

 REFERENCES (continued)

[24] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J.

Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart and A. Vahdat, “B4: Experience with a Globally-

Deployed Software Defined WAN,” in SIGCOMM, 2013.

[25] S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, M. Gerola and E. Salvadori, "OSHI - Open

Source Hybrid IP/SDN networking (and its emulation on Mininet and on distributed SDN

testbeds)," in EWSDN, Budapest, 2014.

[26] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker, N. Feamster, J. Rexford, S.

Shenker, R. Clark and E. Katz-Bassett, “SDX: a software-defined internet exchange,” in

SIGCOMM, 2014.

[27] B. Lantz, B. Brandon Heller and N. McKeown, "A Network in a Laptop: Rapid Prototyping for

Software-Defined Networks," in HotNets 2010, 2010.

[28] Flux Research Group, University of Utah, "Emulab," 2014. [Online]. Available:

http://www.flux.utah.edu/project/emulab.

[29] K. Ishiguro, "Quagga - a Routing Software Package for TCP/IP Networks," 2013. [online]

http://www.nongnu.org/quagga/docs/quagga.pdf. [Accessed 2014]

[30] "Open vSwitch.," 2013. [Online] Available: http://www.openvswitch.org/. [Accessed 2014].

[31] A.Tirumala, F. Qin, J. Dugan, J. Ferguson, K. Gibbs, "Iperf: The TCP/UDP bandwidth

measurement tool" [online] - http://dast. nlanr. net/Projects, 2005

[32] The Network Simulator - ns2, http://www.isi.edu/nsnam/ns/..[Accessed 2014]

[33] C. N. Chuah, "Overlay Networks - Indirection & Virtualization DIMACS Tutorial on

Algorithms for Next Generation Networks," [Online]. Available:

http://www.ece.ucdavis.edu/rubinet .

[34] N. Feamster, J. Rexford and E. Zegura, "Road to SDN," in ACM Computer Communications

Review, 2014.

[35] M. Casado, N. McKeown, M. J. Freedman, J. Pettit, J. Luo and S. Shenker, "ETHANE: Taking

Control of the Enterprise," in ACM SIGCOMM, 2007.

41

 REFERENCES (continued)

[36] A. Köpsel, H.Woesner, "OFELIA – Pan-European Test Facility for OpenFlow Experimentation

" pg 311 - 312, Towards a service based Internet, Springer, 2010.

[37] N. Foster, M. J. Freedman, A. Guha, R. Harrison, N. P. Katta, C. Monsanto, J. Reich, M.

Reitblatt, J. Rexford, C. Schlesinger, A. Story and D. Walker, "Languages for Software-

Defined Networks," IEEE Communication Magazine, February 2013.

[38] A. Voellmy, H. Kim and N. Feamster, "Procera: A Language for High-Level Reactive Network

Control," in HotSDN 2012, 2012.

[39] J. Luo, J. Pettit, M. Casado, J. Lockwood and N. McKeown, "Prototyping Fast, Simple, Secure

Switches for ETHANE," in IEEE Symposium - High-Performance Interconnects, HOTI 2007,

2007.

[40] M. Casado, N. McKeown, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh and S. Shenker,

"SANE: A Protection Architecture for Enterprise Networks," in USENIX Security Symposium,

2006.

[41] Flux Research Group, University of Utah, "Phantomnet Testbed," 2014. [Online]. Available:

Phantomnet.org.

42

APPENDICES

43

APPENDIX A

Codes: Full Legacy Network

Topology File – Legacy Network

set ns [new Simulator]

source tb_compat.tcl

set h1 [$ns node]

set h2 [$ns node]

set r1 [$ns node]

set r2 [$ns node]

set r3 [$ns node]

set r4 [$ns node]

set linkh1r1 [$ns duplex-link $h1 $r1 100Mb 50ms DropTail]

tb-set-link-loss $linkh1r1 0.01

set linkr1r2 [$ns duplex-link $r1 $r2 10Mb 50ms DropTail]

tb-set-link-loss $linkr1r2 0.01

set linkr1r3 [$ns duplex-link $r1 $r3 100Mb 50ms DropTail]

tb-set-link-loss $linkr1r3 0.01

set linkr2r4 [$ns duplex-link $r2 $r4 10Mb 50ms DropTail]

tb-set-link-loss $linkr2r4 0.01

set linkr3r4 [$ns duplex-link $r3 $r4 100Mb 50ms DropTail]

tb-set-link-loss $linkr3r4 0.01

set linkr4h2 [$ns duplex-link $r4 $h2 100Mb 50ms DropTail]

tb-set-link-loss $linkr4h2 0.01

tb-set-node-os $h1 UBUNTU12-64-STD

tb-set-node-os $h2 UBUNTU12-64-STD

tb-set-node-os $r1 UBUNTU12-64-STD

tb-set-node-os $r2 UBUNTU12-64-STD

tb-set-node-os $r3 UBUNTU12-64-STD

tb-set-node-os $r4 UBUNTU12-64-STD

$ns rtproto Manual

Go!

$ns run

44

APPENDIX B

Codes: Full SDN Network

Topology File – Full SDN Network

set ns [new Simulator]

source tb_compat.tcl

set h1 [$ns node]

set h2 [$ns node]

set ofs1 [$ns node]

set ofs2 [$ns node]

set ofs3 [$ns node]

set ofs4 [$ns node]

set c1 [$ns node]

set linkh1ofs1 [$ns duplex-link $h1 $ofs1 2000Kb 0ms DropTail]

tb-set-link-loss $linkh1ofs1 0.01

set linkofs1ofs3 [$ns duplex-link $ofs1 $ofs3 500Kb 0ms DropTail]

tb-set-link-loss $linkofs1ofs3 0.01

set linkofs1ofs2 [$ns duplex-link $ofs1 $ofs2 1000Kb 0ms DropTail]

tb-set-link-loss $linkofs1ofs2 0.01

set linkofs2ofs4 [$ns duplex-link $ofs2 $ofs4 1000Kb 0ms DropTail]

tb-set-link-loss $linkofs2ofs4 0.01

set linkofs3ofs4 [$ns duplex-link $ofs3 $ofs4 500Kb 0ms DropTail]

tb-set-link-loss $linkofs3ofs4 0.01

set linkofs4h2 [$ns duplex-link $ofs4 $h2 2000kb 0ms DropTail]

tb-set-link-loss $linkofs4h2 0.01

tb-set-node-os $h1 UBUNTU12-64-STD

tb-set-node-os $h2 UBUNTU12-64-STD

tb-set-node-os $ofs1 "PhantomNet/SMORE-SDN"

tb-set-node-os $ofs2 "PhantomNet/SMORE-SDN"

tb-set-node-os $ofs3 "PhantomNet/SMORE-SDN"

tb-set-node-os $ofs4 "PhantomNet/SMORE-SDN"

tb-set-node-os $c1 UBUNTU12-64-STD

Go!

$ns rtproto Manual

$ns run

45

APPENDIX B (continued)

Controller code – Full SDN Network

#excerpts of ControllerFullSDN.py

#controller codes for the Full SDN network

import pox.openflow.libopenflow_01 as of

import pox.openflow.discovery

from pox.core import core

from pox.lib.addresses import EthAddr, EthAddr

from pox.lib.util import dpidToStr

...

...

class FullSDN(EventMixin):

 def __init__(self):

 ...

 ...

 #define switch ids and host addresses

 ofs1_dpid = '00-04-23-b7-19-70'

 ofs2_dpid = '00-04-23-b7-1c-e2'

 ofs3_dpid = '00-04-23-b7-3e-a2'

 ofs4_dpid = '00-04-23-b7-19-02'

 h1_mac = '00:04:23:b1:f0:ac'

 h2_mac = '00:04:23:b7:1a:f8'

 ...

 ...

 #A dictionary that shows gives the output interface

 #for each flow, at each of-switch based on the

 #tcp port number

 self.portmap80 = {

 (ofs1_dpid, EthAddr (h1_mac)): 5,

 (ofs1_dpid, EthAddr (h2_mac)): 4,

 (ofs2_dpid, EthAddr (h1_mac)): 4,

 (ofs2_dpid, EthAddr (h2_mac)): 5,

 (ofs4_dpid, EthAddr (h1_mac)): 4,

 (ofs4_dpid, EthAddr (h2_mac)): 3}

 self.portmapOther = {

 (ofs1_dpid, EthAddr (h1_mac)): 5,

 (ofs1_dpid, EthAddr (h2_mac)): 2,

 (ofs3_dpid, EthAddr (h1_mac)): 3,

 (ofs3_dpid, EthAddr (h2_mac)): 2,

 (ofs4_dpid, EthAddr (h1_mac)): 2,

 (ofs4_dpid, EthAddr (h2_mac)): 3}

 ...

 ...

 def _handle_ConnectionUp(self, event):

 dpid = dpidToStr(event.dpid)

 log.debug("Switch %s has come up.", dpid)

 ...

 ...

46

 APPENDIX B (continued)

def _handle_PacketIn (self, event):

 #Function that defines how incoming packets are handled

 mypkt = event.parsed

 def create_fwdrule(event,mypkt,outport):

 #define function to install forwarding rules

 rule = of.ofp_flow_mod()

 rule.match = of.ofp_match.from_packet(packet, event.port)

 rule.actions.append(of.ofp_action_output(port = outport))

 rule.data = event.ofp

 rule.in_port = event.port

 event.connection.send(rule)

 def forwardpkt (fwd_msg = None):

 this_dpid = dpid_to_str(event.dpid)

 if packet.dst.is_multicast:

 #flood

 return

 else:

 try:

 tcppp = 0

 if event.parsed.find('tcp'):

 tcppp = event.parsed.find('tcp')

 elif event.parsed.find('udp'):

 tcppp = event.parsed.find('udp')

 if tcppp.dstport == 80:

 key_port = 80

 log.debug("key tcport is "+str(key_port)+" bloc")

 outport = self.portmap80 [(dpid_to_str (

 event.dpid), packet.dst)]

 else:

 key_port = 27 #dummy port value for non TCP

 log.debug("key tcport is "+str(key_port))

 outport = self.portmapOther[(dpid_to_str

 (event.dpid), packet.dst)]

 log.debug("new tcp pkt @ swh:"+dpid_to_str

 (event.dpid)+" tcpt:"+str(key_port)+ "

 dst:"+str(packet.dst)+" ==> _port="+str(outport))

 create_fwdrule(event,packet,outport)

 log.debug("flow matched & installed")

 except AttributeError:

 log.debug("no TCP port, flood")

 create_fwdrule(event,packet,of.OFPP_FLOOD)

 fowardpkt()

...

...

def launch():

 pox.openflow.discovery.launch()

 core.registerNew(VideoSlice)

47

APPENDIX C

Codes: Hybrid SDN Network

Topology File – Hybrid SDN

set ns [new Simulator]

source tb_compat.tcl

set h1 [$ns node]

set h2 [$ns node]

set ofs1 [$ns node]

set r2 [$ns node]

set r3 [$ns node]

set ofs4 [$ns node]

set c1 [$ns node]

set linkh1ofs1 [$ns duplex-link $h1 $ofs1 2000Kb 0ms DropTail]

tb-set-link-loss $linkh1ofs1 0.01

set linkofs1r2 [$ns duplex-link $ofs1 $r2 1000Kb 0ms DropTail]

tb-set-link-loss $linkofs1r2 0.01

set linkofs1r3 [$ns duplex-link $ofs1 $r3 500Kb 0ms DropTail]

tb-set-link-loss $linkofs1r3 0.01

set linkr2ofs4 [$ns duplex-link $r2 $ofs4 1000Kb 0ms DropTail]

tb-set-link-loss $linkr2ofs4 0.01

set linkr3ofs4 [$ns duplex-link $r3 $ofs4 500Kb 0ms DropTail]

tb-set-link-loss $linkr3ofs4 0.01

set linkofs4h2 [$ns duplex-link $ofs4 $h2 2000Kb 0ms DropTail]

tb-set-link-loss $linkofs4h2 0.01

tb-set-node-os $h1 UBUNTU12-64-STD

tb-set-node-os $h2 UBUNTU12-64-STD

tb-set-node-os $ofs1 "PhantomNet/SMORE-SDN"

tb-set-node-os $r2 UBUNTU12-64-STD

tb-set-node-os $r3 UBUNTU12-64-STD

tb-set-node-os $ofs4 "PhantomNet/SMORE-SDN"

tb-set-node-os $c1 UBUNTU12-64-STD

Go!

$ns rtproto Manual

$ns run

48

APPENDIX C (continued)

Controller code – Hybrid SDN

#excerpts of controllerHybridSDN.py

#controller code for the Hybrid SDN network

import pox.openflow.libopenflow_01 as of

import pox.openflow.discovery

from pox.core import core

from pox.lib.addresses import EthAddr, EthAddr

from pox.lib.util import dpidToStr

from collections import defaultdict

...

...

class HybridSDN(EventMixin):

 def __init__(self):

 ...

 ...

 #define switch ids and host addresses

 ofs1_dpid = '00-04-23-b7-1e-1e'

 ofs4_dpid = '00-04-23-b7-26-ae'

 h1_mac = '00:04:23:b7:19:62'

 h2_mac = '00:04:23:b7:1b:49'

 ...

 ...

 #A dictionary that shows gives the output interface

 #for each flow, at each of-switch based on the

 #tcp port number

 self.portmap80 = {

 (ofs1_dpid, EthAddr (h1_mac)): 2,

 (ofs1_dpid, EthAddr (h2_mac)): 11,

 (ofs4_dpid, EthAddr (h1_mac)): 11,

 (ofs4_dpid, EthAddr (h2_mac)): 4}

 self.portmapOther = {

 (ofs1_dpid, EthAddr (h1_mac)): 2,

 (ofs1_dpid, EthAddr (h2_mac)): 12,

 (ofs4_dpid, EthAddr (h1_mac)): 12,

 (ofs4_dpid, EthAddr (h2_mac)): 4}

 ...

 ...

 def _handle_ConnectionUp(self, event):

 dpid = dpidToStr(event.dpid)

 log.debug("Switch %s has come up.", dpid)

 ...

 ...

 def _handle_PacketIn (self, event):

 Function that defines how incoming packets are handled

 mypkt = event.parsed

49

APPENDIX C (continued)

 def create_fwdrule(event,mypkt,outport):

 #define function to install forwarding rules

 rule = of.ofp_flow_mod()

 rule.match = of.ofp_match.from_packet(packet, event.port)

 rule.actions.append(of.ofp_action_output(port = outport))

 rule.data = event.ofp

 rule.in_port = event.port

 event.connection.send(rule)

 def forwardpkt (fwd_msg = None):

 this_dpid = dpid_to_str(event.dpid)

 if packet.dst.is_multicast:

 flood()

 return

 else:

 try:

 tcppp = 0

 if event.parsed.find('tcp'):

 tcppp = event.parsed.find('tcp')

 elif event.parsed.find('udp'):

 tcppp = event.parsed.find('udp')

 if tcppp.dstport == 80:

 key_port = 80

log.debug("key tcport is "+str(key_port)+" bloc")

outport = self.portmap80[(dpid_to_str (event.dpid),

packet.dst)]

 else:

 key_port = 27 #dummy port non TCP traffic

 log.debug("key tcport is "+str(key_port))

outport = self.portmapOther[(dpid_to_str (event.dpid),

packet.dst)]

log.debug("new tcp pkt @ swh:"+dpid_to_str (event.dpid)+"

tcpt:"+str(key_port)+" dst:"+str(packet.dst)+" ==>

out_port="+str(outport))

 create_fwdrule(event,packet,outport)

 log.debug("flow matched & installed")

 except AttributeError:

 log.debug("no TCP port, flood")

 create_fwdrule(event,packet,of.OFPP_FLOOD)

 fowardpkt()

...

...

def launch():

 pox.openflow.discovery.launch()

 pox.openflow.spanning_tree.launch()

 core.registerNew(Tcpportslicing)

50

VITA

NAME Oluwamayowa Ade Adeleke

EDUCATION B.Tech., Electronic and Electrical Engineering, Ladoke Akintola

University of Technology, Ogbomoso, Nigeria, 2010

M.S., Electrical and Computer Engineering, University of Illinois at

Chicago, Chicago, Illinois, 2015

TEACHING AND

PROFESSIONAL

EXPERIENCE:

Graduate Teaching Assistant, Electrical and Computer Engineering

Department, University of Illinois 2014 – 2014

Transmission Planning Engineer (Trainee), Alcatel Lucent Nigeria 2011 –

2012

Intern – Mobile Architecture and Design Department, Alcatel Lucent

Nigeria 2009-2009

HONORS: Postgraduate Scholarship Awards, National Information Technology

development Agency, Nigeria, 2013/2014

Undergraduate University Scholarship, Nigerian National Petroleum

Corporation & ExxonMobil Nigeria, 2006-2010

PROFESSIONAL

MEMBERSHIP:

Institute of Electrical and Electronics Engineers

Association for Computing Machinery

