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SUMMARY 

The focus of this study is on software-defined overlay networks, that is, networks which 

accommodate both legacy network components such as conventional switches and routers as 

well as SDN-enabled network components. Design and development of software-defined overlay 

networks have potential to lead to incremental SDN deployment, which reduces the initial 

deployment costs and encourages the network operators to switch to SDN. Our goal is to 

understand and develop software-defined overlays, particularly focusing on the question of 

which network components should be SDN-enabled so that the benefits of SDNs are fully 

exploited.  Towards this goal, we first conduct a comprehensive review of SDNs. Then, we focus 

on software-defined overlay networks. Finally, we implement a prototype networks to compare 

software-defined overlays with pure SDN (where all network components are SDN-enabled), 

and legacy networks (where none of the network components are SDN-enabled) via experiments 

conducted using the Emulab networking test-bed.  

We observe from our experiments that software-defined overlay networks are able to exploit the 

full potential of SDNs, if the SDN-enabled switches are deployed by taking into account network 

topologies. The performance of the SDN overlay network is comparable to the performance of 

the full SDN and the full legacy network. We believe that our results would provide useful 

insights on the incremental deployment of SDNs on top of the existing legacy networks.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation and Problem Statement 

 The usage of computer communication networks, especially the Internet, has increased 

significantly over the last few decades both in terms of number of users and average data traffic. 

In the last decade, the number of Internet users increased from about nine hundred million users 

to almost three billion, which is quite significant. Furthermore, the number of devices connected 

to the Internet is estimated to be around seven billion based on the current world population [1].  

 The growth in total traffic is also significant; in the last decade, the amount of annual IP 

traffic over the Internet has increased by more than one thousand five hundred percent from 780 

petabytes to more than 34,000 petabytes [2]. In the Unites States, in the same time period, the 

amount of monthly Internet traffic increased from 140,00 Terabytes to 4,100,000 terabytes. 

These statistics keep increasing and it is estimated that by 2018, the global Internet IP traffic will 

increase to 84,000 petabytes [3].  

 This exponential increase in data demand has made it necessary for network operators 

and service providers to find new mechanisms of handling traffic and network management. 

Software-defined networking (SDN) is a new paradigm in computer networking [4], and it has a 

potential of handling larger and increasing traffic in today’s networks by providing more and 

better control functionalities.  

 In conventional networks, the control plane and the data plane are implemented, and 

closely bound together, so they require individual configuration of each network element to 

provide any additional functionalities. On the other hand, SDNs propose to separate the 
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data-plane from the control plane, and move the control plane functionalities to a central 

controller [5], which is equipped with a global view of the network [6]. This makes it possible to 

develop simple applications that run on the controller to perform any required functionalities.  

 The SDN paradigm has introduced new aspects in research and industry by (i) providing 

more granularity in network control, (ii) faster implementation of new services,  (iii) elimination 

of the need for specialized middle boxes, (iv) better security control, and (v) easier mechanisms 

to test, develop, and deploy new services.  

 However, majority of research on SDN assumes full SDN deployment; i.e., all the 

network components should be SDN-enabled. Yet, this may not be possible in today’s networks, 

where legacy devices, in addition to SDN-enabled devices, are commonly used. This thesis 

focuses on software-defined networking overlays, which is a hybrid network where SDN-

enabled switches co-exist with legacy network components. This approach has a potential of 

increasing the deployment of SDN networks as it provides incremental development and 

deployment of SDNs. This approach also reduces high initial implementation costs of pure 

SDNs. Legacy routing algorithms are robust to link failures and have fast convergence time. 

SDN overlays can help network operators to benefit from these advantages of legacy networks 

while enjoying, to some degree, the flexibility provided by SDNs. This thesis explores how 

conventional legacy networks can be updated with SDN-enabled network components to create 

SDN overlays. 

1.2 Objectives 

 The goal of this thesis is to understand and develop software-defined overlays, 

particularly focusing on the question of which network components should be SDN-enabled so 
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that the benefits of SDNs are fully exploited. Towards this goal, we first conduct a 

comprehensive review of SDNs, then we focus on software-defined overlay networks. Finally, 

we implement a prototype to compare the performance of software-defined overlays with pure 

SDN (where all network components are SDN-enabled), and legacy networks (where none of the 

network components are SDN-enabled) via experiments conducted using the Emulab networking 

test-bed. 

1.3 Thesis Outline 

 This thesis is organized as follows: Chapter one presents the problem statement, the 

objectives, and the outline of the thesis. Chapter two presents a comprehensive review of 

software-defined networking; it describes the SDN architecture, giving details of the SDN-

enabled switch data plane, OpenFlow, SDN controllers and a summary of network programing 

languages. The third chapter gives a review of network overlay technologies and presents some 

existing research in hybrid SDN. The fourth chapter gives the project methodology and it 

presents the software and test-bed used in carrying out the experiments. The fourth chapter also 

gives a detailed description of the experiments performed, presenting prototype topologies and 

the results of the experiments. The final chapter provides our conclusions and future research 

directions.
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CHAPTER 2  

OVERVIEW OF SOFTWARE-DEFINED NETWORKING 

2.1 The Need for Software-Defined Networks  

 Legacy networks are inherently difficult to manage and update, because most of the time 

each single network element needs to be configured to run often-proprietary, complex, 

distributed algorithms. These algorithms are usually integrated in the hardware and may not be 

compatible with devices from other vendors. This makes the change or modification of such 

algorithms difficult, if not impossible.  

 Unlike conventional legacy networks in which the intelligence and control are distributed 

across all network elements, SDN moves all the intelligence and control to a centralized 

controller, which is equipped with a global network view. This makes it possible to develop 

customized software on the controller side (control plane) to manage the network components 

(data plane), i.e., it makes network components, hence networks, programmable. Thus, in the 

core of SDN there is a highly intelligent controller, which manages the forwarding behavior of 

the “dumb” network elements or switches in the data plane [7]. 

 SDN provides a programmatic, logically centralized interface to control the data-plane 

network. Through this interface, a software program acts as a network controller by 

implementing several rules, including forwarding, by possibly reacting to topology and traffic 

variations [8] 

 In SDN, the idea of software–hardware separation and dynamic network programmability 

on a central controller have several advantages. First, data traffic can be grouped into fine-
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grained classes (flows) based on a combination of all parameters that cuts across the protocol 

stack and each of these flows can be treated differently at each switch. Hence the flow-based 

nature of SDN offers more granularity (increased level of detail) in network control, i.e. in an 

SDN-enabled switch, packets can be dropped, forwarded, or re-routed based on any combination 

of parameters that cut across protocol stack. Second, due to the fact that the data plane elements 

do not have to be intelligent, SDN network components cost less than the conventional network 

components. SDN also removes the need for specialized, expensive middle-boxes, because all 

middle-box functionalities can be programmed on the SDN controller. Furthermore, network 

management is made much easier, because SDN networks do not have to run complex 

distributed software. Advanced traffic engineering, network slicing, network virtualization, and 

several other network functionalities can be realized in a simple manner via SDN. In addition, 

the separation of the network software from the hardware implies that the two aspects can evolve 

separately and at a faster rate, hence leading to a faster rate of innovation in network research.  

2.2 Software-Defined Networking Architecture 

 A simplified SDN architecture, as described by the Open Networking Foundation [9] - 

the regulatory organization for OpenFlow, is shown in Figure 1. The SDN architecture separates 

the network into the data plane, the control plane, and the application layer, which is 

implemented above the control layer [10].  

 The interfaces between the control layer and the infrastructure layer are referred to as the 

southbound interfaces. OpenFlow [7] is just one example of such interfaces, although it is the 

most popular, because it is an open source protocol. Another southbound interface is the Cisco 

proprietary OpFlex protocol [11].  
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Figure 1. Software-defined networking architecture 
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 The northbound interfaces provide communication between the control plane and the 

application programs [6]. High-level programs developed by using various languages can 

communicate with the controller through these northbound APIs. Each of the layers and 

interfaces in the SDN architecture are discussed in the subsequent sections. 

 

 

2.2.1 The Data Plane 

 In general, the data plane (also referred to as the forwarding plane) consists of all 

physical devices that are involved in processing and forwarding of packets. These devices can be 

switches, routers, firewalls, gateways, and all middle-boxes. In conventional networks, these 

devices are pre-programmed or configured to carry out required specialized functions. However, 

in SDN data plane, all these devices are replaced with simple SDN-enabled switches. An SDN 

switch can be viewed as a switching device that can make forwarding decisions based on any 

combination of parameters from layers 2, 3 and 4 of the network stack, utilizing flow-based 

switching. 

 SDN switches are often classified as software or hardware switches. The most popular 

OpenFlow enabled software switch is the Open vSwitch [12], which can be installed on Linux-

based devices to make them function as a virtual switch with interfaces of the Linux-based 

device as the switch’s interfaces. The Open vSwitch can also be installed on ASIC switches. 

Other OpenFlow enabled software switches include the Pantou/OpenWrt switch, the 

Ofsoftswitch, and the Indigo. Pantou OpenWRT can be installed on some commercial wireless 

routers to convert them into OpenFlow enabled wireless switches, the Ofsoftswitch [13] can also 
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be installed on Linux machines while Indigo [14] can be installed on commercial switch ASICs, 

to make them function as SDN-enabled devices. 

In this thesis we use Open vSwitch software running on the Linux platform, to implement our 

SDN-enabled switches. The Open vSwitch can also be ported to the NetFPGA platform to get 

cheaper switching gear for research purposes and small-scale applications. There are also 

implementations for wireless routers via OpenWrT on some supported simple access points.

 On the other hand, there are also a number of commercially available SDN-enabled 

hardware switches by Cisco, Big switch, Arista, Brocade, Dell, HP, and many others [15].  

 

2.2.2 South Bound API - OpenFlow Protocol 

 In the SDN architecture, the southbound API defines the means of communication 

between the control and data planes. A number of southbound protocols have been created, some 

of which are open source, while the others are vendor-proprietary. Due to the extensive use of 

the OpenFlow protocol in research and industry, we provide a detailed explanation of OpenFlow 

next.  

 The OpenFlow protocol was introduced by [7]. The initial purpose for developing the 

OpenFlow protocol was to boost innovation in campus networks. It was also created to enable 

computer networking research experiments to be tested on real networks, alongside regular 

network traffic without causing disruption. In addition, it was also created to enable real-time 

programmatic control of networks. 

 OpenFlow is a protocol that enables communication between a centralized controller(s) 

and the OpenFlow enabled switches in the SDN architecture. The controller defines the functions 
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including the forwarding behavior of all switches. The first packet of each new incoming flow 

into a controller’s domain is transferred from the switch of entry into the controller on a secure 

interface via OpenFlow protocol. The controller determines the appropriate behavior for all 

connected SDN switches for that specific flow based on instructions specified in the application 

layer. Then, the controller forwards control messages with appropriate flow entries to all the 

switches in the network, and sends the packet back to the switch of entry, again via OpenFlow. 

After this setting, all matching packets in the flow are forwarded directly by the switches based 

on the flow entries that have been specified, without connecting to the controller, until specified 

idle time-out or hard time-out expires [16].  

 It is proposed in [7] that OpenFlow enabled switches must have an interface through 

which they can receive control messages from the controller and a secure communication 

channel, to transfer data and commands between the control plane and the forwarding plane.  

 Furthermore, OpenFlow switches must have a flow table. Rules in the flow tables, called 

flow entries, consist of match fields and corresponding actions that specify how the switch 

handles each incoming flow. The flow table operates in a match-action processing. OpenFlow 

match fields include destination and source MAC addresses, IP addresses, port numbers, VLAN 

tag and several other fields. The OpenFlow switch specification 1.4 [17] gives a list of forty-two 

flow marching fields.  

 Each flow is specified by any possible combination of matching fields and will have 

actions associated with it. The set of flow actions include output (to select the physical output 

port through which packets should be sent out of a switch), drop (to drop all packets 

corresponding to that flow entry), set (to change the source & destination IP, MAC, Port, VLAN 
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etc. for all packets in that flow) and many others. The full list can be found in [17].  

2.2.3 Control Plane 

One of the basic functionalities of OpenFlow is to connect the data plane to the control 

plane. The control plane in an SDN is a logically centralized entity that performs all calculations 

based on a global view of the network and sets flow entries on all switches. The controller is 

responsible for maintaining all network functionalities and for distribution of appropriate 

instructions to the network devices. Also, it is responsible for determining how to handle packets 

without valid flow entries [18].  

 In SDN, all the intelligence in the network is abstracted into the controller, which is in 

charge of installing and deleting flow entries from tables. The controller decides the routes that 

each packet takes by specifying the appropriate output ports for all incoming flows. Usually, data 

plane elements send the first packet in a flow to the controller, the controller then decides the 

appropriate paths for all packets that belong to the flow by processing this packet, then the 

controller sends appropriate flow entries which show what to do with the packets to the data 

plane elements.  

 In this setup, an administrator can effectively control the flow of packets within the 

network, great flexibility by developing software programs on top of the controller. There are 

several controller platforms that have been developed in the literature; some of these are open-

source and available for free while others are not. A comprehensive listing of popular SDN 

controllers are provided in [15]. 

 Due to the fact that the controller platform of choice for our implementations (provided in 

chapter 4) was the POX controller, which is an extension of NOX, a detailed description of the 
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NOX and POX controllers is given below. 

2.2.3.1 NOX 

 One of the first OpenFlow standard controller platforms is the NOX controller [19]. It 

was proposed as an open source network operating system, and was developed mainly in C++, 

by Nicira - a company started by the initial inventors of the OpenFlow protocol.  

 In a NOX controlled network, a set of switches is connected to one or more controllers 

where the network management software applications run. NOX provides a network view that 

includes switch level topology, locations of user hosts, middle-boxes, and all network elements 

and services. It also provides a reasonable level of flow-based granularity. NOX works perfectly 

with OpenFlow; if a packet doesn’t match flow entries on a switch, it is forwarded to one of the 

control processes on the NOX [16]. 

 Applications that are created on the NOX controller use information from the packets to 

determine whether or not to forward traffic and generate the appropriate set of actions. In NOX, 

events can be generated directly by OpenFlow messages such as switch join, switch leave, packet 

received, and switch statistics received. Other events can also be generated directly from NOX 

processes [16]. 

2.2.3.2 POX 

 POX was developed as an extension of the NOX controller [20]. It can be basically 

considered as a Python version of NOX. It is used as a conventional teaching platform for 

software-defined networking. The POX controller is targeted for research purposes and is 

extensively used in combination with Mininet: a prototyping and virtualization software that can 

be used to emulate SDN networks containing many hosts and switches in a personal computer. 
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Therefore, in this project, POX has been selected as our controller platform. 

 Having presented a brief overview of SDN, we go on to discuss overlay networks and 

hybrid SDN technologies in the next chapter.  
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CHAPTER 3  

OVERLAY TECHNOLOGIES AND HYBRID SDN 

3.1 The Concept of Overlays 

Software-defined network overlays combine SDN with overlay networking concept. An overlay 

network is a logical or virtual network built on top of an underlying physical network [21]. 

Overlay networks are composed of nodes, which are a subset of the nodes in a physical network, 

and are connected by virtual/logical links that correspond to paths on that physical network.  

 Overlay networks can be used to provide specialized routing, isolation, security, 

multicast, mobility and several other services on legacy networks by modifying legacy devices or 

adding new network devices. By deploying overlays, new services can be enabled in existing 

networks without expensive hardware costs that may be associated with installation of the new 

services. In this setup, only the specific nodes that require specialized services need to be 

configured. Overlay networks are often built over existing networks using tunneling or 

encapsulation to provide new services in networks with little or almost no changes to the 

network infrastructure. Since our proposed SDN overlay networks will combine overlay 

technologies with SDN, we present a brief description of overlay networking in the following 

sections. 

3.2 Overlay Networking Technologies 

 In large datacenters, customers may require dedicated nodes in an isolated network. In 

such networks, several customers may share the same physical infrastructure. However, each 

customer will have a logically separate network that will be incapable of communicating with 
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other customers’ networks, even when they use the same physical nodes and links. By deploying 

overlay networks, the problem can be easily solved and the physical network can provide 

connectivity among nodes, while the overlay network handles high-level network policies using 

tunnels and encapsulation to isolate traffic for each customer. 

 One of the simplest methods of implementing overlay networks is by using virtual local 

area networks (VLANs). VLANs can be used to separate a physical network into two or more 

isolated logical networks, each with a unique VLAN identifier. The network devices or ports 

with the same VLAN identifier can communicate, while the network elements with different 

VLANs cannot communicate.  

 

  

Figure 2: A VLAN overlay network. The VLAN in the overlay plane consists only of shaded 

nodes in the underlying physical network. Un-shaded nodes cannot communicate with the 

shaded nodes even though they may be physically connected. 
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VLANs are adequate for creating overlays in most small-scale enterprise networks. However, in 

today’s datacenter networks, the most popular overlay network technologies are the Virtual 

Extensible Local Area Network (VXLAN) and the Network Virtualization using Generic 

Routing Encapsulation (NVGRE) overlay technologies. The two techniques are able to handle a 

larger number of overlay networks, overcoming the limitations of VLAN.  

 In VXLAN, an IP/UDP packet encapsulates the Ethernet frame. Frame encapsulation is 

done at virtual tunnel endpoints (VTEP). VXLAN uses a 24-bit VXLAN header in the 

encapsulation process providing up to 16 million virtual L2 networks. The VXLAN frame is 

presented below. 

 

 

 

  VXLAN Packet    Original Frame 

MAC 
DA 

MAC 
SA 

802.1Q 
Tag 

IP 
DA 

IP 
SA 

MAC 
DA 

MAC 
SA 

802.1Q 
TAG 

PAYLOAD 
 

 

Figure 3. The VXLAN frame, showing how the original frame is encapsulated in another layer of 

layer 3 and layer 2 headers. 

 

 Network Virtualization using Generic Routing Encapsulation (NVGRE) [22] is another 

popular overlay technology. At the sending end, NVGRE encapsulates an Ethernet Frame in an 

additional IP header, appending a twenty-four bit TNI, and then sends it through an IP tunnel. 

The receiving endpoint removes the encapsulation and forwards the packet to the actual 

destination MAC, thus enabling the creation of virtual Layer 2 networks that can span multiple 
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physical Layer 3 IP networks. 

 

3.3 Benefits of SDN Overlays 

Having discussed the two main enabling technologies for our proposed SDN overlays (i.e. 

SDN technology and network overlay technologies), we briefly discuss the potential benefits of 

having software-defined overlay networks in this section. 

The advantages of SDN, which are discussed in the previous chapter, make it crucial to 

deploy SDN in legacy networks. Although, full SDN deployment offers the best of benefits in 

terms of flexibility and programmability, a lot can be gained by deploying SDN infrastructure 

alongside legacy network hardware, either in the form of overlays. 

 An overlay of SDN on a legacy network will enable the implementation of specialized 

policies and functions on traffic that flows through the SDN-enabled devices in such networks. 

SDN overlays can be designed to ensure that the SDN-enabled devices handle the higher level 

policy decisions, leaving the underlying legacy network to do the work of maintaining simple 

connectivity across the network data path [8]. With this design, the hybrid or overlay network 

can make use of almost all the benefits associated with full SDN. 

 An advantage is that without much change to existing network, overlay SDN can make it 

possible to restructure the physical networks, and upgrade them without much change to the 

SDN controller policy. Since the legacy network is focused on maintaining connectivity, in the 

event that there are minor changes or upgrades, the network will not be affected or require 

changing of policies on the SDN-enabled devices. An SDN overlay can be designed to have very 

fast response to link failures. Since routing algorithms on legacy devices with individual control 

plane can quickly react to failures by making local decisions [23]. In the event of a link failure in 
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the underlay network, the distributed routing algorithms will quickly respond with alternative 

routes in the SDN overlay network.  

 Another major benefit for the deployment of SDN overlay networks is that it enables 

incremental deployment of SDN on legacy networks. This is important for organizations with 

existing legacy networks in the process of migration to SDN, especially because replacing all 

equipment in an existing network might be prohibitively expensive. 

 

3.4 Approaches to Hybrid SDN  

 Before we discuss our methodology for implementing software-defined network 

overlays, we examine some related work in hybrid SDN in this section. Hybrid SDN networks 

are networks that contain both legacy and SDN-enabled devices. We define SDN overlay 

network as a type of hybrid SDN network where overlay technologies are used to maintain 

communication between SDN and legacy devices. Four types of hybrid SDN deployment 

models: topology-based, service-based, class-based and integrated hybrid SDN are presented in 

[23].  

The topology-based SDN requires a physical separation of nodes within the network into 

two zones:  SDN zones and legacy network zones. Each node in the network belongs to only one 

zone. An example is Google’s B4 network [24], which we discuss later in this section. 

In the service-based model, both SDN and legacy networks are used to provide specific 

services across the network. In this setup, it is possible for a single node to be part of both the 

SDN and the legacy network. For instance, the legacy network may handle basic network 

connectivity functions, while SDN is used to provide special services like traffic engineering, 
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access control, load balancing etc. [23]. An example of service based SDN is the OSHI [25]. 

 In the class-based hybrid SDN model, all devices in the network have both legacy and 

SDN functionality. That is, each device can act as a legacy router and as a SDN switch 

simultaneously. However, the SDN controller and the legacy routing algorithm are designed to 

control distinct slices or classes of traffic flows. For instance, an SDN may be used to move all 

HTTP traffic across a network while all other traffic is controlled by legacy routing techniques. 

 Integrated hybrid SDN refers to networks in which SDN-enabled and legacy devices 

operate together. In integrated hybrids, SDN communicates directly with the legacy routing 

protocol and uses the legacy protocol to either inject routes into the node information base, or to 

modify legacy network settings [23]. Examples of integrated hybrids in research are route flow 

and software-defined exchange points (SDX) [26]. 

3.4.1 Google B4 

 The Google B4 is a good example of topology-based SDN. B4 is the Google private 

WAN network that connects all Google’s internal datacenters across the globe. Although Google 

maintains legacy networking for its customer-facing network, it uses the B4 SDN network for 

internal communication among its datacenters. The two isolated portions of the network 

communicate at selected points creating a form of topology-based hybrid. At each node on the 

Google B4 network, specialized servers enable distributed routing and central traffic engineering 

as a routing overlay [24]. In the B4 network, the Quagga open-source routing daemon running 

BGP/ISIS was used in conjunction with a SDN Routing Application Proxy (RAP) [24]. 
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3.4.2 Open Source Hybrid IP/SDN (OSHI) 

 OSHI is an implementation of hybrid SDN that utilizes an open source software switch, 

which supports both SDN and legacy networking on the same device. The OSHI node combines 

Quagga routing daemon for OSPF routing and the open vSwitch software for flow-based 

switching on a Linux box. The SDN Capable Switch (SCS) is connected to the set of physical 

network interfaces belonging to the integrated IP/SDN network, while the IP forwarding engine 

is connected to a set of virtual ports of the SCS [25]. 

 OSHI uses VLAN tagging to distinguish between traffic to be processed by either SDN 

or IP routing. OSHI have been deployed and tested on Mininet [27] and on the Ofelia test-bed 

[26].  

3.4.3 SDX 

Software-defined Internet exchange SDX [26] applies SDN to legacy BGP WAN 

networks to give better control and flexibility to BGP interconnections between ISPs at Internet 

exchange points where multiple BGP networks meet. SDX uses an integrated hybrid SDN 

approach, in which legacy routers running BGP communicate with the open flow enabled SDX 

switch. 

 The SDX switch has two main components; a policy compiler and a route server, 

operating simultaneously on the same switch. The SDN component of the switch is the policy 

compiler. It is a SDN controller application based on pyretic programming language (a 

programming language for the POX controller platform). The route server serves as the legacy 

network component. The route server used was ExaBGP: a python based router software for 

Linux machines [26]. ExaBGP was configured to run the BGP routing protocol. When the route 
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server receives BGP adverts from participating ASes, it processes them and computes best paths 

to each destination. The route server then sends the routes to the SDX policy compiler. The best 

allowed paths, as determined by the SDX policy compiler application running on the SDN 

controller, are then advertised back to the connected ASes via the route server [26].  

 In summary, a common property of all the technologies described in this section is that 

all of them utilize a route server or daemon (running a distributed routing protocol), in 

conjunction with one or more SDN controller programs. However the link between the SDN and 

legacy networks are implemented using various techniques. OSHI uses VLANs; Google B4 

employs specialized software in conjunction with IP in IP tunneling. Our implementation of 

SDN overlays relies on virtual extensible local area network (VXLAN) overlays to bridge 

between SDN and legacy routing algorithms. 
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CHAPTER 4  

METHODOLOGY AND IMPLEMETATION 

4.1 Methodology 

Our goal in this project is to understand the benefits of SDN in a legacy network without 

replacing all devices in the network with SDN-enabled switches. To achieve this goal, we 

consider SDN overlay networks. In this section, we show how SDN overlays can be 

implemented by combining techniques drawn from our review of hybrid SDN technologies with 

VXLAN overlay technology. We also show that the SDN overlay network can utilize all benefits 

of SDN, without hurting throughput performance. Deploying SDN overlay networks provides 

incremental deployment from full legacy network to a full SDN network. A simple sketch of the 

proposed topology of an SDN overlay network is given in Fig. 4.    

 

Figure 4: An SDN overlay network in which SDN switches interact with legacy networks 

through VXLAN tunnels.



22 

 

 

In Fig. 4, all SDN switches are connected to a central controller (which not shown to make the 

figure clear) and they communicate with legacy devices using VXLAN tunnels. 

We carried out a series of experiments on the Emulab test-bed [28] to demonstrate the 

feasibility of our proposed SDN overlay network using a prototype. The topology of our 

prototype SDN overlay network is presented in Fig.5. We carried out further experiments to 

compare the operation of the system with legacy networks and SDN networks, which we discuss 

later in this chapter. In particular, we implemented prototypes for a SDN overlay network, a full 

SDN network and a full legacy network, using physical devices on the Emulab test-bed and 

PhantomNet Testbed. Our experiments use open source software including Mininet [27], Quagga 

[29], POX controller [20], the Open vSwitch [30] and Iperf [31].  

  

Figure 5. The prototype SDN overlay network with two SDN switches and two legacy routers. 
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In our test-bed (Emulab), SDN switches are implemented as open vSwitches running on 

Linux machines. The controller (POX) runs on a Linux device that has a direct connection with 

all the SDN switches.  To enable legacy routing, we use the Quagga routing daemon to enable 

the open shortest path first (OSPF) routing protocol on our routers. All our devices are 

implemented as Linux operating devices in the Emulab test-bed. In the next sub-section, we 

provide a brief description of the Emulab test-bed environment, and we provide detailed 

descriptions of our experiments afterwards. 

4.1.1 The Emulab Test-bed 

The Emulab test-bed is operated by the Flux Research Group of the University of Utah. 

The test-bed allows researchers to develop, debug, and evaluate their research projects on 

physical hardware from remote locations. It is incorporated in GENI and Planet lab test-beds 

[28]. To use Emulab, an arbitrary network topology specified with a ns2 tcl [32] file, defines 

specification of the nodes and links in the network. The operating systems for each node, the 

properties for each link (bandwidth and delay), IP addresses and routing algorithm can also be 

specified for all devices using the topology file. 

When an experiment is initiated on the Emulab test-bed, each node in the topology file is 

assigned to a physical device on the test-bed, and the required functionalities are activated. The 

links, specified delay and bandwidth in the topology file are realized by using Ethernet 

interfaces. After the initiation, necessary codes can be installed and run on any of the nodes to 

provide additional functionalities. Software to implement routing, SDN switching and any other 

functionalities may be installed on any node. 
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4.2 Experiment Setup 

Three representative topologies were implemented out to evaluate the feasibility and 

performance benefits of the proposed SDN overlay networks. The detailed descriptions for each 

topology, and the results obtained are presented in this section. The topologies include the full-

legacy, full SDN and SDN overlay networks. The experiments with these topologies help us to 

understand the performance of our proposed SDN overlay and compare it with full-legacy and 

full SDN deployments. Next we provide a description of the full-legacy network topology. 

4.2.1 Legacy Network 

 The topology implemented for the case of a legacy network is shown in Fig.6. Four 

legacy routers are implemented using Linux machines. The ns2 file that specifies the topology, is 

provided in Appendix 1. Note that by specifying the command “$ns rtproto Manual” on the 

topology file, we instruct Emulab to apply no routing algorithm on the network. After the 

experiment was initiated, we installed the Quagga routing daemon on each of the routers and the 

open shortest path first (OSPF) routing protocol is configured on all of them.  

Routers r1 and r4 are physically connected via two paths. A fast path through r2 have 

1Mbps links with 0ms delay, drop tail queuing and loss rate of 0.01%. The second path through 

r3 have 500kbps links with 0ms delay, drop tail queuing and loss rate 0.01%, implying that the 

path through r2 is much better than the path through r3.  

We installed the Iperf throughput performance measurement software on the two end hosts to 

generate and measure throughput across the network. The results of TCP and UDP throughput 

tests are presented in Fig. 7. In this setup OSPF finds the best route, which is via r2. Fig. 7 

confirms that, and OSPF selects the 1Mbps routes between h1 and h2. Fig. 8 provides the jitter 
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and the percentage of dropped packets. 

 

 

Figure 6. Full legacy network prototype, showing routers r1 and r4 connected through two paths: 

a 1Mbps path through r2 and a slower 500Kbps link through r3.  

 

 

Figure 7. Throughput vs. time graph for the full legacy network, showing UDP and TCP 

throughputs. As expected, the legacy network selects the 1000Mbps path between r1 and r4. 
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Figure 8. UDP jitter and percentage of dropped packets vs. time for the full legacy network. 

 

4.2.2 Full SDN Network 

 The topology we consider for the case of full SDN network is shown in Figure 9. The 

specification of the topology using ns2 is presented in Appendix 2a. On Emulab, we 

implemented the SDN switches with open vSwitch software running on a computer with a 

SMORE-SDN disk image. In the topology h1 and h2 are end hosts, c1 is the SDN controller, and 

ofs1, ofs2, ofs3 and ofs4 are SDN switches. As in the full legacy prototype network, there are 

two paths between switches ofs1 and ofs4. That is, there is a high-speed path through ofs2 with 

transmission rates 1Mbps, and a slower path through ofs3 with transmission rates of 500kbps. 

The controller c1 is connected to each of the SDN switches through dedicated interfaces on a 

different network. 

 After initiating the experiment, we ran Open vSwitch on the SDN nodes. Afterwards, a 

POX controller application is created in the controller c1, to manage the routing of end-to-end 

traffic between the two hosts. The controller configuration codes are presented in Appendix 2b. 

We designed our controller application to forward all http traffic (TCP port 80) through the high-
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speed path (1Mbps) and all other traffic through the slower path (500kbps).  

 
Figure 9. The full SDN network topology. Dotted lines indicate a direct connection from each 

SDN switch to a central controller through dedicated interfaces. 

 

 

Figure 10. Throughput vs. time for the full SDN topology. HTTP traffic (port number 80) are 

routed through the 1000Mbps path while other traffic is forwarded through the 500Mbps path.  
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After installing the Iperf software for network performance measurement on hosts h1 and 

h2, we measured TCP and UDP throughput as a function of time (Fig. 10). As expected all http 

traffic is routed through the high-speed path and other traffic was routed through the slower path. 

The graphs for the throughput, jitter and percentage dropped packets are presented in Fig. 11. 

   

 
Figure 11. UDP jitter and percentage dropped packets vs. time for the full SDN network. There 

is more jitter and more packet are dropped for the non-HTTP traffic because they are routed 

through a lower speed path. 

 

 In the next sets of experiments, to show additional benefits of SDN over legacy networks, 

we simultaneously transmit a file on TCP port 80 and on another file through an arbitrary port 
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(port 87) from h1 to h2. We start by transmitting on port 80. After 30 seconds we start 

transmitting on port 87. We observe from the results in Fig. 12 that the SDN Controller is able to 

transmit both of the two flows simultaneously via independent paths. The file transmitted on 

TCP port 80 is sent via ofs2 at 1Mbps and the second file transmitted on TCP port 87 is sent via 

ofs3 at 500Kbps. The additional data transmitted TCP port 87 does not adversely affect the 

transmission via TCP port 80. Thus the throughput between hosts h1 and h2 is increased to a 

maximum of 1.5Mbps as compared to 1Mbps observed in the legacy network implementation. 

 

Figure 12. Simultaneous transmission full SDN network. We start by sending HTTP data on port 

80 (1000Mbps), after 30 seconds, we begin to transmitting data with other port number 

simultaneously. SDN enables simultaneous transmission of the two traffic classes making total 

throughput 1500Mbps possible. 
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4.2.3 SDN Overlay Network 

In the final experiment, we consider a topology of an SDN overlay network on the 

Emulab Testbed. The topology is shown in Fig. 13 and the configuration file for the network is 

presented in Appendix 3a.  

 

 

 

 

Figure 13. The hybrid SDN topology, showing VXLAN overlay tunnels across the legacy 

network. When a controller is connected to switches ofs1 and ofs4, the configuration makes the 

controller see the tunnel endpoints on each switch as Ethernet interfaces, with ofs1 and ofs2 

appearing as if they are directly connected. 

 

 In this set of experiments, we implement the SDN switches by installing open vSwitch 

software on ofs1 and ofs4. We then configured an underlay legacy network by creating 

appropriate routes on ofs1, ofs4, r2 and r3 to enable independent layer 3 communications 

between ofs1 and ofs4, on the fast 1Mbps path and on the 500Kbps path. Afterwards, we created 
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VXLAN tunnels between ofs1 and ofs4 through the previously configured legacy network. The 

commands used to create the tunnels are presented next.  

ofs1# ovs-vsctl add-port br0 vtep -- set interface vtep type=vxlan 

options:remote_ip=10.1.5.3 ofport_request=10 
ofs1# ovs-vsctl add-port br0 vtep2 -- set interface vtep type=vxlan 

options:remote_ip=10.1.6.3 ofport_request=20 
 

ofs2# ovs-vsctl add-port br0 vtep -- set interface vtep type=vxlan 

options:remote_ip=10.1.3.3 ofport_request=10 
ofs1# ovs-vsctl add-port br0 vtep2 -- set interface vtep type=vxlan 

options:remote_ip=10.1.4.3 ofport_request=20 

 

 The first set of commands, show the configuration of two VXLAN tunnel end points  

labeled vtep, and vtep2 on the SDN switch ofs1. The tunnel endpoints are configured with the IP 

address of the destination switch interfaces to which packets will be delivered. The first tunnel 

endpoint, vtep, sends packets through the 1Mbps path, while vtep2 sends packets through the 

500Kbps path. The next set of commands is also applied on ofs2 to create similar VXLAN 

endpoints on it. 

After creating VXLAN tunnel endpoints on each switch, we configure the open 

vSwitches on ofs1 and ofs2 with virtual interfaces (including the VXLAN endpoint). We then 

connected the SDN switches to the POX controller. The controller program is similar to the one 

used for implementing our full SDN topology; it contains modifications to support the VXLAN 

interfaces used in the SDN overlay topology. The controller code we developed is also presented 

in appendix 3b. After creating the topology, Iperf tests are performed to measure the throughput 

between host 1 and host 2. Note that, our goal is to see if the SDN overlay topology can perform 

exactly as the full-SDN topology. The results obtained are explained next. 

 

 Based on observations of throughput in Fig. 14., the performance of the SDN overlay 
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topology is very similar to the performance of the full-SDN prototype. HTTP packets (port 80) 

are routed through the high-speed links (1Mbps) as specified in the controller instructions, while 

other packets are routed through the slower links (500 Kbps) as expected. The throughputs for 

simultaneous transmission of traffic on port 80 and traffic on other ports are also measured. The 

results (shown in Fig 16) are similar to that of the full SDN network in Fig. 12.  

 

 

Figure 14. Throughput vs. time in SDN overlay network. HTTP traffic (TCP port 80) is routed 

through the 1Mbps path while other traffic is forwarded through the 500Mbps path. The results 

are comparable with that of the full SDN topology in Fig. 10. 
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Figure 15. UDP jitter and percentage of dropped packets vs. time for the SDN overlay network. 

The results are similar to those obtained for full legacy and full SDN provided in Fig. 8 and 11. 

 

Figure 16. Simultaneous transmission in hybrid SDN network. We start by sending HTTP data 

on port 80 (1Mbps), after 30 seconds, we begin to transmitting data with other port number 

simultaneously. The overlay SDN enables simultaneous transmission of the two traffic classes 

making total throughput 1.5Mbps possible. This result is very similar to what was obtained for 

the full SDN topology in Fig. 12. 
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4.3 Comparing Legacy, Full-SDN and SDN-Overlay Network Throughput  

In this section, we provide a comparison of the performance for HTTP traffic on legacy 

network, full SDN, and overlay SDN. The graph presented in Fig. 17. compares the UDP 

throughput for the three networks, while Table 1. gives a comparison the average values of TCP 

throughput, UDP throughput, jitter, percentage of dropped packets and throughput for 

simultaneous transmission of two flows. 

 
 

Figure 17. Throughput comparison of SDN overlay with full SDN and full legacy network. 
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Table 1: Comparison of SDN overlay network performance with full legacy and full SDN 

networks. 

  

Full legacy 

network 

Full SDN 

network  

SDN overlay 

network 

Average TCP throughput (Kbps) 738.37 881.93 758.70 

Average UDP throughput (Kbps) 943.23 955.33 898.93 

Average jitter (seconds) 1.64 1.57 1.83 

Average dropped packets (%) 9.94 8.87 14.04 

Average throughput for simultaneous 

flows transmission  (Mbps) 

734.00 1288.53 1056.60 

 

Fig. 17. and Table 1. show that the performance of the proposed SDN overlay network is 

found to be comparable with that of full SDN and full legacy networks. The TCP throughput and 

UDP throughput for the overlay network are compatible with the full SDN and full legacy 

network. The jitter, the percentage of dropped packets and the throughput for simultaneous 

transmission also show comparable behavior. The overlay network seems to have a slightly 

smaller UDP throughput. The very little difference could be attributed to additional processing 

required to perform the overlay functions, and can be ignored since the overlay system is able to 

take full advantage of the benefits of SDN to easily implement specialized services like traffic 

engineering and load-balancing without replacing all devices with SDN switches.
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CHAPTER 5  

CONCLUSION 

5.1 Conclusion 

In the previous chapters, we carried out a study of SDN and overlay technologies. We 

examined existing research in hybrid SDN and gave descriptions of some Hybrid SDN 

architectures that have been proposed in literature. We presented an SDN overlay architecture 

that combines SDN and OSPF legacy routing with VXLAN overlay technology. We 

implemented a prototype of the SDN overlay, and we carried out experiments to determine the 

performance of the network. We also compared its performance with similar full legacy and full 

SDN networks.  

 In our experiments, we observe that the performance of the SDN overlay network is 

comparable to the performance of the full SDN and the full legacy network. We also observe that 

we were able to implement all the functionalities of a full SDN network on the SDN overlay. 

Therefore, we conclude that by deploying SDN overlays, it is possible to have full SDN 

functionality on a network without replacing all legacy devices with SDN-enabled switches. This 

result helps to save cost for organizations that seek to migrate to SDN 

 

5.2 Future Directions 

We intend to carry out further research to improve on SDN overlays by considering other 

overlay technologies besides VXLAN. We will create experiments on more complex topologies 

and we will also consider specific applications of SDN overlays to wireless networks. Methods 
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investigated, and finally, we will develop a means of automating the configuration of SDN 

overlays on networks. 
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APPENDIX A 

Codes: Full Legacy Network 

Topology File – Legacy Network 

set ns [new Simulator] 

source tb_compat.tcl 

set h1 [$ns node] 

set h2 [$ns node] 

set r1 [$ns node] 

set r2 [$ns node] 

set r3 [$ns node] 

set r4 [$ns node] 

set linkh1r1 [$ns duplex-link $h1 $r1 100Mb 50ms DropTail] 

tb-set-link-loss $linkh1r1 0.01  

set linkr1r2 [$ns duplex-link $r1 $r2 10Mb 50ms DropTail] 

tb-set-link-loss $linkr1r2 0.01 

set linkr1r3 [$ns duplex-link $r1 $r3 100Mb 50ms DropTail] 

tb-set-link-loss $linkr1r3 0.01 

set linkr2r4 [$ns duplex-link $r2 $r4 10Mb 50ms DropTail] 

tb-set-link-loss $linkr2r4 0.01 

set linkr3r4 [$ns duplex-link $r3 $r4 100Mb 50ms DropTail] 

tb-set-link-loss $linkr3r4 0.01 

set linkr4h2 [$ns duplex-link $r4 $h2 100Mb 50ms DropTail] 

tb-set-link-loss $linkr4h2 0.01 

tb-set-node-os $h1 UBUNTU12-64-STD 

tb-set-node-os $h2 UBUNTU12-64-STD 

tb-set-node-os $r1 UBUNTU12-64-STD 

tb-set-node-os $r2 UBUNTU12-64-STD 

tb-set-node-os $r3 UBUNTU12-64-STD 

tb-set-node-os $r4 UBUNTU12-64-STD 

$ns rtproto Manual 

# Go! 

$ns run 
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APPENDIX B 

Codes: Full SDN Network 

Topology File – Full SDN Network 

set ns [new Simulator] 

source tb_compat.tcl 

set h1 [$ns node] 

set h2 [$ns node] 

set ofs1 [$ns node] 

set ofs2 [$ns node] 

set ofs3 [$ns node] 

set ofs4 [$ns node] 

set c1 [$ns node] 

set linkh1ofs1 [$ns duplex-link $h1 $ofs1 2000Kb 0ms DropTail] 

tb-set-link-loss $linkh1ofs1 0.01 

set linkofs1ofs3 [$ns duplex-link $ofs1 $ofs3 500Kb 0ms DropTail] 

tb-set-link-loss $linkofs1ofs3 0.01 

set linkofs1ofs2 [$ns duplex-link $ofs1 $ofs2 1000Kb 0ms DropTail] 

tb-set-link-loss $linkofs1ofs2 0.01 

set linkofs2ofs4 [$ns duplex-link $ofs2 $ofs4 1000Kb 0ms DropTail] 

tb-set-link-loss $linkofs2ofs4 0.01 

set linkofs3ofs4 [$ns duplex-link $ofs3 $ofs4 500Kb 0ms DropTail] 

tb-set-link-loss $linkofs3ofs4 0.01 

set linkofs4h2 [$ns duplex-link $ofs4 $h2 2000kb 0ms DropTail] 

tb-set-link-loss $linkofs4h2 0.01 

tb-set-node-os $h1 UBUNTU12-64-STD 

tb-set-node-os $h2 UBUNTU12-64-STD 

tb-set-node-os $ofs1 "PhantomNet/SMORE-SDN" 

tb-set-node-os $ofs2 "PhantomNet/SMORE-SDN" 

tb-set-node-os $ofs3 "PhantomNet/SMORE-SDN" 

tb-set-node-os $ofs4 "PhantomNet/SMORE-SDN" 

tb-set-node-os $c1 UBUNTU12-64-STD 

# Go! 

$ns rtproto Manual 

$ns run 
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APPENDIX B (continued) 

Controller code – Full SDN Network 

#excerpts of ControllerFullSDN.py 

#controller codes for the Full SDN network 

 

import pox.openflow.libopenflow_01 as of 

import pox.openflow.discovery 

from pox.core import core 

from pox.lib.addresses import EthAddr, EthAddr 

from pox.lib.util import dpidToStr 

... 

... 

class FullSDN(EventMixin): 

    def __init__(self): 

        ... 

        ... 

        #define switch ids and host addresses 

        ofs1_dpid = '00-04-23-b7-19-70' 

        ofs2_dpid = '00-04-23-b7-1c-e2' 

        ofs3_dpid = '00-04-23-b7-3e-a2' 

        ofs4_dpid = '00-04-23-b7-19-02' 

        h1_mac = '00:04:23:b1:f0:ac' 

        h2_mac = '00:04:23:b7:1a:f8' 

        ... 

        ... 

        #A dictionary that shows gives the output interface 

        #for each flow, at each of-switch based on the 

        #tcp port number 

        self.portmap80 = {  

          (ofs1_dpid, EthAddr (h1_mac)): 5, 

          (ofs1_dpid, EthAddr (h2_mac)): 4, 

          (ofs2_dpid, EthAddr (h1_mac)): 4,  

          (ofs2_dpid, EthAddr (h2_mac)): 5, 

          (ofs4_dpid, EthAddr (h1_mac)): 4, 

          (ofs4_dpid, EthAddr (h2_mac)): 3} 

        self.portmapOther = {  

          (ofs1_dpid, EthAddr (h1_mac)): 5,  

          (ofs1_dpid, EthAddr (h2_mac)): 2, 

          (ofs3_dpid, EthAddr (h1_mac)): 3, 

          (ofs3_dpid, EthAddr (h2_mac)): 2, 

          (ofs4_dpid, EthAddr (h1_mac)): 2, 

          (ofs4_dpid, EthAddr (h2_mac)): 3} 

    ... 

    ... 

    def _handle_ConnectionUp(self, event): 

        dpid = dpidToStr(event.dpid) 

        log.debug("Switch %s has come up.", dpid) 

    ... 

    ... 
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   APPENDIX B (continued) 

def _handle_PacketIn (self, event): 

        #Function that defines how incoming packets are handled 

        mypkt = event.parsed 

 

        def create_fwdrule(event,mypkt,outport): 

            #define function to install forwarding rules 

            rule = of.ofp_flow_mod() 

            rule.match = of.ofp_match.from_packet(packet, event.port) 

            rule.actions.append(of.ofp_action_output(port = outport)) 

            rule.data = event.ofp 

            rule.in_port = event.port 

            event.connection.send(rule) 

 

        def forwardpkt (fwd_msg = None):         

            this_dpid = dpid_to_str(event.dpid) 

            if packet.dst.is_multicast: 

                #flood 

                return 

            else: 

                try: 

                    tcppp = 0 

                    if event.parsed.find('tcp'): 

                        tcppp = event.parsed.find('tcp') 

                    elif event.parsed.find('udp'): 

                        tcppp = event.parsed.find('udp') 

                    if tcppp.dstport == 80: 

                        key_port = 80 

                        log.debug("key tcport is   "+str(key_port)+"   bloc") 

                        outport = self.portmap80 [(dpid_to_str ( 

                        event.dpid), packet.dst)] 

                    else: 

                        key_port = 27 #dummy port value for non TCP 

                        log.debug("key tcport is "+str(key_port)) 

                        outport = self.portmapOther[(dpid_to_str 

                        (event.dpid), packet.dst)] 

                        log.debug("new tcp pkt @ swh:"+dpid_to_str  

                        (event.dpid)+" tcpt:"+str(key_port)+ " 

                        dst:"+str(packet.dst)+" ==> _port="+str(outport)) 

                    create_fwdrule(event,packet,outport) 

                    log.debug("flow matched & installed") 

             

                except AttributeError: 

                    log.debug("no TCP port, flood") 

           create_fwdrule(event,packet,of.OFPP_FLOOD)  

        fowardpkt() 

... 

... 

def launch(): 

    pox.openflow.discovery.launch() 

    core.registerNew(VideoSlice) 
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APPENDIX C 

Codes: Hybrid SDN Network 

Topology File – Hybrid SDN 

set ns [new Simulator] 

source tb_compat.tcl 

set h1 [$ns node] 

set h2 [$ns node] 

set ofs1 [$ns node] 

set r2 [$ns node] 

set r3 [$ns node] 

set ofs4 [$ns node] 

set c1 [$ns node] 

set linkh1ofs1 [$ns duplex-link $h1 $ofs1 2000Kb 0ms DropTail] 

tb-set-link-loss $linkh1ofs1 0.01 

set linkofs1r2 [$ns duplex-link $ofs1 $r2 1000Kb 0ms DropTail] 

tb-set-link-loss $linkofs1r2 0.01 

set linkofs1r3 [$ns duplex-link $ofs1 $r3 500Kb 0ms DropTail] 

tb-set-link-loss $linkofs1r3 0.01 

set linkr2ofs4 [$ns duplex-link $r2 $ofs4 1000Kb 0ms DropTail] 

tb-set-link-loss $linkr2ofs4 0.01 

set linkr3ofs4 [$ns duplex-link $r3 $ofs4 500Kb 0ms DropTail] 

tb-set-link-loss $linkr3ofs4 0.01 

set linkofs4h2 [$ns duplex-link $ofs4 $h2 2000Kb 0ms DropTail] 

tb-set-link-loss $linkofs4h2 0.01 

tb-set-node-os $h1 UBUNTU12-64-STD 

tb-set-node-os $h2 UBUNTU12-64-STD 

tb-set-node-os $ofs1 "PhantomNet/SMORE-SDN" 

tb-set-node-os $r2  UBUNTU12-64-STD 

tb-set-node-os $r3  UBUNTU12-64-STD 

tb-set-node-os $ofs4  "PhantomNet/SMORE-SDN" 

tb-set-node-os $c1  UBUNTU12-64-STD 

# Go! 

$ns rtproto Manual 

$ns run 
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APPENDIX C (continued) 

Controller code – Hybrid SDN  

#excerpts of controllerHybridSDN.py 

#controller code for the Hybrid SDN network 

 

import pox.openflow.libopenflow_01 as of 

import pox.openflow.discovery 

from pox.core import core 

from pox.lib.addresses import EthAddr, EthAddr 

from pox.lib.util import dpidToStr 

from collections import defaultdict 

... 

...  

class HybridSDN(EventMixin): 

    def __init__(self): 

        ... 

        ... 

        #define switch ids and host addresses 

        ofs1_dpid = '00-04-23-b7-1e-1e' 

        ofs4_dpid = '00-04-23-b7-26-ae' 

        h1_mac = '00:04:23:b7:19:62' 

        h2_mac = '00:04:23:b7:1b:49' 

        ... 

        ... 

        #A dictionary that shows gives the output interface 

        #for each flow, at each of-switch based on the 

        #tcp port number 

        self.portmap80 = {  

          (ofs1_dpid, EthAddr (h1_mac)): 2, 

          (ofs1_dpid, EthAddr (h2_mac)): 11, 

          (ofs4_dpid, EthAddr (h1_mac)): 11, 

          (ofs4_dpid, EthAddr (h2_mac)): 4} 

        self.portmapOther = {  

          (ofs1_dpid, EthAddr (h1_mac)): 2,  

          (ofs1_dpid, EthAddr (h2_mac)): 12, 

          (ofs4_dpid, EthAddr (h1_mac)): 12, 

          (ofs4_dpid, EthAddr (h2_mac)): 4} 

    ... 

    ... 

    def _handle_ConnectionUp(self, event): 

        dpid = dpidToStr(event.dpid) 

        log.debug("Switch %s has come up.", dpid) 

    ... 

    ... 

    def _handle_PacketIn (self, event): 

        Function that defines how incoming packets are handled 

        mypkt = event.parsed 
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APPENDIX C (continued) 

        def create_fwdrule(event,mypkt,outport): 

            #define function to install forwarding rules 

            rule = of.ofp_flow_mod() 

            rule.match = of.ofp_match.from_packet(packet, event.port) 

            rule.actions.append(of.ofp_action_output(port = outport)) 

            rule.data = event.ofp 

            rule.in_port = event.port 

            event.connection.send(rule) 

 

 

        def forwardpkt (fwd_msg = None):         

            this_dpid = dpid_to_str(event.dpid) 

            if packet.dst.is_multicast: 

                flood() 

                return 

            else: 

                try: 

                    tcppp = 0 

                    if event.parsed.find('tcp'): 

                        tcppp = event.parsed.find('tcp') 

                    elif event.parsed.find('udp'): 

                        tcppp = event.parsed.find('udp') 

                    if tcppp.dstport == 80: 

                        key_port = 80 

log.debug("key tcport is "+str(key_port)+" bloc") 

outport = self.portmap80[ (dpid_to_str (event.dpid), 

packet.dst)] 

                    else: 

                        key_port = 27 #dummy port non TCP traffic 

                        log.debug("key tcport is "+str(key_port)) 

outport = self.portmapOther[(dpid_to_str (event.dpid), 

packet.dst)] 

log.debug("new tcp pkt @ swh:"+dpid_to_str (event.dpid)+" 

tcpt:"+str(key_port)+" dst:"+str(packet.dst)+" ==> 

out_port="+str(outport)) 

                    create_fwdrule(event,packet,outport) 

                    log.debug("flow matched & installed") 

 

                except AttributeError: 

                    log.debug("no TCP port, flood") 

           create_fwdrule(event,packet,of.OFPP_FLOOD)  

        fowardpkt() 

... 

... 

def launch(): 

    pox.openflow.discovery.launch() 

    pox.openflow.spanning_tree.launch() 

    core.registerNew(Tcpportslicing)
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