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SUMMARY

Effective maintenance of complex systems has become a key issue in fields in which
the economic impact of reliability related issues and the cost effective operation of critical
assets is steadily increasing. Current maintenance strategies have progressed from
periodical maintenance and break down maintenance, to preventive maintenance, then to
condition-based maintenance (CBM). CBM is based on using real-time data to prioritize
and optimize maintenance resources. Prognosis as the most important part of CBM is

becoming more and more important in these fields such as aeronautics and astronautics.

In this dissertation, an integrated machinery prognostic methodology based on particle
filtering has been developed. In particular, three fundamental issues in developing particle
filtering based prognostic tools have been addressed in this research: (1) how to define the
state transition function used in particle filtering to estimate the fault progression; (2) how to
define the measurement function using a one-dimensional health index (HI) in particle
filtering to estimate the fault progression parameters; (3) how to define an error guided I-step
ahead remaining useful life (RUL) estimator. In the development of the proposed
prognostic methodology in this research, these three fundamental issues have been addressed
by: (1) defining the state transition function using a data mining approach; (2) integrating a
one-dimensional health index (HI) into particle filtering to define the measurement function;
(3) developing an I-step ahead RUL estimator incorporating with a measure of the associated
error.  The developed prognostic methodology has been validated using three industrial

case studies. The first case study concerns steel bearing prognosis and remaining useful life
XV



prediction.

SUMMARY (continued)

The bearing fault data used in this research are the spalled bearing run to failure

test data with intermediate inspection. The second case study concerns spiral bevel gear

prognosis and RUL prediction. The spiral bevel gear case study data were collected in the

NASA Glenn Spiral Bevel Gear Test Facility. In the last case study, the ground truth data of

hybrid ceramic bearings gathered experimentally by our group are used to validate the

methodology.

The specifically contributions of the dissertation are summarized as follows:

(1)

2)

€)

An integrated particle filtering algorithm was developed in which a
one-dimensional HI was integrated into particle filtering to define the observation
parameters. The results show that using the one-dimensional HI gives better
prognostic results than those obtained without combining different condition
indicators into one HI.

Instead of using Paris’ Law, data mining algorithm was used to build the state
function. The results have shown that the state function models built using the data
mining algorithm work effectively for describing the fault propagation.

Data mining based approaches were used to build the observation function. The
data mining based approaches use both the prediction information from the last
step and observation data. The results show that the data mining based methods

work better than existing methods reported in the literature.

XVI



(4)

©)

SUMMARY (continued)

An I-step ahead state parameter prediction and RUL estimator was developed.
Most of the publications in the current literature use only one-step prediction.

The presented prognostics method has been validated using data from steel bearing,
hybrid ceramic bearing and spiral bevel gear case studies. To date, no results on
spiral bevel gear or ceramic bearing prognosis and remaining useful life prediction
using particle filtering based approaches have been reported in the literature. And

the results on steel bearing prognostics using particle filtering algorithm are limited.

XvIl



1. INTRODUCTION

Prognosis and health management (PHM) for complex systems have become more and
more important when the economic impact of reliability related issues and the cost effective
operation of critical assets is rapidly increasing. Current maintenance strategies have
changed from break down maintenance, periodical maintenance to preventive maintenance,
then to condition based maintenance (CBM) (Heng, et al., 2009). For some cheap and
non-critical systems, the regular condition checking and on-line monitoring are not necessary,
such as personal computers, cell phones. For some other systems like vehicles, the
periodical maintenance should be combined with the break down maintenance. For
example, we have to do the regular maintain and change oil every three months.
Preventative maintenance also needs information such like historical operation data, working
conditions or loading information. But preventative maintenance usually doesn’t do the
online in time monitoring like CBM does. Condition-based maintenance is maintenance
when it is needed. CBM is becoming more and more important in recent years. For the
old traditional air fighters like F15 or F16, they are still using the maintenance strategies by
combing break down maintenance, periodical maintenance and preventative maintenance.
However, for the new generation of air fighters like F22 and F35, also some commercial
aircrafts like A380 and Boeing 787 are all equipped with CBM systems. Condition-based
maintenance is maintenance when it is needed. When one or more indicators show that
equipment performance is deteriorating or that equipment is going to fail, then the

maintenance strategy is performed. Condition-based maintenance was introduced to try to

1
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check, replace or repair the correct components at the right time (Renewables, 2007). CBM
uses real-time data to prioritize and optimize maintenance resources. It was reported that
99% of mechanical failures are preceded by noticeable indicators (Bloch and Geitner, 1997).

Prognostics as an important part of CBM is increasing in importance (Westwick-Farrow,

2006).
Break down Periodical Preventative
maintenance maintenance maintenance
l | |
Condition-based
maintenance (CBM) | °

Figure 1. Develop of the different maintenance strategies



FIGURE 2 shows the three stages of CBM system (Sun and Ma, 2006).

Diagnosis
l System degradation
Condition-based . A Setusin the future;
) Pro gnosis The remaining useful
maintenance (CBM) life (RUL).
Decision
making

Figure 2. Condition-based maintenance stages

So the objective of this dissertation is to develop an integrated machinery prognostic
methodology based on particle filtering and validate the developed prognostic methodology

using real industrial case studies.

As a natural extension to the fault detection and identification (FDI) issue, prognosis
intends to describe and reflect the evolution in time of the detected failure condition. So the
estimation of the remaining useful life (RUL) for affected subsystems or components is
allowed (Orchard, 2005). In this research, a particle filtering based prognostics method

using one-dimensional health index method is presented. In particular, in developing the
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method, the three particle filtering prognostics implementation related issues will be
addressed: (1) define the state transition function using data mining approach; (2) use an
one-dimensional health index (HI) obtained by a whitening transform to define the
measurement function; (3) an I-step ahead RUL estimator incorporated with a measure of the
associated error. The developed prognostics will enhance the machine condition monitoring
performance and make remaining useful life predictions more reliable. The presented
prognostics method is validated using data from steel bearings, hybrid ceramic bearings and

spiral bevel gears case studies.

1.1 The Needs for Prognostics

From a systematic point of view, fault detection, fault diagnostics and fault prognostics
are three levels in failure prevention. Fault detection means the detection of the status of the
machine, healthy or faulty. Fault diagnostics is the determination of the type or location of
the fault. And the forecast of the remaining operational life, future condition, or probability
of reliable operation of equipment based on the acquired condition monitoring data is
machinery prognosis. This approach to modern maintenance practice promises to reduce

downtime, spares inventory, maintenance costs, and safety hazards (Heng et al., 2009).

The three levels of fault prevention technologies are not necessary in all CBM systems.
For some end users, inexpensive fault detection systems are sufficient. When damage is
found in such a system, damaged components are simply replaced with new ones. However,

fault detection is not enough for some critical and expensive systems such as in helicopter
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transmission systems, and many other geared transmission systems. Fault diagnostics and

fault prognostics are necessary in such a system.

As reported by Ferret et al. (2006) and Heng et al. (2009), traditional maintenance
costs (i.e. labor and material) in the U. S. have escalated at a tremendous rate over the past 10
years. In 1981, domestic plants spent more than $600 Billion to maintain their critical plant
systems. The costs had increased to more than $800 Billion by 1991 and topped $1.2 Trillion
in 2000. We can see that through ineffective maintenance management methods between
one third and one half of these maintenance dollars are wasted. The combination of lack of
timely, factual knowledge of asset condition and the ineffective management methods cause a
lot of problems and artificially high maintenance costs. However, this kind of situation also
represents a substantial opportunity for implementing CBM on almost every manufacturing

and production facility.

Effective use of the preventive/predictive technologies provides ways to take advantage
of this opportunity. Used correctly, the 33 % to 50 % of wasted maintenance expenditures
can be eliminated and effective use of plant resources; both production and maintenance can

be achieved and sustained (Ferret, 2006).

As mentioned before, prognostics represents the process of predicting the reliability in
the future, probability of failure of an equipment, and the prediction of the remaining useful

life based on the acquired condition monitoring data by assessing the extent of deviation or
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degradation of a product from its expected normal operating conditions (Pecht et al., 2008;
Heng, et al., 2009; Niu et al., 2011;). The analysis of failure modes, detection of early signs
of wear and aging, and fault conditions are needed in the science of prognostics (Gilmartin,
2000). A damage propagation model will be correlated with these signs to get the prognosis
results. Prognostics plays a very important role in condition-based maintenance. Down
time, spares inventory, maintenance labor costs and hazardous conditions can be significantly
reduced by prognostics. However, compared to the other areas of CBM, prognostics as a

relatively new research area has yet to gain prominence.

1.2 Development of the Integrated Prognostics Using Particle Filtering

In this research, the development of integrated prognostics is based on an effective
state estimation technique called particle filtering. Particle filtering is a sequential Monte
Carlo method for state tracking and prediction. Particle filtering has caught the attention of
many researchers in various fields, including signal processing, statistics, and econometrics.
The method has been proved effective to model systems including elements of nonlinearity
and non-Gaussianity (Arulampalam and Ristic, 2000). The information obtained from both

the system measurements and the system models are used to describe system behaviors.

In the case when the system is nonlinear or in the presence of non-Gaussian
process/observation noise, such as bearings, gas turbines, gearboxes and engines in which the
nonlinear nature and ambiguity of the rotating machinery world is significant when operating

under fault conditions, particle filtering is very suitable because it is founded on the concept
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of sequential importance sampling (SIS) and the use of Bayesian theory (Wren, et al., 1997).
Furthermore, particle filtering allows information from multiple measurement sources to be
fused in a principled manner, which is an attribute of decisive significance for fault
detection/diagnostic purposes:
(1) Particle filtering is effective to model systems including elements of nonlinearity and
non-Gaussianity;
(2) Also good for the information from different measurement sources to be fused in one
prognosis model;

(3) Multiple fault modes prognosis can be built in this framework.

As we know, there is no single CI which is sensitive to every failure mode of a bearing
or gear. This suggests that some form of sensor fusion is needed in the condition based
maintenance system. Three statistical models were developed to define a health indicator
(HI) as a function of CI:  order statistics (max of n ClIs), sum of CIs and normalized energy.
Since ClIs tend to be correlated, a whitening process was developed to ensure the HI threshold
is consistent with a defined probability of false alarm (Bechhoefer et al., 2011). These
models were developed for ClIs with Gaussian or Rayleigh (skewed) distributions. In our
previous research, the results show the HIs performed well detecting pitting damage to gears
(Bechhoefer et al., 2011). The functions, used to generate Hls, were tested on gear and
bearing test stand data and their performance evaluated as compared to the end state of the

gear or bearing.
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One of the motivations for the research is because there is still no research that

involves combining HI into particle filtering algorithm.

One of the research objectives focuses on the use of a particle-filtering based
framework for on-line failure prognosis in nonlinear, non-Gaussian systems. The
implementation will statistically characterize the remaining useful life (RUL) of a subsystem
or component affected by a fault condition, that is, estimate the probability density function
of the subsystem RUL. A set of measurements will be used to improve current estimates,
and nonlinear state-space models define the evolution in time of the fault indicator. The
outcome of the prognosis module, namely the RUL Probability Density Function (PDF), will
be available and updated in real time, providing information about statistical confidence

intervals and expectations.

Most authors have used Particle filtering (and other nonlinear filtering approaches) as a
tool for detection (that is, one step prediction), but not for prognosis (I-step prediction).
While the assumptions about model nonlinearities and non-Gaussian noise structures are kept,
one step prediction is used mainly because there are no clear indications about how to project
the particle population in time. In specific applications, it has been suggested to assume
absence of both process and measurement noise for prediction purposes (Orchard, 2005), thus
obtaining a long-term prediction with minimum variance, such as chaos prediction (Zhang,
2007, 2008). Initial conditions for deterministic models are defined as the particle

population in order for them to be used for decision theory, risk calculations and other
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statistical approaches (Orchard, 2005). The implications of these assumptions, though,
could be significant in real processes, especially in presence of vibration signals and therefore

they must be evaluated with care.

1.3 The Motivation of the Cases Studies

Rotating machinery is widely used in various industrial, military, and commercial
processes. Bearings and gears are essential components in such applications and their failures
often result in a critical damage, downtime, and costly repair (Zakrajsek, 1993; Zaretsky,
1997; Howe and Muir, 1998; Ho, 2000; Zhang, 2005; Abbas, et al, 2007; Vachtsevanos,
2006). Therefore, fault diagnosis and failure prognosis, which provide a condition based
maintenance strategy to either machinery or components, such as bearings, is important to the
safety of the system and results in substantial economic benefits (Sunnersjo, 1985; McFadden
and Smith, 1984, 1985; Howard, 1994; Goode and Chow, 1995; Ho and Randall, 2000; Li,

2000; Tse, 1999, 2001).

The implementation and testing of the proposed particle-filtering-based methodology
for fault prognosis on real process data, and the subsequent assessment of the obtained results,
will be presented in the research work. The first case study is about steel bearing prognosis
and remaining useful life predictions. The bearing fault data used in this research project
are the spalled bearings run to failure test data with intermediate inspections. Then, a
second case study about spiral bevel gear prognosis and RUL prediction will be illustrated.

The spiral bevel gear case study was performed in the NASA Glenn Spiral Bevel Gear Test
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Facility. In the last case study, the ground true data of hybrid ceramic bearings tested by our

group at UIC will be used to validate the methodology.

The reason why I chose these three cases in the research is because there is currently no
research published on particle filtering applied to spiral bevel gears and ceramic bearings
prognosis and remaining useful life predictions. Also, few papers have been published

about steel bearings prognostics by particle filtering algorithm.

For the first case study, Sentient Corporation has accrued a large database of seeded
spall propagation tests on angular contact ball bearings. This testing was part of Phase I of
the DARPA Prognosis Program. The test bearings were a 106 size angular contact bearing,
primarily of SAE 52100 steel, although some M50 Nil and hybrid bearings were also tested.
A Rockwell C indent was used as the seeded fault. Each bearing was removed for
inspection at least 10 to 15 times during the spall propagation, with some bearings being
inspected as many as 30 times. Each inspection included both measurements and

photographs of the bearing races and specifically the spalls (Lybeck, et. at, 2007).

The second case study was applied to spiral bevel gears. The main application of
spiral bevel gears are in a vehicle differential, where the direction of drive from the drive
shaft must be turned 90 degrees to drive the wheels (Dempsey et al., 2002). Less vibration
and noise is produced by using the helical design than using the conventional straight-cut or

spur-cut gear with straight teeth. Because helicopters depend on the power train for
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propulsion, lift, and flight maneuvering, helicopter transmission integrity becomes very
important to the safety of helicopter (Handschuh, 1995, 2001; Ebersbacha, 2006). The ideal
diagnostic tools used in the health monitoring system would provide real time health
monitoring of the transmission and would demonstrate a high level of reliable detection to
minimize false alarms in order to detect impending transmission failures (Dempsey et al.,
2002). Spiral bevel gears are used in helicopter transmissions to transfer power between
nonparallel intersecting shafts. In the case study, the experimental data was recorded from
tests performed in the Spiral Bevel Gear Test facility at NASA Glenn Research Center. In

the references (Handschuh, 1995; 2001), a detailed analysis of this test facility can be found.

The final case study was on ceramic hybrid bearings. Ceramic bearings exhibit a
service life three times longer than that of steel bearings. Conventional steel ball bearings
are quickly replaced by ceramic bearings in many different fields and applications (Ebert,
1990). There are two types of ceramic bearings: hybrid ceramic bearings and full ceramic
bearings. Hybrid ceramic bearings have steel races and ceramic balls and full ceramic
bearings have both ceramic balls and races. The data from hybrid ceramic bearing
experiments were used in one of the case studies. Under many extreme operating conditions,
hybrid bearings perform well and offer high-speed operation with low friction. Rapid
accelerations and decelerations can be provided because of the lower weight of hybrid balls.
Ceramic bearings are less sensitive to heat differences between races since the thermal
expansion of hybrid ceramic bearings is about 30% lesser than that of steel ones (Zaretsky,

1997). Ceramic bearings are less sensitive to fluctuations in lubrication conditions.
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Ceramic balls can operate under the same lubrication conditions at speeds up to 20% higher
compared to steel bearings. The hybrid bearings eliminate the chance for oil leakage into
the environment because of the desired operability in greased-for-life applications and their
lesser to no requirement for oil lubrication. Due to the coefficient of friction in hybrid
bearings is approximately 20% of similar steel balls, hybrid bearings also generate less
vibration than all-steel bearings and noise levels can be reduced during operation because of
the smoothness. In comparison with other bearings, hybrid bearings often last longer than
other bearing types and have a lower life cycle cost, reduced operating and maintenance costs,

increased production quality and simple handling and mounting (Stoneburner, 2005).

1.4 Research Obijective

The aim of this research is to develop an integrated prognostics methodology with an
application to bearing and gear life prediction. In particular, the following research issues in

developing integrated prognostics using particle filtering will be addressed:

(1) How to define the state transition function?
(2) How to define the observation function?
(3) How to build up an I-step ahead remaining useful life (RUL)?

(4) How to validate the developed methodology?

In this dissertation, the research issues in developing integrated prognostics using

particle filtering will be addressed by using:
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(1) Define the state transition function using data mining approach;

(2) Integration of one-dimensional health index into particle filtering methodologys;

(3) Develop an I-step ahead RUL estimator incorporated with a measure of the
associated error;

(4) Validate the integrated methodology using real case study data.

1.5 Outline

This research presents a methodology for gear and bearing prognostics using particle
filtering. Data collected from real-time run to failure tests are used to validate the presented
prognostic methodology. The remainder of the dissertation is organized as follows.
Chapter 2 is the literature review part. Chapter 3 presents the methodology of particle
filtering for prognostics. Chapter 4 integrates a one-dimensional health index into particle
filtering methodology. Chapter 5 is about the one of the case studies: steel bearing
prognostics. Chapter 6 is about bevel gear prognostics. Chapter 7 presents the results of

hybrid ceramic bearing prognosis. The conclusions of the research are provided in Chapter



2. LITERATURE REVIEW

In the past few years, an increasing number of published papers on rotating machinery
prognostics, such as bearings, gears and shafts have been published because of the
significance of prognostics capabilities and the development of condition monitoring
technology. A wide spectrum of prognostics techniques was covered in these publications.
The current research status of the prognostics and particle filtering algorithm used in the
research are summarized. Also, the merits and weaknesses of these methods have been

identified in this chapter.

2.1 The Prognostics Types and Remaining Useful Life Prediction

In machine prognostics, two main prediction types have been developed. The most
obvious and widely used prognostics is to predict how much time is left before a failure
occurs (or, one or more faults) given the current machine condition and past operation profile.
Remaining useful life (RUL) is the time left before a failure is observed. In some situations,
especially when a fault or a failure is catastrophic, such as, in the fields of military,
aeronautics, astronautics, and nuclear power plant, prognosis and remaining useful life
prediction would be more desirable. The prognosis actually is using the information like
current machine condition and past operation profile to predict the chance that a machine will
run without a fault or a failure up to some future time (e.g., next inspection interval). The

probability that how long a machine can operate without a fault is a good reference for

14
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experts in related fields to determine whether the maintenance schedules determined are
appropriate or not. Most of the papers in the literature of machine prognostics discuss only
the first type of prognostics, namely RUL estimation. Only few papers addressed the second

type of prognostics (Farrar et al., 2003; Lin and Makis, 2003).

Remaining useful life refers to the time left before observing a failure given the current
machine age and condition, and the past operation profile (Kacprzynski, et al., 2004). In
some cases, it means finding the distribution of RUL. In some other cases, however, it just

means the expectation of RUL (Jardine et al., 2006).

The outcome of a prognosis system built based on any prognosis algorithm is actually
an estimate for the system RUL probability density function (PDF), which is the probability
of failure at future time instants. This probability can be obtained from long-term
predictions, when the empirical knowledge about critical conditions for the system is
included in the form of thresholds for main fault indicators, also referred to as the hazard
zones (Orchard, 2005). Usually a pre-specified threshold has to be decided to describe the
critical system degradation status. Sometimes this threshold is a fixed number and
sometimes it can be described by a probability density function. This threshold can be
statistically determined on the basis of historical failure data, defining a critical PDF with

lower and upper bounds for the fault indicator (Hy, and H,,, respectively).
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2.2 Current Research Status of Prognostics

In this section, current methodologies for prognostics are summarized and classified as
data driven based methods, physics model based prognostics models and hybrid

methodologies reliability and prognostics.

In the past few years, methodologies and technologies in machine condition monitoring
(CM) and fault diagnostics have been developed. Data such as vibration signal, acoustic
emissions and oil debris mass can be collected, processed and analyzed through sensors, data

base software and parallel computation technologies (Heng, 2008).

The current Research Status in Related Fields can be summarized as following:

(1) Current particle filtering based prognostics methods in mechanical system use
Paris’ Law to build the state transition function;

(2) There is still no research on how to integrate HI into particle filtering algorithm to
do the prognosis;

(3) Current particle filtering based prognostics methods mostly use linear regression to
build the observation function;

(4) Most of the research on particle filtering based applications are for diagnosis (that
is, one step prediction), but not for prognosis (I-step prediction);

(5) No research results on spiral bevel gears and ceramic bearings prognosis and
remaining useful life prediction using particle filtering based prognostics methods

have been reported;
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(6) There are just a few papers have been published about steel bearings prognostics by

particle filtering algorithm.

Pusey and Roemer (1999) provided a broad overview of the development in
diagnostics and prognostics technologies applicable to high-performance turbo-machines.
Jardine et al. (2006) provided an overview and a catalogue of publications on data acquisition,
data processing, diagnostics and prognostics of various machines. Vachtsevanos et al. (2006)
defined and described intelligent fault diagnostics and prognostics approaches for engineering

systems through examples.

The current methodologies for failure prediction can be grouped into three types like TABLE

I shows:
TABLE I
PROGNOSTICS TYPES AND THEIR DESCRIPTIONS
Types of Prognostics Description

1. | Traditional reliability approaches | Event data based prediction

2. | Prognostics approaches Condition data based prediction

3. | Integrated approaches Prediction based on both event and condition data
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Under these three approaches, there are some existing models to do the failure
prediction. These models are listed in the following.

The first approach: Traditional reliability—use event data, e.g. replacement/failure
times of historical units (Kapur and Lamberson, 1977; Keller, et al., 1982; Crowder, 1994;
Elsayed, 1996; Groer, 2000; Lawless, 2002; Farrar, 2003, 2006). Traditional reliability
approaches include some distribution models such as Weibull, Poisson, Exponential, and
Log-Normal distribution.  In these kinds of approaches, population characteristics
information enable longer-range forecast and they do not require condition monitoring.
However, traditional reliability approaches only provide general and overall estimates for the
entire population of identical units, and these approaches are not necessarily accurate for

individual operating units (Batko W., 1984).

Condition data based prediction is a prognosis approach use CM data, e.g., vibration
measurements of operating units. It can be divided into three models: physics-based
prognostics models, data-driven prognostics models and hybrid models. These kinds of
approaches become more and more important than the traditional reliability approaches.

The following parts are about the research status of condition data based prediction (Yan, et

al., 2004).

2.2.1 Physics-based Prognostics Models

Physics-based models based prognostics needs to build comprehensive mathematical
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models to describe the physics of the system and failure modes, such as crack propagation
and spall growth.

The failure natural frequency and the acceleration amplitude were related to the
running time and failure time established from damage mechanics. As physics-based

models, these techniques require the estimation of various physics parameters (Deb, 2003).

The main physics-based prognostics models are listed in TABLE II:
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TABLE II

MAIN PHYSICS-BASED PROGNOSTICS MODELS

Approach

Merits

Limitations

Paris law crack growth
modeling (Paris, 1963; Li et
al., 1999; Warrier et al.,,
2000; Li et al., 2000, 2005;
Wembhoff, et al., 2007)

Least-square scheme enables
adaptation of model parameters
to changes in condition.

Defect area size is assumed
to be linearly correlated to
vibration RMS level;
Least-square scheme
similar to single-step
adaptation in time series
prediction;

Material constants to be
determined empirically.

Paris law modeling with
FEA (Li and Choi, 2002; Li
and Lee, 2005)

FEA enables material stress
calculation based on bearing
geometry, defect size, load and
speed.

Performance relies on the
accuracy of crack size
estimation based on
vibration data;
Computationally
expensive.

Forman law crack growth
modeling (Wereszczak, et
al., 2007; Oppenheimer and
Loparo, 2002)

Relates CM data and crack
growth physics to life models.

Simplifying assumptions
need to be examined,;
Model parameters yet to be
determined for complex
conditions e.g. in shaft
loading zone and plastic
zones).

Fatigue spall initiation and
progression model (Orsagh
et al., 2003; Orsagh et al.,
2004; Kacprzynski et al.,
2004 )

Calculates the time to spall
initiation and the time from spall
initiation to failure; Cumulative
damage since installation is
estimated with consideration of
operating conditions.

Various physics parameters
need to be determined.

Contact analysis for bearing
prognostics (Marble and
Morton, 2006)

FEA enables material stress
calculation based on bearing
geometry, defect size, load and
speed.

Various physics parameters
need to be determined;
Computationally
expensive.

Stiffness-based damage rule
model (Qiu et al., 2002,
2003)

Relates bearing component
natural frequency and
acceleration amplitude to the
running time and failure time.

Least-square scheme
similar to single-step
adaptation in time series
prediction;

Various material constants
need to be determined.
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Physics-based models might not be the most practical solution since the fault type in
question is often unique from component to component and is hard to be identified without
interrupting operation. However, a physics-based model is very complicated to be applied
because a lot of related information and knowledge such as material properties, working
loading, stress factors and historical operation. They also generally require less data than

data-driven models (Heng, 2009).

2.2.2 Data-driven Prognostics Models

Another prognostics method is data driven based methodology. Data-driven based
method primarily use data obtained from the system historical operation for predicting future
faults. AE, vibration and oil debris are three typical condition indicators - CIs which can be

monitored continuously in order to get the diagnostic and prognostic information (Crowder,

1994).

The simplest methods of data driven based methods are autoregressive such as linear

regression (Ross, 1989).

The main data driven- based prognostics models are listed in TABLE III:
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TABLE III

DATA DRIVEN-BASED PROGNOSTICS MODELS

Approach

Merits

Limitations

Time series prediction using ANNs (Caldwell,
1971 and 2007; Kazmierczak , 1983;
Friedman, 1991; Tse and Atherton, 1999;
Yam, et al. 2001; Wang and Vachtsevanos,
2001; Wang et al., 2004; Wang, 2007; Shao
and Nezu, 2000; Lawless, 2002; Schomig and
Rose, 2003; Tong and Lim, 1980);

Fast in handling
multivariate analysis;
Provide non-linear
projection;

Do not require a priori

knowledge.

Assume that condition indices
deterministically Represent
actual asset health;

Assume that failure occurs once
the condition index exceeds a
presumed threshold; Short

prediction horizon.

Exponential projection using ANN (Samanta
et al., 2006;Gebraeel et al., 2004; Gao, 2006)

Estimates actual
failure time instead of
condition index at
future time steps;
Longer prediction

horizon.

Assumes that all bearing
degradation follow an
exponential pattern;

Requires training one ANN for
each historical data set.

Data interpolation using ANN ( Li, etal.,

2000; Huang et al., 2007)

Longer prediction

horizon

Requires training one ANN for
each historical dataset

Regression analysis and fuzzy logic (Rao,
1981; Lennart, 1987; Fukunaga , 1990;
Jantunen, 2004; Shin, et al., 2005; Wang and
Vachtsevanos, 2001; Wang, et al., 2004)

Emphasizes the most
recent condition
information;

Fuzzy logic enables
condition classification
based on histories.

Does not provide indication of
time to failure or probability of
failure

Recursive Bayesian technique (Zhang et al.,
2007; Hastie, 2009)

Estimates reliability
using CM data of
individual assets,
rather than event data

Accuracy relies strongly on the
correct determination of
thresholds for various trending
features

Hidden Markov Model and Hidden Semi-
Markov Model (Zhang et al., 2005; Dong and
He, 2007 )

Can be trained to
recognize different
bearing fault types and
states

Lack of relation of the defined
health-state change point to the
actual defect progression since it
is often impractical to physically
observe a defect in an operating
unit;

Prognosis projection relies on a
failure threshold.

Bearing dynamics model using system
identification (Li and Shin, 2004)

Tracks defect severity
based on features that
are not affected by
operating condition

and nearby equipments

Reasonably accurate only when
the signal-to-noise ratio is high,
e.g. damage is severe and

running speed is relatively high.
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2.2.3 Hybrid Approaches

Physics model based approach utilizes knowledge of a product’s life-cycle loading and
failure mechanisms as well as knowledge about the components and systems. Data-driven
approaches can include parameters that are monitored at system level and utilize machine
learning and pattern recognition techniques for diagnostic and prognostics. One can utilize
the advantages of one technique to overcome the limitations associated with others. The
incorporation of physics based models with data-driven approaches improves prognostic
capabilities and provides more accurate diagnostics (Kumar et al., 2008). We can combine
theses two method to do the prognosis. Hybrid approaches attempt to leverage the strength
from both data-driven approaches as well as model-based approaches. In reality, it is rare
that the fielded approaches are completely either purely data-driven or purely model-based.
More often than not, model-based approaches include some aspects of data-driven
approaches and data-driven approaches glean available information from models. An
example for the former would be where model parameters are tuned using field data. An
example for the latter is when the set-point, bias, or normalization factor for a data-driven
approach is given by models. Hybrid approaches use knowledge about the physical process
and information from observed data together, such as, Particle filtering, Kalman filtering, etc.

Particle filtering provides non-linear projection (Orchard, 2005).

The advantages of these methods are:
(1) Does not necessarily require high fidelity models or large volumes of data —works

in a complementary fashion;
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(2) Retains intuitiveness of a model but explains observed data;
(3) Helps in uncertainty management;

(4) Flexibility.

2.3 Vibration Based Prognostics for Bearings and Gears

By measuring and analyzing the vibration signal from the objective system,
determining both the locations and severity of the faults, and hence predicting the machine’s
useful life or failure point will become possible (Lewicki et al., 2010). The main advances
in vibration analysis in recent years are the development in signal processing techniques, for
vibration diagnostics of gearing systems (Cempel, 1987; Wang and McFadden, 1996;
McCormick, 1998; Andrade et al., 2001; Baydar and Ball, 2001; Liu, 2003; Rao et. al, 2003).
A lot of vibration analysis software packages are available for automated analyses of

common machinery faults such as bearings, gears, motors, etc. (Sohn et al, 2004).

Byington et al. (2002; 2003; 2006) presented a feature extraction and analysis driven
system: ImpactEnergy. This system recorded high frequency vibration/acoustic emission data
and combines advanced diagnostic features derived from waveform analysis, high-frequency
enveloping, and more traditional time domain processing like root mean square (RMS) and
kurtosis with classification techniques to provide bearing health information. Also, the effect
and feasibility of ImpactEnergy as a bearing diagnostics system was proved by a case study on

aircraft engine ceramic bearing data. The object includes two identical hybrid bearings. The
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test speed and load simulated the test conditions of the military accelerated mission tests
(AMT’s). The focus of this paper is the fault detection and diagnostic algorithms. Vibration
data were collected as indictor to detect incipient ball spall defects and capture the degradation
trend of hybrid ceramic bearings. The prediction algorithm of remaining useful life of hybrid
ceramic bearings was not reported and verified in this paper. Takebayashi (2001) used
vibration data as the diagnostic tool to indicate bearing fatigue damage and compared the

rolling fatigue life of steel, hybrid, and all ceramic bearings.

Two different diagnostic methods can be used to indicate bearing failures: oil debris
based diagnostics and vibration based diagnostics (Dempsey et al., 2005). Dempsey et al.
(2004) summarized the currently known failure modes of the hybrid bearing and used both
the magnetic and non- magnetic sensors instead of using the magnetic oil debris sensor only
to detect the silicon nitride debris. A hybrid bearing test rig has been developed by National
Aeronautics and Space Administration (NASA) at Glenn Research Center in order to evaluate
the performance of sensors and algorithms developed in predicting failures of rolling element
bearings for aeronautic and space applications (Dempsey et al., 2005). The failure
progression of both conventional and hybrid (ceramic rolling elements, metal races) bearings
can be tested from fault initiation to total failure. The effects of different lubricants on
bearing life can also be evaluated. Different diagnostic tools, both oil based and vibration
based systems, were used to indicate bearing failures. The vibration data were recorded and
analyzed in time domain, frequency domain, and envelope analysis techniques to indicate the

health condition of bearings in real-time. In the meanwhile, several different oil debris
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sensors were installed to get the information of both metallic and non-metallic debris
particles. Using the magnetic properties of the oil debris to detect damage is not enough
since the ceramic rolling elements of hybrid bearings have no metallic properties (Dempsey
et al., 2004). Oil debris sensor measures the change in a magnetic field caused by passage
of a metal particle, and electric chip detectors measures magnetic debris generated during
bearing tests. On the other hand, ultrasonic sensor uses a high-frequency acoustic impulse
that is reflected by both metallic and non-metallic debris particles to yield particle counts
(Howe and Muir, 1998). The video image based diagnostic sensor also can measure both
metallic and nonmetallic debris (Dempsey et al., 2005).  All the data captured by the sensors

indicate the process of failures and different types of failures.

2.4 Current Development of Particle Filtering Method

Recently, applications of particle filtering to prognostics have been reported in the
literature, for example, remaining useful life (RUL) predication of a mechanical component
subject to fatigue crack growth (Zio and Peloni, 2011), on-line failure prognosis of UH-60
planetary carrier plate subject to axial crack growth (Orchard and Vachtsevanos, 2011),
degradation prediction of thermal processing unit in semiconductor manufacturing (Butler
and Ringwood, 2010), and prediction of lithium-ion battery capacity depletion (Saba et al.,
2009). The reported application results have shown that particle filtering represents a
potentially powerful prognostics tool due to its capability in handling non-linear dynamic
systems and non-Gaussian noises using efficient sequential importance sampling to

approximate the future state probability distributions (Ng Ka Ki and Edward Delp, 2009).
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Particle filtering was developed as an effective on-line state estimation tool (Doucet et al.,
2000; Arulampalam et al., 2000; Arulampalam et al., 2002). In order to apply particle
filtering to RUL prediction of a mechanical component such as gears, a few practical
implementation problems have to be solved: (1) define a state transition function that
represents the degradation evolution in time of the component; (2) select the most sensitive
health monitoring measures or condition indicators (CIs) and define a measurement function
that represents the relationship between the degradation state of the component and the Cls;
(3) define an effective I-step ahead RUL estimator. In solving the first problem, research on
using particle filtering for mechanical component RUL prognostics has used Paris’ law to
define the state transition function (Zio and Peloni, 2011; Orchard and Vachtsevanos,
2011). As an empirical model, Paris’ law can be effective for defining a state transition
function that represents a degradation state subject to fatigue crack growth. For other type
of failure modes such as pitting and corrosion, effective alternatives for defining the state
transition function should be explored. Regarding the second problem, on the surface, it
doesn’t seem to be a problem to use multiple ClIs to define a measurement function for
particle filtering as it allows information from multiple measurement sources to be fused in a
logical manner (Zio and Peloni, 2011). In particle filtering, measurements are collected and
used to update the prior state distribution via Bayes rule so as to obtain the required posterior
state distribution (Patrick et al., 2007). Subsequently, various kinds of uncertainties arise
from different sources that are correlated. In most real applications, no single CI is sensitive
to every failure mode of a component. This suggests that defining the measurement

function will have some form of de-correlated sensor fusion. In order to apply particle
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filtering to estimate the RUL, an |-step ahead estimator has to be defined. Both biased and
unbiased |-step ahead estimators have been reported by Zio and Peloni (2011), and Orchard
and Vachtsevanos (2011). However, as pointed out by Zio and Peloni (2011), one issue
related to these estimators is that state estimation and prediction must be accompanied by a
measure of the associated error. However, almost all these researches in PHM field use only

one cue as the observation parameter.

Saha and Goebel (2009) utilized PF to predict the life of the Li-ion battery. Cadini et
al. (2009) use PF based algorithm for modeling fatigue crack growth. Also in (Zhang et al.,
2009), a PF based multiple faults model enhanced by a simple on-line parameter adaptation
algorithm for the rolling element bearing was proposed to estimate the fault size and the
remaining useful life of the bearing. In the practical sense, to determine the value of the
parameters for the state model of the system is critical important. For example, in (Orchard
and Vachtsevanos, 2009), the authors used finite element analysis method to determine the
parameter describing the relationship of fatigue crack growth under a stress intensity regime.
Also, in (Zhang et al., 2009), an adaptive recursive algorithm is applied to determine the

parameter for the state model of the bearing fault growth model.



3. THE METHODOLOGY OF PARTICLE FILTERING

3.1 Scheme of the Presented Prognosis Methodology

For any diagnosis and prognostic system, the first step is to build a Scheme of the
Presented Methodology. The real-time diagnosis and prognosis system can be divided into
two parts: hardware and software. For hardware, we need to select appropriate sensors, a
feature collection system, and a data transmission, integration and analysis system. On the
other hand, for software, first we need to define the technique framework, flow path and
methods used. Then we can select data processing and feature analysis software. Next,
prognosis and RUL prediction algorithms can be applied to get the failure rate and RUL

distribution.  Finally, we can schedule the maintenance.

29
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Figure 3. Scheme of the presented methodology

3.2 The Scheme of the Particle Filtering Based Bearing Fault Prognostics

The scheme of the methodology presented in this dissertation is shown in FIGURE 4.

The vibration signal is first processed to generate the fault features, such as root mean square

(RMS), kurtosis and so on.

And then the particle filtering based prognostics algorithm is

applied to predict the remaining useful life (RUL) of the bearing (Chen, 2010; 2011).
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Figure 4. The particle filtering based prognostics algorithm

3.3 Conceptual Hlustration of Model Updating

In particle filtering framework, the weighted particles actually represent the possible
status of system degradation. The weight for each particle is also called importance and it
represents how good or bad for a particle value to describe the true system status (Zio and
Peloni, 2011). If a particle has a small weight that means that particle value is far away
from the true system status. And if another particle has a bigger weight that means this
particle can describe the system status very well. By using the developed methodology, the
dynamic system degradation evolution can be estimated in terms of probability density
function. And PDF is described by a swarm of weighted particles (Koller-Meier and Ade,

2001).

Figure 5 describes the two steps diagnosis result based on current measurements using

the developed diagnosis procedure.
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In this figure the vertical axis is the system degradation evolution and the horizontal
axis is time horizon. Usually, a pre-specified threshold can be defined for the system
degradation status. Sometimes this threshold can be a fixed value and sometimes it can be
represented by a probability density function. In FIGURE 5, the upper part is the estimation
result based on current measurement Yy.p, and the lower part shows the updated prediction

result based on the updated measurement information Yy (Xie, 2004; Ma,et al, 2006, 2010).
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FIGURE 5 shows the estimation result based on current measurement information Y

and the prediction result based on the current measurement information Y.
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Figure 6. Conceptual illustration of model updating and I-step ahead prediction
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By comparing the predicted system degradation and the pre-specified threshold, the
probability of the system is going to fail can be obtained based on the current measurements.
Also, the probability of system remaining useful life less than (n-k) can be obtained by using

the developed remaining useful life estimator.

In the following sections, the developed methodology will be explained with details

about how to get the results mentioned above.

3.4 The Introduction of Particle Filtering

Particle filtering is sequential Monte Carlo methods for state tracking and prediction.
The method has been proved effective to model systems including elements of nonlinearity
and non-Gaussianity (Arulampalam and Ristic, 2000). The information available from both
the system measurements and the models are used for describing system behaviors.
Recently, many successful applications on using PF have been reported (Pérez et al., 2004).
Representing the posterior probability density function by a set of discrete particles (samples)
is the key of particle filtering (Spengler and Schiele, 2001). The reason why a sample is
also called as a particle is because the probability density function describes its discrete
nature and its discrete representation. Each particle represents a hypothesis of the state and
it is randomly drawn from the prior density (Sanjeev, 2002). In (Li et al., 2010), an online
adaptive recursive algorithm is utilized to identify the parameter of the state model of the

crack growth model of the bearing.
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The fault prognostics can be classified into two categories according to the way the
data is used to describe the behavior of the system. The first one is data-driven techniques
(He and Bechhoefer, 2008) and the second one is model-based approaches (Li et al., 1999).
Based on nonlinear dynamic state model, particle filtering methodology combines these two

techniques by using Eq. (3.1) and Eq. (3.2). The filtering problem can be described as:

X = ft(Xt—l’Vt—l) (3.1)

Y = ht (Xt’ut) (3.2)

where f; is the system state evolution function and h; is the observation function. X;
represents the states of the system at time t , y; denotes the observation parameter, V; the

process noise, and U;  the observation noise. p(Xg) represents the prior distribution at t=0.

This section focuses on the implementation of the particle filtering framework for analyzing
the spall size of hybrid ceramic bearing. The scheme of the methodology is shown in FIGURE 7

(Li, 2010).
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The particles

There are two stages in particle filtering process: prediction and update.

are modified according to the state function in the prediction process (Musso, 2001).

Otherwise, in the update process, the particles’ weights are re-evaluated based on the

difference between the particle values got by observation function and the values from the

prediction process.
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Figure 8. One iteration of the prediction and update

Figure 8 shows the one iteration of the prediction and update of filtering. The goal is

to find the posterior probability density function at time k (Ki and Delp, 2009). The

posterior probability density function is constructed recursively by the set of weighted

random samples {x", ®;i=1,...,N}where N is the total number of particles. At each

time t, the particle filtering algorithm repeats a two-stage procedure: prediction and update
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(Ki and Delp, 2009):

(1) Prediction stage: Every particle x" evolves independently and a new state value
being obtained according to the state function (4.1). In order to simulate the
unknown disturbance, the random noise is applied in this stage. An
approximation of the prior probability density function is generated and
represented by a batch of the particles in this step. Approximating the filtering
probability density function by using a set of particles x, i=1,..,N is the

main idea of the particle filtering:

3% - X"

Z|~
Mz

p(x) =

(2) Update stage: The weights of the particles are calculated based on the latest
measurement according to the measurement function (likelihood function) (3.2).
In the form of a discrete approximation, the posterior probability density function

at time t can be written as:

P(X[Yi) = D o T% — "] (3.3)

In Eq. (3.3), an important weight " is assigned to each particle x"”. This weight
implies the importance of the particle in constituting the formulation of filtering probability

density function (PDF). After a particle is generated, it then propagates according to the

state function. FEach propagated particle is verified by a weight assignment by the
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measurement function. The quality of a specific particle is characterized by the weight. A
good particle will be assigned with a large weight and a small weight will be given to a bad

particle (Ki and Delp, 2009). &[x, —x"] represents the delta-Dirac function located at x".

A finite sum approximates the general integral representation of the filtering PDF by

using Eq. (3.3).
Corresponding weight for each particle is computed by (3.4):

O = O ]y
q[Xt ‘Xt > yt]

(3.4)

In Eq. (3.4), q[xt“)‘xt“),yt] is the proposal density function and p[yt‘xt“)] is the

likelihood function of the measurements y, .

The particle filtering method tracks multiple possibilities at the same time and each
possibility is defined by a particle. According to the observation function, a particle is
assigned with a weight. If the value of a particle is close to the value of the target, the
distance of this particle is smaller from the object model, and then this particle will be

assigned with a larger weight according to the observation function.

The observation likelihood function is very important in tracking performance using

particle filtering. The first reason is because that this function determines the weights of the
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particles and the weights determine how the particles are re-sampled. The second one is that
the predicted state value is the weighted mean of all particles and it affects the estimations

directly (Ki and Delp, 2009).

The algorithm of a standard particle filtering includes the following four steps (Sanjeev

etal., 2002):

Step 1: Initialization
/=0.zample N particlesx® from the prior prx0s

R
Step 2: Compute the importance weights ¢ i=1,.. N, = p[y, ng)_l], i=1..,N

. . . - do e
Normalize the welghts according to af" =

>¥ e

a
Step 3: Draw N new particles with replacement
FOI .i.=1.- Y N.Pr[xf') = xfile ] = m‘(") s j = l' . N

Step 4: Compnte one-step-nhead particles
Drawing particles from the proposal densuty, X,(;)_l - plx,,

xf’),l'=l,...,N]

After step 4, go to Step 2 or end the algorithm according to the conditions.

The nonlinear mapping between the observation parameter and state parameter can be
assumed as one-to-one. Following the representation of the state and observation functions
defined in (Zhang et al., 2009), the particle filtering model for bearing prognostics can be

written as follows:
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X, (t+1) = [kx_ ()] + o(t) (3.5)

y(©) =X, (0 + V() (3.6)

In this model, X_(t) represent the operation status — let’s say the size of the crack area,
y(t) is the fault feature contaminating noise, and K is a time-varying model parameter that
describes the progression of the fault dimension under a fatigue stress. Parameter K can be
determined by using finite element analysis model (Orchard and Vachtsevanos, 2009) or
online identified by the experimental data (Zhang et al., 2009). In (Li, et al., 2010), to
simplify the way to calculate K, an online identification algorithm can be used to find the

value of k.

The following framework shows the calculation steps with details:
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The following figures show the all possible evolution paths by using 5 particles as an

example, like FIGURE 9 - FIGURE 15 show.
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Figure 9. The current particles at current time point k-2
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Figure 11. The updated weights for each updated particle by using observation function
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Figure 12. Updated particle and their weights based on current measurement
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Figure 13. The one step ahead predicted particle values based on the current measurement
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Figure 14. One step ahead prediction result for system degradation
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Figure 15. The I-step ahead prediction for system degradation status by using 5 particles

The task of tracking a state variable and predicting the future values is usually solved
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as a filtering problem (Saha and Goebel, 2009). Particle filtering can easily deal with
uncertainties when they occur. The detailed implementation of the particle filtering is

shown in FIGURE 16.
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3.5 RUL Prediction using Particle Filtering

3.5.1 Particle Filtering for Fault Status Prediction

Assume the following discrete time state space model can describe a system:

%= pap (3.7)

Yy :hk(xk,vk) (3.8)

where:

f.:R" xR" — R",is the state function

o, : the independently and identically distributed (iid) state noise vector
h.: R",xR", - R" : the measurement function

v, : the independently and identically distributed( iid) measurement noise vector

State transit estimation is a problem which estimate the dynamic state X, according to
probability density function (PDF) p(X, |y01k) , given the measurement at time k. Assume

that the initial distribution of the state p(X,) is known.
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Normally, prediction and update is the two steps of the Bayesian solution to the state

estimation problem. In the prediction step, the prior probability distribution of the state X,

at time k, starting from the probability distribution Pp(X,, |ZO:k—1) at time k-1, is obtained as:

P(X, |y0:k—1) = I P(X, |Xk715 You-1) Py |y0:k71)dxk71

(3.9)
=J. p(Xk |Xk—1)p(xk |y0:k—1)dxk_1

In the update step, at time k, a new measurement Y, is got and applied to update the

prior distribution to obtain the posterior distribution of the current system state X, as:

P4 | Vo) POYic %)

P(X |Yox) = (3.10)
Do P(Ye|Yor1)
The normalizing constant is formulated as:

POV [Yor 1) = [ POK[You ) POV, X)X, (3.11)

In most of cases, solving Eq. (3.9) and Eq. (3.10) is very hard and not realistic.
Therefore, particle filtering is applied to solve the equations. The following two steps can

be performed to get the prediction at time k:
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(1) Drawing N random samples (particles) X, ,i=1,...,N from the probability distribution

of the state noise @, ,;

(2) Using Eq. (3.7) to Generate N new set of samplesx, ,i=1,...,N . In the update step,
each new sampled particle X, is assigned a weight , based on the likelihood of the new

measurement Y, at time k as:

(3.12)

The approximation of the posterior distribution P(X, |y0:k)can be obtained from the

weighted particles X, ,a,,i=1,...,N (Doucet et al., 2000).

3.5.2 Particle Filtering for RUL Prediction

An |-step ahead estimator has to be developed to estimate the remaining useful life by
using particle filtering. A long term prediction of the state PDF p(xk+||y0:k) can be
obtained by using the I-step ahead estimator, where, | =1,...,T —k, T is the time horizon. It is
assumed that no measurement data are available for estimating the likelihood of the state
following the future l-step path X,,,, . So, one can only project the initial condition
P(X, |y0:k) using state transition PDF  p(X; ‘XH), j=k+1,...,k+I1 along all possible future

paths weighted by their probability Hlj::m P(X; ‘X ;.)dx;_,. By combining Eq. (3.7) and Eq.
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(3.10), an unbiased I-step ahead estimator can be obtained (Zio and Peloni, 2011; Orchard

and Vachtsevanos, 2011):

k+1-1

k+l
ZO:k)ZJ."'J. H1 p(xj‘xj—l) p(Xk‘Zo:k)lj} de (3.13)

P(X,.

However, solving Eq. (3.13) is very difficult and computationally expensive. A
particle filtering approximation procedure of the |-step ahead estimator is provided in (Zio

and Peloni, 2011).

Assume that the state X, represents the fault status indicator and RUL is the
remaining useful time before the fault indicator arriving at the pre-specified threshold A .

Estimating P(RUL <y, ) isequivalent to estimating P(X,,, > /1|y0:r) at each time k+1.

Note that in computing the I-step ahead RUL estimator using particle filtering, at each
updating step, a weight is computed according to Eq. (3.12) without considering any
measurement of the associated errors. §, the measurement parameter at time kK computed
by using Eq. (3.8). Y, is the true measurement parameter collected by sensors. Then a

weighting process in particle filtering that takes into account the measurement errors can be

defined as:
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L P D)
O =N —
> P = D)

(3.14)

In the particle filtering based case studies in this dissertation, Eq. (3.14) is used to

calculate the weights of particles for the |-step ahead fault parameters.

3.6 Particle Filtering I-step Prognosis

Prognosis is a problem about how to generate the long-term predictions which describe
the evolution of the system operation status or fault indicator. After that, the remaining
useful life (RUL) of a failing component/subsystem can be estimated based on the current
information. In order to apply particle filtering to estimate the RUL, an |-step ahead estimator
has to be developed. An I-step ahead estimator will provide a long term prediction of the state
pdf p(xk+||20:k) for 1=1,..,T -k, where T is the time horizon of interest. In making an |-step
ahead prediction, it is necessary to assume that no information is available for estimating the
likelihood of the state following the future I-step path x,...., that is, future measurements
zks1-1=1....,T =k cannot be used for making the prediction. Therefore, one can only project the
initial condition p(xk|zo;k) using state transition pdf p(x ,-|x Hlj =k+1,..,.k+1 along all possible

future paths weighted by their probability TT%%,, p(x i |x H)j Xjo1-

The most important issue is projecting the current particle population when new
observations are absent. If necessary, weights may have to be adjusted (Orchard, Ph. D

thesis, 2007).
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The errors which are generated by considering the changes of particle weights in the
future time instants is negligible considering other sources of error, such as model
inaccuracies or even in the assumptions made for process and measurement noise parameters

(Doucet et al., 2000).

Based on this standpoint, equation (3.8) is considered sufficient enough to extend the
projection of %, , and the current particle weights are propagated in time without changes.
The results from the case studies in this dissertation prove that the method still provides a

satisfactory result when predicting how the system behaves.



4. INTEGRATION OF ONE-DIMENSIONAL HEALTH INDEX INTO PARTICLE

FILTERING METHODOLOGY FOR PROGNOSTICS

4.1 Introduction

There is no single CI that is sensitive to every failure mode of a gear or bearing
(Bechhoefer et al., 2011). Some form of sensor fusion is required for the condition based
maintenance system of gears or bearings. In this chapter, a one-dimensional health index
calculation method will be introduced and the integration of one-dimensional health index
into particle filtering methodology will be developed. The steel bearing test data will be

used as an example to illustrate the methodology.

There are three statistical models which can define a gear HI as a function of a CI

(Bechhoefer et al., 2011):

(1) HI1: order statistics (max of n Cls);
(2) HI2: sum of CIs;

(3) HI3: normalized energy.

The condition indicators are regarded as statistics. = They have to be independent in
order to calculate the three Hls by using the related formulas. Usually, Cls tend to be

correlated, so a whitening process was developed to ensure the use of the calculation models

55
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can be correctly applied. Rayleigh and Gaussian distributions were used to develop the
models for these CIs. These models, which were used to calculate HIs, were tested on gear
and bearing test stand data and their performance evaluated as compared to the end state of
the gear and bearing (Bechhoefer et al., 2011). The results show the HIs worked well in

detecting surface fatigue pitting faults on bearing races and gear teeth.

All CIs have a probability distribution (PDF). Any operation on the CI to form a
health index (HI), is then a function of distributions (Wackerly, 1996). For example, the
following three functions can be used to get HI:

(1) The maximum of n condition indicators (the order statistics);

(2) The sum of n condition indicators;

(3) The norm of n condition indicators (energy).

These three functions are valid if and only if the distributions of CIs are independent
and identical (I1D) (Wackerly, 1996). The correlation between Cls implies that for a given
function of distributions, the CIs must be whitened (e.g. de-correlated). A whitening
transform using the Eigenvector matrix multiplied by the square root for the Eigenvalues
(diagonal matrix) of the covariance of the CIs was developed (Fukinaga, 1990; Bechhoefer et

al., 2011).

A=A (4.1)
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where @ is the transpose of the eigenvector matrix, and A is the eigen value matrix.

If the CIs represented a metric such as shaft order acceleration, then one can construct
an HI which is the square of the normalized power (e.g. square root of the acceleration
squared) (Bechhoefer et al., 2011). This can be defined as normalized energy, where the

health index is:

HI =4/Cl x cov(Cl)™"' x CI" (4.2)

Bechhoefer et al. (2007) whitened the condition indicators Cls.
The diagnostic capability for gear and bearing health index can be improved by
generalizing a method to develop HI based on Cls with related functions and statistical

distributions.

4.2 Generalized Function of Distributions

The following equations show the desired linear transformation operation for the vector

CI:

Y=LxCI",

. (4.3)
0 = p = correlation(Y)
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where Y kept the original distribution of the CIs. And the vectors of Y are I1D.
The Cholesky Decomposition of Hermitian, positive definite matrix results in A = LL*,
where L is a lower triangular, and L* is its conjugate transpose. We know that the inverse

covariance is positive definite Hermitian by the definition. L follows that:

LL =x" (4.4)

and using Eq. (4.3), get:

Y=LxCI' (4.5)

Where, Y is n number of independent CI with unit variance.

The Cholesky Decomposition generates the square root of the inverse covariance.
This in turn is analogous to dividing the CI by its standard deviation (the trivial case of one
CI). Inturn, Eq. (4.5) creates the necessary independent and identical distributions required

to calculate the critical values for a function of distributions (Bechhoefer et al., 2011).
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4.3 HI Based on Gaussian PDFs

If it is found that the distribution of the CI data follows a Gaussian distribution a
comparable mathematical process can be applied. The probability density function of the

Gaussian distribution is:

f(x)= ’ 4.6)

a\/_exp[ (2 ﬂ)z]

The cumulative distribution function, the integral of probability density function Eq.

(4.6) is

F(x) = X 4.7)

o\2r j exp[— (t2_ uz)z ]dt
7 o

4.3.1 The First Calculation Method of HI: the Gaussian Order Statistic

The order statistic PDF of a Gaussian HI function:

f(x)=3{ X 12 X

O'\/gjf eXp[_(t_zﬂ)]dt o271 exp[ -(x #) ]
et 20 20

(4.8)



60

By solving the inverse CDF the threshold can be determined Assume there are three
Cls, that is, n = 3, and PFA of 0.95, we can get that the lower threshold t equals to -0.335, and
upper threshold for a PFA of 107, the threshold t is 3.41 (for HI of 0.5). The CIs become z
distribution (Gaussian distribution normalized with zero mean and unit variance). The HI

algorithm is (Bechhoefer et al., 2011):

_ [max{Lx(CI" —m)}+0.34]x0.5
- (3.41+0.34)

HI (4.9)

where m is the mean value of all used Cls. The Cls into n Z distributions (zero mean, 11D

Gaussian distributions) by subtracting the mean and multiplying by L transforms.

4.3.2 The Second Calculation Method of HI: the Sum of n Gaussian

Consider a HI function that takes the sum of n Gaussian ClIs. Then the mean and

variance of the sum of the CI are (Bechhoefer et al., 2011):

u=2, E[L]] o*=n

(4.10)

Same the inverse normal cumulative distribution function is used to calculate the

parameter. For n = 3 CIs, the mean s is 3 and variance o® equals 3. Using the inverse



61

normal cumulative distribution function, the lower threshold (PFA of .95) is -0.15 and the

upper threshold (PFA 107%), is 8.352, then the HI algorithm is then (Bechhoefer et al., 2011):

~ 0.5
(8.352-0.15)

[-0.15+ " (LxCI")] (4.11)

4.3.3 The Third Calculation Method of HI: Total Energy

In this case we consider a HI function which uses the norm of n Gaussian Cls. For n
=3 CIs and a PFA of 107, the threshold equals 3.368. The HI algorithm is then (Bechhoefer

etal., 2011):

Y=LxCI'

HI = 0'%.368 VZ; \ (4.12)

4.4 Steel Bearing Case Study

In this section, a case study about steel bearing data was applied. The two different
methods were used to obtain the fault status prediction and remaining useful life estimation.
The first method is combines multiple condition indicators into particle filtering model
directly to get the system status update. The second method uses the HI, the integrated

indicator, as the observation parameter needed in the particle filtering model.
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4.4.1 Combing Multiple Condition Indicators into Particle Filtering Model Directly

FIGURE 17 shows the predicted spall size and true spall size, the prediction result can
track the trend of the true value. The vertical axis represents the spall size and the

horizontal axis is time horizon.
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Figure 17. The actual spall size vs. the predicted spall size by combing multiple condition
indicators into particle filtering model
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To compute the RUL, the critical value A4 was set to be the level of SPL = 12.5mm.

The estimated mean RUL and corresponding 90% confidence intervals are shown in FIGURE

18.
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Figure 18. The predicted RUL mean and corresponding 90% confidence intervals
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4.4.2 Using One Dimension HI as Observation Parameter in Particle Filtering Model

Using the station transition function f, and the measurement function h, defined by
the spall length and HI data from the experiment, the particle filtering based |-step ahead
RUL estimator was run on the data from steel bearing experiment using N = 1000 particles.
FIGURE 19 shows the predicted spall size and true spall size, the prediction result match

pretty well with the true value.
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Figure 19. True spall length and predicted spall length using HI and particle filter model
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To compute the RUL, the critical value A was set to be the level of SPL = 12.5mm.

The estimated mean RUL and corresponding 90% confidence intervals are shown in FIGURE

20.
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Figure 20. The predicted mean RUL and corresponding 90% confidence intervals using
estimator updated with error measurement

By comparing FIGURE 17 and FIGURE 19, we can see that the predicted spall size

using one dimension HI matches much better than the predicted result by combining multiple
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condition indicators directly. Also, by comparing FIGURE 18 and FIGURE 20, the RUL
prediction using one-dimensional HI approaches the true RUL faster and provides better

long-term RUL prediction than that without using one-dimensional HI.

45 Summary

Because the condition indicators (CI) are correlated, a method was presented whitening
the CIs used in gear fault detection. The whitening was achieved by a linear transformation

of the CI using the Cholesky decomposition of the inverse of the Cls covariance.

With this transformed, using whitened CI data, a health index based on a specified PFA
was demonstrated. Three candidate HI algorithms (order statistics, normalized energy and
sum of CI) for two different CI probability distribution functions (Gaussian, were presented

and tested on three data sets of pitted bearings from a test stand.

It was observed that the predicted spall size using one dimension HI matches much
better than the predicted result by combining multiple condition indicators directly. Also,
the estimated remaining useful life by the HI is closer to the actual than the result by multiple

Cls. The HI trends were low in noise. This can improve the prognostics process

The results have shown that using the one-dimensional HI gives better prognostic

results than without combining different condition indicators into one HI.



5. CASE STUDY 1: STEEL BEARING PROGNOSTICS

5.1 Diagnostics, and Prognostics for Sentient Bearing

The bearing fault test data used in this research are spalled bearings run to failure with
intermediate inspections. This testing was part of Phase I of the DARPA Prognosis Program.
The test bearings were a 106 size angular contact bearing, primarily of SAE 52100 steel,
although some M50 Nil and hybrid bearings were also tested. A Rockwell C indent was
used to seed the seeded fault. Each bearing was removed for inspection at least 10 to 15
times during the spall propagation, with some bearings being inspected as many as 30 times.
Each inspection included both measurements and photographs of the bearing races and

specifically the spalls (Lybeck et. at, 2007).

5.2 The One-Dimensional Health Index for Sentient Bearing

A total of 15 condition indicators were calculated (Bechhoefer, 2011):
(1) cel;

(2) bsel;

(3) iel;

(4) oel;

(5) rmsl;

(6) ce20;

67
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(7) bse20;
(8) 1e20;

(9) 0e20;
(10) rms20;
(11) ce25;
(12) bse25;
(13) 1e25;
(14) o0e25;
(15) rms25;

The method used to choose effective condition indicators was calculating the
correlation values between these condition indicators and damage progression over time. The

ClIs were selected with high correlation values with time.
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Correlation of Cls with time
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Figure 21. The correlation values between the condition indicators and time
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Figure 22. The chosen condition indicators to compose HI

Then three condition indicators:
(1) rms20;
(2) 1e25;
(3) rms25
were chosen to define the HI as the observation parameter. The one-dimension HI

calculation method in Chapter 4 was used.
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HI1, HI2 and HI3 were calculated and HI1 (the Gaussian order statistic) was chosen for

this case study because it trends very well with the spall size propagation

5.3 Sentient Bearing Case Study Experimental Setup and Data Collection

Ground truth data is crucial for validation of both diagnostics and prognostics, but
availability is currently very limited. Often one or a few seeded fault tests are all the data
that exists for a newly deployed platform. Existing platforms may have historical data that
could be leveraged, but it is often stored in multiple locations and disparate formats, making

access to that data in a format suitable for validation a challenge.

Sentient has accrued a large database of seeded spall propagation tests on angular
contact ball bearings. This data was specifically acquired to aid in the understanding of how

spalls propagate and to provide data for diagnostic and prognostic algorithms.

The quality of a prognosis is directly impacted by the quality of the diagnostic values.
Because vibration is the most commonly used monitoring parameter for mechanical
equipment, diagnostics are frequently based on these signals. There are many standard
vibration-based metrics that are traditionally used for machinery diagnostics, including root

mean square, kurtosis, variance, and signal amplitude, as well as higher order statistics.

The data purchased from Sentient for this project consists of 12 different bearing

datasets, 10 spalled bearing datasets and 2 normal bearing datasets. For each of the spalled
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datasets, an indent was placed on the inner raceway of the bearing from which a spall formed
and grew in size as the test proceeded. There were five inspection points for each dataset to
document the fault progression. Collection of vibration signals occurred at each inspection
point. Each vibration signal was taken just before its respective inspection point. Five of
the faulted bearings and one normal bearing were run with a 515 1bs load, while the other 5
faulted bearings and one normal bearing were run under a load of 800 lbs. Pictures of the
bearing spalls at each of the five inspection points were taken for each bearing. A scale (1

mm per division) is present in each picture (See FIGURE 23).

Figure 23. Propagation of inner race fault from left to right: initiation, 0.7, 1.6, and 2.96 mm
spall length

All vibration signals were collected with the same type of accelerometer and analog

filtering.

The accelerometer was the Endevco Model 7259B-100. This is a miniature, light



73

weight piezoelectric accelerometer with integral electronics, designed specifically for high
frequency vibration measurement on structures and objects. The accelerometer has a wide

bandwidth, flat to 50 KHz.

The filtering was a Frequency Devices SBAF series differential fixed frequency

filtering. The filtering is an 8-pole Butterworth with a pass band at 40KHz.

The bearing fault data were processed to generate bearing damage condition indictors.
The methods used for generating these condition indictors included (Lybeck et. at, 2007):

(1) Bearing passing frequencies at the base frequency. This consisted of
measuring the PSD (power spectral density) at the bearing defect frequencies of
the BPFO, BPFI, BFF and FTF (Lybeck et. at, 2007).

(2) RMS of the vibration signal between 0 and 1000 Hz.

(3) Envelope analysis of the bearing passing frequencies at 2 and 5 KHz windows.

(4) RMS of the envelope analysis.

(5) Cepstrum analysis of the bearing passing frequencies.

5.4 Building the State Function by Data Mining Method

Other research has been published using Paris” Law to build the state function to
describe the spall or crack size propagations (Orchard, 2005; Jardine et al., 2006; Heng,
2009). However, Paris’ Law, as a physics model based methodology, is difficult to build

because a lot of related system design knowledge is needed, such as, materialogy, mechanics
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and structural mechanics. The simulation results based on finite-element analysis (FEA)
usually have some significant differences with the true design. Also, some parameters have
to be changed when operating conditions or components size or shapes change. All these
make Paris’ Law harder to be applied than data mining methods. Also, from simulation
results, we observed the state function by data mining methods can adequately describe the

spall or crack propagation. That makes the use of Paris’ Law lose some of its advantages.

5.4.1 The ARIMA Model

ARIMA methodology, popularized by Box and Jenkins (Box and Jenkins, 1970;
Caldwell, 1971; Caldwell, 2007), is based on the idea that a stationary series Yt can be
approximated to any desired degree of accuracy by an ARMA (Autoregressive-Moving

Average) process. We can write the ARMA (p, q) model as:

Yi=CH+PYi+ @Yot dpYipter—Oie1— 0282~ Oqei—q

where p is the order of the autoregressive (AR) component, and ( is the order of the moving

average (MA) component. Using the “backshift” or “lag” operator B this becomes:

Yt :C+¢IBYI+"'¢poYt+et_elBet_'“_gq qut

or (1—¢1B—...—¢po)Yt=C+(1—HIB—...—¢9qu)et
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If'Y has been differenced d times to achieve stationary then the model is Autoregressive

Integrated Moving Average: ARIMA (p, d, q):
(1-¢,B-..—4,B")1-B)'y,=c+(1-,B-..— g8
1 p t 1 q Sh

Note that e is defined as Y;—Y,, where Y, is defined as the predicted (estimated)

value of Y;.

The state parameter used in the case study is spall length. A two order ARIMA model
was used to build the state function. The spall length values at t-1 and t-2 were used to
predict the spall size value at time t. Autoregressive Integrated Moving Average (ARIMA
(p, d, q)) model was used to build the state function. p, d, and g are non-negative integers
that refer to the order of the autoregressive, integrated, and moving average parts of the
model respectively. ARIMA modeling technique is a generalization of autoregressive
moving average. ARIMA model can handle non-stationary time series problems. 2 order

ARIMA (2, 0, 0) model was used to build the state function.

The state parameter values at t-1 and t-2 were used to predict the state parameter value

at time t:

X(t) = C + AR(2) x X(t - 2) + AR() x X(t - 1) + v(t - 1)
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The state function used in the case study is:

X(t) = 0.01922955-0.64840275 x X(t - 2) +1.6446352x X(t - 1) + ao(t)

5.5 Building the Observation Function by Data Mining Method

Double exponential smoothing was used to build the relationship between state
parameter spall size and observation parameter HI. The relationship between state
parameter and observation parameter was defined as a linear function. The model
parameters of this linear function can be obtained by using this method. By using this
method, the model parameter can be updated step-by-step using the information of the
previous step. This makes the prognosis more accurate and effective. There is no single
condition indicator (CI) which is sensitive to every failure mode of a bearing or gear. The
solution is composing a one-dimensional health index (HI) and integrating this HI into

particle filtering.

Double exponential smoothing was chosen to build the relationship between the state

parameter and observation parameter.

The advantages to use double exponential smoothing:
(1) Double exponential smoothing works well for time series without an overall trend.;
(2) It does not require maintaining a history of previous data.

(3) It can be helpful in predicting future observations.



The observation function used in the case study is:

y(® =k®)xx(®)+v ()

k(t) is a time variable obtained by double exponential smoothing.

5.6 Prognostics Results

The spall length and HI data from the experiment are shown in FIGURE 24.
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Figure 24. Spall length and HI of steel bearing experiment
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The measurement function n, was defined using a double exponential smoothing
model with @ = 0.05 to fit the relation between HI and spall length. FIGURE 25 shows

the plot of HI against spall length for the steel bearing experiment.
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Figure 25. Plot of HI against spall length for steel bearing experiment

Using the station transition function f, and the measurement function h, defined by
the spall length and HI data from the experiment, the particle filtering based l-step ahead
RUL estimator was run on the data from steel bearing experiment using N = 1000 particles.
To compute the RUL, the critical value A4 was set to be the level of total spall length SPL =

12.5mm. The estimated mean RUL and corresponding 90% confidence intervals are shown



80

in FIGURE 26.
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Figure 26. True spall length and predicted spall length
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Figure 27. The predicted mean RUL and corresponding 90% confidence intervals using
estimator updated with error measurement

5.7 Summary

A particle filtering based steel bearing prognostics method using a one-dimensional
health index was presented in this chapter. The presented method effectively addresses the
issues in applying particle filtering to mechanical component remaining useful life (RUL)
prognostics by integrating several new components into particle filtering. Data mining
based techniques were effectively used to define the degradation state transition and

measurement functions using a one-dimensional health index obtained by a whitening
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transform. An I-step ahead steel bearing fault progression and remaining useful life
prediction were performed. The results show the integrated methodology performs well in

predicting RUL.

The presented prognostics method was validated using data from a steel bearing case

study. The validation results have shown the effectiveness of the presented method.



6. CASESTUDY 2: SPIRAL BEVEL GEAR PROGNOSTICS

6.1 Diagnostics, and Prognostics for Spiral Bevel Gear

In this section, a particle filtering based gear prognostics method using a
one-dimensional health index for spiral bevel gears subject to surface fatigue pitting failure
mode is presented. The spiral bevel gear case study was performed in the NASA Glenn
Spiral Bevel Gear Test Facility. The presented method effectively addresses the issues in
applying particle filtering to mechanical component remaining useful life (RUL) prognostics
by integrating a couple of new components into particle filtering: (1) data mining based
technianes to effectively define the degradation state transition and measurement functions
using a one-dimensional health index obtained by a whitening transform; (2) an unbiased
I-step ahead RUL estimator updated with measurement errors. The presented method is
validated using fatigue testing data from a spiral bevel gear case study performed in the

NASA Glenn Spiral Bevel Gear Test Facility.

6.2 The Prognostics Method and Flowchart for Spiral Bevel Gear

The general framework of the particle filtering based gear prognostics method for

spiral bevel gear subject to pitting failure mode is shown in FIGURE 28.

&3
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Figure 28. Particle filtering based gear prognostics framework

As shown in FIGURE 28, to predict the RUL of the spiral bevel gear subject to pitting
failure mode, the oil debris mass (ODM) is used to represent the degradation state of the gear.
Therefore, the state transition function ¢, is defined by an ODM ARIMA model established
using a data mining based approach. The one-dimensional HI obtained by applying
Cholesky decomposition based whitening transform and statistical generation models are
used to define the measurement function n, by double exponential smoothing. Based on
the defined functions f, and h,, an |-step ahead RUL estimator incorporated with
measurement error is used in particle filtering to provide an accurate prediction of RUL.

The generation of the one-dimensional HI and the |-step ahead RUL estimator used in particle
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filtering are explained in the next two sections.

6.3 Spiral Bevel Gear Case Study Experimental Setup and Data Collection

In this chapter, data from a spiral bevel gear case study conducted in the NASA Glenn

Spiral Bevel Gear Test Facility at are used to validate the presented method.

Vibration data from experiments performed in the Spiral Bevel Gear Test facility at
NASA Glenn was reprocessed for this analysis. A description of the test rig and test
procedure is given in Dempsey et al. (2002). The rig is used to quantify the performance of
gear material, gear tooth design and lubrication additives on the fatigue strength of gears.
During this testing, CIs and oil debris monitoring were used to detect pitting damage on spiral

bevel gears.

The tests consisted of running the gears under load through a “back to back”
configuration, with acquisitions made at 1 minute intervals, generating time synchronous
averages (TSA) on the gear shaft (36 teeth), using an optical once per revolution sensor on
the gear shaft. The pinion, on which the damage occurred, has 12 teeth, Figure 29. Test rig

and gears (Dempsey et al., 2002).
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— Accelerometer

Figure 29. Test rig and gears (Dempsey et al., 2002)

TSA data was re-processed with gear CI algorithms presented in Zakrajsek (1993) and

Wembhoft (2007), to include:

(1) TSA: RMS, Kurtosis (KT), Peak-to-Peak (P2P), Crest Factor (CF)
(2) Residual RMS, KT, P2P, CF

(3) Energy Operator RMS, KT

(4) Energy Ratio

(5) FMO

(6) Sideband Level factor

(7) Narrowband (NB) RMS, KT, CF

(8) Amplitude Modulation (AM) RMS, KT
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(9) Derivative AM KT

(10) Frequency Modulation (FM) RMS, KT

From these Cls, a total of six CIs were used for the HI calculation:

(1) Residual RMS;

(2) Energy Operator RMS;

(3) FMO;

(4) NB KT;

(5) AMKT;

(6) FM RMS.

Covariance and mean values for the six CIs were calculated by sampling four gears’
data prior to the fault propagating. This was done by randomly selecting 100 data points from

each gear, and calculating the covariance and means over the resulting 400 data points.

The selected CI's PDF were not Gaussian, but exhibited a high degree of skewness.
Because of this, the PDFs were “left shifted” by subtracting an offset such that the PDFs

exhibited Rayleigh like distributions. Then, the threshold setting algorithms were tested for:

(1) Rayleigh order statistic (OS): threshold 8.37 for n = 6 and a PFA of 10-6,

(2) Rayleigh normalized energy (NE): threshold 10.88 for n = 6 and a PFA of 10-6,
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(3) Sum of Rayleigh (SR): threshold 24.96 for n = 6 and a PFA of 10-6.

FIGURE 30, FIGURE 32 and FIGURE 34 are HI plots that compare the OS, NE and

SR algorithms during three experiments in the test rig. The HI trend (in black) is plotted on

top of the raw HI values (in blue).

FIGURE 31, FIGURE 33 and FIGURE 35 show the

amount of pitting damage on the pinion teeth at each test completion.
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Figure 30. Experiment 4
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Note that the spikes corresponded to changes in torque on the rig. All the HI algorithms
where sensitive to damage, although in general, the best system response was from both the

OS and NE.

Figure 31. Damage on gear from experiment 4

Note that the decrease in the HI rate of change corresponds to a decrease in torque load

towards the end of the test.
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Figure 32. Experiment 5

For the data plotted in FIGURE 30, this test appears to have been halted prior to heavy
pitting damage, as the gear HI is reach only 0.5. However, the photo of gear EX5 (FIGURE

31) shows extensive pitting damage.
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Figure 34. Experiment 6
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Figure 35. Damage on experiment 6 gear

TSA data was re-processed with gear CI algorithms presented in (Zakrajsek et al., 1993)
and (Wemhoff et al., 2007). A total of 6 CIs were used for the HI calculation: residual RMS,
energy operator RMS, FMO, narrowband kurtosis, amplitude modulation kurtosis, and

frequency modulation RMS.

6.4 Building the State Function by Data Mining Method

The state parameter used in the case study is oil debris mass (ODM). This value is

directly related to the spall size. 2 order ARIMA model was used to build the state function.
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The ODM values at t-1 and t-2 were used to predict the ODM value at time t.

In order to define the state transition function using the ODM data, various ARIMA models

were fitted into the ODM data of experiment 6. The best fitted ARIMA model was:

ARIMA (1, 1, 1).

Let:

xk = true ODM value at time k;

2« = predicted ODM value at time k.

The state transition function f, was defined as:

X, = 0.0165+1.1415Xk71—O.415Xk72—0.1032(xk71— )A(H)Jr W

6.5 Building the Observation Function by Data Mining Method

Double exponential Smoothing was used to build the relationship between state
parameter ODM and observation parameter HI. The relationship between state parameter
and observation parameter was defined as a linear function. The model parameters of this
linear function can be obtained by using this method. Using this method, the model parameter
can be updated step-by-step by using the information of the former step. This makes the
prognosis more accurate and effective.  The observation function is defined just like the

observation function in chapter 4:



y(t) = k() x X(t) + (1)

k(t) is a time variable obtained by double exponential smoothing.

6.6 Prognostics Results of First Case Study
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The ODM and HI data from experiments are shown in FIGURE 36 and FIGURE 37,

respectively.
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Figure 36. ODM and HI of experiment 5
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ODM of Experiment 6
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Figure 37. ODM and HI of experiment 6

The plot of actual ODM values against the predicted ODM values is shown in FIGURE
38. From FIGURE 38, it is obvious that the ARIMA (1, 1, 1) model is almost a perfect fit to

the ODM data.
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Time Plot of Actual Vs Forecast (Experiment 6)
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Figure 38. The actual ODM vs. the predicted ODM using ARIMA (1, 1, 1) model

The measurement function h, was defined using a double exponential smoothing
model with o = 0.05 to fit the relation between HI and ODM. FIGURE 39 shows the plot

of HI against ODM for experiment 6.
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Figure 39. Plot of HI against ODM for experiment 6

FIGURE 40 shows the predicted HI values using the double exponential smoothing

model against the actual HI values.
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Figure 40. Predicted HI values using double exponential model vs. the actual HI values

Using the station transition function f, and the measurement function h, defined by
the ODM and HI data from experiment 6, the particle filtering based I-step ahead RUL
estimator was run on the data from experiment 5 using N = 2000 particles. The predicted
ODM values are shown in

FIGURE 42. To compute the RUL, the critical value 4 was set to be the level of
ODM = 22 mg. Updating the estimated PDF on the basis of the measurements collected
very 100 temporal steps, the estimated mean RUL and corresponding 90% confidence

intervals are shown in FIGURE 44.
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Figure 42. The distribution of predicted ODM at different test points
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The probability of the system is going to fail at future time point 5600 based on current
measurement at time point 5050. And the probability of remaining useful life less than 550

is equal to this value. The red line is the pre-specified threshold.
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Figure 43. Failure rate and remaining useful life distribution based on the predicted system
degradation result
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Figure 44. The predicted mean RUL and corresponding 90% confidence intervals using
estimator updated with error measurement
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Actually, the prediction results can be expressed by FIGURE 45.
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Figure 45. The PDF of RUL using estimator updated with error measurement

Then make a comparison, the estimated mean RUL and corresponding 90% confidence

intervals using the estimator without error measurement update are shown in FIGURE 46.
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Figure 46. The predicted mean RUL and corresponding 90% confidence intervals using
estimator updated without error measurement

From FIGURE 44 and FIGURE 46, one can see that the |-step ahead RUL estimator

updated with the error measurement gives a better performance.

6.7 Prognostics Results of the Second Case Study

In this case study, the data are also form the same test rig. The difference between

this case study and the former one is the Empirical Mode Decomposition (EMD) was applied
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for the original vibration signal before HI was calculated.

RMS was used as an example to show the improvement after EMD. FIGURE 47 is
the RMS feature with EMD. After EMD, difference between normal status and fault status

1s more obvious and the fault feature can be identified easier.
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Figure 47. RMS feature with EMD
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Also, Crest Factor and Kurtosis were also processed using EMD, FIGURE 48 and

FIGURE 49 show the results.
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Figure 48. Crest factor feature with EMD
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Figure 49. Kurtosis feature with EMD

These three features were used to calculate a HI and the HI was used as the observation

parameter in the prognosis. FIGURE 50 shows the HI.
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The plot of actual ODM values against the predicted ODM values is shown in FIGURE

51.
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Figure 51. Actual ODM values against the predicted ODM

Using the station transition function f, and the measurement function h, defined by
the ODM and HI data from experiment 6, the particle filtering based I-step ahead RUL
estimator was run on the data from experiment 5 using N = 2000 particles. To compute the
RUL, the critical value A was set to be the level of ODM = 130 mg. The estimated mean

RUL and corresponding 90% confidence intervals are shown in FIGURE 52.
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Figure 52. The predicted mean RUL and corresponding 90% confidence intervals using
estimator updated with error measurement

6.8 Summary

A particle filtering based gear prognostics method using a one-dimensional health
index for spiral bevel gear subject to pitting failure mode was presented in this chapter. The
presented method effectively addresses the issues in applying particle filtering to mechanical
component remaining useful life (RUL) prognostics by integrating several new components

into particle filtering: (1) data mining based techniques to effectively define the degradation
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state transition and measurement functions using a one-dimensional health index obtained by
a whitening transform; (2) an unbiased I-step ahead RUL estimator updated with

measurement errors.

In addition, in the second spiral bevel gear case study, Empirical Mode Decomposition
(EMD) was applied for processing original vibration signal. The RMS feature with EMD
and the RMS feature without EMD were compared and the result shows that using EMD
makes fault feature easier to be detected. After EMD processing, the feature during

machine health status is stable and smooth and is sensitive to fault initiation.

The presented prognostics method was validated using data from a spiral bevel gear

case study. The validation results have shown the effectiveness of the presented method.



7. CASE STUDY 3: HYBRID CERAMIC BEARING PROGNOSTICS

7.1 Diagnostics, and Prognostics for Hybrid Ceramic Bearing

Ceramic bearings are quickly replacing conventional steel ball bearings in various
fields and applications because they exhibit a service life three times longer than that of steel
bearings (Wang, et al., 2000; Ohta and Kobayashi, 1995). There are two types of ceramic
bearings: hybrid ceramic bearings and full ceramic bearings. Hybrid ceramic bearings
have steel races and ceramic balls while full ceramic bearings have both ceramic balls and
races. Different types of ceramics are used in ceramic bearings. Silicon nitride Si3N4 and
Zirconia ZrO2, are perhaps the most common ceramics used in ceramic bearings. However
there are many other ceramics that would work well in bearing applications (Rhoads and

Bashyam, 1994; Chao, et al., 1995; Niizeki, 2000).

This chapter presents a methodology for hybrid ceramic bearing prognostics using

particle filtering. Data collected from real hybrid ceramic bearing run to failure are used to

validate the presented prognostic methodology.

7.2 Hybrid Ceramic Bearing Case Study Experimental Setup and Data Collection

7.2.1 The Information of Hybrid Ceramic Bearing

The hybrid ceramic bearings used in the test, RTF13 and RTF14. RTF13 and RTF14,
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were ball bearings with stainless steel inner and outer races and ceramic balls. The bearings
were mounted on our test rig. Two accelerometers were stunt mounted on the bearing
housing in the direction perpendicular to the shaft. The test bearing was mounted on our
test rig and the rig was run at a speed of 1800 rpm (30 Hz) and was subjected to a radial load
of 600 psi. A sampling rate of 102.4 kHz was used for 2 seconds of data collection at each
sampling point. The data was collected every 5 minutes during the test. For the first case,
there were a total of 173 files with the length of 14.42 hours used for analysis. For another
case, there were a total of 804 files with the length of 67 hours used for analysis. TABLE

IV shows the tested bearings and their loading information.

TABLE IV
BRIEF OVERVIEW OF EXPERIMENTAL SETTING

Pressure Speed
Name Type
(psi) (H2)
RTF13 Hybrid Ceramic Bearing 600 30

RTF14 Hybrid Ceramic Bearing 600 31
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TABLE V shows the hybrid bearings specification.

TABLE V
HYBRID BEARINGS SPECIFICATION

Parameter Specification Parameter Specification
Bearing Material Stainless Steel 440c ABEC/ISO Rating | ABEC #3 / ISOP6
Ball Material Ceramic SI3N4 Radial Play C3
Inner Diameter (d) 25m Lube Klubber L55 Grease
. RPM Grease
Outer Diameter (D) 52m 19
(x 1000 rpm)
) RPM Qil
Width (B1) 15m 22
(x 1000):
. Dynamic Load
Enclosure Two Shields 1429
(Kef)
) ) Basic Load
Enclosure Material Stainless Steel 804
(Kef)
Working
Enclosure type Removable (S) Temperature Deg 121
(c)
) ) ) Weight
Retainer Material Stainless Steel © 110.32
g

7.2.2 The Run to Failure Test Rig

The bearing run to failure test was conducted in a customized bearing prognostics test

rig as shown in FIGURE 53.

The key features of the test rig include:




115

(1) It is driven by a 3-HP AC motor with a maximum speed up to 3600 rpm and
variable speed controller,

(2) It is equipped with a hydraulic dynamic loading system with a maximum radial
load up to 4400 lbs or 19.64 kN,

(3) An integrated loading and bearing housing that can be used for testing both ball
and tapered roller bearings,

(4) A support shaft with 2” main diameter balanced with 2 pillow blocks.

Speed Controller | = 73
== —— _'Loadlng and

Ebearlng Housing I

Figure 53. Bearing prognostic test rig

An automatic data acquisition system based on National Instruments’ CI 4462 board
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and NI LabVIEW software was constructed for data collection purpose. The automatic data
acquisition system has the following features:
(1) Maximum sampling rate up to 102.4 kHz,
(2) Input simultaneous anti-aliasing filters,
(3) Software-configurable AC/DC coupling and IEPE (Integrated Circuit
Piezoelectric) conditioning,
(4) Vibration analysis functions such as envelope analysis, cepstrum analysis, and so

on for computing necessary condition indicators.

The hybrid ceramic bearings used in the test were RTF13 and RTF14. RTF13 and

RTF14 were ball bearings with stainless steel inner and outer races and ceramic balls.

7.3 The One-Dimensional Health Index for Hybrid Ceramic Bearing

The condition indicators we extracted are (Li et al. 2010):
(1) RMS;

(2) Kurtosis;

(3) Crest Factor;

(4) Shape Value;

(5) Impulse Value;

(6) PeakValue;

(7) Kurtosis_H;

(8) Kurtosis_L;
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(9) Skewness H;
(10) Skewness L;
(11) Skewness;

(12) AR _Energe.

The rule applied to select the appropriate condition indicators to compose the HI to
calculate the correlation values between these condition indicators and time. There are three
Cls:

(1) RMS,

(2) Peak Value,

(3) Skewness
chosen by using this method. Then, the one-dimension HI method mentioned in Chapter 4
was used to calculate the HI. FIGURE 54 shows all calculated correlation values between
the condition indicators with time horizon. And FIGURE 55 shows the chosen condition

indicators.
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FIGURE 56 shows the generated HI.
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Figure 56. HI of hybrid ceramic bearing

7.4 Prognostics Results

Using the station transition function f, and the measurement function h, defined by
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the spall size and HI data from experiment 6, the particle filtering based I-step ahead RUL
estimator was run on the data from experiment 5 using N = 2000 particles. To compute the

RUL, the critical value 4 was set to be the level of spall mass =220 mg.

The plot of actual spall size values against the predicted spall size values is shown in

Figure 57.
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Figure 57. Actual spall size values against the predicted spall size
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The estimated mean RUL and corresponding 90% confidence intervals are shown in

Figure 58.
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Figure 58. The estimated mean RUL and corresponding 90% confidence intervals
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7.5 Summary

A particle filtering based hybrid ceramic bearing prognostics method using a
one-dimensional health index was presented in this chapter. Data collected from real hybrid
ceramic bearing run to failure are used to validate the presented prognostic methodology.
Data mining based techniques were used to define the degradation state transition and
measurement functions using a one-dimensional health index which is taken as the
observation parameter. An |-step ahead steel bearing fault progression and remaining useful
life prediction were performed. The 90% confidence interval became narrower as more
information was obtained, providing a more accurate prediction. The validation results have

shown the effectiveness of the presented method.



8. CONCLUSIONS

In this dissertation, an integrated machinery prognostic methodology based on particle
filtering has been developed. In the development of the proposed prognostic methodology
in this research, three fundamental issues have been addressed by: 1) defining the state
transition function using a data mining approach; (2) integrating an one-dimensional HI into
particle filtering to define the measurement function; (3) developing an I-step ahead RUL
estimator incorporated with a measure of the associated error. ~ The developed prognostic
methodology has been validated using three sets of industrial case studies. The first case
study was about steel bearing prognosis and remaining useful life prediction. The bearing
fault data used in this research were spalled bearings run to failure test data with intermediate
inspections. The second case study was about spiral bevel gear prognosis and RUL
prediction. The spiral bevel gear case study data were collected in the NASA Glenn Spiral
Bevel Gear Test Facility. In the last case study, the ground truth data of hybrid ceramic

bearings test by our group at UIC were used to validate the methodology.

The results from the three case studies have shown the effectiveness of the developed
integrated methodology.
(1) An integrated prognostics methodology has been developed and illustrated by real
engineering case studies;

(2) The presented method effectively addresses the issues in applying particle filtering
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to mechanical component remaining useful life (RUL) prognostics by integrating
several new components into particle filtering;

(3) The state transition function defined by applying a data mining approach can track
the spall size propagation well. It was also found that a data mining approach is
much more efficient than applying Paris’ Law, which is widely used as the state
transit function in other published research;

(4) The predicted spall size propagation by integrating HI into particle filtering to
define the measurement function matches much better than the predicted result by
directly combining multiple condition indicators.  Also, by comparing the RUL
predictions, the RUL prediction using one-dimensional HI approaches the true RUL
faster and provides better long-term RUL prediction than that without using
one-dimensional HI;

(5) An |-step ahead state parameter prediction and RUL estimator by extending the
projection of particles without changing their weights prove that the method still

provides a satisfactory result in predicting how the system behaves.

Specifically, the contributions of the dissertation are summarized as follows:

(1) An integrated particle filtering algorithm was developed in which a
one-dimensional HI was integrated into particle filtering to define the observation
function. The results have shown that using the one-dimensional HI gives better
prognostic results than combining different condition indicators into one HI.

(2) Instead of using Paris’ Law, a data mining algorithm was used to build the state
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function. The results have shown that the state function models built by the data
mining algorithm work effectively for describing the fault propagation.

(3) Data mining based approaches were used to build the observation function. The
data mining based approaches use both the prediction information from the last step
and observation data to determine the model parameters. The results have shown
that the data mining based methods work better than existing methods reported in
the literature.

(4) An I-step ahead state parameter prediction and RUL estimator was developed.
Most of papers published just show one-step prediction.

(5) The presented prognostics method has been validated using data from steel
bearings, hybrid ceramic bearings and spiral bevel gears case studies. Up to date,
no results on spiral bevel gears and ceramic bearings prognosis and remaining
useful life prediction using particle filtering based approaches have been reported
in the literature. In addition, the results on steel bearings prognostics using
particle filtering algorithm are limited. The results from the three case studies
show that the developed integrated methodology works well in performing the

system state tracking and remaining useful life prediction.
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