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SUMMARY 

 

Effective maintenance of complex systems has become a key issue in fields in which 

the economic impact of reliability related issues and the cost effective operation of critical 

assets is steadily increasing.  Current maintenance strategies have progressed from 

periodical maintenance and break down maintenance, to preventive maintenance, then to 

condition-based maintenance (CBM).  CBM is based on using real-time data to prioritize 

and optimize maintenance resources.  Prognosis as the most important part of CBM is 

becoming more and more important in these fields such as aeronautics and astronautics.   

 

In this dissertation, an integrated machinery prognostic methodology based on particle 

filtering has been developed.  In particular, three fundamental issues in developing particle 

filtering based prognostic tools have been addressed in this research:  (1) how to define the 

state transition function used in particle filtering to estimate the fault progression; (2) how to 

define the measurement function using a one-dimensional health index (HI) in particle 

filtering to estimate the fault progression parameters; (3) how to define an error guided l-step 

ahead remaining useful life (RUL) estimator.  In the development of the proposed 

prognostic methodology in this research, these three fundamental issues have been addressed 

by: (1) defining the state transition function using a data mining approach; (2) integrating a 

one-dimensional health index (HI) into particle filtering to define the measurement function; 

(3) developing an l-step ahead RUL estimator incorporating with a measure of the associated 

error.   The developed prognostic methodology has been validated using three industrial 

case studies.  The first case study concerns steel bearing prognosis and remaining useful life  
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SUMMARY (continued) 

 

prediction.  The bearing fault data used in this research are the spalled bearing run to failure 

test data with intermediate inspection.  The second case study concerns spiral bevel gear 

prognosis and RUL prediction.  The spiral bevel gear case study data were collected in the 

NASA Glenn Spiral Bevel Gear Test Facility.  In the last case study, the ground truth data of 

hybrid ceramic bearings gathered experimentally by our group are used to validate the 

methodology.  

 

The specifically contributions of the dissertation are summarized as follows: 

(1) An integrated particle filtering algorithm was developed in which a 

one-dimensional HI was integrated into particle filtering to define the observation 

parameters.  The results show that using the one-dimensional HI gives better 

prognostic results than those obtained without combining different condition 

indicators into one HI. 

(2) Instead of using Paris’ Law, data mining algorithm was used to build the state 

function. The results have shown that the state function models built using the data 

mining algorithm work effectively for describing the fault propagation.  

(3) Data mining based approaches were used to build the observation function.  The 

data mining based approaches use both the prediction information from the last 

step and observation data.  The results show that the data mining based methods 

work better than existing methods reported in the literature. 



 

XVII 
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(4) An l-step ahead state parameter prediction and RUL estimator was developed.  

Most of the publications in the current literature use only one-step prediction. 

(5) The presented prognostics method has been validated using data from steel bearing, 

hybrid ceramic bearing and spiral bevel gear case studies.  To date, no results on 

spiral bevel gear or ceramic bearing prognosis and remaining useful life prediction 

using particle filtering based approaches have been reported in the literature.  And 

the results on steel bearing prognostics using particle filtering algorithm are limited.
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1. INTRODUCTION 

 

Prognosis and health management (PHM) for complex systems have become more and 

more important when the economic impact of reliability related issues and the cost effective 

operation of critical assets is rapidly increasing.  Current maintenance strategies have 

changed from break down maintenance, periodical maintenance to preventive maintenance, 

then to condition based maintenance (CBM) (Heng, et al., 2009).  For some cheap and 

non-critical systems, the regular condition checking and on-line monitoring are not necessary, 

such as personal computers, cell phones.  For some other systems like vehicles, the 

periodical maintenance should be combined with the break down maintenance.  For 

example, we have to do the regular maintain and change oil every three months.  

Preventative maintenance also needs information such like historical operation data, working 

conditions or loading information.  But preventative maintenance usually doesn’t do the 

online in time monitoring like CBM does.  Condition-based maintenance is maintenance 

when it is needed.  CBM is becoming more and more important in recent years.  For the 

old traditional air fighters like F15 or F16, they are still using the maintenance strategies by 

combing break down maintenance, periodical maintenance and preventative maintenance.  

However, for the new generation of air fighters like F22 and F35, also some commercial 

aircrafts like A380 and Boeing 787 are all equipped with CBM systems.  Condition-based 

maintenance is maintenance when it is needed.  When one or more indicators show that 

equipment performance is deteriorating or that equipment is going to fail, then the 

maintenance strategy is performed.  Condition-based maintenance was introduced to try to 
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check, replace or repair the correct components at the right time (Renewables, 2007).  CBM 

uses real-time data to prioritize and optimize maintenance resources.  It was reported that 

99% of mechanical failures are preceded by noticeable indicators (Bloch and Geitner, 1997).  

Prognostics as an important part of CBM is increasing in importance (Westwick-Farrow, 

2006).   

 

 

 

 
 

Figure 1．Develop of the different maintenance strategies 
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FIGURE 2 shows the three stages of CBM system (Sun and Ma, 2006). 
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maintenance (CBM) Prognosis

Diagnosis
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making

System degradation 
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Figure 2．Condition-based maintenance stages 

 

 

 

So the objective of this dissertation is to develop an integrated machinery prognostic 

methodology based on particle filtering and validate the developed prognostic methodology 

using real industrial case studies. 

 

As a natural extension to the fault detection and identification (FDI) issue, prognosis 

intends to describe and reflect the evolution in time of the detected failure condition.  So the 

estimation of the remaining useful life (RUL) for affected subsystems or components is 

allowed (Orchard, 2005).  In this research, a particle filtering based prognostics method 

using one-dimensional health index method is presented.  In particular, in developing the 
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method, the three particle filtering prognostics implementation related issues will be 

addressed: (1) define the state transition function using data mining approach; (2) use an 

one-dimensional health index (HI) obtained by a whitening transform to define the 

measurement function; (3) an l-step ahead RUL estimator incorporated with a measure of the 

associated error.  The developed prognostics will enhance the machine condition monitoring 

performance and make remaining useful life predictions more reliable.  The presented 

prognostics method is validated using data from steel bearings, hybrid ceramic bearings and 

spiral bevel gears case studies. 

 

1.1 The Needs for Prognostics 

From a systematic point of view, fault detection, fault diagnostics and fault prognostics 

are three levels in failure prevention.  Fault detection means the detection of the status of the 

machine, healthy or faulty.  Fault diagnostics is the determination of the type or location of 

the fault.  And the forecast of the remaining operational life, future condition, or probability 

of reliable operation of equipment based on the acquired condition monitoring data is 

machinery prognosis.  This approach to modern maintenance practice promises to reduce 

downtime, spares inventory, maintenance costs, and safety hazards (Heng et al., 2009). 

 

The three levels of fault prevention technologies are not necessary in all CBM systems.  

For some end users, inexpensive fault detection systems are sufficient.  When damage is 

found in such a system, damaged components are simply replaced with new ones.  However, 

fault detection is not enough for some critical and expensive systems such as in helicopter 
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transmission systems, and many other geared transmission systems.  Fault diagnostics and 

fault prognostics are necessary in such a system. 

 

As reported by Ferret et al. (2006) and Heng et al. (2009), traditional maintenance 

costs (i.e. labor and material) in the U. S. have escalated at a tremendous rate over the past 10 

years.  In 1981, domestic plants spent more than $600 Billion to maintain their critical plant 

systems. The costs had increased to more than $800 Billion by 1991 and topped $1.2 Trillion 

in 2000.  We can see that through ineffective maintenance management methods between 

one third and one half of these maintenance dollars are wasted.  The combination of lack of 

timely, factual knowledge of asset condition and the ineffective management methods cause a 

lot of problems and artificially high maintenance costs.  However, this kind of situation also 

represents a substantial opportunity for implementing CBM on almost every manufacturing 

and production facility.  

 

Effective use of the preventive/predictive technologies provides ways to take advantage 

of this opportunity.  Used correctly, the 33 % to 50 % of wasted maintenance expenditures 

can be eliminated and effective use of plant resources; both production and maintenance can 

be achieved and sustained (Ferret, 2006).   

 

As mentioned before, prognostics represents the process of predicting the reliability in 

the future, probability of failure of an equipment, and the prediction of the remaining useful 

life based on the acquired condition monitoring data by assessing the extent of deviation or 
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degradation of a product from its expected normal operating conditions (Pecht et al., 2008; 

Heng, et al., 2009; Niu et al., 2011;).  The analysis of failure modes, detection of early signs 

of wear and aging, and fault conditions are needed in the science of prognostics (Gilmartin, 

2000).  A damage propagation model will be correlated with these signs to get the prognosis 

results.  Prognostics plays a very important role in condition-based maintenance.  Down 

time, spares inventory, maintenance labor costs and hazardous conditions can be significantly 

reduced by prognostics.  However, compared to the other areas of CBM, prognostics as a 

relatively new research area has yet to gain prominence. 

 

1.2 Development of the Integrated Prognostics Using Particle Filtering 

In this research, the development of integrated prognostics is based on an effective 

state estimation technique called particle filtering.  Particle filtering is a sequential Monte 

Carlo method for state tracking and prediction.  Particle filtering has caught the attention of 

many researchers in various fields, including signal processing, statistics, and econometrics.  

The method has been proved effective to model systems including elements of nonlinearity 

and non-Gaussianity (Arulampalam and Ristic, 2000).  The information obtained from both 

the system measurements and the system models are used to describe system behaviors.   

 

In the case when the system is nonlinear or in the presence of non-Gaussian 

process/observation noise, such as bearings, gas turbines, gearboxes and engines in which the 

nonlinear nature and ambiguity of the rotating machinery world is significant when operating 

under fault conditions, particle filtering is very suitable because it is founded on the concept 
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of sequential importance sampling (SIS) and the use of Bayesian theory (Wren, et al., 1997).  

Furthermore, particle filtering allows information from multiple measurement sources to be 

fused in a principled manner, which is an attribute of decisive significance for fault 

detection/diagnostic purposes: 

(1) Particle filtering is effective to model systems including elements of nonlinearity and 

non-Gaussianity; 

(2) Also good for the information from different measurement sources to be fused in one 

prognosis model; 

(3) Multiple fault modes prognosis can be built in this framework. 

 

As we know, there is no single CI which is sensitive to every failure mode of a bearing 

or gear.  This suggests that some form of sensor fusion is needed in the condition based 

maintenance system.  Three statistical models were developed to define a health indicator 

(HI) as a function of CI:  order statistics (max of n CIs), sum of CIs and normalized energy.  

Since CIs tend to be correlated, a whitening process was developed to ensure the HI threshold 

is consistent with a defined probability of false alarm (Bechhoefer et al., 2011).  These 

models were developed for CIs with Gaussian or Rayleigh (skewed) distributions.  In our 

previous research, the results show the HIs performed well detecting pitting damage to gears 

(Bechhoefer et al., 2011).  The functions, used to generate HIs, were tested on gear and 

bearing test stand data and their performance evaluated as compared to the end state of the 

gear or bearing.   
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One of the motivations for the research is because there is still no research that 

involves combining HI into particle filtering algorithm.  

 

One of the research objectives focuses on the use of a particle-filtering based 

framework for on-line failure prognosis in nonlinear, non-Gaussian systems.  The 

implementation will statistically characterize the remaining useful life (RUL) of a subsystem 

or component affected by a fault condition, that is, estimate the probability density function 

of the subsystem RUL.  A set of measurements will be used to improve current estimates, 

and nonlinear state-space models define the evolution in time of the fault indicator.  The 

outcome of the prognosis module, namely the RUL Probability Density Function (PDF), will 

be available and updated in real time, providing information about statistical confidence 

intervals and expectations. 

 

Most authors have used Particle filtering (and other nonlinear filtering approaches) as a 

tool for detection (that is, one step prediction), but not for prognosis (l-step prediction).  

While the assumptions about model nonlinearities and non-Gaussian noise structures are kept, 

one step prediction is used mainly because there are no clear indications about how to project 

the particle population in time.  In specific applications, it has been suggested to assume 

absence of both process and measurement noise for prediction purposes (Orchard, 2005), thus 

obtaining a long-term prediction with minimum variance, such as chaos prediction (Zhang, 

2007, 2008).  Initial conditions for deterministic models are defined as the particle 

population in order for them to be used for decision theory, risk calculations and other 
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statistical approaches (Orchard, 2005).  The implications of these assumptions, though, 

could be significant in real processes, especially in presence of vibration signals and therefore 

they must be evaluated with care.  

 

1.3 The Motivation of the Cases Studies 

Rotating machinery is widely used in various industrial, military, and commercial 

processes. Bearings and gears are essential components in such applications and their failures 

often result in a critical damage, downtime, and costly repair (Zakrajsek, 1993; Zaretsky, 

1997; Howe and Muir, 1998; Ho, 2000; Zhang, 2005; Abbas, et al, 2007; Vachtsevanos, 

2006).  Therefore, fault diagnosis and failure prognosis, which provide a condition based 

maintenance strategy to either machinery or components, such as bearings, is important to the 

safety of the system and results in substantial economic benefits (Sunnersjo, 1985; McFadden 

and Smith, 1984, 1985; Howard, 1994; Goode and Chow, 1995; Ho and Randall, 2000; Li, 

2000; Tse, 1999, 2001). 

 

The implementation and testing of the proposed particle-filtering-based methodology 

for fault prognosis on real process data, and the subsequent assessment of the obtained results, 

will be presented in the research work.  The first case study is about steel bearing prognosis 

and remaining useful life predictions.  The bearing fault data used in this research project 

are the spalled bearings run to failure test data with intermediate inspections.  Then, a 

second case study about spiral bevel gear prognosis and RUL prediction will be illustrated.  

The spiral bevel gear case study was performed in the NASA Glenn Spiral Bevel Gear Test 
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Facility.  In the last case study, the ground true data of hybrid ceramic bearings tested by our 

group at UIC will be used to validate the methodology.   

 

The reason why I chose these three cases in the research is because there is currently no 

research published on particle filtering applied to spiral bevel gears and ceramic bearings 

prognosis and remaining useful life predictions.  Also, few papers have been published 

about steel bearings prognostics by particle filtering algorithm. 

 

For the first case study, Sentient Corporation has accrued a large database of seeded 

spall propagation tests on angular contact ball bearings.  This testing was part of Phase I of 

the DARPA Prognosis Program. The test bearings were a 106 size angular contact bearing, 

primarily of SAE 52100 steel, although some M50 Nil and hybrid bearings were also tested.  

A Rockwell C indent was used as the seeded fault.  Each bearing was removed for 

inspection at least 10 to 15 times during the spall propagation, with some bearings being 

inspected as many as 30 times.  Each inspection included both measurements and 

photographs of the bearing races and specifically the spalls (Lybeck, et. at, 2007).  

 

The second case study was applied to spiral bevel gears.  The main application of 

spiral bevel gears are in a vehicle differential, where the direction of drive from the drive 

shaft must be turned 90 degrees to drive the wheels (Dempsey et al., 2002).  Less vibration 

and noise is produced by using the helical design than using the conventional straight-cut or 

spur-cut gear with straight teeth. Because helicopters depend on the power train for 
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propulsion, lift, and flight maneuvering, helicopter transmission integrity becomes very 

important to the safety of helicopter (Handschuh，1995, 2001；Ebersbacha, 2006).  The ideal 

diagnostic tools used in the health monitoring system would provide real time health 

monitoring of the transmission and would demonstrate a high level of reliable detection to 

minimize false alarms in order to detect impending transmission failures (Dempsey et al., 

2002).  Spiral bevel gears are used in helicopter transmissions to transfer power between 

nonparallel intersecting shafts.  In the case study, the experimental data was recorded from 

tests performed in the Spiral Bevel Gear Test facility at NASA Glenn Research Center.  In 

the references (Handschuh, 1995; 2001), a detailed analysis of this test facility can be found. 

 

The final case study was on ceramic hybrid bearings.  Ceramic bearings exhibit a 

service life three times longer than that of steel bearings.  Conventional steel ball bearings 

are quickly replaced by ceramic bearings in many different fields and applications (Ebert, 

1990).  There are two types of ceramic bearings:  hybrid ceramic bearings and full ceramic 

bearings.  Hybrid ceramic bearings have steel races and ceramic balls and full ceramic 

bearings have both ceramic balls and races.  The data from hybrid ceramic bearing 

experiments were used in one of the case studies.  Under many extreme operating conditions, 

hybrid bearings perform well and offer high-speed operation with low friction.  Rapid 

accelerations and decelerations can be provided because of the lower weight of hybrid balls.  

Ceramic bearings are less sensitive to heat differences between races since the thermal 

expansion of hybrid ceramic bearings is about 30% lesser than that of steel ones (Zaretsky, 

1997).  Ceramic bearings are less sensitive to fluctuations in lubrication conditions.  



 

 

 

12

Ceramic balls can operate under the same lubrication conditions at speeds up to 20% higher 

compared to steel bearings.  The hybrid bearings eliminate the chance for oil leakage into 

the environment because of the desired operability in greased-for-life applications and their 

lesser to no requirement for oil lubrication.  Due to the coefficient of friction in hybrid 

bearings is approximately 20% of similar steel balls, hybrid bearings also generate less 

vibration than all-steel bearings and noise levels can be reduced during operation because of 

the smoothness.  In comparison with other bearings, hybrid bearings often last longer than 

other bearing types and have a lower life cycle cost, reduced operating and maintenance costs, 

increased production quality and simple handling and mounting (Stoneburner, 2005). 

 

1.4 Research Objective 

The aim of this research is to develop an integrated prognostics methodology with an 

application to bearing and gear life prediction.  In particular, the following research issues in 

developing integrated prognostics using particle filtering will be addressed: 

 

(1) How to define the state transition function? 

(2) How to define the observation function? 

(3) How to build up an l-step ahead remaining useful life (RUL)? 

(4) How to validate the developed methodology? 

 

In this dissertation, the research issues in developing integrated prognostics using 

particle filtering will be addressed by using: 
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(1) Define the state transition function using data mining approach;  

(2) Integration of one-dimensional health index into particle filtering methodology;  

(3) Develop an l-step ahead RUL estimator incorporated with a measure of the 

associated error; 

(4) Validate the integrated methodology using real case study data. 

 

1.5 Outline 

This research presents a methodology for gear and bearing prognostics using particle 

filtering.  Data collected from real-time run to failure tests are used to validate the presented 

prognostic methodology.  The remainder of the dissertation is organized as follows.  

Chapter 2 is the literature review part.  Chapter 3 presents the methodology of particle 

filtering for prognostics.  Chapter 4 integrates a one-dimensional health index into particle 

filtering methodology.  Chapter 5 is about the one of the case studies: steel bearing 

prognostics.  Chapter 6 is about bevel gear prognostics.  Chapter 7 presents the results of 

hybrid ceramic bearing prognosis.  The conclusions of the research are provided in Chapter 

8.  
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2. LITERATURE REVIEW 

 

In the past few years, an increasing number of published papers on rotating machinery 

prognostics, such as bearings, gears and shafts have been published because of the 

significance of prognostics capabilities and the development of condition monitoring 

technology.  A wide spectrum of prognostics techniques was covered in these publications. 

The current research status of the prognostics and particle filtering algorithm used in the 

research are summarized.  Also, the merits and weaknesses of these methods have been 

identified in this chapter.  

 

2.1 The Prognostics Types and Remaining Useful Life Prediction 

In machine prognostics, two main prediction types have been developed.  The most 

obvious and widely used prognostics is to predict how much time is left before a failure 

occurs (or, one or more faults) given the current machine condition and past operation profile.  

Remaining useful life (RUL) is the time left before a failure is observed.  In some situations, 

especially when a fault or a failure is catastrophic, such as, in the fields of military, 

aeronautics, astronautics, and nuclear power plant, prognosis and remaining useful life 

prediction would be more desirable.  The prognosis actually is using the information like 

current machine condition and past operation profile to predict the chance that a machine will 

run without a fault or a failure up to some future time (e.g., next inspection interval).  The 

probability that how long a machine can operate without a fault is a good reference for 
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experts in related fields to determine whether the maintenance schedules determined are 

appropriate or not.  Most of the papers in the literature of machine prognostics discuss only 

the first type of prognostics, namely RUL estimation. Only few papers addressed the second 

type of prognostics (Farrar et al., 2003; Lin and Makis, 2003).   

 

Remaining useful life refers to the time left before observing a failure given the current 

machine age and condition, and the past operation profile (Kacprzynski, et al., 2004).  In 

some cases, it means finding the distribution of RUL.  In some other cases, however, it just 

means the expectation of RUL (Jardine et al., 2006).  

  

The outcome of a prognosis system built based on any prognosis algorithm is actually 

an estimate for the system RUL probability density function (PDF), which is the probability 

of failure at future time instants.  This probability can be obtained from long-term 

predictions, when the empirical knowledge about critical conditions for the system is 

included in the form of thresholds for main fault indicators, also referred to as the hazard 

zones (Orchard, 2005).  Usually a pre-specified threshold has to be decided to describe the 

critical system degradation status.  Sometimes this threshold is a fixed number and 

sometimes it can be described by a probability density function.  This threshold can be 

statistically determined on the basis of historical failure data, defining a critical PDF with 

lower and upper bounds for the fault indicator (Hlb and Hup, respectively). 
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2.2 Current Research Status of Prognostics 

In this section, current methodologies for prognostics are summarized and classified as 

data driven based methods, physics model based prognostics models and hybrid 

methodologies reliability and prognostics. 

 

In the past few years, methodologies and technologies in machine condition monitoring 

(CM) and fault diagnostics have been developed.  Data such as vibration signal, acoustic 

emissions and oil debris mass can be collected, processed and analyzed through sensors, data 

base software and parallel computation technologies (Heng, 2008).   

 

The current Research Status in Related Fields can be summarized as following: 

(1) Current particle filtering based prognostics methods in mechanical system use 

Paris’ Law to build the state transition function;  

(2) There is still no research on how to integrate HI into particle filtering algorithm to 

do the prognosis; 

(3) Current particle filtering based prognostics methods mostly use linear regression to 

build the observation function; 

(4) Most of the research on particle filtering based applications are for diagnosis (that 

is, one step prediction), but not for prognosis (l-step prediction); 

(5) No research results on spiral bevel gears and ceramic bearings prognosis and 

remaining useful life prediction using particle filtering based prognostics methods 

have been reported; 
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(6) There are just a few papers have been published about steel bearings prognostics by 

particle filtering algorithm. 

Pusey and Roemer (1999) provided a broad overview of the development in 

diagnostics and prognostics technologies applicable to high-performance turbo-machines. 

Jardine et al. (2006) provided an overview and a catalogue of publications on data acquisition, 

data processing, diagnostics and prognostics of various machines.  Vachtsevanos et al. (2006) 

defined and described intelligent fault diagnostics and prognostics approaches for engineering 

systems through examples. 

 

The current methodologies for failure prediction can be grouped into three types like TABLE 

I shows: 

 

 

 

TABLE I 

PROGNOSTICS TYPES AND THEIR DESCRIPTIONS 

 Types of Prognostics Description 

1. Traditional reliability approaches Event data based prediction 

2. Prognostics approaches Condition data based prediction 

3. Integrated approaches Prediction based on both event and condition data
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Under these three approaches, there are some existing models to do the failure 

prediction. These models are listed in the following. 

The first approach: Traditional reliability—use event data, e.g. replacement/failure 

times of historical units (Kapur and Lamberson, 1977; Keller, et al., 1982; Crowder, 1994; 

Elsayed, 1996; Groer, 2000; Lawless, 2002; Farrar, 2003, 2006).  Traditional reliability 

approaches include some distribution models such as Weibull, Poisson, Exponential, and 

Log-Normal distribution.  In these kinds of approaches, population characteristics 

information enable longer-range forecast and they do not require condition monitoring.  

However, traditional reliability approaches only provide general and overall estimates for the 

entire population of identical units, and these approaches are not necessarily accurate for 

individual operating units (Batko W., 1984). 

 

Condition data based prediction is a prognosis approach use CM data, e.g., vibration 

measurements of operating units. It can be divided into three models: physics-based 

prognostics models, data-driven prognostics models and hybrid models.  These kinds of 

approaches become more and more important than the traditional reliability approaches. 

The following parts are about the research status of condition data based prediction (Yan, et 

al., 2004). 

 

2.2.1 Physics-based Prognostics Models 

Physics-based models based prognostics needs to build comprehensive mathematical 
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models to describe the physics of the system and failure modes, such as crack propagation 

and spall growth.   

The failure natural frequency and the acceleration amplitude were related to the 

running time and failure time established from damage mechanics.  As physics-based 

models, these techniques require the estimation of various physics parameters (Deb, 2003). 

 

The main physics-based prognostics models are listed in TABLE II: 
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TABLE II 

MAIN PHYSICS-BASED PROGNOSTICS MODELS 

Approach Merits Limitations 
Paris law crack growth 
modeling (Paris, 1963; Li et 
al., 1999; Warrier et al.,, 
2000; Li et al., 2000, 2005; 
Wemhoff, et al., 2007) 

Least-square scheme enables 
adaptation of model parameters 
to changes in condition. 

Defect area size is assumed 
to be linearly correlated to 
vibration RMS level; 
Least-square scheme 
similar to single-step 
adaptation in time series 
prediction; 
Material constants to be 
determined empirically. 

Paris law modeling with 
FEA (Li and Choi, 2002; Li 
and Lee, 2005) 

FEA enables material stress 
calculation based on bearing 
geometry, defect size, load and 
speed. 

Performance relies on the 
accuracy of crack size 
estimation based on 
vibration data; 
Computationally 
expensive. 

Forman law crack growth 
modeling (Wereszczak, et 
al., 2007; Oppenheimer and 
Loparo, 2002) 

Relates CM data and crack 
growth physics to life models. 

Simplifying assumptions 
need to be examined; 
Model parameters yet to be 
determined for complex 
conditions e.g. in shaft 
loading zone and plastic 
zones). 

Fatigue spall initiation and 
progression model (Orsagh 
et al., 2003; Orsagh et al., 
2004; Kacprzynski et al., 
2004 ) 

Calculates the time to spall 
initiation and the time from spall 
initiation to failure; Cumulative 
damage since installation is 
estimated with consideration of 
operating conditions. 

Various physics parameters 
need to be determined. 

Contact analysis for bearing 
prognostics (Marble and 
Morton, 2006) 

FEA enables material stress 
calculation based on bearing 
geometry, defect size, load and 
speed. 

Various physics parameters 
need to be determined; 
Computationally 
expensive. 

Stiffness-based damage rule 
model (Qiu et al., 2002, 
2003) 

Relates bearing component 
natural frequency and 
acceleration amplitude to the 
running time and failure time. 

Least-square scheme 
similar to single-step 
adaptation in time series 
prediction; 
Various material constants 
need to be determined. 
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Physics-based models might not be the most practical solution since the fault type in 

question is often unique from component to component and is hard to be identified without 

interrupting operation.  However, a physics-based model is very complicated to be applied 

because a lot of related information and knowledge such as material properties, working 

loading, stress factors and historical operation.  They also generally require less data than 

data-driven models (Heng, 2009). 

 

2.2.2 Data-driven Prognostics Models 

Another prognostics method is data driven based methodology.  Data-driven based 

method primarily use data obtained from the system historical operation for predicting future 

faults.  AE, vibration and oil debris are three typical condition indicators - CIs which can be 

monitored continuously in order to get the diagnostic and prognostic information (Crowder, 

1994).   

 

The simplest methods of data driven based methods are autoregressive such as linear 

regression (Ross, 1989). 

 

The main data driven- based prognostics models are listed in TABLE III: 
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TABLE III 

 DATA DRIVEN-BASED PROGNOSTICS MODELS 

Approach Merits Limitations 
Time series prediction using ANNs (Caldwell, 
1971 and 2007;  Kazmierczak , 1983; 
Friedman, 1991; Tse and Atherton, 1999; 
Yam, et al. 2001; Wang and Vachtsevanos, 
2001; Wang et al., 2004; Wang, 2007; Shao 
and Nezu, 2000; Lawless, 2002; Schomig and 
Rose, 2003; Tong and Lim, 1980);  

Fast in handling 
multivariate analysis; 
Provide non-linear 
projection; 
Do not require a priori 
knowledge. 

Assume that condition indices 
deterministically Represent 
actual asset health; 
Assume that failure occurs once 
the condition index exceeds a 
presumed threshold; Short 
prediction horizon. 

Exponential projection using ANN (Samanta 
et al., 2006;Gebraeel et al., 2004; Gao, 2006)

Estimates actual 
failure time instead of 
condition index at 
future time steps; 
Longer prediction 
horizon. 

Assumes that all bearing 
degradation follow an 
exponential pattern; 
Requires training one ANN for 
each historical data set. 

Data interpolation using ANN ( Li , et al., 
2000; Huang et al., 2007) 

Longer prediction 
horizon 

Requires training one ANN for 
each historical dataset 

Regression analysis and fuzzy logic (Rao, 
1981; Lennart, 1987; Fukunaga , 1990; 
Jantunen, 2004; Shin, et al., 2005; Wang and 
Vachtsevanos, 2001; Wang, et al., 2004) 

Emphasizes the most 
recent condition 
information; 
Fuzzy logic enables 
condition classification 
based on histories. 

Does not provide indication of 
time to failure or probability of 
failure 

Recursive Bayesian technique (Zhang et al., 
2007; Hastie, 2009) 

Estimates reliability 
using CM data of 
individual assets, 
rather than event data 

Accuracy relies strongly on the 
correct determination of 
thresholds for various trending 
features 

Hidden Markov Model and Hidden Semi- 
Markov Model (Zhang et al., 2005; Dong and 
He, 2007 ) 

Can be trained to 
recognize different 
bearing fault types and 
states 

Lack of relation of the defined 
health-state change point to the 
actual defect progression since it 
is often impractical to physically 
observe a defect in an operating 
unit; 
Prognosis projection relies on a 
failure threshold. 

Bearing dynamics model using system 
identification (Li and Shin, 2004) 

Tracks defect severity 
based on features that 
are not affected by 
operating condition 
and nearby equipments

Reasonably accurate only when 
the signal-to-noise ratio is high, 
e.g. damage is severe and 
running speed is relatively high.
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2.2.3 Hybrid Approaches 

Physics model based approach utilizes knowledge of a product’s life-cycle loading and 

failure mechanisms as well as knowledge about the components and systems.  Data-driven 

approaches can include parameters that are monitored at system level and utilize machine 

learning and pattern recognition techniques for diagnostic and prognostics.  One can utilize 

the advantages of one technique to overcome the limitations associated with others.  The 

incorporation of physics based models with data-driven approaches improves prognostic 

capabilities and provides more accurate diagnostics (Kumar et al., 2008).  We can combine 

theses two method to do the prognosis.  Hybrid approaches attempt to leverage the strength 

from both data-driven approaches as well as model-based approaches.  In reality, it is rare 

that the fielded approaches are completely either purely data-driven or purely model-based. 

More often than not, model-based approaches include some aspects of data-driven 

approaches and data-driven approaches glean available information from models.  An 

example for the former would be where model parameters are tuned using field data. An 

example for the latter is when the set-point, bias, or normalization factor for a data-driven 

approach is given by models.  Hybrid approaches use knowledge about the physical process 

and information from observed data together, such as, Particle filtering, Kalman filtering, etc.  

Particle filtering provides non-linear projection (Orchard, 2005).  

 

The advantages of these methods are: 

(1) Does not necessarily require high fidelity models or large volumes of data –works 

in a complementary fashion; 
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(2) Retains intuitiveness of a model but explains observed data; 

(3) Helps in uncertainty management; 

(4) Flexibility. 

 

2.3 Vibration Based Prognostics for Bearings and Gears 

By measuring and analyzing the vibration signal from the objective system, 

determining both the locations and severity of the faults, and hence predicting the machine’s 

useful life or failure point will become possible (Lewicki et al., 2010).  The main advances 

in vibration analysis in recent years are the development in signal processing techniques, for 

vibration diagnostics of gearing systems (Cempel, 1987; Wang and McFadden, 1996; 

McCormick, 1998; Andrade et al., 2001; Baydar and Ball, 2001; Liu, 2003; Rao et. al, 2003).  

A lot of vibration analysis software packages are available for automated analyses of 

common machinery faults such as bearings, gears, motors, etc. (Sohn et al, 2004).   

 

 

Byington et al. (2002; 2003; 2006) presented a feature extraction and analysis driven 

system: ImpactEnergy.  This system recorded high frequency vibration/acoustic emission data 

and combines advanced diagnostic features derived from waveform analysis, high-frequency 

enveloping, and more traditional time domain processing like root mean square (RMS) and 

kurtosis with classification techniques to provide bearing health information.  Also, the effect 

and feasibility of ImpactEnergy as a bearing diagnostics system was proved by a case study on 

aircraft engine ceramic bearing data.  The object includes two identical hybrid bearings.  The 
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test speed and load simulated the test conditions of the military accelerated mission tests 

(AMT’s).  The focus of this paper is the fault detection and diagnostic algorithms.  Vibration 

data were collected as indictor to detect incipient ball spall defects and capture the degradation 

trend of hybrid ceramic bearings.  The prediction algorithm of remaining useful life of hybrid 

ceramic bearings was not reported and verified in this paper.  Takebayashi (2001) used 

vibration data as the diagnostic tool to indicate bearing fatigue damage and compared the 

rolling fatigue life of steel, hybrid, and all ceramic bearings.   

 

Two different diagnostic methods can be used to indicate bearing failures: oil debris 

based diagnostics and vibration based diagnostics (Dempsey et al., 2005).  Dempsey et al. 

(2004) summarized the currently known failure modes of the hybrid bearing and used both 

the magnetic and non- magnetic sensors instead of using the magnetic oil debris sensor only 

to detect the silicon nitride debris.  A hybrid bearing test rig has been developed by National 

Aeronautics and Space Administration (NASA) at Glenn Research Center in order to evaluate 

the performance of sensors and algorithms developed in predicting failures of rolling element 

bearings for aeronautic and space applications (Dempsey et al., 2005).  The failure 

progression of both conventional and hybrid (ceramic rolling elements, metal races) bearings 

can be tested from fault initiation to total failure.  The effects of different lubricants on 

bearing life can also be evaluated.  Different diagnostic tools, both oil based and vibration 

based systems, were used to indicate bearing failures.  The vibration data were recorded and 

analyzed in time domain, frequency domain, and envelope analysis techniques to indicate the 

health condition of bearings in real-time.  In the meanwhile, several different oil debris 
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sensors were installed to get the information of both metallic and non-metallic debris 

particles.  Using the magnetic properties of the oil debris to detect damage is not enough 

since the ceramic rolling elements of hybrid bearings have no metallic properties (Dempsey 

et al., 2004).  Oil debris sensor measures the change in a magnetic field caused by passage 

of a metal particle, and electric chip detectors measures magnetic debris generated during 

bearing tests.  On the other hand, ultrasonic sensor uses a high-frequency acoustic impulse 

that is reflected by both metallic and non-metallic debris particles to yield particle counts 

(Howe and Muir, 1998).  The video image based diagnostic sensor also can measure both 

metallic and nonmetallic debris (Dempsey et al., 2005).  All the data captured by the sensors 

indicate the process of failures and different types of failures. 

 

2.4 Current Development of Particle Filtering Method 

Recently, applications of particle filtering to prognostics have been reported in the 

literature, for example, remaining useful life (RUL) predication of a mechanical component 

subject to fatigue crack growth (Zio and Peloni, 2011), on-line failure prognosis of UH-60 

planetary carrier plate subject to axial crack growth (Orchard and Vachtsevanos, 2011), 

degradation prediction of thermal processing unit in semiconductor manufacturing (Butler 

and Ringwood, 2010), and prediction of lithium-ion battery capacity depletion (Saba et al., 

2009).  The reported application results have shown that particle filtering represents a 

potentially powerful prognostics tool due to its capability in handling non-linear dynamic 

systems and non-Gaussian noises using efficient sequential importance sampling to 

approximate the future state probability distributions (Ng Ka Ki and Edward Delp, 2009).  
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Particle filtering was developed as an effective on-line state estimation tool (Doucet et al., 

2000; Arulampalam et al., 2000; Arulampalam et al., 2002).  In order to apply particle 

filtering to RUL prediction of a mechanical component such as gears, a few practical 

implementation problems have to be solved: (1) define a state transition function  that 

represents the degradation evolution in time of the component; (2) select the most sensitive 

health monitoring measures or condition indicators (CIs) and define a measurement function  

that represents the relationship between the degradation state of the component and the CIs;  

(3) define an effective l-step ahead RUL estimator.  In solving the first problem, research on 

using particle filtering for mechanical component RUL prognostics has used Paris’ law to 

define the state transition function   (Zio and Peloni, 2011; Orchard and Vachtsevanos, 

2011).  As an empirical model, Paris’ law can be effective for defining a state transition 

function that represents a degradation state subject to fatigue crack growth.  For other type 

of failure modes such as pitting and corrosion, effective alternatives for defining the state 

transition function should be explored.  Regarding the second problem, on the surface, it 

doesn’t seem to be a problem to use multiple CIs to define a measurement function for 

particle filtering as it allows information from multiple measurement sources to be fused in a 

logical manner (Zio and Peloni, 2011).  In particle filtering, measurements are collected and 

used to update the prior state distribution via Bayes rule so as to obtain the required posterior 

state distribution (Patrick et al., 2007).  Subsequently, various kinds of uncertainties arise 

from different sources that are correlated.  In most real applications, no single CI is sensitive 

to every failure mode of a component.  This suggests that defining the measurement 

function will have some form of de-correlated sensor fusion.  In order to apply particle 
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filtering to estimate the RUL, an l-step ahead estimator has to be defined.  Both biased and 

unbiased l-step ahead estimators have been reported by Zio and Peloni (2011), and Orchard 

and Vachtsevanos (2011). However, as pointed out by Zio and Peloni (2011), one issue 

related to these estimators is that state estimation and prediction must be accompanied by a 

measure of the associated error. However, almost all these researches in PHM field use only 

one cue as the observation parameter.  

 

Saha and Goebel (2009) utilized PF to predict the life of the Li-ion battery.  Cadini et 

al. (2009) use PF based algorithm for modeling fatigue crack growth.  Also in (Zhang et al., 

2009), a PF based multiple faults model enhanced by a simple on-line parameter adaptation 

algorithm for the rolling element bearing was proposed to estimate the fault size and the 

remaining useful life of the bearing.  In the practical sense, to determine the value of the 

parameters for the state model of the system is critical important.  For example, in (Orchard 

and Vachtsevanos, 2009), the authors used finite element analysis method to determine the 

parameter describing the relationship of fatigue crack growth under a stress intensity regime.  

Also, in (Zhang et al., 2009), an adaptive recursive algorithm is applied to determine the 

parameter for the state model of the bearing fault growth model.
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3.   THE METHODOLOGY OF PARTICLE FILTERING  

 

3.1 Scheme of the Presented Prognosis Methodology 

For any diagnosis and prognostic system, the first step is to build a Scheme of the 

Presented Methodology.  The real-time diagnosis and prognosis system can be divided into 

two parts: hardware and software.  For hardware, we need to select appropriate sensors, a 

feature collection system, and a data transmission, integration and analysis system.  On the 

other hand, for software, first we need to define the technique framework, flow path and 

methods used.  Then we can select data processing and feature analysis software.  Next, 

prognosis and RUL prediction algorithms can be applied to get the failure rate and RUL 

distribution.  Finally, we can schedule the maintenance. 
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Figure 3. Scheme of the presented methodology 

 

 

 

3.2 The Scheme of the Particle Filtering Based Bearing Fault Prognostics 

The scheme of the methodology presented in this dissertation is shown in FIGURE 4.  

The vibration signal is first processed to generate the fault features, such as root mean square 

(RMS), kurtosis and so on.  And then the particle filtering based prognostics algorithm is 

applied to predict the remaining useful life (RUL) of the bearing (Chen, 2010; 2011). 
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Figure 4. The particle filtering based prognostics algorithm 

 

 

 

3.3 Conceptual Illustration of Model Updating  

In particle filtering framework, the weighted particles actually represent the possible 

status of system degradation.  The weight for each particle is also called importance and it 

represents how good or bad for a particle value to describe the true system status (Zio and 

Peloni, 2011).  If a particle has a small weight that means that particle value is far away 

from the true system status.  And if another particle has a bigger weight that means this 

particle can describe the system status very well.  By using the developed methodology, the 

dynamic system degradation evolution can be estimated in terms of probability density 

function.  And PDF is described by a swarm of weighted particles (Koller-Meier and Ade, 

2001).   

 

Figure 5 describes the two steps diagnosis result based on current measurements using 

the developed diagnosis procedure.   
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In this figure the vertical axis is the system degradation evolution and the horizontal 

axis is time horizon.  Usually, a pre-specified threshold can be defined for the system 

degradation status.  Sometimes this threshold can be a fixed value and sometimes it can be 

represented by a probability density function.  In FIGURE 5, the upper part is the estimation 

result based on current measurement yk-2, and the lower part shows the updated prediction 

result based on the updated measurement information yk1 (Xie, 2004; Ma,et al, 2006, 2010). 
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Figure 5. Two steps diagnosis based on the developed diagnosis procedure  
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FIGURE 5 shows the estimation result based on current measurement information yk 

and the prediction result based on the current measurement information yk.   

 

 

 
 

Figure 6. Conceptual illustration of model updating and l-step ahead prediction 

Time 



 

 

 

35

By comparing the predicted system degradation and the pre-specified threshold, the 

probability of the system is going to fail can be obtained based on the current measurements.  

Also, the probability of system remaining useful life less than (n-k) can be obtained by using 

the developed remaining useful life estimator.   

 

In the following sections, the developed methodology will be explained with details 

about how to get the results mentioned above. 

 

3.4 The Introduction of Particle Filtering 

Particle filtering is sequential Monte Carlo methods for state tracking and prediction.  

The method has been proved effective to model systems including elements of nonlinearity 

and non-Gaussianity (Arulampalam and Ristic, 2000).  The information available from both 

the system measurements and the models are used for describing system behaviors.  

Recently, many successful applications on using PF have been reported (Pérez et al., 2004).  

Representing the posterior probability density function by a set of discrete particles (samples) 

is the key of particle filtering (Spengler and Schiele, 2001).  The reason why a sample is 

also called as a particle is because the probability density function describes its discrete 

nature and its discrete representation.  Each particle represents a hypothesis of the state and 

it is randomly drawn from the prior density (Sanjeev, 2002).  In (Li et al., 2010), an online 

adaptive recursive algorithm is utilized to identify the parameter of the state model of the 

crack growth model of the bearing.   
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The fault prognostics can be classified into two categories according to the way the 

data is used to describe the behavior of the system.  The first one is data-driven techniques 

(He and Bechhoefer, 2008) and the second one is model-based approaches (Li et al., 1999).  

Based on nonlinear dynamic state model, particle filtering methodology combines these two 

techniques by using Eq. (3.1) and Eq. (3.2).  The filtering problem can be described as: 

 

),( 11 −−= tttt vxfx               (3.1) 

),( tttt uxhy =              (3.2) 

 

where ft is the system state evolution function and ht is the observation function.  xt  

represents  the states of the system at time t , yt denotes the observation parameter, vt the 

process noise, and ut  the observation noise.  p(x0) represents the prior distribution at t=0. 

 

This section focuses on the implementation of the particle filtering framework for analyzing 

the spall size of hybrid ceramic bearing.  The scheme of the methodology is shown in FIGURE 7 

(Li, 2010). 
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Figure 7. Particle filtering scheme of presented methodology 

 

 

 

There are two stages in particle filtering process: prediction and update.  The particles 

are modified according to the state function in the prediction process (Musso, 2001).   

Otherwise, in the update process, the particles’ weights are re-evaluated based on the 

difference between the particle values got by observation function and the values from the 

prediction process.  
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Figure 8. One iteration of the prediction and update 
 

 

 

Figure 8 shows the one iteration of the prediction and update of filtering.  The goal is 

to find the posterior probability density function at time k (Ki and Delp, 2009).  The 

posterior probability density function is constructed recursively by the set of weighted 

random samples ( ) ( ){ ,  ; 1,..., }i i
t tx i Nω = where N is the total number of particles.  At each 

time t, the particle filtering algorithm repeats a two-stage procedure: prediction and update 
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(Ki and Delp, 2009): 

(1) Prediction stage: Every particle ( )i
tx evolves independently and a new state value 

being obtained according to the state function (4.1).  In order to simulate the 

unknown disturbance, the random noise is applied in this stage.  An 

approximation of the prior probability density function is generated and 

represented by a batch of the particles in this step.  Approximating the filtering 

probability density function by using a set of particles  ( ) ,  1,...,i
tx i N=  is the 

main idea of the particle filtering: 

 

( )

1

1( ) [ ]
N

i
t t t

i
p x x x

N
δ

=

= −∑                              

 

(2) Update stage: The weights of the particles are calculated based on the latest 

measurement according to the measurement function (likelihood function) (3.2).  

In the form of a discrete approximation, the posterior probability density function 

at time t can be written as: 

][)( )(

1
:1

i
tt

N

i

i
ttt xxyxp −= ∑

=

δω      (3.3) 

 

In Eq. (3.3), an important weight ( )i
tω  is assigned to each particle ( )i

tx .  This weight 

implies the importance of the particle in constituting the formulation of filtering probability 

density function (PDF).  After a particle is generated, it then propagates according to the 

state function.  Each propagated particle is verified by a weight assignment by the 
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measurement function.  The quality of a specific particle is characterized by the weight.  A 

good particle will be assigned with a large weight and a small weight will be given to a bad 

particle (Ki and Delp, 2009). ( )[ ]i
t tx xδ −  represents the delta-Dirac function located at ( )i

tx .   

 

A finite sum approximates the general integral representation of the filtering PDF by 

using Eq. (3.3). 

 

Corresponding weight for each particle is computed by (3.4): 

 

],[

][][
)()(

)(
1

)()(

1
t

i
t

i
t

i
t

i
t

i
tti

t
i
t yxxq

xxpxyp −
−= ωω       (3.4) 

 

In Eq. (3.4),  ( ) ( )[ , ]i i
t t tq x x y   is the proposal density function

,
 and

 
( )[ ]i

t tp y x  is the 

likelihood function of the measurements ty .   

 

The particle filtering method tracks multiple possibilities at the same time and each 

possibility is defined by a particle.  According to the observation function, a particle is 

assigned with a weight.  If the value of a particle is close to the value of the target, the 

distance of this particle is smaller from the object model, and then this particle will be 

assigned with a larger weight according to the observation function. 

 

The observation likelihood function is very important in tracking performance using 

particle filtering.  The first reason is because that this function determines the weights of the 
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particles and the weights determine how the particles are re-sampled.  The second one is that 

the predicted state value is the weighted mean of all particles and it affects the estimations 

directly (Ki and Delp, 2009). 

 

The algorithm of a standard particle filtering includes the following four steps (Sanjeev 

et al., 2002): 

 

 

 

After step 4, go to Step 2 or end the algorithm according to the conditions. 

 

The nonlinear mapping between the observation parameter and state parameter can be 

assumed as one-to-one.  Following the representation of the state and observation functions 

defined in (Zhang et al., 2009), the particle filtering model for bearing prognostics can be 

written as follows: 
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[ ] )()()1( ttkxtx cc ω+=+      (3.5) 

)()()( tvtxty c +=           (3.6) 

 

In this model, ( )cx t  represent the operation status – let’s say the size of the crack area,  

( )y t  is the fault feature contaminating noise, and k is a time-varying model parameter that 

describes the progression of the fault dimension under a fatigue stress.  Parameter k can be 

determined by using finite element analysis model (Orchard and Vachtsevanos, 2009) or 

online identified by the experimental data (Zhang et al., 2009).  In (Li, et al., 2010), to 

simplify the way to calculate k, an online identification algorithm can be used to find the 

value of k. 

 

The following framework shows the calculation steps with details: 
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The following figures show the all possible evolution paths by using 5 particles as an 

example, like FIGURE 9 - FIGURE 15 show. 

 
 

Figure 9. The current particles at current time point k-2 
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Figure 10. The updated particle values by using state function  

 
 

Figure 11. The updated weights for each updated particle by using observation function 
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Figure 12. Updated particle and their weights based on current measurement 

 
 

Figure 13. The one step ahead predicted particle values based on the current measurement  



 

 

 

46

 
 

Figure 14. One step ahead prediction result for system degradation  

 
 

Figure 15. The l-step ahead prediction for system degradation status by using 5 particles 

 
 
 
 
 

The task of tracking a state variable and predicting the future values is usually solved 
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as a filtering problem (Saha and Goebel, 2009).  Particle filtering can easily deal with 

uncertainties when they occur.  The detailed implementation of the particle filtering is 

shown in FIGURE 16. 
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Figure 16. Particle filtering flowchart 
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3.5 RUL Prediction using Particle Filtering 

 

3.5.1 Particle Filtering for Fault Status Prediction 

Assume the following discrete time state space model can describe a system: 

 

( , )1 1x f xk k k kω= − −                          (3.7) 

( , )y h x vk k k k=                                (3.8) 

 

where: 

: n n n
k x xf R R Rω× → is the state function 

kω : the independently and identically distributed (iid) state noise vector  

:  n n n
k x v yh R R R× → : the measurement function 

kv : the independently and identically distributed( iid) measurement noise vector  

 

State transit estimation is a problem which estimate the dynamic state kx according to 

probability density function (PDF) 0:( )k kp x y ,   given the measurement at time k.  Assume 

that the initial distribution of the state 0( )p x is known. 
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Normally, prediction and update is the two steps of the Bayesian solution to the state 

estimation problem.  In the prediction step, the prior probability distribution of the state kx  

at time k, starting from the probability distribution 1 0: 1( )k kp x z− −  at time k-1, is obtained as: 

 

0: 1 1 0: 1 1 0: 1 1

1 0: 1 1

( ) ( , ) ( )

( ) ( )

k k k k k k k k

k k k k k

p x y p x x y p x y dx

p x x p x y dx

− − − − − −

− − −

=

=

∫
∫

     (3.9) 

 

In the update step, at time k, a new measurement ky is got and applied to update the 

prior distribution to obtain the posterior distribution of the current system state kx  as: 

 

0: 1
0:

0: 1

( ) ( )
( )

( )
k k k k

k k
k k

p x y p y x
p x y

p y y
−

−

=                        (3.10) 

 

The normalizing constant is formulated as: 

 

0: 1 0: 1( ) ( ) ( )k k k k k k kp y y p x y p y x dx− −= ∫              (3.11) 

 

In most of cases, solving Eq. (3.9) and Eq. (3.10) is very hard and not realistic.  

Therefore, particle filtering is applied to solve the equations.  The following two steps can 

be performed to get the prediction at time k:  
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(1) Drawing N random samples (particles) 1, 1,...,i
kx i N− =   from the probability distribution 

of the state noise 1kω − ;  

(2) Using Eq. (3.7) to Generate N new set of samples 1, 1,...,i
kx i N− = .  In the update step, 

each new sampled particle  i
kx is assigned a weight i

kω based on the likelihood of the new 

measurement ky at time k as: 

 

1

( )

( )

i
k ki

k N i
k ki

p y x

p y x
ω

=

=
∑

                              (3.12) 

 

The approximation of the posterior distribution 0:( )k kp x y can be obtained from the 

weighted particles , , 1,...,i i
k kx i Nω =   (Doucet et al., 2000). 

 

3.5.2 Particle Filtering for RUL Prediction 

An l-step ahead estimator has to be developed to estimate the remaining useful life by 

using particle filtering.  A long term prediction of the state PDF 0:( )k l kp x y+  can be 

obtained by using the l-step ahead estimator, where, 1,...,l T k= − , T is the time horizon. It is 

assumed that no measurement data are available for estimating the likelihood of the state 

following the future l-step path 1:k k lx + + .  So, one can only project the initial condition 

0:( )k kp x y  using state transition PDF 1( ), 1,...,j jp x x j k k l− = + +  along all possible future 

paths weighted by their probability 1 11
( )k l

j j jj k
p x x dx+

− −= +∏ .  By combining Eq. (3.7) and Eq. 
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(3.10), an unbiased l-step ahead estimator can be obtained (Zio and Peloni, 2011; Orchard 

and Vachtsevanos, 2011): 

 

( ) ( ) ( )
1

0: 0:1
1

...
k l k l

k kk l j j k j
j k j k

p p p dx x x x xz z
+ + −

+ −
= + =

= ∏ ∏∫ ∫          (3.13) 

 

However, solving Eq. (3.13) is very difficult and computationally expensive.  A 

particle filtering approximation procedure of the l-step ahead estimator is provided in (Zio 

and Peloni, 2011). 

 

Assume that the state kx   represents the fault status indicator and RUL is the 

remaining useful time before the fault indicator arriving at the pre-specified threshold λ .  

Estimating 0:ˆ ( )rp RUL y≤  is equivalent to estimating 0:ˆ ( )k l rp x yλ+ ≥  at each time k l+ .   

  

Note that in computing the l-step ahead RUL estimator using particle filtering, at each 

updating step, a weight is computed according to Eq. (3.12) without considering any 

measurement of the associated errors.  ˆky
 
the measurement parameter at time k computed 

by using Eq. (3.8).  ky
 
is the true measurement parameter collected by sensors.  Then a 

weighting process in particle filtering that takes into account the measurement errors can be 

defined as: 
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1

ˆ(( ) )

ˆ(( ) )

i
k ki

k N i
k ki

p y y x

p y y x
ω

=

−
=

−∑                       (3.14) 

 

In the particle filtering based case studies in this dissertation, Eq. (3.14) is used to 

calculate the weights of particles for the l-step ahead fault parameters. 

 

3.6 Particle Filtering l-step Prognosis 

Prognosis is a problem about how to generate the long-term predictions which describe 

the evolution of the system operation status or fault indicator.  After that, the remaining 

useful life (RUL) of a failing component/subsystem can be estimated based on the current 

information.  In order to apply particle filtering to estimate the RUL, an l-step ahead estimator 

has to be developed.  An l-step ahead estimator will provide a long term prediction of the state 

pdf ( )zx klkp :0+  for kTl −= ,...,1 , where T is the time horizon of interest.  In making an l-step 

ahead prediction, it is necessary to assume that no information is available for estimating the 

likelihood of the state following the future l-step path x lkk ++ :1 , that is, future measurements 

kTllk −=+ ,...,1,z  cannot be used for making the prediction.  Therefore, one can only project the 

initial condition ( )zx kkp :0  using state transition pdf ( ) lkkjp jj ++=− ,...,1,1xx  along all possible 

future paths weighted by their probability ( ) xxx 11 1 −
+

+= −∏ j
lk
kj jj dp .   

 

The most important issue is projecting the current particle population when new 

observations are absent.  If necessary, weights may have to be adjusted (Orchard, Ph. D 

thesis, 2007). 
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The errors which are generated by considering the changes of particle weights in the 

future time instants is negligible considering other sources of error, such as model 

inaccuracies or even in the assumptions made for process and measurement noise parameters 

(Doucet et al., 2000). 

 

Based on this standpoint, equation (3.8) is considered sufficient enough to extend the 

projection of ( )
0:ˆ i

t kx + , and the current particle weights are propagated in time without changes.  

The results from the case studies in this dissertation prove that the method still provides a 

satisfactory result when predicting how the system behaves.
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4. INTEGRATION OF ONE-DIMENSIONAL HEALTH INDEX INTO PARTICLE 

FILTERING METHODOLOGY FOR PROGNOSTICS 

 

4.1 Introduction 

There is no single CI that is sensitive to every failure mode of a gear or bearing 

(Bechhoefer et al., 2011).  Some form of sensor fusion is required for the condition based 

maintenance system of gears or bearings.  In this chapter, a one-dimensional health index 

calculation method will be introduced and the integration of one-dimensional health index 

into particle filtering methodology will be developed.  The steel bearing test data will be 

used as an example to illustrate the methodology. 

 

There are three statistical models which can define a gear HI as a function of a CI 

(Bechhoefer et al., 2011):  

 

(1) HI1: order statistics (max of n CIs); 

(2) HI2: sum of CIs;  

(3) HI3: normalized energy.   

 

The condition indicators are regarded as statistics.   They have to be independent in 

order to calculate the three HIs by using the related formulas.  Usually, CIs tend to be 

correlated, so a whitening process was developed to ensure the use of the calculation models 
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can be correctly applied. Rayleigh and Gaussian distributions were used to develop the 

models for these CIs.  These models, which were used to calculate HIs, were tested on gear 

and bearing test stand data and their performance evaluated as compared to the end state of 

the gear and bearing (Bechhoefer et al., 2011).  The results show the HIs worked well in 

detecting surface fatigue pitting faults on bearing races and gear teeth. 

 

All CIs have a probability distribution (PDF).  Any operation on the CI to form a 

health index (HI), is then a function of distributions (Wackerly, 1996).  For example, the 

following three functions can be used to get HI: 

(1) The maximum of n condition indicators (the order statistics); 

(2) The sum of n condition indicators; 

(3) The norm of n condition indicators (energy). 

 

These three functions are valid if and only if the distributions of CIs are independent 

and identical (IID) (Wackerly, 1996).  The correlation between CIs implies that for a given 

function of distributions, the CIs must be whitened (e.g. de-correlated).  A whitening 

transform using the Eigenvector matrix multiplied by the square root for the Eigenvalues 

(diagonal matrix) of the covariance of the CIs was developed (Fukinaga, 1990; Bechhoefer et 

al., 2011). 

 

A = Λ1 2ΦT                                           (4.1)  
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where ΦT is the transpose of the eigenvector matrix, and Λ is the eigen value matrix. 

 

If the CIs represented a metric such as shaft order acceleration, then one can construct 

an HI which is the square of the normalized power (e.g. square root of the acceleration 

squared) (Bechhoefer et al., 2011).  This can be defined as normalized energy, where the 

health index is: 

 

HI = CI × cov(CI)−1 × CIT            (4.2) 

 

Bechhoefer et al. (2007) whitened the condition indicators CIs. 

 

The diagnostic capability for gear and bearing health index can be improved by 

generalizing a method to develop HI based on CIs with related functions and statistical 

distributions.   

 

4.2 Generalized Function of Distributions 

The following equations show the desired linear transformation operation for the vector 

CI: 

 

)(0
,

Y
LY

ncorrelatio
CI T

==
×=

ρ
              (4.3) 
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where Y kept the original distribution of the CIs.  And the vectors of Y are IID.  

 

The Cholesky Decomposition of Hermitian, positive definite matrix results in A = LL*, 

where L is a lower triangular, and L* is its conjugate transpose.  We know that the inverse 

covariance is positive definite Hermitian by the definition.  L follows that: 

 

LL* =Σ−1                                       (4.4) 

 

and using Eq. (4.3), get: 

 

Y =L ×CIT                               (4.5) 

 

Where, Y is n number of independent CI with unit variance.   

 

The Cholesky Decomposition generates the square root of the inverse covariance.  

This in turn is analogous to dividing the CI by its standard deviation (the trivial case of one 

CI).  In turn, Eq. (4.5) creates the necessary independent and identical distributions required 

to calculate the critical values for a function of distributions (Bechhoefer et al., 2011). 
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4.3 HI Based on Gaussian PDFs 

If it is found that the distribution of the CI data follows a Gaussian distribution a 

comparable mathematical process can be applied.  The probability density function of the 

Gaussian distribution is: 

 

( )
( )2

22 exp
2

xf x
x μ

σ π
σ

=
⎛ ⎞− −
⎜ ⎟⎜ ⎟
⎝ ⎠

        (4.6) 

 

The cumulative distribution function, the integral of probability density function Eq. 

(4.6) is 

 

       2

2

( )
( )2 exp[ ]

2

x
xF x

t u dtσ π
σ−∞

=
−

−∫
      (4.7) 

 

4.3.1 The First Calculation Method of HI: the Gaussian Order Statistic 

The order statistic PDF of a Gaussian HI function: 

 

( )
( ) ( )

2
2 2

2 2

3{ }
2 exp[ ] 2 exp[ ]

2 2

x

x xf x
t x

dt
μ μ

σ π σ π
σ σ−∞

= ×
− − − −

∫
      (4.8) 
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By solving the inverse CDF the threshold can be determined  Assume there are three 

CIs, that is, n = 3, and PFA of 0.95, we can get that the lower threshold t equals to -0.335, and 

upper threshold for a PFA of 10-3, the threshold t is 3.41 (for HI of 0.5).  The CIs become z 

distribution (Gaussian distribution normalized with zero mean and unit variance).  The HI 

algorithm is (Bechhoefer et al., 2011): 

 

[max{ ( )} 0.34] 0.5
(3.41 0.34)

T

HI × − + ×
=

+
L CI m

          (4.9) 

 

where m is the mean value of all used CIs. The CIs into n Z distributions (zero mean, IID 

Gaussian distributions) by subtracting the mean and multiplying by L transforms. 

 

4.3.2 The Second Calculation Method of HI: the Sum of n Gaussian 

Consider a HI function that takes the sum of n Gaussian CIs. Then the mean and 

variance of the sum of the CI are (Bechhoefer et al., 2011): 

 

μ = E Li[ ]
i=1

3∑ , σ 2 = n
             (4.10) 

 

Same the inverse normal cumulative distribution function is used to calculate the 

parameter.  For n = 3 CIs, the mean μ is 3 and variance σ2 equals 3.  Using the inverse 
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normal cumulative distribution function, the lower threshold (PFA of .95) is -0.15 and the 

upper threshold (PFA 10-3), is 8.352, then the HI algorithm is then (Bechhoefer et al., 2011): 

 

3

1

0.5 [ 0.15 (L CI )]
(8.352 0.15)

T
i

HI
=

= − + ×
− ∑       (4.11) 

 

4.3.3 The Third Calculation Method of HI: Total Energy 

In this case we consider a HI function which uses the norm of n Gaussian CIs.  For n 

= 3 CIs and a PFA of 10-3, the threshold equals 3.368.  The HI algorithm is then (Bechhoefer 

et al., 2011): 

 

Y = L × CIT

HI = 0.5
3.368 Yi

2
i=1

3∑                  (4.12) 

 

4.4 Steel Bearing Case Study 

In this section, a case study about steel bearing data was applied.  The two different 

methods were used to obtain the fault status prediction and remaining useful life estimation.  

The first method is combines multiple condition indicators into particle filtering model 

directly to get the system status update.  The second method uses the HI, the integrated 

indicator, as the observation parameter needed in the particle filtering model. 
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4.4.1 Combing Multiple Condition Indicators into Particle Filtering Model Directly 

FIGURE 17 shows the predicted spall size and true spall size, the prediction result can 

track the trend of the true value.  The vertical axis represents the spall size and the 

horizontal axis is time horizon. 

 

 

 

 
 

Figure 17. The actual spall size vs. the predicted spall size by combing multiple condition 
indicators into particle filtering model 
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To compute the RUL, the critical value λ  was set to be the level of SPL = 12.5mm.  

The estimated mean RUL and corresponding 90% confidence intervals are shown in FIGURE 

18. 

 

 

 

 
 

Figure 18. The predicted RUL mean and corresponding 90% confidence intervals 
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4.4.2 Using One Dimension HI as Observation Parameter in Particle Filtering Model 

Using the station transition function kf  and the measurement function kh  defined by 

the spall length and HI data from the experiment, the particle filtering based l-step ahead 

RUL estimator was run on the data from steel bearing experiment using N = 1000 particles.     

FIGURE 19 shows the predicted spall size and true spall size, the prediction result match 

pretty well with the true value. 

 

 

 

 
 

Figure 19. True spall length and predicted spall length using HI and particle filter model 
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To compute the RUL, the critical value λ  was set to be the level of SPL = 12.5mm.  

The estimated mean RUL and corresponding 90% confidence intervals are shown in FIGURE 

20. 

 

 

 

 
 

Figure 20. The predicted mean RUL and corresponding 90% confidence intervals using 
estimator updated with error measurement 

 

 

 

By comparing FIGURE 17 and FIGURE 19, we can see that the predicted spall size 

using one dimension HI matches much better than the predicted result by combining multiple 

RU
L 

Time 



 

 

 

66

condition indicators directly.  Also, by comparing FIGURE 18 and FIGURE 20, the RUL 

prediction using one-dimensional HI approaches the true RUL faster and provides better 

long-term RUL prediction than that without using one-dimensional HI.  

 

4.5 Summary 

Because the condition indicators (CI) are correlated, a method was presented whitening 

the CIs used in gear fault detection.  The whitening was achieved by a linear transformation 

of the CI using the Cholesky decomposition of the inverse of the CIs covariance.  

 

With this transformed, using whitened CI data, a health index based on a specified PFA 

was demonstrated.  Three candidate HI algorithms (order statistics, normalized energy and 

sum of CI) for two different CI probability distribution functions (Gaussian, were presented 

and tested on three data sets of pitted bearings from a test stand.  

 

It was observed that the predicted spall size using one dimension HI matches much 

better than the predicted result by combining multiple condition indicators directly.  Also, 

the estimated remaining useful life by the HI is closer to the actual than the result by multiple 

CIs.  The HI trends were low in noise.  This can improve the prognostics process  

 

The results have shown that using the one-dimensional HI gives better prognostic 

results than without combining different condition indicators into one HI.
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5.  CASE STUDY 1: STEEL BEARING PROGNOSTICS 

 

5.1 Diagnostics, and Prognostics for Sentient Bearing 

The bearing fault test data used in this research are spalled bearings run to failure with 

intermediate inspections.  This testing was part of Phase I of the DARPA Prognosis Program. 

The test bearings were a 106 size angular contact bearing, primarily of SAE 52100 steel, 

although some M50 Nil and hybrid bearings were also tested.  A Rockwell C indent was 

used to seed the seeded fault.  Each bearing was removed for inspection at least 10 to 15 

times during the spall propagation, with some bearings being inspected as many as 30 times.  

Each inspection included both measurements and photographs of the bearing races and 

specifically the spalls (Lybeck et. at, 2007). 

 

5.2 The One-Dimensional Health Index for Sentient Bearing 

A total of 15 condition indicators were calculated (Bechhoefer, 2011):  

(1) ce1; 

(2) bse1; 

(3) ie1; 

(4) oe1; 

(5) rms1; 

(6) ce20;
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(7) bse20; 

(8) ie20; 

(9) oe20; 

(10) rms20; 

(11) ce25; 

(12) bse25; 

(13) ie25; 

(14) oe25; 

(15) rms25; 

 

The method used to choose effective condition indicators was calculating the 

correlation values between these condition indicators and damage progression over time. The 

CIs were selected with high correlation values with time.  

 



 

 

 

69

 
 

Figure 21. The correlation values between the condition indicators and time 
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Figure 22. The chosen condition indicators to compose HI 

 

 

 

Then three condition indicators:  

(1) rms20; 

(2) ie25; 

(3) rms25 

were chosen to define the HI as the observation parameter.  The one-dimension HI 

calculation method in Chapter 4 was used.  
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HI1, HI2 and HI3 were calculated and HI1 (the Gaussian order statistic) was chosen for 

this case study because it trends very well with the spall size propagation  

 

5.3 Sentient Bearing Case Study Experimental Setup and Data Collection 

Ground truth data is crucial for validation of both diagnostics and prognostics, but 

availability is currently very limited.  Often one or a few seeded fault tests are all the data 

that exists for a newly deployed platform. Existing platforms may have historical data that 

could be leveraged, but it is often stored in multiple locations and disparate formats, making 

access to that data in a format suitable for validation a challenge.  

 

Sentient has accrued a large database of seeded spall propagation tests on angular 

contact ball bearings. This data was specifically acquired to aid in the understanding of how 

spalls propagate and to provide data for diagnostic and prognostic algorithms. 

 

The quality of a prognosis is directly impacted by the quality of the diagnostic values. 

Because vibration is the most commonly used monitoring parameter for mechanical 

equipment, diagnostics are frequently based on these signals. There are many standard 

vibration-based metrics that are traditionally used for machinery diagnostics, including root 

mean square, kurtosis, variance, and signal amplitude, as well as higher order statistics. 

 

The data purchased from Sentient for this project consists of 12 different bearing 

datasets, 10 spalled bearing datasets and 2 normal bearing datasets.  For each of the spalled 
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datasets, an indent was placed on the inner raceway of the bearing from which a spall formed 

and grew in size as the test proceeded.  There were five inspection points for each dataset to 

document the fault progression.  Collection of vibration signals occurred at each inspection 

point.  Each vibration signal was taken just before its respective inspection point.  Five of 

the faulted bearings and one normal bearing were run with a 515 lbs load, while the other 5 

faulted bearings and one normal bearing were run under a load of 800 lbs.  Pictures of the 

bearing spalls at each of the five inspection points were taken for each bearing.  A scale (1 

mm per division) is present in each picture (See FIGURE 23). 

 

 

 

 
 

Figure 23. Propagation of inner race fault from left to right: initiation, 0.7, 1.6, and 2.96 mm 
spall length 

 

 

 

All vibration signals were collected with the same type of accelerometer and analog 

filtering.   

 

The accelerometer was the Endevco Model 7259B-100.  This is a miniature, light 



 

 

 

73

weight piezoelectric accelerometer with integral electronics, designed specifically for high 

frequency vibration measurement on structures and objects. The accelerometer has a wide 

bandwidth, flat to 50 KHz. 

 

The filtering was a Frequency Devices 5BAF series differential fixed frequency 

filtering.  The filtering is an 8-pole Butterworth with a pass band at 40KHz. 

 

The bearing fault data were processed to generate bearing damage condition indictors.  

The methods used for generating these condition indictors included (Lybeck et. at, 2007): 

(1) Bearing passing frequencies at the base frequency.  This consisted of           

measuring the PSD (power spectral density) at the bearing defect frequencies of 

the BPFO, BPFI, BFF and FTF (Lybeck et. at, 2007).   

(2) RMS of the vibration signal between 0 and 1000 Hz. 

(3) Envelope analysis of the bearing passing frequencies at 2 and 5 KHz windows. 

(4) RMS of the envelope analysis.  

(5) Cepstrum analysis of the bearing passing frequencies. 

 

5.4 Building the State Function by Data Mining Method 

Other research has been published using Paris’ Law to build the state function to 

describe the spall or crack size propagations (Orchard, 2005; Jardine et al., 2006; Heng, 

2009).  However, Paris’ Law, as a physics model based methodology, is difficult to build 

because a lot of related system design knowledge is needed, such as, materialogy, mechanics 
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and structural mechanics.  The simulation results based on finite-element analysis (FEA) 

usually have some significant differences with the true design.  Also, some parameters have 

to be changed when operating conditions or components size or shapes change.  All these 

make Paris’ Law harder to be applied than data mining methods.  Also, from simulation 

results, we observed the state function by data mining methods can adequately describe the 

spall or crack propagation.  That makes the use of Paris’ Law lose some of its advantages. 

 

5.4.1 The ARIMA Model 

ARIMA methodology, popularized by Box and Jenkins (Box and Jenkins, 1970; 

Caldwell, 1971; Caldwell, 2007), is based on the idea that a stationary series Yt can be 

approximated to any desired degree of accuracy by an ARMA (Autoregressive-Moving 

Average) process.  We can write the ARMA (p, q) model as: 

 

eeeeYYYcY qtqtttptpttt −−−−−− −−−−++++= θθθφφφ ...... 22112211  

 

where p is the order of the autoregressive (AR) component, and q is the order of the moving 

average (MA) component.  Using the “backshift” or “lag” operator B this becomes: 

 

eBBeeYBBYcY q
tqttp

tptt θθφφ −−−+++= ...... 11  

or  ( ) ( )eBBcYBB t
q

qt
p

p θθφφ −−−+=−−− ...1...1 11  
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If Y has been differenced d times to achieve stationary then the model is Autoregressive 

Integrated Moving Average: ARIMA (p, d, q): 

 

( )( ) ( )eBBcYBBB t
q

qt
dp

p θθφφ −−−+=−−−− ...11...1 11  

  

Note that et  is defined as YY tt
)− , where Y t

)  is defined as the predicted (estimated) 

value of Yt . 

 

The state parameter used in the case study is spall length.  A two order ARIMA model 

was used to build the state function.  The spall length values at t-1 and t-2 were used to 

predict the spall size value at time t.  Autoregressive Integrated Moving Average (ARIMA 

(p, d, q)) model was used to build the state function.  p, d, and q are non-negative integers 

that refer to the order of the autoregressive, integrated, and moving average parts of the 

model respectively.  ARIMA modeling technique is a generalization of autoregressive 

moving average.  ARIMA model can handle non-stationary time series problems.  2 order 

ARIMA (2, 0, 0) model was used to build the state function. 

 

The state parameter values at t-1 and t-2 were used to predict the state parameter value 

at time t: 

 

( ) (2) ( - 2) (1) ( -1) ( 1)x t C AR x t AR x t v t= + × + × + −  
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The state function used in the case study is: 

 

( ) 0.01922955-0.64840275 ( - 2) 1.6446352 ( -1) ( )x t x t x t tω= × + × +  

 

5.5 Building the Observation Function by Data Mining Method 

Double exponential smoothing was used to build the relationship between state 

parameter spall size and observation parameter HI.  The relationship between state 

parameter and observation parameter was defined as a linear function.  The model 

parameters of this linear function can be obtained by using this method.  By using this 

method, the model parameter can be updated step-by-step using the information of the 

previous step.  This makes the prognosis more accurate and effective.  There is no single 

condition indicator (CI) which is sensitive to every failure mode of a bearing or gear.  The 

solution is composing a one-dimensional health index (HI) and integrating this HI into 

particle filtering. 

 

Double exponential smoothing was chosen to build the relationship between the state 

parameter and observation parameter. 

 

The advantages to use double exponential smoothing: 

(1) Double exponential smoothing works well for time series without an overall trend.; 

(2) It does not require maintaining a history of previous data.  

(3) It can be helpful in predicting future observations. 
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The observation function used in the case study is: 

 

( ) ( ) ( ) ( )y t k t x t tν= × +  

 

k(t) is a time variable obtained by double exponential smoothing. 

 

5.6 Prognostics Results 

The spall length and HI data from the experiment are shown in FIGURE 24. 
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Figure 24. Spall length and HI of steel bearing experiment 
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The measurement function hk  was defined using a double exponential smoothing 

model with α  = 0.05 to fit the relation between HI and spall length.  FIGURE 25 shows 

the plot of HI against spall length for the steel bearing experiment. 

 

 

 

  

 

Figure 25. Plot of HI against spall length for steel bearing experiment 

 

 

 

Using the station transition function kf   and the measurement function kh  defined by 

the spall length and HI data from the experiment, the particle filtering based l-step ahead 

RUL estimator was run on the data from steel bearing experiment using N = 1000 particles.  

To compute the RUL, the critical value λ  was set to be the level of total spall length SPL = 

12.5mm.  The estimated mean RUL and corresponding 90% confidence intervals are shown 
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in FIGURE 26.    

 

 

 

 
 

Figure 26. True spall length and predicted spall length 
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Figure 27. The predicted mean RUL and corresponding 90% confidence intervals using 
estimator updated with error measurement 

 

 

 

5.7 Summary  

A particle filtering based steel bearing prognostics method using a one-dimensional 

health index was presented in this chapter.  The presented method effectively addresses the 

issues in applying particle filtering to mechanical component remaining useful life (RUL) 

prognostics by integrating several new components into particle filtering.  Data mining 

based techniques were effectively used to define the degradation state transition and 

measurement functions using a one-dimensional health index obtained by a whitening 
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transform.  An l-step ahead steel bearing fault progression and remaining useful life 

prediction were performed.  The results show the integrated methodology performs well in 

predicting RUL. 

 

The presented prognostics method was validated using data from a steel bearing case 

study.  The validation results have shown the effectiveness of the presented method. 
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6.  CASE STUDY 2: SPIRAL BEVEL GEAR PROGNOSTICS 

 

6.1 Diagnostics, and Prognostics for Spiral Bevel Gear 

In this section, a particle filtering based gear prognostics method using a 

one-dimensional health index for spiral bevel gears subject to surface fatigue pitting failure 

mode is presented.  The spiral bevel gear case study was performed in the NASA Glenn 

Spiral Bevel Gear Test Facility.  The presented method effectively addresses the issues in 

applying particle filtering to mechanical component remaining useful life (RUL) prognostics 

by integrating a couple of new components into particle filtering: (1) data mining based 

techniques to effectively define the degradation state transition and measurement functions 

using a one-dimensional health index obtained by a whitening transform; (2) an unbiased 

l-step ahead RUL estimator updated with measurement errors.  The presented method is 

validated using fatigue testing data from a spiral bevel gear case study performed in the 

NASA Glenn Spiral Bevel Gear Test Facility.   

 

6.2 The Prognostics Method and Flowchart for Spiral Bevel Gear 

The general framework of the particle filtering based gear prognostics method for 

spiral bevel gear subject to pitting failure mode is shown in FIGURE 28.
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Figure 28. Particle filtering based gear prognostics framework 

 

 

 

As shown in FIGURE 28, to predict the RUL of the spiral bevel gear subject to pitting 

failure mode, the oil debris mass (ODM) is used to represent the degradation state of the gear.  

Therefore, the state transition function f k  is defined by an ODM ARIMA model established 

using a data mining based approach.  The one-dimensional HI obtained by applying 

Cholesky decomposition based whitening transform and statistical generation models are 

used to define the measurement function hk  by double exponential smoothing.  Based on 

the defined functions f k  and hk , an l-step ahead RUL estimator incorporated with 

measurement error is used in particle filtering to provide an accurate prediction of RUL.  

The generation of the one-dimensional HI and the l-step ahead RUL estimator used in particle 
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filtering are explained in the next two sections. 

 

6.3 Spiral Bevel Gear Case Study Experimental Setup and Data Collection 

In this chapter, data from a spiral bevel gear case study conducted in the NASA Glenn 

Spiral Bevel Gear Test Facility at are used to validate the presented method.   

 

Vibration data from experiments performed in the Spiral Bevel Gear Test facility at 

NASA Glenn was reprocessed for this analysis.  A description of the test rig and test 

procedure is given in Dempsey et al. (2002).  The rig is used to quantify the performance of 

gear material, gear tooth design and lubrication additives on the fatigue strength of gears.  

During this testing, CIs and oil debris monitoring were used to detect pitting damage on spiral 

bevel gears. 

 

The tests consisted of running the gears under load through a “back to back” 

configuration, with acquisitions made at 1  minute intervals, generating time synchronous 

averages (TSA) on the gear shaft (36 teeth), using an optical once per revolution sensor on 

the gear shaft. The pinion, on which the damage occurred, has 12 teeth, Figure 29. Test rig 

and gears (Dempsey et al., 2002).  
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Figure 29. Test rig and gears (Dempsey et al., 2002) 

 

 

 

TSA data was re-processed with gear CI algorithms presented in Zakrajsek (1993) and 

Wemhoff (2007), to include: 

(1) TSA: RMS, Kurtosis (KT), Peak-to-Peak (P2P), Crest Factor (CF) 

(2) Residual RMS, KT, P2P, CF 

(3) Energy Operator RMS, KT 

(4) Energy Ratio 

(5) FM0 

(6) Sideband Level factor 

(7) Narrowband (NB) RMS, KT, CF 

(8) Amplitude Modulation (AM) RMS, KT 
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(9) Derivative AM KT 

(10) Frequency Modulation (FM) RMS, KT 

 

From these CIs, a total of six CIs were used for the HI calculation:  

(1) Residual RMS; 

(2) Energy Operator RMS; 

(3) FM0; 

(4) NB KT; 

(5) AM KT; 

(6) FM RMS. 

 

Covariance and mean values for the six CIs were calculated by sampling four gears’ 

data prior to the fault propagating. This was done by randomly selecting 100 data points from 

each gear, and calculating the covariance and means over the resulting 400 data points. 

 

The selected CI’s PDF were not Gaussian, but exhibited a high degree of skewness. 

Because of this, the PDFs were “left shifted” by subtracting an offset such that the PDFs 

exhibited Rayleigh like distributions. Then, the threshold setting algorithms were tested for: 

(1) Rayleigh order statistic (OS): threshold 8.37 for n = 6 and a PFA of 10-6,  

(2) Rayleigh normalized energy (NE): threshold 10.88 for n = 6 and a PFA of 10-6,  



 

 

 

88

(3) Sum of Rayleigh (SR): threshold 24.96 for n = 6 and a PFA of 10-6.  

 

FIGURE 30, FIGURE 32 and FIGURE 34 are HI plots that compare the OS, NE and 

SR algorithms during three experiments in the test rig. The HI trend (in black) is plotted on 

top of the raw HI values (in blue).  FIGURE 31, FIGURE 33 and FIGURE 35 show the 

amount of pitting damage on the pinion teeth at each test completion. 

 

 

 

 

 

Figure 30. Experiment 4  
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Note that the spikes corresponded to changes in torque on the rig. All the HI algorithms 

where sensitive to damage, although in general, the best system response was from both the 

OS and NE.   

 
 

Figure 31. Damage on gear from experiment 4 

 

 

 

Note that the decrease in the HI rate of change corresponds to a decrease in torque load 

towards the end of the test.  
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Figure 32. Experiment 5 

 

 

 

For the data plotted in FIGURE 30, this test appears to have been halted prior to heavy 

pitting damage, as the gear HI is reach only 0.5. However, the photo of gear EX5 (FIGURE 

31) shows extensive pitting damage. 
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Figure 33. Damage on experiment 5 gear 

 
 
 
 
 

 
 

Figure 34. Experiment 6 
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Figure 35. Damage on experiment 6 gear  

 

 

 

TSA data was re-processed with gear CI algorithms presented in (Zakrajsek et al., 1993) 

and (Wemhoff et al., 2007).  A total of 6 CIs were used for the HI calculation: residual RMS, 

energy operator RMS, FM0, narrowband kurtosis, amplitude modulation kurtosis, and 

frequency modulation RMS. 

 

6.4 Building the State Function by Data Mining Method 

The state parameter used in the case study is oil debris mass (ODM). This value is 

directly related to the spall size.  2 order ARIMA model was used to build the state function.  
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The ODM values at t-1 and t-2 were used to predict the ODM value at time t.  

 

In order to define the state transition function using the ODM data, various ARIMA models 

were fitted into the ODM data of experiment 6.  The best fitted ARIMA model was:  

ARIMA (1, 1, 1).   

 

Let:   

xk = true ODM value at time k; 

xkˆ  = predicted ODM value at time k.   

 

The state transition function f k  was defined as: 

 

( )1 2 1 10.0165 1.1415 0.415 0.1032 ˆk k k k k kx x x x x ω− − − −
= + − − − +  

 

6.5 Building the Observation Function by Data Mining Method 

Double exponential Smoothing was used to build the relationship between state 

parameter ODM and observation parameter HI.  The relationship between state parameter 

and observation parameter was defined as a linear function.  The model parameters of this 

linear function can be obtained by using this method. Using this method, the model parameter 

can be updated step-by-step by using the information of the former step.  This makes the 

prognosis more accurate and effective.   The observation function is defined just like the 

observation function in chapter 4: 
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( ) ( ) ( ) ( )y t k t x t tν= × +  

 

k(t) is a time variable obtained by double exponential smoothing. 

 

6.6 Prognostics Results of First Case Study 

The ODM and HI data from experiments are shown in FIGURE 36 and FIGURE 37, 

respectively. 
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Figure 36. ODM and HI of experiment 5 

O
D

M
 

H
I 

Time 

Time 



 

 

 

95

ODM of Experiment 6

0
10
20
30
40
50
60
70
80
90

100
1 87 17
3

25
9

34
5

43
1

51
7

60
3

68
9

77
5

86
1

94
7

10
33

11
19

12
05

12
91

13
77

14
63

15
49

16
35

17
21

18
07

ODM

 

HI of Experiment 6

0

0.2

0.4

0.6

0.8

1

1.2

1 65 12
9

19
3

25
7

32
1

38
5

44
9

51
3

57
7

64
1

70
5

76
9

83
3

89
7

96
1

10
25

10
89

11
53

12
17

12
81

13
45

14
09

14
73

15
37

16
01

16
65

17
29

17
93

HI

 
 

Figure 37. ODM and HI of experiment 6 

 

 

 

The plot of actual ODM values against the predicted ODM values is shown in FIGURE 

38.  From FIGURE 38, it is obvious that the ARIMA (1, 1, 1) model is almost a perfect fit to 

the ODM data. 

 

O
D

M
 

H
I 

Time 

Time 



 

 

 

96

Time Plot of Actual Vs Forecast (Experiment 6)
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Figure 38. The actual ODM vs. the predicted ODM using ARIMA (1, 1, 1) model 

 

 

 

The measurement function kh  was defined using a double exponential smoothing 

model with α  = 0.05 to fit the relation between HI and ODM.  FIGURE 39 shows the plot 

of HI against ODM for experiment 6. 
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Figure 39. Plot of HI against ODM for experiment 6 

 

 

 

FIGURE 40 shows the predicted HI values using the double exponential smoothing 

model against the actual HI values.     
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Predicted HI vs. Actual HI
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Figure 40. Predicted HI values using double exponential model vs. the actual HI values 

 

 

 

Using the station transition function kf  and the measurement function kh  defined by 

the ODM and HI data from experiment 6, the particle filtering based l-step ahead RUL 

estimator was run on the data from experiment 5 using N = 2000 particles.  The predicted 

ODM values are shown in  

FIGURE 42.  To compute the RUL, the critical value λ  was set to be the level of 

ODM = 22 mg.  Updating the estimated PDF on the basis of the measurements collected 

very 100 temporal steps, the estimated mean RUL and corresponding 90% confidence 

intervals are shown in FIGURE 44.    
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Figure 41. The predicted ODM and the true ODM 
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Figure 42. The distribution of predicted ODM at different test points  
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The probability of the system is going to fail at future time point 5600 based on current 

measurement at time point 5050.  And the probability of remaining useful life less than 550 

is equal to this value.  The red line is the pre-specified threshold. 

 

 

 

 
 

Figure 43. Failure rate and remaining useful life distribution based on the predicted system 
degradation result 
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Figure 44. The predicted mean RUL and corresponding 90% confidence intervals using 
estimator updated with error measurement 
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Actually, the prediction results can be expressed by FIGURE 45. 

 

 

 

 
 

Figure 45. The PDF of RUL using estimator updated with error measurement 

 

 

 

Then make a comparison, the estimated mean RUL and corresponding 90% confidence 

intervals using the estimator without error measurement update are shown in FIGURE 46. 
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Figure 46. The predicted mean RUL and corresponding 90% confidence intervals using 
estimator updated without error measurement 

 

 

 

From FIGURE 44 and FIGURE 46, one can see that the l-step ahead RUL estimator 

updated with the error measurement gives a better performance. 

 

6.7 Prognostics Results of the Second Case Study 

In this case study, the data are also form the same test rig.  The difference between 

this case study and the former one is the Empirical Mode Decomposition (EMD) was applied 
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for the original vibration signal before HI was calculated.   

 

RMS was used as an example to show the improvement after EMD.  FIGURE 47 is 

the RMS feature with EMD.  After EMD, difference between normal status and fault status 

is more obvious and the fault feature can be identified easier.  

 

 
 
 
 

 
Figure 47. RMS feature with EMD 
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Also, Crest Factor and Kurtosis were also processed using EMD, FIGURE 48 and 

FIGURE 49 show the results.  

 
 
 
 
 

 
 

Figure 48. Crest factor feature with EMD 
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Figure 49. Kurtosis feature with EMD 

 

 

 

These three features were used to calculate a HI and the HI was used as the observation 

parameter in the prognosis.  FIGURE 50 shows the HI. 
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Figure 50. Health indicator 

 

 

 

The plot of actual ODM values against the predicted ODM values is shown in FIGURE 

51.   
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Figure 51. Actual ODM values against the predicted ODM 

 

 

 

Using the station transition function kf  and the measurement function kh  defined by 

the ODM and HI data from experiment 6, the particle filtering based l-step ahead RUL 

estimator was run on the data from experiment 5 using N = 2000 particles.  To compute the 

RUL, the critical value λ  was set to be the level of ODM = 130 mg.  The estimated mean 

RUL and corresponding 90% confidence intervals are shown in FIGURE 52. 
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Figure 52. The predicted mean RUL and corresponding 90% confidence intervals using 
estimator updated with error measurement 

 

 

 

6.8 Summary 

A particle filtering based gear prognostics method using a one-dimensional health 

index for spiral bevel gear subject to pitting failure mode was presented in this chapter.  The 

presented method effectively addresses the issues in applying particle filtering to mechanical 

component remaining useful life (RUL) prognostics by integrating several new components 

into particle filtering: (1) data mining based techniques to effectively define the degradation 
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state transition and measurement functions using a one-dimensional health index obtained by 

a whitening transform; (2) an unbiased l-step ahead RUL estimator updated with 

measurement errors.   

 

In addition, in the second spiral bevel gear case study, Empirical Mode Decomposition 

(EMD) was applied for processing original vibration signal.  The RMS feature with EMD 

and the RMS feature without EMD were compared and the result shows that using EMD 

makes fault feature easier to be detected.  After EMD processing, the feature during 

machine health status is stable and smooth and is sensitive to fault initiation.  . 

 

The presented prognostics method was validated using data from a spiral bevel gear 

case study.  The validation results have shown the effectiveness of the presented method. 
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7. CASE STUDY 3: HYBRID CERAMIC BEARING PROGNOSTICS 

 

7.1 Diagnostics, and Prognostics for Hybrid Ceramic Bearing 

Ceramic bearings are quickly replacing conventional steel ball bearings in various 

fields and applications because they exhibit a service life three times longer than that of steel 

bearings (Wang, et al., 2000; Ohta and Kobayashi, 1995).  There are two types of ceramic 

bearings:  hybrid ceramic bearings and full ceramic bearings.  Hybrid ceramic bearings 

have steel races and ceramic balls while full ceramic bearings have both ceramic balls and 

races. Different types of ceramics are used in ceramic bearings.  Silicon nitride Si3N4 and 

Zirconia ZrO2, are perhaps the most common ceramics used in ceramic bearings. However 

there are many other ceramics that would work well in bearing applications (Rhoads and 

Bashyam, 1994; Chao, et al., 1995; Niizeki, 2000). 

 

This chapter presents a methodology for hybrid ceramic bearing prognostics using 

particle filtering.  Data collected from real hybrid ceramic bearing run to failure are used to 

validate the presented prognostic methodology. 

 

7.2 Hybrid Ceramic Bearing Case Study Experimental Setup and Data Collection 

7.2.1 The Information of Hybrid Ceramic Bearing 

The hybrid ceramic bearings used in the test, RTF13 and RTF14. RTF13 and RTF14, 
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were ball bearings with stainless steel inner and outer races and ceramic balls.  The bearings 

were mounted on our test rig.  Two accelerometers were stunt mounted on the bearing 

housing in the direction perpendicular to the shaft.  The test bearing was mounted on our 

test rig and the rig was run at a speed of 1800 rpm (30 Hz) and was subjected to a radial load 

of 600 psi.  A sampling rate of 102.4 kHz was used for 2 seconds of data collection at each 

sampling point.  The data was collected every 5 minutes during the test.  For the first case, 

there were a total of 173 files with the length of 14.42 hours used for analysis.  For another 

case, there were a total of 804 files with the length of 67 hours used for analysis.  TABLE 

IV shows the tested bearings and their loading information. 

 

 

 

TABLE IV 

BRIEF OVERVIEW OF EXPERIMENTAL SETTING 

Name Type 
Pressure 

(psi) 

Speed 

(Hz) 

RTF13 Hybrid Ceramic Bearing 600 30 

RTF14 Hybrid Ceramic Bearing 600 31 
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TABLE V shows the hybrid bearings specification. 
 
 
 
 
 

TABLE V 

HYBRID BEARINGS SPECIFICATION 

Parameter Specification Parameter Specification 

Bearing Material Stainless Steel 440c ABEC/ISO Rating ABEC #3 / ISOP6 

Ball Material Ceramic SI3N4 Radial Play C3 

Inner Diameter (d) 25 m Lube Klubber L55 Grease

Outer Diameter (D) 52 m 
RPM Grease  
(x 1000 rpm) 

19 

Width (B1) 15 m 
RPM Oil  
(x 1000): 

22 

Enclosure Two Shields 
Dynamic Load 

(Kgf) 
1429 

Enclosure Material Stainless Steel 
Basic Load  

(Kgf) 
804 

Enclosure type Removable (S) 
Working 

Temperature Deg 
(c) 

121 

Retainer Material Stainless Steel 
Weight  

(g) 
110.32 

 

 

 

7.2.2 The Run to Failure Test Rig 

The bearing run to failure test was conducted in a customized bearing prognostics test 

rig as shown in FIGURE 53.  

 

The key features of the test rig include:  
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(1) It is driven by a 3-HP AC motor with a maximum speed up to 3600 rpm and 

variable speed controller, 

(2) It is equipped with a hydraulic dynamic loading system with a maximum radial     

load up to 4400 lbs or 19.64 kN,  

(3) An integrated loading and bearing housing that can be used for testing both ball 

and tapered roller bearings, 

(4) A support shaft with 2” main diameter balanced with 2 pillow blocks.   

 

 

 

 
 

Figure 53. Bearing prognostic test rig 

 
 
 
 
 

An automatic data acquisition system based on National Instruments’ CI 4462 board 
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and NI LabVIEW software was constructed for data collection purpose.  The automatic data 

acquisition system has the following features:  

(1) Maximum sampling rate up to 102.4 kHz,  

(2) Input simultaneous anti-aliasing filters, 

(3) Software-configurable AC/DC coupling and IEPE (Integrated Circuit 

Piezoelectric) conditioning,  

(4) Vibration analysis functions such as envelope analysis, cepstrum analysis, and so 

on for computing necessary condition indicators. 

 

The hybrid ceramic bearings used in the test were RTF13 and RTF14. RTF13 and 

RTF14 were ball bearings with stainless steel inner and outer races and ceramic balls.  

 

7.3 The One-Dimensional Health Index for Hybrid Ceramic Bearing 

The condition indicators we extracted are (Li et al. 2010):  

(1) RMS; 

(2) Kurtosis; 

(3) Crest Factor; 

(4) Shape Value; 

(5) Impulse Value; 

(6) PeakValue; 

(7) Kurtosis_H; 

(8) Kurtosis_L; 
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(9) Skewness_H; 

(10) Skewness_L; 

(11) Skewness; 

(12) AR_Energe.  

 

The rule applied to select the appropriate condition indicators to compose the HI to 

calculate the correlation values between these condition indicators and time.  There are three 

CIs: 

(1) RMS, 

(2) Peak Value,  

(3) Skewness  

chosen by using this method.  Then, the one-dimension HI method mentioned in Chapter 4 

was used to calculate the HI.  FIGURE 54 shows all calculated correlation values between 

the condition indicators with time horizon.  And FIGURE 55 shows the chosen condition 

indicators. 
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Figure 54. The correlation values between these condition indicators and time 
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Figure 55. The chosen condition indicators to compose HI 
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FIGURE 56 shows the generated HI. 

 

 

 

 
 

Figure 56. HI of hybrid ceramic bearing  

 

 

 

7.4 Prognostics Results 

Using the station transition function kf  and the measurement function kh  defined by 

Time 

H
I 
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the spall size and HI data from experiment 6, the particle filtering based l-step ahead RUL 

estimator was run on the data from experiment 5 using N = 2000 particles.  To compute the 

RUL, the critical value λ  was set to be the level of spall mass = 220 mg.   

 

The plot of actual spall size values against the predicted spall size values is shown in 

Figure 57.   

 

 

 
 

 
 

Figure 57. Actual spall size values against the predicted spall size 
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The estimated mean RUL and corresponding 90% confidence intervals are shown in 

Figure 58.    

 

 

 

 
 

Figure 58. The estimated mean RUL and corresponding 90% confidence intervals 

 
 
 
 
 

Time 

RU
L 



 

 

 

123

7.5 Summary 

A particle filtering based hybrid ceramic bearing prognostics method using a 

one-dimensional health index was presented in this chapter.  Data collected from real hybrid 

ceramic bearing run to failure are used to validate the presented prognostic methodology.  

Data mining based techniques were used to define the degradation state transition and 

measurement functions using a one-dimensional health index which is taken as the 

observation parameter.  An l-step ahead steel bearing fault progression and remaining useful 

life prediction were performed.  The 90% confidence interval became narrower as more 

information was obtained, providing a more accurate prediction.  The validation results have 

shown the effectiveness of the presented method. 
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8. CONCLUSIONS 

 

In this dissertation, an integrated machinery prognostic methodology based on particle 

filtering has been developed.  In the development of the proposed prognostic methodology 

in this research, three fundamental issues have been addressed by: 1) defining the state 

transition function using a data mining approach; (2) integrating an one-dimensional HI into 

particle filtering to define the measurement function; (3) developing an l-step ahead RUL 

estimator incorporated with a measure of the associated error.   The developed prognostic 

methodology has been validated using three sets of industrial case studies.  The first case 

study was about steel bearing prognosis and remaining useful life prediction.  The bearing 

fault data used in this research were spalled bearings run to failure test data with intermediate 

inspections.  The second case study was about spiral bevel gear prognosis and RUL 

prediction.  The spiral bevel gear case study data were collected in the NASA Glenn Spiral 

Bevel Gear Test Facility.  In the last case study, the ground truth data of hybrid ceramic 

bearings test by our group at UIC were used to validate the methodology.  

 

The results from the three case studies have shown the effectiveness of the developed 

integrated methodology.   

(1) An integrated prognostics methodology has been developed and illustrated by real 

engineering case studies; 

(2) The presented method effectively addresses the issues in applying particle filtering 
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to mechanical component remaining useful life (RUL) prognostics by integrating 

several new components into particle filtering； 

(3) The state transition function defined by applying a data mining approach can track 

the spall size propagation well.  It was also found that a data mining approach is 

much more efficient than applying Paris’ Law, which is widely used as the state 

transit function in other published research; 

(4) The predicted spall size propagation by integrating HI into particle filtering to 

define the measurement function matches much better than the predicted result by 

directly combining multiple condition indicators.   Also, by comparing the RUL 

predictions, the RUL prediction using one-dimensional HI approaches the true RUL 

faster and provides better long-term RUL prediction than that without using 

one-dimensional HI; 

(5) An l-step ahead state parameter prediction and RUL estimator by extending the 

projection of particles without changing their weights prove that the method still 

provides a satisfactory result in predicting how the system behaves.   

 

Specifically, the contributions of the dissertation are summarized as follows: 

(1) An integrated particle filtering algorithm was developed in which a 

one-dimensional HI was integrated into particle filtering to define the observation 

function.  The results have shown that using the one-dimensional HI gives better 

prognostic results than combining different condition indicators into one HI. 

(2) Instead of using Paris’ Law, a data mining algorithm was used to build the state 
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function. The results have shown that the state function models built by the data 

mining algorithm work effectively for describing the fault propagation.  

(3) Data mining based approaches were used to build the observation function.  The 

data mining based approaches use both the prediction information from the last step 

and observation data to determine the model parameters.  The results have shown 

that the data mining based methods work better than existing methods reported in 

the literature. 

(4) An l-step ahead state parameter prediction and RUL estimator was developed.  

Most of papers published just show one-step prediction. 

(5) The presented prognostics method has been validated using data from steel 

bearings, hybrid ceramic bearings and spiral bevel gears case studies.  Up to date, 

no results on spiral bevel gears and ceramic bearings prognosis and remaining 

useful life prediction using particle filtering based approaches have been reported 

in the literature.  In addition, the results on steel bearings prognostics using 

particle filtering algorithm are limited.  The results from the three case studies 

show that the developed integrated methodology works well in performing the 

system state tracking and remaining useful life prediction.  
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