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Summary

The purpose of this paper is to study the statistical relation between the price of oil ETFs

and the underlying benchmark crude oil price.

Results from this study show that the oil ETFs price and underlying crude oil price are

co-integrated in a nonlinear form. This finding is important and is consistent with the

widely-held view that the dynamic relationship between time series in economics and

financel is usually nonlinear. In applying tests for investigating the cointegration

relationship, the classic Engle-Granger two-step method, dynamic approach and the

nonlinear extension of cointegration have been used.

Granger Causality analysis suggests a two-way direction causal and feedback relationship

between oil ETFs and the underlying crude oil price. This study also pays attention to the

controversy whether its necessary to remove the unit root in series when testing

Granger-causality. Spectral analysis and impulse response function are used to conduct the

analysis. There is strong evidence that low frequency information has been discarded if

using transformed data in research.

Finally, the linear and nonlinear Error Correction Model (ECM) has been established to

estimate the interaction of oil ETFs and WTI, further to determine the lead and lag

position. In the long-term relationship, oil ETFs (especially DBO) takes the lead to

dominate the adjustment of price change to the long run equilibrium, while in the short

term, crude oil price takes the lead in response of the price change of previous day.

Oil ETFs usually consist of oil future contracts, and the futures contracts prices are

considered to provide information about future spot oil prices. Meanwhile, oil ETFs are

tracking the price and movement of the current oil price. This makes the relationship

between oil ETF and the underlying crude oil complex and interesting.

This paper studies the most popular oil ETF, United States Oil Fund (USO) and

PowerShares DB Oil Fund (DBO) in the US market and their benchmark, The West Texas

Intermediate (WTI) crude oil to investigate the equilibrium relationship between oil ETFs

and the underlying benchmark. The data series is on a daily basis, and covers from the
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launch date of oil ETF to March 31, 2012. Recursive residuals test and Stock-Watson test

were conducted to test for stability of data series, and a structural break point has been

detected over the whole period data. The breakpoint is around December 31, 2008, which

is at the financial crisis in 2008. Therefore, the following analysis is performed over three

data periods: the whole data period, sub-period(I) and sub-period(II), which are separated

by the breakpoint.
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Chapter 1. Introduction

1.1 Motivation

Crude oil is one of the most important and actively traded commodities in the world. The

demand for oil is closely related to global economic growth. Crude oil also can be an

important investment instrument for institutional and retail investors to diversify their

portfolios or hedge against market changes. However, direct investment in physical oil is

quite costly and not that practical. Oil Exchange Traded Funds offer investors an efficient

way to gain exposure to various oil products without actually owning the oil itself. Most of

these Oil ETFs have been designed to track crude oil price by investing in future contracts

on crude oil.

The first oil exchange-traded fund, the United States Oil Fund, was introduced on April

10th, 2006. Since then, the oil exchange-traded fund (ETF) became a new investment

instrument in financial market. Usually, the oil ETF invests in energy futures and other oil

related futures, designed to track the movement of a specified benchmark oil price.

The oil ETF is a quite new instrument in the market, and in the family of Commodity

ETFs. It is different from the traditional exchange-traded funds in asset holdings and

tracking strategy. There are few quantitative studies to investigate their equilibrium

relationship with the benchmark crude oil.

Most academic and empirical research on ETFs has been focused on the Index ETF,

efficiency and performance, in comparison to other investment products, such as hedge

funds and mutual funds. Furthermore, plenty of research has been done on the spot and

future prices of crude oil, placing emphasis on the determinants of the spot price of crude

oil, such as supply and demand, storage cost, and other economic factors. Additional work

has been done whether or if the futures prices could be used as a predictor for spot oil

prices, and the relationship between oil futures prices and oil spot prices. Research

connecting the oil ETF and crude oil price, and concerning the dynamic relationship

between the price of ETF and the underlying index is limited.

The main objective of this paper is to perform quantitative research on the relation
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between oil ETF and the crude oil price by investigating their equilibrium relationship.

The ability of Oil ETFs to track the underlying Crude Oil Benchmark is also studied.

1.2 Crude Oil Benchmark

”Crude Oil, which is also known by the name Petroleum, is the most actively traded

Commodity in energy Markets. The Largest Market for Oil is located in London and New

York. There are a couple of popular benchmarks around the world that investors use for

tracking the Market Price of Oil. The most recognized and widely quoted oil index in

North America is known as The West Texas Intermediate or WTI. This benchmark reflects

the market price for a single barrel of light sweet crude oil, most of which is pumped and

refined in Texas and other locations along the Gulf Coast.” - from multiple sources

1.3 ETFs and Oil ETFs Overview

An Exchange-traded Fund (ETF) is a basket of securities, holding assets like stocks,

commodities (such as precious metals and futures) and bonds. An ETF is traded at stock

market like individual stocks. The most popular strategy of an ETF is to track a particular

index, including broad market indices, such as FTSE All-World index and the MSCI US

Broad Market index, major-indices, such as the S&P 500, Dow Jones Industrial Average

and some are tracking the country index and cap-size index.

ETFs became immediately popular after they were made available in the US in 1993, and

have become one of the fastest growing sectors in the financial market due to their

advantages and features. ETFs have several advantages compared to the traditional

mutual funds, they have lower operating expenses, can be traded more flexibly, as ETFs

can trade throughout the trading day and the mutual funds only can trade at the end of

trading day at their net asset value (NAV), and enjoy the tax-efficiency.

By the end of April 2012, the number of ETFs reached 1,175 in the United States with an

estimated $1,075 billion in assets under management.
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Figure 1.1 shows the explosive growth of the ETF sector in the United States regarding the

number of ETFs and value of ETF assets since 2000.

Figure 1.1

Assets (US$bn) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Difference

ETF Assets 65.6 84.6 102.3 150.3 227.7 299.4 406.8 580.7 497.1 705.5 891 940.4 1074.5 1008.9

# of ETFs 81 101 113 117 152 201 343 601 698 772 896 1098 1175 1094

*Source: ETF Landscape April 2012, BlackRock

ETFs can be divided into several types based on their structure, such as Index ETFs,

Commodity ETFs, Bond ETFs, Currency ETFs and Leveraged ETFs. Oil ETFs are in the

category of Commodity ETFs. Commodity ETFs invest in commodities, including energy,

precious metals, softs and agriculture. Oil ETFs track the underlying index in the same

way as other exchanged funds do. But the main difference between Oil ETFs and

traditional ETFs is that traditional ETFs usually hold a basket of securities which

comprise the underlying index, while Oil ETFs invest in the near term futures contracts of

corresponding oil prices. The very first ETF for Oil is The United States Oil Fund ETF,

which was launched on April 10, 2006.
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The following are the four most popular ETFs which track the performance of crude oil,

using the West Texas Intermediate (WTI) Benchmark:

Table 1.1 Oil ETFs Overview

ETF name
Trading

Symbol
Launch Date Market Cap

AverageDaily

Trading Volume

United States Oil Fund USO April 10th, 2006 $1,210.00M 6,176,730

PowerShares DB Oil Fund DBO January 5th, 2007 $720.06M 392,592

United States 12 Month Oil Fund USL December 5th, 2007 $101.14M 16,241

Teucrium WTI Crude Oil Fund CRUD February 23rd, 2011 $2.04M 536

*Source: seekingalpha.com on 1/22/2013

In this paper, we will focus our study on the USO and DBO oil ETFs, both of which track

the movement of the WTI, crude oil benchmark, and are actively traded with high market

caps.

1.4 Oil Futures

To understand the Oil ETF, one must understand the nature of oil futures contracts, since

Oil ETFs are mainly composed of oil futures in different maturity periods. Oil futures

contracts are agreements between buyers and sellers on the price of the oil upon delivery at

a future designated date. The prices of futures reflect the market expectation for the spot

oil price in the future. The unit of the oil futures contract is 1,000 barrels of oil. The New

York Mercantile Exchange (NYMEX) and the Intercontinental Exchange (ICE) are the

major markets for the trading of oil futures contracts.

The relationship between oil futures prices and spot oil price has drawn a lot of interest in

academics and empirical research. Oil futures prices are widely used as predictors of spot

oil prices and thought to be better than forecasts using economic models. However, Alquist

and Kilian (2010) looked at it in another light, they concluded that the price of crude oil

futures is not the most accurate predictor of the spot price of crude oil in practice.
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The remainder of this study is organized as follows: Chapter 2 provides a literature review

on ETF and energy futures research. Chapter 3 describes the data used for this study. The

statistical analysis begins in Chapter 4 with the testing of structural stability of the data.

Chapter 5 performs Granger Causality analysis. In Chapters 6 and 7, we develop models

using three samples for the whole periods and sub-periods of data. A non-linear

co-integration relationship is developed in Chapter 6 between ETFs and underlying crude

oil price, and error correction models are applied for estimation in Chapter 7. Chapter 8

presents the conclusion.
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Chapter 2. Literature Review

Prior to the year 2000, there was little research on ETFs. Laurent Deville (2006) noticed

that despite the increasing importance of ETF markets, literature on these topics was still

scarce, although research perspectives were promising. Research on ETFs considered

mainly of empirical studies and were mostly focused on ETF characteristics and

performance (i.e. return and tracking error) relative to other investment instruments, such

as mutual funds, Index funds and etc. To our knowledge, there is no cointegration study on

oil ETFs and crude oil. Following are some of the studies on ETFs and quantitative

research on oil spot and futures price.

2.1 Literature on ETF

Elton, Gruber, Comer and Li (2002) examined the performance of SPDR or Spiders1,

which is the most actively traded exchange-traded Index fund to replicate the S&P Index.

They found out that Spiders underperformed the S&P Index by 28 basis points and

low-cost index funds by 18 points over the 1993 1998 period. Gallagher and Segara (2006)

investigated the ability of classical ETFs to track underlying equity benchmarks on the

Australian Stock Exchange. They examined the tracking errors of ETFs on the Australian

stock exchange and compared the tracking error volatility between ETFs and equity index

funds operated off-market. They argued that ETFs are better at tracking their benchmarks

than off-market index funds, and concluded that classical ETFs in Australia provided

investors with returns commensurate with the underlying benchmark before costs. Patrick

Chu (2011) studied the magnitude of tracking error2 and the determinants of tracking

errors using the daily figures of the ETFs traded in the Hong Kong (HK) stock market. He

found out that the tracking errors for ETFs traded in HK stock exchange are

comparatively higher than those documented in US and Australia. Shin and Soydemir

(2011) estimate tracking errors and relative performance of 26 ETFs over their benchmark

indexes. They found that tracking errors are significantly different from zero and display

1SPDR is an exchange-traded fund to track the S&P 500 index, also known as Spiders. The symbol on

NYSE is ’SPY’. It is one of the largest ETFs in the world.
2tracking error measures the divergence between a ETF and benchmark
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persistence. They also examined the factors affecting tracking errors, such as expense ratio,

dividends, exchange rate and spreads of trading prices and found out that the main factor

driving tracking errors is the change in the exchange rate.

Gastineau (2004) compared the benchmark index ETFs to indexed mutual funds by

investigating the difference in returns between the iShares Russell 2000 ETFs and Vanguard

Small Cap Index Fund over 1994 to 2002. The results show that ETFs underperform their

corresponding mutual fund. Kostovetsky (2003) developed a simple one-period model to

examine the major differences between ETFs and index funds. The key areas of difference

were management fees, share-holder transaction fees, taxation efficiency, as well as other

qualitative differences. All these features are attractive to more active larger investors.

Murdock and Richie (2008) checked the correlation between the oil ETF USO and crude oil

futures contracts to determine if USO could be an effective hedging instrument against oil

price. They found that the spread of USO and crude oil futures deviate more during

periods of contango.

2.2 Literature on Oil Spot and Futures Market

P. Silvapulle and I. A. Moosa (1999) used the Baek-Brock nonparametric test3 to detect

the presence of nonlinear causal relations between spot and futures crude oil prices, and

mentioned the nonlinear relation is mainly due to transaction cost functions, marerket

noises, etc. They concluded that the feedback between spot and futures market was

bidirectional, and that both spot and futures markets react to market information

simultaneously.

Westgaard, Estenstad, Seim and Frydenberg (2011) investigated the co-integration

relationship between gas oil futures and Brent crude oil futures prices. Daily data was used

for five different futures price with maturity of one, two, three, six and twelve months,

covering the period from 1994 to 2009. Pair-wise data for different maturity periods were

tested for co-integration using the Engle-Granger methodology and Johansen approach. A

3Proposed by Baek-Brock in 1992. It is designed to test for nonlinear causal relations by using concept

of correlation integral.
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co-integration relationship was found for 1 and 2 month contracts over the data period.

But no co-integration existed in sub-periods from 2002 to 2009 for all pair-wise data series

with five different contracts length. The author explained that the result for the sub-period

was mainly due to the market volatility during the period, caused by certain events such as

hurricane Katrina, the economic boom and the financial crises.

Bekiros and Diks (2008) examined the linear and nonlinear causality relationship between

daily spot and futures prices for contract lengths of one, two, three and four months of

WTI crude oil. They split the data into two sample periods of 10/21/1991 to 10/29/1999

and 11/1/1999 to 10/30/2007. The results showed that Granger causality between spot

and futures prices in both periods is in bi-direction. Moreover, if account for the nonlinear

effects, the leads or lags of spot and futures in crude oil market changes over time.

Alquist and Kilian (2010) concluded that the price of crude oil futures tends to be less

accurate in predicting the spot price of crude oil. They used the data from two countries,

the United States and Saudi Arabia to build a general equilibrium model. The

futures-based forecast (based on oil futures and oil futures spread) and the no-change

forecast, which was estimated under a loss function, were made over 5 periods from 1

month to 12 months on oil prices in spot and future markets. The most robust finding was

that the no-change forecast performs better than futures-based forecast in predicting the

spot price of crude oil.
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Chapter 3. Data

The data for this study is comprised of the daily closing prices of two ETFs - the United

States Oil Fund (USO), the Deutsche Bank’s PowerShares DB Oil Fund(DBO)which track

the price of oil the light, sweet crude oil benchmark WTI. The data series for USO and

DBO are the daily closing prices downloaded from finance.yahoo.com, and the daily crude

oil price / per barrel for WTI are obtained from the U.S. Energy Administration website.

The USO Fund is the first crude oil based fund launched on April 10, 2006 at a price of

$67.84 / share. The fund is designed to track the movement of WTI. The USO portfolio

consists of crude oil futures, other oil related futures, and some short-term US Treasury

Securities. The principle mechanism of USO tracking WTI is the percentage change of the

net asset value (NAV) on a daily basis to reflect the daily price / barrel change in the spot

price of crude oil WTI.

Another popular oil ETF is the DBO Fund. The fund is introduced by Deutsche Bank as:”

The fund is designed to track the market performance of crude oil, which it achieves by

following the performance of a benchmark known as the Deutsche Bank Liquid Commodity

Oil Index. This index is comprised of light sweet crude oil futures contracts as well as

investments made in highly liquid short-term financial instruments such as 3 month United

States Treasury Bills. These ETF Shares first began trading on the New York Stock

Exchange on January 5th, 2007”.

WTI light, sweet crude oil is the benchmark for crude oil price in the US. Another primary

US benchmark for oil price is the prices of Brent crude from the North Sea. There are

some other important oil benchmarks, including the Dubai Crude and the OPEC Reference

Basket.

The sample period of USO and DBO is different with respect to the launch date of the

ETF. The sample period for the USO data set is from April 12, 2006 to March 31, 2012. It

includes 1,501 observations. The sample period for the DBO data set is from January 5,

2007 to March 31, 2012 with 1,319 observations. In addition the corresponding ranges of

WTI are used to match the sample periods for USO and DBO.
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Table 1 gives the mean prices for the USO and DBO ETFs and the crude oil WTI

benchmark.

Table 3.1 Data Summary

Variable Obs. Start End Mean Std Dev. Max. Min. DF test

USO 1501 April 10, 2006 March 31, 2012 50.28 19.92 117.48 22.86 -1.034

DBO 1319 January 5, 2007 March 31, 2012 28.82 6.85 55.01 15.83 -0.589

WTI 1501 April 10, 2006 March 31, 2012 80.80 20.59 145.31 30.28 -0.004

A plot of the raw data in Figure 3.1 shows that USO, DBO and WTI tend to move

together at the beginning, and then deviate more and more gradually. The effects of the

financial crisis and recession in year 2008 are quite visible. The financial crisis in 2008 had

a big impact on the prices for USO, DBO and WTI, as all of them suffered a huge drop.

Figure 3.1 produced by using raw data series for price of USO, DBO & WTI Figure 3.1
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Figure 3.2 Gives the Monthly Return for Oil ETFs and Benchmark Figure 3.2
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Chapter 4. Structural Breakpoint

4.1 Structural Break

4.1.1 Testing for Structural Stability

We begin our analysis with the test for structural stability of data series for USO and DBO

ETF, and crude oil WTI benchmark. This step is the most important because the estimates

can be severely biased if the time series are indeed realizations of not a stable process.

Tests for structural stability are much discussed in the literature. Nyblom (1989) proposed

the sup-F test to detect possible changes in parameters. Brown, Durbin, and Evans (1975)

made an important contribution by assessing the constancy of regression coefficients,

calculating updated coefficient vectors as additional observations are added to the

regression. Stokes (1997) discussed thoroughly the Recursive Residuals (RR) procedure to

detect the locations of potential structural breaks in a series. For an Ordinary Least

Squares (OLS) procedure, the OLS residuals can be heteroscedastic and auto-correlated

even when the true errors are white noise. The Recursive Residuals procedure transforms

the OLS residuals, since they are not BLUE so that they do satisfy the OLS assumptions.

The technique begins with estimating OLS and then calculating updated coefficient vectors

as additional observations are added to the regression, while the recursive residuals satisfy

OLS properties, and are identically and independently distributed as normal with mean

and standard deviation σ, which we will denote as i.i.d.∼ N(0, σ).

Stokes(1997) mentioned that the cumulated sum of recursive residuals test (CUSUM),

cumulated sum of squared standardized recursive residuals test (CUSUMSQ) and the

Harvey-Collier(1977) test are the three most important summary tests for parameter

stability. CUSUM test and CUSUMSQ test were proposed by Brown, Durbin and Evans

(1975). If the break is not known, CUSUM and CUSUMSQ will be more appropriate.

Also, Quandt log-likelihood ratio test (QLR) is another important technique suggested by

Quandt(1960) to detect the unknown breakpoint.

12



Here, we will use CUSUM, CUSUMSQ and QLR test to perform the breakpoint analysis.

(i) CUSUM test computes: Γi =

∑i
j=K+1 ωj

σ̂
, i = K + 1 . . . T

ωj is the standardized recursive residual, σ̂2 is estimated variance of ωj.

If the series is stationary, E(Γi) = 0

(ii) CUSUMSQ based on Γ∗i =

∑i
j=K+1 ω

2
j∑T

j=K+1 ω
2
j

, i = K + 1 . . . T

ωj is the standardized recursive residual.

If the series is stationary, E(Γ∗i ) =
i−K
T −K

varies from 0 (i=K) to 1 (i=T)

(iii) Quandt log-likelihood ratio test involves the calculation of λi

λi = 0.5 ∗ i ∗ ln(σ2
1) + 0.5 ∗ (T − i) ∗ ln(σ2

2)− 0.5 ∗ T ∗ ln(σ2)

Where σ2
1, σ2

2, and σ2 are the variances of regressions fitted to the first i observations up to

the breakpoint, the last T-i observations after breakpoint and the whole T observations,

respectively.

If the series is stationary, λi will be close to 0. The minimum value for λi can be used to

determine the breakpoint.

The CUSUM test detects breaks in the model itself, while CUSUMSQ examines breaks in

the variance. The CUSUM test is particularly good at detecting systematic departure of

the coefficients that results in a systematic sign on the first step ahead forecast error. The

CUSUMSQ test is useful when the departure of the coefficients from constancy is

haphazard rather than systematic but that there involves a systematic change in the

accuracy of the estimated equation as observations are added. The plotting of Quandts

log-likelihood ratio (QLR) statistic is used to detect the single time-point at which there is

a discontinuous change from one constant set of regression parameters to another.

The advantage of these test statistics is that they can be graphed, and we can identify not

only their significance but also at what time point a possible break occurred.
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4.1.2 Break Point for Data

The recursive residuals plots in Figure 4.1, 4.2, 4.3 and Figure 4.4 below show the results of

CUSUM, CUSUMSQ and QLR test for price of USO & WTI and price of DBO & WTI to

examine the breakpoint in the data for the complete sample.

Plots in Figure 4.1 - 4.3 are based on the OLS model (4.1):

USOt = 1.007 ∗ USOt−1+ 0.1853 ∗ USOt−5 - 0.1949 ∗ USOt−6 - 0.1625 ∗WTIt−5 + 0.1625 ∗WTIt−6 (4.1)

(t=74.53) (3.33) (-3.55) (-4.76) (4.77)

Figure 4.1 CUSUM plot for USO & WTI

The CUSUM test statistics plotted in Figure 4.1 are almost inside the CUSUM confidence

bounds. But we noticed that during Apr. 1st 2008 to Aug. 31st 2008 (around n=450 to

n=600), it shows instability, although still within 99% confidence level, but out of the 95%

bound. The plot experienced a sudden change around n=600 to n=700, the corresponding

tie period is August 30, 2008 to January 23, 2009.

14



Figure 4.2 CUSUMSQ plot for USO & WTI

The CUSUMSQ plot clearly shows the instability as it breaks the upper confidence bound,

which suggests that there should be model instability at some time-points during time

period we study.

The maximum statistics moves away from the upper bound around n=680 to n=700, which

corresponds to the time period of December 23, 2008 to January 23, 2009.

Figure 4.3 QLR plot for USO & WTI
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The QLR shows that there is a dramatic drop from around n=575 to n=730, corresponding

to the time period July 8th, 2008 to March 9th, 2009, indicating that the coefficient shifts

during this period.

A further check of the USO and WTI prices in this period show that prices of USO

experienced a tremendous decrease from $117.48/share on July 14, 2008 to $22.86/share on

February 18, 2009, which represents a cumulative loss of 80.54% over 7 month and price of

WTI dropped 79.16% from $145.31/barrel on July 3, 2008 to $30.28/barrel on December

23, 2008. This suggests breaking the data series into two periods: April 12th, 2006 to

December 31, 2008 and January 2nd, 2009 to March 31, 2012.

Examining the data series for DBO and WTI:

Figure 4.4 CUSUM, CUSUMSQ and QLR plot for DBO & WTI
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Plots in Figure 4.4 are based on the OLS model (4.2):

DBOt = 0.8628 ∗DBOt−1+ 0.1304 ∗DBOt−4+ 0.0360 ∗WTIt−1 - 0.0350 ∗WTIt−5 (4.2)

(t=32.40) (4.95) (5.13) (-5.03)

The recursive residuals plots for DBO & WTI are very similar to those of USO & WTI.

CUSUM is almost within the confidence bound, CUSUMSQ goes outside of the upper

bound to indicate the coefficient shift. QLR experienced tremendous drop during July 2008

to March 2009. The price of DBO dropped from $55.01/share on July 14th, 2008 to

$15.83/share on February 18th, 2009. Again, the breakpoint would be set on December 31,

2008. The data series would then be truncated into two subsets for January 5th, 2007 to

December 31st, 2008 and January 5th, 2009 to March 31st, 2012.

The breakpoint at December 31, 2008 just dropped in the outbreak period of 2008 financial

crisis, and separated the full sample into two sub samples of pre-crisis and post-crisis.

Figure 4.5 shows the entire data series separated into two sub-periods by Dec. 31, 2008

Figure 4.5
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4.2 Stock-Watson Test

In previous section, a distinct break in volatility for data series USO, DBO and WTI has

been detected, which is located around December 31, 2008. The main focus of this section

is on whether the change of volatility pre and post the break point is associated with the

shocks or the structure.

Stock and Watson (2002) proposed a test using counter-factual Vector Auto-regression

(VAR) analysis to distinguish between changes in the coefficients or the changes in the

variance of a VAR model.

The two variables VAR model will be estimated in this study.

Suppose yt is a vector time series, yt =

 USOt

WTIt

, or yt =

 DBOt

WTIt

,

the VAR model for yt:

yt = Φ(B)yt−1 + at (4.3)

where V ar(at) = Σ, t = 1 . . . n

Denote τ the break point, the full sample can be separated into two periods: sub-sample

periods (1) when t ≤ τ , and sub-sample period (2) when t > τ .

The VAR model for each period has the form:

y1t = Φ1(B)y1,t−1 + a1t, V ar(a1t) = Σ1, t ≤ τ (4.4)

y2t = Φ2(B)y2,t−1 + a2t, V ar(a2t) = Σ2, t > τ (4.5)

When Φ1 = Φ2, there is no change in coefficient over the sub-periods. When Σ1 = Σ2, that

means the variance has not changed from sub-sample (1) to sub-sample (2). The purpose

of the Stock-Watson test is to check if Φ1 = Φ2 or Σ1 = Σ2 for equation (4.4) and (4.5).

The counter-factual procedure is to evaluate the equations (4.4) and (4.5), and obtain the

factual standard deviation for y1t and y2t, then allow the estimated Φ1(B) to replace Φ2(B)

18



in (4.5) to get the counter-factual standard deviation for y2t, and use Φ2(B) in (4.5) to

replace Φ1(B) in (4.4) to get the counter-factual standard deviation for y1t.

Define V ar(yit) = σ(Φ(i),Σj)
2 ≡ σij, i = 1, 2 and j = 1, 2

σ11 and σ22 are the variance for y1t and y2t that actually occurred in sub-sample period (I)

and (II), respectively. σ12 and σ21 represent the counter-factual variance which happened

that the coefficient and innovation variance come from different time periods.

σ12 = σ(Φ1,Σ2)
2 represents the counter-factual variance estimated by using Φ1(B) in

equation (4.4), and σ21 = σ(Φ2,Σ1)
2 represents a counterfactual variance produced by

using the combination of second period dynamics and first-period shocks.

If σ11 = σ12, σ21 = σ22, then there is no change in coefficient. If σ11 = σ21, σ12 = σ22,

that variance is stable over the two time periods. So the appropriate values to test are

| σ11 = σ21 |, | σ12 = σ22 | testing for coefficient shifts, | σ11 = σ12 |, | σ21 = σ22 | testing

for variance shifts.

The null hypothesis for test is | σij − σkl |= 0, i, j, k, l, equal to 1, 2 for no

coefficient shifts or variance shifts. The Bootstrapping technique will be used to produce

the critical value of | σij − σkl |= 0.

In our case, a VAR(16) model was estimated for USO & WTI, DBO & WTI in sub-period

(I) and sub-period (II). Different length of lags has been tried, and the lag length of 16 was

selected because the error term of the VAR model ati turns to be clean with such lags. The

results are summarized in Table 4.1.
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Let’s consider the results for DBO as an example to discuss the Stock-Watson test results.

In this case, yt =

(
DBOt

WTIt

)
, the factual variance for the first period is 19.14, for second

period 4.17, and the difference is 14.98, which is significant. The counterfactual variance

produced by combination of first period dynamics and second period shocks σ12 is 7.92,

and by second period dynamics and first period shocks σ21 10.70. The shock change for the

first period | σ11 − σ12 | is 11.23, for the second period | σ21 − σ22 | is 6.53. The changes in

two periods are both significant at 1% level. Then look at the structural change in two

periods: | σ11 − σ21 | = 8.44 for the first period, | σ12 − σ22 | = 3.75 for second period, both

of which are not significant. Therefore, we conclude that the volatility change in series

DBO by the break point is mainly attributed to the shocks or impulses.

In a similar way, we check the shock changes and structure changes during two periods for

USO and WTI, and the result indicates that it was an innovation change rather than the

coefficient change for USO, WTI as well to cause the volatility change for pre-crisis period

and post-crisis period by the breakpoint.

Figures 4.6 and 4.7 show the plots of factual and counterfactual data for Stock-Watson

Test. We compare the graphs in pairs vertically for structural change and horizontally for

shock change.

The following graphs confirm our prior statements that it was mainly change in the

variance, as shapes changed more if compared horizontally than vertically.
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Figure 4.6 Stock-Watson values for USO & WTI (raw data)

Figure 4.7 Stock-Watson values for DBO & WTI (raw data)
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4.3 Conclusion

The Recusive Residuals (RR) test has been used to test the structural stability for data

series USO, DBO and WTI. After finding evidence of structural break, we set the

breakpoint on the date of December 31, 2008. The Stock-Watson test indicates that the

volatility change in series for pre and post-crisis period by the breakpoint is mainly

attributed to innovation change (or shocks).

In the following sections, we will have our discussion based on the full sample and

sub-samples as follows:

Sample (I): Full Sample

for USO: 4/12/2006 3/31/2012

for DBO: 1/5/2007 3/31/2012

Sample (II): Sub-period (I) or pre-crisis period

for USO: 4/12/2006 - 12/31/2008

for DBO: 1/5/2007 12/31/2008

Sample (III): Sub-period (II) or post-crisis period

for both USO & DBO: 1/2/2009 3/31/2012
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Chapter 5. Granger Causality Analysis

In Chapter 4, we found out that there is a breakpoint in data series of USO, DBO and

WTI due to the financial crisis in 2008. From this chapter, we will investigate the causal

and equilibrium long-term relationship between two pairs of variables USO & WTI and

DBO & WTI (Chapter 5 & 6), and model the relationship by using Error Correction

Model (ECM) (Chapter 7).

The Granger-Causality test was proposed by Granger (1969) to assess the causality and

feedbacks between two related series. The basic idea of Granger Causality is that for series

xt and yt, if yt could be better predicted using the information of yt−i and xt−i,

(i = 1, 2, . . .) than just using yt−i alone, then we say variable X Granger-causes variable Y.

Granger (1969) suggested the Causality testing based on a bivariate VAR representation:

yt = α0 +
n∑

i=1

αiyt−i +
n∑

j=1

βjxt−j + ety (5.1)

xt = β0 +
n∑

i=1

αixt−i +
n∑

j=1

βjyt−j + etx (5.2)

Here yt represents the price of an ETF, xt is the price in crude oil price. xt−j and yt−j

contains information which is statistically significant to predict the value of yt and xt,

respectively. If βj 6= 0, that means xt and yt will be helpful in estimating yt in (5.1) and xt

in (5.2), respectively. In other words, if βj 6= 0, the variance of et produced by (5.1) and

(5.2) will be significantly lower than the var(et) produced when restricting βj = 0.

Testing for X Granger-causes Y is based on equation (5.1) and Y Granger-causes X on

(5.2).

The null hypothesis for Granger Causality F- test is

H0 : β1 = β2 = . . . = βn = 0 (for non-causality)

To test for Granger causality, we need to specify the lags of the VAR model first.
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5.1 Order Selection for VAR Model

VAR model for USO & WTI and DBO & WTI: G11(B) G12(B)

G21(B) G22(B)

 USOt

WTIt

 =

 e1t

e2t

 (5.3)

 D11(B) D12(B)

D21(B) D22(B)

 DBOt

WTIt

 =

 u1t

u2t

 (5.4)

B is the backshift operator. Lag selection for the VAR (5.3) and (5.4) is tested by AIC,

BIC and HQ, and the testing results are presented in Appendix A. Table 5.1 summarizes

the lag selection results by using different criteria.

Since the orders selected by different criteria are not even close, we would prefer long lags

to short lags. The reason is that the data used in this study is on a daily basis, and there is

a unit root existed in the raw data series. Therefore, we will select the 16 lags for VAR

model (5.3) and (5.4) over three sample periods according to the lag selection result of AIC.

Also, inspection of the residual cross correlation function(CCF) matrix for VAR models of

USO & WTI and DBO & WTI over three samples with 2 lags, 3 lags, 6 lags and 16 lags

shows VAR order of 16th is appropriate. When use short lags, at the 12th to 16th order

VAR, there are still spikes in the cross correlations for the residuals. If use order of 16, the

significant autocorrelation and cross correlation have been removed in residual.
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5.2 Results of Granger Causality Test

Table 5.2 reports the F-statistics and the significance of the Granger Causality test for

ETFs USO & DBO and the underlying crude oil price WTI. The results suggest that the

price of ETFs and the price of WTI are inter-related. In sample (1), all the F-test statistics

are significant at 1% level for ETFs USOt and DBOt Granger cause WTIt and WTIt

causes USOt and DBOt. In sample (2), the situations are similar, only the effect of DBO

to Granger cause in the WTIt is significant at 5% level. But in sample (3), there is an

interesting result for both USOt and DBOt. The significance of the F test for WTIt

Granger-Causality of USOt is at 10% level and DBOt 5%. Seems the causality relationship

for WTIt mapping to oil ETFs is not as strong as in full sample and pre-crisis sample. As

we know, the price of USO and DBO are tracking the performance of WTI, so the price of

WTI should have impact on the price of ETFs. The sample period in sample (3) is just

during the time post the 2008 financial crisis, when the market was highly volatile and

unpredictable, which weakens the impact of crude oil on the price of ETFs.

The results indicate that the feedbacks between ETFs and WTI are not only from WTI to

ETFs, but also from ETFs to WTI, the mappings are bi-directional. This result is in

keeping with our original thought because oil ETFs are tracking the performance of WTI,

meanwhile the oil futures consisted in ETFs could be a predictor to WTI. In Chapter 6 &

7, we will investigate more in equilibrium relationship and figure out the lead and lag

position in oil ETFs and WTI.

Before doing that, we will discuss an argument regarding whether the non-stationary series

could be involved in testing the Granger-causality.
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5.3 Controversy regarding Stationary of Series

There is a controversy regarding if it is necessary to use transformed data when the unit

root existed, as non-stationarity may cause bias in result.

Granger (1969) mentioned that the assumption in the Granger-causality test is that the

series involved are stationary. The reason of the requirement of stationarity is that in the

case of non-stationary, the variance of et in (5.1) and (5.2) is not defined, therefore the

existence of causality might change over time as well.

Sims, Stock and Watson (1990) showed by using the example of a vector auto-regression

model that it is not necessary to transform the series to be stationary, since residuals can

be made white, the Granger tests will still ”be asymptotically valid, and which will have

nonstandard limiting distributions”. Sims worked on transformed and untransformed

models to compare the results, and concluded ”the common practice of attempting to

transform models to stationary form by difference or cointegration operators whenever it

appears likely that the data are integrated is in many cases unnecessary.”

Stokes and McDonald (2013) investigated a VAR based Granger causal relationship among

monetary policy, mortgage rates and the housing bubble, and tested the effect of the

various transformations on the series. Their findings suggested that low frequency

information is removed by the differencing transformation.

We will use the spectral analysis and impulse response function with the data

untransformed and transformed (by difference) in this study to compare the results.

5.3.1 Spectral Analysis

The spectrum is the distribution of variance of the series in a frequency domain. In the

frequency domain, we study the variance of the series as a function of frequency. The

spectrum graphs the variance contributed at frequency fj, and the figure of variance

plotted against fj indicates which frequencies are the most important to the variability of

the time series.
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For spectra with level data for USO, DBO and WTI in three samples, we noticed that the

variance tends to be higher at the low frequencies than at the high frequencies. That

indicates the series contain low frequency information, which is non-stationary or

long-range dependence. Then we checked the spectrum with differenced data, and the low

frequency information disappeared. This finding suggests that using filtered data will also

remove or attenuate the low frequency information in series.

Figure 5.1 to Figure 5.3 graphs the spectra of series in level vs. in difference.

Figure 5.1 Spectra of series (level data vs. difference data) in Sample (I)
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Figure 5.2 Spectrums of series (level data vs. difference data) in Sample (II)

Figure 5.2 Spectrums of series (level data vs. difference data) in Sample (III)
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5.3.2 Impulse Response Results

The VAR form of (5.3) and (5.4) can be transformed to a vector moving average form

(VMA) to estimate the impulse response in the shocks, and VMA allows the measurement

of shock going in two ways.

Provided G(B) =

 G11(B) G12(B)

G21(B) G22(B)

 and D(B) =

 D11(B) D12(B)

D21(B) D22(B)

 in (5.3) and

(5.4), respectively, are convertible, (5.3) (5.4) can be transformed in form of VMA model:

 USOt

WTIt

 = Θ(B)

 e1t

e2t

 (5.5)

 DBOt

WTIt

 = Ω(B)

 u1t

u2t

 (5.6)

where Θ(B) ≡ [G(B)]−1, Ω(B) ≡ [D(B)]−1.

Θ(B) and Ω(B) measures the dynamic responses of the price of USO and DBO or WTI to

a shock in the model. (5.5) and (5.6) can be expanded to:

 USOt

WTIt

 =

 θ11(B) θ12(B)

θ21(B) θ22(B)

 e1t

e2t

 (5.7)

 DBOt

WTIt

 =

 ω11(B) ω12(B)

ω21(B) ω22(B)

 u1t

u2t

 (5.8)

In detail, θ12(B) and ω12(B) measures the effect of shocks in WTI on price of USO and

DBO, respectively. θ21(B) and ω21(B) measures the effect of shocks in USO and DBO on

price of WTI.

The VMA coefficients for (5.7) and (5.8) are provided in Appendix B(1). The lags with

highlight indicate the maximum magnitude of shock effect.
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The Monte Carlo Integration in RATS was applied to estimate a 95% confidence interval of

the point values that are generated by impulse. Figture 5.4 is based on the model (5.7) and

(5.8) for lag of 16 to show the effects of shocks for level data of USO & WTI and DBO &

WTI over three sample period. The impulses on diagonal are the effects of shocks of oil

ETFs and WTI on itself. Those on off-diagonal are shocks of USO or DBO on WTI or

WTI on USO or DBO. For all the samples, the effects of shocks of oil ETFs on WTI

(θ21(B) and ω21(B)) are positive and significant. Now look at the change of price of WTI

on USO and DBO (θ12(B) and ω12(B)), it varies around positive and negative. Anyway, all

of the effects of shocks are significant.

In term of the transformed data, the VMA form of the model can be written as:

 DUSOt

DWTIt

 =

 θ̃11(B) θ̃12(B)

θ̃21(B) θ̃22(B)

 ẽ1t

ẽ2t

 (5.9)

 DDBOt

DWTIt

 =

 ω̃11(B) ω̃12(B)

ω̃21(B) ω̃22(B)

 ũ1t

ũ2t

 (5.10)

The VMA coefficients for (5.9) and (5.10) are provided in Appendix B(2). Figture 5.5 is

based on the first difference data of USO & WTI and DBO & WTI for three samples. We

noticed that all the effects of shocks converged to zero. Compared to the results of level

data, Figture 5.5 indicates that vital information has been discarded by differencing. This

finding is consistent with the results from section 5.3.1. In section 5.3.1 of spectral analysis,

we concluded that the low frequency information has been removed when performing the

filter of differencing.

5.4 Conclusion

Based on result of spectral analysis and impulse response function by using transformed

and untransformed data, we found that the vital information (mainly low frequency) is

discarded if we filtered data in first difference. Therefore, we still use the level data to

perform Granger-causality test in this study.
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Chapter 6. Cointegration

6.1 Cointegration Theory

The concept of cointegration was introduced by Granger (1981). Originally, it is to solve

the problem of so-called ”spurious regression”. In macroeconomics, it has been a common

practice to estimate a model involving non-stationary variables by linear regression process

for a long time. The problem is that even if the result suggests there be a statistally

significant relationship between variables, there could be none existed due to the

non-stationary of series. So the relationship indicated by the result might be well spurious.

Granger’s solution to this problem is to develop the concept of cointegration.

Cointegration therefore describes whether or not two (or more) non-stationary series follow

the same long-run trends by an equilibrium relationship. Ender (2004) stated ”Equilibrium

theories involving non-stationary variables require the existence of a process of combination

of the variables that is stationary”. Cointegration often means that a linear combination of

individually unit-root non-stationary time series becomes a stationary and invertible series.

One of the most commonly employed procedures to test the existence of a co-integration

relationship is Engle and Granger two-step methodology.

Granger (1981) defined the concept of integration:

A time series xt is said to be integrated of order d, xt ∼ I(d), if (1−B)dxt is stationary

and invertible, where d > 0.

In a multivariate case, a vector xt is said to be cointegrated of order d, b, xt ∼ CI(d,b), if

(i) all components of xt are I(d); (ii) there exists a vector α(6= 0) so that zt = α′xt is

integrated of order I(d b), b > 0. The vector is called the cointegrating vector.

If interpreting α′xt = 0 as a long run equilibrium, cointegration implies that deviations

from equilibrium are stationary.

Since zt = α′xt is stationary, the l-step ahead forecast of zT+l at the forecast origin T

satisfies

36



zT (l) −→ E(zt) = uz, l→∞

This also implies that α′zT (l) −→ uz as l increases. Then the point forecasts of xt satisfy a

long-term stable constraint.

In the case of Oil ETF and Crude Oil, we noticed that USO, DBO and WTI move

dependently with each other, so next, we will determine whether there exists an

equilibrium relationship between USO & WTI and DBO & WTI.

6.2 Linear Cointegration

6.2.1 Engle and Granger Two-Step Methodology

Enders (2004) illustrated two methodologies to test for cointegration. One is the

Engle-Granger testing procedure, which was initially proposed by Engle and Granger

(1987).This methodology seeks to determine whether the residuals of the equilibrium

relationship are stationary. The other is the Johansen (1988) and Stock-Watson (1988)

methodologies, which determine the rank of cointegration by using the maximum likelihood

estimator.

Engle and Granger (1987) suggested the following two-step estimator.

The first step is to determine the order of integration for each variable and generate the

error series {êt}. The Dickey-Fuller (DF) or augmented Dickey-Fuller (ADF) test can be

used to detect the number of unit roots in each variable. It is important because if the

variables are integrated of different orders, its possible to conclude that they are not

cointegrated. If the results indicate that two series {yt} and {zt} are I(1), the long-run

equilibrium relationship can be estimated using OLS:

yt = β0 + β1zt + et (6.1)

Then define

êt = yt − β̂0 − β̂1zt (6.2)

{êt} is the series of the estimated residuals of the long-run relationship. If the deviations

from long-run equilibrium are stationary, then {yt} and {zt} are co-integrated of order
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(1,1). We could perform the Dickey-Fuller test and Augmented Dickey-Fuller test on the

residuals by using the following two equations to test if α1 = 0

∆êt = α1êt−1 + εt (6.3)

∆êt = α1êt−1 +
∑

αi+1∆êt−i + εt (6.4)

According to Ender (2004): ”The only difference from the traditional ADF to (this version

of) the Engle-Granger test are the critical values. The critical values to be used here are no

longer the same provided by Dickey-Fuller, but instead provided by Engle and Yoo (1987).

This happens because the residuals above are not the actual error terms, but estimated

values from the long run equilibrium equation.”

The second step is to use the residuals {êt} to estimate the error-correction model, then

estimate the long-run equilibrium relationship. If {yt} and {zt} ∼ CI(1,1), the variables

have the error-correction form:

∆yt = α01 + αyêt−1 +
∑
i=1

α11(i)∆yt−i +
∑
i=1

α12(i)∆zt−i + εyt (6.5)

∆zt = α02 + αz êt−1 +
∑
i=1

α21(i)∆yt−i +
∑
i=1

α22(i)∆zt−i + εzt (6.6)

The residual εyt, εzt will be checked whether they are serially correlated. The model should

be re-estimated by using longer lag lengths if the residuals are serially correlated until they

yield serially uncorrelated errors. Then we may test the speed of adjustment parameters αy

and αz, and if ∆yt and ∆zt converge to the long-run equilibrium relation.

Enders (2004) mentioned that although the Engle-Granger procedure is convenient, there

are two important defects. First, the procedure requires placing one variable on the

left-hand side and using the others as regressors on the right-hand side. If three or more

variables are used since any of the variables can be selected as the left-hand side variable,

the result of the test will be different. Second, the coefficient is obtained by estimating a

regression using the residuals from another regression, so any error introduced in step 1 is

carried into step 2.
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6.2.2 Cointegration Testing Result

The variables USO, DBO and WTI for the whole period and sub-period were all tested

using the Augmented Dickey-Fuller test (ADF). The results are reported in Table 6.1. The

95% critical value for for ADF using 4 lags is -2.865. All the absolute values of t-statistics

for USO, DBO and WTI are below the critical value, so we cannot reject the null

hypothesis that there is a unit root in any of the series. To prove the series is I(1), we still

need to check if (1-B)xt (or ∆xt) is stationary. The results are also reported in Table 6.1.

There is no evidence indicating a unit root in the differenced series, as the t-statistics of

ADF test are all much greater than 95% critical value of 2.865. Therefore, the whole

period and sub-periods series of USO, DBO and WTI are I(1). Then the long-run

equilibrium regression can be estimated. The estimates of the long-run relationship for

USO & WTI, DBO & WTI with whole data and sub-period data:

(Sample I) USOt = 6.3163 + 0.5441 ∗WTIt + e1t (6.7)

(3.67) (26.34)

(Sample I) DBOt = 5.0661 + 0.2872 ∗WTIt + e2t (6.8)

(14.38) (69.60)

(Sample II) USOt = 5.8391 + 0.7527 ∗WTIt + e1t (6.9)

(9.82) (107.09)

(Sample II) DBOt = 22.2154 + 0.1761 ∗WTIt + e2t (6.10)

(56.27) (36.74)

(Sample III) USOt = 4.145 + 0.3340 ∗WTIt + e1t (6.11)

(19.68) (142.72)

(Sample III) DBOt = 11.4465 + 0.1844 ∗WTIt + e2t (6.12)

(55.71) (73.93)

where e1t and e2t are the residuals from the equilibrium regressions.

The question of the greatest interest is whether or not the residuals {ê1t} and {ê2t} are

stationary. If the residuals are I(0), then the variables are said to be co-integrated of order

(1,1).
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The Associated t-statistic for ∆ê1t and ∆ê2t are reported in Table 6.2. The plots in Figure

6.2 are of scatter plot of residuals {ê1t} and {ê2t} for full samples and subsamples.

Table 6.2 The Associated t-statistic for ∆ê

Sample (I) Sample (II) Sample (III)

4/12/2006 - 3/31/2012 4/12/2006 - 12/31/2008 1/2/2009 - 3/31/2012

∆ê1t No Lags -0.754 -2.676 -3.548

for USOt 4 Lags -0.771 -2.334 -3.066

1/5/2007 - 3/31/2012 1/5/2007 - 12/31/2008 1/2/2009 - 3/31/2012

∆ê2t No Lags -1.668 -3.907 -2.912

for DBOt 4 Lags -0.963 -2.149 -2.793

Figure 6.1 Scatter Plot of Residuals

The null hypothesis is that there is a unit root in residuals. Here, the critical value from an

ordinary Dickey-Fuller table might not be appropriate to test whether the residual series is

stationary. The reason is that the {êt} sequence is generated from the regression

yt = β0 + β1zt + et, and we do not know the actual error et, only the estimate of the error

êt. Only if β0 and β1 were known in advance and used to construct the true {êt}, the
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Dickey-Fuller test can be used. Engle and Yoo (1987) provided a table of critical values for

Engle-Granger cointegration test. To test for cointegration between two variables, the

critical value of DF test at the 5 percent significance level is 3.35, at 1 percent level is 4.00,

and critical value for ADF at 5% is 3.25, 1% 3.78.

Obviously, based on the Engle and Granger methodology of cointegration testing, variable

USO and WTI for the whole period from 4/12/2006 to 3/31/2012 are not cointegrated at

any significance level. DF and ADF statistics -0.754 and -0.771 are less than the critical

values 3.35 and 3.25 at 5% level, respectively. It is the same for the variable DBO and

WTI from 1/5/2007 to 3/31/2012. DF statistics is -1.668, ADF statistics -0.963, which is

far below the DF critical value at 5% level 3.35, and ADF 3.25. So we cannot reject the

null of I(1) that residuals from the equilibrium regression are non-stationary.

For the sub-periods, the ADF test shows all variables are not co-integrated for sub-period I

and sub-period II. If using DF statistics, USO and WTI are cointegrated at the 5% level

for period of 1/2/2009 to 3/31/2012. Also, we noticed that the DF statistics for DBO and

WTI at period 1/7/2007 to 12/31/2008 is -3.907, which is greater than 5% level of 3.35

and close to 1% level of 4.00, implying that the linear relationship of DBO & WTI for this

period is quite strong. The difference in results for full sample and the subsamples is

mainly due to the structural break cross the series, and is consistent with previous

conclusions in section 3.

In general, by using Engle and Granger two-step methodology, under the null hypothesis,

{êt} is I(1), so that cointegration relationship is not found for the variable USO & WTI

and DBO & WTI in either whole period or sub-periods.

This result may give rise to an argument that the first step in Engle and Granger

methodology is just a simple regression model, so the estimates can be substantially biased

partly due to the serial correlation in residuals. Even if the results show that the residuals

from equation (6.1) have a unit root, it still may incorrectly assume the non-stationarity.

In the next section, we will discuss a dynamic model, which removes the serial correlation

from the residuals, and test the co-integration based on a linear dynamic model.
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6.3 Dynamic Approach to Cointegration

6.3.1 Auto-regression Distributed Lag Model

David F. Hendry (1999) suggested that we could try an autoregressive-distributed lag

model (6.13) to reduce the potential bias caused by auto-correlation in residuals if use a

simple regression model.

yt = β0 + β1zt + β2yt−1 + β3zt−1 + ut (6.13)

The linear dynamic model (6.13) can be rewritten in an equilibrium-correction form:

(i) subtract yt−1 in both sides:

∆yt = β0 − (1− β2)yt−1 + β1zt + β3zt−1 + ut (6.14)

(ii) add and subtract β1zt−1 in right side:

∆yt = β0 − (1− β2)yt−1 + β1zt − β1zt−1 + β1zt−1 + β3zt−1 + ut

= β0 − (1− β2)yt−1 + β1∆zt + (β1 + β3)zt−1 + ut

= β1∆zt − (1− β2)(yt−1 −
β0

1− β2
− β1 + β3

1− β2
zt−1) + ut

(6.15)

Let α0 =
β0

1− β2
, α1 =

β1 + β3
1− β2

, where β2 6= 1

(6.15) is the error-correction form for dynamic model (6.13). (yt−1 − α0 − α1zt−1) is the

lagged equilibrium error, which captures the deviations from long-run equilibrium. The

speed of adjustment toward the steady process is −(1− β2).

Therefore, the test for co-integration of (6.13) is to test whether the error correction term

(yt − α0 − α1zt) is a stationary process. If define vt = (yt − α0 − α1zt), the error correction

term from (6.15) can be represented as:

yt = α0 + α1zt + vt (6.16)

(6.16) transformed the co-integration test for a dynamic model in the form of a basic

regression model in (6.1). The cointegrating vector for (6.16) will be (1, −α1),

where α1 =
β1 + β3
1− β2
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6.3.2 Testing Results for Dynamic Model

(I) serial correlation in residuals The purpose of using a dynamic model(including lag

terms in a simple regression model) to test the co-integration relationship is to remove the

potential auto-correlation in residuals from simple regression model.

We applied the data to equation (6.13) for USO & WTI and DBO & WTI over three time

periods, and checked residuals ut to see if dynamic model will make any improvement to

reduce the serial correlation in residuals.

USOt = β10 + β11WTIt + β12USOt−1 + β13WTIt−1 + u1t (6.17)

DBOt = β20 + β21WTIt + β22DBOt−1 + β23WTIt−1 + u2t (6.18)

The residual autocorrelation function (acf) for regression model (6.1) and dynamic model

(6.13) for two pairs of data USO & WTI and DBO & WTI in three samples are plotted in

Figure 6.2 to Figure 6.5.

The grey areas in the graphs indicate the 95% confidence interval with mean of zero. The

acf of residuals from simple regression model show persistent correlation out of the 95%

confidence bound up to lag 36 for two pairs of data from sample (I) to sample (III), the

residuals are strongly auto-correlated. On the other hand, most of the plots of residual acf

from dynamic model are within the 95% confidence. That clearly shows that dynamic

model do help to remove the serial correlation in residuals. Therefore, if using the dynamic

model to test the co-integration relationship, the residual autocorrelation is no longer a

problem.
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(II) empirical test for cointegration

The estimates of coefficients for dynamic model (6.17) and (6.18) over three sample periods

are reported in Appendix D.

The error-correction form of (6.17) and (6.18) will be:

∆USOt = β11∆WTIt − (1− β12)[USOt−1 −
β10

1− β12
− β11 + β13

1− β12
∆WTIt−1] + u1t

∆DBOt = β21∆WTIt − (1− β22)[DBOt−1 −
β20

1− β22
− β21 + β23

1− β22
∆WTIt−1] + u2t

It is to test whether the error-correction term in (6.19) and (6.20) are stationary.

V1t = USOt−1 −
β10

1− β12
− β11 + β13

1− β12
∆WTIt−1 (6.19)

V2t = DBOt−1 −
β20

1− β22
− β21 + β23

1− β22
∆WTIt−1 (6.20)

If USO & WTI and DBO & WTI are cointegrated, the long-run equilibrium-correction term

V1t and V2t must be stationary. We still will use ADF testing for unit root in V1t and V2t.

Table 6.3 presents the Augmented Dickey-Fuller test results for V1t and V2t. We noticed

that all the t-stat for ADF test are not significant except for V2t in sample (II). So for V1t

in three samples and V2t in sample (I) and sample (III), no rejection of null hypothesis of

I(1), there is unit root existed in these samples, and no cointegration relationship in series.

The interesting point here is for V2t in sample (II). If we go back to compare the unit root

test results by using simple regression model in Table 6.2, the t-stat of ∆ê2t in sample (II)

for DF test is significant at 5% level. The results are quite consistent by using simple

regression model and dynamic model.
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Table 6.3 ADF test for error correction term

Sample (I) Sample (II) Sample (III)

4/12/2006 - 3/31/2012 4/12/2006 - 12/31/2008 1/2/2009 - 3/31/2012

V1t DF -1.623 -2.532 -2.487

1/5/2007 - 3/31/2012 1/5/2007 - 12/31/2008 1/2/2009 - 3/31/2012

V2t DF -1.296 -3.937 -2.604

*p < 0.1, **p < 0.05, ***p < 0.01

The test results for co-integration based on a linear dynamic model show no evidence of

linear cointegration in most of the samples.

After removing autocorrelation to avoid bias caused by spurious regression, there is still no

presence of linear cointegration relationship in series USO & WTI and DBO & WTI.

But the daily price of USO and DBO tracks the performance of WTI, and oil ETFs consist

of oil futures contract, we believe there must be some potential relation between the price

of ETFs and the underlying crude oil price of WTI.

In next section, we will investigate the non-linear relationship in prices of USO and DBO

with WTI.

6.4 Non-linear Cointegration Relationship

6.4.1 Non-linear Cointegration Generalization

In Engle-Granger methodology, cointegration refers to a linear combination of

non-stationary variables zt = xtAyt that is stationary. Actually, in many macroeconomic

and financial situations, a linear relationship is not found in non-stationary contexts, but it

is possible that a nonlinear long-run equilibrium exists among the integrated variables,

even if the variables are not linearly cointegrated.

Escanciano and Escribano (2011) defined nonlinear co-integration as if two or more series

are of extended memory, but a nonlinear transformation of them is short memory, then the
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series are said to be nonlinearly co-integrated. The transformation also could be case of

taking difference, but the thing is the vital information can be removed if differencing.

Granger (1991) proposed generalizations extended to nonlinear co-integration. The first

generalization is that nonlinear transformation of the time series that will be co-integrated

in g(x) and h(y), and the linear combination of nonlinearly transformed variables

zt = g(x)− Ah(y) is short memory in mean.

Here Granger (1991) also defined the variable that is short memory / long memory in

mean. Given information It at time t, if the conditional mean of a variable x at time t+ h,

E(xt+h|It) converges to a constant, when h→∞, then we say the variable x is short

memory in mean (SMM). If E(xt+h|It) depends on It for all h, variable x is long memory in

mean (LMM). In long memory series, the shocks have persistent effects.

A second generalization is using time-varying parameters, and the error-correction model

equations are in form of:

∆xt = ρt(t)zt−1 + lags∆xt,∆yt + residual

ρ1(t) is the speed of adjustment parameter that is allowed to change over time.

Michael, Nobay and Peel(1997) used nonlinear error-correction in the residuals from linear

cointegration to capture the deviations from purchasing power parity (PPP). The nonlinear

adjustment process was characterized in terms of an exponential smooth transition

autoregressive (ESTAR) model, and concluded that The failure to find co-integration on

the basis of a linear model does not necessarily invalidate long-run PPP.

6.4.2 ACE Algorithm

Granger and Hallman (1991) suggested that two series are not cointegrated linearly, but if

there exists a nonlinear attractor, it can be viewed as a nonlinear co-integration. In the

linear case, if xt, yt are I(1) and there exists a linear combination zt = xt − Ayt which is

I(0), the line x = Ay can be thought of an attractor. In the nonlinear case, if xt, yt are not

linearly cointegrated, but we have qt = g(xt)− h(yt) ∼ I(0), we define

A = (x, y : g(x) = h(y) or f(x, y) = 0), then A is a nonlinear attractor for xt and yt.
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Granger and Hallman (1991) showed that the ACE algorithm provides a practical

estimation to obtain the nonlinear attractor if there is no prior information about the

shape of a possible attractor.

The Alternating Conditional Expectations (ACE) algorithm was originally proposed by

Breiman and Friedman (1985). The ACE model can be written as:

Θ(y) = α0 +
∑k

j=1 αj(xj)

Where αj(.) is the unknown smooth function. The ACE algorithm maximize the

correlation between Θ(y) and
∑k

j=1 αj(xj), which is equivalent to minimizing the squared

error E{Θ(y)− α0 −
∑k

j=1 αj(xj)}2 subject to var{Θ(y)} = 1.

The procedure to estimate ACE algorithm includes four steps:

(i) Initialize to set Θ(y) =
y − ȳ√
var(y)

, and set αj(xj) as the regression of y on xj

(ii) Fit an additive model to Θ(y) to obtain new function α1(x1) . . . αk(xk)

(iii) Compute Θ̂(y) = E{
∑k

j=1 αj(xj)|y} and standardize the new Θ(y),

Θ(y) =
Θ̂(y)√
var(Θ̂(y))

(iv) Alternate by repeating (ii) and (iii) until E{Θ(y)− α0 −
∑k

j=1 αj(xj)}2 converges

6.4.3 Nonlinear Cointegration testing results

In section 6.2, we analyzed data by using Engle and Granger methodology to estimate the

linear cointegration relationship between series USO & WTI and DBO & WTI. Although

whole period and sub-period datasets of USO, DBO and WTI are I(1), the results

suggested there is no linear cointegration in these series for either the full period or

sub-periods. In this section, we are interested in finding out if there is any nonlinear

cointegration relationship in series.

According to Granger’s generalization of nonlinear co-integration, if the residual of
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transformed series x, y, qt = g(xt)− h(yt) ∼ I(0), then we say x and y are non-linearly

cointegrated. Figure 6.6 in Appendix D presents the graph of ACE transformations of

series g1(USOt) and h1(WTIt) in full data period from 4/12/2006 to 3/31/2012 and

sub-data periods from 4/12/2006 to 12/31/2008 and 1/2/2009 to 3/31/2012, respectively.

Similarly, Figure 6.7 in Appendix D shows the ACE transformations of the series

g2(DBOt) and h2(WTIt) from whole period 1/7/2007 to 3/31/2012 and sub-periods

1/7/2007 to 12/31/2008 and 1/2/2009 to 3/31/2012.

Almost all of the transformed series clearly show evidence of nonlinearity, except for series

DBO and WTI in sample period of 1/7/2007 to 12/31/2008. Here lines are almost straight

and suggest the linearity of the series. In section 6.2, the test for linear cointegration

between the series indicated that the linear relationship of DBO & WTI for period of

1/7/2007 to 12/31/2008 is quite strong, which is consistent with the result of ACE

transformation.

Table 6.1 compares the R2 for the linear model and ACE transformation. The ACE

transformation produces a better fit than linear model, as all the R2 from ACE

transformation is greater than that of from the estimated linear model of (6.7) (6.12),

which suggests that the nonlinear transformation is necessary.

Table 6.4 Comparison of R2 value for linear model and ACE Transformation

Sample (I) Sample (II) Sample (III)

4/12/2006 - 3/31/2012 4/12/2006 - 12/31/2008 1/2/2009 - 3/31/2012

R2
Linear Model 0.3160 0.9438 0.6231

ACE 0.9841 0.9968 0.8580

1/5/2007 - 3/31/2012 1/5/2007 - 12/31/2008 1/2/2009 - 3/31/2012

R2
Linear Model 0.7861 0.976 0.8701

ACE 0.9762 0.9936 0.969

Table 6.5 shows the DF statistics in the three samples for

q1t = g(USOt)− h(WTIt)

q2t = g(DBOt)− h(WTIt)
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Table 6.5 DF test statistics for q1t and q2t

Sample (I) Sample (II) Sample (III)

4/12/2006 - 3/31/2012 4/12/2006 - 12/31/2008 1/2/2009 - 3/31/2012

q1t DF -3.550*** -4.861*** -5.448***

1/5/2007 - 3/31/2012 1/5/2007 - 12/31/2008 1/2/2009 - 3/31/2012

q2t DF -4.797*** -9.061*** -4.638***

*p < 0.1, **p < 0.05, ***p < 0.01

Critical Values for DF test at 1% is -2.569. All the t- statistics are significant at 1% level,

suggesting that the null hypothesis of long memory (ie. I(1)) for q1t and q2t should be

rejected. Therefore, we conclude that both

q1t = g(USOt)− h(WTIt)

q2t = g(DBOt)− h(WTIt)

 ∼ I(0)

at full period and sub periods. If we define A1 = (USO,WTI : g(USO) = h(WTI)) and

A2 = (DBO,WTI : g(DBO) = h(WTI)), A1 and A2 are the nonlinear attractor for series

USOt and WTIt, and DBOt and WTIt.

Previously, we concluded that the data series USO and WTI are not linearly cointegrated,

as the residuals of the linear combination of these two series comes out to be I(1). In this

section, we extend the concept of linear cointegration to generalization of nonlinear

cointegration, and transform the two series by use of the ACE algorithm. Results show

that q1t = g(USOt)− h(WTIt) is stationary, and a nonlinear attractor A1 was found as

well, which indicates the presence of a nonlinear cointegration relation in series USO and

WTI. Since similar situation exists for series DBO and WTI, we also obtain the nonlinear

attractor A2. Therefore, the data series USO & WTI and DBO & WTI are said to be

cointegrated nonlinearly, in both the whole date period and sub data periods.

In next chapter, we will use the error correction model to model the cointegration process.
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Chapter 7. Error Correction Model (ECM)

7.1 Error Correction Model (ECM)

The Error Correction Model (ECM) is used to model co-integrated processes by estimating

the short-term and long-term effects of X on Y between two cointegrated series {xi} and

{yj}, and the speed that Y returns to the equilibrium after a deviation occurred. Here, we

will estimate the ECM with ∆USO and ∆DBO by introducing both linear and nonlinear

models, and to see if the nonlinear model will be better off in the nonlinear context. To

estimate the nonlinear ECM model, we are going to use the MARS approach. The reason

for choosing MARS approach is because the MARS procedure is powerful to detect and fit

models in situations where there are distinct breaks in the model, such as a change of the

coefficients. As evidence showed in section 4, there is a distinct breakpoint in the data

series of USO, DBO and WTI. Both ECM models will be estimated for USO & WTI and

DBO & WTI over three time periods, which had been identified in section 4.1.2. Also, we

will use an alternative nonlinear approach GAM, to compare with MARS and linear model

OLS.

7.2 Linear Error Correction Model

With the ACE transformation of the series, we obtain the long-run equilibrium for USO &

WTI and DBO & WTI. Therefore, in the linear ECM model, we will include the nonlinear

cointegration residuals instead of the residuals of the linear combination of (yt − β̂zt).

The linear form of ECM for USO & WTI:

∆USOt = α01 + αusoq̂1,t−1 +
∑
i=1

α11(i)∆USOt−i +
∑
i=1

α12(i)∆WTIt−i + εyt (7.1)

∆WTIt = α02 + αwtiq̂1,t−1 +
∑
i=1

α21(i)∆USOt−i +
∑
i=1

α22(i)∆WTIt−i + εzt (7.2)

where q̂1,t−1 are the residuals of the ACE algorithm q1t = g(USOt)− h(WTIt) at the time

t-1, and αuso and αwti are the speed of adjustment.
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In equation (7.1) and (7.2), αuso and αwti are the parameters to adjust the change of USO

and WTI in response to the previous periods deviation from long-term equilibrium

g(USOt)− h(WTIt). Similarly, for DBO & WTI, the ECM in linear form:

∆DBOt = α01 + αdboq̂1,t−1 +
∑
i=1

α11(i)∆DBOt−i +
∑
i=1

α12(i)∆WTIt−i + εyt

∆WTIt = α02 + αwtiq̂1,t−1 +
∑
i=1

α21(i)∆DBOt−i +
∑
i=1

α22(i)∆WTIt−i + εzt

q̂2,t−1 are the residuals of q2t = g(DBOt)− h(WTIt)

7.3 Nonlinear Error Correction - MARS

The multivariate adaptive regression splines (MARS) approach is a procedure to describe

nonlinear relationship between the response variable and set of explanatory variables by

defining the spline knots, which are breakpoints or changes in a model coefficient. MARS

can be written in the form of

y = α + c1(x− τ∗)+ − c2(τ ∗ −x)+ + e

Where τ∗ is the knot point, (.)+ is the right truncated spline function which takes the

maximum value on max(0, (.)).

The MARS model also can identify the complex nonlinear interactions between variables.

An interaction model for y = f(x, z) can be written:

y = α + c1(x− τ1∗)+ − c2(τ1 ∗ −x)+ + c3(x− τ1∗)+(z − τ2∗)+ + e

when x > τ1∗ and z > τ2∗, y = α + c1(x− τ1∗)+ + c3(x− τ1∗)+(z − τ2∗)+ + e

when either x < τ1∗ or z < τ2∗, or both x < τ1∗, z < τ2∗, the interaction term

c3(x− τ1∗)+(z − τ2∗)+ equals 0.
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Friedman introduced the MARS approach in 1991. Stokes (2005) explained in detail how

to perform the MARS method by using B34S ProSeries Econometric System and SCA

WorkBench software. The MARS approach is such a powerful data mining methodology

that it has extensive and increasing applications in different fields, such as macro economy,

finance and social science.

In our case, to study the dynamic relationship between the prices of ETFs and the oil price

WTI, we will involve the same variables and same order of lags in the MARS ECM model

as those of the linear ECM models. For example, when estimating the ECM for USO &

WTI in equation (7.1), the left hand-side variable is ∆USOt, and right-hand side variables

include q̂1,t−1, lags in ∆USOt and lags in ∆WTIt, equation(7.2) the left hand-side variable

is ∆WTIt, and right-hand side variables q̂1,t−1, lags in ∆USOt and lags in ∆WTIt. Then

we can compare the results of ECM by using linear and nonlinear models.

7.4 Results of Error Correction Model

7.4.1 Linear Model

To estimate the ECM, we use one lag in the model for both linear and nonlinear ECM over

three sample periods, as the residuals appear to be clean with such number of lags. The

models are as follows:

∆USOt = α01 + αuso(1)q̂1,t−1 + α11(1)∆USOt− 1 + α12(1)∆WTIt−1 + εyt (7.3)

∆WTIt = α02 + αwti(1)q̂1,t−1 + α21(1)∆USOt− 1 + α22(1)∆WTIt−1 + εzt (7.4)

∆DBOt = α01 + αdbo(2)q̂2,t−1 + α11(2)∆DBOt− 1 + α12(2)∆WTIt−1 + εyt (7.5)

∆WTIt = α02 + αwti(2)q̂2,t−1 + α21(2)∆DBOt− 1 + α22(2)∆WTIt−1 + εzt (7.6)
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Table 7.3 shows the estimates of coefficients for linear ECM models with associated t-value

Table 7.3 Coefficients for Linear ECM models for sample (I) (II) (III)

Sample (I) (II) (III)

4/12/2006 - 3/31/2012 4/12/2006 - 12/31/2008 1/2/2009 - 3/31/2012

∆USOt ∆WTIt ∆USOt ∆WTIt ∆USOt ∆WTIt

α -0.0220 0.0345 -0.0574 -0.0305 0.0028 0.0841

(-0.69) (0.67) (-0.92) (-0.35) (0.10) (1.41)

qt−1 -0.0010 -0.0022 -0.0162 0.0034 -0.0519*** -0.0954***

(-0.44) (-0.62) (-0.97) (0.15) (-4.03) (-3.37)

∆USOt−1 -0.1042* 0.3116*** -0.1325 0.3414*** 0.0258 0.8092***

(-1.89) (3.52) (-1.54) (2.85) (0.29) (4.12)

∆WTIt−1 0.0381 -0.2082*** 0.0512 -0.2936*** -0.0149 -0.3161***

(1.12) (-3.79) (0.83) (-3.42) (-0.37) (-3.57)

1/5/2007 - 3/31/2012 1/5/2007 - 12/31/2008 1/2/2009 - 3/31/2012

∆DBOt ∆WTIt ∆DBOt ∆WTIt ∆DBOt ∆WTIt

α 0.0077 0.0477 -0.0123 -0.0259 0.0113 0.0717

(0.44) (0.83) (-0.35) (-0.23) (0.67) (1.19)

qt−1 -0.0128* -0.0262 -0.2338*** -0.1723 -0.0477*** -0.1675***

(-1.74) (-1.07) (-4.29) (-0.98) (-3.05) (-3.01)

∆DBOt−1 -0.1366** 0.4718*** -0.1663** 0.4030 0.1377* 0.8834***

(-2.50) (2.61) (-1.97) (1.47) (1.76) (3.17)

∆WTIt−1 0.0335** -0.1632*** 0.0228 -0.2039** -0.0380* -0.2063***

(2.03) (-2.98) (0.82) (-2.26) (-1.74) (-2.65)

*p < 0.1, **p < 0.05, ***p < 0.01
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The qt−1 is the deviation from previous periods equilibrium. The prices of USO and WTI

or DBO and WTI changed in response to the previous periods deviation by the speed of

adjustment parameters αuso or αdbo and αwti.

In long-term relationship for oil ETFs and WTI, both αuso and αdbo ∈ [−1, 0] for three

samples, which imply that price of USO and DBO converge or balance back to an

equilibrium in the long run. The speed of adjustment parameters αuso and αwti have low

t-values in sample (1) and sample (2), but statistically significant at 1% level in sample (3).

For price of DBO and WTI, αdbo and αwti are significant at 1% level in sample (3) as well.

The results indicate that the adjustment to long-term equilibrium is more notably for

period after 2008 financial crisis. One reasonable interpretation is that the higher market

volatility of post crisis caused the greater deviation from long-term equilibrium, so the

system reacted more actively to move back to the equilibrium. Also, for DBO and WTI,

αdbo is significant in sample (1) and (2), while αwti is insignificant, suggest DBO plays a

dominant role in interaction relationship to adjust the price in response to the equilibrium

error.

In short-term relationship, for USO and WTI, the coefficient of ∆USOt−1 in (7.4) is

greater than that of in (7.3) (α21 > α11), and similarly for coefficient of ∆WTIt−1,

α22 > α12 in all three samples. We also noticed that all α21 and α22 have a significant

t-statistics over three samples. This result suggests that the price change of WTI respond

more significantly to past changes in USO price and lags of its own. The t-statistics for

DBO and WTI also suggest that ∆WTI responds significantly to past changes in DBO

and its own price, especially in sample (1) and sample (3). In sample (2), seems ∆WTIt−1

is not a notable effect for the price change of WTI. Compared to ∆USO, ∆DBO responds

more significantly to the past price change of WTI and its own. But the coefficients in

(7.6) are still greater than that of in (7.5), α21 > α11 and α22 > α12 imply that ∆WTI

responses more strongly to the price change of previous period.

So from the linear error correction model, we can conclude:

1) For both USO & WTI and DBO & WTI, the adjustment to long-term equilibrium is

more notably for period after 2008 financial crisis. Learning from previous discussion, there

is a structure break in the entire data from 4/12/2006 to 3/31/2012, and the break point is
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exactly at the time of 2008 financial crisis. During that time, the crude oil price

experienced a dramatic drop, and it began to recover gradually since 2009. But for both

the crude oil market and stock market, it turned at to be more volatile and unpredictable

after the financial crisis due to economic uncertainties. Since the oil ETFs consists of listed

crude oil futures and other oil related futures, and tries to follow the performance of crude

oil, its reasonable to find that the price of oil ETFs and WTI in sample (3) (which is from

1/2/2009 3/31/2012, after the financial crisis period) has the different movement toward

equilibrium point when the market is greatly volatile.

2) In short-term, the price change of WTI responds more significantly than oil ETFs to its

own lags and the lags of oil ETFs. But in the long-term relationship, oil ETFs (especially

DBO) dominates the adjustment to the long run equilibrium.

3) The responses of ∆USO and ∆DBO to price change in lag of WTI and its own lags are

not the same. The difference in strategy of USO and DBO may explain why it happens.

For ETF USO, it consists of near-month futures contracts of crude oil. Usually the

maturity of the near-month futures contracts is less than 22 days. USO rolls over the

near-month futures contracts about two weeks in advance before its expiration into the

next month contracts. On the other hand, the investment of DBO on futures contracts is

not limited to the near-month futures, but comprises of a portfolio of futures contracts

with maturity from near-month to 13 month, to follow the Optimum Yield Crude oil

Index, in order to produce the best possible roll yield. The specific futures it holds are not

fully revealed for each month.

7.4.2 ECM with MARS model

As we already know, the MARS function uses the combination of truncated spline

functions to estimate the model, and the knots represent the potential thresholds in the

independent variables. When identifying a MARS model, we need to determine the

maximum number of basis functions or knots (set as nk) and the maximum number of

variables in each basis function (set as mi). In this study, we set nk=20, mi=1 with no

interactions, and then try mi=2.
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For the oil ETFs and crude oil price response to previous period changes, we get more

detail information by using MARS model. Table 7.4A listed the knots, coefficient and

associated t-value estimated for MARS model with left hand side variable ∆USOt and

∆WTIt in sample (1).

Table 7.4A MARS ECM for ∆USO & ∆WTI in sample (1)

(1)

4/12/2006 - 3/31/2012

∆USOt (left-hand variable) Slope ∆WTIt (left-hand variable) Slope

∆USO{1} < −3.58 0.672 ∆USO{1} > −3.58 0.374

(3.36) (3.92)

∆WTI{1} > −2.10 -7.931 ∆USO{1} > 1.34 -0.440

(-3.12) (-2.14)

∆WTI{1} > −5.12 0.211 ∆WTI{1} > 4.53 -5.904

(2.88) (-3.88)

∆WTI{1} > 4.13 5.284

(3.54)

∆WTI{1} > −2.10 -0.247

(-3.64)

MARS model estimated with 20 knots, 1 lag and no interaction term (mi=1)

The corresponding ECM in MARS models are:

∆USOt = 0.672 ∗ (−3.58−∆USOt−1)+ − 0.258 ∗ (∆WTIt−1 + 2.10)+

+ 0.211 ∗ (∆WTIt−1 + 5.12)+

(7.7)

∆WTIt = 0.374 ∗ (∆USOt−1 + 3.58)+ − 0.440 ∗ (∆USOt−1 − 1.34)+

− 5.904 ∗ (∆WTIt−1 − 4.53)+ + 5.284 ∗ (∆WTIt−1 − 4.13)+

− 0.247 ∗ (∆WTIt−1 + 2.10)+

(7.8)

Model (7.7) tells us when price change of WTI in previous day is less than -5.12, ∆WTIt−1

has no impact on ∆USOt, and if ∆WTIt−1 is between -2.10 and -5.12, the impact is

positive. If the price change of USO in previous day exceeds the threshold of -3.58, the

impact to ∆WTI in current period is positive. If ∆USOt−1 is less than -3.58, there is limit

59



influence to ∆WTIt. The findings from (7.7) and (7.8) says that the interaction between

price change in USO and WTI become weak when yesterdays price change in USO is less

than -3.58, and in WTI less than -5.12.

In linear ECM model, ∆WTIt−1 has no significant impact on USOt. But here estimated by

MARS model, we get more accurate information, even at what range of price changes in

WTI yesterday will affect the change in USO today. MARS model explain more in detail

the short-term dynamics between two variables.

Table 7.4B & 7.4C listed the knots, coefficient and associated t-value estimated for MARS

model with left hand side variable ∆USOt and ∆WTIt in sample (2) and (3).

Another finding by MARS model which is consistent with the linear ECM is that in sample

(1) and sample (2), the long-term cointegration relationship between USO and WTI is

insignificant, but statistically significant in sample (3).
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Table 7.4B MARS ECM for ∆USO & ∆WTI in sample (2)

(2)

4/12/2006 - 12/31/2008

∆USOt (left-hand variable) Slope ∆WTIt (left-hand variable) Slope

∆USO{1} < −3.58 0.805 ∆WTI{1} > 4.42 -0.775

(3.00) (-5.53)

∆WTI{1} > −2.62 -0.661

(-3.35)

∆WTI{1} > −4.57 0.580

(3.18)

MARS model estimated with 20 knots, 1 lag and no interaction term (mi=1)

Table 7.4C MARS ECM for ∆USO & ∆WTI in sample (3)

(3)

1/2/2009 - 3/31/2012

∆USOt (left-hand variable) Slope ∆WTIt (left-hand variable) Slope

q̂t{1} > 3.91 -0.424 ∆USO{1} > −1.52 1.128

(-3.47) (5.31)

q̂t{1} < 3.91 0.039 ∆WTI{1} > 3.34 1.043

(2.86) (3.45)

∆WTI{1} > −3.77 -0.490

(-5.05)

q̂t{1} > 3.91 -0.788

(-2.93)

q̂t{1} < 3.91 0.065

(2.17)

MARS model estimated with 20 knots, 1 lag and no interaction term (mi=1)
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In MARS ECM for DBO, the t-statistics for the deviation from the previous equilibrium

q̂t−1 is significant for both ∆DBO and ∆WTI over three samples. In linear model, the

long-term equilibrium is not significant for ∆WTI in sample (1) and (2). MARS finds the

significant knots for ∆WTI at 4.87, 6.25 and 3.90 in sample (1) and 1.56, -0.12, and -0.88

in sample (2). This is because MARS estimate the model flexibly at different threshold

levels, which is more advanced than the regular linear model. MARS also tells us in sample

(1) when the price change of WTI in previous day is less than -3.12, the impact of

∆WTIt−1 on ∆DBOt is negative.

Table 7.5A - C shows the result of MARS ECM for DBO & WTI in three samples.

Table 7.5A MARS ECM for ∆DBO & ∆WTI in sample (1)

(1)

1/5/2007 - 3/31/2012

∆DBOt (left-hand variable) Slope ∆WTIt (left-hand variable) Slope

∆DBO{1} > 1.51 -1.197 ∆WTI{1} > 4.65 -4.05

(-3.40) (-3.64)

∆DBO{1} < 1.51 0.777 ∆WTI{1} > 4.15 3.125

(2.89) (3.02)

∆DBO{1} > −1.65 0.742 q̂t{1} > 4.87 3.515

(2.73) (3.83)

∆WTI{1} < −3.12 -0.128 q̂t{1} > 6.25 -2.326

(-3.27) (-3.28)

q̂t{1} > 4.166 -0.465 q̂t{1} > 3.90 -1.702

(-4.47) (-3.60)

q̂t{1} > 5.756 -6.627

(-6.66)

q̂t{1} > 5.555 6.623

(6.42)

MARS model estimated with 20 knots, 1 lag and no interaction term (mi=1)
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Table 7.5B MARS ECM for ∆DBO & ∆WTI in sample (2)

(2)

4/12/2006 - 12/31/2008

∆DBOt (left-hand variable) Slope ∆WTIt (left-hand variable) Slope

∆DBO{1} < −1.65 1.393 ∆WTI{1} > 4.18 0.912

(3.63) (2.59)

∆DBO{1} > −1.25 -0.165 q̂t{1} > 1.555 2.885

(-3.10) (2.40)

∆WTI{1} > −4.69 1.617 q̂t{1} > −0.118 -1.019

-2.89 (-3.84)

∆WTI{1} > −4.29 -1.558 q̂t{1} < −0.879 -7.421

(-2.74) (-5.13)

q̂t{1} > −0.388 -0.364

(-5.77)

q̂t{1} < −0.388 -0.386

(-2.32)

MARS model estimated with 20 knots, 1 lag and no interaction term (mi=1)
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Table 7.5C MARS ECM for ∆DBO & ∆WTI in sample (3)

(3)

1/2/2009 - 3/31/2012

∆DBOt (left-hand variable) Slope ∆WTIt (left-hand variable) Slope

∆DBO{1} < 0.550 -0.295 ∆DBO{1} > −1.13 0.964

(-3.48) (3.53)

∆WTI{1} > 3.34 0.273 ∆DBO{1} < −1.13 -2.518

(3.42) (-3.13)

∆WTI{1} < 3.34 0.087 ∆WTI{1} < 1.520 0.307

(3.80) (3.41)

q̂t{1} > −1.246 -0.385 q̂t{1} > 1.899 -4.359

(-2.94) (-3.24)

q̂t{1} > 0.158 -13.34 q̂t{1} > −0.691 5.456

(-3.70) -2.95

q̂t{1} > 0.360 -3.12 q̂t{1} > −0.427 -2.591

(-3.42) (-2.28)

q̂t{1} > 0.201 16.189 q̂t{1} > −1.011 -2.968

(3.73) (-3.55)

MARS model estimated with 20 knots, 1 lag and no interaction term (mi=1)

More information will be obtained in response of price change in oil ETFs and WTI to the

change in previous period if MARS model including interaction terms (mi-2) are used.

Knots and Slopes for MARS (mi=2) are presented in Appendix E.

In next section, we will discuss an alternative nonlinear approach, the GAM (General

Additive Model), to further determine if MARS could outperform other nonlinear

alternative method.
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7.5 Alternative Nonlinear Approach - GAM

The basic idea of GAM (Generalized Additive Model) approach, proposed by Hastie and

Tibshirani (1986), is to use the additive predictor Σαj(xj) replacing linear predictor Σβjxj

in linear regression model, xj is the explanatory variable. The relax of the linear predictor

to be smooth function could improve the prediction accuracy in nonlinear case. The GAM

model can be written in form of conditional expectation:

E(y|x1, x2, . . . , xk) = α0 +
k∑

j=1

αj(xj)

where Eαj(xj) = 0, αj(.) are smooth function estimated by a scatterplot smoother.

The estimated coefficients for GAM model are presented in Appendix F. The results show

that the significance of αuso and αdbo has not changed compared to linear ECM model, but

e′e has been reduced in all equations over three samples.

Table 7.6 shows the RSS for linear and nonlinear (GAM and MARS) models.

All e′e from nonlinear model are less than that of linear model. Also note that

MARS(mi=1) produces a slightly lower e′e in 10 equations out of 12 than GAM, and

MARS(mi=2) gives a even lower e′e to all the other method. This indicates that MARS

model out performed the other methods.

(All computations in this study have been done with B34S version 8.13 and RATS 8.0)
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Chapter 8. Conclusion and Future Work

8.1 Conclusion

Crude oil is one of the most heavily traded commodities in the world market. The topic of

crude oil, crude oil futures and oil ETFs draws great interest from economists, financial

investors and researchers. Studies show the price of crude oil is impacted by the world

economy, and even political influence. It’s not easy to forecast the price of crude oil. Some

people think oil futures, which is an energy derivative product, could provide information

on prospective oil prices. The expansion of oil ETFs brings the investor more choices, to a

large extent, in energy markets. So new questions emerge: what is the relationship between

oil ETFs and the underlying crude oil price? Could oil ETFs be a source of information on

the crude oil price?

This paper investigated the performance of the most popular oil ETFs in the US market,

USO and DBO, and the underlying crude oil WTI, in conjunction with statistical analysis

to shed light upon the dynamic relationship between oil ETF USO and DBO with the

benchmark crude oil WTI. We used daily time series data on the price of USO in the

period of April 12, 2006 to March 31, 2012, DBO January 5, 2007 to March 31, 2012 and

the corresponding periods of the price of WTI to identify the co-integration relationship

between oil ETFs and WTI, estimating the linear and nonlinear ECM and further

examined the reaction behavior between these variables.

(I) nonlinear cointegration relationship between oil ETF and WTI

There are several important findings of this study. In light of the results, no matter what

the strategy employed for the oil ETFs and which asset holdings are in security basket, a

nonlinear co-integration relationship between oil ETFs and WTI has been detected. Our

findings show using an ACE model, the nonlinear long-run equilibrium was found. This

finding was based on the theory developed by Granger, who extends generalizations of

co-integration relationship to nonlinear contexts in 1991.

(II) The feedback between Oil ETF and WTI is bi-directional

Granger causality analysis was employed to test if the series of ETFs or WTI could be
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useful in forecasting the other. The result suggests the feedbacks in both directions are

strong and statistically significant, except for the series of USO & WTI in the period after

the financial crisis.

The Error Correction Model was estimated on the premise that a co-integration

relationship exists. Both linear and nonlinear ECM models were estimated in order to

compare two types of models and to test whether the nonlinear model will be better off

under the nonlinear contexts. Here, the MARS model was used for nonlinear estimation.

MARS ECM model provides more accurate information of the interaction of variables.

Another important finding is the interaction between ETFs and WTI in the period after

the financial crisis in late 2008 is different from that of the whole data period and period

before the financial crisis. The explanation of this is the impact of the global economic

turmoil during and after year 2008. The financial crisis in 2008 had a great impact on the

price of crude oil. During that time, the demand collapsed, which caused increase in

storage level, creating the price fluctuations in crude oil and oil futures.

The results of ECM estimation also suggest that the feedback between oil ETFs and WTI

is in two directions. As we know, the impact of oil ETFs on WTI stem from the nature of

the oil ETFs, which consist of oil futures contracts. So the price of oil ETFs exerts the

influence on the price of WTI through the oil futures. On the other hand, oil ETFs is

tracking the performance of WTI, thus, the impact of WTI on oil ETFs must exist.

(III) lead and lag position

This paper also proposes a comparatively accurate description of the dynamic relationship

between oil ETFs and WTI by using linear and nonlinear (MARS model) Error Correction

Model. Generally, in long-term relationship, oil ETFs (especially DBO) takes the lead to

dominate the adjustment of price change to the long run equilibrium. While in short term,

the price change of crude oil price responds more significantly to the changes in price of oil

ETFs for the previous day. In other words, WTI takes the lead in short term in response of

the price change of previous day.

With more accurate estimation for the full data sample, when price of WTI decreases in the

range of $2.10 to $5.12 the day before, price of USO will increase this day. But for DBO,

the share of DBO will decrease if WTI decreases more than $3.12 the previous day. If the

68



price of USO goes down less than $3.58 in previous day, share of WTI will go up this day.

8.2 Future Work

In discussion of this paper, there are some limitations which are left for future work.

1) Impact of roll cost. The roll penalty occurs when funds sell the expiring futures and

replace the new contract. For example, USO is using near-month futures contract. Shortly

before the futures contracts expire, the fund will sell the futures and pay for the

next-month contract. Usually each months contract is a bit more expensive than the

previous month due to the cost of storing a commodity. For example, in year 2010, US Oil

Fund holds up to 24 million barrels of oil in futures contracts. The roll penalties generated

are from $0.30 to $4 per barrel at different points. Actually, US Oil fund realized such

potential problem, and tried to reduce the impact of roll penalty in 2009: they changed the

strategy from rolling the entire futures position in a single day to over four days period

each month. For a single day strategy, because the Fund roll date is publicly available, oil

traders would sell the front month futures contract ahead of that date, that would push the

price down. Since oil for delivery in the future is higher than spot prices, then USO would

pay more to buy the next month contract. That will raise the roll cost.

As for Deutsche Banks PowerShares DB Oil Fund (DBO), it has used an optimal rolling

strategy instead of rolling the expiring contract to the next month. The strategy is more

flexible and searches for the best possible roll yield.

From the scatter plot on Figure 1 in Chapter 1, we noticed that the price of oil ETFs

match the price of crude oil quite well at the beginning, but deviate and underperform

more and more gradually. Table 8.1 below shows the average price change in percentage.

The average price for WTI goes up 28.29% and 19.37% in 2010 and 2011, while USO and

DBO shares just up 6.44% and 10.90%, 3.26% and 9.71% in 2010 and 2011, respectively.

The oil ETFs underperformed the underlying oil price in year 2010 and 2011, but

nevertheless the performance of DBO is a bit better than that of USO.

69



Table 8.1 Percentage Change in Average Price

Yearly Average Price

Year USO DBO WTI

2009 34.28 23.46 61.95

2010 36.49 26.01 79.48

2011 37.68 28.54 94.87

Average Price Change in Percentage

2010 6.44% 10.90% 28.29%

2011 3.26% 9.71% 19.37%

One reason for the underperformance is that of roll penalty or roll cost. Is it that the roll

penalty to cause the spread deviations or are there any other factors? Also, is that the

flexible roll strategy to make the performance of DBO better off USO? In future study, the

fund strategy and roll cost will be taken into account to conduct the research.

2) Separate the data into three periods pre-crisis, crisis and post-crisis instead of two to

study the 2008 financial crisis. In this paper, we mentioned there is an obvious structure

breakpoint during the financial crisis in 2008. In the period after the financial crisis in

2008, the interaction of oil ETF and crude oil present different results in the previous

period and the whole period. Salisu and Fasanya (2012) used the asymmetric GARCH

models to compare the volatility of oil price over three samples: pre-crisis, during crisis and

after crisis, and found out that the volatility of the oil price during the financial crisis is the

greatest. So how on earth does the financial crisis and the volatility of the oil price will

impact the relationship among the price of crude oil, oil futures, and then the oil ETF,

should be an extensive topic for this research.

3) Role of Volume in lead-lag position. Third, in this paper, we have never mentioned the

trading volume of oil ETF, crude oil and oil futures. What the role of volume is in the

relationship of oil ETFs and oil futures would be an interesting question. For example, the

oil ETFs consist of the oil futures and track the crude oil price, but if a significant volume

player enters the market and there is enough volume in an oil ETF, it could be the price

leader of the oil futures, and then generate the impulse in the interaction relationship.
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Appendix B - VMA Coefficient for Impulse Response Function
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(1) Level Data

Sample (I) for USO & WTI

Lags=16

Responses to Shock in USO Responses to Shock in WTI
Entry USO WTI Entry USO WTI

1 1.17852 1.67814 1 0.00000 0.83542
2 1.09858 1.68065 2 0.03477 0.65180
3 1.06940 1.56684 3 0.01742 0.60512
4 1.01507 1.50065 4 0.07895 0.74671
5 1.05824 1.53377 5 0.15720 0.73837
6 0.99414 1.41346 6 0.04034 0.59286
7 0.96779 1.36998 7 0.08856 0.64069
8 1.01079 1.39741 8 0.04318 0.55369
9 1.03314 1.44369 9 -0.05465 0.42836
10 1.03174 1.36358 10 -0.06755 0.42525
11 1.08148 1.49773 11 -0.20058 0.18088
12 1.11880 1.60403 12 -0.21568 0.13119
13 1.18077 1.62702 13 -0.23218 0.13117
14 1.13134 1.61661 14 -0.27618 0.05155
15 1.17910 1.58748 15 -0.41025 -0.13818
16 1.22263 1.63530 16 -0.40010 -0.14822
17 1.21804 1.63903 17 -0.36377 -0.07644
18 1.22983 1.64547 18 -0.37146 -0.06586
19 1.21369 1.62763 19 -0.34692 -0.04827
20 1.24665 1.67564 20 -0.34312 -0.01759
21 1.23906 1.66938 21 -0.34261 -0.02155
22 1.23645 1.65180 22 -0.34320 -0.02454
23 1.26302 1.69205 23 -0.36088 -0.03341
24 1.27318 1.70132 24 -0.35857 -0.03502
25 1.27713 1.69532 25 -0.36387 -0.03980
26 1.27128 1.69268 26 -0.36559 -0.04210
27 1.29070 1.70673 27 -0.37194 -0.04563
28 1.29070 1.70957 28 -0.37241 -0.05143
29 1.29874 1.71582 29 -0.37103 -0.03868
30 1.31137 1.72853 30 -0.37912 -0.04581
31 1.30872 1.72433 31 -0.38009 -0.05450
32 1.31151 1.71815 32 -0.38377 -0.05585
33 1.30776 1.71290 33 -0.38361 -0.05960
34 1.30796 1.70724 34 -0.38789 -0.06723
35 1.31149 1.70833 35 -0.39057 -0.06941
36 1.31026 1.70359 36 -0.38901 -0.06770
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Sample (II) for USO & WTI

Lags=16

Responses to Shock in USO Responses to Shock in WTI
Entry USO WTI Entry USO WTI

1 1.59111 2.02185 1 0.00000 0.84872
2 1.53758 2.03696 2 0.05982 0.49129
3 1.55756 2.07005 3 0.13914 0.52150
4 1.50901 2.00396 4 0.27630 0.82504
5 1.60017 2.03743 5 0.44242 0.81370
6 1.51150 1.88050 6 0.13595 0.45872
7 1.44185 1.73430 7 0.28950 0.57112
8 1.47784 1.73227 8 0.26512 0.46857
9 1.49245 1.80688 9 0.02969 0.22912
10 1.49400 1.73515 10 0.05163 0.35692
11 1.41560 1.79740 11 -0.02769 0.09632
12 1.29990 1.65793 12 -0.02285 0.15186
13 1.44555 1.79420 13 -0.02241 0.23496
14 1.33480 1.76413 14 -0.11190 0.09447
15 1.52084 1.83532 15 -0.16884 -0.03460
16 1.71094 2.09199 16 -0.08437 0.00504
17 1.74453 2.15513 17 -0.01619 0.22000
18 1.76453 2.16598 18 -0.06808 0.14026
19 1.68272 2.06483 19 0.03279 0.22456
20 1.76062 2.18389 20 0.08525 0.35283
21 1.71398 2.12120 21 0.08268 0.32561
22 1.68996 2.05921 22 0.07295 0.33351
23 1.72215 2.12803 23 0.05840 0.32086
24 1.71269 2.07164 24 0.07789 0.26016
25 1.71627 2.08349 25 0.04905 0.24930
26 1.64467 2.01724 26 0.04829 0.29015
27 1.65334 2.00397 27 0.02435 0.20185
28 1.65468 2.02125 28 0.01227 0.18213
29 1.66268 2.02697 29 0.03828 0.25932
30 1.71235 2.09880 30 -0.00120 0.21323
31 1.71953 2.09685 31 -0.00286 0.19269
32 1.75896 2.14124 32 0.03156 0.23082
33 1.73568 2.12707 33 0.04022 0.23719
34 1.72698 2.09381 34 0.04214 0.24633
35 1.73227 2.10364 35 0.04932 0.25235
36 1.72267 2.08872 36 0.06430 0.25687
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Sample (III) for USO & WTI

Lags=16

Responses to Shock in USO Responses to Shock in WTI
Entry USO WTI Entry USO WTI

1 0.75379 1.57508 1 0.00000 0.56815
2 0.73973 1.68823 2 -0.04173 0.31995
3 0.72475 1.59757 3 -0.02232 0.33586
4 0.66886 1.49444 4 0.00071 0.39629
5 0.65384 1.43973 5 -0.00345 0.34042
6 0.62625 1.33140 6 -0.04139 0.24216
7 0.65617 1.38231 7 0.00450 0.33680
8 0.61717 1.30741 8 -0.04756 0.23249
9 0.62679 1.31162 9 0.01500 0.35113
10 0.59621 1.23468 10 -0.01868 0.34203
11 0.55599 1.11217 11 -0.07640 0.20533
12 0.49883 0.98750 12 -0.10291 0.11912
13 0.51794 1.03372 13 -0.08051 0.14231
14 0.56654 1.11087 14 -0.10165 0.10349
15 0.53711 0.99461 15 -0.10244 0.09762
16 0.50509 0.96906 16 -0.10129 0.07055
17 0.48251 0.91430 17 -0.08457 0.12885
18 0.47029 0.90255 18 -0.08123 0.13837
19 0.46859 0.90050 19 -0.07931 0.14617
20 0.47045 0.90957 20 -0.07904 0.15738
21 0.46170 0.89933 21 -0.07435 0.16310
22 0.46315 0.91123 22 -0.06239 0.18659
23 0.43896 0.85639 23 -0.05586 0.19349
24 0.43281 0.83839 24 -0.06349 0.18867
25 0.42587 0.83565 25 -0.05585 0.19982
26 0.42670 0.84729 26 -0.04403 0.22600
27 0.41867 0.82780 27 -0.04173 0.23117
28 0.40723 0.80024 28 -0.03971 0.23831
29 0.39086 0.77372 29 -0.03788 0.23881
30 0.38028 0.75414 30 -0.03388 0.24480
31 0.36680 0.72312 31 -0.03311 0.24427
32 0.35876 0.70711 32 -0.03074 0.24403
33 0.34992 0.68778 33 -0.02934 0.24735
34 0.34218 0.67277 34 -0.02620 0.25311
35 0.33092 0.65163 35 -0.02394 0.25491
36 0.31795 0.62400 36 -0.02112 0.25851
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Sample (I) for DBO & WTI

Lags=16

Responses to Shock in DBO Responses to Shock in WTI
Entry DBO WTI Entry DBO WTI

1 0.61348 1.79453 1 0.00000 0.97356
2 0.56512 1.72217 2 0.02279 0.74320
3 0.54258 1.62126 3 -0.00377 0.61730
4 0.52175 1.56094 4 0.03331 0.78275
5 0.59043 1.69203 5 0.03406 0.71237
6 0.57820 1.60309 6 0.01565 0.58121
7 0.58637 1.61887 7 0.00927 0.56253
8 0.58218 1.57738 8 -0.01551 0.44174
9 0.56945 1.53780 9 -0.06003 0.29004
10 0.57841 1.56839 10 -0.08288 0.34153
11 0.60393 1.65987 11 -0.07851 0.29809
12 0.57899 1.62570 12 -0.10415 0.27068
13 0.61549 1.69261 13 -0.07905 0.36641
14 0.63456 1.84743 14 -0.07103 0.31363
15 0.65368 1.83281 15 -0.10250 0.16044
16 0.67167 1.87461 16 -0.14074 0.20325
17 0.67483 1.89126 17 -0.11008 0.21180
18 0.67170 1.87751 18 -0.12307 0.16523
19 0.66891 1.85902 19 -0.12208 0.21574
20 0.67844 1.88278 20 -0.12135 0.20115
21 0.67510 1.86948 21 -0.12558 0.18820
22 0.67044 1.85063 22 -0.12198 0.21343
23 0.67279 1.86660 23 -0.11706 0.20278
24 0.67326 1.86185 24 -0.12736 0.16283
25 0.67060 1.84568 25 -0.13367 0.17494
26 0.67268 1.86036 26 -0.12803 0.15873
27 0.67091 1.85412 27 -0.13787 0.14550
28 0.67102 1.84043 28 -0.13546 0.17076
29 0.66798 1.85372 29 -0.12926 0.16177
30 0.67361 1.85506 30 -0.13474 0.14434
31 0.66993 1.84088 31 -0.14055 0.15769
32 0.66898 1.84129 32 -0.13201 0.15879
33 0.66743 1.83522 33 -0.13516 0.14779
34 0.66527 1.82375 34 -0.13573 0.15987
35 0.66392 1.82015 35 -0.13450 0.15156
36 0.66244 1.81378 36 -0.13648 0.14962
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Sample (II) for DBO & WTI

Lags=16

Responses to Shock in DBO Responses to Shock in WTI
Entry DBO WTI Entry DBO WTI

1 0.82352 2.15962 1 0.00000 1.20807
2 0.68372 1.99993 2 0.14950 0.97509
3 0.69161 1.86852 3 0.15054 1.00853
4 0.69015 1.99065 4 0.19800 1.27229
5 0.82667 2.29667 5 0.23658 1.27809
6 0.76086 1.98139 6 0.22097 1.08794
7 0.73611 1.93797 7 0.27157 1.19352
8 0.82879 2.16519 8 0.27147 1.15565
9 0.88510 2.34663 9 0.22550 1.00961
10 0.85182 2.22878 10 0.18885 1.01240
11 0.93125 2.71041 11 0.29270 1.20685
12 0.96147 2.69618 12 0.29064 1.39812
13 1.00345 2.68726 13 0.30138 1.43785
14 0.86059 2.46829 14 0.31866 1.34433
15 0.96932 2.65369 15 0.25331 1.03642
16 0.92980 2.39751 16 0.25429 1.23044
17 0.92728 2.43727 17 0.28193 1.14062
18 0.88952 2.34784 18 0.26027 1.03071
19 0.91219 2.42912 19 0.26576 1.09392
20 0.90935 2.42578 20 0.27936 1.14890
21 0.91517 2.47867 21 0.28095 1.19407
22 0.89560 2.46263 22 0.30720 1.26466
23 0.90991 2.50528 23 0.33692 1.33195
24 0.88667 2.36296 24 0.31937 1.30557
25 0.87642 2.32178 25 0.31326 1.26768
26 0.83680 2.27451 26 0.32625 1.18943
27 0.87487 2.29358 27 0.31600 1.22176
28 0.82167 2.13841 28 0.33511 1.27262
29 0.82952 2.23306 29 0.34539 1.27265
30 0.82842 2.24374 30 0.34195 1.25668
31 0.83267 2.23487 31 0.35971 1.36401
32 0.81247 2.19888 32 0.37559 1.39742
33 0.81489 2.21813 33 0.37901 1.39889
34 0.79784 2.15733 34 0.38636 1.40326
35 0.78958 2.11482 35 0.39146 1.39608
36 0.77251 2.04555 36 0.38319 1.38258
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Sample (III) for DBO & WTI

Lags=16

Responses to Shock in DBO Responses to Shock in WTI
Entry DBO WTI Entry DBO WTI

1 0.46194 1.45400 1 0.00000 0.71826
2 0.48690 1.62994 2 -0.02857 0.48761
3 0.45972 1.51223 3 -0.02302 0.62554
4 0.42055 1.35545 4 0.00166 0.66974
5 0.45501 1.42264 5 0.00844 0.70985
6 0.41715 1.33078 6 0.04504 0.72627
7 0.41324 1.25917 7 0.04506 0.69850
8 0.39338 1.17748 8 0.05357 0.62143
9 0.38518 1.19056 9 0.07243 0.69424
10 0.36949 1.10333 10 0.08232 0.78150
11 0.37454 1.04665 11 0.05495 0.64971
12 0.35013 0.98332 12 0.06860 0.71679
13 0.32322 0.92167 13 0.04860 0.69045
14 0.33206 0.94433 14 0.02291 0.54609
15 0.31281 0.86576 15 0.04660 0.61927
16 0.28347 0.82626 16 0.04239 0.55136
17 0.27127 0.77681 17 0.04920 0.57739
18 0.27069 0.79798 18 0.05485 0.58079
19 0.25589 0.73635 19 0.06218 0.61989
20 0.25121 0.72266 20 0.05937 0.60444
21 0.24773 0.70281 21 0.06577 0.66481
22 0.23775 0.68156 22 0.06151 0.65302
23 0.23257 0.64939 23 0.06133 0.65920
24 0.23078 0.64104 24 0.06542 0.67753
25 0.22069 0.61692 25 0.06664 0.66996
26 0.20870 0.58247 26 0.07202 0.67792
27 0.20656 0.56785 27 0.07661 0.69320
28 0.19915 0.54210 28 0.08121 0.69535
29 0.18857 0.50636 29 0.08611 0.71348
30 0.18408 0.48851 30 0.08649 0.71892
31 0.17900 0.46338 31 0.08698 0.72067
32 0.17274 0.44300 32 0.08827 0.72470
33 0.16679 0.41995 33 0.08861 0.72963
34 0.16205 0.40535 34 0.08781 0.71940
35 0.15486 0.38244 35 0.09075 0.72668
36 0.14966 0.36697 36 0.09166 0.72522
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(2) Difference Data

Sample (I) for DUSO & DWTI

Lags=16

Responses to Shock in DUSO Responses to Shock in DWTI
Entry DUSO DWTI Entry DUSO DWTI

1 1.20258 1.73209 1 0.00000 0.85905
2 -0.07925 -0.04062 2 0.02690 -0.23212
3 -0.03611 -0.07459 3 -0.02956 -0.00959
4 -0.00254 -0.00547 4 0.13363 0.26713
5 0.10315 0.12141 5 0.09377 0.06384
6 -0.03769 -0.06497 6 -0.12703 -0.13829
7 0.00269 -0.02965 7 0.07286 0.09205
8 -0.01288 -0.01123 8 -0.06320 -0.14537
9 -0.01136 -0.03919 9 -0.05306 -0.03971
10 -0.04041 -0.10885 10 0.03100 0.06274
11 -0.02047 0.04405 11 -0.05128 -0.16763
12 -0.01078 -0.01692 12 0.00969 0.01370
13 0.05810 0.05090 13 0.02234 0.03671
14 0.05237 0.11908 14 -0.05111 -0.07694
15 0.05737 -0.01258 15 -0.02310 -0.02149
16 0.11386 0.14764 16 -0.00171 -0.02705
17 0.02325 0.06562 17 0.04465 0.08910
18 -0.00673 -0.02591 18 -0.00473 -0.00713
19 -0.02267 -0.03966 19 0.01947 0.00598
20 0.03872 0.06140 20 0.00848 0.02905
21 -0.00890 -0.02463 21 -0.00346 -0.00885
22 -0.00845 -0.01694 22 -0.00457 -0.00207
23 0.00436 0.01116 23 -0.00705 0.00312
24 -0.00954 -0.01939 24 -0.00274 -0.01543
25 -0.01109 -0.01001 25 0.00088 0.00305
26 -0.00035 0.01178 26 0.00272 0.00962
27 0.00472 0.00325 27 -0.00797 -0.01789
28 0.01989 0.02269 28 -0.00562 -0.00557
29 0.01953 0.02620 29 0.00067 0.00622
30 0.01598 0.01743 30 -0.00527 -0.00714
31 0.00755 0.00679 31 0.00130 -0.00112
32 0.00481 0.00670 32 0.00826 0.01137
33 -0.00011 0.00243 33 0.00146 0.00041
34 -0.00297 -0.00820 34 0.00193 0.00207
35 0.00430 0.00448 35 -0.00075 -0.00050
36 0.00008 -0.00018 36 -0.00105 -0.00153
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Sample (II) for DUSO & DWTI

Lags=16

Responses to Shock in DUSO Responses to Shock in DWTI
Entry DUSO DWTI Entry DUSO DWTI

1 1.54621 2.03087 1 0.00000 0.82174
2 -0.05766 -0.02369 2 0.01265 -0.39184
3 0.08073 0.00197 3 0.11124 0.10111
4 -0.05034 0.02423 4 0.13052 0.28685
5 0.12052 0.02646 5 0.04595 -0.15262
6 -0.15278 -0.20133 6 -0.30498 -0.40939
7 0.04266 0.06104 7 0.16147 0.19124
8 0.20762 0.24708 8 -0.06021 -0.15623
9 -0.09668 -0.07927 9 0.04628 0.11645
10 0.09299 0.09285 10 -0.06783 -0.02799
11 0.01718 0.09192 11 -0.00199 -0.08792
12 0.03669 0.01423 12 -0.00412 0.06129
13 0.21629 0.25971 13 0.12755 0.23522
14 -0.00004 0.10167 14 -0.04275 0.01838
15 0.23546 0.15426 15 -0.01931 -0.20408
16 0.11827 0.13606 16 0.08947 0.12758
17 0.04554 0.08786 17 0.00729 -0.02766
18 -0.06395 -0.12092 18 -0.07761 -0.09785
19 -0.00476 -0.00077 19 -0.01208 -0.01730
20 0.08752 0.13260 20 0.02241 0.04620
21 -0.04489 -0.03496 21 -0.02616 -0.00164
22 0.09089 0.10306 22 0.03725 0.08128
23 0.03333 0.07532 23 -0.02686 -0.03604
24 0.01859 0.00537 24 0.02050 0.00040
25 0.04431 0.04359 25 0.02205 0.05308
26 0.02938 0.06210 26 0.01881 0.02939
27 0.06230 0.04604 27 -0.03315 -0.06566
28 0.01090 -0.00807 28 0.02722 -0.02478
29 0.06646 0.09638 29 0.00376 0.03810
30 0.01962 0.02032 30 -0.02054 -0.03426
31 0.00637 0.00657 31 -0.00917 0.00354
32 0.02258 0.04597 32 0.00065 0.00961
33 -0.00162 0.00258 33 0.01415 0.02757
34 0.03172 0.03430 34 0.00202 0.01035
35 0.01502 0.02772 35 0.00721 0.01194
36 0.02019 0.01633 36 -0.01018 -0.03376

87



Sample (III) for DUSO & DWTI

Lags=16

Responses to Shock in DUSO Responses to Shock in DWTI
Entry DUSO DWTI Entry DUSO DWTI

1 0.73541 1.52989 1 0.00000 0.57691
2 -0.00538 0.10332 2 -0.02839 -0.20417
3 -0.02100 -0.02658 3 0.03126 0.09444
4 -0.03435 -0.08399 4 0.07255 0.12186
5 0.08585 0.14798 5 -0.01695 -0.05273
6 -0.00120 0.00137 6 0.02999 0.09723
7 0.00625 0.01760 7 0.01599 -0.00153
8 -0.02621 -0.08526 8 -0.03115 -0.05841
9 0.03471 0.06611 9 0.00170 -0.01981
10 -0.01518 -0.02931 10 0.00642 0.06948
11 0.00270 -0.02553 11 -0.01545 -0.04177
12 -0.00510 0.03001 12 0.01939 0.03768
13 -0.02895 -0.07085 13 0.04004 0.04761
14 0.06700 0.02388 14 0.02573 0.09059
15 0.01759 0.03584 15 -0.04766 -0.08604
16 0.02538 0.06881 16 -0.03976 -0.12138
17 -0.02919 -0.06717 17 0.00681 0.03090
18 0.01062 0.01890 18 0.00445 -0.01284
19 -0.00713 -0.02480 19 0.00347 0.02277
20 0.00377 0.01497 20 0.00089 -0.00652
21 -0.00310 -0.00438 21 -0.00564 -0.00842
22 0.00859 0.01578 22 0.00613 0.00882
23 -0.00619 -0.01735 23 0.00573 0.01373
24 0.00952 0.00833 24 -0.00815 -0.00679
25 -0.00084 0.00784 25 -0.00560 -0.01900
26 -0.01394 -0.01822 26 0.00364 0.00166
27 -0.00598 -0.03037 27 0.01147 0.01557
28 0.00938 0.01325 28 -0.00174 0.01123
29 0.01707 0.03902 29 -0.00825 -0.01755
30 -0.00350 -0.00672 30 -0.00179 -0.00216
31 0.00077 0.00347 31 0.00054 0.00027
32 -0.00179 -0.00632 32 0.00104 -0.00039
33 0.00220 0.00467 33 0.00117 0.00610
34 -0.00012 0.00086 34 -0.00051 -0.00263
35 0.00033 0.00100 35 0.00027 0.00045
36 -0.00323 -0.00659 36 0.00178 0.00000
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Sample (I) for DDBO & DWTI

Lags=16

Responses to Shock in DDBO Responses to Shock in DWTI
Entry DDBO DWTI Entry DDBO DWTI

1 0.61472 1.73847 1 0.00000 0.94750
2 -0.00370 0.15495 2 0.04769 -0.17900
3 0.01959 0.03404 3 -0.01890 -0.04089
4 0.00055 0.01304 4 0.04924 0.19217
5 0.04495 0.08257 5 0.04216 0.05747
6 -0.02166 -0.13137 6 -0.00892 -0.07057
7 0.00113 -0.02131 7 0.01229 0.00797
8 0.02423 0.00175 8 -0.00966 -0.09204
9 0.02694 0.06878 9 0.00345 0.00446
10 0.00641 0.02361 10 -0.00571 0.01908
11 0.03723 0.15584 11 -0.00905 -0.07078
12 0.01206 0.05348 12 0.02578 0.10127
13 0.04291 0.17136 13 0.01117 0.00176
14 0.01210 0.13088 14 -0.03182 -0.13567
15 0.02208 -0.02957 15 -0.00413 -0.07850
16 0.04574 0.11117 16 -0.02971 0.01808
17 -0.00425 -0.05948 17 0.02256 0.06908
18 0.00622 0.02895 18 -0.01348 -0.05943
19 0.00311 -0.00257 19 0.00478 0.04376
20 0.00972 0.03039 20 0.01143 0.04013
21 0.00336 0.00869 21 0.00509 0.01605
22 0.01022 0.04741 22 0.00208 0.01494
23 0.01335 0.03541 23 0.00139 -0.00726
24 0.00712 0.01738 24 0.00045 -0.01028
25 0.00817 0.01756 25 -0.00242 0.01024
26 0.00497 0.01493 26 -0.00405 -0.02656
27 -0.00160 -0.01640 27 0.00336 0.01054
28 0.00447 0.01340 28 0.00507 0.02024
29 0.00041 0.02261 29 -0.00238 -0.01627
30 0.01115 0.02255 30 -0.00032 -0.00571
31 0.00383 0.01221 31 -0.00359 -0.00668
32 0.00471 0.00796 32 0.00280 0.01616
33 0.00280 0.01189 33 -0.00122 -0.01126
34 0.00359 0.00832 34 -0.00115 -0.00005
35 0.00136 0.00289 35 0.00055 0.00131
36 0.00092 -0.00026 36 0.00124 0.00334
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Sample (II) for DDBO & DWTI

Lags=16

Responses to Shock in DDBO Responses to Shock in DWTI
Entry DDBO DWTI Entry DDBO DWTI

1 0.80650 2.22941 1 0.00000 1.24034
2 -0.03556 -0.02958 2 0.06958 -0.38736
3 -0.07170 -0.21426 3 0.03683 0.07584
4 0.01824 0.02957 4 0.07256 0.46021
5 0.16669 0.49206 5 -0.00352 -0.25573
6 -0.03252 -0.25126 6 -0.09410 -0.25904
7 -0.00020 -0.04277 7 0.11478 0.29001
8 0.04266 0.18097 8 -0.05346 -0.23161
9 -0.01867 -0.15984 9 -0.01350 -0.05555
10 -0.04177 -0.16525 10 0.00974 0.12240
11 0.08233 0.45819 11 0.02668 0.00065
12 0.00040 0.05427 12 0.02725 0.17220
13 -0.02371 -0.11580 13 0.04011 0.07520
14 -0.01071 0.01445 14 -0.05593 -0.13124
15 0.06019 0.16010 15 -0.07800 -0.50768
16 0.00439 -0.14690 16 -0.00119 0.11242
17 0.00544 0.03722 17 0.10959 0.37554
18 -0.01367 0.00473 18 -0.07982 -0.40073
19 -0.00446 -0.07442 19 -0.02082 0.05959
20 0.01071 0.04978 20 0.06155 0.20563
21 0.03096 0.13084 21 -0.02662 -0.06827
22 -0.01434 -0.04848 22 0.00498 0.02758
23 0.01680 0.06834 23 0.02982 0.13810
24 0.01303 0.05281 24 -0.01457 -0.09339
25 -0.02286 -0.13097 25 -0.02223 -0.07685
26 -0.01752 -0.06498 26 0.00345 -0.03106
27 0.02331 0.08984 27 0.00382 0.03621
28 -0.01286 -0.05757 28 0.00553 0.00126
29 -0.00963 -0.03332 29 0.00785 0.07748
30 0.02342 0.11112 30 -0.00417 0.00717
31 0.00901 0.02747 31 -0.01446 -0.09006
32 -0.02103 -0.07625 32 0.02350 0.12352
33 0.01177 0.06687 33 0.01337 0.02228
34 0.01163 0.03112 34 -0.03227 -0.11498
35 -0.01331 -0.07026 35 0.00825 0.01155
36 -0.00422 -0.01735 36 0.00468 0.01447
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Sample (III) for DDBO & DWTI

Lags=16

Responses to Shock in DDBO Responses to Shock in DWTI
Entry DDBO DWTI Entry DDBO DWTI

1 0.47450 1.51576 1 0.00000 0.69560
2 -0.00007 0.08985 2 -0.02073 -0.20451
3 -0.01325 -0.11028 3 0.04175 0.16457
4 -0.03411 -0.15072 4 0.02607 0.10190
5 0.02711 0.08677 5 -0.01066 -0.03343
6 -0.03416 -0.09788 6 -0.00245 -0.03561
7 0.01076 -0.02024 7 0.01282 -0.01919
8 -0.00356 -0.04126 8 -0.02172 -0.13476
9 0.00674 0.05819 9 0.00594 -0.00190
10 0.02234 0.06466 10 -0.03070 -0.03056
11 0.00664 -0.01603 11 -0.01676 -0.13338
12 -0.01925 -0.07995 12 -0.00202 0.00017
13 0.01453 0.09295 13 0.00233 -0.04369
14 0.01314 0.04084 14 -0.00847 -0.08885
15 -0.01280 -0.06479 15 0.01703 0.06690
16 -0.01497 -0.03755 16 -0.01585 -0.10104
17 -0.00276 -0.04330 17 0.03265 0.08000
18 0.00679 0.04390 18 -0.00808 0.00520
19 0.00286 0.00949 19 0.00290 0.02469
20 -0.00297 -0.01054 20 -0.00153 0.00727
21 0.00531 0.01105 21 0.00997 0.05792
22 0.00124 0.02438 22 -0.00499 -0.00532
23 0.00355 0.00967 23 0.00782 0.02761
24 -0.00454 -0.01684 24 -0.00311 0.01916
25 -0.00025 0.00274 25 0.00355 -0.00094
26 0.00197 0.00169 26 0.00133 0.01918
27 0.00392 0.01561 27 0.00021 0.01205
28 -0.00120 -0.00336 28 -0.00447 -0.01172
29 -0.00441 -0.01742 29 0.00137 0.01339
30 0.00309 0.01192 30 -0.00529 -0.01413
31 0.00061 0.00444 31 0.00198 -0.00579
32 0.00017 -0.00001 32 -0.00468 -0.01134
33 -0.00086 -0.00401 33 0.00071 -0.00900
34 -0.00010 0.00029 34 -0.00201 -0.01651
35 0.00022 -0.00151 35 0.00202 0.00163
36 0.00031 0.00157 36 -0.00304 -0.01384

91



Appendix C - Coefficients for Dynamic Model (6.17) & (6.18)
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USOt = β10 + β11WTIt + β12USOt−1 + β13WTIt−1 + u1t (6.11)

Sample (I) Sample (II) Sample (III)

4/12/2006 - 3/31/2012 4/12/2006 - 12/31/2008 1/2/2009 - 3/31/2012

β10 -0.1485 -0.0536 0.0815

t-stat (-2.43) (-0.52) (0.72)

β11 0.5482 0.6378 0.4159

t-stat (72.84) (52.58) (67.14)

β12 0.9993 0.9823 0.9909

t-stat (1096.74) (157.43) (217.52)

β13 -0.5463 -0.6229 -0.4131

t-stat (-72.3) (-47.83) (-65.39)

DBOt = β20 + β21WTIt + β22DBOt−1 + β23WTIt−1 + u2t (6.12)

Sample (I) Sample (II) Sample (III)

1/5/2007 - 3/31/2012 1/5/2007 - -12/31/2008 1/2/2009 - -3/31/2012

β20 -0.0174 0.1983 0.1176

t-stat (-0.46) (2.28) (1.46)

β21 0.2603 0.2663 0.2501

t-stat (61.90) (35.96) (56.58)

β22 0.9949 0.9381 0.9866

t-stat (360.40) (67.70) (157.94)

β23 -0.2584 -0.2450 -0.2473

t-stat (-60.12) (-27.70) (-53.24)
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Appendix D - ACE Transformation Graph: Figure 6.6 & 6.7
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Figure 6.6 ACE transformation of series USO and WTI over three samples

Figure 6.7 ACE transformation of series DBO and WTI over three samples
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Appendix E - Knots and Slops for MARS (mi=2) model
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Sample (1)

Left-hand side variable: ∆USOt, ∆WTIt

(1)

4/12/2006 - 3/31/2012

∆USOt (left-hand variable) Slope ∆WTIt (left-hand variable) Slope

∆USO{1} < −3.58 2.137 ∆USO{1} > 3.13 4.949

(3.98) (5.99)

∆USO{1} < −3.58 -0.297 ∆USO{1} < 3.13 -2.429

∆WTI{1} > −14.76 (-3.26) (-7.04)

∆USO{1} > −0.98 -2.315 ∆WTI{1} < 4.53 0.275

∆WTI{1} < −2.10 (-4.92) (3.14)

∆WTI{1} > −2.10 0.756 ∆USO{1} > −3.58 -0.234

q̂t{1} > 7.25 (4.93) ∆WTI{1} < 4.53 (-5.46)

∆WTI{1} > −2.10 -0.608 ∆USO{1} < −3.58 0.191

q̂t{1} > 6.61 (-4.96) ∆WTI{1} < 4.53 (6.29)

∆WTI{1} > −2.10 -0.150 ∆USO{1} > −3.58 -0.283

q̂t{1} > 10.17 (-4.04) ∆WTI{1} > −2.95 (-7.11)

∆USO{1} < 3.13 0.117

∆WTI{1} > −0.20 (2.62)

∆WTI{1} > 4.53 0.237

q̂t{1} > 0.026 (9.12)

∆WTI{1} > 4.53 0.207

q̂t{1} < 0.026 (4.24)

MARS model estimated with 20 knots, 1 lag with interaction term (mi=2)
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Sample (2)

Left-hand side variable: ∆USOt, ∆WTIt

(2)

4/12/2006 - 12/31/2008

∆USOt (left-hand variable) Slope ∆WTIt (left-hand variable) Slope

∆USO{1} > −3.58 0.988 ∆USO{1} > 3.34 -9.894

(2.89) (-3.55)

∆USO{1} > −2.45 -1.127 ∆WTI{1} > 4.42 9.225

(3.10) (5.43)

∆WTI{1} < −4.57 0.691 ∆WTI{1} > 3.41 -3.023

(3.75) (-4.14)

∆USO{1} > −3.58 -0.349 ∆USO{1} > 3.25 -5.467

∆WTI{1} < −2.06 (-4.57) ∆WTI{1} > 3.41 (-4.82)

∆USO{1} > 2.46 4.119

∆WTI{1} > 3.41 (3.36)

∆USO{1} > 3.34 0.694

q̂t{1} > −10.93 (2.78)

∆WTI{1} > 4.42 -124.885

q̂t{1} > 0.59 (-5.99)

∆WTI{1} > 4.42 -0.594

q̂t{1} < 0.59 (-9.07)

∆WTI{1} > 4.42 24.309

q̂t{1} > 0.36 (2.89)

MARS model estimated with 20 knots, 1 lag with interaction term (mi=2)
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Sample (3)

Left-hand side variable: ∆USOt, ∆WTIt

(3)

1/2/2009 - 3/31/2012

∆USOt (left-hand variable) Slope ∆WTIt (left-hand variable) Slope

∆USO{1} < 0.20 1.601 ∆USO{1} > 0.93 -4.369

(3.73) (-3.20)

∆USO{1} > −1.52 1.156 ∆USO{1} < 0.93 3.492

(4.24) (3.06)

∆WTI{1} > 3.34 0.352 ∆USO{1} > 0.20 2.322

(2.62) (3.74)

q̂t{1} > 3.91 -1.029 ∆USO{1} > −1.52 3.395

(-5.32) (3.79)

q̂t{1} < 3.91 0.033 ∆WTI{1} > −8.90 -1.058

(2.46) (-7.00)

∆USO{1} < 0.23 -0.132 ∆WTI{1} > 3.34 1.716

∆WTI{1} < 3.34 (-3.54) (4.85)

∆USO{1} < 0.20 0.215 q̂t{1} > 3.91 -1.854

∆WTI{1} > −1.22 (2.07) (-4.41)

∆WTI{1} > −0.59 0.360 ∆USO{1} < 0.93 1.289

q̂t{1} > 3.91 (3.78) ∆WTI{1} > 1.81 (2.94)

∆USO{1} < 0.93 -0.404

∆WTI{1} < 1.81 (-4.54)

∆USO{1} > −1.52 0.456

q̂t{1} < −4.27 (2.97)

MARS model estimated with 20 knots, 1 lag with interaction term (mi=2)
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Sample (1)

Left-hand side variable: ∆DBOt, ∆WTIt

(1)

1/5/2007 - 3/31/2012

∆DBOt (left-hand variable) Slope ∆WTIt (left-hand variable) Slope

q̂t{1} > 6.68 -1.903 ∆WTI{1} > 4.65 -41.703

(-6.88) (-7.68)

q̂t{1} > 5.29 0.435 ∆WTI{1} > 4.15 -11.621

(2.83) (-6.73)

∆DBO{1} > 0.28 1.697 q̂t{1} > 6.68 -2.160

q̂t{1} > 5.29 (6.04) (-4.44)

∆DBO{1} < 0.28 0.850 ∆DBO{1} > 0.28 2.0157

q̂t{1} > 5.29 (5.37) q̂t{1} > 5.29 (5.31)

∆DBO{1} > 0.54 -0.202 ∆DBO{1} < 0.28 0.494

q̂t{1} < 0.27 (-4.86) q̂t{1} > 5.29 (2.37)

∆DBO{1} < 0.54 -0.189 ∆WTI{1} > 4.65 5.185

q̂t{1} > 3.50 (-3.36) q̂t{1} > −3.78 (8.45)

∆WTI{1} > 0.03 -0.439

q̂t{1} > 5.29 (-3.75)

∆WTI{1} < 0.03 -0.087

q̂t{1} > 5.29 (-3.41)

∆WTI{1} > 2.91 0.480

q̂t{1} > 5.29 (2.57)

MARS model estimated with 20 knots, 1 lag with interaction term (mi=2)
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Sample (2)

Left-hand side variable: ∆DBOt, ∆WTIt

(2)

4/12/2006 - 12/31/2008

∆DBOt (left-hand variable) Slope ∆WTIt (left-hand variable) Slope

∆DBO{1} < −1.65 1.393 q̂t{1} > −0.879 -0.401

(3.63) (-2.40)

∆DBO{1} > −1.25 -0.165 ∆DBO{1} > −0.60 -15.154

(-3.10) ∆WTI{1} < −3.06 (-4.24)

∆WTI{1} > −4.69 1.617 ∆DBO{1} > 1.04 0.499

-2.89 ∆WTI{1} > 2.46 (3.08)

∆WTI{1} > −4.29 -1.558 ∆DBO{1} > 0.17 -5.160

(-2.74) q̂t{1} < −0.879 (-7.04)

q̂t{1} > −0.388 -0.364 ∆WTI{1} > 4.18 6.751

(-5.77) q̂t{1} > −0.879 (3.44)

∆WTI{1} > 3.73 -5.173

q̂t{1} > −0.879 (-3.23)

MARS model estimated with 20 knots, 1 lag with interaction term (mi=2)
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Sample (3)

Left-hand side variable: ∆DBOt, ∆WTIt

(3)

1/2/2009 - 3/31/2012

∆DBOt (left-hand variable) Slope ∆WTIt (left-hand variable) Slope

∆DBO{1} < 0.550 -0.416 ∆DBO{1} > −1.13 -2.171

(-4.06) (-2.25)

∆WTI{1} < 3.34 0.140 ∆DBO{1} > −0.62 5.219

(4.71) (3.88)

q̂t{1} > 1.899 -1.126 ∆WTI{1} > −2.64 0.941

(-3.17) (3.95)

q̂t{1} < 1.899 0.066 q̂t{1} > 1.899 -4.431

(3.62) (-3.54)

∆DBO{1} < 0.550 0.057 q̂t{1} < 1.899 0.138

∆WTI{1} > −2.64 (2.02) (2.38)

∆WTI{1} > 3.34 0.101 ∆DBO{1} > −1.13 -1.825

q̂t{1} < 1.86 (2.91) ∆WTI{1} > −1.46 (-4.61)

∆WTI{1} > 0.02 0.069 ∆DBO{1} > −1.13 2.595

q̂t{1} > −0.725 (4.11) ∆WTI{1} < −1.46 (5.29)

∆DBO{1} > −0.62 1.640

∆WTI{1} > −0.32 (3.98)

∆WTI{1} > 1.52 0.596

q̂t{1} < 0.43 (3.10)

MARS model estimated with 20 knots, 1 lag with interaction term (mi=2)
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Appendix F - Coefficients for GAM ECM: Table 7.7
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Table 7.7 Coefficients for GAM ECM models for sample (I) (II) (III)

Sample (I) (II) (III)

4/12/2006 - 3/31/2012 4/12/2006 - 12/31/2008 1/2/2009 - 3/31/2012

∆USOt ∆WTIt ∆USOt ∆WTIt ∆USOt ∆WTIt

α -0.0220 0.0330 -0.0581 -0.0334 0.0033 0.0859

(-0.69) (0.64) (-0.94) (-0.39) (0.12) (1.44)

qt−1 -0.0010 -0.0017 -0.0173 -0.0017 -0.0513*** -0.0918***

(-0.46) (-0.48) (-1.03) (-0.15) (-4.00) (-3.26)

∆USOt−1 -0.1066* 0.2745*** -0.1590* 0.2334** 0.0486 0.8820***

(-1.94) (3.13) (-1.86) (1.98) (0.55) (4.51)

∆WTIt−1 0.0391 -0.1885*** 0.0686 -0.2241*** -0.0243 -0.3461***

(1.15) (-3.47) (1.12) (-2.66) (-0.61) (-3.92)

1/5/2007 - 3/31/2012 1/5/2007 - 12/31/2008 1/2/2009 - 3/31/2012

∆DBOt ∆WTIt ∆DBOt ∆WTIt ∆DBOt ∆WTIt

α 0.0075 0.0461 -0.0122 -0.0255 0.0115 0.0723

(0.46) (0.81) (-0.35) (-0.23) (0.69) (1.21)

qt−1 -0.0124* -0.0246 -0.2199*** -0.1191 -0.0471*** -0.1657***

(-1.67) (-1.01) (-4.10) (-0.70) (-3.02) (-2.99)

∆DBOt−1 -0.1518*** 0.2705 -0.2807*** -0.1651 0.1841** 1.0179***

(-2.79) (1.51) (-3.37) (0.80) (2.36) (3.67)

∆WTIt−1 0.0372** -0.1087** 0.0645** -0.0010 -0.0487** -0.2370***

(2.26) (-2.01) (2.35) (-0.01) (-2.24) (-3.06)

*p < 0.1, **p < 0.05, ***p < 0.01
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