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SUMMARY 

Parts previously published in (Shabana et al., 2012; O’Shea and Shabana 2015; O’Shea and 

Shabana, 2016; and O’Shea et al., 2016) and reproduced in this dissertation with permission which 

is provided in Appendix A. Dr. Martin Hamper, Dr. Paramsothy Jayakumar, and David Mechergui 

are contributing authors. 

 

In railroad vehicle system dynamics, the effect of the gyroscopic moments can be significant 

during curve negotiations. The absolute angular velocity of a vehicle component during curve 

negotiations can be expressed as the sum of two vectors; one vector is due to the curvature of the 

curve, while the second vector is due to the rate of change of the angles that define the orientation 

of the body with respect to a coordinate system that follows the body motion. In this dissertation, 

the configuration of the body in the global coordinate system is defined using a set of trajectory 

coordinates in order to examine the effect of the gyroscopic moments in the case of curve 

negotiations. These coordinates consist of an arc length, two relative translations, and three relative 

angles. The relative translations and relative angles are defined with respect to a trajectory 

coordinate system that follows the motion of the body about the curve. It is shown that when the 

yaw and roll angles relative to the trajectory coordinate system are constrained and the motion is 

predominantly rolling, the effect of the gyroscopic moment on the motion becomes negligible and, 

in the case of pure rolling and zero yaw and roll angles, the generalized gyroscopic moment 

associated with the system degrees of freedom becomes identically zero. Furthermore, the analysis 

presented in this dissertation shows that the roll moment, which can have a significant effect on 

the wheel/rail contact forces, depends on the forward velocity in the case of curve negotiations.  
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SUMMARY (continued) 

For this reason, roller rigs and other test apparatus that do not allow for the wheelset forward 

velocity cannot capture these moment components correctly and, therefore, should not be used in 

the analysis of curve negotiations. A multibody system (MBS) model of a suspended railroad 

vehicle wheelset is developed and used in this investigation to numerically study the gyroscopic 

effect during curve negotiations. 

Curve negotiations, in addition to developing significant gyroscopic effects, can position a 

wheelset such that it is prone to a mode of derailment referred to as wheel flange climb. In previous 

research, a set of nonlinear algebraic kinematic constraint equations were developed that describe 

the configuration of a wheelset in contact with a track at two distinct points. In such a case of two 

points of contact, a simplified wheelset model that has the lateral displacement and angle of attack 

(AOA) as the independent variables can be developed. In this dissertation, this approach is 

extended to the case of a wheelset in contact with a tangent track at three distinct points. The 

solution of this three-point contact problem requires specifying the wheelset AOA only. This 

wheelset configuration is significant in derailment investigations because it is a possible 

configuration at the initiation of a wheel climb derailment. In order to study this wheel climb 

initiation configuration, a set of nonlinear kinematic constraint equations is developed as a function 

of the wheelset AOA and solved for the unknown system coordinates and contact surface 

parameters using an iterative Newton-Raphson algorithm. The wheelset AOA during wheel climb 

derailments can be determined forensically at the derailment site, making this approach of practical 

significance. It is shown that the system configuration can be fully defined for wheel climb 

derailment initiation, which allows for the investigation of various derailment parameters such as  
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SUMMARY (continued) 

the wheel/rail contact angle. Furthermore, the wheelset flange angle, which is the angle between 

the tangent to the wheel surface at the contact point and the wheelset axle, is shown to not be 

representative of the wheel/rail contact angle, which is the angle between the tangent to the contact 

surfaces and the lateral common tangent to the two railheads; this distinction can only be 

demonstrated through full definition of the system configuration that accounts for the wheelset roll 

angle.  

A fully nonlinear unconstrained MBS wheel climb derailment model is developed to 

analyze the forces that govern the wheel climb motion when oriented at a large AOA. The results 

of the MBS model in the vicinity of the climb initiation are verified using a semi-analytical model 

that makes use of simplifying assumptions derived from the current interpretation of wheel climb. 

It is shown that, when the wheel makes flange contact with the rail at a large AOA, the lateral and 

vertical displacements of the wheel become coupled due to motion constraints resulting from the 

wheel/rail contact. This constraint produces kinematic contributions to the wheel climb motion 

that are shown to be significant throughout the motion. Additionally, the friction force developed 

at the point of contact is shown to be three dimensional, and therefore, concerns are raised 

regarding the validity of any planar force balance at the point of contact to capture such motion. 

Regardless, the forces measured at contact point are shown to not represent the forces that drive 

the derailment. This model is used to support the three-point contact formulation outlined above. 

It is seen that the initiation of the wheel climb motion is correctly predicted using proper geometry 

definitions in the derailment criteria, whereas such motion was not correctly predicted using 

geometry definitions derived from the wheelset flange angle. 
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SUMMARY (continued) 

The analysis presented in this investigation sheds light on the danger of using any 

derailment criteria that are not obtained using laws of motion. The Nadal /L V  derailment limit, 

as well as any investigation that chooses to neglect the wheelset orientation or the effect of such 

orientation on the wheel/rail contact geometry, is called into question. Therefore, such criteria 

should not be used in judging the stability of railroad vehicle systems. Most importantly, however, 

the Nadal /L V  derailment limit is shown to not be conservative for all cases. It is demonstrated 

that, with proper formulation, more accurate and justifiable criteria can be developed. Taking these 

important results into account, questions must be raised regarding the current interpretation of 

wheel climb, which does not account for kinematics, as well as the various derailment criteria that 

have roots in Nadal’s derivation. This investigation is not intended as a derailment criteria 

proposal, but rather as support and rationalization for the use of correct contact geometry in 

derailment investigations. 

With the rate of computer development, the desire for the modeling of deformable vehicle 

components in MBS models has grown. The floating frame of reference (FFR) formulation is 

widely used in the analysis of deformable bodies in MBS simulations. The modeling of deformable 

bodies requires the use of elastic degrees of freedom, which can increase the model size 

significantly. Therefore, modal reduction techniques have been proposed in order to define a 

proper set of assumed body deformation modes at a preprocessing stage. Crucial to the proper 

definition of these modes when the finite element (FE) FFR formulation is used is the 

understanding of the concept of the reference conditions that define the nature of the deformable 

body coordinate system. Substructuring techniques, such as the Craig-Bampton method, on the  
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SUMMARY (continued) 

other hand, have been proposed to allow for efficient model assembly and reduce model 

dimensionality. However, it is important to distinguish between substructuring techniques which 

aim at obtaining efficient model assembly and coordinate reduction and the reference conditions 

that define the problem to be solved. In this study, the appropriateness and generality of using the 

Craig-Bampton method in MBS implementation is discussed. It is shown that, when a set of 

reference conditions are not applied at a preprocessing stage, the Craig-Bampton transformation 

leads to the free-free modes of deformation as well as the natural frequencies associated with these 

modes. It is also shown that a square Craig-Bampton transformation is equivalent to a similarity 

transformation that does not alter the problem to be solved. Therefore, the goal of using the Craig-

Bampton transformation is not to improve the solution accuracy, but rather to obtain a reasonably 

accurate solution using lower dimension models, as with any other substructuring method. This 

dissertation also demonstrates that free-free deformation modes cannot be used in all applications, 

shedding light on the importance of the concept of the reference conditions when using the FE/FFR 

formulation in modeling flexible bodies in MBS applications. To this end, this dissertation 

demonstrates numerically for the first time that the unique resonance frequency of a model can be 

achieved using the definition of different mode shapes associated with different boundary 

conditions provided that the shapes are similar. Due to the subtleties inherent to the FFR 

formulation, care must be taken when using and/or designing flexible MBS software in order to 

obtain acceptable results. 
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CHAPTER 1 

INTRODUCTION 

Parts previously published in (Shabana et al., 2012; O’Shea and Shabana 2015; O’Shea and 

Shabana, 2016; and O’Shea et al., 2016) and reproduced in this dissertation with permission which 

is provided in Appendix A. Dr. Martin Hamper, Dr. Paramsothy Jayakumar, and David Mechergui 

are contributing authors. 

 

1.1 Derailment Modes 

There are two common derailment scenarios which have been investigated in the railroad vehicle 

dynamics literature: flange wheel climb and wheel lift. Flange climb derailments are more frequent 

and can occur at low velocity. It is believed that the flange wheel climb, which is often associated 

with a large angle of attack (AOA), is the result of a tangential force that produces a contact force 

that acts upward at the wheel/rail contact point. The wheel lift, on the other hand, can be the result 

of hunting-produced high lateral velocity and large impact forces that can cause derailments. In 

this derailment scenario, the tangential force at one wheel can be downward as the result of the 

wheel lift at the other wheel (Wang and Li, 2010). 

 

1.2 The Gyroscopic Moment 

The gyroscopic moment, which is an inertia moment, is the result of multi-axis rotation of a body 

(Goldstein, 1950; Greenwood, 1988; Roberson and Schwertassek, 1988; Shabana, 2010). In the 

case of simple rotation about a fixed axis, the gyroscopic moment vanishes. While in some curving 

scenarios the change in some angles can be restricted, curving motion contributes to the gyroscopic 
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moment even in the special case when two rotations of the body relative to the curve are not 

allowed. The gyroscopic moment can have a significant effect in many applications including 

aerospace and rail systems.  

 

1.3 Wheel Climb Derailments 

The wheelset AOA is defined to be the angle w  between the vector defining the wheel forward 

velocity and the tangent to the rail at the contact point, as shown in Fig. 1.1. 

 

 

Figure 1.1. Wheelset Angle of Attack 

 



3 
 
 

 

The AOA may differ from zero during curving or in the case of unstable motion. Railroad vehicle 

wheelsets are designed in such a way that, when the AOA differs from zero, an additional point of 

contact may be made on a wheel flange in order to prevent the wheel from falling off the rail. 

Contact may occur exclusively at the wheel tread surface, exclusively at the wheel flange surface, 

or at both the wheel tread and flange surfaces. A wheel climb derailment is essentially the 

derailment mode in which a flanging wheel “climbs” the rail, eventually allowing the wheel to 

shift outside the track. 

This motion, in general, creates momentarily a three-point contact scenario between the 

wheelset and track, which can be considered a configuration for the initiation of wheel climb 

derailments. The contact of the wheel flange with the rail produces contact and reaction forces that 

can have significant magnitude and restrict the motion of the wheel, causing wheel climb and 

derailment. These contact forces act in addition to the inertia, gravity, and suspension forces that 

act on the wheel axle. 

Wheel climb then becomes one of the important derailment scenarios of railroad vehicle 

systems, particularly in the case of a large wheelset AOA. In order to understand the phenomenon 

of wheel climb at a large AOA, the application of the principles of mechanics is necessary 

(Goldstein, 1950; Greenwood, 1988; Roberson and Schwertassek, 1988; Shabana, 2010). Wheel 

climb derailments can occur at low speeds and without any indication to the vehicle operator, and 

therefore, have been the target of numerous investigations (Blader, 1990; Elkins and Wu, 2000; 

Marquis and Grief, 2011; Shust et al., 1997; Wu and Elkins, 1999; Wu et al., 2005, Wu and Wilson, 

2006; Wilson et al., 2004). These investigations have produced derailment criteria which aim to 

measure the risk of and prevent such derailments. 
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1.4 Investigations and Derailment Criteria 

The development and validation of derailment criteria have been the subject of numerous 

investigations (Blader, 1990; Elkins and Wu, 2000; Marquis and Grief, 2011; Shust et al., 1997; 

Wu and Elkins, 1999; Wu et al., 2005; Wu and Wilson, 2006; Wilson et al., 2004). These criteria 

have been used to develop operation and safety guidelines. Examples of these criteria are the Nadal 

single-wheel /L V  limit criterion (Nadal, 1896; Nadal, 1908), Weinstock axle-sum /L V  limit 

criterion, FRA high speed passenger distance limit (5 ft), AAR Chapter 11 50-millisecond time 

limit, Japanese National Railway (JNR) /L V  time duration criterion, EMD /L V  time duration 

criterion, and the TTCI wheel climb distance criterion.  

Nadal used a simplified and planar force balance to derive a derailment quotient /L V  at 

which wheel climb can occur, where L  and V  are the lateral and vertical contact forces at the 

wheel flange. While Nadal’s formula is not function of the AOA, the relation is algebraic and has 

been used to provide intuition-based explanations for wheel climb in the case of large AOA 

(Shabana, 2012). Weinstock’s criterion, which considers two wheels instead of a single wheel, 

predicts derailment by summing the absolute values of the L V  ratios of two wheels on the same 

axle (Weinstock, 1984). This sum is known as the axle sum L V  ratio. Weinstock’s criterion 

considers the friction at the non-flanging wheel. If the coefficient of friction at the non-flanging 

wheel approaches zero, Weinstock’s criterion converges to Nadal’s criterion (Shabana, 2012). The 

JNR and EMD time duration criteria are based on modifications to the Nadal’s criteria by 

increasing the L V  limit if the duration of the lateral thrust is less than certain time duration. In 

the JNR criterion, this time duration is assumed to be 50 ms (Matsudaria, 1963). The EMD is 

considered less conservative (Koci and Swenson, 1978). The AAR wheel climb duration limit 
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recommends the use of 50 ms (0.05 s); while the FRA wheel-climb distance limit recommends the 

use of 5 ft limit for class 6 and higher for high speed rail systems. The TTCI wheel climb distance 

criterion considers both Nadal’s L V  limit and the L V  distance limit. This criterion, which was 

developed for freight trains with AAR1B wheel profile and 75  flange angle, is considered 

applicable at speeds lower than 80 km/h in the case of curve negotiations. Nadal’s ratio can also 

be used to show that wheels with low flange angles have a lower L V  ratio, and therefore, have 

higher risk of derailment. Results for the effect of flange angle ranging from 63  to 75  on the 

L V  ratio were reported in the literature. The increase of the flange length can also lead to an 

increase of the flange climb distance limit, particularly when the AOA is small (Wu and Elkins, 

1999; Wilson et al., 2004). 

 

1.5 Nadal Derailment Limit 

A large majority of the aforementioned derailment criteria have their roots in the well-known 

Nadal /L V  derailment limit. Nadal’s formula was proposed in order to provide a derailment limit 

on the ratio of the lateral flange/rail contact force to the vertical flange/rail contact force; in other 

words the value at which the wheel climb derailment process will initiate. The formula is given as  

   / tan / 1 tanL V        (1.1) 

where   is a wheel flange angle that defines the angle between the tangent to the wheel surface 

at the point of contact and the wheelset axle. The variable   is the coefficient of friction between 

the flange and rail. This formula was derived in a two-dimensional space shown in Fig. 1.2, 
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assuming that the contact forces can be decomposed into tangential and normal components T  

and N  defined in the track coordinate system (Nadal, 1896; Nadal, 1908).  

 

 

Figure 1.2. Nadal Wheel Climb Interpretation 

 

In addition, Nadal’s ratio does not consider the contact with the track at the other wheel. This 

formula, although attempting to capture the case of a wheel climb derailment, fails to take into 

account the AOA (or any wheelset orientation for that matter) at which the derailments occur. 

Consequently, the effect of the wheelset orientation on the contact geometry is not considered as 

well, and as a result, the correct geometry is not captured by Nadal’s formula. Although subsequent 

criteria have been developed in an attempt to improve Nadal’s derailment limit, Nadal’s criteria is 

still used today because of its simplicity. 
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Numerous investigations have used the Nadal limit in the investigation of derailment 

prevention or to compare new derailment criteria (Cherchas, 1981; Leary et al., 1991; Pearce, 

1996; El-Sibaie et al., 1997; Matej et al., 2002; Nagase et al., 2002; Fraser et al., 2003; Xiao et al., 

2008; Zeng and Guan, 2008; Atmadzhova and Mihaylov, 2010; Schindler et al., 2010; Mahyuddin 

and Febriartanto, 2011; Mohammadzadeh et al., 2011; Choi et al., 2012; Kumar, 2014; Simpson 

et al., 2014). Additionally, numerous investigations fail to recognize the movement of the contact 

point, assume that the contact point occurs at the steepest section of the flange, or neglect the 

wheelset yaw and roll rotations (Gilchrist and Brickle, 1976; Nagurka et al., 1982; Weinstock, 

1984; Ishida and Matsuo, 1999; Takai et al., 2002; Ghazavi and Taki, 2008; Magel et al., 2008; 

Nagumo et al., 2010; Koo and Oh, 2014; Wei et al., 2014). Other investigations have attempted to 

extend or correct Nadal’s derivation (Barbosa, 2004; Braghin et al., 2006; Kardas-Cinal, 2009), 

and some recent investigations have recognized the importance of the wheelset orientation as well 

as the movement of the contact point (Sato et al., 2008; Zeng and Wu, 2008; Santamaria et al., 

2009; Durali and Jalili, 2010; Wang and Li, 2010; Marquis and Greif, 2011; Guan et al., 2014). 

 

1.6 Substructuring and CMS in Vehicle Applications 

Complex vehicle systems can consist of many different components that can be classified as either 

rigid or flexible bodies. Thus, developing multibody system (MBS) models of such systems 

requires the formulation of the equations of motion of the deformable components which have 

infinite number of degrees of freedom. Nonetheless, infinite-dimension spaces are not suitable for 

computational approaches, and therefore approximation techniques, such as the finite element (FE) 

method, are often used. In the FE method, the bodies or structures are subdivided into small 
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structures called elements connected at points called nodes. Each node has a finite number of nodal 

degrees of freedom which are used to approximate the deformation of the body. In the conventional 

FE approach, these degrees of freedom are a combination of nodal displacements and linearized 

rotations. Element interpolation functions then define the element kinematics between the nodal 

points. 

In order to obtain accurate results, a deformable body may be discretized into a very fine 

mesh of elements. Using a fine mesh, however, can lead to a model with a very large number of 

system degrees of freedom, therefore requiring significant computational effort. The desire for 

computational efficiency, while retaining accuracy, prompted the development of coordinate 

reduction techniques such as component mode synthesis (CMS) methods. In these methods, modal 

decomposition of the system produces a modal transformation matrix whose columns are the 

normal vibration modes of the system. The columns of this matrix are truncated in order to 

eliminate insignificant high-frequency vibration modes. The truncated modal transformation 

matrix relates the nodal degrees of freedom to a smaller number of modal coordinates, thus 

reducing the problem dimensionality. The transformed equations of motion can then be solved 

more efficiently using numerical methods. 

The desire for design collaboration between research and development groups working 

within an industry on modeling very complex systems such as large scale aircraft models prompted 

the development of model substructuring techniques. Substructuring techniques allow for dividing 

a complex and large scale structure into several substructures. The mesh of each substructure can 

be developed independently and coordinate reduction techniques can be applied to each 

substructure mesh in order to reduce the dimensionality of the substructure model which is defined 
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in terms of interface nodes. Using the interface nodes, a reduced-order structure mesh can be 

obtained by assembling its reduced-order substructure meshes. A popular substructuring 

technique, which is widely used in MBS software and will be discussed in detail in later sections 

of this dissertation, is the Craig-Bampton method (Bampton and Craig, 1968). In the Craig-

Bampton method, a coordinate partitioning separates the substructure elastic coordinates into 

boundary and internal coordinates. Static condensation of the stiffness matrix produces a set of 

constraint modes. Meanwhile, performing an eigenvalue analysis of the problem associated with 

internal degrees of freedom produces a set of fixed-interface modes. Combination of these two 

mode sets defines the Craig-Bampton transformation. 

 

1.7 Scope and Organization of the Thesis 

Chapter 2 was first published in Computational and Nonlinear Dynamics (Shabana et al, 2012). 

This chapter discusses the effect of the gyroscopic moments in the case of curve negations in order 

to have a better understanding of their significance in the case of railroad vehicle system dynamics.  

In order to understand the effect of the gyroscopic moment in the case of curve 

negotiations, the motion of the body is described using a set of trajectory coordinates which consist 

of an arc length that defines the distance travelled by the body on the curve, two relative 

translational displacements, and three relative angles. The relative translations and relative angles 

define the configuration of the body with respect to a trajectory coordinate system that follows the 

body motion. It is shown that the body angular velocity vector can be written as the sum of two 

vectors; one of them is due to the curvature of the curve, while the second depends on the relative 

rotation of the body with respect to the trajectory coordinate system. This angular velocity depends 
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on the time rate of the distance travelled on the curve as well as the time rate of the relative angles 

(yaw, roll, and pitch). If the yaw and roll angles are constrained and the motion is predominantly 

rolling, the generalized gyroscopic moment associated with the degrees of freedom can be 

negligible. It will be demonstrated in this chapter that, in the case of pure rolling motion with 

constraints imposed on the yaw and roll angles, the Cartesian gyroscopic moment can be different 

from zero but the generalized gyroscopic moment associated with the degrees of freedom will 

always be zero.  

It is important, however, to point out that the gyroscopic moment can be significant in the 

dynamic and stability analysis of railroad vehicle systems. The gyroscopic moments can 

significantly influence the wheel/rail contact forces during curve negotiations, and therefore, the 

effect of this inertia moment must be considered in the analysis of derailment of railroad vehicle 

systems. In the analysis of derailment scenarios, all the moments acting on the wheelset, including 

the gyroscopic moment, must be taken into consideration. This is particularly important in the 

dynamic and stability analysis of high speed rail systems. The analysis presented in this chapter 

sheds light on the danger of using derailment criteria that are not obtained using laws of motion, 

and therefore, should not be used in judging the stability of high speed railroad vehicle systems. 

(Shabana, 2012). 

Chapter 3 was originally prepared in (O’Shea and Shabana, 2016). This chapter is 

concerned with the initiation configuration of flange wheel climb derailments that occur at a large 

wheelset AOA. In this chapter, a three-dimensional kinematic problem is formulated and solved 

using the AOA as an input. The results obtained using this kinematic problem, which is used to 

shed light on the wheel climb initiation, are verified using a fully nonlinear three-dimensional 
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unconstrained MBS model that allows for the wheel/rail separation. A vector of algebraic 

kinematic constraint equations is formulated assuming that the track is fixed in space. These 

kinematic equations, which define the wheel/track three-point contact scenario, are function of the 

wheelset AOA. For a given AOA, these equations can be solved for both the wheelset coordinates 

and the surface parameters used to define the geometry of the contact surfaces. This system of 

equations is solved for the unknown variables using numerical methods. Knowing the system 

coordinates and surface parameters, the wheelset flange angle, and subsequently the contact angle, 

can be correctly determined. The two angles are then compared for different values of the wheelset 

AOA, and the effect on the Nadal formula is investigated.  

The necessity of using correct contact geometry when investigating the onset of wheel 

climb is discussed. Nadal’s formula does not account for any wheelset orientation that is typical 

of a three-point contact scenario, and therefore, does not capture the correct wheel/rail contact 

geometry. Nadal measured the flange angle   with respect to the wheelset axle, while the contact 

angle is measured with respect to the lateral common tangent to the two railheads. As a result, the 

two values will be, in general, different from each other. Additionally, one cannot neglect the 

wheelset orientation and assume that the wheel flange will contact the rail at its steepest point 

during climb investigations. 

It is the purpose of this chapter to shed light on and reinforce the importance of taking into 

account the wheelset orientation as well as to demonstrate that, for a wheelset in contact with a 

tangent track at three distinct points, the system configuration can be fully defined given the 

wheelset AOA. It is intended that the analysis presented in this chapter will be used to determine 
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important derailment parameters and to fully understand the wheel climb derailment initiation 

problem.  

Chapter 4 was first published in Nonlinear Dynamics (O’Shea and Shabana, 2015) and 

contains parts prepared in (O’Shea and Shabana, 2016). This chapter investigates wheel climb 

initiation with respect to the wheelset degrees of freedom, demonstrating that the motion is a 

largely kinematic phenomenon.  

Some researchers make the argument that, in the case of a positive AOA and positive pitch 

angular velocity, the wheel flange contact point on the wheel moves downward thereby creating a 

significant upward friction force if the lateral force significantly increases, leading to a wheel climb 

derailment. This interpretation of the wheel climb derailment implies that the initiation of the climb 

motion is kinetic- (force) based, which requires time history for such a climb initiation since any 

change in the acceleration does not instantaneously affect the positon coordinates. 

However, as the result of the wheel flange contact with the rail, the motion of the wheel 

instantly becomes more restricted, thereby allowing the wheel to move only in specific directions. 

This restriction is a kinematic motion constraint that is applied instantaneously as the wheel flange 

comes into contact with the rail, preventing the wheel from penetrating the rail. The kinematic 

contribution to the climb motion cannot be ignored and is fundamentally different from a kinetic-

based climb initiation. Kinematic wheel climb contributions can be dangerous since they are 

instantaneous and do not require significant applied (external) lateral forces for the initiation.  

It is, therefore, the objective of this chapter is to investigate this argument by 

demonstrating, using the results of a new fully nonlinear unconstrained MBS wheelset derailment 

model, that the initiation of wheel climb can be instantaneous, does not require significant lateral 
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forces, and has significant contribution from kinematic conditions that require the wheel to move 

upward. The MBS model is three dimensional, fully nonlinear, places no constraints on the motion 

of the wheelset, takes into account the geometry of the wheel and rail profiles, and allows for 

wheel/rail separation. In the vicinity of the climb initiation, the results obtained using the fully 

nonlinear unconstrained wheelset model can be validated using the results of a simplified semi-

analytical model, which was originally introduced at conference in (Shabana and O’Shea, 2013). 

The results of the MBS model are then compared against an updated result obtained using the 

correct geometry definition in the derailment criteria, as formulated in Chapter 3. 

The fact that the initiation of wheel climb does not, in general, require significant lateral 

forces raises questions with regard to the application of many derailment criteria in the case of 

relatively large AOA. Such a scenario requires the use of three-dimensional analysis that employs 

both generalized coordinates and non-generalized geometric parameters; the latter are required for 

accurate and general description of the contact surfaces. The analysis presented in this chapter, 

therefore, sheds light on the appropriateness of using the intuition-based / VL  criteria and the 

nature of the measured L  and V  forces. The results of the two models agree that Nadal’s Limit is 

not a conservative criterion when wheel climb scenarios are considered. This conclusion is reached 

using two very different models, and is one of the main contributions of this dissertation. 

Chapter 5 was originally prepared in (O’Shea et al., 2016) and is concerned with CMS 

and substructuring techniques in the analysis of vehicle systems that consist of rigid and 

deformable components. The goal of using CMS and substructuring techniques is to develop a 

convenient form of an already well-defined problem, which has a unique solution that does not 

depend on the solution method used, and to solve this problem at a lower computational cost. CMS 
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and substructuring techniques should not be viewed as techniques that will lead to improved or 

altered solutions. Instead, they should be viewed as techniques that can be used to obtain, more 

efficiently, a good approximation for the unique solution of the well-defined problem.  

CMS and substructuring techniques lead to transformations in which a set of coordinates 

is expressed in terms of another set of coordinates that have a certain physical meaning that allows 

for coordinate reduction. If coordinate reduction is used, the resulting coordinate transformation 

matrix is non-square. The accuracy of the approximate solution, regardless of the method used, 

should be measured against the solution obtained using the square transformation (exact solution 

with no coordinate reduction). The solution of the reduced order model is judged as accurate if 

convergence to the exact solution is obtained.  

For example, consider the original problem defined by the mathematical model Mq Q , 

where M  is an appropriate mass matrix, q  is the vector of coordinates, and Q  is a forcing function 

vector. The second order differential matrix equation Mq Q  has a unique solution which can be 

obtained using standard differential equation or direct method solution techniques. CMS and 

substructuring methods, in which the coordinate vector q  is expressed in terms of another 

coordinate vector p  as q Bp  where B  is a coordinate transformation matrix, should lead to a 

solution that converges to this unique solution. This fact can be easily demonstrated by considering 

the case in which B  is a square and nonsingular transformation. Substituting the transformation 

q Bp  into the original system Mq Q  and premultiplying by the inverse (or alternatively in 

some cases by the transpose) of the transformation B , one obtains  1 1 B MB p B Q . Clearly, 

the similarity transformation 1
B MB  should not change the solution of the original problem. If 
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CMS and substructuring techniques are used, B  is no longer a square matrix. Nonetheless the 

solution obtained by these methods is judged accurate if this solution converges to the solution 

obtained using the square transformation, a special case of which is to consider B  as an identity 

matrix. 

Conventional structural finite elements used with the floating frame of reference (FFR) 

formulation have rigid body modes. In the FFR formulation, however, the large reference motion 

is described using Cartesian coordinates and orientation parameters. It is, therefore, necessary to 

define a unique displacement field by eliminating the rigid body modes of the element shape 

functions. 

In structural mechanics, the boundary conditions are used to define the unique solution of 

the problem Mq Q . These boundary conditions lead to a positive definite stiffness matrix for 

the problem if the boundary conditions eliminate all the rigid body modes. The boundary 

conditions, being algebraic constraint equations, eliminate degrees of freedom and lead to well-

defined problem that has a unique solution. In the FE/FFR formulation, this is accomplished by 

using the reference conditions (boundary conditions) which define the nature of the flexible body 

coordinate system (Agrawal and Shabana, 1985; Shabana, 1996; Shabana, 2013). In addition to 

defining the body coordinate system, the reference conditions define a problem which has a unique 

solution regardless of whether or not substructuring techniques such as Craig-Bampton method, is 

used.  

If the FE/FFR formulation is implemented correctly, the implementation should be general 

to obtain a solution that converges to the unique solution of the problem regardless of which 

coordinate reduction method is used. As previously mentioned, substructuring methods should 
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produce a solution that converges to this unique solution. In the case of free-free structure, the use 

of a combination of static correction and normal modes should not alter the unique solution of the 

problem.  

This fact is particularly important and should not be overlooked when implementing the 

FFR formulation widely used in the analysis of flexible MBS applications. Overlooking this fact 

is an indication that the FE/FFR formulation is not fully understood and a lack of understanding 

this fundamental issue will limit the generality of the FE/FFR implementation as demonstrated in 

this chapter using a simple example. 
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CHAPTER 2 

GYROSCOPIC MOMENTS 

Previously published in (Shabana et al., 2012) and reproduced in this dissertation with permission 

which is listed in Appendix A. Dr. Martin Hamper is a contributing author. 

 

In vehicle system dynamics, the effect of the gyroscopic moments can be significant during curve 

negotiations. The absolute angular velocity of the body can be expressed as the sum of two vectors; 

one vector is due to the curvature of the curve, while the second vector is due to the rate of changes 

of the angles that define the orientation of the body with respect to a coordinate system that follows 

the body motion. In this chapter, the configuration of the body in the global coordinate system is 

defined using the trajectory coordinates in order to examine the effect of the gyroscopic moments 

in the case of curve negotiations. These coordinates consist of arc length, two relative translations 

and three relative angles. The relative translations and relative angles are defined with respect to a 

trajectory coordinate system that follows the motion of the body on the curve. It is shown that 

when the yaw and roll angles relative to the trajectory coordinate system are constrained and the 

motion is predominantly rolling, the effect of the gyroscopic moment on the motion becomes 

negligible, and in the case of pure rolling and zero yaw and roll angles, the generalized gyroscopic 

moment associated with the system degrees of freedom becomes identically zero. The analysis 

presented in this chapter sheds light on the danger of using derailment criteria that are not obtained 

using laws of motion, and therefore, such criteria should not be used in judging the stability of 

railroad vehicle systems. Furthermore, the analysis presented in this chapter shows that the roll 

moment which can have a significant effect on the wheel/rail contact forces depends on the forward 
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velocity in the case of curve negotiations. For this reason, roller rigs that do not allow for the 

wheelset forward velocity cannot capture these moment components, and therefore, cannot be used 

in the analysis of curve negotiations. A model of a suspended railroad wheelset is used in this 

investigation to study the gyroscopic effect during curve negotiations. 

 

2.1 Curve Geometry 

In order to develop an expression for the gyroscopic forces when a body, denoted as body i , 

negotiates a curve, the motion of the body is first described with respect to a body trajectory 

coordinate system ti ti tiX Y Z  that follows the body motion. Assuming that the curve geometry is 

known, the location of the origin and orientation of the body trajectory coordinate system can be 

defined as a function of one parameter, the curve arc length. In addition to this body trajectory 

coordinate system, a centroidal body coordinate system i i iX Y Z  is introduced as shown in Fig. 2.1.  
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Figure 2.1. Curve Geometry and Body Configuration 

 

The body trajectory coordinate system is selected such that it has no displacement in the 

longitudinal direction of motion with respect to the body coordinate system. Consequently, one 

can use two translational coordinates and three angles to completely define the location and 

orientation of the body coordinate system with respect to the trajectory coordinate system. The 

sixth coordinate required to define the body configuration in the global coordinate system XYZ  

is the distance travelled along the curve. This distance is defined by the arc length travelled is  as 

shown in Fig. 2.1. 
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2.1.1 Trajectory Coordinate System 

As previously mentioned, the location of the origin of a trajectory coordinate system ti ti tiX Y Z  that 

follows the motion of body i  can be uniquely defined in terms of the arc length is  by the vector 

( )ti ti isR R ; while the orientation of the trajectory coordinate system ti ti tiX Y Z  at this location 

with respect to the global coordinate system XYZ  can be defined using the three Euler angles 
ti , 

ti , and 
ti  about the three axes tiZ , tiY  and tiX , respectively (Shabana et al., 2008). These three 

Euler angles can be uniquely defined in terms of the arc length is , that is, ( )ti ti is  , 

( )ti ti is  , and ( )ti ti is  . The transformation matrix, expressed in terms of these Euler angles, 

that defines the orientation of the trajectory coordinate system ti ti tiX Y Z  can be written as follows: 

cos cos sin cos cos sin sin sin sin cos sin cos

sin cos cos cos sin sin sin cos sin sin sin cos

sin cos sin cos cos

ti ti ti ti

ti ti ti ti ti ti ti ti ti ti ti ti

ti ti ti ti ti ti ti ti ti ti ti ti

ti ti ti ti ti

           

           

    



   

  



  



A i j k


 
 
 
 

 (2.1) 

While the frame defined by this transformation matrix is not necessarily the Frenet frame, both 

frames share the longitudinal axis tiX  and differ by a simple rotation about this axis (Rathod and 

Shabana, 2006). The sequence of rotation used to develop the transformation matrix of Eq. 2.1 is 

the sequence used by the railroad industry. 
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2.1.2 Trajectory Angular Velocity 

The angular velocity vector of the trajectory coordinate system ti ti tiX Y Z  defined in the global 

coordinate system can be written in terms of the time derivatives of Euler angles as ti ti tiω G θ , 

where        [ ]ti i ti i ti i ti i Ts s s sθ    and (Shabana et al., 2008) 

0 sin cos cos

0 cos sin cos

1 0 sin

ti ti ti

ti ti ti ti

ti

  

  



 
 

   
  

G                                   (2.2) 

Since Euler angles of the trajectory coordinate system are function of is  only, one has 

 ti ti i i ti i

ss s s   θ θ θ , where 
ti ti i

s s  θ θ . It follows that (Shabana et al., 2008)  

ti ti ti i

s sω G θ      (2.3) 

It is clear from this equation that in the case of a tangent track, 
ti

s θ 0 , and as a consequence, 

ti ω 0 . 

 

2.2 Body Configuration 

The global position vector of the center of mass of body i  can be written as 

i ti ti ir R R A u                                                 (2.4) 

where ir
u  is the position vector of the center of mass with respect to the origin of the trajectory 

coordinate system ti ti tiX Y Z . This vector can be defined in terms of two-time dependent 

coordinates as 
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[0 ]ir ir ir Ty zu                                             (2.5) 

where 
iry  and irz  are the coordinates of the center of mass of the body in the tiY  and tiZ  directions, 

respectively. The first element of the vector ir
u  is zero because the trajectory coordinate system 

ti ti tiX Y Z  is selected such that it does not have a displacement with respect to the body coordinate 

system i i iX Y Z  in the longitudinal direction. 

 

2.2.1 Body Orientation 

The rotation matrix ir
A  that defines the orientation of the centroidal body coordinate system 

i i iX Y Z  with respect to the trajectory coordinate system ti ti tiX Y Z  can be expressed in terms of 

three Euler angles 
ir , 

ir , and ir  about the iZ , iX  and iY  axes. This sequence of Euler angle 

rotations leads to the following transformation matrix (Shabana et al., 2008): 

cos cos sin sin sin sin cos cos sin sin sin cos

sin cos cos sin sin cos cos sin sin cos sin cos

cos sin sin cos cos

ir ir ir ir ir ir ir ir ir ir ir ir

ir ir ir ir ir ir ir ir ir ir ir ir ir

ir ir ir ir ir

           

           

    

 
 
 
 
 

  

  



A     (2.6) 

The angles 
ir , 

ir , and ir  are called the yaw, roll, and pitch angles, respectively. In most 

railroad vehicle system simulation scenarios, the yaw and roll angles are small, while the pitch 

angle can be very large due to the wheelset rotation about its axis. 

 

 

 

2.2.2 Body Angular Velocity 
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The absolute angular velocity i
ω  of the body can be written as the sum of two angular velocities; 

the angular velocity ti
ω  of the trajectory coordinate system ti ti tiX Y Z , and the angular velocity ir

ω  

of the body with respect to the trajectory coordinate system. That is, i ti ir ω ω ω , where 

ir ti ir irω A G θ , [ ]ir ir ir ir T  θ , and 

0 cos sin cos

0 sin cos cos

1 0 sin

ir ir ir

ir ir ir ir

ir

  

  



 
 

  
 
 

G                                 (2.7) 

It follows that  

    
i ti ti i ti ir ir

s s ω G θ A G θ     (2.8) 

The matrix ir
G  becomes singular when cos 0ir  , which corresponds to the case in which the 

roll angle approaches / 2 . Because the roll angle is small in most railroad vehicle applications, 

such a singular configuration is not encountered in most simulation scenarios. 

 

2.2.3 Body Trajectory Coordinates 

The analysis presented in this section shows that total of six coordinates are required in order to 

describe the general three-dimensional motion of body i  in the global coordinate system XYZ  in 

terms of the generalized trajectory coordinates which are defined as follows: 

[ ]i i ir ir ir ir ir Ts y z   p                                (2.9) 

Using these trajectory coordinates, the global position vector of an arbitrary point on the body can 

be written as 
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i i i i r R A u                                                (2.10) 

where i ti ti ir R R A u  is the position vector of the center of mass of body i , i ti irA A A  is the 

rotation matrix that defines the orientation of the body coordinate system with respect to the global 

coordinate system, and [ ]i i i i Tx y zu  is the position vector of the arbitrary point on the body 

defined in the body coordinate system. Equation 2.10 is, therefore, expressed in terms of the six 

generalized trajectory coordinates defined by Eq. 2.9 since ( )ti ti isR R , ( )ti ti isA A , 

( , )ir ir ir iry zu u , and ( , , )ir ir ir ir ir  A A . 

 

2.3 Gyroscopic Moments 

In order to understand the effect of the gyroscopic moments in the case of curve negotiations, the 

Newton-Euler equations will be used. In order to obtain a simpler form of the gyroscopic moments 

in these equations, the absolute angular velocity vector of the body can be defined in the body 

coordinate system. Using Eq. 2.8 and the fact that i ti irA A A , one has 

   
i iT i iT ti ti i irT ir ir

s s  ω A ω A G θ A G θ     (2.11) 

This definition of the angular velocity will be used to develop a velocity transformation that will 

shed light on the nature of the gyroscopic moments in the case of curve negotiations. It is clear 

that the absolute angular velocity vector of Eq. 2.11 can be written as the sum of two vectors; 

iT ti ti i

s sA G θ  and irT ir ir
A G θ . The first vector, 

iT ti ti i

s sA G θ , is the result of the curvature of the curve. 

In the case of straight line motion (tangent tracks), 
ti

s θ 0 , and the first vector on the right hand 
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side of Eq. 2.11 is zero. The second vector, irT ir ir
A G θ , is the result of the change of the orientation 

of the body with respect to the curve.  

 The spatial Newton-Euler equations of motion are given as 

( )

i ii

e

i i i i ii

e

m

 

    
    

     

I 0 FR

0 I M ω I ωα
                            (2.12) 

where im  is the mass of the rigid body, I  is a 3 3  identity matrix, 
i

I  is the inertia tensor defined 

with respect to the centroidal body coordinate system, i iα ω  is the absolute angular acceleration 

vector defined in the body coordinate system, 
i

eF  is the resultant of the external forces defined in 

the global coordinate system, and 
i

eM  is the resultant of the external moments defined also in the 

body coordinate system.  

 The Cartesian gyroscopic moment defined in the body coordinate system in Eq. 2.12 is 

the vector ( )i i i

ω I ω . One can show that this moment becomes the zero vector in the case of a 

simple rotation about a fixed axis. This Cartesian gyroscopic moment can be different from zero 

during curve negotiations even if two angles are constrained. Nonetheless, as will be demonstrated 

in this chapter, the generalized gyroscopic moment associated with the degree of freedom is zero 

if the angular velocity can be written in terms of the time rate of one coordinate only. 

 

 

 

2.4 Rotation Constraints 
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Consider the special case of curve negotiation in which the yaw and roll angles 
ir  and 

ir  remain 

equal to zero. If these conditions are imposed as algebraic equations, one has 

    0, 0ir ir        (2.13) 

In this special case, the matrices ir
A  and ir

G  reduce to  

  

cos 0 sin 0 1 0

0 1 0 , 0 0 1

sin 0 cos 1 0 0

ir ir

ir ir

ir ir

 

 

   
   

    
      

A G    (2.14) 

It follows that the second term on the right hand side of Eq. 2.11 reduces to 
i irj , where 

i
j  is a unit 

vector along the iY  axis of the body. 

 

2.4.1 Angular Velocity 

In the case of the constrained motion considered in this section, the angular velocity vector of Eq. 

2.11 can be written as 

    
i iT ti ti i i ir

s s  ω A G θ j     (2.15) 

This equation shows that in the case in which two relative rotations are constrained when the body 

negotiates a curve, the angular velocity vector can be written as the sum of two vectors; one vector 

iT ti ti i

s sA G θ  is due to the curve negotiation, while the other vector 
i irj  is due to the pitch rotation. 

While in this case there is a gyroscopic moment, the effect of this gyroscopic moment on the 
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motion becomes negligible as the body approaches a state of pure rolling. The angular velocity 

vector of Eq. 2.15 can also be written in the following form: 

 
2 2

sin 0 sin 0

0 1 0 1

cos 0 cos 0

ir ir

ti

i ti ir i i

ir

ir ir

 


 


 

     
     

        
         

ω H p    (2.16) 

In this equation, 

   
2 2

sin 0

0 1 ,

cos 0

ir

ti

i i

ir

ir







 
  

    
  

 

H p     (2.17) 

 

2.4.2 Cartesian Gyroscopic Moment 

One can show in this case of two independent coordinates, 
ti  and ir , that the Cartesian 

gyroscopic moment vector ( )i i i

ω I ω  is given by 

  

 

   

 

2

cos

1
( ) sin 2

2

sin

ti ir i i ir

zz yy

i i i ti i i ir

zz xx

ti ir i i ir

xx yy

I I

I I

I I



  

 

  

 
 
 

   
 

 
 

ω I ω     (2.18) 

In deriving this equation, a diagonal inertia tensor is assumed such that 

    

0 0

0 0

0 0

i

xx

i i

yy

i

zz

I

I

I



 
 

  
 
 

I      (2.19) 
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Equation 2.20 defines the vector of Eq. 2.18 in the body trajectory coordinate system. As will be 

shown later, this expression for the gyroscopic moments simplifies considerably in the case of a 

uniform disk. 

  

    

   

 

2 2

2

cos sin

1
( ) sin 2

2

1
sin 2

2

ti ir i i ir i i ir

zz yy xx yy

ir i i i ti i i ir

zz xx

ti ir i i ir

xx zz

I I I I

I I

I I



   

 

  

 
   

 
   
 
 
 
 

A ω I ω (2.20) 

 

2.4.3 Cartesian and Generalized Gyroscopic Moments 

Euler equations of motion can be written as (Eq. 2.12) 

    ( )i i i i i i

e   I α M ω I ω     (2.21) 

Substituting for 2 2 2 2

i i i i i α H p H p  and pre-multiplying by the transpose of 2

i
H , one obtains the 

following matrix equation that includes two scalar equations: 

   2 2 2 2 2

i i i i i

e v g  M p Q Q Q     (2.22) 

In this equation, 

  

 

 

   

2 2

2 2 2
2

1
0 sin 2

, ,2
0

0

1
sin 2

2
,

1
sin 2

2

i i ir

i i ti irzz xx

vi

yy

ti ir i i ir

zz xx
i i T i i

e e g

ti i i ir

xx zz

I I I

I

I I

I I

             

 

  
   
     

M Q

Q H M Q

 
 

  

 

  (2.23) 
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In this equation, 
2 2sin cosi i ir i ir

xx zzI I I    , 2

i

vQ  defines the generalized Coriolis moments 

associated with the independent coordinates 
ti  and ir , and 2

i

gQ  defines the generalized 

gyroscopic moments associated with 
ti  and ir . It is important to point out that the vector i

R  in 

Eq. 2.12 can be expressed in terms of the trajectory coordinates as well. This can lead to a different 

form of the generalized Euler equations, and a different form of the equations of motion. Since the 

interest in this chapter is on the gyroscopic moments which can be obtained from the information 

presented in Euler equations, the details of the formulation of the equations of motion in terms of 

the trajectory coordinates will not be provided in this chapter. These details can be found in 

previously published work (Shabana et al., 2008). 

 

2.4.4 Uniform Disk 

In the special case of uniform disk, 
i i

xx zzI I . In this special case, the generalized gyroscopic 

moment 2

i

gQ  of Eq. 2.23 is equal to zero, while the Cartesian gyroscopic moment of Eq. 2.18 

defined in the disk coordinate system reduces to 

   

 

 

cos

( ) 0

sin

i i ir

zz yy

i i i ti ir

i i ir

xx yy

I I

I I

 
 

   
 

  

ω I ω



 



   (2.24) 

This equation shows that the iY  component of the Cartesian gyroscopic moment is identically 

equal to zero. 
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 The gyroscopic moment vector of Eq. 2.20 defined in the trajectory coordinate system 

reduces to 

   
 

( ) 0

0

i i

xx yy

ir i i i ti ir

I I 
 

   
 
  

A ω I ω      (2.25) 

This equation shows that, in the case of constant curvature, pitch angular velocity, and forward 

velocity; the tiX  component of the gyroscopic moment remains constant during curve 

negotiation, while the tiY  component of the gyroscopic moment is identically zero. This result is 

expected in the trajectory coordinate system since the angular velocity along the roll axis is 

assumed to be zero. The rotation about the other two axes produce non-zero gyroscopic moment 

component along the roll axis. Since the generalized gyroscopic moment is equal to zero, the non-

zero gyroscopic roll moment will have an effect only on the constraint moment associated with 

the roll angle. In railroad vehicle system applications, this roll gyroscopic moment can influence 

the wheel/rail contact forces, as will be demonstrated by the results presented in the chapter. 

 

2.4.5 Comments on Railroad Derailment Criteria 

Some of the derailment criteria used by railroad industry is based on the ratio between the lateral 

force L  and the vertical force V  applied to a wheel. The L V  ratio has its root in Nadal’s formula. 

According to these derailment criteria, derailment will not occur if the L V  ratio remains small. 

The L V  ratio is obtained using a planar transformation of the forces at the contact point, and 

therefore, it does not take into consideration the effect of the gyroscopic moments. In order to 
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understand some of the assumptions made when using such a criterion, an example of a wheel is 

considered. Consider the case in which 39.031ir   rad/s, 17.8816is   m/s (64.374 km/h), the 

radius of curvature of the curve 349.4i tiR s    m, the rolling radius 0.4572r   m, 

656i i

xx zzI I   kg.m2, and 168i

zzI   kg.m2. Using these data, one can show that the non-zero tiX  

component of the gyroscopic moment is 974.794 N.m. If the speed is doubled (128.748 km/h), one 

can show that this non-zero component of the gyroscopic moment will be 3899.178 N.m. High 

speed rail systems operate at much higher speeds, and therefore, further increase in the speed can 

lead to a significant increase in the gyroscopic roll moment. When approaching pure rolling during 

curve negotiation (i.e. very small slip rate), there can be situations in which the lateral forces are 

negligible. Nonetheless, a significant roll gyroscopic moment can be created and can have 

significant effect on the normal forces. For this reason the use of criteria based on the L V  ratio, 

which does not take into account the effect of all forces and moments acting on the wheelset, must 

be carefully examined when high speed rail systems are considered (Shabana, 2012).  

 

2.5 Pure Rolling 

Using Eq. 2.23, one can show that in the case of uniform disk, the generalized Coriolis and 

gyroscopic moments are identically the zero vectors. In this section, it will be shown that in the 

case of pure rolling, the generalized gyroscopic moment vanishes regardless of whether or not the 

disk is uniform. 

 In the case of pure rolling, the forward velocity of the body is  is related to the time rate 

of the pitch angle ir . In this case, one has the rolling constraint condition 
i irs  , where   is 
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a constant. Substituting this rolling condition into Eq. 2.15, one obtains the following expressions 

for the angular velocity and angular acceleration: 

   ,i i ir i i ir i ir    ω H α H H     (2.26) 

where i
H  is a velocity transformation matrix that has dimension 3 1 , and is defined as  

    
i iT ti ti i

s H A G θ j      (2.27) 

 The Euler equation of motion is ( )i i i i i i

e   I α M ω I ω  (see Eq. 2.12). Substituting the 

angular acceleration from Eq. 2.26 into the Euler equation and pre-multiplying by the transpose of 

the velocity transformation matrix i
H , one obtains the following scalar equation: 

      ( )iT i i ir iT i i i ir iT i i i

e      H I H H M I H H ω I ω    (2.28) 

In this equation, the gyroscopic moment vector reduces to the scalar  ( )iT i i i

H ω I ω . One can 

show that this scalar is equal to zero since the angular velocity in this special case of pure rolling 

becomes a function of the time rate of one variable ir , and as a consequence, i
H  reduces to a 

vector. To show that in this case the generalized gyroscopic moment associated with the degree of 

freedom vanishes, the scalar  ( )iT i i i

H ω I ω  can be written using Eq. 2.16 as 

    ( ) ( ) ( ) 0iT i i i iT i i i ir iT i i i ir

       H ω I ω H H I ω H H I ω   (2.29) 

In this equation, i
H  is the skew symmetric matrix associated with the vector i

H   i i H H 0 . 

Equation 2.29 shows that the generalized gyroscopic moment associated with the degree of 

freedom vanishes when two angles are constrained and the body experiences pure rolling. This 
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occurs regardless of whether or not the disk is uniform. If the motion is predominantly rolling with 

insignificant sliding, the generalized gyroscopic moment associated with the degree of freedom 

will be negligible. The numerical results presented in following sections will be used to 

demonstrate this fact. 

 

2.6 Redundant Coordinate Formulation 

In this section, a closed form expression for the equations of motion that govern steady state 

curving of a wheelset is obtained using redundant coordinates which are not totally independent 

because of the motion kinematic constraints. Such a formulation helps in understanding the 

direction of the inertia moments in a Cartesian space. The resulting equations will be used to shed 

light on the significant effect of the gyroscopic and Coriolis roll moments on the wheel/rail contact 

forces. In the analysis presented in this section, it is assumed that the wheelset travels with a 

constant forward velocity in order to justify the use of the rotational equations developed. 

 

2.6.1 Motion Constraints and Assumptions 

If the roll angle 
ir  and yaw angle 

ir  with respect to the track are assumed negligible, the 

transformation matrix that defines the orientation of the wheelset with respect to the track 

coordinate system can be defined using the transformation matrix ir
A  of Eq. 2.14. As previously 

mentioned, the assumptions of no roll and yaw angles relative to the track must be imposed as 

kinematic constraints if these two angles are not considered in the formulation of the dynamic 
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equations. The algebraic equations that define the zero roll and yaw angles are 0ir  , and 0ir   

(Eq. 2.13).  

The relationship between the absolute angular velocity vector i
ω  defined in the wheelset 

coordinate system and the same angular velocity vector  
t

i
ω  defined in the track coordinate 

system is    
T t

i ir iω A ω . The angular acceleration vector i
α  defined in the wheelset coordinate 

system can then be expressed in terms of the absolute angular acceleration vector 

       
T

t tt ti

x y z   
  

α  defined in the track coordinate system as 

       
TT t t

i ir i ir i α A α A ω     (2.30) 

In this equation,   0
T

t
i ir ti    ω  is the absolute angular velocity vector defined in the track 

coordinate system, 
ti is R  , and R  is the radius of curvature of the track space curve. It follows 

that  

   
cos

0

sin

ir

T t
ir i ir ti

ir



 



 
 

   
 
 

A ω     (2.31) 

This component of the angular acceleration, which is quadratic in the velocities, must be 

considered if the equations of motion of the wheelset are written in terms of absolute accelerations 

defined in the track coordinate system. 

 

2.6.2 Rotational Equations of Motion 
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In the case of constrained motion, Euler equations can be written as 

 i i i i i i i

e c    I α M ω I ω M , where 
i

cM  is the vector of constraint moments resulting from 

imposing the conditions of zero roll and yaw relative to the track coordinate system. Substituting 

Eq. 2.30 into Euler equations and premultiplying by ir
A , which is the transpose of the velocity 

transformation matrix of Eq. 2.30, one obtains 

                  
Tt t t t t t t t

i i i i i i i ir i ir i

c      I α M M ω I ω A I A ω   (2.32) 

In this equation,    
t T

i ir i ir

 I A I A , and  
t

i ir iM A M  and  
t

i ir i

c cM A M  are, respectively, 

the vectors of resultant and constraint moments defined in the track coordinate system. Because of 

the wheelset symmetry due to its circular shape, one can show that  
t

i i

 I I . Note that the last 

term in the preceding equation is quadratic in the velocity and it is of the same order as the 

gyroscopic moment. Note also that the constraint moment vector  
t

i

cM  is not equal to zero because 

Eq. 2.32 is expressed in terms of redundant coordinates and not the degrees of freedom. 

Furthermore, is  does not appear in the preceding equation since the forward velocity of the 

wheelset is assumed to be constant. If the forward velocity is not assumed constant, the equations 

of motion must include inertia coupling between the forward motion and rotations of the wheelset. 

Using the fact that 
i i

xx zzI I , the preceding equation can be written more explicitly as 

 

 

 

 

 

 

 

 

 

 
0 0

0 0

tt t ii i i
i i icxx x x x zz yy xx

t t t
i i i i ir ti ir ti

yy y y c y

t t ti i i i
zz z z c z

MI M I I I

I M M

I M M



    



    
       
       

          
       

       
     

  (2.33) 
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This equation reduces to Eq. 2.34. These are the equations that govern the rotational motion of the 

wheelset in terms of absolute accelerations defined in the track coordinate system. 

 

 

 

 

 

 

 

 

 

0

0

tt t ii i i
cxx x x x

yy
t t t

i i i i ir ti

yy y y c y

t t ti i i i
zz z z c z

MI M
I

I M M

I M M



  



    
      
      

        
       
    

     

   (2.34) 

Note that the last vector on the right side of this equation is the sum of two vectors; the gyroscopic 

moment vector and the Coriolis moment resulting from the expression of the absolute acceleration 

defined in the track coordinate system. In the case of unconstrained motion, the equation of motion 

along the roll axis is    
t t

i i i ir ti i

xx x x yyI M I    . This equation shows that for positive ir  and 

ti , the roll moment 
ir ti i

yyI   tends to load the outer wheel. The gyroscopic moment defined by 

the third vector on the right hand side of Eq. 2.33, however, tends to load the inner wheel since 
i

xxI  

is always greater than 
i

yyI . Therefore, ignoring any of the last two vectors on the right hand side of 

Eq. 2.33 can lead to incorrect wheel/rail forces. Equations 2.33 and 2.34 also show that the 

quadratic velocity roll moment components are functions of the wheelset forward velocity (

ti is R  ), and therefore, scaled roller rigs that do not allow for the forward motion of the 

wheelset will not capture these roll moment components and such roller rigs cannot be used in the 

analysis of curve negotiations. 

 

2.7 Numerical Simulations 
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In this section, a model of a suspended wheelset is used to examine the gyroscopic moments during 

curve negotiations. The gyroscopic moments are obtained using two different simulation models 

which have different numbers of degrees of freedom. In the first model, the wheelset is assumed 

to have six degrees of freedom with respect to the track; in this case, no constraints are imposed 

on the rotations of the wheelset. In the second simulation model, the yaw and roll rotations of the 

wheelset with respect to the trajectory coordinate system are constrained, leading to a suspended 

wheelset model that has four degrees of freedom. As previously discussed in this chapter, while 

two rotations (yaw and roll) are constrained in the four degree of freedom model, the gyroscopic 

moments are non-zero because of the track curvature and wheelset pitch rotation. In order to 

examine the gyroscopic effects on the wheelset dynamics and contact forces, an additional 

simulation scenario is considered; in this scenario the gyroscopic moment is eliminated from the 

equations of motion. All numerical results presented are obtained using the general purpose 

multibody system (MBS) computer program SIGMA/SAMS (Shabana, 2010). 

 

2.7.1 Wheelset/Track Model 

The suspended wheelset model considered in this section consists of a track, a wheelset, and a 

frame as shown in Fig. 2.2.  
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Figure 2.2. Suspended Wheelset/Track Model 

 

The track, which is an S-curve, is assumed to be fully constrained during the simulation. The track 

space curve geometry defined by the data given in Table 2.1 is shown in Fig. 2.3.  
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Node # 
Distance 

(ft) 

Curvature 

(deg.) 

Super-

elevation 

(in) 

Grade (%) 
Right rail 

cant angle 

Left rail 

cant angle 

1 0 0 0 0 0.025 -0.025 

2 200 0 0 0 0.025 -0.025 

3 600 3 3 0 0.025 -0.025 

4 900 3 3 0 0.025 -0.025 

5 1200 0 0 0 0.025 -0.025 

6 1600 0 0 0 0.025 -0.025 

7 1900 -3 -3 0 0.025 -0.025 

8 2200 -3 -3 0 0.025 -0.025 

9 2600 0 0 0 0.025 -0.025 

10 2800 0 0 0 0.025 -0.025 

Table 2.1. Track Parameters 
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Figure 2.3. Track S-Curve Lateral Position 

 

A small radius of curvature is used in some segments of the track in order to increase the 

contribution of the forward velocity of the wheelset during curve negotiations to the gyroscopic 

moments. The wheelset has a mass of 1,568 kg, and has mass moments of inertia of 658, 168, and 

658 kg.m2 about the centroidal body coordinate system axes iX , iY , and iZ  respectively. The 

wheelset is given an initial velocity is 83 m/s (185 mph), an initial angular velocity 181.748ir

rad/s, and an initial lateral disturbance of 0.5 m/s to initiate the hunting phenomenon (Gilchris, 

1998). The frame is connected to the wheelset using four linear spring-damper elements. The frame 

has a mass of 10,000 kg, a mass moment of inertia about its X and Y axes of 1,799 kg.m2, and a 

mass moment of inertia about its Z  axis of 2,450 kg.m2. The first two spring-damper elements 
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act in the lateral direction and have stiffness coefficients 300
y

k  KN/m and zero damping 

coefficients, while the remaining two spring-damper elements act in the longitudinal direction and 

have stiffness and damping coefficients 162
x

k  KN/m and 12
x

c  KN·s/m respectively. The 

frame is assumed to have a constant forward velocity of 83is m/s throughout the simulation. All 

other degrees of freedom of the frame with respect the track are assumed to be constrained. 

Therefore, if no other constraints are imposed on the motion of the wheelset and the wheel/rail 

contact is assumed to be elastic, the model has six degrees of freedom which define a general 

motion of the wheelset with respect to the track. If the yaw and roll rotations of the wheelset are 

constrained, the model has four degrees of freedom that define the motion of the wheelset with 

respect to the track. Because of the track curvature and pitch rotation of the wheelset, the wheelset 

is also subjected to gyroscopic moments when the four degree of freedom model is used. 

 

2.7.2 Model Results with the Gyroscopic Moment 

In the numerical study presented in this section, the gyroscopic moments acting on the wheelset 

during curve negotiations are evaluated. Imposing rotational constraints on the wheelset has an 

effect on the gyroscopic moment which is also examined by comparing the results of two different 

simulation scenarios. In the first scenario no constraints are imposed on the motion of the wheelset, 

leading to a six degree of freedom model (6-DOF model). In the second simulation scenario, 

constraints are imposed on the wheelset yaw and roll angles such that 0ir   and 0ir   (4-DOF 

model). Figures 2.4 and 2.5 show the wheelset lateral displacement and yaw angle when the 6-

DOF model is used during curve negotiation.  
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Figure 2.4. Wheelset Lateral Displacement 
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Figure 2.5. Wheelset Yaw Rotation 

 

Figure 2.6 shows the resultant of the forces acting at the center of mass of the wheelset. The 

components of the resultant force vector shown in this figure are defined in the trajectory 

coordinate system. 
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Figure 2.6. Components of the Wheelset Resultant Force Vector 

( X, Y,  Z) 

 

Figure 2.7 shows the components of the resultant moments acting on the wheelset. These 

components, which are defined in the trajectory coordinate system, include the effect of the contact 

forces as well as the gyroscopic moments. 
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Figure 2.7. Components of the Wheelset Resultant Moments 

( X, Y,  Z) 

 

Figure 2.8 shows the components of the gyroscopic moments defined in the trajectory coordinate 

system, while Fig. 2.9 shows the difference between the resultant moments acting on the wheelset 

and the gyroscopic moments.  
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Figure 2.8. Components of the Wheelset Gyroscopic Moments 

( X, Y,  Z) 
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Figure 2.9. Difference between the Wheelset Resultant and Gyroscopic Moments 

( X, Y,  Z) 

 

It should be noted that the spikes in the results presented in these figures occur at the spiral entries 

and exists. Figure 2.10 shows the magnitude of the gyroscopic moment applied to the wheelset as 

it negotiates the S-curve in the case of the two different simulation scenarios considered in this 

chapter.  
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Figure 2.10. Magnitude of the Wheelset Gyroscopic Moment 

( 4-DOF,  6-DOF) 

 

It can be seen that the magnitude of the gyroscopic moment experienced by the wheelset increases 

for both simulations as the curved sections of track (shown in Fig. 2.3) are negotiated. In the case 

of the 6-DOF model, the rotations of the wheelset relative to the track are the cause of oscillations 

in the magnitude of the gyroscopic moment applied to the body. In the case of the 4-DOF model, 

the yaw and roll rotations are eliminated using the rotational constraints, and therefore, the 

magnitude of the gyroscopic moment experienced by the wheelset does not have the oscillations 

that appear in the results of the 6-DOF model. 
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2.7.3 Gyroscopic Moments and Wheelset Dynamics 

In order to examine the effect of the gyroscopic moments on the dynamics of the wheelset, a third 

simulation model is introduced. In this model, the gyroscopic moment is eliminated from the 

equations of motion of the six degree of freedom wheelset during the negotiation of the S-curve 

(6-DOF-WG model). 

 The wheelset lateral displacement with respect to the track is shown in Fig. 2.11 as a 

function of time for the three simulations.  

 

 

Figure 2.11. Wheelset Lateral Displacement 

( 6-DOF,  4-DOF, 6-DOF-WG) 
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When the effect of the gyroscopic moments is neglected (6-DOF-WG model), the wheelset 

eventually derails demonstrating the significant effect of the gyroscopic moment. Figures 2.12 and 

2.13 show a comparison of the normal contact forces for the 6-DOF and 6-DOF-WG models.  

 

 

Figure 2.12. Wheelset Normal Forces at Right Contact 

( 6-DOF-WG,  6-DOF) 
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Figure 2.13. Wheelset Normal Forces at Left Contact 

( 6-DOF-WG,  6-DOF) 

 

Eliminating the gyroscopic effect on the wheelset causes the loads on the inner and outer wheels 

to be different in magnitude from the loads in the case in which the gyroscopic moment is 

considered. Wheel lift, as the result of wheel unloading, when coupled with lateral instability, can 

result in a high potential for vehicle derailment (Nishimura, 2009). 

 

2.8 Concluding Remarks 

It is shown in this chapter that the generalized gyroscopic moment associated with the degree of 

freedom of a body can be insignificant in the case of curve negotiation when the yaw and roll 

angles are constrained and the motion is predominantly rolling. This, however, is not the case in 
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derailment scenarios where the gyroscopic moments can be significant. As a result, the gyroscopic 

moments should be considered in developing derailment criteria for railroad vehicle systems. At 

high speeds, the roll gyroscopic moment can have a significant effect on the normal contact force 

at the wheels in contact with the rail. In the case of high speeds, all the moments acting on the 

wheel, including the gyroscopic moment, must be included in the analysis. The analysis presented 

in this chapter, therefore, sheds light on the assumptions made when using railroad vehicle 

derailment criteria that are based on the L V  ratio, where L  is the lateral force and V  is the vertical 

force acting on the wheel. These derailment criteria are not in general obtained using laws of 

motion, and therefore, should not be used in judging the stability of railroad vehicle systems.  

 The analysis presented in this chapter shows that the roll moment which can have a 

significant effect on the wheel/rail contact forces depends on the forward velocity in the case of 

curve negotiations. For this reason, roller rigs that do not allow for the wheelset forward velocity 

cannot be used in the analysis of curve negotiations.
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CHAPTER 3 

THREE-POINT CONTACT 

Previously prepared in (O’Shea and Shabana, 2016) and reproduced in this dissertation with 

permission which is listed in Appendix A. 

 

In previous research, a set of nonlinear algebraic kinematic constraint equations were developed 

that describe the configuration of a wheelset in contact with a track at two distinct points. In such 

a case of two points of contact, a simplified wheelset model that has the lateral displacement and 

angle of attack (AOA) as the independent variables can be developed. In the current chapter, this 

approach is extended to the case of a wheelset in contact with a tangent track at three distinct 

points. The solution of this three-point contact problem requires specifying the wheelset AOA 

only. This wheelset configuration is significant in derailment investigations because it is a possible 

configuration at the initiation of a wheel climb derailment. In order to study this wheel climb 

initiation configuration, a set of nonlinear kinematic constraint equations is developed as a function 

of the wheelset AOA and solved for the unknown system coordinates and contact surface 

parameters using an iterative Newton-Raphson algorithm. The wheelset AOA during wheel climb 

derailments can be determined forensically at the derailment site, making this approach of practical 

significance. It is shown in this chapter that the system configuration can be fully defined for wheel 

climb derailment initiation, which allows for the investigation of various derailment parameters 

such as the wheel/rail contact angle. It is then reinforced in this study that the wheelset flange 

angle, which is the angle between the tangent to the wheel surface at the contact point and the 
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wheelset axle, is not representative of the wheel/rail contact angle, which is the angle between the 

tangent to the contact surfaces and the lateral common tangent to the two railheads; this distinction 

can only be demonstrated through full definition of the system configuration that accounts for the 

wheelset roll angle. This chapter therefore calls into question the Nadal /L V  derailment limit as 

well as any investigation that chooses to neglect the wheelset orientation or the effect of such 

orientation on the wheel/rail contact geometry. This chapter is not intended as a derailment criteria 

proposal, but rather as support and rationalization for the use of correct contact geometry in 

derailment investigations. This chapter reiterates the important result that the Nadal /L V  

derailment limit is not conservative, and demonstrates that, with proper formulation, more accurate 

and justifiable derailment criteria can be developed. 

 

3.1 Semi-Analytical Analysis 

The system considered in this section is a railroad vehicle wheelset in contact with a track section 

at three distinct points: one point of contact on each wheel tread, and one point of contact on the 

flange of the right wheel. A three-point contact scenario is a significant case of study and therefore 

examined in this chapter as it is a configuration at which wheel climb derailments initiate: as the 

wheel flange makes contact with the rail and the wheel begins to climb, the contact point switches 

from the wheel tread to the wheel flange. Therefore, at least for an instant, contact is made at three 

points and can be considered as an initiation configuration of the wheel climb motion. 

Understanding the wheelset configuration at this critical point in time can assist derailment 

investigations and produce more applicable derailment criteria. The investigation presented in this 
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section is three-dimensional. The unconstrained configuration of this two-body system must then 

be defined using twelve system coordinates which can be written in vector form as 

T
w w w w w w r r r r r r

x y z x y zR R R R R R        q  (3.1) 

 where i
R  is the position vector of the body i  reference, and 

i , 
i , and i  are the three 

independent rotational coordinates of body i , where ,i w r  indicates the wheel and track, 

respectively. A vector of algebraic kinematic constraint equations that restrict motion and define 

the system configuration at the position level is formed using the approach outlined in appendix 

B, which includes fixed-coordinate constraints, contact constraints, and driving constraints 

(Shabana, 2010). The number of constraint equations imposed on the system is equal to the number 

of unknown system coordinates q  and system surface parameters s  in order to fully define the 

system configuration, where the vector s  is written as 

1 2 3

T
T T T   s s s s  (3.2) 

where  

1 2 1 2 , 1,2,3
T

w w r r

k k
s s s s k   s  (3.3) 

In this equation, k  refers to the contact number. The vector of constraint equations can then be 

solved, using an iterative approach such as the Newton-Raphson algorithm, for the unknown 

system coordinates and surface parameters. With the system configuration known, parameters such 

as the wheel/rail contact angle can be investigated. 
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3.2 System Description 

A railroad vehicle wheelset and track are considered in this chapter. A wheelset coordinate system 

w w wX Y Z  is rigidly attached to the wheelset center and therefore follows the translation and 

rotation of the wheelset, as shown in Fig. 3.1. 

 

 

Figure 3.1. Coordinate Systems 
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The wheel profiles are assumed symmetric and assumed constant through a full revolution about 

the wheelset axis, and therefore, for this chapter, the location of contact point k  on the wheelset 

surface can be defined, as shown in Fig. 3.2, as 

    

   

    

1 2

0 1

1 2

sin

cos

w w

k k

w w w

k
k k

w w

k k

g s s

y s

g s s

 
 
 

  
 
 
 

u  (3.4) 

where   1

w

k
g s  is the wheel profile function shown in Fig. 3.3, and  0

w

k
y  is the lateral distance 

of the wheel profile function origin wp wp wpX Y Z  from the wheelset center. 
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Figure 3.2. Wheel Profile and Surface Description 
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Figure 3.3. Wheel Profile Function 

 

 For the wheelset used in this chapter,  0 0.74w

k
y    m.  

The track used in this chapter is a straight track. A track coordinate system r r rX Y Z , rigidly 

attached to the track centerline, has the same position and orientation as the global reference frame 

XYZ , shown in Fig. 3.1. The rail profiles are assumed symmetric and constant along the length 

of the track, and therefore the location of contact point k  on the track surface can be defined, as 

shown in Fig. 3.4, as 
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 

      
    

1

0 2 2

2 2

cos sin

sin cos

r

k

r r r r

k k k
k k k

r r

k k
k k

s

y s f s

s f s

 

 

 
 
 

   
 
 
 

u  (3.5) 

where   2

r

k
f s  is the rail profile function shown in Fig. 3.5,  0

r

k
y  is the lateral distance of the 

rail profile function origin rp rp rpX Y Z  from the track centerline, and k  is the inclination of the 

rails in the direction of the track center.  

 

Figure 3.4. Rail Profile and Surface Description 
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Figure 3.5. Rail Profile Function 

 

For this chapter, it is assumed that  0 0.75565r

k
y   m and 25k   mrad.  

The wheelset and track are considered rigid in this chapter, and therefore, the penetration 

of the surfaces of the two bodies is not allowed. On the other hand, it is assumed that the wheelset 

remains in contact with the track at three distinct points, and therefore, separation of the wheelset 

from the track at any of these points is not allowed either. This configuration is a possible wheel 
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climb initiation configuration that exists at least for an instant. Finally, the track is assumed fixed 

in space, and therefore, the system has three degrees of freedom that can be specified in order to 

fully define the configuration of the system. In this chapter, the longitudinal wheelset position, the 

wheelset AOA, and the wheelset pitch rotation are selected as these driving variables. For a tangent 

track section, with constant rail profiles, the wheelset longitudinal position may be set to a constant 

or zero, for simplicity, without loss of generality. Additionally, for a symmetric wheelset without 

surface deformations, the wheelset pitch rotation may also be set to a constant or zero, for 

simplicity, without loss of generality. Therefore the system configuration in this chapter is driven 

by the wheelset AOA. 

 

3.3 Lead/Lag Contact 

When resting at a neutral position on a section of tangent track, the wheelset will contact the track 

at one point on each wheel tread; these contact points are located in-plane with the wheelset axis. 

When the wheelset is shifted laterally, a displacement that leads to a flange contact with the rail, 

the wheelset must undergo a roll rotation, which is defined as a rotation about the forward axis of 

the wheelset, due to the slight taper of the wheel tread sections: the rolling radius of the flanging 

wheel will increase and the rolling radius of the other wheel will decrease. The three contact points, 

however, will still be located in-plane with the wheelset axis: this configuration refers to the case 

of zero AOA. As the wheelset is rotated to some AOA, while maintaining three points of contact 

with the track, a lead-lag contact scenario is encountered: the contact points are now located in 

front of and behind the wheelset axis, with respect to the wheelset coordinate system. The contact 

geometry at such orientation is significantly different than the case of zero AOA and therefore 



63 

 

 

 

must be considered. The forward shift of the flange contact point versus the wheelset AOA is 

shown in Fig 3.6, including a side-view of the wheel as reference.  

 

 

Figure 3.6. Lead Contact on Wheel Flange 

 

In addition to the flange contact point moving forward with respect to the wheelset axis, the contact 

point will also move downward along the flange profile towards the tip of the flange as well. This 
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phenomenon is also shown as a function of the wheelset AOA in Fig. 3.7, where the wheel profile 

is also shown for reference. 

 

 

Figure 3.7. Downward Movement of Flange Contact Point 

 

3.4 Wheel Climb Flange Line 

By rotating the wheelset through a large AOA, it is possible to define a wheel climb flange line, or 

the length along the wheel flange profile that contains the set of possible contact point locations at 
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climb initiation. This flange line, through an AOA of 50 mrad, is shown in Fig. 3.7. It has been a 

common practice to use the steepest point of the wheel flange to calculate a flange angle to be used 

as input to the Nadal /L V  derailment limit. This figure indicates that, if the slope of the flange is 

not constant along the flange line, then the steepest point on the wheel flange will not be 

representative of the actual flange angle at the point of contact for some wheelset configuration. It 

is therefore recommended that, during derailment investigations, the wheelset configuration is 

fully defined at climb initiation to understand the proper contact geometry.  

 

3.5 Flange- versus Contact-Angle 

It is shown in section 3.4 that the flange will contact the rail at different points on the wheel flange 

profile depending on the orientation of the wheelset with respect to the track, the geometry of the 

wheel and rail profiles, and the AOA of the wheelset. As the profile contact points vary with the 

movement of the contact point, the slope of the flange profile at the contact point will also change 

with the movement of the contact point. Using Eq. 3.4, the wheel lateral tangent associated with 

the lateral surface parameter 1

ws  may be defined in the wheelset coordinate system as  

   1 1 1 2 1 2/ sin 1 cos
T

w w w w w w ws g s s g s s      
 

t u  (3.6) 

where    1 1 1/w w wg s g s s    . When the wheelset is oriented with zero AOA, the point of contact 

lies in a vertical plane with the wheelset axis, and therefore at such orientation, one can assume 

2 0ws   if the effect of the pitch rotation is not considered. For this configuration, the vector 1

w
t  

simplifies to 
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 1 1 1/ 0 1
T

w w w ws g s     
 

t u  (3.7) 

The flange angle   is then defined as shown in Fig. 3.8.  

 

 

Figure 3.8. First Tangent at the Wheel Flange Contact Point 
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Once the system configuration is known, the flange angle at the climb initiation can be calculated. 

For the system considered in this chapter, for an AOA through 50 mrad, the wheelset flange angle 

at climb initiation is shown in Fig. 3.9.  

 

 

Figure 3.9. Flange and Contact Angles vs. Wheelset Angle of Attack 

( Contact Angle, Flange Angle, Maximum Flange Angle) 
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Nadal’s derivation did not account for any wheelset orientation, including roll, and therefore the 

single wheel considered in Nadal’s analysis is assumed to have the same orientation as the track. 

As a consequence, the wheelset axle and the lateral common tangent to the railhead centers are 

parallel. In this specific case, the flange and contact angles are identical, justifying the use of the 

flange angle by Nadal. However, wheel climb derailments are more likely to occur at an AOA; 

additionally, the case of no wheelset orientation during flange contact will most likely result in a 

loss of contact at the guided wheel. In order to capture the physical phenomenon of wheel climb, 

a contact angle, which defines the angle between the vector tangent to the contact surfaces at the 

point of contact and the lateral common tangent to the two railhead centers, must be considered. 

Taking into account the wheelset yaw 
w  and roll 

w , the orientation of the wheelset coordinate 

system, excluding the effect of the pitch rotation, may be written as 

cos sin cos sin sin

sin cos cos cos sin

0 sin cos

w w w w w

w w w w w w

w w

    

    

 

 
 

  
 
 

A  (3.8) 

The tangent vector 1

w
t  can be defined in the same coordinate system as the track through the 

transformation 

 

   

   

 

1 2 1 2

1 1 1 2 1 2

1 2

sin cos cos sin sin sin cos

cos cos sin sin cos sin cos

sin cos cos

w w w w w w w w w

T
w r w w w w w w w w w w w

w w w w

g s s g s s

g s s g s s

g s s

    

    

 

    
 
     
 
 
 

t A A t  (3.9) 

where r
A , for this chapter, is the identity matrix. The contact angle, defined in the same coordinate 

system as the track, is then written as 
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 
   

1 2

1 2 1 2

sin cos cos
arctan

cos cos sin sin cos sin cos

w w w w

w w w w w w w w w

g s s

g s s g s s

 


    

 
 
   
 

 (3.10) 

which takes into account the wheelset orientation as well as the forward movement of the contact 

point. The contact angle in this chapter is shown in Fig. 3.9 and is compared against the flange 

angle for angles of attack through 50 mrad. In the case of zero AOA, the difference between the 

flange and contact angles is the result of the roll rotation of the wheelset; the contact angle is 

steeper as a result of the rotation of the wheelset and consequently the wheel profile. As the AOA 

increases, so does the difference between the flange angle and contact angles; the wheelset 

orientation as well as the movement of the contact point now both contribute to this difference. 

Nonetheless, it is clear from the figure that the flange angle is not an accurate description of the 

angle that must be used in derailment investigations, and that the contact angle should be used 

instead. 

 

3.6 Comments on Derailment Analysis 

As mentioned earlier, numerous investigations use the steepest section of the wheel flange profile 

in order to calculate the flange angle to be used as input in the Nadal /L V  derailment limit. The 

maximum flange angle for the wheel profile used in this chapter is shown for reference in Fig. 3.9. 

It is seen from the figure that the steepest portion of the wheel flange is never actually in contact 

with the rail at climb initiation. Additionally, for the profile used, this flange angle is only 

representative of the actual contact angle for two values of the AOA, approximately 19.6 mrad and 

23.9 mrad. It is clear then, from these statements, that this practice is not justified for an accurate 

derailment analysis.  
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3.7 Concluding Remarks 

The Nadal /L V  derailment limit, along with subsequent derailment criteria, is developed in order 

to evaluate the proneness of a wheelset to a wheel climb derailment. Wheel climb derailments can 

initiate when the wheelset is in contact with the track at three distinct points. The formulation 

presented in this chapter demonstrates that the configuration of a wheelset in contact with a tangent 

track at three distinct points can be fully defined for a given AOA. It has been recently noted in 

the literature that the orientation of the wheelset at climb initiation, as well as the consequences of 

such orientation on the wheel/rail contact geometry, plays a significant role in the derailment. 

Because the system configuration is fully defined using the presented formulation, derailment 

parameters such as the wheel/rail contact angle can be solved for; this angle is compared against 

the wheelset flange angle for various angles of attack to enforce that a distinction must be made 

between the two values. Additionally, it is shown that the steepest point on the wheel flange is not 

necessarily in contact with the rail due to the orientation of the wheelset, and therefore, this point 

on the wheel profile should not be used in contact angle calculations by default. These results then 

raise concern with regards to the Nadal /L V  derailment limit, which is a planar force balance 

and does not take into account the orientation of the wheelset. Additional concern is raised with 

regards to the practice of using the steepest section of the wheel flange to calculate the flange 

angle, which is then used as input to the Nadal calculation. 

The results of the formulation indicate the need for using the correct contact geometry in 

the investigations of the derailments of modern railroad systems.
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CHAPTER 4 

WHEEL CLIMB 

Previously published in (O’Shea and Shabana, 2015) and reproduced in this dissertation with 

permission which is listed in Appendix A. Parts previously prepared in (O’Shea and Shabana, 

2016) and reproduced in this dissertation with permission which is listed in Appendix A. 

 

A fully nonlinear unconstrained multibody system (MBS) wheel climb derailment model is 

developed to analyze the forces that govern the wheel climb motion when oriented at a large angle 

of attack (AOA). The results of the MBS model in the vicinity of the climb initiation are verified 

using a semi-analytical model that makes use of simplifying assumptions derived from the current 

interpretation of wheel climb. It is shown that, when the wheel makes flange contact with the rail 

at a large AOA, the lateral and vertical displacements of the wheel become coupled due to motion 

constraints resulting from the wheel/rail contact. This constraint produces kinematic contributions 

to the wheel climb motion that are shown to be significant throughout the motion. Additionally, 

the friction force developed at the point of contact is shown to be three-dimensional and therefore 

concerns are raised regarding the validity of any planar force balance at the point of contact to 

capture such motion. Regardless, the forces measured at contact point are shown to not represent 

the forces that drive the derailment. Most importantly, however, is that the Nadal /L V  Limit is 

shown to not be conservative in the case considered in this chapter.  

Finally, the MBS wheel climb derailment model is used to validate and support the 

formulation described in chapter 3. Using this model, it is seen that the initiation of the wheel 

climb motion is correctly predicted using proper geometry definitions in the derailment criteria,
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whereas such motion was not correctly predicted using the geometry definitions used by Nadal. 

This finding is not intended as a derailment criteria proposal, but rather as support and 

rationalization for the use of correct contact geometry in derailment investigations. Taking these 

important results into account, questions must be raised regarding the current interpretation of 

wheel climb, which does not account for kinematics, as well as the various derailment criteria that 

have roots in Nadal’s derivation. 

 

4.1 MBS Derailment Model 

In this section, a new three-dimensional fully nonlinear unconstrained MBS model is developed 

using the software SIGMA/SAMS (Shabana, 2010). The results of the general unconstrained MBS 

wheelset/track model are discussed in order to shed light on the key aspects of the wheel climb 

motion. The model presented is three-dimensional, places no constraints on the motion of the 

wheelset, and uses an elastic contact approach that takes into account the full wheel/rail profiles. 

The results demonstrate that the lateral and vertical motion of the wheels are coupled due to contact 

with the track, that wheel climb derailments occurring at a large AOA must be studied in three 

dimensions, and that the climb mechanism has kinetic and kinematic contributions. The example 

provided in this section ultimately acts as a three-dimensional MBS counter-example to the use of 

the Nadal /L V  Limit in derailment investigations, indicating that the /L V  Limit is not a 

conservative criterion for all cases. 
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4.1.1 Wheelset/Track Model 

The model presented in this section is three-dimensional and consists of two rigid bodies: a 

wheelset and a straight track that comprises of two rails. The wheelset is given a centroidal body 

coordinate system (CBCS) w w wX Y Z , shown in Fig. 4.1, that is fixed to the wheelset center of mass 

and follows the translations and rotations of the wheelset. The CBCS motion is defined with 

respect to an inertial reference frame XYZ , also shown in Fig. 4.1. 

 

 

Figure 4.1. Coordinate Systems 
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The XY -plane is located in-plane with the rail head centers. The CBCS position is defined by the 

vector 
T

w w w w

x y zR R R   R . The orientation of the wheelset is defined using the three Euler 

angles 
w , 

w , and w  about the wZ , wX , and wY  axes respectively (Shabana, 2013). The angles 

w , 
w , and w  are henceforth referred to as the yaw, roll, and pitch of the wheelset, respectively 

(Roberson and Schwertassek, 1988; Shabana et al., 2008). The wheelset angle of attack (AOA) 

w  is shown in Fig. 4.2, and it is noted that 
w w   .  

 

 

Figure 4.2. Wheelset Angle of Attack 
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The CBCS absolute velocity is defined by the vector 
T

w w w w

x y zR R R   R  and angular velocity 

by the vector 
T

w w w w

x y z     ω . The wheelset consists of two symmetric wheels rigidly 

connected by an axle. The inertial properties of the wheelset, including the mass wm , and 

moments of inertia 
w

xxi , 
w

yyi , and 
w

zzi  about the wX , wY , and wZ  axes, respectively, are given in 

Table 4.1. 

 

wm  
w

xxi  
w

yyi  
w

zzi  

1,568 kg 658 kg.m2 168 kg.m2 658 kg.m2 

Table 4.1. Wheelset Inertia Properties 

 

Because of symmetry, the wheelset products of inertia with respect to the wheelset CBCS axes are 

equal to zero. The position and velocities of the wheelset at climb initiation are shown in Table 

4.2. 

 

w

xR  
w

yR  
w

zR  
w  w  w  

0.1000 m -1.9742e-2 m 0.4568 m -0.0500 rad -6.6643e-4 rad 0 rad 

w

xR  
w

yR  
w

zR  
w

x  
w

y  
w

z  

5 m/s 0 m/s 0 m/s 0.5215 rad/s 10.4208 rad/s -6.9535e-2 rad/s 

Table 4.2. Wheelset Initial Conditions 
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 The wheel profile curve  1

wg s  used in this investigation is the AAR-1B profile curve, where 1

ws  

is a lateral surface parameter. The wheel surface is then obtained by the complete revolution of the 

profile curve about the wheelset axis. The wheel profile curve is shown in Fig. 4.3. 

 

 

Figure 4.3. Wheel Profile Curve 

 

In this investigation, the wheel profiles are located at a lateral distance of 0.74 m from the wheelset 

center. 
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The wheelset is driven into the right rail by an applied absolute lateral force that has 

magnitude equal to the weight of the wheelset. This force is held constant throughout the 

simulation and is applied at the wheelset center of mass. The wheelset experiences the effect of 

gravity but is not acted upon by any suspension forces. The two rails are completely fixed in space 

and do not experience any deflections. The rail profile curve  2

rf s  used in this investigation is 

the 140lb-A.R.E.A. profile, where 2

rs  is a lateral surface parameter. The rail profile curve is shown 

in Fig. 4.4. 

 

 



78 

 

 

 

 

Figure 4.4. Rail Profile Curve 

 

The rail profile frames are located at a lateral distance of 0.75565m from the track centerline and 

canted 25 mrad towards the track center. The wheel and rail are both modeled as steel and given 

identical material properties, including the modulus of elasticity E , modulus of rigidity G , and 

Poisson’s ratio  . These properties as well as the coefficient of friction   between the surfaces 

are listed in Table 4.3. 

 



79 

 

 

 

  E  G  

0.5 210 GPa 80 GPa 

Table 4.3. Contact Parameters 

 

The contacts between the wheel and rail surfaces are modeled using the ECF-A contact 

algorithm, which is an elastic contact formulation that allows small penetrations of the surfaces in 

contact and calculates the normal contact force using a complaint force element that includes 

stiffness and damping forces, as described in (Shabana et al., 2008). Such a model also allows for 

wheel/rail separation. Four nonlinear algebraic equations are solved using an iterative Newton-

Raphson procedure to determine the values of the surface parameters at the contact points. These 

surface parameters are used to determine the location of the contact points online. The coordinates 

and velocities of the contact points are used to evaluate the penetration, normal forces, and 

creepages. The geometry of the wheel and rail and the normal contact force are used to determine 

the principal curvatures and the dimensions of the contact ellipse using Hertz’s contact theory. The 

creep forces are calculated using Kalker’s USETAB (Kalker, 1990). These forces are entered into 

the dynamic formulation as generalized forces associated with the MBS generalized coordinates. 

The system nonlinear dynamic equations of motion are integrated numerically using an explicit 

direct numerical integration method. Although an elastic contact formulation is used, the rigidity 

of the two bodies is still enforced, preventing the relative motion of any point on the bodies with 

respect to the body references. 
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4.1.2 Simulation Results 

The numerical analysis of the model described above was carried out using SIGMA/SAMS 

(Shabana, 2010), a general-purpose MBS computer program. The results of the simulation are 

given in the following subsections. Snapshots of the derailment for the flanging and non-flanging 

wheels are given for reference in Fig. 5 for: the derailment initiation, 55.6 ms into the derailment, 

111.4 ms into the derailment, and the simulation termination (223.0 ms). 

 

 

Figure 4.5. Front-View Derailment Snapshots 

 

It is noted at this point that, for this derailment scenario, contact is maintained at the flange 

throughout the derailment. Contact is lost briefly at the tread contact point and then again 

permanently towards the end of the simulation. 
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4.1.2.1 Lateral Motion 

The wheelset CBCS lateral displacement with respect to its initial configuration is plotted in Fig. 

4.6. 

 

 

Figure 4.6. Lateral Displacements 

( Wheelset, Flange, Tread) 

 

The wheelset center is shown to move laterally towards the flanging rail under an applied lateral 

force. The rate of the lateral motion of the wheelset is shown to increase in magnitude as the 
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derailment continues. Also shown in the figure are the lateral displacements of the flanging and 

non-flanging contact points with respect to their initial positions. It is seen that the flanging contact 

point displaces laterally in the same direction of the wheelset, yet lags the displacement of the 

wheelset center due to the changing orientation of the wheelset. The non-flanging contact point is 

shown to move towards the rim of the wheel because of the changing orientation of the wheelset. 

Such motion becomes saturated, and the contact point then displaces laterally with the general 

motion of the wheelset. 

Because of the tread conicity and flange geometry, a lateral shift of the wheelset in this 

climb scenario will result in a change of the rolling radius of each contact point, as demonstrated 

in Fig. 4.7, which shows the change in the rolling radius of the flanging and non-flanging wheels. 
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Figure 4.7. Change in Wheelset Rolling Radii 

( Flange, Tread) 

 

The rolling radius of the flange increases as the contact point moves towards the flange tip. The 

rolling radius of the tread decreases as the contact point moves to the tread rim, and then continues 

to decrease as the rim begins to leave the rail. A difference between the rolling radii of the two 

wheels will result in a roll angle. Therefore, the roll angle of the wheelset changes as the rolling 

radius of each wheel changes, as shown in Fig. 4.8. 
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Figure 4.8. Wheelset Roll Angle 

 

The roll angle increases in magnitude as the flanging wheel climbs the rail and the non-flanging 

wheel moves towards the track center.  
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4.1.2.2 Kinematics 

As previously mentioned, an applied lateral force causes the wheelset to experience lateral 

displacement from its position at climb initiation. By kinematics, the contact between the flanging 

wheel and the rail requires the flanging wheel to, in general, displace vertically for any lateral shift. 

Exceptions could include any drastic changes in the wheelset orientation. However, once the 

contact point moves to the flange tip, the coupling between the lateral and vertical motion of the 

wheel is no longer maintained. The CBCS vertical displacement and the vertical displacements of 

the flanging and non-flanging contact points are plotted in Fig 4.9. 

 



86 

 

 

 

 

Figure 4.9. Vertical Displacements 

( Wheelset, Flange, Tread) 

 

The wheelset center of mass displaces upwards through the majority of the climb, and then moves 

downwards as the flanging contact point nears the top of the rail and the non-flanging contact point 

begins to fall from the rail. The flanging contact point climbs the rail throughout the derailment 

and then begins to move down the far side of the rail. The non-flanging contact point gradually 

displaces downward until the tread nears the edge of the rail, in which the motion is much more 

pronounced. 
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The kinematic motion restrictions are, in the case of elastic contact, imposed on the 

wheelset by reaction forces developed at the contact points. For the case of a wheelset negotiating 

a tangent track, the normal reaction forces act in the YZ -plane; the angles of the normal reaction 

forces, measured from the Y  axis, are shown in Fig. 4.10. 

 

 

Figure 4.10. Reaction Force Orientations 

( Flange, Tread) 
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The angle of the normal reaction force of the flanging contact point increases as the rail must 

transition from resisting the lateral motion created by the applied force to supporting the weight of 

the wheel. The angle of the normal reaction force of the non-flanging contact point decreases as 

the contact point moves to the rim of the wheel, and then increases as the contact point begins to 

move in the direction of the track center. The magnitudes of the normal reaction forces are shown 

in Fig. 4.11. 

 

 

Figure 4.11. Reaction Force Magnitudes 

( Flange, Tread) 
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The normal reaction forces are oscillatory by the nature of the contact formulation, and it is clear 

from the figure that the two wheels are unevenly loaded. The two magnitudes, in general, gradually 

converge until a point at which the direction of the friction forces changes sign, which will be 

discussed in the next section. It is at this point that the two magnitudes diverge. The flange normal 

reaction then decreases through the simulation. The non-flanging wheel begins to support a larger 

portion of the weight of the wheelset, until the tread begins to leave the rail. 

 

4.1.2.3 Three-Dimensional Climb 

Because the wheelset is oriented at an AOA, the contact forces will, in general, have non-zero 

components in three Cartesian directions with respect to the track. The wheelset AOA is shown in 

Fig. 12, and is shown to decrease throughout the derailment. 
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Figure 4.12. Wheelset Angle of Attack 

 

The MBS model results shown in this figure clearly demonstrate that the AOA remains nearly 

constant in the vicinity of the climb initiation. The change is gradual at the initiation of the climb, 

but then becomes more pronounced as the derailment propagates. The components of the friction 

forces generated at the flanging and non-flanging contact points are shown in Figs. 4.13 and 4.14, 

respectively. It is clear from the figures that the forces are, in general, three-dimensional with 

respect to the track. 
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Figure 4.13. Flange Friction Components 

( X, Y, Z) 
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Figure 4.14. Tread Friction Forces 

( X, Y, Z) 

 

It is noted that the Y  and Z  components of the friction forces change direction during the 

derailment, for both the flanging and non-flanging contact points. 

 

4.1.2.4 Derailment Measure 

As seen above, the wheel climb derailment has vertical force contributions from both the normal 

reaction forces as well as the friction forces, indicating that the motion must be studied from both 
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kinematic and kinetic perspectives. Additionally, when taking both the normal reaction and friction 

forces into account, it is clear that the derailment is not two-dimensional, and that the motion 

should not be studied using any planar formulation. Such contact forces as mentioned above are, 

in practice, measured at the wheel rail interface. It should be noted, however, that such measures 

are not indicative of the force driving the wheelset to derailment. Figure 15 shows the ratio of the 

total lateral contact forces to magnitude of the applied lateral force experienced by the wheelset. 

 

 

Figure 4.15. Lateral Force Ratio 
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It is clear that the forces are not representative and caution should be taken when using such 

measures in derailment investigations. 

The /L V  Limit Criterion was introduced in order to predict and prevent wheel climb 

derailments, and states that when the ratio of the lateral contact force to the vertical contact force 

of the wheel flange exceeds a certain limit, wheel climb will occur. Three /L V  ratios are shown 

in Fig. 4.16: the actual /L V  measured at the flanging contact point, the result of the Nadal /L V  

calculation if the flange angle used in the calculation is updated at each step of the simulation, and 

the result of the Nadal /L V  calculation if the maximum flange angle of the wheel is used at each 

time step. 
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Figure 4.16. Right Flange /L V  

( Measured, Updated Nadal, Max Nadal) 

 

There are three important details of this figure: first, the wheelset derailment initiates at a value 

that is less than the Nadal /L V  limit, indicating that the measure is not conservative. Second, the 

wheelset /L V  then begins to increase during the changing of the friction directions, increasing 

past the Nadal /L V  limit calculation. Third, the wheelset /L V  then falls below the Maximum 

Nadal /L V , although the derailment continues. 
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4.1.3 Verification of the Model Results 

In order to verify the results of the MBS model, a simple semi-analytical model can be developed, 

and will be formulated in the following sections. This simple model consists of a wheelset, in 

which contact is only modeled at one wheel that is represented by a disk, and a rail. Because of 

the geometric and kinematic assumptions used in the semi-analytical model, the comparison of the 

two models should be limited to the vicinity of the climb initiation. In the vicinity of the climb 

initiation, the results of the two models agree well, as will be demonstrated later in this chapter. 

The predicted L / V  ratios obtained using the two models are in a good agreement. After the short 

lived interval of the climb initiation, it is expected that the results of the two models will not be in 

a good agreement because of the motion and geometric assumptions used in developing the semi-

analytical model. The fact that the results of the two models agree well in the vicinity of the wheel 

climb initiation confirms that a major contribution to the climb initiation is the kinematic 

restriction imposed on the motion of the wheel as it comes into contact with the rail. 

 

4.2 Semi-Analytic Climb Model 

As previously mentioned, there is a strong belief in the rail industry and research community that 

wheel climb at a large AOA is initiated by friction. The argument often made is that as the wheel 

comes into flange contact with the rail at a large AOA, an increase in the lateral force acting on 

the wheel leads to an increase in the normal reaction force at the flange contact point. Since in this 

case the contact point on the wheel is moving downward, the large reaction force normal to the 

flange produces a significant upward friction force that results in wheel climb. The goal is to use 

a simple model that sheds light on the forces that contribute to the wheel climb initiation in the 
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case of large AOA, and to compare these contributions against the fully nonlinear unconstrained 

MBS model results. 

 

4.2.1 Angle of Attack Assumption 

In this semi-analytical model, the AOA is assumed constant. When investigating the cases of 

constant or non-constant AOA, it is important to point out that when the wheel contacts the rail 

with a large AOA, a change in the AOA requires a large lateral force, which when combined with 

the resulting normal reaction force at the contact point, produces a large yaw moment sufficient to 

decrease the AOA. This effect is seen in the MBS model results. Nonetheless, such a decrease 

does not occur instantaneously and requires time; this is particularly true in the case of a large 

wheelset mass moment of inertia. Furthermore, a significant decrease in the AOA over a short time 

period is likely to lead to wheel/rail separation which is not the scenario considered in this 

investigation. Therefore, when examining the very brief period of climb initiation, assuming the 

AOA as constant is justified. The case of non-constant AOA will be considered in future 

investigations. 

 

4.2.2 Simplifications 

The semi-analytical model examines the case of a wheelset negotiating a tangent track at a large 

and constant AOA. In order to reflect on the Nadal L V  ratio, which is used as the basis for many 

derailment criteria, the model developed in this investigation will examine the forces at the wheel 

flange only. The inertia of the non-flanging wheel and wheelset axle is still taken into account. 

The rail community’s interpretation of the mechanism of wheel climb at a large AOA is clearly 
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based on two basic assumptions: First, it is assumed that the wheel remains in contact with the rail 

during the process of wheel climb. Second, because of the assumption of large AOA, it assumed 

that the contact point remains on the wheel flange. In the case of a constant large AOA and using 

the geometry assumptions employed in this section, the following two basic assumptions can be 

made when developing the simplified semi-analytical model: 

1. The wheel/rail contact occurs on the wheel flange, and the contact point moves on a 

circular curve. For the model considered in this investigation, this circular curve is 

assumed to have a constant radius, and therefore, the flange geometry does not enter into 

the formulation of the contact problem. This simplifying assumption allows deriving a 

closed form kinematic relationship that sheds light on the climb initiation. This closed form 

kinematic relationship cannot be obtained if the flange geometry is considered. 

2. There is no wheel/rail separation during the distance to climb. This assumption has been 

used in previous investigations by other researchers in developing derailment criteria. 

Wheel/rail separation during climbing can introduce impact forces and discontinuities that 

are not considered in the simplified model developed in this study. The continuous 

wheel/rail contact can be modeled using a penalty or constraint formulation (Shabana and 

O’Shea, 2013). In principle, both formulations should lead to similar results. The constraint 

method has the advantage of reducing the model dimensionality and allows for obtaining 

closed form expressions for some of the kinematic and force variables of the model 

considered in this investigation. 

Both of these assumptions will be used in this section to examine if wheel climb is initiated purely 

by friction or if there are significant kinematic contributions that lead to an instantaneous initiation 



99 

 

 

 

of wheel climb. This wheel climb may or may not be sustained by other forces, including the 

friction force. The problem is reduced geometrically using the above assumptions to modeling the 

contact between a circular arc and a straight line. The model geometry simplifications are shown 

in Fig. 4.17. 

 

 

Figure 4.17. Geometric Wheel Flange/Rail Contact Simplification at a Large Angle of Attack 
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As previously mentioned, in order to ensure that these simplifications lead to a model that produces 

valuable information on the nature of wheel climb initiation, the results obtained using the 

simplified model are compared against the general fully nonlinear three-dimensional MBS model 

that is based on an elastic contact formulation that allows for wheel/rail separation and accounts 

for the wheel and rail profile geometries. 

 

4.2.3 Distance to Climb 

The analysis of the model developed in this section will show that in the case of a tangent track, 

large AOA, and zero roll angle, the wheel longitudinal motion is completely decoupled from the 

vertical and yaw displacements in the vicinity of the climb initiation. Therefore, the use of the 

distance to climb in tangent track wheel climb criteria needs to be investigated. Furthermore, the 

model developed in this section will show that there is no coupling between the pitch rotation and 

both the vertical and yaw displacements of the wheel in the vicinity of the climb initiation. The 

pitch rotation has an effect on the velocity of the contact point, and consequently, on the direction 

of the friction force that influences the vertical motion of the wheel. It is important, however, to 

point out that these conclusions regarding the distance to climb and the pitch rotation may not be 

applicable in the case of curve negotiations; a case that will be considered in future investigations. 

 

4.2.4 Kinematics 

In this section, the kinematic constraints that govern the motion of a simplified wheel climb model 

are formulated in order to shed light on some of the concepts that must be considered when the 

phenomenon of wheel climb at a large AOA is considered. 
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4.2.4.1 Geometry 

In the analysis presented in this section it is assumed that the wheel (disk), shown in Fig. 4.18, has 

a large AOA  , negotiates a track segment approximated as tangent, and has zero roll angle  . 

 

 

Figure 4.18. Simplified Model Geometry and Coordinates 
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Because of the simple geometry used, the AOA   can be related to the wheel yaw angle  . The 

wheel, which is assumed in this section to have the simplified geometry of a disk, is assumed to 

have a pitch rotation   about its axis and maintains a contact with the rail. The transformation 

matrix that defines the wheel orientation in the global coordinate system is given by 

cos cos -sin sin cos

cos sin cos sin sin

-sin 0 cos

    

    

 

 
 


 
  

A     (4.1) 

Using Fig. 4.18 and the assumption that the contact occurs on wheel flange, the location of the 

contact point on the rotating wheel can be defined with respect to the wheel coordinate system as 

cos 0 sin
T

w w

P r s r s   u     

 (4.2) 

In this equation, ws  is an angular parameter that defines the location of the contact point, and r  is 

the radial distance between the contact point and the wheel center. In this section, r  is assumed to 

remain constant and equal to the radius of the wheel at the contact point. Using this assumption 

and the assumption of non-conformal contact, the contact problem is reduced to a circular 

arc/straight line contact. Consequently, one needs only one geometric parameter ws  which will be 

treated as a non-generalized coordinate (Shabana and Sany, 2001). This parameter will be 

systematically eliminated using the contact constraint.  

Assuming that the rail is fixed and the wheel is translating and rotating, the global position 

vector      
T

P P P Px y z
 
 

r r r r  of the contact point can be written as 
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 

 

 

cos cos

cos sin

sin

w

x

w

P P y

wz

sR

R r s

R s

 

 



 
   
       
   
      

 

r R Au     (4.3) 

In this equation, 
T

x y zR R R   R  is the global position vector of the wheel center. It is clear 

from Eq. 4.3 that in order to determine the global position of the contact point, one must determine 

first the geometric parameter ws  as well as the wheel generalized coordinates R  and  . 

 

4.2.4.2 Contact Constraints 

If the rotating wheel remains in contact with the rail, the two constraint equations  P cy
yr  and 

 P cz
zr , where cy  and cz  are constants that define the location of the rail as shown in Fig. 4.18, 

must be satisfied. These equations can be written more explicitly using Eqs. 4.1 and 4.3 as 

 

 

cos sin

sin

w

y c

w

z c

R r s y

R r s z

 



   


   

    (4.4) 

The non-generalized coordinate ws  can be eliminated from these two equations leading to the 

following single constraint equation; this constraint equation is applicable in the two cases of 

constant and non-constant AOA: 

   
2 2 2 2 2sin siny c z cR y R z r        (4.5) 
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4.2.4.3 Study Model 

Two different cases can be considered in developing this semi-analytical wheel climb model. In 

the first case, the AOA   is assumed to remain constant and this angle is not considered as a 

degree of freedom of the system. In this first case, there is a constraint moment associated with the 

yaw rotation. In the second case, the AOA is allowed to vary and is considered as a degree of 

freedom of the system. Consequently, the yaw inertia must be considered. It is important, however, 

to point out that the change in the yaw angle as the result of an increase in the lateral force has to 

evolve with time, and such a change is not instantaneous.  

This section is focused on the first case in which the AOA is assumed to be constant. 

Because of its simplicity, the model with the constant AOA is considered first, while the more 

complex model in which the AOA is allowed to vary will be considered in future investigations. 

Nonetheless, the kinematic equations developed in this section are applicable to both models. 

Furthermore, the results obtained using the constant AOA model will be compared, in the vicinity 

of the climb initiation, with the results of the fully nonlinear unconstrained model. 

 

4.2.5 Constant Angle of Attack 

In this section, the nonlinear algebraic equation that defines the contact constraints at the velocity 

level is obtained from Eq. 4.5. The resulting velocity relationship is used to develop the velocity 

transformation matrix that allows formulating the equations of motion in terms of a minimum set 

of independent coordinates. 
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4.2.5.1 Velocity Constraint 

In the special case of constant AOA, the constraint equation at the velocity level can be obtained 

by differentiating Eq. 4.5 with respect to time as 

    2sin 0y c y z c zR y R R z R         (4.6) 

Using this equation, one can show that the contact constraint equation of 4.5 in the case of constant 

AOA can be written at the velocity level as 

0y z zR h R       (4.7) 

where 

2 2sin sinz c z
z

y c y

R z d
h

R y d


   


      (4.8) 

where y y cd R y   and z z cd R z   are, respectively, the lateral and vertical distances of the wheel 

center from the contact point. Note that if zR  and   and their derivatives are known, Eq. 4.4 can 

be used to solve for yR  and ws , and the time derivative of Eq. 4.4 can be used to solve for yR  and 

ws . The calculation of yR  and ws  and their derivatives is necessary in order to be able to determine 

the position of the contact point on the wheel. 

 

4.2.5.2 A Wheel Climb Mechanism 

The constraint relationship of Eq. 4.5 plays a significant role in the analysis presented in this 

section. This equation can be used to shed light on the initiation of wheel climb in the case of 

relatively large AOA. It is clear that this equation includes the positive terms 
2 2 2, siny zd d  , and 
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2 2sinr  . In the case of a lateral force applied in a direction that leads to a decrease in 
2

yd , Eq. 4.4 

clearly shows that 
2

zd  must increase if the AOA is to remain constant. Such an increase in 
2

zd  is 

governed by an algebraic equation, and therefore, the initiation of such a wheel climb can be 

instantaneous. This kinematic condition leads to motion that is fundamentally different from force-

produced motion that evolves with time. 

 

4.2.5.3 Velocity Transformation 

Assuming that the yaw angle   and the roll angle   of the wheel remain constant and using the 

velocity constraint of Eq. 4.7, one can write the following velocity transformation: 

1 0 0

0 0

0 1 0

0 0 0

0 0 0

0 0 1

x

zy

x

z

z

R

hR
R

R
R








   
   
     
     

     
     

    
   
    

    (4.9) 

Let w w wX Y Z  be the centroidal wheel coordinate system as shown in Fig. 4.18. In the case of the 

sequence of Euler angles defined by a rotation   about the wZ  axis, a rotation   about the wX  

axis, and a rotation   about the wY  axis, the angular velocity vector defined in the wheel coordinate 

system can, in general, be written as 

    

cos sin cos 0

sin 0 1

cos cos sin 0

   

 

   

   
   


   
      

ω     (4.10) 
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Using the yaw and roll angle constraints, it follows that the angular velocity and angular 

acceleration vectors defined in the wheel coordinate system are  0 1 0
T
ω  and 

 0 1 0
T
α , respectively. Using this fact, the acceleration transformation can be written as 

1 0 0 0

0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

x

z z zy

x

z

z

x

y

z

R

h h RR
R

R
R








     
     
      
      

       
      

      
     
      

    (4.11) 

In this equation,        2
2sinz y c z z c y y ch R y R R z R R y       . The transformation of Eq. 

4.11 will be used in the following section to obtain the independent differential equations of motion 

of the wheel for a given AOA  . 

 

4.2.6 Equations of Motion 

The spatial Newton-Euler equations of motion of the wheel are given as 

  
( )

e c

e c

m

 

    
    

      

I 0 F FR

0 I M M ω I ωα
                             (4.12) 

where m  is the mass of the wheel, I  is a 3 3  identity matrix, I  is the inertia tensor defined with 

respect to the centroidal body coordinate system, α ω  is the absolute angular acceleration vector 

defined in the body coordinate system, eF  and cF  are, respectively, the resultant of the external 

and constraint forces defined in the global coordinate system, and eM  and cM  are, respectively, 

the resultant of the external and constraint moments defined in the body coordinate system. 
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Because of the definition of Euler equations in the body coordinate system, the inertia matrix is 

constant. It is assumed that the constant inertia tensor I  is diagonal with diagonal elements 

,xx yyI I , and zzI . One can show that in the case of the simple rotation of the wheel about its wY  

axis, the gyroscopic moment ( )ω I ω  is equal to zero. 

 

4.2.6.1 Equations in Terms of the Degrees of Freedom 

Using the transformation of Eq. 4.11, the independent equations of motion of the wheel in the 

simplified semi-analytical model can be written as 

 2

0 0 0

0 1 0

00 0

x x

z z z z y z z z

yyy

m R F

m h R F h F mh h R

MI 

       
       

          
            

  (4.13) 

The solution of this equation defines zR  as 

 
 2

1

1
z z z y z z z

z

R F h F mh h R
m h

  


    (4.14) 

Using the definition of zh  given after Eq. 4.11, the preceding equation can be written as 

 
 2

2

1

1
z z z y z z

z

R F h F c R
m h

  


    (4.15) 

In this equation,    2 2sinz z z y cc mh h R y   . If the contact point lies below the center of 

mass of the wheel, one can show that zc  is always positive, and zh  is always negative. This 
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implies that the last two terms in Eq. 4.15 lead to positive vertical forces in the case of negative 

lateral force. 

 

4.2.6.2 Contact Force 

In the case of friction, the friction force is function of the normal force at the contact point and it 

has direction opposite to the direction of the sliding velocity. Using the expressions of zR  and   

obtained in the preceding section, the coordinates zR  and   and their first derivatives zR  and   

can be obtained using the methods of numerical integration. The coordinate yR  and the non-

generalized coordinate ws  can be determined using the constraint relationship of Eq. 4.4. Knowing 

ws , the coordinates that define the location of the contact point Pu  of Eq. 4.2 can be evaluated. 

The absolute velocity of the contact point can then be determined as P P P   v r R ω u , where 

ω Aω , and P Pu Au ; both ω  and Pu  are previously defined in this chapter. Note that the 

direction of the velocity vector Pv  of the contact point, which defines the direction of the friction 

force, depends on the direction of the wheel forward velocity as well as the pitch rotation of the 

wheel. 

In order to have an estimate of this friction force, the lateral contact force resulting from 

the constraints must be evaluated. Using Eqs. 4.11 and 4.15, the acceleration component yR  can 

be written as 
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 
 2

21

y z z z z

z
z z y z z z z

z

R h R h R

h
F h F c R h R

m h

 

   


    (4.16) 

Using this result and the equations of motion, the lateral constraint force cyF  at the contact point 

can be written as 

 
 2

21

cy y y

z
z z y z z z z y

z

F mR F

h
F h F c R mh R F

h

 

    


  (4.17) 

This equation shows that the lateral reaction force cyF  is in general different from the external force 

yF  that produces the motion. One can also show that even in this very simplified example, there 

is a vertical reaction force cz z cyF h F  . Therefore, the resultant of the constraint force cF  makes 

an angle with the lateral Y-axis that can be determined from the ratio between the vertical and 

lateral constraint force components. This ratio is defined by zh  which depends on the AOA. The 

ratio between the lateral and vertical reaction force is defined by   1cy cz zF F h  . Note that this 

ratio is function of the parameters that define the contact constraints, and if the contact conditions 

are maintained this ratio is governed by a well-defined algebraic equation. This ratio can be 

expressed in terms of the AOA as  2siny zd d  , where yd  and zd  are, respectively, the lateral 

and vertical distances of the wheel center from the contact point. Note that this ratio does not 

depend explicitly on the applied forces or the coefficient of friction. The resultant of the constraint 

force is therefore defined as 21c z cyF h F  . It is important to point out that while the constraint 
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force does not do work, such a force restricts the motion of the wheel to be in certain directions, 

one possible direction can be the climb direction. 

If the effect of friction is considered, the friction force cF , where   is the friction 

coefficient, must be calculated. This friction force, however, can have three components in three 

different directions because the relative velocity at the contact point can have three non-zero 

components with respect to the rail. This general relative velocity is attributed to the longitudinal 

motion, climb, and pitch rotation. The lateral relative velocity can be easily understood because of 

the climb vertical motion. Such a lateral velocity is necessary in order to ensure that the contact 

constraints are satisfied. Therefore, the resultant of the friction force fF  is not directed upward and 

this resultant can be written as 

 
 

 2 2

2
1

1

z
f c z z z y z z z z y

z

h
F F h F h F c R mh R F

h
 

 
       
 
 

 (4.18) 

It is interesting to note the relationship between the lateral and vertical components of the 

constraint force. This relationship, for this simplified wheel model, clearly shows that these two 

reaction components are not independent since they are related by an algebraic equation. This 

should be the case because the contact constraint conditions reduce to one algebraic equation that 

relates the generalized coordinates of the wheel. Therefore, if the L  and V  measured are 

interpreted as the reaction forces at the contact point, one must keep in mind that these force 

components are not independent when the simple wheel climb scenario discussed in this section 

is considered. These important and new results, obtained using the simplified model, are compared 

against the general fully nonlinear unconstrained MBS model results at the climb initiation. If a 
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more complex climb scenario is considered, the governing kinematic equations must be developed 

in order to have a better understanding of the relationship between the reaction forces at the contact 

point. 

 

4.2.6.3 Solution Algorithm for the Simplified Semi-Analytical Model 

In this subsection, the computational algorithm used to solve the wheel differential/algebraic 

equations of the simplified model is summarized. Note that a positive AOA corresponds to a 

negative value of the angle  . Note also that in the case of a constant AOA and zero roll, the 

degrees of freedom of the wheel model considered in this investigation are ,x zR R , and  . 

Nonetheless, one needs to determine ws  in order to be able to determine the location of the contact 

point on the wheel as well as the absolute velocity of this point. The steps of the numerical 

algorithm used in this investigation to determine the solution of the simplified model equations 

can be summarized as follows: 

1. Given the AOA  , degrees of freedom ,x zR R , and  , and their derivatives ,x zR R , and  , 

the algebraic constraint equations of 4.4 can be solved for yR  and ws . The parameter ws  

can be used to determine the location of the contact point as shown by Eq. 4.3. 

2. The constraint equations at the velocity level (time derivative of Eq. 4.4) can be solved for 

yR  and ws . The time derivative of R  and the angular velocity ω  can be used to determine 

the absolute velocity of the contact point using the equation P P P   v r R ω u , where 

the vectors used in this equation are as previously defined in this chapter.  
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3. Knowing all the coordinates and velocities, ,z zh h , and zc  can be calculated. 

4. Given the external forces, the equations of motion of Eq. 4.13 can be formulated and solved 

for the accelerations ,x zR R , and  . These accelerations can be integrated forward in time 

to determine the degrees of freedom ,x zR R , and  , and their derivatives ,x zR R , and  . 

5. If the end of the simulation time is not reached, the previous steps are repeated. 

The computational algorithm outlined above is used in this investigation to obtain the numerical 

results for the simple wheel model. 

 

4.2.6.4 Distance to Climb 

It is shown in Eq. 4.13 that the longitudinal motion xR  of the wheel is completely decoupled from 

the vertical motion zR . In the case of friction, sliding in the longitudinal direction can produce a 

friction force that in turns creates a moment on the wheel. This moment, in the case of sliding and 

large lateral force, can have an effect on the wheel rotation which in turn has an effect on the 

velocity of the contact point. However, it is clear from Eq. 4.13, that there is no direct relationship 

between xR  and zR , which is also the case when the AOA is allowed to vary. Consequently, the 

use of the distance to climb in some of the existing derailment criteria needs to be investigated. In 

the case of curved tracks, the effect of the distance to climb needs to be investigated using a three-

dimensional analysis that is not based on the planar Nadal’s formula. 

 

4.3 Numerical Comparative Study 
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The results of the two different models developed in this investigation, the fully nonlinear 

unconstrained MBS model and the simplified semi-analytical model, are compared in this section. 

The comparison shows a good agreement in the vicinity of the climb initiation. The motion of the 

semi-analytical model is numerically investigated in this section using the solution algorithm 

described in the preceding section, while the results of the general MBS system model are obtained 

using a general MBS algorithm. The numerical results obtained are used to examine the motion of 

the wheel during derailment and to shed light on the contributors to the wheel climb phenomenon. 

Such an analysis allows one to call into question the validity of the use of derailment criteria such 

as the Nadal /L V  Limit. 

The analysis provided below will show that the lateral and vertical reaction forces exerted 

by the rail onto the wheel are coupled due to the kinematic condition that is developed as the wheel 

flange comes into contact with the rail. This kinematic condition in turn results in a loss of a degree 

of freedom of the wheel, which is shown to contribute to the climb initiation. The friction forces, 

which are also developed when the wheel flange comes into contact with the rail at a relative 

velocity, are shown to have non-zero components in three Cartesian directions with respect to the 

rail. The friction force, in combination with the normal force, is often measured at the wheel/rail 

interface. The analysis presented in this investigation, however, demonstrates that the measured 

forces are not representative of the applied force that drives the climb of the wheel. It then follows 

that such forces are not adequate for developing derailment prevention criteria, and therefore, the 

use of derailment criteria such as the Nadal /L V  Limit is investigated and shown to not be a 

conservative measure of derailment initiation. 
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The results of the semi-analytical model yield multiple contributions. Because the lateral 

and vertical components of the reaction force can be related by an algebraic expression that is 

independent of the applied force, the measurement of one component can lead to the calculation 

of the other. The results shown in this section are contrary to the current interpretation of wheel 

climb initiation, which claim that the saturation of the friction force provides sufficient vertical 

force to develop wheel climb. Nonetheless, the forces involved in the derailment are shown to be 

three-dimensional, which should eliminate the rationale of using any planar force analysis in the 

case of wheel climb. Furthermore, the Nadal /L V  Limit is currently interpreted as a conservative 

limit in the prediction of wheel climb derailments, which now must be questioned as the results 

show otherwise using analytical and computational models. The results of the fully nonlinear MBS 

model are also used to demonstrate that the semi-analytical model properly captures the climb 

initiation phenomena. It is understood that the forces that produce climb initiation are different 

from the forces that sustain the wheel climb through derailment. It is also understood that the 

results of the semi-analytical model will deviate from the results of the MBS model as the climb 

propagates from climb initiation; this difference is attributed to the motion constraints and 

geometric simplifications that are employed in order to develop a closed-form expression of the 

climb initiation. 

 

4.3.1 Model Parameters 

In this section, the semi-analytical model is discussed and the parameters used as input to the 

numerical analysis are given. The model in question is a geometric simplification of a wheel flange 

in contact with a tangent rail section while oriented at a large AOA, as shown in Fig. 4.17. The 
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model geometry and coordinates are shown in Fig. 4.18. The model input parameters required to 

perform the simulation are given in Table 4.4.  

 

Initial Conditions Wheel Properties Input 

0xR   m 5xR   m/s 1568m   kg 656xxI   kg.m2 50   mrad 

0.4699zR   m 0zR   m/s 0.4737r   m 168xxI   kg.m2 0cy   m 

0   rad 10.4339   rad/s 0.5000   656zzI   kg.m2 0cz   m 

Table 4.4. Semi-Analytical Disk/Rail Model Input 

 

In order to drive the climb of the wheel, an absolute lateral force is applied to the wheel center of 

mass that is equal in magnitude to the weight of the wheel. For simplicity, the numerical results of 

the semi-analytical model will be referred to in figures as SAM, while the numerical results of the 

multibody system model will be referred to as MBS. 

 

4.3.2 Wheelset Motion 

The lateral displacement of the wheelset, for both the semi-analytical model and the MBS model, 

are shown in Fig. 4.19. 
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Figure 4.19. Wheelset Lateral Displacement 

( SAM, MBS) 

 

The plot demonstrates that under the application of the lateral force, the lateral distance between 

the wheelset and the rail decreases. The vertical displacement of the wheelset is shown in Fig. 

4.20; it is clear that for a lateral motion for the simulation scenario considered in this chapter, the 

wheelset is required to undergo subsequent vertical motion as well. 
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Figure 4.20. Wheelset Vertical Displacement 

( SAM, MBS) 

 

This is the result of the loss of the degree of freedom resulting from the kinematic constraint that 

is developed when the wheel flange comes into contact with the rail. The wheelset will climb to 

derailment in a shorter period of time if the applied lateral force increases; climb may also occur 

very quickly and without dependence on vehicle motion history thus creating a dangerous 

derailment scenario. 
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4.3.3 Three-Dimensional Climb Scenario 

The components of the friction force developed at the wheel flange are shown in Fig. 4.21. 

 

 

Figure 4.21. Flange Friction Components 

( X, Y, Z, MBS) 

 

It is clear from this figure that the friction force is not directed purely downward, but instead has, 

in general, three non-zero components in the three Cartesian directions with respect to the rail. 

This three-dimensionality can be attributed to the AOA of the wheelset. Consequently, the forces 
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developed during wheel climb cannot be captured using two dimensional analysis. Additionally, 

attempting to model the friction between the wheel and the rail as two dimensional will result in 

an incorrect magnitude. 

 

4.3.4 Lubrication and Pure Kinematic Climb 

It is worthy of mention that the wheel may climb without the influence of any friction components, 

leading to a purely kinematic derailment. The loss of the degree of freedom that is created when 

the wheel flange comes into contact with the rail then plays a significant role and should not be 

neglected. Under sufficient lateral force, the wheel will displace laterally which in turn requires 

vertical climb, regardless of the lubrication of the wheel flange. It should then not be misconceived 

that vertical friction forces are exclusively responsible for wheel climb derailments. 

 

4.3.5 Kinematic Contribution 

Kinematic constraints, which are introduced by the wheel/rail contact, restrict the wheelset motion 

to certain directions during a climb scenario and must be understood. Under the application of 

lateral force, friction forces as well as reaction forces will be developed at the point of contact. To 

understand the importance of the kinematic contribution to the climb of the wheelset, it becomes 

convenient to define a kinematic contribution measure (KCM) as the ratio of the vertical 

component of the reaction force applied at the flange to the total contact forces acting upwards at 

the flange, represented as a percentage. The KCM allows one to see the impact of the constraint 

during the climb of the wheel. Figure 4.22 shows this ratio as the wheel climbs the rail for the 

semi-analytical and MBS models. 
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Figure 4.22. Kinematic Contribution Measure 

( SAM, MBS) 

 

It is clear from this figure that the kinematic contribution is significant during the climb initiation, 

and becomes even more significant as the wheel climbs the rail. 

 

 

 



122 

 

 

 

4.3.6 Lateral Force Relationship 

An applied lateral force to the wheelset can drive the wheel flange into the rail, causing derailment. 

It is incorrect to assume, however, that the forces measured at the contact point generally balance 

the forces that drive the derailment. Figure 4.23 shows the ratio of the lateral force developed at 

the contact point to the applied lateral force acting on the wheel. 

 

 

Figure 4.23. Lateral Force Ratio 

( SAM, MBS) 
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The lateral contact force is, in general, different from the lateral applied force. Because these forces 

are not representative of one another for the semi-analytical or MBS models, similar investigations 

may need to be considered in railroad vehicle derailment studies that rely heavily on the forces 

developed at the wheel/rail interface to predict motion. 

 

4.3.7 The Nadal L/V Limit 

Figure 4.24 shows the L V  of the flange contact forces for the semi-analytical and MBS models. 

 

Figure 4.24. Measured /L V  vs. Derailment Criteria 

( SAM, MBS, Updated Nadal,  Max Nadal) 
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As the wheel climb propagates, the L/V of the two models actually decrease as the danger of 

derailment becomes more prevalent. This phenomenon is contrary to the belief that the L V  will 

increase until a critical value is exceeded. The critical value of the Nadal equation, updated at each 

time step with the proper flange angle at the point of contact, is also shown in Fig. 4.24 to decrease 

as the climb propagates. It can be seen that the climb of the two wheelset models initiates at 

measured L V  values that are below that of the Nadal L V  Limit, indicating that the derailment 

criteria may not be, then, referred to as conservative. Also included in Fig. 4.24 is the Nadal L V  

limit using the maximum flange angle, which is even less conservative. 

 

4.3.8 Comments on Model Simplification 

It is clear that the semi-analytical model can be considered as a useful tool for understanding the 

conditions at which wheel climb initiates, as well as understanding the physical principles that are 

at play during a climb scenario. The results of the semi-analytical model diverge as the climb 

propagates as expected since the semi-analytical model does not take into account the geometry of 

the wheel and rail profiles, and makes assumptions on the motion of the wheelset. The trends of 

the MBS model results were represented by the semi-analytical model in the vicinity of the climb 

initiation, and therefore, the simplified model has potential as a tool for understanding basic 

derailment concepts, particularly in the vicinity of the climb initiation. The validation of any new 

concepts, however, will require the use of fully nonlinear MBS models as it is done in this chapter. 
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4.4. Fully Nonlinear MBS Counter Example 

The MBS model examined in this chapter is considered in this section in order to rationalize the 

use of the contact angle in derailment criteria. 

The /L V  force ratio measured at the wheel flange/rail interface is shown in Fig. 4.25. 

 

 

Figure 4.25. Wheel Flange /L V  

( Measured, Updated Nadal, Max Nadal, Updated Criteria) 
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The ratio decreases for approximately the first 50 ms of the derailment, where the ratio increases 

sharply then continues to decrease. Also shown in the figure is the “updated Nadal” derailment 

limit, where the limit is recalculated at each time step for the current flange angle. It is realized 

from the figure that the derailment initiates at a /L V  ratio less than the limit predicted by Nadal’s 

criteria. The Nadal limit is also shown to decrease as the risk of derailment becomes more 

prevalent. The maximum Nadal derailment limit, where the maximum flange angle is used in the 

calculation, is also shown as a horizontal reference line. It is seen from the figure that this 

derailment limit is even less conservative. Finally, an “updated criteria” is shown in Fig. 4.25, 

which is calculated by substituting the contact angle (discussed in chapter 3) for the flange angle 

in the Nadal formula such that 

   / tan / 1 tanL V        (4.19) 

This criteria is shown to accurately predict the derailment that Nadal’s original formulation was 

unable to predict. This result does not justify the use of such a criteria, as it was shown in this 

chapter that the forces developed in wheel climb derailments cannot be captured by planar analysis; 

however it does rationalize the use of the contact angle in derailment investigations as well as shed 

light on the miscalculation that can be made through assuming the flange angle is representative 

of the contact angle. 

 

4.5 Concluding Remarks 

There is a strong belief in the rail industry and research community that wheel climb at a large 

AOA is initiated by friction forces. It is believed that when the wheel comes into flange contact 

with the rail at a large AOA, an increase in the lateral force acting on the wheel leads to an increase 
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in the normal reaction force at the flange contact point. Since in this case the contact point on the 

wheel is moving downward, the large reaction force normal to the flange produces significant 

upward friction force that results in wheel climb. A fully nonlinear MBS wheel climb model is 

used in this study in order to investigate the above interpretation of wheel climb derailments.  

The results obtained using this numerical model are analyzed in order to shed light on the 

forces that contribute to the wheel climb mechanism. It is shown that the contact between the wheel 

flange and rail introduces motion constraints that play a significant role in the initiation of the 

climb, and become more significant as the wheel climbs the rail. In addition to the reaction forces, 

the contact between the wheel flange and rail produces a friction force that is shown to have non-

zero components in three Cartesian directions with respect to the rail and therefore cannot be 

captured using any planar analysis. It follows that the Nadal L V  Limit, which makes use of a 

planar force balance, does not correctly capture the friction force at the flange. This investigation 

also demonstrates that the forces measured at the flanging rail are not representative of the force 

that drives the derailment. The above conclusions raise question to the current state of derailment 

criteria, and in particular the Nadal L V  Limit, which is shown to not predict the derailment 

presented in this investigation. The criteria may then not be deemed conservative.  

These important conclusions are further investigated using a semi-analytical model that is 

additionally formulated in this investigation. The semi-analytical model is formulated using 

assumptions that are derived from the current interpretation of wheel climb in order to analyze the 

initiation of the wheel climb motion and the initiation only. The results of the semi-analytical 

model are compared with the results of the MBS model in order to validate the assumptions made 

to develop the semi-analytical model as well as provide insight into the derailment initiation of the 
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MBS model. The two models, although very different in formulation, are in good agreement in the 

vicinity of the wheel climb initiation. The semi-analytical formulation raises question in regards 

to use of the “distance to climb” measure used in some derailment criteria, as it is shown that the 

longitudinal motion is decoupled from the vertical and yaw displacements. 

The results of both models confirm the following important conclusions: 

1. Nadal’s limit cannot be used as the basis for a conservative derailment criterion. 

2. The ratio of the lateral force to the vertical force, L V , decreases as the wheel continues to 

climb. 

3. Wheel climb can be initiated in the case of zero friction if the wheel is subjected to 

significant lateral force. 

Finally, the correct contact angle was substituted into the formulation of the Nadal /L V  

derailment limit in order to provide an updated criterion that correctly predicted the derailment of 

the wheelset. This result should not be interpreted as an appropriate derailment measure, but rather, 

as a rationalization and justification of the use of the correct contact geometry in derailment 

investigations. These results support the need for the use of correct contact geometry in the 

investigations of the derailments of modern railroad systems.

  

 

  



 

 

 

129 

 

CHAPTER 5 

SUBSTRUCTURING AND CMS 

Previously prepared in (O’Shea et al., 2016) and reproduced in this dissertation with permission 

which is listed in Appendix A. Dr. Paramsothy Jayakumar and David Mechergui are contributors. 

 

The floating frame of reference (FFR) formulation is widely used in the analysis of deformable 

bodies in multibody system (MBS) simulations. The modeling of deformable bodies requires the 

use of elastic degrees of freedom, which can increase the model size significantly. Therefore, 

modal reduction techniques have been proposed in order to define a proper set of assumed body 

deformation modes at a preprocessing stage. Crucial to the proper definition of these modes when 

the finite element (FE) FFR formulation is used is the understanding of the concept of the reference 

conditions that define the nature of the deformable body coordinate system. Substructuring 

techniques, such as the Craig-Bampton method, on the other hand, have been proposed to allow 

for efficient model assembly and reduce model dimensionality. However, it is important to 

distinguish between substructuring techniques which aim at obtaining efficient model assembly 

and coordinate reduction and the reference conditions that define the problem to be solved. In this 

chapter, the appropriateness and generality of using the Craig-Bampton method in MBS 

implementation is discussed. It is shown that, when a set of reference conditions are not applied at 

a preprocessing stage, the Craig-Bampton transformation leads to the free-free modes of 

deformation as well as the natural frequencies associated with these modes. It is also shown that a 

square Craig-Bampton transformation is equivalent to a similarity transformation that does not 

alter the problem to be solved. Therefore, the goal of using the Craig-Bampton transformation is
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 not to improve the solution accuracy, but rather to obtain a reasonably accurate solution using 

lower dimension models, as with any other substructuring method. This chapter also demonstrates 

that free-free deformation modes cannot be used in all applications, shedding light on the 

importance of the concept of the reference conditions when using the FE/FFR formulation in 

modeling flexible bodies in MBS applications. To this end, this chapter demonstrates numerically 

for the first time that the unique resonance frequency of a model can be achieved using the 

definition of different mode shapes associated with different boundary conditions provided that 

the shapes are similar. Due to the subtleties inherent to the FFR formulation, care must be taken 

when using and/or designing flexible MBS software in order to obtain acceptable results. 

 

5.1 Background 

In rigid body dynamics, a body-fixed coordinate system located at the body center of mass is often 

used. In deformable body dynamics, on the other hand, the body coordinate system may or may 

not be rigidly attached to a point on the deformable body. Nonetheless, there should be no rigid 

body motion between the body and its coordinate system. This can be clearly explained using the 

simple example of the simply supported beam shown in Fig. 5.1. 
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Figure 5.1. Simply-Supported Beam 

 

If  u u x  and  v v x  are, respectively, the longitudinal extension/compression and transverse 

deflection of the beam and x  is the longitudinal coordinate, the simply supported end conditions 

require that    2 0 2 0u x l ,v x l      , and  2 0v x l  . These three boundary 

conditions eliminate the rigid body motion of the beam and require that the X  axis of the beam 

coordinate system shown in Fig. 5.1 must pass by the beam end points in order to ensure that the 

boundary condition algebraic equations are satisfied as the beam vibrates. It is clear from this 

simple example that as the beam vibrates the coordinate system does not move with a material 

point on the beam; this is the case of a floating coordinate system. Furthermore, the boundary 

conditions define the shape of the beam deflection which is described using the simply supported 

mode shapes. It is therefore important to understand the relationship between the boundary 

conditions, the body coordinate system, and the assumed shape of displacement. This relationship 

is fundamental when the FFR formulation is used in modeling flexible bodies that undergo finite 

rotations and are subjected to kinematic constraints. It will be demonstrated numerically in this 
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chapter that the reference conditions (boundary conditions) that eliminate the rigid body motion 

also define the shape of deformation. It will also be demonstrated that the unique resonance 

frequency of a model can be achieved using mode shapes obtained using different boundary 

conditions, provided that the shapes are similar.  

In flexible MBS applications, deformable bodies undergo finite rotations and are subjected 

to kinematic constraints that describe mechanical joints. One of the most fundamental problems 

when the FFR formulation is used in flexible MBS application is the selection of the deformable 

body coordinate system and the selection of the assumed shape of deformation. In the FFR 

formulation, an FE mesh is developed at a preprocessing stage in order to determine the inertia 

shape integrals that enter into the formulation of the nonlinear mass matrix and the Coriolis and 

centrifugal forces (Shabana, 2013). These inertia shape integrals as well as the stiffness matrix can 

be expressed in their modal form in order to allow for using coordinate reduction techniques. When 

the FE mesh is created at a preprocessing stage, boundary conditions can be introduced in order to 

define the deformation vector space as well as the deformable body coordinate system. In order to 

explain this fundamental problem, consider the slider-crank mechanism shown in Fig. 5.2a. The 

figure shows a dotted line that represents a possible deflection shape of the flexible connecting rod 

of the mechanism. The deflected flexible connecting rod is shown in Fig. 5.2b.  
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Figure 5.2. Slider-Crank Mechanism with Elastic Connecting Rod 

 

In reality, coordinate systems do not exist and they are introduced for the convenience of 

measuring the deformation or other physical variables. There are an infinite number of choices for 

the coordinate system of the connecting rod. Some of these different choices are associated with 

different reference conditions. Figure 5.3 shows three possible choices of the connecting rod 

coordinate system. The first choice, Fig. 5.3a, can be defined using reference conditions (boundary 

conditions) similar to the case of the simply supported beam considered previously in this section. 

That is, if this coordinate system is to be selected, one must impose boundary conditions of a 

simply supported beam when the FE mesh is created at the preprocessing stage. This choice will 

automatically define the assumed shape of the deflected connecting rod. Other choices are the 
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body-fixed coordinate system shown in Fig. 5.3b, and the mean axis coordinate system shown in 

Fig. 5.3c.  

 

 

Figure 5.3. Simply-Supported, Body-Fixed, and Mean-Axis Reference Conditions 

 

The body-fixed coordinate system can be obtained by imposing the three conditions 

   0 0 0 0u x ,v x    , and  0 0v x x    , which are equivalent to the clamped boundary 

conditions at the center of the beam. The mean axis conditions, on the other hand, correspond to 
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the case of free-free end conditions. The resulting mode shapes are the free-free mode shapes as 

discussed in the literature (Ashley, 1967; and Agrawal and Shabana, 1985). One can show that 

these three different choices in the selection of the reference conditions lead to assumed modes 

with similar shapes, despite the fact that the natural frequencies of the linear problem of the three 

cases can be significantly different. This important issue will be revisited in a later section of this 

chapter. 

The slider-crank mechanism example clearly explains the fundamental relationship 

between the assumed mode shapes and the selection of the body coordinate system. It also 

demonstrates clearly that the deformation is relative and should not be viewed as absolute. For the 

same deformable body and same deformed shape, in one coordinate system the deformation can 

assume a very large value, while in another coordinate system the deformation can assume a very 

small or zero value. That is, the definition of the deformation lacks uniqueness. For this reason, in 

continuum mechanics texts, strains are used as deformation measures since the strains at a point 

and along certain directions are unique. The uniqueness of the strains is the result of the uniqueness 

of the position vector gradients that represent tangents to coordinate lines (fibers). 

The reference conditions, therefore, define a problem which has a unique solution. In the 

case of complex structures, different substructuring techniques can be used to obtain an efficient 

solution that converges to the unique solution. The reference conditions define the deformation 

vector space, while substructuring techniques are not intended to change this deformation vector 

space. Rather, the substructuring techniques use a subset of the vectors that span this space and 

provide an efficient method for the model assembly. 
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5.2 FE/FFR Reference Conditions 

In order to have a general implementation of the FE/FFR formulation, it is necessary to have a 

good understanding of the concept of the reference conditions that define the nature of the flexible 

body coordinate system and also define the mode shapes that describe the body deformation with 

respect to its coordinate system. In this section, this concept is reviewed briefly in order to better 

understand the implementation of substructuring techniques in flexible MBS algorithms. To this 

end, a brief review of the FE/FFR formulation is provided.  

 

5.2.1 FE/FFR Kinematics 

The displacement field of a deformable body can be approximated using the conventional finite 

elements that employ infinitesimal rotations as nodal coordinates. However, inherent in the 

element shape functions are rigid body modes. The linearized rotations used as nodal coordinates 

in the finite element method are not suitable for arbitrary rigid body motion. Therefore, the 

displacement of the body is represented by the motion of a selected body reference. The 

deformation of the body is then defined with respect to the body reference using a set of reference 

conditions. For simplicity, the case of planar motion is considered in this section.  

In the FE/FFR formulation, the displacement field across an element j  of deformable body 

i  is defined in an element coordinate system ij ijX Y  as ij ij ijw S e , where ij
S  is the element shape 

function matrix, and ij
e  is the vector of element nodal coordinates. Figure 5.4 shows the 

coordinates of a planar Euler-Bernoulli beam element. 
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Figure 5.4. Euler-Bernoulli Beam Nodal Coordinates 

(○ Original nodal position, Undeformed element) 

 

Figure 5.5 shows the shape functions of the left node of this element, while Fig. 5.6 shows the 

shape functions of the right node of this element, which has total of six nodal coordinates 

, 1, 2, ,6ij

ke k  . 
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Figure 5.5. Euler-Bernoulli Beam Left Node Shape Functions 

(○ Original nodal position, ● Displaced nodal position,  Overlapped original/displaced node) 

( Undeformed element, Deformed element) 
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Figure 5.6. Euler-Bernoulli Beam Right Node Shape Functions 

(○ Original nodal position, ● Displaced nodal position) 

( Undeformed element, Deformed element) 

 

In order to meet convergence requirements, the displacement field across an element must 

be continuous. Also, the element must be able to assume the state of constant strain. To this end, 

the rigid body modes must exist in the element shape functions. For example, as shown in Fig. 5.7 

for the planar Euler-Bernoulli beam element, a transverse rigid body mode can be produced with 

nodal coordinates  0 1 0 0 1 0
Tij e .  
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Figure 5.7. Euler-Bernoulli Beam Transverse Rigid Body Mode 

(○ Original nodal position, ● Displaced nodal position) 

( Undeformed element, Deformed element) 

 

5.2.2 Coordinate Systems 

The shape functions of conventional structural finite elements such as beams, plates, and shells 

cannot accurately describe arbitrary rigid body rotations (Shabana, 1996; Shabana, 2013). This is 

the result of using infinitesimal rotations as nodal coordinates. The FE/FFR formulation was 

introduced to allow using conventional structural finite elements and avoid using incremental 

rotation solution procedures in MBS simulations. In this formulation, a body coordinate system 

i i iX Y Z  is introduced to describe the large displacements including finite rotations of the FE mesh 

with respect to an absolute reference XYZ . An intermediate element coordinate (IEC) system 
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ij ij ij

i i iX Y Z  is also introduced in order to be able to describe complex geometries characterized by 

discontinuities common in automotive and machine applications. The origin of the IEC system is 

rigidly fixed to the origin of the body coordinate system. The axes of the IEC system are oriented 

such that they are initially parallel to the element coordinate system axes as shown in Fig. 5.8. 

 

 

Figure 5.8. Simply-Supported Reference Conditions in the FFR Formulation 

(○ Original nodal position, ● Displaced nodal position) 

( Undeformed element, Deformed element) 

(Body Reference 
i i iX Y Z , IECS Reference 

ij ij ij

i i iX Y Z
, Element Reference 

ij ij ijX Y Z ) 

 

Since the FE shape function can describe arbitrarily large translation, a new definition for the 

displacement field in the IEC system is 
ij ij ij

i iw S e , where the vector of nodal coordinates ij
e  is 
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replaced by a new coordinate vector 
ij

ie . A constant transformation exists between the IEC system 

and the body reference. This relation can be written as 
ij ij ij

i ne C q , where the matrix ij
C  is a 

constant transformation matrix, and the vector 
ij

nq  represents the nodal coordinates defined in the 

body coordinate system (Shabana, 2013). 

 

5.2.3 Reference Conditions 

To define a unique displacement field in which the body large displacement is represented by the 

motion of the body coordinate system, the rigid body modes must be eliminated from the element 

shape functions. To this end, one can write the vector 
ij

nq  as the sum of two vectors such that 

0

ij ij ij

n f q q q , where 0

ij
q  represents a constant vector of the undeformed nodal coordinates, and 

ij

fq

represents the vector of nodal displacements. These coordinates are shown in Fig. 5.9 for the right 

node of the Euler-Bernoulli beam element. 
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Figure 5.9. Right Nodal Coordinates Defined in Body Reference Frame 

(○ Original nodal position, ● Displaced nodal position,  Overlapped original/displaced node) 

( Undeformed element, Deformed element) 

 

Using a standard FE assembly process, one can write 0

i i i

n f q q q , where 1

ij ij i

n nq B q , and 1

ij
B  is a 

Boolean matrix that defines the element coordinates in the body coordinate vector. It follows that 

1

ij ij i

f fq B q . In order to eliminate the rigid body modes of the element shape functions, a set of 

reference conditions similar to the boundary conditions must be imposed on the deformation 

coordinates of the body. The resulting linear algebraic equations can be used to define dependent 

deformation coordinates that can be expressed in terms of the independent deformation 

coordinates. This leads to the transformation 2

i i i

f fq B q , where 2

i
B  is the matrix of reference 
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conditions, and 
i

fq  is the vector of independent nodal deformations. Using the FE/FFR kinematic 

equations developed in this section, one can write the position vector of an arbitrary point p  on 

the finite element j  in the coordinate system of body i   

 1 0 2

ij i i ij i i ij ij ij i i i i

p p p f    r R A u R A C S C B q B q  (5.1) 

where  1 0 2

ij ij ij ij ij i i i

p p f u C S C B q B q , 
ij

pS  is the element shape function evaluated at the arbitrary 

point p  , ij
C  is the matrix that defines the orientation of the IEC system with respect to the body 

coordinate system, i
R  is the vector that defines the global position of the origin of the body 

coordinate system origin, and i
A  is the transformation matrix that defines the orientation of the 

body coordinate system in the global system (Shabana, 2013). A case of a special interest in the 

discussion that will be presented in this chapter is the case in which 2

i
B  is the identity matrix, that 

is 2

i B I , which is the case of free-free boundary conditions that defines a body coordinate system 

that satisfies the mean axis conditions (Ashley 1967; Agrawal and Shabana, 1985) 

 

5.2.4 FE/FFR Equations of Motion 

Using the FE/FFR kinematic description presented in this section, the equations of motion can 

obtained using Eq. 5.1 and the principle of virtual work or Lagrange’s equation as 

 

 

 

 

 

 

i i i
i i i i

e v c
r r rrr rf r r

ii i i i i i i
fffr ff f f e v c

f f f

                                                 

Q Q Q0 0m m q q

0 km m q q Q Q Q
  (5.2) 
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In this equation, subscripts r  and f  refer, respectively, to reference and elastic coordinates, 
i

rq  

and 
i

fq  are, respectively, the reference and elastic coordinates, 
i

ffk  is the stiffness matrix, and 

,i i

e vQ Q , and 
i

cQ  are, respectively, the vector of external, Coriolis and centrifugal, and constraint 

forces. If the reference conditions eliminate all the rigid body modes of the element shape function, 

the stiffness matrix 
i

ffk  is positive definite. If, on the other hand, free-free end conditions are 

used, the stiffness matrix 
i

ffk is a semi-definite matrix. 

 

5.2.5 Use of Component Modes 

Using the preceding equation, the free vibration of the body with respect to its reference is defined 

by the equation 
i i i i

ff f ff f m q k q 0 . This equation can be used to define the generalized eigenvalue 

problem  
2

i i i i i

ff ffk a m a , where  
2

i  is the eigenvalue and i
a  is the eigenvector. The 

eigenvalue problem can be solved for a set of eigenvectors 
i

la  and the corresponding eigenvalues 

 
2

i

l , where l  is the mode number. Using the eigenvectors (mode shapes), a coordinate 

transformation from the physical nodal coordinates to the modal elastic coordinates can be 

obtained as 
i i i

f m fq B p , where 
i

mB  is the modal transformation matrix whose columns are the low-

frequency mode shapes. The vector 
i

fp  is the vector of modal coordinates which represent the 

amplitudes of the mode shapes. The total deformation of the body is then represented by a linear 

combination of the low-frequency mode shapes. Using the modal transformation, the equations of 

motion can be written in its modal form as 
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 

 

 

 

 

 

i i i
i i i i

e v c
r r rrr rf r r

ii i i i i i i
fffr ff f f e v c

f f f

                                                 

Q Q Q0 0m m p p

0 km m p p Q Q Q
  (5.3) 

 In this equation, a bar over a matrix or a vector indicates the modal form of the matrix or the 

vector, and 
i i

r rp q . The modal mass and stiffness matrices 
i

ffm  and 
i

ffk  are diagonal matrices. 

In the FFR formulation, it is recommended to perform an orthonormalization respect to the 

stiffness matrix 
i

ffk . This choice, which leads to identity modal stiffness matrix, that is 
i

ff k I , 

provides a natural scaling of the elastic coordinates. 

 

5.2.6 Reference Conditions and Substructuring Techniques  

It is clear from the brief review presented in this section that the reference conditions, in addition 

to automatically defining the flexible body coordinate system, also define the mode shapes that 

describe the body deformation with respect to its coordinate system. The reference conditions can 

be selected to obtain the deformation shapes expected as the result of the loading conditions and 

kinematic constraints imposed on the boundary of the deformable bodies. The reference conditions 

also define a problem that has a unique solution. It is, therefore, important to distinguish between 

the reference conditions and substructuring techniques. The reference conditions, including the 

free-free end conditions associated with the mean axis conditions, define the deformation vector 

space. Substructuring techniques, which do not alter the problem and has no effect on the choice 

of the body coordinate system, are mainly used for the purpose of efficient model development 

and coordinate reduction. The step of imposing the reference conditions is indispensable in the 

FE/FFR formulation in order to properly define the problem and the flexible body coordinate 
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system. The FE/FFR formulation can be implemented in its most general form whether or not 

substructuring techniques are used.  

 

5.3 The Craig-Bampton Method 

The Craig-Bampton method is a substructuring technique that was introduced to allow for dividing 

large structures into smaller substructures, reduce the number of degrees of freedom of the 

substructures, and assemble the reduced-order substructure models in order to obtain an efficiently 

assembled and/or lower-dimension structure model. The solution obtained using the Craig-

Bampton substructuring method is expected to converge to the solution of the original problem. 

Therefore, the Craig-Bampton substructuring method should lead to a solution that agrees with the 

solution obtained using other techniques including the conventional CMS methods. The Craig-

Bampton method does not define a new problem, but aims at solving an existing one. This 

substructuring method is widely used in MBS software, and therefore, it is important to understand 

this method and its relationship to the reference conditions that define the deformation vector 

space. This section reviews the Craig-Bampton method (Bampton and Craig, 1968; Craig, 1983). 

 

5.3.1 Craig-Bampton Transformation  

As shown in the preceding section, the free vibration of the deformable body with respect to its 

reference is governed by the equation 
i i i i

ff f ff f m q k q 0 . One may partition the vector of elastic 

coordinates 
i

fq  into boundary coordinates  i

f
b

q  and internal coordinates  i

f
i

q  such that 
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   
T

T T
i i i

f f f
b i

 
  

q q q , and rewrite the equation 
i i i i

ff f ff f m q k q 0  using this coordinate 

partitioning as 

   

   

 

 

   

   

 

 

i i i ii i
ff ff ff fff fbb bi bb bib b

i i i ii i
ff ff ff fff ffb ii fb iii i

      
                  

      

m m k kq q 0

0m m k kq q
 (5.4) 

Using the second matrix equation in the preceding equation and ignoring the effect of the inertia 

forces, one obtains the equation  

       i i i i

ff f ff f
ib b ii i

 k q k q 0  (5.5) 

Assuming that  i

ff
ii

k  is nonsingular, one can use the technique of static condensation to write the 

coordinates of the internal nodes in terms of the coordinates of the boundary nodes as  

         
1

i i i i i i

f ff ff f ib f
i ii ib b b



  q k k q Ψ q  (5.6) 

In this equation,    
1

i i i

ib ff ff
ii ib



 Ψ k k . Using Eq. 5.6, one can define a coordinate transformation 

matrix that relates all the coordinates to the boundary coordinates, that is  i i i

f fb f b
q Ψ q , where 

the matrix 
i

fbΨ  is defined as 

   
1

i

fb i i i
ib ff ff

ii ib



  
   
    

II
Ψ

Ψ k k
 (5.7) 

Note that this transformation matrix is not a square matrix since it has a number of rows equal to 

the number of elastic coordinates 
i

fq  and a number of columns equal to the number of boundary 

coordinates  i

f b
q . Note also that the column of the matrix 

i

ibΨ  can be easily obtained since they 
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represent the change in the internal node coordinates as the result of a unit displacement in the 

boundary node coordinates. The columns of this matrix are referred to as the static correction 

modes.  

In order to develop a square coordinate transformation, the second equation in Eq. 5.4 is 

used again by considering the case of free vibration of the internal nodes with respect to the 

boundary nodes. This leads to the equation        i i i i

ff f ff f
ii i ii i

 m q k q 0 . This equation can be 

used to define an eigenvalue problem that defines a number of eigenvectors equal to the number 

of the coordinates of the internal nodes. These eigenvectors define the columns of a modal 

transformation matrix 
i

ipΦ . The new normal modes are called fixed-interface modes. Using this 

modal transformation matrix and the static correction modes, one obtains the following one-to-one 

coordinate transformation: 

 

 

i
i

f
b bi i i

i if ii
ib ip ff

i

    
     
       

q I 0 p
q α p

Ψ Φ pq
 (5.8) 

In this equation,  i i

b f
b

p q , 
i

fp is the vector of modal coordinates associated with the fixed-

interface modes, and i
α  is the Craig-Bampton transformation defined as 

i

i i

ib ip

 
  
 

I 0
α

Ψ Φ
     (5.9) 

Since the number of internal degrees of freedom is normally much higher than the number of 

boundary degrees of freedom, insignificant fixed-interface modes can be eliminated, leading to a 

matrix 
i

ipΦ  with small number of columns, thereby significantly reducing the number of 
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coordinates. Substituting Eq. 5.8 into the equation 
i i i i

ff f ff f m q k q 0  that defines the free 

vibration of the deformable body with respect to its coordinate system and pre-multiplying by the 

transpose of the Craig-Bampton transformation i
α , one obtains 

   iT i i i iT i i i

ff f ff f α m α q α k α q 0     (5.10) 

Since the resulting mass and stiffness matrices  iT i i

ffα m α  and  iT i i

ffα k α  are not diagonal, existing 

MBS software use the preceding equation to solve for another eigenvalue problem in order to 

define diagonal modal mass and stiffness matrices. 

 

5.3.2 Substructuring and Deformation Vector Space 

As previously mentioned, it is important to distinguish between substructuring and the deformation 

vector space defined by the reference conditions. Before applying the transformation i
α  to the 

mass and stiffness matrices in the equation 
i i i i

ff f ff f m q k q 0 , one can still apply the reference 

conditions on the coordinates of the boundary nodes in order to define the deformable body 

coordinate system as well as the deformation vector space. If the number of reference conditions 

is larger than or equal to the number of rigid body modes of the finite element shape function, one 

obtains a positive definite stiffness matrix and the eigenvalue problem obtained using Eq. 5.10 

does not lead to rigid body modes. If, on the other hand, no reference conditions are applied, the 

application of the transformation i
α  will lead to six rigid body modes in the spatial analysis. These 

rigid body modes can be eliminated with the understanding that the resulting deformable body 

coordinate system is a reference that satisfies the mean axis conditions, that is, this reference is a 

floating coordinate system that always remains at the structure center of mass which may not be a 
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material point as the structure deforms. The large displacement of this body reference is described 

in the FFR formulation using the absolute Cartesian coordinates and orientation parameters as 

previously discussed in this chapter.  

 

5.3.3 Use in MBS Applications 

If all the fixed interface modes are used, one has a square Craig-Bampton transformation that leads 

to the exact solution of the original problem since no coordinate reduction technique is used. If 

insignificant high frequency fixed-interface modes are neglected, the obtained solution is judged 

accurate if it converges to the solution of the original problem obtained using the square Craig-

Bampton transformation. In the case of using a square Craig-Bampton transformation, one should 

obtain the same eigenvalues as the eigenvalues of the problem 
i i i i

ff ffm b k b , where   is the 

eigenvalue, and i
b  is the eigenvector. That is, the two problems 

i i i i

ff ffm b k b  and 

   iT i i i iT i i i

ff ffα m α b α k α b  should have the same eigenvalues, that is   , while the 

eigenvectors differ only by a coordinate transformation, that is i i ib α b . If no reference conditions 

are imposed (case of mean axis conditions), one obtains the free-free mode shapes, regardless of 

the transformation used.  

Some MBS computer programs that use the Craig-Bampton method allow for the use of 

the free-free modes only. It can be shown that if no reference conditions are defined, the stiffness 

matrices 
i

ffk  and  iT i i

ffα k α  are semi-definite and the resulting mode shapes are the free-modes 

regardless of whether or not the Craig-Bampton transformation is used. It is important, however, 

to point out that the free-free modes, as will be demonstrated in this chapter, are not suited for the 
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use in many flexible MBS applications. Therefore, software that do not employ the concept of the 

reference conditions fail to exploit the generality of the FE/FFR formulation as it was originally 

proposed more than three decades ago, and the use of these software can be severely limited or 

can lead to wrong results as the result of not using the proper mode shapes that are suited for a 

particular application (Shabana, 1982).  

 

5.4 Important Concept in Flexible Body Dynamics 

In flexible body dynamics, it is important to understand that the mode shapes obtained as the result 

of imposing the reference conditions serve only the purpose of defining the deformation of the 

body with respect to its reference. That is, the natural frequencies obtained using a set of reference 

conditions applied to the structure at a preprocessing stage have no effect on the solution of the 

actual problem since what matters is the shape of deformation. Similar shapes can be obtained 

using different reference conditions that define different body coordinate systems. This is 

consistent with the fact of the non-uniqueness of the deformation as previously discussed in 

Section 5.1 of this chapter. This chapter demonstrates numerically for the first time this important 

concept.  

To this end, the deflection of the slender steel beam shown in Fig. 5.10 is analyzed. 

 

 

Figure 5.10. Simply-Supported Finite Element Beam under Actuated Load 



153 

 

 

 

(○ Original nodal position, Undeformed element) 

 

The MBS model is assumed to consist of three bodies including the ground, the beam, and a 

massless sliding block. The ground is assumed to be fixed in space. The beam is 0.3048 m in 

length, and is divided into 20 Euler-Bernoulli beam elements. The beam cross-section is circular 

with a 6.35 mm diameter. The elastic modulus is assumed to be 112 06843 10.   N/m2. The free-

free reference conditions that define a beam coordinate system whose origin remains at the beam 

center of mass are applied to the beam at a preprocessing stage. An eigenvalue analysis using the 

beam mass and stiffness matrices result in the free-free modes of vibration. Figure 5.11 shows the 

first six free-free modes resulting from this calculation.  

 

 

Figure 5.11. Free-Free Modes 

( Undeformed Beam Axis, Deformed element) 
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(● Displaced nodal position) 

 

Figure 5.12 shows the first six simply supported modes, for comparison. In the MBS model, the 

beam is pinned to the ground at its left end (node #1), and pinned to the sliding block at its right 

end (node #21). 

 

 

Figure 5.12. Simply-Supported Modes 

( Undeformed Beam Axis, Deformed element) 

(● Displaced nodal position) 

 

A translational joint allows the sliding block to move in a lateral direction only, thereby physically 

defining simply supported end conditions. A sinusoidal force is applied by an actuator at the center 

of the beam (node #11) in the vertical direction. In this example, a parametric investigation is 

performed to study the maximum deflection of the beam center under various forcing frequencies 
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ranging from 15.9 Hz to 429.7 Hz. Figure 5.13 shows the largest deflection for each simulation 

scenario.  

 

 

Figure 5.13. Maximum Deflection under Actuated Load using Free-Free Reference Conditions. 

( Simply Supported Beam, Free-Free Beam) 

 

This figure also shows two vertical reference lines. The first reference line (~138 Hz) indicates the 

first natural frequency of a beam with simply-supported reference conditions. The second 

reference line (~312.5 Hz) indicates the first natural frequency of the beam with free-free reference 
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conditions. It is clear from this figure that the model achieves resonance for a forcing frequency 

equal to the simply-supported beam natural frequency despite the fact that free-free modes are 

used. That is, resonance is achieved not at the free-free natural frequency, but at the simply-

supported natural frequency, implying that the natural frequencies obtained at the preprocessing 

stage have no effect on the solution of the problem. 

As previously stated, the finite element method uses assumed shapes of deformation. To 

have an accurate solution, the shapes must represent the boundary conditions of the physical 

problem. This example demonstrates that it is the mode shapes, not the associated frequencies, 

which determine the solution accuracy. Although the free-free reference conditions have different 

natural frequencies than the simply supported reference conditions, the shapes are similar and this 

was the reason that the two different sets of reference conditions can produce similar results as 

demonstrated in the literature (Agrawal and Shabana, 1985). It is for this reason that resonance is 

seen at a forcing frequency equal to the natural frequency of the simply-supported beam, even 

though this frequency has no relationship to the natural frequency of the free-free beam. Numerical 

results show that the model does not produce resonance at the natural frequency of the free-free 

beam. 

Even if Craig-Bampton substructuring method is used in MBS applications, the concepts 

discussed in this section remain fundamental and must be observed. In the remainder of this 

section, an example of the application of the Craig-Bampton method to the deformable beam of 

the previous example is considered. However, in this example, the beam is modeled using 6 Euler-

Bernoulli beam elements in order to reduce the number of nodal degrees of freedom, for the 
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purpose of discussion only. Equation 5.7 gives the constraint modes for the beam, which are shown 

in Fig. 5.14. 

 

 

Figure 5.14. Constraint Modes 

( Undeformed Beam Axis, Deformed element) 

(● Displaced nodal position) 

 

The columns of the matrix 
i

ipΦ  of Eq. 5.8 are the fixed-interface normal modes. The first six fixed-

interface normal modes are shown in Fig. 5.15 for visualization. 
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Figure 5.15. Fixed-Interface Normal Modes. 

( Undeformed Beam Axis, Deformed element) 

(● Displaced nodal position) 

 

However, in this example, there may be up to fifteen fixed-interface normal modes which are all 

included to obtain the complete solution. The static correction and fixed-interface modes are 

combined to form the Craig-Bampton transformation as is given in Eq. 5.9. The beam mass and 

stiffness matrix are transformed according to the procedure described in the preceding section. 

Finally, an eigenvalue analysis is performed on the system, which is now written using a set of 

Craig-Bampton modal coordinates, resulting in a set of modes shown in Fig. 5.16. 
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Figure 5.16. Modes Resulting from Eigenvalue Analysis of Craig-Bampton Equations of Motion 

( Undeformed Beam Axis, Deformed element) 

(● Displaced nodal position) 

 

It is clear that the deflection shapes defined using this set of coordinates do not represent the 

deflection of the beam in a nodal coordinate space. Pre-multiplying the modes of Fig. 5.16 by the 

Craig-Bampton transformation yields a set of free-free normal modes. Figure 5.17 shows the first 

six free-free modes resulting from this calculation. 

 



160 

 

 

 

 

Figure 5.17. Resulting Free-Free Modes from Craig-Bampton Method 

( Undeformed Beam Axis, Deformed element) 

(● Displaced nodal position) 

 

The frequencies associated with these modes are the frequencies associated with the free-free 

normal modes. Table 5.1 compares the first three natural frequencies against the respective 

analytical values. 

 

Mode Order 
Calculated 

Frequency (Hz) 

Analytical 

Frequency (Hz) 

1 312.7 312.6 

2 863.3 861.8 

3 1699.1 1689.5 

Table 5.1. Beam Natural Frequencies 
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The error between the columns is small and is a result of the finite element approximation.  

The finite element method makes use of assumed deformation shapes. These shapes are 

the result of the element shape functions that describe the element kinematics between nodal 

points. A square orthogonal transformation (as used in this example) will result in a change in the 

coordinates. But, this coordinate transformation does not change the original problem. The above 

example results in the free-free modes because, although the problem was solved using a set of 

Craig-Bampton coordinates, no algebraic equations were introduced to relate the nodal degrees of 

freedom. Such algebraic relations change the problem to be solved and the deformation vector 

space. 

 

5.5. Appropriateness of Free-Free Modes for All MBS Applications 

The answer to the question of whether or not the free-free modes are appropriate for applications 

is certainly negative. That is, the appropriate reference conditions must be used in order to obtain 

accurate solutions, as will be demonstrated in this section using simple slider-crank mechanism 

examples. The numerical study performed in this section will shed light on the serious limitation 

some MBS computer programs have when the boundary conditions are limited to the free-free 

mode shapes. To this end, two slider crank mechanism examples are used; one of them has an 

extended connecting rod. 
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5.5.1 Slider-Crank Mechanism Example 

It has been shown in the previous examples that the mode shapes play a significant role in the 

accuracy of the physical problem, and that the Craig-Bampton method returns the free-free modes 

of vibration if no reference conditions are applied. This section demonstrates that the Craig-

Bampton method will then yield accurate results in a case where free-free modes of vibration are 

appropriate. The beam of the previous examples is used as the elastic connecting rod in a slider-

crank mechanism, as shown in Fig. 5.18. 

 

 

Figure 5.18. Slider-Crank Mechanism 

 

However, in this example, the beam is modeled using 2 Euler-Bernoulli beam elements for 

simplicity. A pin joint connects the crankshaft to the ground. The crankshaft rotates about that 

joint with a constant angular velocity equal to 124 rad/s. A pin joint also connects the connecting 

rod and massless slider-block. A translational joint restricts the slider-block to lateral motion only. 
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The parameter of interest is the dimensionless deflection V  of the beam center. This parameter is 

found by dividing the deflection of the beam center by the length of the beam.  

The simulation is performed using two different computer programs. The first program 

(MBS-REF) uses a general modal analysis and takes into account the reference conditions 

discussed in this chapter. The second program (MBS-CB) uses the Craig-Bampton method. Figure 

5.19 shows the dimensionless deflection of the beam center for the two simulations. Figure 5.19 

also shows an analytical solution to the problem given by (Chu and Pan, 1975). 
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Figure 5.19. Dimensionless Deflection of Connecting Rod Center. 

( MBS-REF, MBS-CB, Analytical) 

 

It is clear from the figure that both programs give an appropriate solution compared to the 

analytical solution. The error between the analytical and numerical solutions is due to the use of 

the finite element approximation when using two elements. The convergence of the two models is 

demonstrated in Figs. 5.20 and 5.21, where the simulation results are shown for a connecting rod 

discretized into 40 beam elements. 
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Figure 5.20. Dimensionless Deflection of Connecting Rod Center. 

( Analytical, MBS-REF) 
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Figure 5.21. Dimensionless Deflection of Connecting Rod Center. 

( Analytical, MBS-CB) 

 

For this example, the free-free mode shapes are similar to the simply-supported mode shapes and 

therefore give similar results. 

 

5.5.2 Extended Slider-Crank Mechanism Example 

It was shown in the above section that the Craig-Bampton method performs correctly in the case 

where free-free modes of vibration have shapes that resemble the physical boundaries. This section 
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provides a counter-example to the use of free-free modes in all cases. A slider-crank mechanism 

similar to the one used in the previous example is shown in Fig. 5.22. 

 

 

Figure 5.22. Extended Slider Crank Mechanism 

 

In this example, the beam is 1.5  times longer and is modeled using 7 Euler-Bernoulli beam 

elements. This example will compare the use of the simply-supported modes to the free-free 

modes. The first six simply-supported modes are shown in Fig. 5.23. 
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Figure 5.23. Simply-Supported Extended Connecting Rod Modes 

( Undeformed Beam Axis, Deformed element) 

(● Displaced nodal position) 

 

Figure 5.24 shows the amplification of the first simply-supported mode. It is seen in the figure that 

increasing the modal coordinate does not affect the axial position of the nodes or the position of 

the slider block, which is consistent with Euler-Bernoulli beam theory. 
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Figure 5.24. Amplification of the First Simply-Supported Extended Connecting Rod Mode 

 

Figure 5.25 shows the amplification of the first free-free mode. It is seen that increasing this modal 

coordinate affects both the axial position of the nodes and the position of the slider block. One 

may then predict that the simulation of the model using free-free modes will result in an extension 

of the pinned section of the beam, and compression of the free section of the beam. This kind of 

axial extension and compression is not consistent with the kinematic constraints imposed on the 

boundary of the beam. 
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Figure 5.25. Amplification of the First Free-Free Extended Connecting Rod Mode 

 

Figure 5.26 shows the deflection of the third node (center of the pinned section), while Fig. 

5.27 shows the deflection of the seventh node (free end of the beam). 
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Figure 5.26. Deflection of the Connecting Rod 3rd Node 

 ( Simply-Supported, Free-Free) 
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Figure 5.27. Deflection of the Connecting Rod Free End 

( Simply-Supported, Free-Free) 

 

In either case, the deflections produced using the free-free modes are smaller in magnitude than 

the results produced using the simply-supported modes. Figures 28 and 29 show the axial 

extension/compression of the pinned and free sections of the beam, respectively, as expected. 
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Figure 5.28. Extension of the Connecting Rod Pinned Section 

( Simply-Supported, Free-Free) 
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Figure 5.29. Extension of the Connecting Rod Free End 

( Simply-Supported, Free-Free) 

 

It is clear from these figures that axial extension/compression is only seen in the case of the free-

free modes. This is a clear indication that the free-free modes are not appropriate for all cases. 

 

5.6 Concluding Remarks 

In this chapter, the motivation for the development and use of substructuring techniques and 

methods of component mode synthesis in MBS dynamics software is discussed. Subtleties of the 

FFR formulation, or the treatment of traditional finite elements for use in MBS software, are 

reviewed. In order to introduce some of the important concepts used in the FE/FFR formulation, 
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this chapter demonstrates numerically for the first time that the unique resonance frequency of a 

model can be achieved using different mode shapes associated with different boundary conditions 

provided that the shapes are similar. The Craig-Bampton method, a specific and popular 

substructuring technique used in MBS software, is also reviewed. Numerical results are then 

presented to demonstrate the importance of a general FFR implementation and the significance of 

the concept of the reference conditions. The Craig-Bampton method is a substructuring technique, 

which does not alter or improve the solution of the original problem, and it does not lead to a 

general implementation of the FFR formulation if its use is restricted to the free-free structure as 

demonstrated in this investigation. The use of the static correction modes does not alter this 

important fact. It is shown in this study that the Craig-Bampton method transforms the finite 

element problem to be defined in a new set of coordinates. While this transformation provides a 

convenient matrix structure for substructuring, such a transformation does not change the problem, 

and therefore, the Craig-Bampton transformation yields the solution of the original problem. It is 

shown by example that this transformation procedure is not general and cannot be used in all cases 

if restricted to one set of modes as it currently being used in some MBS software.
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CHAPTER 6 

CONCLUSIONS 

Parts originally published or prepared in (Shabana et al., 2012; O’Shea and Shabana, 2015; O’Shea 

and Shabana, 2016; O’Shea et al., 2016) and reproduced in this dissertation with permission which 

is listed in Appendix A. Dr. Martin B. Hamper, Dr. Paramsothy Jayakumar, and Dave Mechergui 

are contributing authors. 

 

It is shown in this dissertation that the generalized gyroscopic moment associated with the degree 

of freedom of a body can be insignificant in the case of curve negotiation when the yaw and roll 

angles are constrained and the motion is predominantly rolling. This, however, is not the case in 

derailment scenarios where the gyroscopic moments can be significant. As a result, the gyroscopic 

moments should be considered in developing derailment criteria for railroad vehicle systems. At 

high speeds, the roll gyroscopic moment can have a significant effect on the normal contact force 

at the wheels in contact with the rail. In the case of high speeds, all the moments acting on the 

wheel, including the gyroscopic moment, must be included in the analysis. The analysis presented 

in this chapter shows that the roll moment which can have a significant effect on the wheel/rail 

contact forces depends on the forward velocity in the case of curve negotiations. For this reason, 

roller rigs that do not allow for the wheelset forward velocity cannot be used in the analysis of 

curve negotiations. 

The Nadal /L V  derailment limit, along with subsequent derailment criteria, is developed 

in order to evaluate the proneness of a wheelset to a wheel climb derailment. Wheel climb 

derailments can initiate when the wheelset is in contact with the track at three distinct points. The 
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formulation presented in this dissertation demonstrates that the configuration of a wheelset in 

contact with a tangent track at three distinct points can be fully defined for a given AOA. It has 

been recently noted in the literature that the orientation of the wheelset at climb initiation, as well 

as the consequences of such orientation on the wheel/rail contact geometry, plays a significant role 

in the derailment. Because the system configuration is fully defined using the presented 

formulation, derailment parameters such as the wheel/rail contact angle can be solved for; this 

angle is compared against the wheelset flange angle for various angles of attack to enforce that a 

distinction must be made between the two values. Additionally, it is shown that the steepest point 

on the wheel flange is not necessarily in contact with the rail due to the orientation of the wheelset, 

and therefore, this point on the wheel profile should not be used in contact angle calculations by 

default. These results then raise concern with regards to the Nadal /L V  derailment limit, which 

is a planar force balance and does not take into account the orientation of the wheelset. Additional 

concern is raised with regards to the practice of using the steepest section of the wheel flange to 

calculate the flange angle, which is then used as input to the Nadal calculation. The results of the 

formulation indicate the need for using the correct contact geometry in the investigations of the 

derailments of modern railroad systems. 

 Furthermore, there is a strong belief in the rail industry and research community that wheel 

climb at a large AOA is initiated by friction forces. It is believed that when the wheel comes into 

flange contact with the rail at a large AOA, an increase in the lateral force acting on the wheel 

leads to an increase in the normal reaction force at the flange contact point. Since in this case the 

contact point on the wheel is moving downward, the large reaction force normal to the flange 

produces significant upward friction force that results in wheel climb. A fully nonlinear MBS 
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wheel climb model is used in this dissertation in order to investigate the above interpretation of 

wheel climb derailments. The results obtained using this numerical model are analyzed in order to 

shed light on the forces that contribute to the wheel climb mechanism. It is shown that the contact 

between the wheel flange and rail introduces motion constraints that play a significant role in the 

initiation of the climb, and become more significant as the wheel climbs the rail. In addition to the 

reaction forces, the contact between the wheel flange and rail produces a friction force that is 

shown to have non-zero components in three Cartesian directions with respect to the rail and 

therefore cannot be captured using any planar analysis. It follows that the Nadal L V  Limit, which 

makes use of a planar force balance, does not correctly capture the friction force at the flange. This 

investigation also demonstrates that the forces measured at the flanging rail are not representative 

of the force that drives the derailment. The above conclusions raise additional questions to the 

current state of derailment criteria, and in particular the Nadal L V  Limit, which is shown to not 

predict the derailment presented in this investigation. The criteria may then not be deemed 

conservative. These important conclusions are further investigated using a semi-analytical model 

that is additionally formulated in this dissertation. The semi-analytical model is formulated using 

assumptions that are derived from the current interpretation of wheel climb in order to analyze the 

initiation of the wheel climb motion and the initiation only. The results of the semi-analytical 

model are compared with the results of the MBS model in order to validate the assumptions made 

to develop the semi-analytical model as well as provide insight into the derailment initiation of the 

MBS model. The two models, although very different in formulation, are in good agreement in the 

vicinity of the wheel climb initiation. The semi-analytical formulation raises question in regards 
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to use of the “distance to climb” measure used in some derailment criteria, as it is shown that the 

longitudinal motion is decoupled from the vertical and yaw displacements. 

The fully nonlinear unconstrained MBS wheel climb derailment model is then used to 

confirm the importance of using the contact angle in the development of railroad vehicle 

derailment criteria. The correct contact angle was substituted into the formulation of the derailment 

limit in order to provide an updated criterion that correctly predicted the derailment of the wheelset. 

This result should not be interpreted as an appropriate derailment measure, but rather, as a 

rationalization and justification of the use of the correct contact geometry in derailment 

investigations. 

 Finally, the motivation for the development and use of substructuring techniques and 

methods of component mode synthesis in MBS vehicle dynamics software is discussed. Subtleties 

of the FFR formulation, or the treatment of traditional finite elements for use in MBS software, 

are reviewed. In order to introduce some of the important concepts used in the FE/FFR 

formulation, this dissertation demonstrates numerically for the first time that the unique resonance 

frequency of a model can be achieved using different mode shapes associated with different 

boundary conditions provided that the shapes are similar. The Craig-Bampton method, a specific 

and popular substructuring technique used in MBS software, is also reviewed. Numerical results 

are then presented to demonstrate the importance of a general FFR implementation and the 

significance of the concept of the reference conditions. The Craig-Bampton method is a 

substructuring technique, which does not alter or improve the solution of the original problem, and 

it does not lead to a general implementation of the FFR formulation if its use is restricted to the 
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free-free structure as demonstrated in this investigation. The use of the static correction modes 

does not alter this important fact. It is shown in this study that the Craig-Bampton method 

transforms the finite element problem to be defined in a new set of coordinates. While this 

transformation provides a convenient matrix structure for substructuring, such a transformation 

does not change the problem, and therefore, the Craig-Bampton transformation yields the solution 

of the original problem. It is shown by example that this transformation procedure is not general 

and cannot be used in all cases if restricted to one set of modes as it currently being used in some 

MBS software.
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APPENDIX B 

CONSTRAINT BASED FORMULATION 

A vector of system coordinates is defined as      1 2 b

T
TT T

n 
  

q q q q  , where 

   
T

T T
i i i 

  
q R θ  is the vector that contains the translational i

R  and rotational i
θ  coordinates 

of body i , and bn  is the number of bodies in the system. The position of a point p  on body i  

may then be written as 
i i i i

p p r R A u , where  i iA A θ  is the matrix that defines the orientation 

of body i  in terms of the orientation parameters i
θ , and 

i

pu  is the local definition of the position 

of point p  with respect to a body coordinate system. In order to define the contact between bodies 

in the system, the local position of a point on body i  is written using two surface parameters 1

is  

and 2

is  as        1 2 1 2 1 2 1 2, , , ,
T

i i i i i i i i i i i i i

p p p p ps s x s s y s s z s s  
 

u u . The vector of system surface 

parameters can be written as 
1 2 k

T
T T T

n
   s s s s , where ks  is the set of surface parameters 

required to define a contact point on the surfaces of the two bodies, and kn  is the number of contact 

points in the system. The vector of surface parameters is then combined with the vector of system 

coordinates to form the vector of system variables 
T

T T   p q s , which has a total of n  

coordinates (Shabana, 2010). 

In order to solve for the n  unknown system variables, a system of n  equations must be 

formulated and then solved for, which can be accomplished by formulating a set of kinematic 

constraint equations C  such that   C p 0 . The translational and rotational motion of a body i , 

and in the case of this investigation: the track, may be completely restricted using six fixed 

coordinate constraint equations 
i i q c 0 , where i

c  is a constant vector containing the fixed 

coordinates (Shabana, 2010). The requirement that two bodies i  and j  remain in contact requires 

the definitions of tangent planes and normal vectors at each contact point on body i  which may 

be defined by 1 1/i i i

p s  t u  and 2 2/i i i

p s  t u . The normal to this plane may be then written as 

1 2

i i i n t t . Each contact introduces five constraint equations that may be written as 

1 2 1 2

T
j ij j ij j ij i j i j

p p p
       t r t r n r t n t n 0 , where 

ij i j

p p p r r r . The first three equations require 

that the positions of the contact points on the two surfaces coincide, while the last two equations 

require that the two surfaces have the same tangent plane at the point of contact (Shabana et al., 

2008). Finally, the values of any remaining degrees of freedom may be specified using driving 

constraints, which define the system configuration. 
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APPENDIX C 

USE OF SIMPLIFIED MODEL 

In the analysis of railroad vehicle systems, wheel climb at a large angle of attack is an example of 

a complex dynamic situation. The results of a MBS formulation are presented in this study, which 

have contributions from many factors that may not be clear. Therefore, in this dissertation, a model 

is presented that uses simplified wheel/rail contact geometry as well as motion constraints, in order 

to distinctly highlight certain contributions to the wheel climb initiation and to formulate a semi-

analytical solution. The results of the MBS model in the vicinity of the wheel climb initiation are 

verified using this semi-analytic model. It is understood that, because of the assumptions and 

simplifications made, the results of the simplified model will deviate from the results of the fully 

nonlinear unconstrained model as the wheel climb progresses, and therefore, the results of the 

simplified model are of interest only in the vicinity of the climb initiation. While this simplified 

model may differ from the actual physical situation, the advantage of the simplified model 

shedding light on the basic principles and forces that govern the conditions at which wheel climb 

initiates hold useful. The simplified model has additional advantages such as being able to model 

multiple geometric scenarios; for example, climb that occurs on the wrong side of the flange when 

making contact with a guard rail could additionally be modeled using the presented simplified 

formulation. The results of the two models, in conjunction, can provide comprehensive insight into 

the derailment process and can help in the future to develop derailment prevention criteria. 
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APPENDIX D 

ALTERNATIVE CONTACT CONSTRAINT FORMULATION 

This appendix provides an alternative derivation of the single constraint of Eq. 4.5. This derivation 

was proposed by one of the chapter’s anonymous reviewers of a previous version of the chapter 

and is outlined as follows. Two right triangles can be formed when considering a disk that is in 

contact with a line on its lower half. The first exists in the local w wX Z  plane of the disk and is 

shown in Fig. D.1.  

 

 

Figure D.1. Disk/Rail Contact Constraint 
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Using the Pythagorean Theorem, one has 

 
2 2 2

zd a r   (D.1) 

The second triangle exists in the XY  plane and is also shown in Fig. C.1. The angle of attack   

and the lateral position of the disk center with respect to the point of contact yR  are related by 

sinyd a   (D.2) 

If Eqs. D.1 and D.2 are combined by eliminating the variable a , the resulting equation is 

   
2 2 2 2 2sin siny zd d r     (D.3) 

which is the same as Eq. 4.5 previously presented in the dissertation.
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