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SUMMARY

Let S be an oriented surface of finite type, MCGpSq its mapping class group, and T pSq

its Teichmüller space. We use the work of Masur-Minsky and Rafi to build an MCGpSq-

equivariant quasiisometry model for T pSq with the Teichmüller metric, to which we extend the

Masur-Minsky hierarchy machinery.

As an application, we study the action of finite subgroups H ¤MCGpSq on T pSq. Kerck-

hoff’s solution to the Nielsen Realization Problem proves that any such H has a nonempty fixed

point set, FixpHq � T pSq. For any R ¡ 0, we prove that the set of points whose H-orbits have

diameter bounded by R, FixTRpHq, lies in a bounded neighborhood of FixpHq. As a corollary,

we use work of Tao to show that the orbit of any point X P T pSq under the action of a finite

mapping class has a fixed coarse barycenter. Both of these results are easily obtained in a

negatively curved space, in which FixRpHq would also be convex. By contrast, we prove that

FixTRpHq need not be quasiconvex with an explicit family of examples.

viii



CHAPTER 1

INTRODUCTION

The Teichmüller space of a surface S, denoted T pSq, is the space of marked hyperbolic

structures on S up to isotopy, which we consider with both the Teichmüller pdT q and Weil-

Petersson metrics pdWP q. The mapping class group of S, MCGpSq � Homeo�pSq{Homeo0pSq,

is the group of orientation preserving homeomorphisms of S up to isotopy, which acts naturally

on T pSq by isometries in both pdT q and pdWP q by changing the marking.

Both T pSq and MCGpSq are fundamental objects of study in the theory of hyperbolic 3-

manifolds, Riemannian surfaces, the moduli space of curves, and geometric group theory, with

our understanding of their interconnections revolutionized by Thurston ((FLP79), (Thu80),

(Thu88), (Thu97)).

The Teichmüller and Weil-Petersson metrics have long been studied via analytic and fine

geometric techniques, but many recent advances in the field, especially those of Brock, Masur,

Minsky, and Rafi, have been achieved by adopting the coarse geometric perspective of geometric

group theory. In particular, the introduction of coarse methods has helped to elucidate the com-

plicated balance of positive and negative curvature characteristics inherent to the Teichmüler

metric.

The goal of this thesis is to further investigate the coarse geometry of pT pSq, dT q. The first

part of this thesis describes the construction of a MCGpSq-equivariant quasiisometry model for

pT pSq, dT q called the augmented marking complex. The second part explores the geometry of

1
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sets naturally associated to the fixed point set of the action of a finite subgroup of MCGpSq

acting on T pSq.

1.1 The augmented marking complex

The study of various combinatorial complexes built from simple closed curves on surfaces

has greatly advanced the state of knowledge of the geometry of Teichmüller space, T pSq, the

mapping class group, MCGpSq, and hyperbolic 3-manifolds. In (Br03), Brock showed that

T pSq with the Weil-Petersson metric is quasiisometric to the graph of pants decompositions

on S, PpSq, an insight which he used to prove that the Weil-Petersson distance between two

points in T pSq is coarsely the volume of the convex core of the quasi-Fuchsian hyperbolic 3-

manifold they simultaneously uniformize. Beginning with their proof of hyperbolicity of the

curve complex, CpSq, in (MM99), the hierarchy machinery Masur-Minsky developed in (MM00)

was essential in the proof of the Ending Lamination Theorem (Min03; BCM11) for hyperbolic

3-manifolds. Moreover, in (MM00), Masur-Minsky built the marking complex, MpSq, and

prove it is quasiisometric to MCGpSq in any word metric, an analogy essential to the proofs

of the rank ((BM08)) and quasiisometric rigidity ((BKMM)) theorems for the mapping class

group.

Our first main result is the construction of a graph we call the augmented marking complex :

Theorem 1.1. The augmented marking complex, AMpSq, is MCGpSq-equivariantly quasiiso-

metric to pT pSq, dT q.

We show that the Masur-Minsky hierarchy machinery for MpSq and PpSq extends to

AMpSq and we use it to build preferred families of quasigeodesics called augmented hierar-
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chy paths, thereby completing the unification of the coarse geometries of MCGpSq and T pSq in

the Weil-Petersson and Teichmüller metrics by a common framework begun in (Raf07).

Theorem 1.2. Any two points X,Y P T pSq can be connected by a augmented hierarchy path,

each of which is a quasigeodesic with uniform constants.

In a recent paper, Eskin-Masur-Rafi (EMR13) used AMpSq and augmented hierarchy paths,

which they independently discovered, to prove the Brock-Farb Geometric Rank conjecture for

T pSq (BF06) with the Teichmüller metric and recover the rank theorems for MCGpSq and T pSq

with the Weil-Petersson metric from (BM08).

Our construction of AMpSq follows upon the work of Masur and Minsky on the curve and

marking complexes (MM99; MM00) and Rafi’s applications of their machinery to Teichmüller

geometry (Raf05; Raf07). We now briefly discuss the context of these results.

The geometry of the thin part of T pSq, those metrics for which the hyperbolic lengths of

some curves on the surface are small, is fundamentally different from its complement, the thick

part. One can see this in the completion of T pSq in the Weil-Petersson metric, where curves

are pinched to nodes and the geometry of the boundary strata is that of a product of the

Teichmüller spaces of the complements of the pinched curves. While this stark phenomenon

does not exactly hold in the Teichmüller metric, Minsky proved in (Min96) that the Teichmüller

metric on the thin part of T pSq is quasiisometric to the product of the Teichmüller spaces of

the complements of the short curves and a product of horodisks, one for each short curve (see

Theorem 2.13) with the sup metric; that is, the thin parts of T pSq coarsely have a product

structure.
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In (MM99), Masur and Minsky proved the curve graph of S, denoted by CpSq, is δ-hyperbolic

(see Section 2.2) and that the electrification of the thin parts of T pSq is quasiisometric to

CpSq and thus hyperbolic. While this provides a substantial amount of control over the large-

scale geometry of CpSq and the thick part of T pSq, CpSq is locally infinite, whereas T pSq is

proper with the Teichmüller metric, and thus hyperbolicity does little a priori to inform upon

the local geometry of either. In (MM00), they introduced the machinery of hierarchies of

tight geodesics which record the combinatorial information sufficient to gain a great deal of

control over the local geometry of CpSq, proving it shares some properties with locally finite

complexes. These hierarchies also contain the information sufficient to build quasigeodesics in

the associated marking complex, MpSq, called hierarchy paths. They proved that the progress

along a hierarchy path coarsely occurs in subsurfaces to which the end markings have heavily

overlapping projections. Using the hierarchy machinery, they proved that MpSq is MCGpSq-

equivariantly quasiisometric to MCGpSq with any word metric and obtained a coarse distance

formula for MCGpSq (Theorem 2.10 below).

The connection between the work of Masur-Minsky and the Teichmüller metric was largely

developed by Rafi; see (Raf10) for a summary of the current state of this project. A Teichmüller

geodesic is a path through a space of metrics on S and one may ask when a given curve α P CpSq

is shorter than some fixed constant. In (Raf05), Rafi proved that the hyperbolic length of a curve

along a Teichmüller geodesic, G, is shorter than the constant from Minsky’s Product Regions

theorem (Theorem 2.13) at some point along G if the vertical and horizontal foliations which

determine G heavily overlap on a subsurface of which that curve is a boundary component.
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In its sibling paper, (Raf07), Rafi took this condition on foliations and translated it into the

context of the curve complex. He proves G enters the thin part of T pSq of a subsurface Y � S

if and only if the curves which constitute BY are short along G, which happens if and only

if Y is filled by subsurfaces to whose curve complexes the vertical and horizontal foliations

have sufficiently large projections. In addition, he adapted the Masur-Minsky coarse distance

formula for MCGpSq to obtain a coarse distance formula for T pSq with the Teichmüller metric

(Theorem 2.15 below).

1.2 Elliptic actions on T pSq

The Nielsen Realization Problem asks whether a finite subgroup H ¤ MCGpSq of the

mapping class group of a surface S can be realized as a subgroup rH ¤ Homeo�pSq which

acts by isometries on some metric σ P T pSq on S. While a finite subgroup of isometries of

a negatively curved metric space always has fixed points, Masur (Mas75) showed that the

Teichmüller metric is not negatively curved in his thesis. Kerckhoff (Ker83) proved that the

problem in T pSq always has a solution by showing that the length functions of curves are

convex along Thurston earthquake paths, a result later mirrored for Weil-Petersson geodesics

by Wolpert (Wol87).

Kerckhoff’s main theorem in (Ker83) was the following equivalent formulation:

Theorem 1.3 (Theorem 4 in (Ker83)). Every finite subgroup H ¤ MCGpSq fixes a point in

T pSq.

A number of facts follow immediately from Kerckhoff’s theorem. Let X P FixpHq � T pSq

be fixed by H. The quotient X{H � O is a hyperbolic 2-orbifold and any hyperbolic structure
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on O lifts to S, giving an embedding i : T pOq ãÑ T pSq that is an isometry onto its image in

the Teichmüller metric. Since FixpHq � ipT pOqq, FixpHq � T pSq is a convex submanifold of

pT pSq, dT q.

In second half of this thesis, we investigate the structure of the set of points in T pSq which

are moved a bounded Teichmüller distance R ¡ 0 by the action of H:

FixTRpHq � tX P T pSq|diamT pH �Xq   Ru

We call these points almost fixed points. These sets can be viewed as sublevel sets of

the diameter map, diamT : T pSq Ñ R, given by X ÞÑ diamT pXq. From this perspective,

FixpHq � diam�1
T p0q and FixTRpHq � diam�1

T pr0, Rqq.

In a negatively curved space, the level sets of the diameter map would be convex regular

neighborhoods of the set of fixed points. However, Masur (Mas75) showed that the Teichmüller

metric is not negatively curved and Minsky (Min96) later showed that this assumption fails

profoundly: in the thin parts of T pSq, the Teichmüller metric is quasiisometric to a sup metric

on a product space (See Theorem 2.13 below).

The results we obtain in this part of the thesis contrast the topological constraints coming

from covering theory and the geometric flexibility coming from these product regions. Our

second main Theorem 4.24 of this thesis proves that almost fixed points are uniformly close to

fixed points:
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Theorem 1.4 (Almost fixed points are close to fixed points). For any R ¡ 0, there is a

constant R1 depending only on R and S such that the following holds. Let H ¤MCGpSq be a

finite subgroup and FixpHq � T pSq its fixed point set. Then

FixTRpHq � N T
R1pFixpHqq

where N T
R1pFixpHqq is the R1-neighborhood of FixpHq.

In a CATp0q space, a barycenter for a bounded set E with radius R is the unique point

b P E around which a ball of radius R contains E, E � BRpbq. A coarse barycenter for a set

E is any point x P E invariant under the symmetries of E such that E � BK�diampEq�Cpxq,

where K,C ¡ 0 are uniform constants and diampEq is the diameter of E. Note that a coarse

barycenter is a barycenter when K � 1
2 and C � 0.

Using work of Tao (Tao13), we also prove that orbits of finite order elements of MCGpSq

have coarse barycenters:

Theorem 1.5 (Coarse barycenters for pT pSq, dT q). There are K,C ¡ 0 such that for any

σ P T pSq and any finite order f PMCGpSq, there is a fixed point X P Fixpxfyq such that

dT pσ,Xq   K � dT pSqpσ, f � σq � C

We note that while Theorem 1.4 follows from Theorem 1.5, the proof of the latter uses the

former in an essential way (see Remark 4.28 below).
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Both of Theorems 1.4 and 1.5 depend crucially on the fact that FixpHq comes from a

topological covering map, namely that the subsurfaces involved in the geometric considerations

in T pSq are all lifts of suborbifolds of O.

We say that a subset Z � X of a metric space is L-quasiconvex if whenever x, y P Z and

Gx,y is a geodesic between them, then Gx,y � NLpZq.

Recall that FixpHq � T pSq is convex in both the Teichmüller and Weil-Petersson metrics.

In contrast with Theorems 1.4 and 1.5, the following theorem shows that relaxing the condition

of being fixed to being almost-fixed dramatically changes convexity properties:

Theorem 1.6 (Nonquasiconvexity of FixTRpHq). Let L ¡ 0. There exist a constant R ¡ 0, a

surface S, and a finite subgroup H ¤MCGpSq such that FixTRpHq is not L-quasiconvex.

The counterexamples built in Theorem 1.6 are based on work of Rafi (Raf10). See the

discussion after the proof of Theorem 1.6 (Theorem 4.29 below) for how nonquasiconvexity of

FixTRpHq is a more general phenomenon.

Many of the tools and ideas in this thesis are motivated by ideas from geometric group

theory and the theory surrounding the study of MCGpSq. Quasiconvexity is a central notion

in the theory of Gromov hyperbolic groups and is well-suited to this strong notion of negative

curvature. Given the product structure on the thin parts, quasiconvexity, and thus convexity,

in the Teichmüller metric are sensitive properties. The only known convex subsets of pT pSq, dT q

are its (unique) geodesics, special isometrically embedded copies of H2 called Teichmüller disks,

and the fixed point sets which are at the center of this discussion. As for quasiconvex subsets,

the only known additional examples are bounded diameter subsets (LR11), the aforementioned
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product regions themselves, orbits of convex cocompact subgroups of MCGpSq (FM02), and

certain subsets of metrics on pleated surfaces which fill the convex hull of a hyperbolic 3-

manifold homeomorphic to S �R (Min93). Theorem 1.6 (and its generalizations) suggest that

it may be difficult to naturally enlarge FixpHq to an H-invariant quasiconvex subset of T pSq.



CHAPTER 2

PRELIMINARIES

In this chapter, we review the relevant foundational materials and collect the various results

we need to invoke in the rest of the thesis.

2.0.1 Conventions and notation

Throughout this thesis, let S � Sg,n denote an connected, oriented surface of finite com-

plexity, ξpSq � 3g � 3� n ¡ 0, with genus g and n punctures.

Our methods and calculations are frequently coarse and we introduce some notation for ease

of the exposition. Given two quantities A,B, we write A   B if there are constants K,C ¡ 0

depending only on the topology of S such that A ¤ K �B � C. If A   B and B   A, then we

write A � B.

Similarly, given a constant R ¡ 0, we write A  R B if there are constants K 1 and C 1

depending only on R and the topology of S such that A ¤ K 1 � B � C 1, and the same for

A ¡R B and A �R B.

If we have X,Y, and Z such that X �R Y and Y �R Z (or  R, �R), then we also have

X �R Z, where the constants are worse for the latter coarse inequality. As long as we only

make such estimates a uniformly bounded number of times depending only on R and S, the

associated constants will still be uniform in R and S.

10
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When we write A � ApB,Cq ¡ 0, we mean that A is a positive constant depending only on

the objects B and C.

2.1 Teichmüller spaces and mapping class groups

The Teichmüller space of S, T pSq, is the space of isotopy classes of marked hyperbolic

structures on a surface. Formally, T pSq � tpX, fq|f : S Ñ Xu{ , where S is the model

topological surface, X is a hyperbolic surface, f : S Ñ X is the marking homeomorphism, and

the equivalence relationship is defined by pX, fq pY, gq if and only if f � g�1 is isotopic to the

identity.

Teichmüller space can be given coordinates called Fenchel-Nielsen coordinates roughly as

follows. Given a point X P T pSq, choose a pants decomposition P on S. The curves γ P P de-

termine length parameters lXpγq simply by measuring the length of the geodesic representative

of each curve on the surface. Decomposing the surface into pairs of pants, the lengths of the γ

uniquely determine a hyperbolic metric on each pair of pants. There are twisting parameters

which determine how the pairs of pants are then glued together to realize the metric X. These

parameters give rise to a homeomorphism ψ : T pSq Ñ R2ξpSq, thus coordinatizing T pSq as a

ball. See (FM12, Section 10.6) for more details.

Although Teichmüller space admits many natural metrics, the main two of interest in this

thesis are the Teichmüller and Weil-Petersson metrics.

By the uniformization theorem, T pSq is the space of conformal classes of metrics on S up

to isotopy. For two points X,Y P T pSq, the Teichmüller distance between X and Y is defined

as



12

dT pX,Y q � 1
2

log inf
h
Kh

where the infimum is taken over all quasiconformal maps h : X Ñ Y and Kh measures

the quasiconformal dilitation of h. In (Tei40), Teichmüller proved that the infimum is always

realized. As a consequence, Teichmüller geodesics are unique.

The Weil-Petersson metric on T pSq is a metric dual to a metric defined by an L2-product

on the cotangent bundle of T pSq, the bundle of quadratic differentials. As a consequence of

the convexity of length functions along Weil-Petersson geodesics, Wolpert (Wol86) proved that

pT pSq, dWP q has unique geodesics despite the fact that it is incomplete.

The mapping class group, MCGpSq � Homeo�pSq{Homeo0pSq, is the group of orientation-

preserving homeomorphisms modulo those which are isotopic to the identity. Teichmüller space

admits a natural action of MCGpSq by changing the marking, namely given g P MCGpSq,

g � pX, fq � pX, f � g�1q.

For the Teichmüller metric, see the books of Hubbard (Hub) and Papadopoulos (Pap07);

see also the survey of Masur (Mas10). For the Weil-Petersson metric, see Ahlfors (Ahl61); see

also the survey of Wolpert (Wol07). For the mapping class group, see the book of Farb-Margalit

(FM12).

2.2 Curves, curve complexes, and subsurface projections

The complex of curves of S, denoted CpSq, is a simplicial complex whose simplices consist

of disjoint collections of isotopy classes of simple closed curves on S. In the case where S is

a once-punctured torus or four-holed sphere, minimal intersection replaces disjointness as the
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adjacency relation. For Yα an annulus in S with core curve α, CpYαq � Cpαq is the simplicial

complex with vertices consisting of paths between the two boundary components of the metric

compactification of rYα, the cover of S corresponding to Yα, up to homotopy relative to fixing the

endpoints on the boundary; two paths are connected by an edge if they have disjoint interiors.

We will be considering only the 1-skeleton of CpSq with its path metric. Endowed with this

metric, we have the following foundational theorem of Masur and Minsky (MM99):

Theorem 2.1. CpSq is infinite-diameter and Gromov hyperbolic.

Remark 2.2. By now, there are many proofs of the latter fact (Bow03), several of which are

recent and give a uniform hyperbolicity constant (Aou12), (Bow12),(CRS13), (HPW13). See

(HPW13) for an especially nice proof.

The curve complex is locally infinite, but the links of vertices are often (products of) Gromov

hyperbolic graphs, which gives us a substantial amount of control over the global geometry of

CpSq, via the hierarchy machinery in (MM00).

Consider a curve α P CpSq. Then the link of α is CpSzαq, where CpSzαq is the join CpS1q �

CpS2q if α is separating and Szα � S1
²
S2. More generally, if Y � S is any proper subsurface,

then CpY q lives in the 1-neighborhood of BY � CpSq.

We are often interested in understanding the combinatorial relationship between two curves

or simplices of CpSq from the perspective of CpY q for some subsurface Y � S. Let α � CpSq be

any simplex and let Y � S be any subsurface of S which is not a pair of pants. The subsurface

projection of α to Y is the canonical completion of the arcs in α X Y along the boundary of
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a regular neighborhood of α X Y and BY to curves in Y . We denote this projection by πY pαq

and remark that it is a simplex in CpY q. See Section 2 of (MM00) for more details.

For any two simplices α, β � CpSq and subsurface Y � S, we use the shorthand dY pα, βq �

dY pπY pαq, πY pβqq.

Subsurface projections are essential objects in the Masur-Minsky hierarchy machinery. One

of the main outputs of that machinery is the distance formula for MpSq, Theorem 2.10 below.

See (MM99), (MM00), and Schleimer’s notes (Schleim) for basics on curve complexes.

2.3 Pants and markings

The section briefly introduces two fundamental players in the geometric-combinatorial ap-

proach of Brock, Masur-Minsky, and Rafi.

A pair of pants on S is a maximal simplex in CpSq, whose complement in S is a disjoint

collection of three-holed spheres. The pants complex, denoted PpSq, is a simplicial complex

whose vertices are pairs of pants and two pairs of pants P1, P2 are connected by an edge if there

are two curves α P P1, β P P2 such that P1zα � P2zβ, with α intersecting β minimally.

We frequently use the following insight of Brock (Br03):

Theorem 2.3. The pants complex PpSq is MCGpSq-equivariantly quasiisometric to Teichmüller

space with the Weil-Petersson metric, pT pSq, dWP q.

In (MM00), Masur-Minsky introduce a quasiisometry model for MCGpSq called the marking

complex, denoted MpSq.

A complete marking, µ, on a surface S is a collection of transverse pairs, pα, tαq, where the

α form a pants decomposition of S, called the base of µ, denoted basepµq, and each tα is a
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diameter-1 set of vertices in the annular complex Cpαq (see Section 2.4 of (MM00) ), called the

set of transversals. In addition, we assume that markings are clean, which means that the only

base curve each transversal tα intersects is its paired base curve, α.

We remark that, in any complete clean marking, each transversal intersects either one or

two other transversals. Indeed, since the base curves form a pants decomposition, one can

decompose S into a collection of pairs of pants where the base curves form the cuffs and the

transverse curves are cut into essential arcs in the pairs of pants. In each pair of pants, each

transverse arc must intersect exactly one other transverse arc. In the case that α is two cuffs in

one pair of pants (that is, α and tα fill a one-holed torus), tα intersects only one other transverse

curve; otherwise, each transverse curve intersects two others.

The marking complex of S, denoted MpSq, is a graph whose vertices are complete clean

markings and two markings are connected by an edge if they can be related by one of two types

of elementary moves, called twists and flips, which we define now.

Given a marking µ and a pair pα, tαq in µ, a twist move around α involves replacing µ with

Tαpµq, where Tα is a Dehn twist or half-twist around α, depending on whether α Y tα fills a

once-puncture torus or a four-holed sphere, respectively. By construction, tα is the only curve

in µ which intersects α, so this reduces to pα, tαq ÞÑ pα, Tαptαqq.

Given a pair pα, tαq, a flip move performed at α involves a flip pα, tαq ÞÑ ptα, αq and some

extra changes to preserve cleanliness, which we now explain. As noted above, each transverse

curve intersects (either one or two) others, so now that a transverse curve has become a base

curve, at least one other transverse pair has been made unclean. In [Lemma 2.4, (MM00)],
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Masur and Minsky show that by choosing replacement transversals to minimize distance in the

annular curve complexes of their bases, one has a finite number of possible new transversals

which are all uniformly close to each other. The purpose of this cleaning is to preserve the

twisting data around α while allowing for future flip moves to occur without the resulting base

sets failing to be pants decompositions.

In the rest of the thesis, we assume that all markings are clean and complete.

Definition 2.4 (Subsurface projections for markings). We will be interested in subsurface

projections for markings. For any µ P MpSq and Y � S any subsurface which is not an

annulus whose core is in basepµq, we define the subsurface projection of µ to CpY q by πY pµq �

πY pbasepµqq. In the case that Y is an annulus with core α P basepµq with transversal tα, then

πY pµq � tα.

We now define the projection of a marking on S to a marking on a subsurface, a construction

we need in the construction the preferred paths for AMpSq in Subsection 3.2.2.

Definition 2.5 (Projections of markings to markings on subsurfaces). Let µ P MpSq and

Y � S be any subsurface. We build πMpY qpµq inductively as follows. Choose a curve α1 P

πY pµq, then build a pants decomposition on Y by choosing αi P πY z�i�1
j�1 αj

pµq. From this

pants decomposition, build a marking on Y by choosing transverse pairs pαi, παipµqq. We define

πMpY qpµq �MpY q to be the collection of all markings resulting from varying the choices of the

αi.
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Lemma 2.4 in (MM00) and Lemma 6.1 of (Ber03) show that the freedom in this process

builds a bounded diameter subset of MpY q. We remark however that if BY � basepµq, then

πMpY qpµq is a unique point in MpY q, since every curve in basepµq either projects to itself in

CpY q or has an empty projection.

Remark 2.6. The process of constructing πMpY qpµq preserves any curve α P basepµq which

happens to lie in Y , for α P πY pµq and πY preserves disjointness. Otherwise, we could have

chosen to build πMpY qpµq by first preferentially choosing curves in basepµq which lie in Y .

2.4 Hierarchies, hierarchy paths, and large links

We now briefly outline the features of the Masur-Minsky hierarchies we need. The main

references for the hierarchy theory are (MM00) and (Min03), and we will point the reader to

the corresponding sections when possible; the initial exposition begins in Section 4 of (MM00).

See also the theses of Tao (Tao13) and Behrstock (Ber03) for nice introductions to the theory.

Given any two markings µ1, µ2 P MpSq, a hierarchy, H, between µ1 and µ2 is family of

special geodesics gY � CpY q with partial markings associated, denoted IpgY q and TpgY q; see the

lead up to the technical Proposition 3.28 below for more details on these markings. Each such

geodesic is supported on a distinct subsurface Y � S, such that the geodesics satisfy a number

of subordinancy relations among the gY determined by the associated partial markings; see

Subsection 4.1 of (MM00). In particular, there is a distinguished base geodesic gH � CpSq with

IpgHq � µ1 and TpgHq � µ2. If Y � S is a subsurface and there is some geodesic gY � CpY q

with gY P H, then we say Y is the domain of support of gY and that Y supports a geodesic
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in H. Given any gY P H for Y nonannular and any curve α P gY , there are disjoint domains

�k
i�1 Yi � Szα (including the annular domain Yα) and geodesics gYi P H.

From any vertex α P gH , one can can build markings, µα P MpSq, with α P basepµαq by

first choosing a vertex αY P gY P H for each component Y of Szα for a curve in basepµαq. For

each such αY , one can then obtain another base curve by choosing a vertex along any gZ P H

where Z is a component of Y zαY ; recall that H contains such geodesics. One completes such a

marking µα by proceeding inductively to the level of annuli, at which point one has assembled

basepµαq and can complete µα by choosing a vertex on the geodesics gβ for each β P basepµαq.

While nearly all markings constructed in this manner will be unrelated to µ1 and µ2, one

can use the subordinancy relations to piece together the geodesics in H into finite paths of

markings in MpSq between µ1 and µ2 called a hierarchy path based on H. Loosely, the process

of resolving a hierarchy involves progressing along geodesics in H, at bottom progressing along

gH and then at each vertex, progressing along geodesics whose domains live in the complement

of that vertex, etc., conditional upon the subordinancy relations; see Section 5 of (MM00),

especially Proposition 5.4 and Lemma 5.5. We remark that a hierarchy path is a path in MpSq

and thus a sequence of elementary flip and twist moves connecting its endpoints.

Remark 2.7. It follows from a careful understanding of the Masur-Minsky machinery that

hierarchy paths are quasigeodesics in MpSq, though it was not previously made explicit. The

Masur-Minsky distance formula (Theorem 2.10 below) implies that hierarchy paths are glob-

ally efficient. However, a quasigeodesic must also be locally efficient. One can show that a

restriction of a hierarchy path to a subsegment can be reconstructed as a hierarchy path based
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on a hierarchy obtained by restricting the original hierarchy. Another application of Theorem

2.10 then implies that hierarchy paths are locally efficient and hence quasigeodesics. This is the

content of Proposition 3.28.

For arbitrary distinct domains, Y and Y 1, one can often construct hierarchy paths where

the orders of appearance of Y and Y 1 can be reversed. However, there is a partial ordering

on the domains of geodesics in H, called the time-order, which is defined in terms of the

subordinancy relations and determines when some domains must coarsely come before others

along any hierarchy path; if Y is time-ordered before Y 1, we write Y  t Y
1. While two properly

nested subsurfaces will not be time-ordered, a sufficient topological condition for two domains

Y and Y 1 to be time-ordered is called interlocking, when neither Y nor Y 1 properly contains the

other but Y X Y 1 � H; this is part of the content of Lemma 4.18 in (MM00). See subsection

4.6 of that paper for more details on time-ordering and Definition 4.16 for the precise meaning.

Remark 2.8 (Disjoint but time-ordered domains). While interlocking is a sufficient condi-

tion for two surfaces to be time-ordered, it is not necessary. Indeed, disjoint but time-ordered

domains in a hierarchy are a significant technical obstacle.

Remark 2.9 (Time-order for curves). As a convention, we say that two curves α, β are time-

ordered in a hierarchy H if their are the core curves of annuli Yα, Yβ � S and Yα and Yβ are

time-ordered in H.

One of the main results of the hierarchy machinery is the inspirational Masur-Minsky dis-

tance formula for MpSq:
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Theorem 2.10 (MpSq distance formula; Theorem 6.12 of (MM00)). There exists a K ¡ 0 such

that following holds: For any k ¡ K, there are E1, E2 ¡ 0, such that for any µ1, µ2 PMpSq

1
E1

¸
Y�S

rdY pµ1, µ2qsk � E2 ¤ dMpSqpµ1, µ2q ¤ E1

¸
Y�S

rdY pµ1, µ2qsk � E2

where rxsk � x if x ¡ k and 0 otherwise.

Given any pair of markings µ1, µ2 PMpSq, we say that a subsurface Y � S is a large link

for µ1 and µ2 if dY pµ1, µ2q ¡ K. Lemma 6.12 of (MM00) tells us large links are the main

building blocks of hierarchy paths:

Lemma 2.11 (Lemma 6.12 in (MM00)). Let µ1, µ2 PMpSq, let Y � S a subsurface, and let K

be as in Theorem 2.10. If dY pµ1, µ2q ¡ K, then Y supports a geodesic gY P H for any hierarchy

H between µ1 and µ2.

Remark 2.12 (Large link). The intuition behind the term large link is as follows: If Y � S

is a large link for µ1, µ2, we know from Lemma 2.11 that Y supports some geodesic gY P H;

moreover, Y will necessarily appear as the component of some Zzα where Z � S is a subsurface

supporting a geodesic gZ P H and α P gZ . While the length of gY in CpY q is dY pµ1, µ2q ¡ K, gY

lives in the link of α P gZ as a path in CpZq, and hence the link of α is large from the viewpoint

of µ1 and µ2.

2.4.1 The thick part and Minsky’s product regions

One of the main corollaries to the hyperbolicity of CpSq in (MM99) is Theorem 1.2, which

states that the electrification of pT pSq, dT q is quasiisometric to CpSq. In contrast, Minsky
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showed in Theorem 6.1 of (Min96) that the thin regions of pT pSq, dT q, where at least one curve

is short, are quasiisometric to a product space with its sup metric.

Let γ � γ1, . . . , γn be a simplex in CpSq, and let ThinεpS, γq � tσ P T pSq��lσpγiq ¤ εu, where

lσpγiq is the hyperbolic length of γi in σ, for each i. Let

Tγ � T pSzγq �
¹
γiPγ

Hγi (2.1)

be endowed with the sup metric, where Szγ a disjoint union of punctured surfaces and each

Hγi is a horodisk, that is, a copy of the upper half-plane model of H2 with imaginary part ¥ 1.

Theorem 2.13 (Product regions; Theorem 6.1 in (Min96)). The Fenchel-Nielsen coordinates

on T pSq give rise to a natural homeomorphism Π : T pSq Ñ Tγ, and for ε ¡ 0 sufficiently small,

this homeomorphism restricted to ThinεpS, γq distorts distances by a bounded additive amount.

For the rest of this chapter, fix ε ¡ 0 to be sufficiently small so that 2.13 holds. When we

say that a curve α is short for some σ P T pSq, we mean that lσpαq   ε.

Remark 2.14. Up to quasiisometry, we may take the sup or product metric on the product

space in Equation 2.1, though Minsky’s version with the sup metric is finer and results in only

an additive error.

2.4.2 Rafi’s combinatorial model

The main result of (Raf07) is an adaptation of the machinery in (MM00) to the setting of

pT pSq, dT q. In particular, Rafi obtains a distance estimate in Theorem 6.1 of (Raf07) analogus

to the Masur-Minsky formula (Theorem 2.10 above), restated below in Theorem 2.15.
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Given σ P T pSq, a shortest marking µσ P MpSq for σ is a marking inductively built by

choosing a shortest curve in α1 P CpSq on σ, then choosing a shortest curve α2 P CpSzα1q, etc.,

until one has arrived at a shortest pants decomposition of S. One completes this to a shortest

marking by choosing shortest curves βi which intersect αi but not αj for j � i. The result is a

complete, clean marking, of which there are finitely-many by [(MM00), Lemma 2.4]. We note

that the collection of curves which are shorter in σ than the constant ε in Minsky’s Theorem

2.13 form a simplex in CpSq by the Collar Lemma. Thus in the case that σ P Thinγ for some

simplex γ � CpSq, we necessarily have γ � basepµσq.

Theorem 2.15 (Rafi’s formula; Theorem 6.1 in (Raf07)). Let ε ¡ 0 be as in Theorem 2.13.

There exists k ¡ 0 such the following holds:

Let σ1, σ2 P T pSq, define Λ to be the set of curves short in both σ1 and σ2, and define Λi to

be the set of curves short in σ1 and not in Λ. Let µi be the shortest marking for σi. Then

dT pσ1, σ2q �
¸
Y

rdY pµ1, µ2qsk �
¸
αRΛ

log rdαpµ1, µ2qsk �max
αPΛ

dHαpσ1, σ2q �max
αPΛi
i�1,2

log
1

lσipαq
(2.2)

In remarks after Corollary 3.32, we describe how to use Rafi’s formula (Equation 2.2) to

build a path in AMpSq (defined below in Section 3.1) which coarsely realizes (Equation 2.2)

as its length. This path, while globally moving efficiently, can contain subpaths which involve

arbitrary amounts of backtracking, coming from the fourth term on the right hand side. In

Section 3.2, we build preferred quasigeodesic paths in AMpSq, called augmented hierarchy

paths, which coarsely have length Equation 2.2 and avoid this unbounded backtracking.
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2.4.3 Combinatorial horoballs

Combinatorial horoballs were introduced by Groves and Manning in (GM08) in the context

of relatively hyperbolic groups; see (CC92) for an earlier, similar construction. In particular,

suppose that G is a finitely-generated group and P � tP1, . . . , Pnu is a finite collection of

finitely-generated subgroups of G. Among other equivalences, in [Theorem 3.25, (GM08)] they

showed that the augmentation of the Cayley graph of G by combinatorial horoballs along the

subgroups in P is hyperbolic if and only if G is relatively hyperbolic to P in the sense of

Gromov.

While MCGpSq is not relatively hyperbolic to any family of subgroups (BDM08, Theorem

8.1), the process of adding efficient paths to the marking complex via combinatorial horoballs

to build the augmented marking complex is reminiscent of and indeed inspired by the relatively

hyperbolic construction. We use combinatorial horoballs to model the hyperbolic upper half-

planes which appear in the product structure of the thin parts discovered by Minsky (Min96)

in Theorem 2.13. We fully explain the construction of AMpSq in the next section.

Definition 2.16 (Combinatorial horoball). Let X be any simplicial complex. The combinato-

rial horoball based on X, HpXq, is the 1-complex with vertices HpXqp0q � Xp0q�pt0uYNq and

edges as follows:


 If x, y P Xp0q and n P t0u Y N such that 0   dXpx, yq ¤ en, then px, nq and py, nq are

connected by an edge in HpXq.


 If x P Xp0q and n P t0u Y N, then px, nq is connected to px, n� 1q by an edge.
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The metric on HpXq is the path metric, where each edge is isometric to r0, 1s.

Remark 2.17. X sits inside of HpXq as the full subgraph containing the vertices Xp0q � t0u.

As with horoballs in Hn, combinatorial horoballs are uniformly hyperbolic:

Theorem 2.18 (Theorem 3.8 in (GM08)). Let X be any simplicial complex. Then HpXq is

δ-hyperbolic where δ is independent of X.

Remark 2.19. The combinatorial horoballs we use are a simple case of the above, for X is the

orbit of a Dehn twist or half-twist and thus a copy of Z.

We need the understand geodesics in combinatorial horoballs. Fortunately, they have a nice

description from Lemma 3.10 in (GM08):

Lemma 2.20 (Lemma 3.10 in (GM08)). Let HpXq be a combinatorial horoball and x, y P HpXq

distinct vertices. Then there is a geodesic γpx, yq � γpy, xq between x and y which consists of at

most two vertical segments and a single horizontal segment of length at most 3. Moreover,

any other geodesic between x and y is Hausdorff distance at most 4 from this geodesic.

Following [(GM08), Section 5.1], we define preferred paths for HpXq.

Suppose that x, y P X have dXpx, yq � C. For any px, aq, py, bq P HpXq, consider the path

between these two points which consists of (at most) three segments: a vertical segment from

px, aq to px, rlnCsq, a horizontal segment of one edge from py, rlnCsq, and another vertical

segment from py, rlnCsq to py, bq. In the case that a or b ¥ lnC, then the respective vertical

segment is not included and the horizontal segment connects at either height a or b, depending

on whether or not a ¥ b.
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These paths are not geodesics (which are similar but will differ slightly in vertical height

depending on the divisibility of C), but they are quasigeodesics which are a uniformly bounded

distance from geodesics, with the bound independent of X. This can be seen from the easily

verified fact that no geodesic can contain a horizontal segment of length greater than 5 (see

Figure 3 in the proof of Lemma 3.11 in (GM08)). Because they are easy to define, these are

the preferred paths through horoballs we consider in what follows.



CHAPTER 3

THE AUGMENTED MARKING COMPLEX OF A SURFACE

In this chapter, we prove our first Main Theorem 1.1, in which we construct our MCGpSq-

equivariant quasiisometry model for pT pSq, dT q.

3.1 Construction of AMpSq

The main idea of the construction of AMpSq is to model the product regions discovered by

Minsky (Min96) using MpSq as the thick part. We begin by showing a combinatorial horoball

over an orbit of a Dehn twist or half-twist in MpSq is quasiisometric to a horodisk. We then

define AMpSq as a graph and make some observations about its structure. We finish the

section by defining the maps identifying AMpSq with T pSq and prove some basic facts about

the identification.

3.1.1 The horoballs Hα are quasiisometric to horodisks

Let Hpα,tαq be the combinatorial horoball over the orbit of the action of xTαy on µ, where µ

contains a transverse pair pα, tαq. A typical point in Hpα,tαq is of the form pα, T kαptαq, nq, where

T kαptαq records the horizontal position, n records the vertical position, and α and tα identify

the particular horoball. When the context is clear, we write pα, T kαptαq, nq � pk, nq. We also

frequently suppress the transverse curve when referring to a horoball and simply write Hα when

the context is clear.

26
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We begin this section with an elementary proof of the fact that horodisks are quasiisometric

to combinatorial horoballs over orbits of Dehn twists or half-twists. In order to do this, we use

a set of criteria for a map to be a quasiisometry from the lemma in Subsection 4.2 of (CC92):

Lemma 3.1. Let X and Y be spaces with path metrics. In order for φ : X Ñ Y to be a

quasiisometry, it suffices that

1. for some L ¡ 0, Y � NLpφpXqq;

2. for some K ¡ 0 and for all x1, x2 P X, dY pφpx1q, φpx2qq ¤ K � dXpx1, x2q; and

3. for each M ¡ 0 there exists an N ¡ 0 such that if dXpx1, x2q ¡ N then dY pφpx1q, φpx2qq ¡

M .

Proposition 3.2 (Horoballs are quasiisometric to horodisks). Let µ PMpSq, pα, tαq a trans-

verse pair in µ, and Hα the combinatorial horoball over the orbit of the action of xTαy on µ.

Then Hα with the path metric is quasiisometric to a horodisk with the Poincaré metric.

Proof of Proposition 3.2. Let ∆ be the standard horodisk with the Poincaré metric. Define

a map φ : Hα Ñ ∆ by φpα, T kαptαq, nq � φpk, nq � pk, enq. We verify that φ satisfies the

conditions from Lemma 3.1.

To see that φpHαq is quasidense in ∆ and thus satisfies condition 1, observe that φpHαq is all

the points of the form pn, ekq, where n, k P Z¥0. Since the ∆-distance between two horizontally

adjacent vertices in φpHαq is uniformly bounded by the distance between two vertices at height

1, every point in ∆ is at most distance 1 from a vertical geodesic line in φpHαq. Similarly, the
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distance between two vertically adjacent vertices in φpHαq is bounded by e�1
e . Thus φpHαq is

quasidense in ∆.

We now verify condition 2 on endpoints of edges of Hα. Vertical edges are geodesics in Hα

and φ sends them to vertical segments which are geodesics of the same length in ∆. Similarly,

a horizontal edge in Hα, connecting pk1, nq and pk2, nq where |k1 � k2|   en, is a geodesic of

length 1. A calculation verifies that the d∆ ppk1, e
nq, pk2, e

nqq is bounded by 1?
2
, confirming

condition 2.

Finally, we check condition 3. Suppose that we have x1 � pk1, n1q, x2 � pk2, n2q P Hα

such that d∆ ppk1, e
n1q, pk2, e

n2qq is bounded. We claim that implies |k1 � k2| and |n1 � n2| are

bounded. From this, it follows immediately that dHα ppk1, n1q, pk2, n2qq is bounded, confirming

condition 3 for the vertices.

Now we check condition 3 for points in the interior of the edges. Assume that at least one of

|k1�k2|, |n1�n2| is large, for a contradiction. As noted above, φ sends vertical geodesics inHα to

vertical geodesics in ∆ of the same length, so if k1 � k2, then dHαpx1, x2q � d∆pφpx1q, φpx2qq, so

we may assume k1 � k2. Without loss of generality, assume that k1   k2 and n1 ¤ n2. Consider

the ∆-geodesic triangle 5 with vertices ā � rpk1, e
n1q, pk1, e

n2qs, b̄ � rpk1, e
n2q, pk2, e

n2qs, c̄ �

rpk1, e
n1q, pk2, e

n2qs; we note that |c̄|∆ � d∆pφpx1q, φpx2qq.

Since we are assuming that |c̄| is bounded, our assumption that one of |k1 � k2| or |n1 �n2|

is large implies that one of |ā| or |b̄| is large. It follows immediately the triangle inequality that

both |ā| and |b̄| are large. By δ-hyperbolicity of ∆, 5 is δ-thin. Note that angle in 5 at the

vertex pk1, e
n2q where ā and b̄ meet is bigger than π

2 . If we parametrize ā and b̄ moving away
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from pk1, e
n2q by fā : r0, |ā|s Ñ ∆ and fb̄ : r0, |b̄|s Ñ ∆, then d∆pfāptq, fb̄ptqq ¡ δ for t ¡ δ. Thus

δ-thinness of 5 implies that c̄ must be δ-close to ā and b̄ for almost their entire lengths. Since

they were long , it implies that c̄ must have been long, a contradiction.

3.1.2 Building AMpSq from MpSq

We are now ready to define the augmented marking complex for a surface, denoted AMpSq.

AMpSq is a simplicial 1-complex with vertices and edges as follows.

A vertex µ̃ P AMp0qpSq, called an augmented marking, is a complete clean marking,

πMpSqpµ̃q � µ PMpSq along with a collection of lengths for the curves in basepµq � tα1, . . . , αnu:

µ̃ � pµ,Dα1pµ̃q, . . . , Dαnpµ̃qq

where the Dαipµq are nonnegative integers. The Dαipµ̃q are called the length data of µ̃. When

the context is clear, we shorten this to Dα. We also write pα, tα, Dαq P µ̃ if α P basepµ̃q with

transverse curve tα and length Dα.

Remark 3.3 (Thick and thin). The integer Dαi coarsely stands in for how short αi is in a given

augmented marking, in terms of extremal (or hyperbolic) length, with Dαi positive implying αi

is short; this analogy is made explicit in the definition of the map G : AMpSq Ñ T pSq in

Subsection 3.1.3 below. When Dαipµ̃q � 0 for all αi P basepµq, we say that µ̃ is in the thick

part of AMpSq. Similarly, if Dαipµ̃q ¡ 0, we say αi is short in µ̃ and µ̃ is in the αi-thin

part of AMpSq. More generally, let ρ � CpSq be a simplex. We say that µ̃ P AMpSq is
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in the ρ-thin part of AMpSq if Dαpµ̃q ¡ 0 for each α P ρ. If, in addition, Dβpµ̃q � 0 for all

β P CpSzρq, we say that µ̃ is thick relative to ρ.

There are three types of edges in AMp1qpSq. The first type is the elementary flip move from

MpSq. The second type is a twist move, which comes from bundles of elementary twist moves

from MpSq and corresponds to a horizontal edge in a combinatorial horoball. The last type is

a vertical move, which involves adjusting the length data and corresponds to a vertical edge in

a combinatorial horoball. We connect two augmented markings µ̃1, µ̃2 P AMp0qpSq by an edge

in each of the following cases:


 Flip moves: If µ1, µ2 PMpSq differ by a flip move at a transverse pairing pα, tq ÞÑ pt, αq,

and if µ̃1, µ̃2 have the same base curves and length data, with Dαpµ̃1q � Dαpµ̃2q � 0.


 Twist moves: If α P basepµ1q � basepµ2q, Dαpµ̃1q � Dαpµ̃2q � k ¡ 0, and µ̃1 � Tnα µ̃2

with 0   n   ek.


 Vertical moves: If µ1 � µ2 and if µ̃1, µ̃2 only differ in length data by 1 in one component,

say Dαpµ̃1q � Dαpµ̃2q � 1 and Dβpµ̃1q � Dβpµ̃2q for all β P basepµ1qzα � basepµ2qzα.

These Dα coordinates can be used to give a coarse measurement of the length of a curve in

any augmented marking, regardless of whether the curve is in its base. We emphasize that this

measurement records whether a curve is short in µ̃ and, if so, coarsely how short it is. Given

an augmented marking µ̃ P AMpSq and a curve α P CpSq. We define
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Dαpµ̃q �

$''&
''%

Dα if α P basepµ̃q

0 otherwise

Since our above definition of Dα coincides with the length coordinate for any µ̃ P AMpSq

with α P basepµ̃q, we use the same notation for both going forward. For any µ̃ P AMpSq,

we note that Dαpµ̃q � 0 for all but finitely many α P CpSq. We also note that these coarse

lengths coordinates, as with Fenchel-Nielsen length coordinates, behave nicely with respect to

the action of MCGpSq. In particular, if φ PMCGpSq, then

Dαpφ � µ̃q � Dφ�αpµ̃q

Remark 3.4 (No flipping a short curve). If µ̃ P AMpSq, Dαpµ̃q ¡ 0 and pα, tq a transverse

pair, then it is not possible, by construction, to perform a flip move pα, tq ÞÑ pt, αq, for only

base curves can be short. This is precisely to guarantee that the Teichmüller distance between

the image under the map G of two augmented markings which differ by an elementary move is

uniformly bounded; see Lemma 3.11 below.

Since MpSq is locally finite and each augmented marking has at most 2 vertical edges for

each base curve, we have the following immediately from the definition:

Lemma 3.5. AMpSq is locally finite.

The metric on AMpSq is the path metric, where each edge is given length 1. In the Section

3.2, we define preferred quasigeodesic paths. We close this subsection with a series of remarks.



32

Remark 3.6 (MpSq ãÑ AMpSq). For any subsurface Y � S, there is a natural inclusion of

iY : MpY q ãÑ AMpY q given by iY pµq � pµ, 0, . . . , 0q and we call this embedded copy of MpSq

the thick part of AMpY q and points therein thick points. In particular, when Y � S, we think

of iSpMpSqq � AMpSq as the thick part of AMpSq. As we will see in Section 3.1.3, iSpMpSqq

can be identified with the thick part of T pSq, justifying our terminology.

Remark 3.7 (Combinatorial horoballs in AMpSq). Let µ PMpSq and pα, tq a transverse pair

in µ. Consider the orbit, Xα �MpSq, of µ under xTαy ¤MCGpSq, the subgroup generated by

the Dehn twist or half-twist about α. Consider the image of Xα in AMpSq, namely iSpXαq.

Then iSpXαq lies at the base of the combinatorial horoball Hα � AMpSq.

Remark 3.8 (Shadows). Consider a path P̃ � AMpSq. Consider the unique path P �MpSq

obtained from P̃ by releasing all short curves to have length coordinates 0 for each augmented

marking in P̃ and replacing each horizontal move deep in a horoball with the corresponding

string of twist moves along the boundary of that horoball. We call P the shadow of P̃ in MpSq.

Remark 3.9 (Thin parts and product regions). Let ρ � CpSq be a simplex. If we ignore the

technical concerns about cleaning markings after flip moves, then the collection of ρ-thin points

in AMpSq, which we call the ρ-thin part of AMpSq, coarsely has the structure of the 1-skeleton

of
±
αPρHα �AMpSzρq (See Theorem 2.13 for comparison).

3.1.3 Maps between T pSq and AMpSq

We are now ready to define maps between AMpSq and T pSq which we later prove are

quasiisometries in Theorem 3.31.
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Let α P CpSq and σ P T pSq. Define a map dα : T pSq Ñ Z¥0 by

dαpσq �

$''&
''%

max
!
k
��� ε0
2k�1   Extσpαq   ε0

2k

)
if Extσpαq   ε0

0 ifExtσpαq ¥ ε0

For each σ P T pSq, let µσ be a shortest marking for σ as defined before Theorem 2.15.

Define F : T pSq Ñ AMpSq by F pσq � pµσ, dα1pσq, . . . , dαnpσqq where basepµσq � tα1, . . . , αnu.

We think of F as choosing a shortest augmented marking for each σ P T pSq, and outside the

context of the map F , we may write µ̃σ for a shortest augmented marking for a point σ P T pSq.

We now construct an embedding G : AMpSq Ñ T pSq in terms of Fenchel-Nielsen coordi-

nates. Consider an augmented marking µ̃ P AMpSq with µ̃ � pµ,Dα1 , . . . , Dαnq. In building

coordinates for Gpµ̃q, we are given a clear choice of a pants decomposition, basepµq, and bounds

for the length coordinates, ε0
2Dαi�2   lαi   ε0

2Dαi�1 . Given a choice of length coordinates, say

lαi � ε0

2Dαi�
3
2

, we can use the transverse curve data pαi, tiq to pick out a unique twisting numbers,

ταiptiq, and thus a unique metric on S, as follows.

For each i, αi either bounds one or two pairs of pants, depending on whether αi lives in

a four-holed sphere or a one-holed torus. As we have chosen lengths for all the curves in the

pants decomposition, the metrics on the pairs of pants are uniquely determined.

In the case of the four-holed sphere, consider the two unique essential geodesic arcs, β1, β2 in

the pairs of pants connecting αi to itself. Let ταiptiq be the unique twisting number associated

to the gluing of the pairs of pants at αi which connects β1 to β2 to realize ti.
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Similarly, for the case when αi bounds two cuffs on one pair of pants which glue into a

one-holed torus, there is a unique geodesic arc, β, connecting the two copies of αi. Let ταiptiq

be the unique twisting number associated to the gluing of the copies of αi which connected the

two ends of β to realize ti.

We can now define G : AMpSq Ñ T pSq by Gpµ̃q � �
lαi , ταiptiq

�
i
. Since G sends each

augmented marking to a unique point for which each curve in the base of that marking is

short, the shortest augmented marking for any point in the image of G is unambiguous; that

is, F �Gpµ̃q � µ. Thus

Lemma 3.10. F �G � idAMpSq; in particular, G is an embedding and F is a surjection.

It is important to have a uniform bound on the distance between Gpµ̃1q and Gpµ̃2q, where

µ̃1 and µ̃2 are adjacent vertices in AMpSq. We also need that GpAMpSqq is quasidense in

T pSq. We record these fact in a series of lemmas.

Lemma 3.11. There is a constant L � LpSq ¡ 0 such that for any µ̃1, µ̃2 P AMpSq adjacent

vertices in AMpSq, dT pSq pGpµ̃1q, Gpµ̃2qq   L.

Proof. Let ε ¡ 0 be as in Theorem 2.13. First, suppose that µ̃1 and µ̃2 differ by a vertical edge

or horizontal edge in a horoball, Hα, where α P basepµ̃1q X basepµ̃2q. Recall that the length of

α in both Gpµ̃1q and Gpµ̃2q is less than ε by the definition of G. By Minsky’s Theorem 2.13,

Gpµ̃1q and Gpµ̃2q coarsely live in the product Hα � T pSzαq. The projections of Gpµ̃1q and

Gpµ̃2q to T pSzαq are identical, so dT pGpµ̃1q, Gpµ̃2qq is (up to an additive constant) equal to the

distance in Hα of the projections of Gpµ̃1q and Gpµ̃2q to Hα, again by Minsky’s Theorem 2.13.
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This distance is coarsely the corresponding distance in a horodisk, via Proposition 3.2, which

is precisely 1 by Lemma 3.10. Thus there is a uniform bound on dT pGpµ̃1q, Gpµ̃2qq.

Now suppose that µ̃1 and µ̃2 differ by a flip move. Then the statement follows immediately

from [Lemma 5.6 in (Raf07)] and the local finiteness of AMpSq, Lemma 3.5.

Before showing that GpAMpSqq � T pSq is quasidense in Lemma 3.13, we need the following

observation:

Lemma 3.12. Every point in the ε-thick part of T pSq is a uniformly bounded distance away

from the ε-thin parts of T pSq. This bound depends only on the topology of S.

Proof. If σ P T pSq is in the ε-thick part of T pSq and µσ PMpSq is the shortest marking for σ

with basepµσq � tγ1, . . . , γnu � γ P CpSq, then there is a uniform upper bound on the length

of the γi, which depends only on the topology of S. Thus there is a uniform bound on the

distance between σ and some point σthin P Thinγ , which is obtained by scaling the lengths of

the curves in γ in σ to be less than ε. In fact, this holds for points in the ε-thick part of T pY q

for every subsurface Y � S, with the same constant bounding the distance to a uniformly thin

part.

Lemma 3.13. GpAMpSqq is quasidense in T pSq.

Proof. We show by induction that GpAMpSqq is quasidense in the ε-thin parts of T pSq. Let

σ P T pSq and let F pσq � µ̃σ P AMpSq a shortest augmented marking for σ. It suffices to

show that there is a uniform bound on the distance between σ and Gpµ̃σq. Suppose first that

σ P Thinγ where γ � tγ1, . . . , γnu � CpSq is a maximal simplex, i.e. pants decomposition, of
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S. Then by Theorem 2.13, σ and Gpµ̃σq coarsely live in
±
i Hγi and have length coordinates

which differ at most by ε
2 . As there is a uniform bound on the distance in each Hγi and on the

dimension of the simplex γ, it follows that σ and Gpµ̃σq are uniformly close.

Now suppose that σ P Thinγ where γ � tγ1, . . . , γn�1u � CpSq is a simplex of dimension

one less than maximal. Then σ and Gpµ̃σq coarsely live in
±
i Hγi � T pSzγq. If µσ is the

shortest marking for σ, with basepµσq � tγ1, . . . , γn�1, αu, then α was the shortest curve in

σ in CpSzγq and Gpµ̃σq lives in
±
i Hγi � Hα. By Lemma 3.12, there is a uniform bound on

the distance between πT pSzγqpσq and Thinα � T pSzγq. Thus there is a uniform bound on the

distance between σ and ThinγYtαu � T pSq by Theorem 2.13. Since GpAMpSqq is quasidense

in ThinγYtαu, it follows by induction that GpAMpSqq is quasidense in T pSq, completing the

proof.

Remark 3.14 (Short curves are base curves). Let ε ¡ 0 be as in Theorem 2.13 and suppose

X P T pSq is such that lXpαq   ε for some α P CpSq. It follows from the constuction that

α P basepµ̃Xq, where µ̃X � F pXq is a shortest augmented marking for X. That is, short curves

are base curves.

Remark 3.15 (Coarse naturality of F ). It is clear from the construction that F is coarsely

natural with respect to the action of MCGpSq. More precisely, there is an M1 ¡ 0 depending

only on S such that if h PMCGpSq and X P T pSq, then dAMpSqph � µ̃X , µ̃h�Xq  M1. This M1

is precisely the diameter of the set of possible choices for F pXq P AMpSq.
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3.2 Augmented hierarchy paths

The preferred paths inMpSq constructed in (MM00) by Masur and Minsky are the hierarchy

paths from Subsection 2.4, which are quasigeodesics in MpSq (as recorded in Lemma 3.28

below). The preferred paths in AMpSq are augmented hierarchy paths, which we define below

in Theorem 3.21 and show are quasigeodesics in Proposition 3.29. The augmentation process

involves adding pinching and releasing moves into the sequence of flip and twist moves prescribed

by a given hierarchy path inMpSq to ensure that twisting is done efficiently. As with the process

of resolving hierarchies (see Section 5 of (MM00)), this process is by no means canonical and

may be adjusted to various purposes.

We first restrict ourselves to a particular type of hierarchy path in MpSq, then we use these

to build augmented hierarchy paths in AMpSq. Finally, we prove some general facts about

hierarchy paths and deduce distance estimates for their augmentations.

3.2.1 Bundling twists

We first need the right type of hierarchy path. In the proof of [Proposition 5.4,(Raf07)], Rafi

uses a combinatorial argument to show that any hierarchy path may be rearranged to obtain

a new hierarchy path based on the same hierarchy in which all twist moves around a given

curve are bundled together by rearranging twist moves around a given base curve past flip and

twist moves on disjoint curves. This argument uses [Lemma 5.16, (Min03)], which states that

any curve appearing as a base curve in a marking in a hierarchy path appears in a contiguous

interval. We remark that Rafi’s rearrangement method can be used to shift twist moves forward
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or backward in a hierarchy path, the result is always a hierarchy path, and it depends only on

the condition that the curve in question is a base curve during all the moves in consideration.

Let Γ �MpSq be a hierarchy path based on some hierarchy H. We say that Γ has bundled

twist moves or simply bundled twists if, for each α P CpSq, any twist moves around α in Γ

occur consecutively. From now on, we will assume that all hierarchy paths in MpSq have this

property of bundled twist moves.

Let µ̃1, µ̃2 P AMpSq be augmented markings as above. Let Λ � CpSq be the collection of

curves contained in the bases of both µ̃1 and µ̃2, and Λi � CpSq the collection of curves short in

µ̃i but not µ̃3�i. Note that Λ,Λ1,Λ2 � CpSq are simplices. We summarize the above discussion

in the following lemma:

Lemma 3.16. Let Γ be a hierarchy path between µ1 and µ2 based on a hierarchy H. Let

tα1, . . . , αmu � Λ1, tβ1, . . . , βmu � Λ2, tδ1, . . . , δku � Λ be any orderings of Λ1,Λ2, and Λ

which obey the time-order coming from H. Then there is a hierarchy path Γ1 of H with bundled

twist moves which is the concatenation Γ1 � ΓthinΓ1ΓthickΓ2, where Γthin,Γ1,Γthick, and Γ2 are

as follows:

1. Γthin consists entirely of twists move in the δi, done in order

2. Γ1 consists entirely of twist moves in the αi, done in order

3. Γ2 consists entirely of twist moves in the βi, done in order

4. Γthick consists of no twist moves around any curve in Λ1 Y Λ2 Y Λ

5. Λ is contained the base of every marking in Γ1
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Remark 3.17. In the statement of Lemma 3.16, the orders on Λ,Λ1, and Λ2 are required to

obey the time-ordering coming from H. Despite the fact that the curves in Λ and the Λi form

simplices in CpSq, the poorly-understood but seemingly unavoidable phenomenon of disjoint,

time-ordered subsurfaces prevents uninhibited reordering of the curves. As Γ already obeys the

time-order, this is an unproblematic technical assumption.

Remark 3.18. Since curves in Λ are base curves during the entirety of any hierarchy path Γ

based on H, we are free to put twist moves around curves in Λ anywhere along Γ, but we choose

group them together at the beginning in a segment Γthin for simplicity and (5) of Theorem 3.21

below.

Let µ̃1, µ̃2 P AMpSq, with base markings µ1, µ2 P MpSq. Let Γ be a hierarchy path in

MpSq between µ1 and µ2, obtained by resolving a hierarchy H as in Lemma 3.16 above. We

now sketch how to use Γ to construct an augmented hierarchy path rΓ between µ̃1 and µ̃2. The

technical details are contained in Theorem 3.21.

Γ is a sequence of flip and twist moves. The process of transforming Γ into rΓ involves

inserting pinching and releasing moves to ensure that twist moves are done as efficiently as

possible, by moving through the combinatorial horoballs, and that flip moves are possible to

do (for, as noted above in Remark 3.4, a flip move cannot be performed on a curve which is

short). There is also the added concern of dealing with curves which are short in µ̃1, µ̃2, or

both, but we show how to isolate these issues so that only the basic case in which µ̃1 and µ̃2

are both thick relative to these collection of curves remains.
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3.2.2 Augmenting hierarchy paths

In this subsection, we complete the augmentation of the hierarchy path Γ into an augmented

hierarchy path, rΓ. We accomplish this by building the initial and terminal segments, rΓ1 and

rΓ2 respectively, of rΓ so that, excluding these segments, rΓ is effectively a path between thick

points in AMpSzΛq; that is, during this middle segment of rΓ, no elementary moves involving

curves in Λ are performed, where Λ is the set of curves short in both rµ1 and rµ2. Using Γthin,Γ1,

and Γ2 as built in Lemma 3.16, we can then build rΓthin, rΓ1, and rΓ2. The completion of the

construction of rΓ will be simply a matter of altering Γthick to pass through the combinatorial

horoballs.

Before we state Theorem 3.21, we need some definitions.

As we did for markings in Definition 2.4, we want to be able to compare augmented markings

on suburfaces. Definition 2.4 goes through except for projecting to annuli, which we replace

with combinatorial horoballs to keep track of length data. Our horoballs Hpα,tαq depend on the

choice of transverse curve tα, so we need a common horoball in order to compare the twisting

and length coordinates of two augmented markings.

For each curve α P CpSq, fix an arc βα P Cpαq. For γ P Cpαq, let γ � β denote the algebraic

intersection number of γ with β. The map φβα : Cpαq Ñ Z, given by φβαpγq � γ � β is a

p1, 2q-quasiisometry, independent of the choice of β. The map φβα essentially records twisting

around α relative to β. See Subsection 2.4 of (MM00) for more details.

For any curve α P CpSq, let pHα � HpZq be the combinatorial horoball over Z. It follows

from Proposition 3.2 that pHα is quasiisometric to a horodisk.
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Definition 3.19 (Subsurface projections for augmented markings). If µ̃ P AMpSq is an aug-

mented marking and Y � S is any nonannular subsurface, we define the projection of µ̃ to CpY q

as πY pµ̃q � πY pbasepµqq. If Y is an annulus with core curve α, we define the projection of µ̃

to pHα as follow:

π pHαpµ̃q �

$''&
''%

pφβαptαq, Dαq if pα, tα, Dαq P µ̃

pφβαpπαpµ̃qq, 0q otherwise

Since παpµ̃q � Cpαq is a uniformly bounded set and φβα is a quasiisometry, π pHαpµ̃q is

also a uniformly bounded set, independent of the choice of β P Cpαq. Moreover, note that if

µ̃, η̃ P AMpSq live in the same horoball product Hα�AMpSzαq for some α P basepµ̃qXbasepµ̃q,

then d pHαpµ̃, η̃q �p1,2q dHαpµ̃, η̃q.

As we did with markings at the end of Subsection 2.3, we can also define the projection µ̃ to

AMpY q for any subsurface Y � S. Recall that πMpY qpµq was defined by inductively building

a pants decomposition from πY pµq and choosing transverse curves from annular projections of

µ to the chosen pants curves.

Definition 3.20 (Projecting an augmented marking to an augmented marking on a subsurface).

For any augmented marking µ̃ P AMpSq and nonannular subsurface Y � S, we similarly define

the projection of µ̃ to AMpY q by setting πMpY qpµq to be the base marking of πAMpY qpµ̃q and,

for each α P basepπMpY qpµqq, setting DαpπAMpY qpµ̃qq equal to Dαpµ̃q if α � Y and 0 otherwise.

In the case that Y � S is an annulus with core curve β, then πAMpY qpµ̃q � π pHβ pµ̃q.

By Remark 2.6, each such α P basepµq with α � Y appears in basepπMpY qpµqq, so the

DαpπAMpY qpµ̃qq are well defined.
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We also need to know how to embed preferred paths into horoball products. Let µ̃ P AMpSq

and suppose α P baseprµq with pα, tαq its transverse pair. Let P be any path inAMpSq beginning

at µ̃ which involves only moves which change the length of α, Dα, or involve a Dehn twist or

half-twist around α. Consider the projection of µ̃ to Hpα,tαq and let Pα be the path in Hpα,tαq

beginning at pα, tα, Dαq involving the same sequence of vertical and twist moves in P . Then

there is a bijection between Pα�πAMpSzαpµ̃qq and P , which embeds Pα into the unique copy of

Hpα,tαq in AMpSq which contains µ̃, thereby assigning tα as the transversal to α for the initial

marking of P .

We say that such a path P lives in the α-horoball product. In the proof of Theorem 3.21,

we do not distinguish between Pα � πAMpSzαpµ̃qq and P .

Theorem 3.21 (Existence of augmented hierarchy paths). Let µ̃1, µ̃2 P AMpSq, Λ,Λ1,Λ2 �

CpSq, and Γthin,Γ1,Γ2, and Γthick be as in Lemma 3.16. Then there are paths rΓthin, rΓ1, rΓ2, rΓthick �
AMpSq such that the following hold:

1. The concatenation rΓthinrΓ1
rΓthickrΓ2 � rΓ � AMpSq is a path between µ̃1 and µ̃2

2. rΓthin consists entirely of moves in horoball products of curves in Λ

3. rΓ1 consists entirely of moves in horoball products of curves in Λ1, done in order

4. rΓ2 consists entirely of moves in horoball products of curves in Λ2, done in order

5. rΓthick contains no moves involving curves in ΛYΛ1YΛ2, and rΓthick has endpoints which

are in the thick part of AMpSq relative to Λ.
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Proof. Throughout all that follows, we use Γ as our guide to keep track of our progress from µ̃1

to µ̃2. Indeed, the path rΓ we build has Γ as its shadow in MpSq, by first projecting geodesics

in combinatorial horoballs to their inefficient paths along the boundaries and then releasing all

other length coordinates to 0 (see Remark 3.8).

By the assumption that Γ satisfies Lemma 3.16, Γ has bundled twists. For any curve

γ P CpSq which appears as a base curve in a twist move in Γ, let µγ,1 and µγ,2 be the initial and

terminal markings in the γ twist bundle. As twisting around γ leaves all other components of a

marking unchanged, we remark that πMpSzγqpµ1q � πMpSzγqpµ2q for any µ1, µ2 between µγ,1 and

µγ,2 in Γ. In particular, this means that the curve transverse to γ in µ1 only differs by Dehn or

half-Dehn twists around γ from the curve transverse to γ in µ2.

We complete the proof in three steps, in which we build rΓthin, rΓ1, and rΓthick, respectively.

The construction of rΓ2 is nearly the same as rΓ1.

Step 1: Building rΓthin
We first build rΓthin, beginning with the curves in Λ � tδ1, . . . , δku. Let δ1 P Λ be the first

curve appearing as the base curve for a bundle of twists in Γthin and let µδ1,1 and µδ1,2 be the

initial and terminal vertices of the δ1-twist bundle in Γthin. Since µ̃1, µ̃2 both have δ1 in their

bases, each of them has a δ1 length coordinate, Dδ1pµ̃1q and Dδ1pµ̃2q.

Let µ̃δ1,1, µ̃δ1,2 P AMpSq be such that Dδ1pµ̃δ1,1q � Dδ1pµ̃1q and Dδ1pµ̃δ1,2q � Dδ1pµ̃2q and,

for each γ P basepµδ1,1qzγ � basepµδ1,2qzγ, set Dγprµδ1,1q � Dγprµδ1,2q � Dγprµ1q. Thus rµδ1,1 and

rµδ1,2 have the same length coordinates on the complement Szδ1.
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Since µ̃δ1,1 and µ̃δ1,2 live in the same δ1-horoball product, we may project them down to

Hδ1 without any ambiguity. Let Pδ1 be the preferred path in Hδ1 , as in Lemma 2.20 which

connects πHδ1 pµ̃δ1,1q to πHδ1 pµ̃δ1,2q, and consider the path �Pδ1 � Pδ1 � πAMpSzδ1qpµ̃δ1,1q, which

is an embedded copy of Pδ1 into the unique copy of Hδ1 in AMpSq containing µ̃1. The path

rPδ1 is a path from rµ1 � rµδ1,1 to rµδ1,2.

By construction, the path rPδ1 projects bijectively to Pδ1 inHδ1 and to the point πAMpSzδ1qpµ̃1q

in AMpSzδ1q; in particular, πHδ1 p rPδ1q � Pδ1 and πAMpSzδ1qp rPδ1q � πAMpSzδ1qpµ̃1q. Moreover,

πHδ1 pµ̃δ1,2q � µδ1,2. Thus rPδ1 makes progress along Γ past all twist moves around δ1.

We then repeat this process by moving along the given order of bundled twists in Γthin.

Setting µ̃δ1,2 � µ̃δ2,1, we then similarly build rPδ2 from the preferred path Pδ2 in Hδ2 by rPδ2 �
Pδ2 � πAMpSzδ2qpµ̃δ2,1q. As before, we label the terminal vertex of rPδ2 with µ̃δ2,2 and note that

its shadow in MpSq is µδ2,2. We repeat this process for each δi P Λ, for 1 ¤ i ¤ k to obtain a

path rΓthin � rPδ1 � � � rPδk from µ̃1 to µ̃δk,2. We note that πHδi pµ̃δk,2q � πHδi pµ̃2q for each i and

πAMpSzΛqprΓthinq � πAMpSzΛqpµ̃1q. We remark that the shadow of rΓthin in MpSq is precisely

Γthin.

Step 2: Building rΓ1

We now build rΓ1 via segments which move exclusively through the horoballs of curves in

Λ1 � tα1, � � � , αmu, those curves which are short in µ̃1 but not in µ̃2.

Let α1 P Λ1 be the first curve in the ordering on Λ1. Recall that the terminal vertex of

rΓthin is µ̃δk,2. Note that πMpSqpµ̃δk,2q � µδk,2 � µα1,1, the initial vertex in the α1-bundle of

twists in Γ and set µ̃δk,2 � µ̃α1,1. Let iS : MpSq ãÑ AMpSq be the canonical embedding from
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Remark 3.6 and let Pα1 be the preferred path from Lemma 2.20 in Hα1 between πHα1
pµ̃α1,1q

and πHα1
piSpµα1,2qq. Set rPα1 � Pα1 � πAMpSzα1qpµ̃α1,1q.

Let µ̃α1,2 be the last vertex of rPα1 . Then rPα1 projects bijectively to Pα1 in Hα1 . In

particular, πAMpSzα1
p rPα1q � πAMpSzα1qpµ̃α1,1q.

We obtain a path rΓ1 � rPα1 � � � rPαm, by performing the above operation for each αi P

Λ1, with the initial vertex of rPαi coinciding with the terminal vertex of rPαi�1 , . Set rΓ1 �

rPδ1 � � � rPδk rPα1 � � � rPαm . Note that rΓ1 is a path beginning from µ̃1 with terminal vertex µ̃αm,2,

whose only short curves are the curves in Γ, thus µ̃αm,2 is thick relative to Γ.

The path rΓ1 has precisely Γ1 as its shadow in MpSq. By a nearly identical procedure,

we can construct a sequence of preferred paths in the combinatorial horoballs of the curves,

βi P Λ2. Thinking of this sequence of paths beginning at rµ2, we get rΓ2 � rPβn � � � rPβ1 , a path

from rµ2 to rµβ1,1, the terminal vertex of rPβ1 . In particular, rΓ2 is a path from rµβ1,1 to rµ2 whose

shadow in MpSq is precisely Γ2.

Step 3: Building rΓthick
Set µ̃thick,1 � µ̃αm,2 and µ̃thick,2 � µ̃β1,1. Let µthick,1 and µthick,2 be the initial and terminal

markings of Γthick, respectively. By construction, πAMpSzΛqpµ̃thick,1q � iSzΛpπMpSzΛqpµthick,1qq

and πAMpSzΛqpµ̃thick,2q � iSzΛpπMpSzΛqpµthick,2qq. By Lemma 3.16, each marking in Γ has Λ as

part of its base. Moreover, Dδipµ̃thick,1q � Dδipµ̃thick,2q for each δi P Λ. Let pΓthick be the path

obtained by setting Dδiprµq � Dδiprµthick,1q for each rµ P iSpΓthickq. Since µ̃thick,1 and µ̃thick,2 are
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thick relative to Λ, it follows that pΓthick is a path between µ̃thick,1 and µ̃thick,2, whose length is

precisely that of Γthick.

We obtain rΓthick from pΓthick as follows: Let µγ,1 Ñ � � � Ñ µγ,2 be a subsegment of Γthick

which is the complete bundle of twist moves around some curve γ (that is, all twist moves around

γ in Γthick occur during this subsegment). Then pΓthick has the same bundle of twist moves

around γ. This sequence of moves, pPγ , projects to a path on the boundary of Hγ . Let Pγ be the

preferred path between πHγ prµγ,1q and πHγ prµγ,2q in Hγ . Since πAMpSzγqpµ̃γ,1q � πAMpSzγqpµ̃γ,2q,

we can replace pPγ in pΓthick by rPγ � Pγ � πAMpSzγpµ̃γ,1q. The segment rPγ is a path between

µ̃γ,1 and µ̃γ,2.

Define rΓthick to be the result of performing this surgery to pΓthick for every curve γ which

appears in a bundle of Dehn twists or half-twists in pΓthick. Since this surgery does not alter the

endpoints of the surgered subsegments, it follows that rΓthick is a path from µ̃thick,1 and µ̃thick,2.

What is more, rΓthick involves no twist moves around any curves in ΛY Λ1 Y Λ2.

Setting rΓ � rΓthinrΓ1
rΓthickrΓ2 completes the proof.

Definition 3.22 (Augmented hierarchy path). We call rΓ the augmentation of Γ and say that

rΓ is an augmented hierarchy path between µ̃ and η̃.

Remark 3.23. Given any such Γ and augmentation rΓ, rΓ casts a natural shadow on iSpMpSqq �

AMpSq by first projecting preferred paths in combinatorial horoballs to their inefficient paths

along the bottoms of these horoballs and then releasing all other length coordinates to 0, as in

Remark 3.8. It is easy to see that this shadow is iSpΓq.
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Remark 3.24 (Uniqueness of augmentation). Once a base hierarchy path, Γ, and an order

on common short curves are chosen, the augmentation process involves no auxiliary choices

and thus rΓ is uniquely determined. This follows from the uniqueness of a preferred path in a

combinatorial horoball. We use this observation in the proof of Proposition 3.28 below.

3.2.3 Length and efficiency of augmented hierarchy paths

In this subsection, we present a formula for the length of an augmented hierarchy path and

observe that any subpath of an augmented hierarchy path also obeys this formula.

Theorem 3.25 (Length of an augmented hierarchy path). There are constants M1,M2 ¡ 0

which depend only on S such that the following holds. Let µ̃1, µ̃2 P AMpSq, rΓ any augmented

hierarchy path between them, and k ¡ 0 the constant from Theorem 2.10. Then the length of rΓ
is given by the following formula:

|rΓ| �pM1,M2q
¸
Y�S

rdY pµ̃1, µ̃2qsk (3.1)

where if Y is an annulus with core curve α, then dY � d pHα.

Proof. Theorem 3.21 gives a decomposition of rΓ into four parts: rΓthin, rΓ1, rΓthick, and rΓ2. Con-

necting the lengths of these parts to formula (Equation 3.1) involves collecting properties of

these segments from the proof of Theorem 3.21 and relating these properties to the formula.

We begin with rΓthin. Recall that rΓthin consists of preferred paths in the δi-horoball products,

rΓthin � rPδ1 � � � rPδk . Let µ̃δi,1 and µ̃δi,2 be the initial and terminal verticies of rPδi . It follows
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from the construction of Γ in Lemma 3.16 and the proof of Theorem 3.21 that π pHδi
pµ̃δi,1q and

π pHδi
pµ̃δi,2q are a bounded distance away from π pHδi

pµ̃1q and π pHδi
pµ̃2q, respectively, for each i,

where the bound only depends on the topology of S. In particular, if these distances were

not bounded, then they must differ by some large number of twist moves around the δi, for

they have the same δi-length components. However, Γ was constructed so that all twist moves

around the δi are bundled together in a segment of Γthin which is the shadow of rPδi for each i,

giving us a contradiction. Thus
°
δiPΛ d pHδi

pµ̃1, µ̃2q is coarsely the length of rΓthin.

Now consider the length of rΓ1 � rPα1 � � � rPα,m. Let rµαi,1 and rµαi,2 be the initial and terminal

vertices of rPαi , respectively. It follows again from the construction of Γ in Lemma 3.16 and rΓ1

in Theorem 3.21 that π pHαi pµ̃αi,1q and π pHαi pµ̃αi,2q are a bounded distance away from π pHαi pµ̃1q

and π pHαi pµ̃2q, respectively, where the bound depends only on S. Thus
°
αiPΛ1

d pHαi pµ̃1, µ̃2q is

coarsely the length of rΓ1. Similarly,
°
βiPΛ2

d pHβi
pµ̃1, µ̃2q is coarsely the length of rΓ2.

Now observe that there is a topological bound, L � LpSq ¡ 0, on the number of curves

in Λ1,Λ2, and Λ. By adding L � k to M2, we can allow for the truncation by k in the third

term of formula (Equation 3.1), for there are at most L terms of the sum which are less than

k. This concludes proof that the third term of formula (Equation 3.1) is coarsely the length of

the segments rΓthin, rΓ1, and rΓ2.

Finally, consider the length of rΓthick. In the proof of Theorem 3.21, the process of construct-

ing rΓthick from Γthick involved creating an intermediary path pΓthick, which was an embedding

of Γthick into the thick part of AMpSq relative to Λ, with the initial and terminal vertices of

pΓthick coinciding with the terminal and initial vertices of rΓ1 and rΓ2, respectively. In particular,
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the length of pΓthick is precisely that of Γthick. The path rΓthick was constructed from pΓthick by

a series of surgeries which replaced bundles of twist moves by preferred paths in combinatorial

horoball products.

From the Masur-Minsky distance formula, Theorem 2.10, and the construction of Γthick in

Lemma 3.16, it follows that the length of Γthick and pΓthick is coarsely

¸
Y�SzΛ

rdY prµ1, rµ2qsk �
¸

γPSzΛYΛ1YΛ2

rdγprµ1, rµ2qsk (3.2)

where Y is taken over nonannular subsurfaces of SzΛ.

The bundles of twists in pΓthick are replaced by preferred paths in the combinatorial horoballs

Hα to obtain rΓthick. By Lemma 2.20, preferred paths are uniform quasigeodesics, so the second

term in equation (Equation 3.2) may be replaced by

¸
γPSzΛYΛ1YΛ2

rdγprµ1, rµ2qsk

by

¸
γPSzΛYΛ1YΛ2

�
d pHγ prµ1, rµ2q

�
k

This completes the proof of the theorem.

Remark 3.26. Compare this formula with Rafi’s formula, Theorem 2.15. As a consequence of

the Main Theorem 3.31 of this chapter and Proposition 3.29, the formula in Theorem 3.25 gives

us a distance estimate for points in T pSq and AMpSq. It is fundamentally the same estimate
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as Rafi’s, though more technically useful for the considerations in the current exposition. See

the discussion after Corollary 3.32.

Later when we prove that these augmented hierarchy paths move efficiently throughAMpSq,

we need to know that subsegments of these paths also move efficiently. This follows from a

careful reading of (MM00), but we include a proof for clarity of the exposition. In order to do

so, we need some definitions from Subsection 4.1 of (MM00).

Let Y � S be a nonannular subsurface and let µ P MpSq be a marking. The restriction

of µ to Y , denoted µ|Y , is the set of transverse pairs pα, tαq in µ whose base curve α meets Y

essentially. If Y � S is an annulus, then we set µ|Y � πY pµq.

Recall that each geodesic gY P H has two partial markings associated to it. They are called

the initial and terminal markings of gY , respectively denoted IpgY q and TpgY q.

Let X,Y � S be subsurfaces. Let gY � CpY q be a geodesic in the curve complex of Y .

We say that a subsurface X is a component domain of gY if X is a component of Y zv for

some v P gY . Suppose that X is component domain for the ith vertex of gY , namely vi P gY ,

X � Y zvi. We note that this determines vi uniquely.

We define the initial marking of Y relative to gY to be

IpX, gY q �

$''''&
''''%
vi�1 if vi is not the first vertex

IpgY q|Y , if vi is the first vertex

Similalry, we define the terminal marking of Y relative to gY to be
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TpX, gY q �

$''''&
''''%
vi�1 if vi is not the last vertex

TpgY q|Y , if vi is the last vertex

It follows from the definition of a hierarchy (Definition 4.4 in (MM00)) and Theorem 4.7 in

(MM00) that each such geodesic gZ is a component domain of precisely two geodesics gX1 , gX2 P

H, to which gY is a direct forward or backward subordinate, denoted gX1 Ö gY and gY Õ gX2 .

Masur-Minsky’s constructive proof of the existence of hierarchies (Theorem 4.6 in (MM00))

shows that the initial and terminal markings of such a gY are the initial and terminal markings

of Y relative to the geodesics to which it is backward and forward subordinate, respectively.

Indeed, this is precisely the definition of subordinacy (Definition 4.3 in (MM00)). We record

these facts in a lemma:

Lemma 3.27. [Subordinancy] Given any geodesic gY P H with gY � gH , there are unique

geodesics gX1 , gX2 P H with gX1 Ö gY and gY Õ gX2, with IpgY q � IpY, gX1q and Tpgyq �

TpY, gX2q.

We are now ready to prove the following proposition:

Proposition 3.28. Any subpath of an augmented hierarchy path is itself an augmented hier-

archy path.

Proof. This follows from the facts that hierarchy paths themselves have this subpath property

and that the augmentation process does not alter the underlying hierarchy. The latter fact is

clear. To see the former, recall that a hierarchy, H, is a collection of geodesics in the curve
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complexes of various subsurfaces, Y � S, and a hierarchy path, Γ, is a sequence of collections

of positions on these geodesics which fit together into a sequence of markings.

Let H be a hierarchy and Γ a hierarchy path between two markings µ � µ1 Ñ � � � Ñ µk �

η. For any geodesic gY P H, let gY,int and gY,ter be the initial and terminal vertices of gY ,

respectively. Then there are two markings, µY,int and µY,ter, the initial and terminal markings

in which gY,int and gY,ter first and last appear, respectively. Having enumerated Γ, we may

think of any marking τ appearing along Γ as coming before, after, or during some subsurface,

Y � S, with gY P H, depending on whether or not τ P ΓY � rµY,int, µY,ters.

If µ0 and η0 are two markings in a hierarchy path Γ based on H, occurring in that order, then

one can build a restricted hierarchy H0 out of geodesics gY in H for which ΓY X rµ0, η0s � H,

with H0 consisting of precisely the geodesics which form the overlaps. More precisely, if gY is

such a geodesic and, for instance, µ0 overlaps gY , then we can remove the initial segment of

gY to obtain a geodesic g1Y which begins at the vertex of gY which is a part of µ0; we similarly

truncate the end segment of gY if one of its vertices lies in η0. Let H 1
0 be the set of the g1Y .

If gY has be truncated to obtain g1Y , then we can attach new partial marking data. If either

the initial or terminal vertex of gY remains in g1Y , then set the initial or terminal marking of

g1Y to be that of gY . Otherwise we can build Ipg1Y q and Tpg1Y q inductively from µ0 and η0 as

follows.

Let gH 1 be the truncation of the main geodesic gH at µ0 and η0. Set IpgH 1q � µ0 and

TpgH 1q � η0. Now suppose that g1Y P H 1
0 is supported in a subsurface Y � S. By Lemma

3.27, there are two geodesics gX1 , gX2inH
1 such that gX1 Ö gY and gY Õ gX2 . Since Y is a
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component domain for some vertices of gX1 and gX2 , it follows that these vertices appear in the

truncation of H. In particular, there are geodesics g1X1
, gX2 P H 1 which are truncated versions

of gX1 and gX2 , respectively. Moreover, it is clear that Y appears as a component domain of

each. Thus we define Ipg1Y q � IpY, g1X1
q and Tpg1Y q � TpY, g1X2

q. Let H0 be the collection of

the geodesics from H 1 with their marking data

One can check both that H0 is indeed a hierarchy and that one can build a hierarchy path,

Γ0, based on H0 by resolving H0 as H was resolved into Γ, and Γ0 will be a restriction of Γ to

the interval between µ0 and η0. That is, subpaths of hierarchy paths are hierarchy paths.

To show this subpath property lifts to augmented hierarchy paths, let rΓ be an augmented

hierarchy path between µ̃1 and µ̃2, with underlying hierarchy path Γ between µ1 and µ2. Let

µ̃0 and η̃0 be two vertices on rΓ and let Γ0 be the restriction of Γ to the interval between µ0 and

η0.

Let Λ0,Λ0,1, and Λ0,2 be the set curves short in both µ̃0 and η̃0, those short in µ̃0 but not

in η̃0, and those short in η̃0 but not in µ̃0, respectively. Each of these sets inherits an order

from rΓ, so we assign them that order. Having chosen an order and an underlying hierarchy, it

follows from Remark 3.24 that the corresponding augmentation of Γ0, call it rΓ0, coincides with

the subpath of rΓ betwee µ̃0 and η̃0. This completes the proof.

Finally, we prove that augmented hierarchy paths are are uniform quasigeodesics in AMpSq.

Proposition 3.29. Augmented hierarchy paths are uniform quasigeodesics in AMpSq.



54

Proof. Let µ̃1, µ̃2 P AMpSq be augmented markings and let rΓ be any augmented hierarchy path

between them. Since all subpaths of augmented hierarchy paths are augmented hierarchy paths

(Proposition 3.28), it follows that all subpaths of rΓ obey the distance formula Equation 3.1 in

Theorem 3.25. It thus suffices to show that Equation 3.1 is coarsely dAMpSqpµ̃1, µ̃2q. We do so

by contradiction.

Let L � LpSq ¡ 0 be the uniform bound on the distance in T pSq between the images of

two points in AMpSq which differ by an edge from Lemma 3.11. Rafi’s formula (Theorem

2.15) and Theorem 3.25 imply that dT pSqpGpµ̃q, Gpη̃qq is pP,Qq�coarsely the length of rΓ, for

appropriately chosen constants P,Q depending on L and the constants from Theorem 2.15 and

Theorem 3.25. Suppose that there is a path, Γ̂, in AMpSq between µ̃ and η̃ whose length, R,

is such that R � L   1
P p�q � Q, where p�q is the right-hand side Equation 2.2 of the equation

from Theorem 2.15. In this case, it follows that GpΓ̂q has length less than dT pSqpGpµ̃q, Gpη̃qq, a

contradiction. Thus, rΓ is globally efficient, completing the proof.

As a corollary of Proposition 3.29 and Theorem 3.25, we have:

Corollary 3.30 (Distance formula for AMpSq). There are constants R1, R2 ¡ 0 which depend

only on S such that for any µ̃1, µ̃2 P AMpSq

dAMpSqpµ̃1, µ̃2q �pR1,R2q
¸
Y

rdY pµ̃1, µ̃2qsk

where if Y � S is an annulus with core curve α, then dY � d pHα.
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3.2.4 Proof of the quasiisometry theorem

We now are ready to prove the Main Theorem of this chapter:

Theorem 3.31. AMpSq with the path metric is quasiisometric to T pSq with the Teichmüller

metric.

Proof. Since we have shown in Lemma 3.13 that GpAMpSq � T pSq is quasidense, it suffices to

show that G is a quasiisometric embedding. This is a direct consequence of Proposition 3.29

and various distance formulae.

Let µ̃1, µ̃2 P AMpSq and let Λ,Λ1, and Λ2 be as in Theorem 3.21. Corollary 3.30 gives that

the distance in AMpSq between µ̃1 and µ̃2 is

dAMpSqpµ̃1, µ̃2q �pR1,R2q
¸
Y

rdY pµ̃1, µ̃2qsk (3.3)

However, from the proof of Theorem 3.25, we can decompress this formula to

dAMpSqpµ̃1, µ̃2q �pR11,R12q
¸
Y

rdY pµ̃1, µ̃2qsk �
¸

αRΛ1YΛ2YΛ

log rdαpµ̃1, µ̃2qsk �
¸
αPΛ

�
d pHα pµ̃1, µ̃2q

�
k
(3.4)

�
¸

αPΛ1YΛ2

�
d pHα pµ̃1, µ̃2q

�
k
(3.5)

where R1
1, R

1
2 ¡ 0 are constants depending only on S. We now explain how.
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First of all, observe that we can decompose the summand on the right side of equation

(Equation 3.3) into

¸
Y

rdY pµ̃1, µ̃2qsk �
¸

αRΛ1YΛ2YΛ

�
d pHαpµ̃1, µ̃2q

�
k
�
¸
αPΛ

�
d pHα pµ̃1, µ̃2q

�
k

(3.6)

�
¸

αPΛ1YΛ2

�
d pHα pµ̃1, µ̃2q

�
k

(3.7)

An elementary calculation shows that if a bundle of twists along the base of a combinatorial

horoball has length n, then the preferred path between the endpoints of the bundle has length

coarsely log n. Thus removing the bundles of twists in pΓthick and inserting preferred paths to

obtain rΓthick introduces a logarithm into the annulur sum, thus replacing

¸
αRΛYΛ1YΛ2

�
d pHαprµ1, rµ2q

�
k

by

¸
αRΛYΛ1YΛ2

log rdαprµ1, rµ2qsk

Rafi’s formula Equation 2.2 from Theorem 2.15 gives us that

dT pGpµ̃1q, Gpµ̃2qq �
¸
Y

rdY pµ̃1, µ̃2qsk �
¸
αRΛ

log rdαpµ̃1, µ̃2qsk �max
αPΛ

dHαpσ1, σ2q �max
αPΛi
i�1,2

log
1

lσipαq
(3.8)

The first terms on the right hand sides of equations (Equation 3.4) and (Equation 3.8) are

coarsely the same. Changing the max in the third term of equation (Equation 3.8) to a sum
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only introduces a bounded multiplicative constant, so they are coarsely the same by Proposition

3.2. Finally, changing the max to a sum in the fourth term of equation (Equation 3.8) only

introduces a bounded multiplicative constant. For any curve α common to both the second and

fourth terms of (Equation 3.8), the sum

log
1

lσipαq
� log dαpµ1, µ2q

is at most three times bigger than

d pHα pµ̃1, µ̃2q

by Proposition 3.2.

Thus equations (Equation 3.3) and (Equation 3.8) coarsely coincide, up to constants de-

pending only on S. It follows that the image in T pSq of an augmented hierarchy path under G is

a quasigeodesic. Since we showed that augmented hierarchy paths are quasigeodesics in AMpSq

in Proposition 3.29, we have shown that G is a quasiisometric embedding. This completes the

proof.

As a corollary to Theorems 3.25 and 3.31, we have a new distance formula for Teichmüller

space, though as is made clear in the remarks that follow, it is fundamentally a combinatorial

restatement of Rafi’s formula, Theorem 2.15.

Let σ1, σ2 P T pSq and µ̃1, µ̃2 P AMpSq their shortest augmented markings. Let Λi be the

collections of curves shorter than ε0 in σi and not in σ3�i. Let Λ be the set of curves short in

both σ1 and σ2.



58

Corollary 3.32. The distance in T pSq between σ1 and σ2 is given by the following formula:

dT pσ1, σ2q �pN1,N2q
¸
Y

rdY pµ̃1, µ̃2qsk

where if Y is an annulus with core curve α, then dY � d pHα. The constants N1 and N2

depend only on S.

We now make some remarks on the difference between Rafi’s distance estimate, Theorem

2.15, and that in Corollary 3.32.

Recall Rafi’s distance formula (Theorem 2.15) and the aforementioned fourth term from the

right hand side. This term is the distance moved by releasing all the base curves of the end

points to the relative thick part. It takes advantage of sup metric on the product structure of

the thin regions of T pSq from Theorem 2.13 to only take on the distance from the base curve

deepest in its respective combinatorial horoball. If this curve, α, happens to also be a large

link for the hierarchy (see 2.12), then it will appear in the second term and correspond to a full

twisting path through the α-combinatorial horoball, Hα, which would require pinching down α

again, thus potentially involving an arbitrary amount of backtracking.

By contrast, an augmented hierarchy path between the same two endpoints will take ad-

vantage of the initial short length α and move along the twisting path through Hα without

backtracking. The result is a subpath at most three times shorter than the one above. Since
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there are finitely-many curves which can start short, this difference is easily consumed by the

constants pN1, N2q in Corollary 3.32.

Since the derivation of the formula in Corollary 3.32 depends on Rafi’s formula (Theorem

2.15), we remark the new formula is merely a simplification thereof.

We conclude this section by compiling the work of Masur-Minsky (MM00), Brock (Br03),

Rafi (Raf07), and Corollary 3.32 in coarse distance estimates for the marking complexes in terms

of subsurface projections. As one can build the AMpSq from MpSq and MpSq from PpSq by

adding additional layers of data, the distance formulae increase in complexity to account for

the additional information.

Theorem 3.33. There is a K ¡ 0 such that the following holds. For any X1, X2 P T pSq, let

µ̃1, µ̃2 P AMpSq be their shortest augmented markings, µ1, µ2 PMpSq be the unique underlying

markings and P1, P2 P PpSq be the unique underyling pants decompositions.

In (MM00, Theorem 6.12), Masur and Minsky develop a coarse distance formula for MpSq:

dMpSqpµ1, µ2q �
¸
Y�S

rdY pµ1, µ2qsK (3.9)

An application of (Br03, Theorem 1.1) gives:

dWP pX1, X2q �
¸
Y�S

rdY pP1, P2qsK (3.10)

where the Y � S are nonannular.

Corollary 3.32 gives:
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dT pX1, X2q �
¸
Y�S

rdY pµ̃1, µ̃2qsK (3.11)

where if Y � S is an annulus with core curve α, then dY � d pHα.

As the subsurface projections πY are defined in terms of the projections of the bases of mark-

ings (i.e., pants decompositions) to CpY q, it follows that the sum appearing in (Equation 3.10)

is precisely a proper subsum of (Equation 3.11). It follows that Weil-Petersson distance is

(coarsely) shorter than Teichmüller distance, dWP   dT .

Remark 3.34 (dWP   dT ). It is a theorem of Linch (Lin74) that one only needs a multiplicative

constant.

Remark 3.35 (Bounded dWP implies a bounded number of annular large links). A key obser-

vation we use in the proof of Theorem 1.4 of the next chapter is that points that are a bounded

dWP distance apart can only have a uniformly bounded number of large projections to horoballs

between their respective shortest augmented markings. This is because a bound on projections

to nonannular subsurfaces places a bound on the number of flip moves and thus the number of

base curves which can appear along any augmented hierarchy path. See Lemma 4.23 below for

more details.

3.3 Coarse product regions in AMpSq

In this section, we analyze subgraphs of AMpSq which coarsely behave like the Minsky’s

product regions. We follow and build on work of Behrstock-Minsky (BM08) for MpSq. The
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main goal of this section is Proposition 3.47, which is crucial for the distance estimates at the

end of the proof of the Theorem 1.4 from the Introduction.

In Section 2 of (BM08), Behrstock-Minsky derive a distance estimate for two points of MpSq

or PpSq whose base markings have curves in common. We need an analogous statement for

AMpSq, which gives a coarse distance estimate for two points in the same Minsky product

region (Theorem 2.13). We also need to understand how to project to these regions.

Let ∆ � CpSq be a simplex and consider the subset Qp∆q � tµ̃ P AMpSq|∆ � basepµ̃qu.

Let σp∆q � Sz∆ be the collection of complementary subsurfaces which are not pairs of pants.

Subsurface projections give a map

Φ : Qp∆q Ñ
¹

Y Pσp∆q
AMpY q

The following is the AMpSq analogue of [Lemma 2.1, (BM08)] and it appears in (EMR13)

without proof, for it follows quickly from the distance formula in Theorem 3.33:

Lemma 3.36. The map Φ is a StabMCGpSqp∆q-equivariant quasiisometry.

There are a couple of immediate corollaries. First, we have a coarse distance estimate for

Qp∆q:

Corollary 3.37. For µ̃1, µ̃2 P Qp∆q, we have that dY pµ̃1, µ̃2q � 1 for any Y&∆ and thus

dAMpSqpµ̃1, µ̃2q �
¸

Y�σp∆q
rdY pµ̃1, µ̃2qsK

In particular, Qp∆q is quasiconvex with constants only depending on S.
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Second, we have a coarse characterization of Minsky’s product regions Theorem 2.13, which

is well-known to the experts:

Corollary 3.38. Let ε ¡ 0 be as in Theorem 2.13. Let ∆ � CpSq be a simplex and let X1, X2 P

Thinε,Sp∆q, with µ̃X1 , µ̃X2 P AMpSq their shortest augmented markings. Then µ̃X1 , µ̃X2 P

Qp∆q and there is a string of MCGpSq-equivariant quasiisometries

Thinε,Sp∆q ��
¹
αP∆

Hα � T pSz∆q �
¹
αP∆

Hα �AMpSz∆q � Qp∆q

where AMpSz∆q �±Y�σp∆qAMpY q for Y nonannular.

The first quasiisometry is that of Minsky’s Theorem 2.13. The second quasiisometry comes

from applying Lemma 3.2 and Theorem 3.31 to the appropriate components, in the latter

case by choosing a shortest augmented marking on each nonhorodisk component. The third

quasiisometry is from Lemma 3.36. We remark that, up to quasiisometry, the metric on a

product is unimportant.

In [Lemma 2.2, (BM08)], Behrstock-Minsky give a coarse estimate from any marking MpSq

to Qp∆q. The following is the analogue for AMpSq whose proof we omit for it is essentially

the same.

Lemma 3.39. Distance to Qp∆q Let µ̃ P AMpSq and ∆ � CpSq and simplex. Then we have

dAMpSqpµ̃, Qp∆qq �
¸
Y&∆

rrdY pµ̃,∆qssK
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where if Y is an annulus with core curve α, then dY � dHα.

In the proof of the Main Theorem 4.24 of the next chapter, we need to understand how to

project any µ̃ P AMpSq to a coarse nearest point in Qp∆q. This involves projecting µ̃ to Hα

for each α P ∆ and then completing those projections to an augmented marking by projecting

µ̃ to AMpSz∆q.

Before we proceed, we need to show that πHα and πAMpY q are Lipschitz. Since both of these

are entirely built out of subsurface projections, Lemmas 3.41 and 3.42 are easy consequences of

the following result from (MM00):

Lemma 3.40 (Lipschitz projection; Lemma 2.4 in (MM00)). Let Z � Y � S be subsurfaces.

For any simplex ρ P CpY q, if πZpρq � H, then diamZpρq ¤ 3. If Z is an annulus, then the

bound is 1.

Lemma 3.41 (Horoball projections are Lipschitz). For any nonannular subsurface Y � S and

α P CpY q, if µ̃1, µ̃2 P AMpY q have dAMpY qpµ̃1, µ̃2q � 1, then dHαpµ̃1, µ̃2q � 1.

Lemma 3.42 (Marking projections are Lipschitz). Let Z � Y � S be subsurfaces. For any

µ̃1, µ̃2 P AMpY q with dAMpSqpµ̃1, µ̃2q � 1, we have dAMpZq
�
πAMpZqpµ̃1q, πAMpZqpµ̃1q

� � 1.

Proof. The result follows easily from the distance formula in Theorem 3.33 and Lemmas 3.40

and 3.41 after the following observation.

For any α P basepµ̃1q with Dαpµ̃1q ¡ 0, it follows that α P basepµ̃2q and dHα pµ̃1, µ̃2q ¤ 1.

If in addition α P CpZq, it follows that α P basepπAMpZqpµ̃1qq X basepπAMpZqpµ̃2qq. Thus the

transversal and length data of α in µ̃1 and µ̃2 also descend to πAMpZqpµ̃1q and πAMpZqpµ̃2q,
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and dHα
�
πAMpZqpµ̃1q, πAMpZqpµ̃2q

� � 1. Thus πAMpZqpµ̃1q has a short curve if and only if

πAMpZqpµ̃2q has that same short curve.

As all other parts of πAMpZqpµ̃1q and πAMpZqpµ̃2q are built from horoball and subsurface

projections, the conclusion of the lemma follows from Theorem 3.33 above.

We can now define the coarse closest point projection to Qp∆q.

Definition 3.43 (Coarse closest point projection to Qp∆q). For any µ̃ P AMpSq and any

simplex ∆ � CpSq, define φ∆ : AMpSq Ñ Qp∆q by

φαpµ̃q �
�ppπαpµ̃qqαP∆ , πAMpSz∆qpµ̃q

�

It follows immediately from the definition that dHαpµ̃, φ∆pµ̃qq � 1 for any α P ∆.

We now prove a number of properties of φ∆, culminating in Proposition 3.47, which we

need for the proof of the Main Theorem 4.24 of the next chapter. The first lemma states that,

for any µ̃ P AMpSq, the choices involved in building φ∆pµ̃q result in a uniformly bounded set:

Lemma 3.44. For any simplex ∆ � CpSq and µ̃ P AMpSq, we have

diamAMpSqpφ∆pµ̃qq � 1

Proof. This follows from the facts that pπα and πAMpY q are uniformly bounded for any α P CpSq

and subsurface Y � S.
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The following lemma proves that φ∆ is indeed a coarse closest point projection to Qp∆q.

More precisely, the lemma shows that φ∆pµ̃q records the combinatorial data of any augmented

marking µ̃ relative to the complementary components of Sz∆. In particular, any augmented

hierarchy path from µ̃ to its projection φ∆pµ̃q moves mainly through subsurfaces which interlock

∆:

Lemma 3.45. For any µ̃ P AMpSq and simplex ∆ � CpSq, we have dY pµ̃, φ∆pµ̃qq � 1 for any

Y � σp∆q. In particular,

dAMpSqpµ̃, φ∆pµ̃qq � dAMpSqpµ̃, Qp∆qq

Proof. For any α P ∆, dHαpµ̃, φ∆pµ̃qq is bounded by definition of pπ. Similarly, for any nonan-

nular subsurface Y � σp∆q, dY pµ̃, φ∆pµ̃qq is also bounded by definition of πAMpSz∆q. Thus all

projections to subsurfaces disjoint from ∆ are bounded and it follows from Theorem 3.33 and

Lemma 3.39 that

dAMpSqpµ̃, φ∆pµ̃qq �
¸
Y�S

rdY pµ̃, φ∆pµ̃qqsK �
¸
Y&∆

rdY pµ̃, φ∆pµ̃qqsK � dAMpSqpµ̃, Qp∆qq

The next lemma proves that φ∆ is Lipschitz:

Lemma 3.46. For any simplex ∆ � CpSq and any µ̃1, µ̃2 P AMpSq with dAMpSqpµ̃1, µ̃2q � 1,

we have dAMpSqpφ∆pµ̃1q, φ∆pµ̃2qq � 1.
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Proof. Let µ̃1, µ̃2 P AMpSq be such that dAMpSqpµ̃1, µ̃2q � 1. Then

dAMpSqpφ∆pµ̃1qφ∆pµ̃2qq �
¸

Y�σp∆q
rdY pφ∆pµ̃1q, φ∆pµ̃2qqsK

�
¸
αP∆

rdHαpφ∆pµ̃1q, φ∆pµ̃2qqsK �
¸

Y�pσp∆qz∆q
rdY pφ∆pµ̃1q, φ∆pµ̃2qqsK

�
¸
αP∆

rdHαpµ̃1, µ̃2qsK � dAMpSz∆qpµ̃1, µ̃2q

� 1

Finally, the following proposition proves that the composition of closest point projections

to disjoint collections of curves coarsely commute.

Proposition 3.47. For any pair of noninterlocking simplices ∆1,∆2 � CpSq and any µ̃ P

AMpSq, we have

dAMpSqpφ∆1Y∆2pφ∆1pµ̃qq, φ∆1Y∆2pµ̃qq � 1

Proof. First of all, note that since ∆1 and ∆2 do not interlock, equivalently diamCpSqp∆1Y∆2q ¤

1, it follows from the definitions that φ∆1Y∆2pφ∆1pµ̃qq P Qp∆1 Y∆2q.

By definition we have

φ∆1Y∆2pφ∆1pµ̃qq �
�pπβ pφ∆1pµ̃qqβP∆2

, πAMpSz∆2q
��pπαpµ̃q�αP∆14∆2

, πAMpSz∆1qpµ̃q
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where ∆14∆2 � ∆1zp∆1 X∆2q is the symmetric difference and

φ∆1Y∆2pµ̃q �
��pπαpµ̃q�αP∆1

,
�pπβpµ̃q�βP∆2

, πAMpSzp∆1Y∆2qpµ̃q
	

Since φ∆1Y∆2pφ∆1pµ̃qq, φ∆1Y∆2pµ̃q P Qp∆1 Y∆2q, Lemma 3.39 implies that

dAMpSq pφ∆1Y∆2pφ∆1pµ̃qq, φ∆1Y∆2pµ̃qq �
¸

Y�σp∆1Y∆2q
rdY pφ∆1Y∆2pφ∆1pµ̃qq, φ∆1Y∆2pµ̃qqsK

Thus we need only to compare projections to the components of σp∆1 Y∆2q.

By definition of πAMpY q, if any α P ∆1 or β P ∆2 lies in basepµ̃q, then the transversal and

length data of such a curve descends to both φ∆1Y∆2pφ∆1pµ̃qq and φ∆1Y∆2pµ̃q. On the other

hand, if α P ∆1 is not in basepµ̃q, then the length data of α in φ∆1pµ̃q is pα, παpµ̃q, 0q. Since ∆1

and ∆2 do not interlock, α P basepφ∆1Y∆2 pφ∆1pµ̃qqq and, by definition of pπα and πAMpSz∆2q,

its transversal data is the same as the transversal data of α in φ∆2pµ̃q, namely παpµ̃q. It follows

in both cases that the distance between the projections of φ∆1Y∆2pφ∆1pµ̃qq and φ∆1Y∆2pµ̃q to

any horoball over a curve in ∆1 Y∆2 is uniformly bounded.

It remains to show that dAMpSzp∆1Y∆2qq pφ∆1Y∆2pφ∆1pµ̃qq, φ∆1Y∆2pµ̃qq � 1. This follows

from the definition and the fact that marking projections are Lipschitz, Lemma 3.42.



CHAPTER 4

ELLIPTIC ACTIONS ON T pSq

In this chapter, we study the action of a finite subgroup H ¤MCGpSq on T pSq and prove

Theorems 1.2, 1.4, and 1.5 from the Introduction 1.

4.1 Pants and the Weil-Petersson Metric

We frequently pass back and forth between a point in T pSq and its coarse representatives in

both PpSq and AMpSq. To aid the clarity of the exposition, we recall the definitions of Brock’s

quasiisometry between PpSq and pT pSq, dWP q (Br03) and comment on the difference between

the quasiisometry between AMpSq and pT pSq, dT q we defined in Chapter 3.

We begin with Brock’s theorem by recalling a theorem of Bers:

Theorem 4.1 (Bers). There is a constant L ¡ 0 depending only on the topology of S, such

that for any point X P T pSq, there is a PX P PpSq with lXpαq   L for each α P PX .

For any X P T pSq, any PX P PpSq as in Theorem 4.1 is called a Bers pants decomposition.

For any P P PpSq, define

VLpP q � tX P T pSq|maxαPP tlXpαqu   Lu

Using the convexity of the length functions lX along Weil-Petersson geodesics (Wol87) and

the augmented Teichmüller space, �T pSq, in (Br03, Proposition 2.2), Brock proves that VLpP q

68



69

is convex and has uniformly bounded diameter independent of P , a fact we later prove for the

orbifold setting in Proposition 4.18 below:

Proposition 4.2 (Proposition 2.2 in (Br03)). There is a D ¡ 0 depending only on S such that

for L ¡ 0 as above and any P P PpSq

diamWP pVLpP qq   D

Define a map φ : PpSq Ñ T pSq by φpP q � XLpP q, where XLpP q P VLpP q. The content of

(Br03, Theorem 1.1) is that this map is a quasiisometry. The difficulty of the proof is showing

that the reverse identification is coarsely independent of the choice of P .

Let µ̃ P AMpSq be any augmented marking. Recall that basepµ̃q P PpSq. For any P P

PpSq, there are infinitely many augmented markings µ̃ P AMpSq for which basepµ̃q � P .

Indeed, for each curve α P P , there is a horoball’s worth of choices one could make for a

transversal, tα, and length coordinate, Dα, thus it follows from the distance formula Theorem

3.33 that diamT pVLpP qq � 8. In particular, the identification µ̃ ÞÑ VLpbasepµ̃qq is far from a

quasiisometry in the Teichmüller metric.

4.2 Fixed and almost-fixed points

In this section, we collect some of the basic properties of the naturally defined subsets of

Teichmüller space coming from finite orbifold coverings which are at the heart of this chapter

of the thesis. We also describe coarse analogues in the combinatorial setting of AMpSq and

adapt some related work of Tao (Tao13).
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4.2.1 Orbifold Teichmüller spaces

For the rest of the thesis, fix a finite subgroup H ¤ MCGpSq. We note that there is a

bound on the order of any such finite subgroup H ¤MCGpSq and the number of its conjugacy

classes depending only on S (see [Section 7.1, (FM12)). As such, it suffices to consider a single

such H.

Fix also a hyperbolic 2-orbifold O coming from a covering π : X Ñ O with deck transfor-

mation group H, where X P T pSq is fixed by H, the existence of which is guaranteed by the

Nielsen Realization Theorem for an example of such a covering). Recall that O is essentially

a smooth manifold with a finite number of singular neighborhoods. Because we are assuming

that S is oriented and that H preserves that orientation, all such singular neighborhoods are

quotients of discs by finite rotations which come from H. As H preserves the metric on X ,

the hyperbolic metric on X descends to O and we may consider its Teichmüller space, T pOq.

See [Section 7, (FM02)] for a formal definition of T pOq.

In this subsection, we analyze the coarse geometry of T pOq and observe in Theorem 4.9

that a version of Minsky’s product regions theorem holds for the thin parts of T pOq.

Let ∆i be a disjoint collection of small disks around each cone point of O. In what follows,

we only consider essential, nonperipheral simple closed curves on Oz²∆i. In particular, we

define the orbifold curve graph of O, CpOq, to be the graph whose vertices are homotopy classes

of simple closed curves on O up to homotopies that do not pass through the ∆i and whose

edges are given by disjointness. We note that this is the same condition we impose on curves

when S has marked points or punctures. These assumptions guarantee that any curve α P CpOq
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lifts uniquely to a simplex, π�1pαq � CpSq which is invariant under the action of H; we call the

lift of any such curve H-symmetric. The covering map π : S Ñ O induces a covering relation

Π : CpOq Ñ CpSq given by Πpβq � π�1pβq. In (RS07, Theorem 8.1), Rafi-Schleimer show that

Π is a quasiisometric embedding.

It is well-known that T pOq can be isometrically embedded i : T pOq ãÑ T pSq into T pSq with

the Teichmüller metric as a convex smooth submanifold (see (RS07) for a brief explanation of

the former) and that ipT pOqq � FixpHq � T pSq is the fixed set of the action of H on T pSq.

Consider a maximal simplex A � CpOq. The complement OzA is a collection of thrice-

punctured spheres and spheres with one, two, or three cone points (the latter being the de-

generate case when O is itself a tricornered pillow), which we call an orbipants decomposition.

We define the orbipants graph of O, PpOq, in the same way as PpSq. As with a genuine pair

of pants, fixing the lengths of the boundary curves in a pair of orbipants uniquely determines

a hyperbolic metric thereon, where the order of any cone point plays a fixed role, similar to

that of fixing the length of a boundary curve. By fixing curve lengths and twisting factors

when reglueing along the curves in A, one arrives at Fenchel-Nielsen coordinates for any point

X P T pOq, plαpXq, tαpXqqαPA, in nearly the same manner as when O is a genuine surface. We

now describe how to induce Fenchel-Nielsen coordinates on FixpHq from those on T pOq.

The simplex A � CpOq lifts to a simplex ΠpAq � CpSq. In order to obtain a pants decompo-

sition on S, complete ΠpAq to a maximal simplex P � CpSq, where ΠpAq � P . The following

lemma follows almost immediately from the fact that i : T pOq Ñ T pSq is an embedding:
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Lemma 4.3 (Lifted coordinates). Let X P T pOq and consider its image ipXq P FixpHq � T pSq.

For any maximal simplex A � CpOq and completion of its lift ΠpAq � P � CpSq to a maximal

simplex, the following hold:

1. For each γ P P , the coordinate pair plγpipXqq, tγpipXqqq is uniquely determined by the

coordinates plαpXq, tαpXqqαPA.

2. For each α P A, there is a number Nα such that lipXqpβq � Nα � lXpαq for each lift

β P Πpαq.

Moreover, the number Nα is uniformly bounded by a constant depending only on S

Proof. (1) follows from the fact that i : T pOq Ñ T pSq is a bijection. (2) follows from basic

covering theory and the fact that π : S Ñ O is a local isometry away from preimages of the

cone points. The constant Nα is bounded in terms of S because |H| is and Nα ¤ |H|.

Remark 4.4 (Convention for curves and metrics on O, and their lifts). From now on, we adopt

a bar notation, sα P CpOq, for curves on O and denote their lifts by α � Πpsαq � CpSq. Similarly,

sX P T pOq lifts uniquely to X P FixpHq � T pSq.

Finally, we remark that Bers’ Theorem 4.1 holds in the setting of T pOq:

Corollary 4.5. There is a constant L1 ¡ 0 depending only on O so that for any X P T pOq,

there exists sPX P PpOq of O with lXpsαq   L for each sα P sP .



73

4.2.2 Short curves and Minsky’s theorem for orbifolds

We are interested in passing back and forth between T pSq and T pOq while keeping track of

short curves. The following lemma follows easily from the Collar Lemma (see (FM12, Lemma

13.4)) and states that all short curves of any point σ P FixpHq are H-symmetric:

Lemma 4.6. Let σ P FixpHq and suppose that lσpγq   ε for some γ P CpSq. Then γ is H-

symmetric and the length and twisting coordinates for any curve in the H-orbit of γ equal those

of γ.

Bers-Greenberg (BG71) studied maps between Teichmüller spaces and, in particular, studied

maps coming from coverings. Let O� be the surface obtained by replacing each cone point of

O with a puncture. The following is their main theorem:

Theorem 4.7 (Bers-Greenberg Isomorphism (BG71)). There exists a conformal homeomor-

phism

θ : T pOq Ñ T pO�q

It follows by definition that θ is an isometry between T pO�q and T pOq with the Kobayashi

metric. In (Roy71), Royden proved that the Teichmüller and Kobayashi metrics coincide. Thus

we have

Corollary 4.8 (Bers-Greenberg, Royden). T pOq and T pO�q with the Teichmüller metric are

isometric.

It follows immediately that Minsky’s product regions theorem holds for T pOq. For any

simplex sγ � CpOq, we have:
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Theorem 4.9 (Minsky’s product regions for T pOq). There is an ε ¡ 0 depending only on

S, such that the Fenchel-Nielsen coordinates on T pOq give rise to a natural homeomorphism

ΠO : T pOq Ñ TsγpOq, whose restriction to ThinεpO, sγq distorts distances by a bounded additive

amount.

Theorem 4.9 is an essential ingredient in the proof of the Main Theorem 4.24 of this chapter.

Remark 4.10 (Shortness defined). In what follows, fix ε0 ¡ 0 to be sufficiently small so


 Both versions of Minsky’s Product Regions Theorems 2.13 and 4.9 hold,


 If sX P T pOq has l sXpsαq   ε0 for some sα P CpOq and sX lifts to X P FixpHq, then lXpβq   ε

for each β P Πpαq, where ε ¡ 0 is as in Theorem 2.13,


 If L is Bers’ constant from Theorem 4.1, then ε0   L � NH , where |H|   NH depends

only on S, and if lXpγq   ε0 for some γ P CpSq, then lXpδq ¡ L, for any δ P CpSq with

ipδ, γq ¥ 1.

Note that such an ε0 depends only on the topology of S by Lemma 4.3 and the Collar Lemma.

When we say that a curve α is short for some σ P T pSq, we mean that lσpαq   ε0.

It follows from Remark 3.14 that if l sXpsαq ¤ ε0, then α � basepµ̃Xq, where µ̃X is a shortest

augmented marking for X.

4.2.3 Almost-fixed points, symmetric large links, and Tao’s Lemma

Recall that for any finite H ¤MCGpSq, FixpHq � T pSq is a totally geodesic submanifold,

but less is understood if we relax the condition of being fixed by H to being almost-fixed by H,
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that is, having a bounded H-orbit. Our main theorem shows that these almost-fixed points are

uniformly close to FixpHq. In order to find a fixed point near an almost-fixed point, we need

to understand how efficient paths between almost-fixed points and fixed points move through

T pSq. Using AMpSq, we reduce this to understanding the large links which appear along

augmented hierarchy paths between almost-fixed augmented markings and certain almost-fixed

augmented markings coming from fixed points in T pSq.

In (Tao13), Tao shows that there is an exponential-time algorithm to solve the conjugacy

problem for MCGpSq. The bulk of the work in (Tao13) is proving a number of technical results

about hierarchies in the setting of the action of a finite order element of MCGpSq on MpSq.

Our first step is an easy extension of some of her results in our context to finite order

subgroups. Let H ¤MCGpSq be a finite order subgroup. For any R ¡ 0, we define the set of

R-almost-fixed points of H in MpSq to be

FixMR pHq � tµ PMpSq|diamY pH � µq ¤ R,@Y � Su

For any R ¡ 0, we define the set of R-almost-fixed points of H in T pSq in the Teichmüller

metric to be

FixTRpHq � tσ P T pSq|diamT pH � σq ¤ Ru
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Throughout the rest of this thesis, we work with the coarse version of FixTRpHq, namely

�FixRpHq � AMpSq which we define as

�FixRpHq � tµ̃ P AMpSq|diamAMpSqpH � µq ¤ Ru

For µ̃ P �FixRpHq, it follows from Theorem 2.15 that dY pµ, h�µq ¤ KR, for each h P H,Y � S,

and KR depends on R and S.

For the rest of the subsection, fix an arbitrary augmented marking rX P AMpSq and an

arbitrary almost-fixed augmented marking µ̃ P�FixRpHq.

We say a subsurface Y � S is symmetric under the action of H or simply H-symmetric if

each component of H � Y is either Y or disjoint from Y .

Recall from Lemma 2.11 that we call a subsurface Y � S a K-large link for two augmented

markings µ̃1, µ̃2 P AMpSq if dY pµ̃1, µ̃2q ¡ K.

The following lemma tells us that there is a large link constant rK, which depends on

diamT pH � rXq, such that any rK-large link is H-symmetric. It is an easy adaptation to our

purposes of (Tao13, Lemma 3.3.4). We give a proof of the adaptation starting from the basis

of her lemma, which is the following lemma in which H � xfy for a finite order f PMCGpSq

and MpSq replaces AMpSq.

Lemma 4.11 (Symmetric large links; Tao’s lemma). Let K ¡ 0 be fixed as above. There is a

pK � pKp rX,R, Sq ¡ 0 such that the following hold:
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1. If µ̃ P�FixRpHq and Y � S is any subsurface satisfying dY pµ̃, rXq ¡ pK, then the orbit H �Y

is disjoint, dZpµ̃, rXq ¡ pK for each component Z � H � Y , and none of the components of

H � Y is time-ordered with respect to any other.

2. For any horoball Hα, if dHαpµ̃, rXq ¡ pK, then α is H-symmetric.

Proof. (Tao13, Lemma 3.3.4) implies (1) for each f P H and any Y � S which is not horoball.

We first extend the result to all of H. It suffices to show that none of the components of H � Y

is time-ordered with respect to any other. Suppose that Y � S is a subsurface such that for

some f, g P H we have f � Y  t g � Y . Since f � Y is contained in the orbit of g � Y under the

action of f �g�1 P H, (Tao13, Lemma 3.3.4) implies that f �Y and g �Y cannot be time-ordered,

which is a contradiction.

Let Hα be a sK-large link, where sK ¡ K and K is the constant from (Tao13, Lemma 3.3.4)

which depends on rX. If dαpµ̃, rXq ¡ K, then α is H-symmetric and we are done. Otherwise, it

must be the case that the α-length coordinates of µ̃ and rX are bounded away from each other,

that is |Dαpµ̃q �Dαp rXq| ¡ 2R, for sK sufficiently large and R is the almost-fixed constant for

µ̃. If Dh�αp rXq � 0 for some h P H, then Dh�αpµ̃q ¡ R, and thus Dg�αpµ̃q ¡ 0 for each g P H

because µ̃ P�FixRpHq, proving that α is H-symmetric. Similarly, if Dh�αp rXq ¡ 0 for each h P H,

then we must also have that α is H-symmetric. This completes the proof of (2).

Thus pK-large links between any augmented marking and an almost-fixed augmented mark-

ing partition into H-invariant symmetric families.
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Remark 4.12 (Bad domains). For the remainder of the thesis, fix pK as in Lemma 4.11.

In (Tao13), subsurfaces in L pKp rX, µ̃q were called bad domains, though we do not use this

terminology here.

Remark 4.13 (Dependence of pK). The dependence of pK on diamT p rXq in Lemma 4.11 means

that pK depends only on R and S when rX P FixTRpHq. In particular, the constant R1 in the

Main Theorem 4.24 below is independent of the choice of R-almost-fixed point. Similarly, the

constants in the coarse barycenter Theorem 4.25 are independent of the choice of X P T pSq.

While the hierarchical time-ordering is generally not preserved by the action of MCGpSq,

the following lemma gives an important exception:

Lemma 4.14. Let rX P AMpSq, µ̃ P �FixRpHq. Suppose Y,Z P L pKp rX, µ̃q are pK-large links

with distinct symmetric families and that Y&Z. If Y  t Z and g � Y&Z for some g P H, then

g � Y  t Z.

Proof. Since g � Y&Z, (MM00, Lemma 4.18) implies that either g � Y  t Z or Z  t g � Y . In

the latter case, transitivity of  t implies Y  t Z  t g � Y , a contradiction of Lemma 4.11.

Remark 4.15. Recall that an H-symmetric subsurface Z may have h � Z � Z for each h P H.

If Y&Z, it is possible that h � Y&Z for all h P H. In this case, Lemmas ?? and 4.14 tell us

that the active segment of Z either comes entirely before or entirely after the active segments

of each subsurface in H � Y .

Another immediate consequence of the finite order of H is that subsurface projections within

a symmetric family are all coarsely equal, with constants depending on pK:
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Lemma 4.16 (Subsurface projections for symmetric families). Let rX P AMpSq and µ̃ P

�FixRpHq. If Y P L pKp rX, µ̃q, then for all h, g P H

dh�Y p rX, µ̃q � pK dg�Y p rX, µ̃q

where dY � dHα if Y is an annulus with core curve α.

4.2.4 Adjusting lengths of short curves for fixed points

In this subsection, we prove that adjusting the lengths of short curves in a fixed point only

results in a bounded change in the Weil-Petersson metric and does not introduce any other

short curves, an observation which is crucial for the proof of Proposition 4.22 below. We obtain

this fact as a consequence of a version of Brock’s Proposition 4.2 for our setting.

Before introducing Proposition 4.18 below, we recall some facts about T pSq in dWP . In

the Weil-Petersson metric, T pSq is an incomplete CAT(0) space (Wol87) and its completion,

the augmented Teichmüller space �T pSq, is obtained as a union of Teichmüller spaces of noded

surfaces (Mas76), where disjoint collections of simple closed curves on S have been pinched

down to points. This layers �T pSq into strata, with the combinatorics of the adjacency of the

strata determined by CpSq. Importantly, each stratum is WP-geodesically convex (Wol86). The

incompleteness of T pSq in dWP comes from the fact that there are Weil-Petersson geodesic rays

which converge to metrics on noded surfaces in finite time. See (MW02) and (Br05) for more

details.
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We now recall a theorem of Wolpert (Wol05). Let α1, . . . , αk P CpSq be a collection of

disjoint curves. Let X P T pSq and consider the length sum

l � lXpα1q � � � � � lXpαkq

Theorem 4.17 (Corollary 21, (Wol05)). For any X P T pSq, the minimal distance from X to

a surface, Z, noded along α1, . . . , αk is

d�WP pX,Zq �
?

2πl �Opl2q

Let A P PpSq be any simplex and recall from Section 4.1 that

VLpAq � tX P T pSq|lXpαq   L,@α P Au

is the set of all metrics on S for which A is included in any Bers pants decomposition, where

L is the Bers constant from Theorem 4.1.

For any simplex A � CpSq, let T pS,Aq � �T pSq be the stratum of marked noded surfaces

which are noded along A. Recall that each point in T pS,Aq is defined by a point in T pY q

for each nonpants component of SzA. Since length functions are convex along Weil-Petersson

geodesics (Wol87), each stratum T pS,Aq is convex in dWP . We also note that it follows from

Wolpert’s Theorem 4.17 that d�WP pX, T pS,Aqq �L 1 for any X P VLpAq.
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Proposition 4.18. Let sP � CpOq be any orbipants decomposition of O and P � CpSq its lift.

For any δ ¡ 0, FixpHq X VδpP q � T pSq satisfies

diamWP pFixpHq X VδpP qq �δ 1

Proof. Consider the lift P � CpSq of sP to S. While sP is an orbipants decomposition of O, P

need not be a pants decomposition of S. Observe, however, that any curve α � SzP is not

H-symmetric, otherwise it would descend to a curve on O disjoint from sP .

By the above observation, the components of SzP are pairs of pants and subsurfaces, Y �

SzP , which are stabilized by H. For any such Y , the action of H restricts to an action on Y .

Since Y supports no symmetric curves, we must have that the quotient of Y by H|Y , Y {pH|Y q,

is a pair of orbipants, which we note has a unique hyperbolic structure once the lengths of any

pants curves are chosen. In particular, this means that the fixed point set in each such T pY q

is a single point.

Let X P FixpHq X VδpP q � T pSq. Consider the stratum T pS, P q � �T pSq, where all curves

in P have been pinched to nodes. Since T pS, P q is convex and p�T pSq, d�WP q is a complete

CAT(0) space, it follows from (BH99, Proposition II.2.4) that there is a unique closest point

XP P T pS, P q to X in T pS, P q.

Recall that the action of MCGpSq extends to p�T pSq, d�WP q and observe that H stabilizes

T pS, P q because its defining curves are H-symmetric. Since X P FixpHq and XP is the closest

point to X in T pS, P q, it follows that XP must also be fixed by H.
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We claim that XP is the only point in T pS, P q fixed by H. To see this, observe that XP is

defined by a point in T pY q for each nonpants component Y � SzP . Since XP is fixed by the

action of H, it follows that the points in the T pY q which define XP must also be fixed by H.

As observed above, each such T pY q has a unique point fixed by H. As such, XP is the unique

point in T pS, P q fixed by H.

Wolpert’s Theorem 4.17 implies that

d�WP pX,XP q � d�WP pX, T pS, P qq �δ 1

as XP was the closest point in T pS, P q to X.

Let X 1 P FixpHqXVδpP q be different from X. Since our choice of X was arbitrary, it follows

that XP is also the closest point to X 1 in T pS, P q and so

d�WP pX 1, XP q �δ 1

Thus the triangle inequality implies that

dWP pX,X 1q � d�WP pX,X 1q �δ 1
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4.3 Almost-fixed points are close to fixed points

This section is devoted to proving the Main Theorem 4.24 of this chapter, Theorem 1.4 of

the Introduction.

The outline of the proof of Theorem 4.24 is as follows: Beginning with any almost-fixed point

σ P FixRpHq � T pSq, we first use the nonpositive curvature of T pSq with the Weil-Petersson

metric and work of Wolpert to find a fixed point, X P T pSq. Applying results of Brock, Masur-

Minsky, Rafi, and the author, we deduce that the Teichmüller distance of X to σ is coarsely

determined by large projections to horoballs. Using a characterization of the short curves for the

barycenter developed in Lemma 4.21, we apply Proposition 4.18 and results of Minsky, Rafi,

Wolpert, and the author to show in Proposition 4.22 that the large projections to horoballs

can be reduced to large projections to annuli. It follows from Tao’s Lemma 4.11 that these

annular large links can be grouped into symmetric families which come with an ordering from

the hierarchy machinery. The proof of Theorem 4.24 describes how to leap across the symmetric

families one at a time by applying H-symmetric multitwists, while staying in FixpHq at each

step. This process ends with new fixed point whose distance to σ is bounded as a function of

R and the topology of S, thus completing the proof.

4.3.1 The Teichmüller geometry of Weil-Petersson barycenters

In this subsection, we analyze the short curves of the Weil-Petersson barycenter of an H-

orbit of an almost-fixed point. First, we recall a basic result of coarse geometry, as recorded in

(BH99, Proposition II.2.7):
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Lemma 4.19. Let X be a complete CATp0q space. If Y � X is a bounded set of radius R,

then there exists a unique point C P X, the barycenter of Y , such that Y � sBpC,Rq.
Fix R0 ¡ 0 and let τ P FixTR0

pHq. It follows from Theorem 3.31 that there is an rR ¡ 0

depending only on R0 and S such that µ̃τ P �Fix rRpHq. Since the Weil-Peterrson metric is

coarsely dominated by the Teichmüller metric ((Lin74); see Remark 3.34), it follows that there

is an R � RpR0q ¡ 0 for which τ P FixWP
R pHq, where R only differs from R0 by a multiplicative

constant. Since the augmented Teichmüller space, �T pSq, is a complete CAT(0) space, it follows

from Lemma 4.19 that the H-orbit of σ has a barycenter X 1
0 P �FixpHq � �T pSq in the Weil-

Petersson metric, where �FixpHq is the completion of FixpHq to �T pSq, namely marked noded

surfaces which are preserved by the action of H.

In the case that X 1
0 P �T pSqzT pSq, the next lemma produces a new fixed point X0 P FixpHq

arbitrarily close to X 1
0 P FixpHq in d�WP , the extension of the Weil-Petersson metric to �T pSq:

Lemma 4.20. For any δ ¡ 0, there is a point X0 P FixpHq � T pSq with dWP pX0, X
1
0q ¤ δ.

Proof. If X 1
0 P FixpHq � T pSq, then we may choose X0 � X 1

0.

If not, then X 1
0 has some simplex of curves α � CpSq, each of whose constituent curves has

been pinched down to a node. Since X 1
0 P �FixpHq, it follows that H preserves α. That is, α is

H-symmetric. Let sα � CpOq be the simplex which lifts to α.

Let Y P FixpHq be any other fixed point and consider the unique, finite Weil-Petersson

geodesic ray emanating from Y and terminating at X 1
0, which we denote by G. Since the action

of MCGpSq extends to the completion �T pSq, it follows that G is fixed by H. Since G has finite

length, we can let X0 P G be any point satisfying d�WP pX0, X
1
0q   δ, completing the proof.
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For any ε1 ¡ 0, denote by Λε1,τ the set of curves for which lτ pλq   ε1. Recall that in Remark

4.10 we fixed ε0 ¡ 0 so that both versions of Minsky’s Product Regions Theorems 2.13 and

4.9 hold. The following lemma says that if τ has a really short curve, then each curve in the

H-orbit of given curve must have τ -length less than ε0. In particular, the whole orbit must be

in the base of µ̃τ , a shortest augmented marking for τ .

Lemma 4.21 (Almost-fixed points have symmetric short curves). There exists ε2 ¡ 0 suffi-

ciently small, so that if λ P Λε2,τ , then λ is H-symmetric and H � λ � Λε0,τ .

Proof. Consider a shortest augmented marking µ̃τ P AMpSq . Since τ P FixTR0
pHq, recall

that Theorem 3.31 implies that there is an rR ¡ 0 depending only on R0 and S such that

µ̃τ P�Fix rRpHq.

Recall from Subsection 3.1.2 that to each curve α P basepµ̃τ q, we assign a length Dαpµ̃τ q,

the coordinate which coarsely represents how short α is in µ̃τ .

Let ε21 ¡ 0 be small enough so that if λ P Λε21,τ , then Dλpµ̃τ q ¡ rR � M1, where M1 is

the constant from Remark 3.15 (see Subsection 3.1.2 for why short curves have large length

coordinates). If λ is not H-symmetric, then there is some h P H such that ipλ, h �λq ¥ 1. Since

Dh�λpµ̃h�τ q ¡ rR, it follows that

dAMpSqpµ̃τ , µ̃h�τ q ¥ dAMpSqpµ̃τ , h � µ̃τ q�M1 ¥ dHλpµ̃τ , h � µ̃τ q�dHh�λpµ̃τ , h � µ̃τ q�M1 ¡ 2 rR�M1
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a contradiction of µ̃τ P�Fix rRpHq. The first inequality follows from Remark 3.15. The second

inequality follows from the fact that any path from any augmented marking with Dγ1 ¡ 0 to

one with Dγ2 ¡ 0 for ipγ1, γ2q ¡ 0 must completely exit Hγ1 before entering Hγ2 , at a cost of

at least Dγ1 �Dγ2 .

Now suppose there is an h P H such that h � λ R Λε0,τ . It follows that λ R Λε0,h�1�τ and

Dλpµ̃h�1τ q � 0. For sufficiently small ε22 ¡ 0, we have dHλpµ̃τ , µ̃h�1τ q ¡ A � rR�B �M1, where

A,B are the constants depending only on S from Theorem 3.33 and M ¡ 0 is again the constant

from Remark 3.15. Theorem 3.33 implies that dAMpSqpµ̃τ , µ̃h�1τ q ¡ rR, a contradiction of the

fact that µ̃τ P�Fix rRpHq.

Choose ε2   mintε21, ε22u satisfies both of above arguments, completing the proof.

Consider the subset of T pSq of metrics in which all curves in Λε2,τ are shorter than ε0:

Vε0pΛε2,τ q � tY P T pSq|lY pλq   ε0,@λ P Λε2,τu

Equivalently, Vε0pΛε2,τ q contains all points in T pSq whose shortest augmented markings

contain Λε2,τ in their bases. By WP-convexity of length functions, Vε0pΛε2,τ q is WP-convex.

Lemma 4.21 implies that H �τ P Vε0pΛε2,τ q. Since H �τ � sBpX0, R0q (see Lemma 4.19), it follows

the convexity of length functions that X0 P Vε0pΛε2,τ q. This implies that Λε2,τ � Λε0,X0 and,

in particular, that Λε2,τ � basepµ̃X0q. As X0 P FixpHq, it follows that H � Λε2,τ � basepµ̃X0q.

That is, the full H-orbits of all of τ ’s really short curves are also short in X0.
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Our goal in Proposition 4.22 below is to remove the combinatorial complexity between X0

and τ coming from the short curves of X0, which can come in the form of both the length of

and twisting about these curves.

Let µ̃1, µ̃2 P AMpSq be any two augmented markings. For each α, let nα � dαpµ̃1, µ̃2q, so

that dαpµ̃1, T
�nα
α q   C, where Tα denote the right Dehn (half)twist about α and C depends

only on S. Then

d pHαpµ̃1, T
�nα
α µ̃2q   |Dαpµ̃1q �Dαpµ̃2q| � 2C

Now suppose there is a constant D ¡ 0 such that |Dαpµ̃1q � Dαpµ̃2q|   D, for α P CpSq.

Then there is a D1 which depends only on D and S such that

d pHαpµ̃1, T
�nα
α µ̃2q   D1

We are now ready to state and prove Proposition 4.22, a key technical step on the way

to the proof of the Theorem 4.24. In it, we produce a new fixed point, X P FixpHq, whose

Weil-Petersson distance to τ is still uniformly bounded, but whose Teichmüller distance has

decreased in two significant ways: X and τ have uniformly bounded projections to horoballs

coming from the short curves X inherits from τ , H �Λε2,τ , and X and τ have uniformly bounded

projections to horoballs coming from the short curves of X which it does not inherit from τ ,

Λε,X0z
�
H � Λε2,τ

�
. In the proof, we create a new, preliminary fixed point X 1 P FixpHq, whose

coarse lengths for curves short in X0 are coarsely equal. Then we apply a carefully chosen

combination of multitwists to X 1 to obtain a new fixed point X P FixpHq, whose twisting
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coordinates about the short curves of X0 are coarsely equal to those of τ . As we show in

Lemma 4.23 below, the end result is that the Teichmüller distance between X and τ is coarsely

determined by projections to a uniformly bounded number of annuli, which is a significant

reduction of the combinatorial complexity between X0 and τ .

Proposition 4.22 (Reducing short curves). There is a fixed point X P FixpHq with shortest

augmented marking µ̃X P AMpSq which has the following properties:

1. For every α P CpSq, we have Dαpµ̃Xq ��R Dαpµ̃τ q

2. For any α P Λε0,X0, we have d pHαpµ̃X , µ̃τ q �R 1

3. For any nonannular Y � S, we have dY pµ̃X , µ̃τ q �R 1, and so dWP pX, τq   rR

Proof. Let sΛε0,X0 � CpOq be the curves which lift to Λε0,X0 � CpSq. The comments following

Lemma 4.21 imply that sΛε2,τ � sΛε0,X0 . The key initial observation, which follows from Lemmas

4.3 and 4.21 and the remarks which follow the latter, is that τ,X0 P Vε0pH �Λε2,τ q � VLpH �Λε2,τ q,

with the latter inclusion following from our choice of ε0 in Remark 4.10.

It follows from the proof of Lemma 4.21 that Dαpµ̃τ q �R 0 for all curves α � Sz �H � Λε2,τ
�

(see Subsection 3.1.2 for the definition of Dα). Since H �Λε2,τ � Λε0,X0 , in order to build a fixed

point which satisfies conclusion (1), it suffices to adjust the Dλpµ̃X0q to within bounded distance

from Dλpµ̃τ q for λ P H � Λε2,τ , and to adjust Dλpµ̃X0q to 0 for λ P Λε0pε0, X0q. We can make

both of these adjustments directly in the appropriate Minsky product regions in T pOq. We

arrive at conclusion 2 by applying appropriate multitwists to the new point we build. Finally,

Proposition 4.18 then will imply conclusion 3.
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Complete sΛε0,X0 to a Bers orbipants decomposition for X0, sPsΛε0,X0
P PpOq; that is, l sX0

pαq  

L1 for all sα P sPsΛε0,X0
, where L1 ¡ 0 is the constant from Corollary 4.5. Recall from Lemma

4.3 that sPsΛε0,X0
lifts to an H-symmetric partial pants decomposition on S, PΛε0,X0

, which we

can extend to a full pants decomposition P0 P PpSq. Fix Fenchel-Nielsen coordinates for T pSq

based on P0.

Observe that X0 lives in the Minsky product region:

Thinε0pS,Λε0,X0q
��
�
� ¹
λPΛε0,X0

Hλ

�

� T pSzΛε0,X0q (4.1)

where the quasiisometry is given by the Fenchel-Nielsen coordinates chosen above.

By symmetric of Λε0,X0 , this descends to a Minsky product region

Thinε0pO, sΛε0,X0q
��
�
� ¹
sλPsΛε0,X0

Hsλ

�

� T �SzsΛε0,X0

�
(4.2)

in which sX0 lives. We remark that we may keep the same thinness constant, ε0, by Lemma

4.3 and our choice of ε0 in Remark 4.10.

For each orbit of curve in Λε0,X0 , fix a representative λ which lifts from sλ P CpOq. Let

�X 1 P T pOq be any point whose length coordinates with respect to sPsΛε0,X0
satisfy the following

conditions:

1. l sX 1psλq � lτ pλq � 1
N

sλ
  ε0 for each orbit representative λ P H � Λε2,τ , where Nsλ is the

constant from Lemma 4.3

2. l sX 1psγq � ε0 for each orbit representative γ P Λε0,X0zpH � Λε2,τ q
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3. l sX 1psαq � l sX0
psαq for every other sα P sPsΛε0,X0

zsΛε0,X0 .

We claim the lift X 1 P FixpHq of any such �X 1 P T pOq satisfies conclusion (1).

To see this, first observe that condition (1) implies that Dαpµ̃1Xq �R Dαpµ̃τ q for any α P

H � Λε2,τ , as the Nsλ are uniformly bounded by Lemma 4.3. Next, since Lemma 4.21 implies

that Dαpµ̃τ q � 0 for all curves α � Sz �H � Λε2,τ
�
, conditions (2) and (3), and the fact that

X 1 P FixpHq so that any α P SzPsΛε0,X0
are necessarily not H-symmetric and thus cannot be

short in X 1, imply that Dαpµ̃X 1q �R Dαpµ̃τ q for all such α � Sz �H � Λε2,τ
�
. Finally, since

X 1, τ P Vε2pH � Λε2,τ q, we have Dαpµ̃X 1q � Dαpµ̃τ q � 0, for all α&H � Λε2,τ , by the Collar

Lemma. Thus conclusion (1) holds for X 1.

It follows from the definition that sX 1 P VL1p sP0q. As sX0 P VL1p sP0q, conclusion (3) for X 1

follows from Proposition 4.18.

Generically, X 1 does not satisfy conclusion (2). To build a point which does, we apply some

carefully chosen H-symmetric multitwists to reduce the annular projections between X 1 and τ .

We then prove that the resulting point still satisfies conclusions (1) and (3).

Let sΛε0,X0 � CpOq be the set of curves which lift to H �Λε0,X0 � CpSq. Suppose that sΛε0,X0

consists of Nτ different H-orbits of curves and decompose it into these orbits,

sΛε0,X0 � tλ1,1, . . . , λ1,m1 , . . . , λNτ ,1, . . . , λNτ ,mNτ u

Note that both the mi and Nτ are uniformly bounded.
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For each i, let Tλi �
±mi
j�1 T

p�1qsi �di
λi,j

, where Tλi,j is the Dehn (half)twist around λi,j , di �

dλi,1pµ̃X 1 , µ̃τ q, and the sign si depends on whether πλi,1pµ̃X 1q differs from πλi,1pµ̃τ q by right or

left Dehn (half)twists around λi,1.

Set TΛε0,X0
�±Nτ

i�1 Tλi and X � TΛε0,X0
�X 1. We claim that X 1 satisfies the conclusions of

the proposition.

First, observe that since Λε0,X0 is an H-symmetric multicurve, TΛε0,X0
P CMCGpSqpHq, the

centralizer of H in MCGpSq, which is contained in the normalizer of H, which stabilizes FixpHq.

Thus X P FixpHq.

Second, since Λε0,X0 � basepµ̃X 1q X basepµ̃Xq, it follows that dY pµ̃X , µ̃X 1q � 1 uniformly

for any Y � S not an annulus over a curve in Λε0,X0 . Because TΛε0,X0
preserves the curves in

Λε0,X0 and any curves disjoint from them, namely P0, conclusions (1) and (3) hold for X.

Finally, observe that Lemma 4.16 implies that dλi,j pµ̃X0 , µ̃τ q �R dλi,kpµ̃X0 , µ̃τ q for any j, k.

Thus the choice of TΛε0,X0
and the triangle inequality imply that dαpµ̃X , µ̃τ q �R 1 for each

α P Λε0,X0 . Since conclusion (1) also holds for X for each α P Λε0,X0 , it follows that conclusion

(2) holds for X. This completes the proof.

4.3.2 Proof of the main theorem

Recall our main goal of this section, achieved in Theorem 4.24 below, is to find a fixed point

whose distance to τ P FixTRpHq is bounded in terms of R and S. Proposition 4.22 produces a

fixed point X P FixpHq which has the same very short curves as τ , whose distance to τ in any

horoball over any of these short curves is uniformly bounded, and whose distance in any other
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nonhoroball subsurface is uniformly bounded. Before proceeding with the proof of Theorem

4.24, we analyze and organize the remaining large horoball projections.

Observe that X and τ have H � Λε2,τ as short curves, so X, τ P Thinε,SpΛε2,τ q � QpΛε2,τ q.

By Corollary 3.37,

dAMpSqpµ̃X , µ̃τ q �
¸

αPCpSzH�Λε2,τ q
rdHαpµ̃X , µ̃τ qsK

Since dHλpµ̃X , µ̃τ q   rR for all λ P Λε,X0 by Proposition 4.22, we have

dAMpSqpµ̃X , µ̃τ q �
¸

αPCpSzΛε,X0
q
rdHαpµ̃X , µ̃τ qsK

Recall that the very short curves of τ , Λε2,τ , are a subset of the short curves of X, Λε,X �

Λε,X0 . Because there is a uniform bound on the distance between the projections of τ and X to

any horoball over a curve in Λε,X , it follows that there is a lower bound on the τ - and X-lengths

of any curve not in Λε,X . Thus the projections of µ̃τ and µ̃X to any other combinatorial horoball

have uniformly bounded length coordinates and the sum becomes

dAMpSqpµ̃X , µ̃τ q �
¸

αPCpSzΛε,X0
q
rlog dαpµ̃X , µ̃τ qsK (4.3)

Lemma 4.23. The number of terms which can appear in the sum of (Equation 4.3) is uniformly

bounded.

Proof. Let rΓ be an augmented hierarchy path between µ̃X and µ̃τ based on a hierarchy J (see

Subsection ??). Observe that the number of curves appearing as base curves of augmented
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markings in rΓ is determined by the number of flip moves in rΓ. Since each such flip move makes

progress along some gY P J , for some nonannular Y � S, it follows that if there is not a bound

on the number of base curves appearing in rΓ, then there is not a bound on either the length of

geodesics in J or the number of nonannular subsurfaces supporting geodesics in J . Both imply

that dY pµ̃X , µ̃τ q is unbounded for some nonannular Y � S (possibly S itself), which contradicts

the fact that µ̃X and µ̃τ have bounded nonannular subsurface projections. The bound on the

number of curves appearing in the sum of (Equation 4.3) is uniform because the bound on the

subsurface projections is uniform, depending only on S and the almost-fixed constant R.

We are now ready to prove the main theorem.

Theorem 4.24 (Almost-fixed points are close to fixed points). For any R ¡ 0, there is an

R1 � R1pR,Sq ¡ 0 such that the following holds. Let H ¤ MCGpSq be a finite subgroup and

FixpHq � T pSq its fixed point set. For any τ P FixTRpHq, there is fixed point σ P FixpHq such

that dT pτ, σq   R1.

Proof. Let X P T pSq be as in Proposition 4.22. As the constant rR in Proposition 4.22 was a

constant depending on R, we have shown that

dT pX, τq �R
¸

αPCpSzΛε,X0
q
rlog dαpµ̃X , µ̃τ qsK (4.4)

More precisely, Proposition 4.22 states that dY pµ̃X , µ̃τ q   K for any nonannular subsurface

Y � SzΛε,X0 , where K is a constant depending only on R and S.
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We now organize the α that have nonzero terms in equation (Equation 4.4). By Tao’s

Lemma 4.11, if we increase the large link threshold to pK � pKpR,Sq ¡ 0, then these annuli are

H-symmetric and we can group them into their H-orbits, A � tA1, . . . ,ANu, where Ai is the

H-orbit of αi.

We note that N is uniformly bounded because the number of annuli appearing in the sum

is uniformly bounded, by Lemma 4.23.

Let ΓX,τ be any augmented hierarchy path from µ̃X to µ̃τ . By rearranging, we may assume

that the order of the indices of the αi coincides with the order of appearance of the αi along

ΓX,τ . Note that Lemma 4.11 implies that the curves within each symmetric family, Ai, are not

time-ordered.

We now apply the tools developed in Subsection 3.3. Recall that for a simplex ∆ � CpSq,

Qp∆q � tµ̃ P AMpSq|∆ � basepµ̃qu and φ∆ : AMpSq Ñ Qp∆q was the closest point projection.

In what follows, we explain how to create a sequence of fixed points X1, . . . , XN P FixpHq,

with dT pSqpXN , τq �R 1, where N is again the number of symmetric families of annuli in A.

The pi� 1q-step begins with projecting µ̃Xi , a shortest augmented marking for Xi, to QpAi�1q

and showing that this projection is uniformly close to µ̃Xi . We then apply a large H-symmetric

multitwist around the curves in Ai�1 to both Xi and its projection to QpAiq, the latter of which

we show has made the progress toward τ that we want, with the former coming along for the ride

and whose image we call Xi�1. This multitwisting process is identical to the process at the end

of the proof of Proposition 4.22, but now the Xi need not be in a obviously good place to apply

the pi�1qth-group of multitwists. The key observation is that dAMpSqpµ̃Xi , φAi�1pµ̃Xiqq �R 1 for
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all i, a fact which requires understanding the subsurfaces through which ΓX,τ passes. Showing

that dAMpSqpXN , µ̃τ q �R 1 then involves comparing subsurface projections and showing that

projections to horoballs over curves in A have changed a significant amount, in particular

moving them close to those for µ̃τ .

Let µ̃X P AMpSq be a shortest augmented marking for X. We begin by projecting µ̃X to

QpA1q. Set µ̃α1 � φA1pµ̃Xq.

Claim 1: dAMpSqpµ̃X , µ̃α1q � 1.

Before we prove the claim, we introduce some notation to simplify our calculations. For

each i, label the curves in A1 � tαi,1, . . . , αi,niu. We note that each ni satisfies ni ¤ |H|.

First, we prove that for all j, dAMpSq
�
µ̃X , φα1,j pµ̃Xq

� � 1. To see this, note that Lemma

3.45 implies that φα1,j is coarsely a closest point projection to Qpα1,jq, so that

dAMpSqpµ̃X , φα1,j pµ̃Xqq �
¸

Y&α1,j

�
dY pµ̃X , φα1,j pµ̃Xqq

�
L1

and

¸
Y�Szα1,j

�
dY pµ̃X , φα1,j pµ̃Xqq

�
L1
� 0

where L1 is the uniform constant from Lemma 3.45.

In order to show that dAMpSqpµ̃X , φα1,j pµ̃Xqq is bounded, it suffices to exhibit a path from

µ̃X to a point in Qpα1,jq which makes only bounded progress in subsurfaces which interlock α1,j .
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The augmented hierarchy path ΓX,τ is precisely such a path. Recall that A consists of all the

pK-large links between µ̃X and µ̃τ , which we have ordered by their appearance along ΓX,τ , and

that α1 is the first curve in A to appear as a base curve along ΓX,τ . Since Lemma 4.14 implies

that the orbits in A are time-ordered together, it follows that any other curve β P A which

intersects α1,j can only appear as a base curve along ΓX,τ after all progress through α1,j has

already been made. By Lemma ??, ΓX,τ makes a bounded amount of progress in subsurfaces

which interlock α1,j between µ̃X and the first point along ΓX,τ at which α1,j appears in its base.

Thus dAMpSqpµ̃X , φα1,j pµ̃Xqq � 1 for all j.

Since the φα1,j are Lipschitz (Lemma 3.46), it follows that

dAMpSq
�
µ̃X , φα1,1pµ̃Xq

� � dAMpSq
�
φα1,2pµ̃Xq, φα1,2pφα1,1pµ̃Xqq

� � dAMpSq
�
φα1,2pµ̃Xq, φα1,1Yα1,2pµ̃Xq

�

with the second coarse equality following from Proposition 3.47.

Since dAMpSq
�
µ̃X , φα1,2pµ̃Xq

� � 1, it follows from applying the triangle inequality that

dAMpSq
�
µ̃X , φα1,1Yα1,2pµ̃Xq

� � 1

Applying this observation a uniformly bounded number of times (for n1 ¤ |H|), we obtain

dAMpSqpµ̃X , µ̃α1q � 1, proving Claim 1.
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Let Tα1 �
±n1
j�1 T

p�1qs1 �d1
α1,j , where Tα1,j is the Dehn (half)twist around α1,j , d1 � dα1,1pµ̃X , µ̃τ q,

and the sign s1 depends on whether πα1,1pµ̃Xq differs from πα1,1pµ̃τ q by right or left Dehn (half)

twists around α1,1. Set X1 � Tα1pXq and let µ̃X1 be its shortest augmented marking.

First, note that since Tα1 P CMCGpSqpHq centralizes H in MCGpSq and is thus contained in

the normalizer, which stabilizes FixpHq, we have X1 P FixpHq. Moreover, we claim that the

distance between X and X1 is coarsely determined by the distance traveled in A1:

dT pSqpX,X1q �
¸
αPA1

rlog dαpµ̃X , µ̃X1qsK1
(4.5)

and

¸
Y�SzA1

rdY pµ̃X , µ̃X1qsK1
� 0 (4.6)

where K1 is a constant depending only on R and S.

Recall that Lemma 4.16 implies that dα1,ipµ̃X , µ̃τ q �R dα1,j pµ̃X , µ̃τ q for any i, j and since X

is fixed and τ is has a bounded diameter orbit, it follows that πα1,ipµ̃Xq differs from πα1,ipµ̃τ q

by coarsely the same number of right or left Dehn (half)twists for all i, where the handedness

is independent of i. We immediately obtain dα1,ipµ̃X1 , µ̃τ q �R 1 for all i. Thus once we prove

that (Equation 4.5) and (Equation 4.6) are true, it will follow from the triangle inequality that

dT pX1, τq �
¸

αPAzA1

rlog dαpµ̃X , µ̃τ qsK1
(4.7)
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and

¸
Y�SzpAzA1q

rdY pµ̃X1 , µ̃τ qsK1
� 0 (4.8)

By establishing (Equation 4.7) and (Equation 4.8), we will have shown that X1 has removed

the curves in A1 as combinatorial obstacles between X and τ , while all other projections remain

coarsely unchanged. These equations are rephrased as the inductive hypothesis in (1) and (2)

below.

To see (Equation 4.5) and (Equation 4.6), observe that φA1pµ̃Xq, µ̃X1 P QpA1q. By Lemma

3.37, the distance between φA1pµ̃Xq and µ̃X1 is coarsely determined by projections to subsurfaces

Y � σpA1q, with all other subsurface projections being uniformly bounded. However, note that

since φA1pµ̃Xq, µ̃X1 P QpA1q, all base and transverse curves in φA1pµ̃Xq and µ̃X1 are disjoint

from A1, and so Tα1 only acts nontrivially on the A1 coordinates of φA1pµ̃Xq and µ̃X1 . Lemma

3.42 implies that dY pφA1pµ̃Xq, µ̃X1q � 1 for all Y � σpA1qzA1, from which (Equation 4.5)

and (Equation 4.6), and thus (Equation 4.7) and (Equation 4.8), follow for some choice of K1

depending only on R and S.

In summary, we have produced a point X1 P FixpHq whose distance to τ is determined by

one less set of annuli, while the distances of projections to all other subsurfaces are coarsely

unchanged.

We remark that in the above calculations, we repeatedly made coarse estimates to determine

that the distance in (Equation 4.6) is bounded. Since we did so only finitely many times, where

the number of times depended only on the topology of S and the almost-fixed constant R, it
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follows that the coarseness of our estimates is still uniformly bounded as a function of R and

S.

In what follows, we make an inductive argument in which we perform a similar series of

computations to create the sequence of fixed points X1, . . . , XN . With the last point, XN ,

we will have moved past each of the families in A, at each step leaving all complementary

subsurface projections coarsely fixed. Since N was a number which depended only on R and

S, we find a bound for dT pXN , τq that depends only on R and S. Since R was a fixed constant

independent of τ , it follows that dT pXN , τq and thus dT pτ,FixpHqq are uniformly bounded in

terms of R and S, completing the proof.

We proceed by induction on the Ai. Suppose we have created a sequence of fixed points,

X1, . . . , Xi P FixpHq with shortest augmented markings µ̃X1 , . . . , µ̃Xi and a sequence of con-

stants, Ki depending only on R and S, such that for each j ¤ i the following properties hold:

1. For every subsurface Y � S which is not an annulus with core curve αl,m P A for l ¤ j,

we have dY pµ̃X , µ̃Xj q   Kj

2. For every subsurface Y � S which is not an annulus with core curve αl,m P A for l ¥ j,

we have dY pµ̃Xj , µ̃τ q   Kj

We have already shown that the base case of i � 1 holds above in (Equation 4.7) and

(Equation 4.8).

Note that (1) and the triangle inequality imply that dαl,m
�
µ̃Xj , µ̃X

� �R 1 for all j ¥ i,

l ¥ j, and m ¤ nj . Similarly, (2) and the triangle inequality imply that dαl,m
�
µ̃Xj , µ̃τ

� �R 1

for all j ¤ i, l ¤ j, and m ¤ nj .
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Since A consisted of N orbits of curves with N � NpR,Sq ¡ 0, once the inductive step is

proven, we will have constructed a fixed point XN P FixpHq which satisfies the inequality in

(2). Since j in (2) is bounded by N , it will follow that dT pXN , τq   KN , where KN depends

only on R and S, completing the proof.

We now proceed to prove the inductive step. The construction of Xi�1 from Xi is similar

to the construction of X1 from X, but there are now are more quantities to manage. Let

µ̃i�1 � φAi�1pµ̃Xiq. As before, we begin with the following claim:

Claim pi� 1q: dAMpSq pµ̃Xi , µ̃i�1q � 1.

As with Claim 1, the proof of Claim pi�1q involves showing that dAMpSq pµ̃Xi , µ̃i�1q � 1 for

1 ¤ j ¤ ni�1 and then repeatedly applying Lemma 3.46 and Proposition 3.47 and the triangle

inequality.

Let 1 ¤ j ¤ ni�1. By Lemma 3.45, φαi�1,j is coarsely the closest point projection to

Qpαi�1,jq, so Lemma 3.39 implies that

dAMpSqpµ̃Xi , µ̃i�1q �
¸

Y&αi�1,j

rdY pµ̃Xi , αi�1,jqsL1

and

¸
Y�Szαi�1,j

rdY pµ̃Xi , αi�1,jqsL1
� 0

where L1 is the uniform constant from Lemma 3.45.



101

Let µ̃αi�1,j P ΓX,τ be the first point along ΓX,τ in which αi�1,j appears as a base curve.

If αl,m P A is such that αl,m&αi�1,j and l ¤ i and m ¤ nl, then Lemma 4.14 implies that

αl,m  t αi�1,j . Lemma ?? implies that the active segment of αl,m entirely precedes the active

segment of αi�1,j , of which µ̃αi�1,j is the first point. Thus dαl,mpµ̃αi�1,j , µ̃τ q � 1 by Lemma

??. Since dαl,m pµ̃Xi , µ̃τ q � 1 by inductive assumption (2), the triangle inequality implies that

dαl,m
�
µ̃Xi , µ̃αi�1,j

� � 1 for all l ¤ i,m ¤ nl for which αl,m&αi�1,j . Since αi�1,j P basepµ̃αi�1,j q,

it follows that dY pαi�1,j , µ̃αi�1,j q � 1 for any Y&αi�1,j and thus dαl,m pµ̃Xi , αi�1,jq � 1.

On the other hand, for any β P A with αi�1,j  t β, Lemma ?? implies that dβpµ̃X , µ̃αi�1,j q �

1. Thus inductive assumption (1) and the triangle inequality imply that dβpµ̃Xi , µ̃αi�1,j q � 1

for any such β.

To summarize, we have shown:

dAMpSq
�
µ̃Xi , φαi�1,j pµ̃Xiqq

� � ¸
Y&αi�1,j

�
dY pµ̃Xi , φαi�1,j pµ̃Xiqq

�
K1

�
¸

Y&αi�1,j

�
dY pµ̃Xi , µ̃αi�1,j q

�
K1

�
¸

αl,m&αi�1,j

l¤i

�
dαl,mpµ̃Xi , µ̃αi�1,j q

�
K1

� 1

where K 1 � maxtKi, L1u, which we note depends only on R and S.
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Claim pi � 1q follows by applying Lemma 3.46 and Proposition 3.47 a uniformly bounded

number of times, as in the proof of Claim 1.

We now proceed to createXi�1 fromXi as we didX1 fromX0. Let Tαi�1 �
±ni�1

j�1 T
p�1qsi�1di�1
αi�1,j ,

where Tαi�1,j is the Dehn (half)twist around αi�1,j , di�1 � dαi�1,1pµ̃X , µ̃τ q, and the sign si�1

depends on whether παi�1,1pµ̃Xq differs from παi�1,1pµ̃τ q by right or left Dehn (half) twists

around αi�1,1. Set Xi�1 � Tαi�1pXiq and let µ̃X1�1 be its shortest augmented marking.

Once again Tαi�1 P CMCGpSqpHq centralizes H, so it stabilizes FixpHq and Xi�1 P FixpHq.

We claim that Xi�1 satisfies the properties in the inductive assumptions (1) and (2) above.

Lemma 4.16 implies that dαi�1,j pµ̃X , µ̃τ q �R dαi�1,l
pµ̃X , µ̃τ q for any j, l, and since X is fixed

and τ is has a bounded diameter orbit, it follows that παi�1,j pµ̃Xq differs from παi�1,j pµ̃τ q by

coarsely the same number of right or left Dehn (half)twists for all j, where the handedness is

independent of i. It follows immediately that dαi�1,j pµ̃Xi�1 , µ̃τ q �R 1 for all j.

Observe that φAi�1pµ̃Xiq, µ̃Xi�1 P QpAi�1q. By Lemma 3.37, the distance between φAi�1pµ̃Xiq

and µ̃Xi�1 is coarsely determined by projections to subsurfaces Y � σpAi�1q, with all other

subsurface projections being uniformly bounded. However, note that since φAi�1pµ̃Xiq, µ̃Xi�1 P

QpAi�1q, all base and transverse curves in φAi�1pµ̃Xiq and µ̃Xi�1 are disjoint from Ai�1,

and so Tαi�1 only acts nontrivially on the Ai�1 coordinates of φAi�1pµ̃Xiq and µ̃Xi�1 . Thus

dY pφAi�1pµ̃Xiq, µ̃Xi�1q �R 1 for all Y � σpAi�1qzAi�1. Equations (1) and (2) for j � i � 1

follow immediately from the triangle inequality and the inductive assumptions that (1) and (2)

hold for Xi.

This completes the inductive step and thus the proof.
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4.4 Coarse barycenters for the Teichmüller metric

The goal of this section is to prove the following theorem:

Theorem 4.25 (Coarse barycenters for pT pSq, dT q). There are rK, rC ¡ 0 such that for any

σ P T pSq and any finite order f PMCGpSq, there is a fixed point X P Fixpxfyq such that

dT pσ,Xq   rK � dT pSqpσ, f � σq � rC

The proof relies in an essential way on Tao’s main technical result (Tao13, Theorem 4.0.2),

from which the linearly bounded conjugator property for MCGpSq for finite order elements

follows almost immediately. She proves that there are coarse barycenters in MpSq for finite

order elements of MCGpSq:

Theorem 4.26 (Coarse barycenters forMpSq; Theorem 4.0.2 in (Tao13)). There are R,K,C ¡

0 depending only on S, so that for any marking µ PMpSq and finite order f PMCGpSq, there

is a µ0 PMpSq with diamMpSqpxfy � µ0q   R, such that

dMpSqpµ, µ0q   K � dMpSqpµ, f � µq � C

The proof of Theorem 4.26 proceeds by choosing a marking inMpSq with uniformly bounded

f -orbit and then step by step reducing the complexity of the large subsurface projections be-

tween µ and the chosen marking, each step resulting in a new marking with uniformly bounded
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f -orbit, whose combinatorial relationship with µ is simpler. At the heart of the proof are

two technical Propositions 4.2.1 and 4.2.2, which construct the new markings. We need some

observations about the proof these propositions.

Let µ0 P MpSq have a uniformly bounded f -orbit and suppose that Y P L pKpµ, µ0q is a

pK-large link with Y � S a proper subsurface, where pK is the constant from Tao’s Lemma 4.11

and L pKpµ, µ0q is the set of pK large links between µ and µ0. Let LY P N be the smallest natural

number such that fLY �1 is the first return map of f to Y and set ΛY � BY Yf �BY Y� � �YfLY BY .

We note that Lemma 4.11 implies that f i � Y P L pKpµ, µ0q for each i.

Proposition 4.2.2 of (Tao13) produces a new marking µ1 PMpSq with uniformly bounded

f -orbit with ΛY � basepµ1q, such that f i � Y R L pKpµ, µ1q for each i and if moreover Z P

L pKpµ, µ1q and Z R L pKpµ, µ0q, then Z � Y is a proper subsurface and thus has lower complexity.

The marking µ1 is first constructed via marking projections. Namely, one chooses correct

transversals on the curves in ΛY , then by builds pieces on Mpf i � Y q for each i. To complete

these pieces to a marking on all of S, one induces the structure of µ on Sz
�²

1¤i¤LY f
i � Y

	

by projecting µ0 to a marking on each component thereof. In particular, this means that µ0

and µ1 have uniformly bounded projections to any subsurface of Sz
�²

1¤i¤LY f
i � Y

	
.

The proof of Theorem 4.25 proceeds by analyzing the short f -symmetric curves of the

arbitrary point σ P T pSq and choosing an initial fixed point, X 1, via Minsky’s Product Regions

Theorem 2.13 whose length and twisting coordinates in these short curves are sufficiently close

to those of σ. We then apply Tao’s Theorem 4.26 to the marking, µX 1 , underlying a shortest

augmented marking for X 1. By the above observations, the result is a new almost-fixed marking,
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µX , whose base curves contain the short f -symmetric curves of σ and whose transversals to

these curves have changed a uniformly bounded amount compared to those of µX 1 . We may

then build an almost-fixed augmented marking, µ̃X2 , whose projections to the horoballs over

the f -symmetric short curves of σ are the same as those of µ̃X 1 . After performing similar

calculations to the proof of Theorem 4.24, we find that any point X2 P T pSq whose shortest

augmented marking is µ̃X2 is an R-almost-fixed barycenter for σ in T pSq, for some R depending

only on S. An application of Theorem 4.24 produces the desired fixed point, X P Fixpxfyq.

Proof of Theorem 4.25. Let σ P T pSq be arbitrary and f PMCGpSq finite order. Let ε0 ¡ 0 be

as in Remark 4.10 with H � xfy.

Let Λε0,sympσq � tλ|lσpfk � λq   ε,@ku, the set of f -symmetric short curves of σ. We note

that it is possible that other f -symmetric curves will be short in σ, but we are only interested

in those whose entire f -orbit is short in σ.

Theorem 2.13 implies that σ lives in

Thinε0pS,Λε,sympσqq
��

¹
λPΛε,sympσq

Hλ � T pSzΛε,sympσqq

Let O be the 2-orbifold covered by S with deck group xfy and T pOq its Teichmüller space.

Since the above product decomposition is f -symmetric, it descends via Theorem 4.9 to a product

decomposition on T pOq:

Thinε1pO,Λ1q ��
¹
λPΛ1

Hλ � T pOzΛ1q
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for some ε1   ε0 by Lemma 4.3 and Λ1 � CpOq lifts to Λε0,sympσq.

Decompose the curves in Λε0,sympσq into their f -orbits, Λ1, . . . ,Λk. For each i, we can

identify the various copies of Hλ for λ P Λi into a common horodisk, HΛi . Let bi P HΛi be

the barycenter of πHΛi
pxfy � σq, the projection of the f -orbit of σ to HΛi . Note that the bi are

f -invariant.

For each 1 ¤ i ¤ k, let sΛi P CpOq be the projection of Λi to CpOq. Since the bi are f -

invariant, each projects to a distinct point sbi P HsΛi . Let sX P Thinε1,Λ1pOq be any point whose

length and twisting coords of the curves in the sΛi are the sbi.
Let X 1 P T pSq be the unique lift of sX 1 P T pOq. Let µ̃σ, µ̃X 1 P AMpSq be shortest augmented

markings for σ,X 1 respectively. Since both σ and X 1 are in Thinε0,Λε,sympσqpSq, it follows that

both µ̃σ, µ̃X 1 P QpΛε0,sympσqq by Remark 3.14. By the choice of X 1, all projections of µ̃σ and

µ̃X 1 to horoballs over curves in Λε,sympσq are linearly bounded in terms of dT pSqpσ, f � σq: that

is, there exist K 1, C 1 ¡ 0 depending only on S such that dHλpµ̃X 1 , µ̃σq ¤ K 1 � dT pSqpσ, f �σq�C 1

for all λ P Λε0,sympσq. Moreover, by virtue of the fact that µ̃σ, µ̃X 1 P QpΛε0,sympσqq, it follows

that for any other subsurface Y to which µ̃σ and µ̃X 1 have a large projection, we must have

Y � SzΛε,sympσq.

Let pK ¡ 0 be the constant from Tao’s Lemma 4.11 with H � xfy and let L pKpµ̃σ, µ̃X 1q

be the collection of pK-large links between µ̃σ and µ̃X 1 . As noted at the end of the previous

paragraph, each Y P L pKpµ̃σ, µ̃X 1q satisfies Y � SzΛε0,sympσq.

Let µX 1 P MpSq be the marking underlying µ̃X 1 . We now apply Tao’s Theorem 4.26

to µX 1 . By the discussion of the proof of Proposition 4.2.2 of (Tao13), Tao’s Theorem 4.26



107

produces an R-almost fixed marking µX2 P MpSq, which has the property that, for each

Y � S, dY pµX2 , µσq   K 1 � dY pµσ, f � µσq � C 1, where K 1, C 1 ¡ 0 depend only on S. Moreover,

we have that Λε0,sympσq � basepµX2q, so we may build an augmented marking µ̃X2 P AMpSq

whose length coordinates for the curves in Λε0,sympσq are those of µ̃X 1 .

We have already shown that dY pµ̃X2 , µ̃σq   K2 � dY pµ̃σ, f � µ̃σq � C2 for any subsurface

Y � S (including annuli), where K2, C2 ¡ 0 depend only on S. It remains to show that we

have a similar bound on projections to all horoballs.

By construction, we have such a bound on any projection to a horoball over one of the

curves in Λε0,sympσq. If λ P CpSq and λ R Λε0,sympσq, then it follows that at least one curve f i �λ

in the f -orbit of λ satisfies lσpf i � λq ¡ ε0. In particular, for such a curve f i � λ, the projection

πHfi�λpµ̃σq must bounded coarse length coordinate equal to 0; the coarse length coordinate of

πHfi�λpµ̃X2q is 0 by construction. As the twisting coordinate of πHfi�λpµ̃σq and πHfi�λpµ̃X2q

satisfy the above desired bound, it follows that dHfi�λpµ̃X2 , µ̃σq   K 1 � dHfi�λpµ̃σ, f � µ̃σq � C 1.

Let X2 P T pSq be any point whose shortest augmented marking is µ̃X2 . Then there are

K3, C3 ¡ 0 depending only on S such that

dT pSqpX2, σq   K3 � dT pSqpσ, f � σq � C3

Applying Theorem 4.24, it follows that there are rK, rC ¡ 0 depending only on S and a fixed

point X P Fixpxfyq � T pSq such that

dT pSqpX,σq   rK � dT pSqpσ, f � σq � rC
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as desired.

Remark 4.27 (Theorem 4.25 for arbitrary finite subgroups). We expect that Theorem 4.25

can be generalized to hold for any finite subgroup H ¤ MCGpSq. This might be accomplished

by generalizing Tao’s Theorem 4.26, but this would require a nearly complete reworking of her

proof.

Remark 4.28 (Independence of Theorem 4.24 and Theorem 4.26). At first glance, it may seem

that one might derive Theorem 4.24 from Theorem 4.26 or vice versa. The former does not

imply the latter, since the bound in Theorem 4.24 from the starting point to FixpHq is not linear

in terms of the diameter of the orbit of the starting point. On the other hand, the latter does not

imply the former, for it can at best produce an almost fixed point, when a genuine fixed point

is needed. What is more, Theorem 4.24 holds for any finite subgroup of MCGpSq and Theorem

4.26 is only known for finite order elements.

4.5 Non-quasiconvexity of FixTRpHq

This purpose of this section is to prove the following theorem:

Theorem 4.29. There exist an R ¡ 0, a surface S, and a finite subgroup H �MCGpSq such

that FixTRpHq is not L-quasiconvex for any L ¡ 0.

The example built in Theorem 4.29 is based on Rafi’s example in Theorem 7.3 of (Raf10)

of two Teichmüller geodesic segments which start and end at a bounded distance from each

other and yet do not fellow travel. These two geodesics segments necessarily live in a thin part

of T pSq, as Theorem 7.1 of (Raf10) proves that this phenomenon does not occur when the
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endpoints are thick. Our construction requires the techniques from Rafi’s example in the proof

of Theorem 4.29, so an unfamiliar reader may want to familiarize himself with Rafi’s proof.

After the proof, we remark on how this theorem could be generalized. Indeed, we expect that

FixTRpHq is typically not quasiconvex.

Proof of Theorem 4.29. Let d ¡ 0. Let S0 be the closed genus 2 surface and let γ P CpS0q

be a separating curve on S0. Let Y, Z � S0 be the two once-punctured tori which are the

complements of γ. In his construction, Rafi builds two Teichmüller geodesics G1,G2 : r0, 2ds Ñ

T pS0q such that dT pG1p0q,G2p0qq � 1 and dT pG1p2dq,G2p2dqq � 1, but dT pG1pdq,G2pdqq �
¡ d,

where d ¡ 0 can be chosen to be a large as necessary.

Both G1 and G2 live in ThinεpS0, γq and both Y and Z become isolated along G1 and G2.

The key to the construction is altering when Y is isolated. In particular, the active interval of

Y along G1 is r0, ds and along G2 is rd, 2ds, so that one can show dY pµ̃G1pdq, µ̃G2pdqq
�
¡ d, from

which the conclusion follows after an application of the distance formula (Theorem 3.33).

In the proof, we first lift G1 and G2 to T pSq, where S is an appropriate finite cover with deck

group isomorphic to H ¤MCGpSq, where the lifts of Y and Z fill S, and the lifts G11 and G12

are now geodesics between points in FixpHq. Then, using Rafi’s construction, we build a new

geodesic G : r0, 2ds Ñ T pSq which starts and ends at almost-fixed points (with the almost-fixed

constant to be determined below), and which performs the restriction of G1 to Y on one of the

lifts of Y and the restriction of G2 to Y on the other lifts of Y . Consequently, the projections

of µ̃Gpdq to the various lifts of Y disagree by a factor of at least d, and so it follows that Gpdq

cannot be close to FixpHq.
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Let S be the 5-genus, degree 4 cover of S0. Note that each of Y and Z lifts to two disjoint

subsurfaces of S, say Y1, Y2 and Z1, Z2, with S � Y1 Y Y2 Y Z1 Y Z2. Let QDpS0q denote

the space of holomorphic quadratic differentials on S0. Let q0, sq0 P QDpS0q be the quadratic

differentials which define the geodesic segments G1 and G2 in T pS0q, which were glued together

from quadratic differentials on Y and Z, qY P QDpY q and qZ P QDpZq. The quadratic

differentials q0 and sq0 lift to pairs of quadratic differentials q10, sq10 P QDpSq. Similarly, qY and

qZ lift to quadratic differentials q1Y1
P QDpY1q, q1Y2

P QDpY2q and q1Z1
P QDpZ1q, q1Z2

P QDpZ2q,

respectively. These are the building blocks of our desired geodesic in T pSq.

We now closely follow Rafi’s construction. Let φ be the same Anosov map on a torus and

let T be the same flat structure thereon used to create G1 and G2. Recall that T was chosen so

that the vertical direction on T matches the unstable foliation of φ. Instead of cutting one slit

in T , cut open two parallel but not colinear slits in T of size ρ � ce�
d
2 and of angle π

4 , where

the constant 0   c   1 is specified shortly. Fix a homeomorphism from Y1 to this double-slit

torus and called this marked flat surface TY1,0. Set

TY1,t �

�
���
et 0

0 e�t

�
���TY1,0

For any t, TY1,t is still a marked surface and the slits have minimum length at t � 0, growing

exponentially as tÑ �8. For �d
2 ¤ t ¤ d

2 , the length of the slits is smaller than c, but since the

stable and unstable foliations of qY1 are cobounded, the length of any curve in Y1,t is comparable

with 1. As with Rafi’s example, when c is sufficiently small, TY1,t is an isolated subsurface when
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we glue it with the other slit tori to form G. Choose δ ! ρ as does Rafi, and let q be the

quadratic differential defined by gluing T to δTY1,� d
2

to another copy of T to δTY2,� 3d
2

back

onto the first copy of T 1.

The details of this gluing are as follows. We first scale down the given slitted tori by a factor

of δ. Then we cut two slits in each of the two copies of T : in the first, we cut two slits, one each

the same sizes and angles as the sizes and angles of the slits in δTY1,� d
2

and δTY2,� 3d
2

and glue

the appropriate pairings along these slits; then we similarly cut two slits in the second torus,

one of each size and angle as before, and then attach them to the remaining slits on δTY1,� d
2

and δTY2,� 3d
2

. Importantly, we glue them so that the twisting around each of the newly formed

curves which bound these subsurfaces (and are the lifts of γ) is equal to that of the twisting

around these curves in G11p0q. In particular, the twisting around each of the curves lifted from

γ is coarsely equal.

Fix homeomorphisms from Z1 to each of the above double-slitted tori. This allows us to

define a quadratic differential q P QpSq. Let G : r0, 2ds Ñ T pSq be the Teichmüller geodesic

segment defined by q. Let h PMCGpSq be the involution which rotates S to switch Y1 with Y2

and Z1 with Z2. We claim the following hold:

1. dT pGp0q,G11p0qq � 1

2. dT pGp2dq,G11p2dqq � 1

3. dT pGpdq, h � Gpdqq � d
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where the constants subsumed by the symbol � depend only on S. We remark that claims

(1) and (2) imply that Gp0q and Gp2dq are R-almost-fixed for some constant R, as G11p0q and

G1p2dq are fixed. The content of (3) is that Gpdq is not d-almost-fixed. The constant d is of our

choosing, while R depends only on the topology of S. Thus, verification of (1), (2), and (3)

completes the proof of the theorem.

The remainder of the proof follows Rafi’s closely. We first show claims (1) and (2) by

satisfying the conditions of Corollary 2.6 of (Raf10). Then we apply Theorem 4.2 of (Raf10) to

conclude claim (3) holds.

First, note that, by construction, relative twisting around the lifts of γ to S with G11p0q

is uniformly bounded. Second, we note that since the vertical and horizontal foliations of

Y1, Y2, Z1, and Z2 are cobounded, no curve in any of them is ever short along G, so the set of

short curves of both Gp0q and G11p0q are precisely the lifts of γ.

As for the aforementioned subsurfaces, the restrictions of q to each of Y1, Z1, and Z2 are

identical to qY1 , qZ1 , and qZ2 , which are the projections of q10 to Y1, Z1, and Z2, respectively;

similarly, the projection of q to Y2 is identical to qY2 , which is the projection of sq10 to Y2. By

construction, the active intervals along G of Y1 and Y2, which we denote IY1 , IY2 , are r0, ds and

rd, 2ds respectively. By Theorem 4.2 of (Raf10), the projections of G to T pY1q during IY1 and

to T pY2q during IY2 fellow-travel the geodesics defined by the restriction of q to Y1 and Y2,

respectively, and outside of these intervals have uniformly bounded projections to CpY1q and

CpY2q. In particular:

1. For any t P r0, ds, we have dT pY1qpGptq
��
Y1
, qY1q � 1
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2. For t P rd, 2ds we have dT pY2qpGptq
��
Y2
, qY2q � 1

3. dY1pGp0q,G11p0qq � 1 and dY2pGp2dq,G11p2dqq � 1

To finish the proof of claim (1), it remains to show that ExtGp0qpγ1q � ExtG11p0qpγ1q for each

lift γ1 of γ. Of the four lifts of γ, the two bounding Y1 have the same length in Gp0q as they do

in G11p0q for we have scaled them in the same fashion, whereas the two bounding Y2 have the

same lengths in Gp0q as they do in G12p0q. Thus, by the construction of G1 and G2 in Theorem

7.3 of (Raf10), they have the same length.

It remains to show that claim (3) holds. Since Y1 is an isolated subsurface along G during

r0, ds and no curve in Y1 becomes short, it follows from Theorem 6.1 of (Raf10) and Lemma 4.4

of (RS07) that the shadow of G in CpY1q during r0, ds is a parametrized quasigeodesic. Thus it

follows from (3) that

dCpY1qpGp0q,Gpdqq
�� d and dCpY2qppGp0q,Gpdqq � 1

Since Y1 and Y2 are homeomorphic, CpY1q and CpY2q are isometric. Let Φ : CpY1q Ñ CpY2q

be such an identification. Since dCpY2qpΦpGpdqq,Gpdqq � d, claim (3) follows from the distance

formula Theorem 3.33, completing the proof of the theorem.

Remark 4.30 (Generalizations of the counter-example). We expect that the counter-example

constructed in Theorem 4.29 should be a common phenomenon. The construction takes advan-

tage of a surface lifting to disjoint subsurfaces in the covering surface, after which a geodesic
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is made to move at different times through the subsurfaces. We expect that nonquasiconvex-

ity should hold any time this phenomenon occurs. More generally, it would not be surprising

if nonquasiconvexity holds any time FixpHq has infinite diameter, that is when O is not an

orbifold with three cone points.
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