Bayesian Network Hybrid Learning

Using a Parent Reducing Site-specific Mutation Rate Genetic Algorithm

BY

CARLO CONTALDI
B.S., Politecnico di Torino, Turin, Italy, 2014

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering
in the Graduate College of the
University of Illinois at Chicago, 2016

Chicago, Illinois

Defense Committee:

Peter C. Nelson, Chair and Advisor
Fatemeh Vafaee, Co-Advisor, University of Sydney
Rashid Ansari

Mariagrazia Graziano, Politecnico di Torino

To my father, for silently instilling the mastery of the art of perseverance and always giving
me a chance to thrive.

To my mother, for accepting nothing less than completion from me and having the faith to
intercede for me to my grandfather.

To my sister, for always having the power to show me where the light is or how to create it

with the brightest of smiles, when my path or even hers is the darkest.

i

ACKNOWLEDGMENTS

Though only my name appears on the cover of this dissertation, its production would have
not been possible without the contribution and guidance of many, remarkable individuals.

This thesis work is of great significance to me: convinced that my Master’s thesis would
constitute the apex of my graduate experience, I spent a long time seeking the research task that
best suited my intellectual proclivities. Despite my exhaustive search, my meticulous demands
made me delay my choice until I realized a limited time divided me from expected submission
date: I would like to express my deep appreciation and gratitude to my advisor, Dr. Peter C.
Nelson, for promptly providing me with the freedom to pursue a task that inspired my creativity
more than anything else in my academic career, and always committing to patiently addressing
every single requirement of my graduate program. I am also thankful to him for believing in
me from the very first moment we met; his enlightened and affable gaze always succeeded in
dispelling my doubts and giving me the strength to achieve my final goal. Furthermore, I thank
him for providing the academic support to carry out my research work within the Computer
Science Department.

I am extremely grateful to Dr. Fatemeh Vafaee, co-advisor and mentor. She gave me the
freedom to explore on my own, and at the same time the guidance to recover when my steps
faltered. She has always been there to patiently listen and give advice, and 1 deeply respect the
enthusiasm she expressed during her supervision. Despite the thousands of miles that divided

us during this experience, she was intellectually entangled with me in the task more than anyone

i

ACKNOWLEDGMENTS (continued)

else, always on the front line, ready to tackle the challenge by my side. Moreover, I am thankful
to her for encouraging consistency, as well as her critical analysis and research professionalism
through the process of writing this thesis.

My grateful thanks are also extended to the rest of my thesis committee, Dr. Mariagrazia
Graziano and Dr. Rashid Ansari, for their support and for always being there.

Lynn Thomas deserves a special mention: she has been my primary guide across my whole
graduate experience in the USA; she took care of countless administrative duties related to my
permanence in the States and flawlessly organized my path as a graduate student. This adven-
ture would not have been the same without her genuine friendship and sympathetic support to
my self-realization.

I would like to acknowledge the entire Artificial Intelligence Laboratory staff for being ready
to promptly address my requests and for providing the facilities to carry out the research work.

I am deeply thankful for my relatives and friends for always being there for me, as well as
for helping me stay sane and keep my humanity.

Most importantly, I would like to express my heart-felt gratitude to my family, who has
been a constant source of love, concern, support and strength throughout these years.

I owe sincere and earnest thankfulness to all those people who have made this thesis possible

and because of whom my graduate experience has been one that I will cherish forever.

CC

v

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION e

1 Probability Theory
1.1 Fundamentals and Basic Notation
2 Bayesian Networks
2.1 Bayesian Networks: a Simple Example
2.2 Graph Theory
2.3 Bayesian Network Structure Learning
2.3.1 Available Challenges
2.3.2 Theoretical Foundations
2.3.3 Approximate Structure Learning
2.3.4 D-Separation
3 Evolutionary Computation
4 Research Motivation,
5 Contribution of This Work
6 Thesis Outline

2 A DETOURINTO BAYESIAN NETWORK STRUCTURE LEARN-
ING LITERATURE e

1 Constraint-Based Structure Learning
1.1 Inductive Causation algorithm
1.2 Causality Search Algorithm
1.3 Three-Phase Dependency Analysis algorithm
14 Grow-Shrink algorithm
1.5 Recursive Autonomy Identification algorithm
1.6 Opt01SS algorithm
2 Search and Score Structure Learning
2.1 K2 Algorithm
2.2 Maximum Weight Spanning Tree algorithm
2.3 Tree-Augmented Nalve Bayes algorithm
2.4 Hill Climbing algorithm
2.5 Sparse-Candidate algorithm
2.6 Optimal Reinsertion algorithm
2.7 Greedy Equivalent Search algorithm
2.8 Ordering Search algorithm
2.9 Markov Chain Monte Carlo methods
2.10 Simulated Annealing methods
2.11 Evolutionary Algorithms

27
27
27
28
30
31
32
35
37
38
39
40
41
41
42
42
43
44
45
46

TABLE OF CONTENTS (continued)

vi

CHAPTER PAGE
2.11.1 Larranaga algorithm 47
2.11.2 K2GA algorithm 47
2.11.3 Chain-Model Genetic algorithm 48
2.11.4 Carvalho’s Cooperative Coevolution Genetic Algorithm 48
2.11.5 pGP algorithm oo L 49
3 Constraint-Based — Search and Score Hybrid Structure Learning 49
3.1 CB algorithm 50
3.2 Wong’s Cooperative Coevolution Genetic Algorithm 50
3.3 Hybrid Structure Learner using Genetic Algorithm 51

3 CONSTRAINT-BASED STRUCTURE LEARNING 53
1 Conditional Independence Test 53
1.1 Mutual Information 54
1.2 Pearson’s X2o 54
1.3 G? Likelihood-ratio 55

4 SEARCH AND SCORE STRUCTURE LEARNING 57
1 Scoring Function Lo oL 57
1.1 Bayesian Scoring Functions L. 58
1.1.1 Bayesian Dirichlet score L. 59
1.1.2 K2score 60
1.1.3 BDescore 60
1.1.4 BDeuscore 61
1.2 Information-Theoretic Scoring Functions 62
1.2.1 Log-Likelihood score 63
1.2.2 Minimum Description Length score 64
1.2.3 Akaike Information Criterion score 64
1.2.4 Normalized Maximum Likelihood score 64
1.2.5 Factorized Normalized Maximum Likelihood score 66
1.3 Scoring Function Selection 67
1.4 Indegree and Data Fragmentation 67

5 HYBRID CONSTRAINT-BASED - SEARCH AND SCORE STRUC-
TURE LEARNING WITH GENETIC ALGORITHMS 69
1 The Logic Underlying Hybrid Strategies 69
2 An Overview of Proposed Methods 70
3 Graph Representation 73
4 Super-Structure Construction 75
5 DAGs Evolution 76
5.1 Evolutionary Computation in the Literature 77
5.2 Evolutionary Computation Fundamentals 77
5.2.1 Individual Representation 77

TABLE OF CONTENTS (continued)

CHAPTER PAGE
5.2.2 Initialization 78
5.2.3 Mutation 79
5.2.4 CrosSOVEr . . o v v v e e e e e e e e 80
5.2.5 Selection 81
5.3 A Simple Genetic Algorithm 82
5.3.1 Line 1: Population Initialization 83
5.3.2 Lines 2, 9, 13: Directed Structure to DAG conversion 84
9.3.3 Lines 3, 10, 14: Parents Limitation 85
5.3.4 Lines 5, 15: Fitness Computation 86
5.3.5 Lines 6, 16: Elite Propagation 87
5.3.6 Line 7: Selection, 87
5.3.7 Line 8: Crossover i 88
5.3.8 Line 12: Mutation 88
5.4 A Site-specific Rate Genetic Algorithm 88
5.4.1 Lines 12, 13, 14: Site-specific Rate Mutation Scheme 91
5.4.2 Diversity Guide Enhancement 94
5.5 Towards Automatic Parents Reduction: an Elite-Guided Par-
ents Limitation Approach. 100
9.5.1 Parents Limitation in the Literature 101
5.9.2 Parents Limitation in the Proposed Method 105
5.5.3 Lines 13, 21: Elite-Guided Parents Reduction 110
5.5.4 Elite-Guided Parents Reduction Approach: an Example . . . 111
5.6 “Self Parent Reducing” Enhancement 114

5.6.1 Line 21: Node-specific Maximum Parents Threshold Adaptive
Reduction 117

5.6.2 Node-specific Maximum Parents Threshold Adaptive Reduc-
tion: an Example oo L 120
6 EXPERIMENTS AND RESULTS 126
1 Compared Algorithms 126
2 Benchmark Specification 128
2.1 Bayesian Networks Selection 129
2.2 Simulation Settings. L. 133
2.3 Dataset 135
2.4 Dataset and Network Sizes in the Literature 136
3 Super-Structure Construction 137
3.1 Performance estimation 139
3.2 Conditional Independence Tests Evaluation 140
3.3 CB Methods Comparison 142
3.4 Search Space Reduction: Quantitative Evaluation 143
4 Optimal DAG Evolution 145
4.1 Performance estimation 147

vil

TABLE OF CONTENTS (continued)

CHAPTER PAGE
4.2 Standard GA Results 148

4.3 SiIRG Results 151

4.4 Sensitivity Analysis: Amount of Edges Directed at Initialization 156

4.5 New Methods Testing 158
4.5.1 Evaluation with Large MP Value 159
4.5.2 Parents Reduction Methods Reliability Analysis 159
4.5.3 Parents Reduction Methods Performance Comparison 164
4.5.4 Adaptive Parents Reduction Statistics Evaluation 166
4.5.5 Final Results 169

7 SUMMARY AND CONCLUSION 177
8 FUTURE WORK e 179
APPENDIX 181
CITED LITERATURE 187
VITA . 200

viii

TABLE

LIST OF TABLES

PAGE

I DIFFERENT TASKS IN LEARNING BAYESIAN NETWORKS.
N/A INDICATES A NON-EXISTING TECHNIQUE FOR THE RE-
LATED TASK. 12

II SUPER-EXPONENTIAL CORRESPONDENCE BETWEEN
THE NUMBER OF VARIABLES OF A BN AND THE NUMBER
OF POSSIBLE RELATED DAGS REPORTED FOR THE FIRST 10
VALUES. . . . 16

111 PARENT WEIGHT VECTOR FOR NODE 6 DERIVED FROM
THE SITUATION DEPICTED IN THE EXAMPLE, INCREASINGLY
ORDERED WITH RESPECT TO THE WEIGHT. 113

v PARENT WEIGHT VECTOR FOR NODE 6 DERIVED FROM
THE SITUATION DEPICTED IN THE EXAMPLE, INCREASINGLY
ORDERED WITH RESPECT TO THE WEIGHT. 121

A% DEFAULT PARAMETER VALUES USED IN ALL BENCH-
MARK METHODS. 135

VI TEST CASES AND DATASET SIZES TAKEN INTO AC-
COUNT IN OUR BENCHMARK. 136

VII A COMPARISON AMONG NETWORK AND DATASET SIZES
IN LITERATURE BENCHMARKS. 138

VIII SPACE REDUCTION ANALYSIS ON INSURANCE AND ALARM
NETWORKS. 144

IX DEFAULT SET OF PARAMETERS FOR USE IN THE EX-
PERIMENTS. o e 146

X FINAL RESULTS ON ALARM, INSURANCE AND HEPAR-
II NETWORKS ASSUMING N = 100 AND M =100. 175

XI FINAL RESULTS ON ALARM, INSURANCE AND HEPAR-
II NETWORKS ASSUMING N =200 AND M =50. 176

ix

FIGURE

10

11

12

LIST OF FIGURES

PAGE
Simple Bayesian Network provided with each node’s related
Conditional Probability Distribution. Source: RUSSELL, STUART;
NORVIG, PETER, ARTIFICIAL INTELLIGENCE: A MODERN AP-
PROACH, 3rd, (©)2010, p. 529. Reprinted by permission of Pearson

Education, Inc., New York, New York. 7

General structure of our presented hybrid methods. 74
Elite-guided parents reduction example: situation before par-

ents limitation. L 112
Elite-guided parents reduction example: during the limitation
procedure, worst parents are identified and related edges (depicted in

red) are deleted, for each individual. 124
Elite-guided parents reduction, example with a lower threshold:

result of the reduction process. 125

The ASIA Bayesian network. 130

The INSURANCE Bayesian network. 131

The ALARM Bayesian network. 132

The HEPAR II Bayesian network. 133
Comparison between Pearson’s x? test and G? likelihood-ratio

test for conditional independence. L. 141
Comparison between the two tested constraint-based methods:

OptO1SS and Opt0SS. o o 143

Comparison between standard GA and external competitors
over differently-sized datasets sampled from ASIA, ALARM and HEPAR-
II networks: Flscores.

149

FIGURE

13

14

15

16

17

18

19

20

21

22

LIST OF FIGURES (continued)

PAGE

Comparison between standard GA and external competitors
over differently-sized datasets sampled from ASIA, ALARM and HEPAR-
IT networks: sensitivities. Lo L L

Comparison between standard GA and external competitors
over differently-sized datasets sampled from ASIA, ALARM and HEPAR-
IT networks: specificities.

Comparison between standard GA and external competitors
over differently-sized datasets sampled from ASIA, ALARM and HEPAR-

II networks: Bayesian scores.

Standard genetic and SiRG algorithms results over differently-
sized datasets sampled from ASIA, ALARM and HEPAR II networks:
Flscores. e

Standard genetic and SiRG algorithms results over differently-
sized datasets sampled from ASIA, ALARM and HEPAR II networks:

sensitivities.

Standard genetic and SiRG algorithms results over differently-
sized datasets sampled from ASTA, ALARM and HEPAR II networks:
specificities. e

Standard genetic and SiRG algorithms results over differently-
sized datasets sampled from ASTA, ALARM and HEPAR II networks:
Bayesian scores.

Standard genetic and SiRG algorithms results tested with dif-
ferent POI values (expressed as percentages) on the ALARM-70 sam-
ple dataset: F1 scores and sensitivities.

Standard genetic and SiRG algorithms results tested with dif-
ferent POI values (expressed as percentages) on the ALARM-70 sam-
ple dataset: specificities and Bayesian scores.

Comparison between standard DiG-SiRG strategy and the pro-

posed PaRe-DiG-SiRG method with a large MP value (F1 scores and
sensitivities): it results a performance variation that is not significant.

xi

150

151

152

153

154

155

156

157

158

160

FIGURE

23

24

25

26

27

28

29

LIST OF FIGURES (continued)

Comparison between standard DiG-SiRG strategy and the pro-
posed PaRe-DiG-SiRG method with a large MP value (specificities
and Bayesian scores): it results a performance variation that is not
significant. L

MP sensitivity analysis between standard DiG-SiRG strategy
and the proposed PaRe-DiG-SiRG method (F1 scores and sensitivi-
ties): two different values for MP are applied to each method on four
test cases with ALARM and HEPAR-II networks.

MP sensitivity analysis between standard DiG-SiRG strategy
and the proposed PaRe-DiG-SiRG method (specificities and Bayesian
scores): two different values for MP are applied to each method on
four test cases with ALARM and HEPAR-II networks.

Performance comparison between DiG-SiRG strategy and the
proposed PaRe-DiG-SiRG method (F1 scores and sensitivities): the
minimum value for MP is applied to each method on six test cases
with ALARM, INSURANCE and HEPAR-II networks.

Performance comparison between DiG-SiRG strategy and the
proposed PaRe-DiG-SiRG method (specificities and Bayesian scores):
the minimum value for MP is applied to each method on six test cases

with ALARM, INSURANCE and HEPAR-II networks.

Statistics describing the dynamic and adaptive MP threshold
reduction process throughout a 100 generations evolution, extracted

from tests on the ALARM network driven with differently-sized datasets;

in particular Max indicates the maximum number of parents over all
nodes at the current generation, RMS is the Root Mean Square be-
tween the vector containing the actual number of parents of the target
DAG and the MP vector at the given generation, Below reports the
sum over the difference vector NP-MP, but by considering only those
MP values that are lower than the actual number of parents in the
target DAG, i.e. NP, at the given generation.

Performance comparison between DiG-SiRG strategy and the
proposed PaRe-DiG-SiRG and SPaRe-DiG-SiRG methods (F1 scores

PAGE

161

162

163

165

166

167

and sensitivities): experiments involved six test cases related to ALARM,

INSURANCE and HEPAR-II networks.

xii

170

FIGURE

30

31

32

LIST OF FIGURES (continued)
PAGE

Performance comparison between DiG-SiRG strategy and the
proposed PaRe-DiG-SiRG and SPaRe-DiG-SiRG methods (specifici-
ties and Bayesian scores): experiments involved six test cases related
to ALARM, INSURANCE and HEPAR-II networks. 171

Performance comparison between DiG-SiRG strategy and the
proposed PaRe-DiG-SiRG and SPaRe-DiG-SiRG methods (F1 scores
and sensitivities): experiments involved six test cases related to ALARM,
INSURANCE and HEPAR-II networks with a different setting for
population size and number of generations parameters. 172

Performance comparison between DiG-SiRG strategy and the
proposed PaRe-DiG-SiRG and SPaRe-DiG-SiRG methods (specifici-
ties and Bayesian scores): experiments involved six test cases related
to ALARM, INSURANCE and HEPAR-II networks with a different
setting for population size and number of generations parameters. . . 173

xiii

BN

DAG

PDAG

CPDAG

S&S

CB

SS

CI

GA

SiRG

DiG

PaRe

SPaRe

LIST OF ABBREVIATIONS

Bayesian Network

Directed Acyclic Graph

Partially Directed Acyclic Graph

Completed Partially Directed Acyclic Graph

Search and Score

Constraint-Based

Super-Structure

Conditional Independence

Genetic Algorithm

Site-specific Rate Genetic

Diversity Guided

Parent Reduced

Self Parent Reducing

Xiv

SUMMARY

Bayesian networks constitute a powerful framework for probabilistic reasoning and expert
elicitation, capable of representing inner relationships underlying any kind of phenomenon in
both causal and diagnostic directions. Motivated by the fact that Bayesian networks have been
extensively used in a variety of research domains, I focused this thesis work on unsupervised
Bayesian network structure learning: it is an ambitious as challenging task that, if accomplished,
would pave the path for Bayesian modeling and would therefore contribute to provide further
insight into countless state-of-the-art research topics.

The problem of Bayesian network structure learning can be formalized as a search task and,
from its inception back to 1980s, it has been tackled by means of two distinct strategies or their
hybrid combination: a Constraint-Based method operates by progressively reducing the search
space, whereas the Search and Score generic approach explores the search space guided by some
knowledge-driven metric.

This thesis work aims at providing a method able to learn the structure of the Bayesian
network underlying a set of data samples, by focusing on problems with a limited amount of
available data. In particular, the main contribution of this work is a Hybrid learning algorithm
able first to reliably reduce the search space and then to exhaustively explore it, by taking
advantage of data-informed expedients as well. The proposed approach involves a parameterized
Genetic Algorithm in order to pursue the task: this metaheuristic has been chosen because of

its efficient global search capabilities even across a very large search space and because of

XV

SUMMARY (continued)

its flexibility and adaptability; on the other hand it consistently suffers from time and space
complexity relatively to other search methods in the literature, and moreover its performance
is heavily influenced by the choice of a large set of parameters.

The research covered in this work is concerned with designing a series of hybrid methods
on a build-up basis: they are provided with enhancements already existing in the literature but
not yet applied to the Bayesian network structure learning topic and also with novel improve-
ments able to further restrict the search space during the evolutionary process, in a data-driven
manner. In the experimental chapter of this thesis it is possible to ascertain how presented
algorithms allow to better address time and space complexity, sensitivity to parameters setting
issues as well as the problem of data fragmentation, with the advantage of higher performances

in some cases.

xvi

CHAPTER 1

INTRODUCTION

In the part of world accessible by man’s senses or existing instruments, knowledge that can
be empirically inferred from any experience or experiment is in general affected by uncertainty
and nondeterminism. In several domains, such as medicine, law or business, any assertion is
always characterized by a certain degree of belief. For example, a robot needs to know about
the possible outcomes of its actions, and a medical expert system needs to know which causes

lead to which effects.

The final goal in this context is the availability of a general framework to enable probabilis-
tic reasoning in any new application without reinventing everything from scratch. Bayesian
networks offer exactly such a domain-independent framework for probabilistic reasoning, but
a problem still remains: since there does not exist a universal method for Bayesian Network
Structure Learning yet, a human expert is still generally needed in order to design the network

of interest.

This chapter first provides some background about probability theory, Bayesian networks
fundamentals — including a brief overview on graph theory and Bayesian network structure
learning — and evolutionary computation, so to supply the reader with the knowledge needed

to understand what this thesis work deals with. The research motivation and the contribution

1

of this work are then discussed. At the end of the chapter, an outline of the thesis is given.

1 Probability Theory

As stated by Russell and Norvig in [1], “probability provides a way of summarizing the
uncertainty that comes from our laziness and ignorance.” In fact, it is not the real world to be
affected by nondeterminism: if we define the complex of means through which the phenomenon
of interest is investigated as the agent, probability statements describe only the agent’s view of

the world, i.e. his state of knowledge, and not the actual world.

1.1 Fundamentals and Basic Notation

In probability theory a possible world w is defined to be an assignment of values to all of
the random variables under consideration.

The set of all possible worlds is called the sample space, denoted as €2; in this space all
possible worlds are mutually exclusive and exhaustive.

A fully specified probability model associates a numerical probability Pr (w) with each pos-
sible world, so that:

0<Pr(w)<1 Vw ZPr(w)zl
we

Probabilities that refer to degrees of belief in propositions in the absence of any other

information are called priors or unconditional probabilities. On the other hand, when we have

some information to exploit (called evidence) we can make use of a posterior or conditional

probability:

Pr(a Ab)

Pr(alb) = ?(b)’

Pr(b) >0

Variables in probability theory are called random wvariables; every random variable has a
domain, i.e. the set of possible values it can take on.

Given a set of random variables, their joint probability distribution is a probability distri-
bution containing the probabilities of all combinations of variable values.

A probability model is fully determined by the full joint probability distribution.

Probability theory is based on Kolmogorov Azioms [2]:

Pr(w) e R, Pr(w)>0 Vw € Q
Pr(Q) =1 (1.1)
Pr <Ufi1 Wi) = > ey Pr(wi)

Bayes’ Rule describes the probability of an event, based on conditions that might be related

to the event [3].

Pr (a|b) Pr (b)

Pr (bla) = Pr ()

(1.2)

If b is the cause and a the effect, Pr(a|b) quantifies the relationship in the causal direction,

whereas Pr (bla) describes the diagnostic direction.

Two events are said to be independent of each other when the probability that one event
occurs in no way affects the probability of the other event occurring. Similarly, two events a
and b are conditionally independent given a third event c if the occurrence or non-occurrence
of a and the occurrence or non-occurrence of b are independent events in the portion of the

sample space defined by knowledge on ¢ occurrence.

Pr (a, b|c) = Pr(alc) Pr (b|c)

The general concept of independence is denoted in this work with the symbol L. Therefore:

e independence between two events a and b can be denoted with the expression a L b;

e conditional independence between two events a and b with respect to a third event ¢ can

be described with the expression a 1L b | c .

If, given n+ 1 variables, we can represent them as conditionally independent with respect to
one of them, the size of this new representation grows as O(n) instead of O(2") as in the case
in which all variables are dependent. Indeed, conditional independence assertions may allow

probabilistic systems to scale up.

2 Bayesian Networks

Nowadays, Bayesian Networks are more and more used for modeling knowledge in various

domains such as computational biology, bioinformatics, medicine, information retrieval, seman-

tic search, image processing and security.

A Bayesian Network (BN) is a data structure that represents dependencies among random
variables.

B(G,0), Gg=(V.E)

Each node X; in V' corresponds to a random variable, which may be discrete or continuous.

A set of directed links defined in E connects pairs of nodes, so that the resulting graph G
is a Directed Acyclic Graph (DAG), i.e. a graph not containing any cycle.

Each node X; is characterized by a Conditional Probability Distribution (CPD) Pr [X;|Parents(X;)],
that quantifies parents’ effect on it; © is a set of parameters that determines the graph edges
by specifying the above-mentioned local conditional probabilities.

The topology of the network specifies the conditional independence relationships that hold
in the domain — causes should be parents of effects.

The CPD for a discrete variable is represented as a conditional probability table (CPT),
where each row contains the conditional probability of each node value for every conditioning

case, i.e. every possible combination of values for the parent nodes [1].

A Bayesian Network can be seen as a representation of the joint probability distribution: a
generic entry of it is the probability of a particular combination of assignments to all variables

in the sample space.

In order to construct a Bayesian Network we can apply the chain rule:

n
Pr(Xy,...,Xn) = [[Pr(Xi|Xi-1,..., X1) = Pr [X;|Parents(X;)]
=1

Definition 1 (Latent Structure) [4] A latent structure is a pair L = (D, O), where D is a

causal structure over V. and where O CV is a set of observed variables.

Definition 2 (Counsistency) [4] A latent structure L = (D, O) is consistent with a distribu-
tion P over O if D can accommodate some model that generates P — that s, if there exists a

parameterization ©p such that Po)(D,0p) = P

2.1 Bayesian Networks: a Simple Example

In Figure 1 it is represented a simple, canonical BN originally introduced in [1]. The
four variables in the system are discrete: this means that their CPDs are represented by means
of CPTs; moreover each variable is binary.

Given that the variables are binary, the probability that each conditioning case happens
sums up to one with the probability that it does not happen: indeed in the reported CPTs only
the probability of the type Pr(X = T') is shown, because we can simply calculate Pr(X = F)
as 1 —Pr(X =1T).

In this system we can identify a variable that has no parents and thus specifies a prior,
“Cloudy,” two intermediate variables “Sprinkler” and “Rain,” and an observed variable “Wet-

Grass.” It models an inference system in which, on the basis of a prior knowledge about the

& P(S)

10
F .50

Figure 1: Simple Bayesian Network provided with each node’s related Conditional Probability

Distribution.

Source: RUSSELL, STUART; NORVIG, PETER, ARTIFICIAL INTELLIGENCE: A MOD-
ERN APPROACH, 3rd, (©)2010, p. 529. Reprinted by permission of Pearson Education, Inc.,
New York, New York.

likelihood of a cloudy weather and the state of the grass (wet or not wet), we attempt to infer

the likelihood of intermediate events occurrence, i.e. how much it is likely that grass has been

P(C)=.5

S R P(W)
f i 99
T F 90
F T 90
| SO ;) .00

watered by sprinkler action or by rain.

P(R)

™ =

.80
20

2.2 Graph Theory

In this subsection is provided a set of definitions and notions in the field of Graph Theory
constituting the basis of any Bayesian network structure learning strategy presented in this

thesis work.

Definition 3 (Adjacency) [5] Two variables X andY are adjacent if there is an edge between

X and Y.

Definition 4 (Partially directed acyclic graph) [6] A Partially Directed Acyclic Graph

(PDAG) is a graph where some edges are directed and some are undirected.

A PDAG is also known as a pattern [7].

Definition 5 (v-structure) [8] In a DAG, a v-structure is given by two converging arrows

whose tails are not connected by an arrow.

Definition 6 (Equivalence) [9] Two DAGs G and G’ are distributionally equivalent if for
every Bayesian network B = (G, ©) there exists a Bayesian network B' = (G',©") such that B

and B’ define the same probability distribution, and vice versa.

Definition 7 (Compelled edge) [9] A directed edge X — Y is compelled if that edge exists

in every DAG G’ that is equivalent to G.

If an edge is not compelled in a graph, then it is reversible in the graph [9].

Definition 8 (Completed Partially Directed Acyclic Graph) [9] A Completed Partially
Directed Acyclic Graph (CPDAG) corresponding to an equivalence class is the PDAG consisting
of a directed edge for every compelled edge in the equivalence class, and an undirected edge for

every reversible edge in the equivalence class.

A CPDAG is also known as an essential graph [10].

The essential graph of a DAG is its skeleton.

Theorem 1 (Verma and Pearl [8]) Two DAGSs are equivalent iff they have the same skele-

ton and the same v-structures.

As stated by Pearl and Verma in [8], “the structural constraints that an underlying dag
imposes upon the probability distribution are equivalent to a finite set of conditional indepen-
dence relationships asserting that, given its parents, each variable is conditionally independent
of all its non-descendents. Therefore two causal models are equivalent (i.e. they can mimic
each other) if and only if they relay the same dependency information.”

Theorem 1 is founded upon the dependency information.

Definition 9 (Perfect Map) [9] G is a perfect map of a probability distribution P if every
independence constraint in P is implied by the structure G and every independence implied by

the structure G holds in P.

If there exists some DAG that is a perfect map of a probability distribution P, we say that

P is DAG-perfect (or perfect with respect to a DAG) [9].

10

Definition 10 (Vertex Indegree) [11] The indegree of a vertez v in a directed graph, denoted

as deg™ (v), is the number of edges directed to it.
A vertex with deg™ (v) = 0 is called a source [11].

Definition 11 (Vertex Outdegree) [11] The outdegree of a wvertex in a directed graph,

denoted as deg™ (v), is the number of edges directed out of it.

A vertex with deg™ (v) = 0 is called a sink [11].

The degree sum formula [11] states that, for a directed graph,

S deg*(v) = 3 deg(v) = |, (13)

veV veV

where E denotes the set of edges in the directed graph.

If deg™ (v) = deg~(v) Vv € V, the graph is called a balanced directed graph [11].

2.3 Bayesian Network Structure Learning

Bayesian Networks constitute a powerful tool for understanding the dynamics underlying a
complex system behavior, including what concerns causal relationships among the single agents
composing the system itself.

In order to use Bayesian Networks to model domain variables and their relationships from

empirical observations or sampled data, one has to:

learn the underlying DAG structure;

11

estimate the conditional probability distributions.

We can create BNs manually by interviewing experts in the problem domain, but this pro-
cess is time-consuming and error-prone, and the resulting problem not only would inherit any
flaws in the experts’ reasoning but would also be greatly affected by scalability issues; moreover,

in some domains simply there is no expert with all the required knowledge.

2.3.1 Available Challenges

A goal of Bayesian Network Structure Learning is, given a phenomenon and a dataset
directly sampled on its basis, to get an as complete as possible picture of inner interactions

underlying it; in other words, if we can:

e identify the complete set of relevant entities that play a non-negligible role in the phe-

nomenon, i.e. the set of agents;

e get some information from the agents by means of a source of knowledge so that a set of

raw data is available directly from the phenomenon itself;

then it is possible to get insights on a subset of causal relationships possibly existing for each
pair of agents, including which one of the two agents triggers a variation on the other one’s
behavior.

Structure learning given a set of variables and fully observed data constitutes the objective
which this thesis work is focused on, but it is not the only possible formulation for the structure

learning problem. Indeed we can deal with partially observed data, or even hidden variables;

12

for what concerns the model itself, we could already have available the structure and have to

learn the parameters only.

All possible tasks in BN Structure Learning are represented in Table I [12].

TABLE I: DIFFERENT TASKS IN LEARNING BAYESIAN NETWORKS. N/A INDICATES
A NON-EXISTING TECHNIQUE FOR THE RELATED TASK.

Model constraints
. Known subset of
Known set of variables. . .
Known structure. variables. Learn hidden
Learn structure + .
Learn parameters variables + structure +
parameters
parameters
| may | oty | comtmminibused
= Y closed-form Bayesian PP N/A
= observed . . search-and-score
< parameter estimation hes
g approaches
3 .
) Partially gradient as.cent / approximate score /
- expectation N/A
= observed o structural EM
e maximization (EM)
A
Hidden
variablos N/A N/A (here be dragons)

Source: C. Berzan, An exploration of structure learning in Bayesian networks, Doctoral Dissertation,
Tufts University, 2012.

Another important distinction to do is the purpose we want to achieve: the standard goal is
given by knowledge discovery, i.e. learn a model in order to gain knowledge about the domain;

other objectives can be classifier learning, when we need to use the model as a classifier or

13

density estimation, when we want to construct a (simpler) model representing a distribution
that resembles as much as possible the true distribution, able to capture only relevant aspects
of it.

In the rest of this thesis, we will focus on a single flavor of the learning problem: learning BN
structure from fully observed data given a known set of variables, for the purpose of knowledge

discovery.

2.3.2 Theoretical Foundations

Sometimes it is not easy to directly infer the causality role in a variable, because actual

causality may occur at a different level than the one taken into account [4].

By quoting Whitehead’s words in [13], “causality is an abstraction that indicates how the
world progresses, so basic a concept that it is more apt as an explanation of other concepts
of progression than as something to be explained by others more basic [i.e. it is such a basic
concept that it is more suitable to clarify other progression concepts than any other abstraction,

even a more primitive one]. [...] For this reason, a leap of intuition may be needed to grasp it.”

In order to clarify what a different level means, let us have an explanatory example through
a physics analogy. Let us imagine a body that is falling near Earth’s surface: a derivation to
Newton’s Second Law of Motion tells us that X = % gt? represents the distance to the ground

of the falling body in terms of time elapsed t. Even if X depends on ¢, it is not true that ¢

14

causes X: indeed Newton’s Law (F' = ma) states that forces cause the motion, and not time
itself. However, a covariation analysis would make us deduce that a causal relationship exists

between time and falling height.

As stated by Pearl in [4]: “an autonomous intelligent system attempting to build a workable
model of its environment cannot rely exclusively on preprogrammed causal knowledge; rather, it
must be able to translate direct observations to cause-and-effect relationships. However, given
that statistical analysis is driven by covariation, not causation, and assuming that the bulk of
human knowledge derives from uncontrolled observations, we must still identify the clues that
prompt people to perceive causal relationships in the data. We must also find a computational

model that emulates this perception.”

Given a learning algorithm that has to generate a discrete-variable Bayesian Network from
data and a scoring criterion that favors the simplest structure for which the model is as faithfully
as possible able to represent the distribution, it results that, as Chickering et al. describes in [14]:
“identifying high-scoring structures is NP-hard, even when any combination of one or more of

the following hold:
e the generative distribution is perfect with respect to some DAG containing hidden vari-
ables;
e we are given an independence oracle;

e we are given an inference oracle;

15

e we are given an information oracle;

e we restrict potential solutions to structures in which each node has at most & parents, for

all k > 3.

Indeed, the number of possible structures grows super-exponentially by the number of vari-
ables n, i.e. with a complexity (’)(n!2(g)): consequently, exact methods result to be infeasible
for any domain [14, 15].

In particular, Murphy pointed out in [16] that “the number of DAGs as a function of the

number of nodes, G(n), is given by the following recurrence:

G(n) = Zn:(—nk“ (Z) k=R G(n — k). (1.4)

k=1

In Table II the first few values of the above-mentioned super-exponential correspondence are

provided.

2.3.3 Approximate Structure Learning

Approximate structure learning algorithms are usually categorized into Constraint-Based

(CB) and Search and Score (S&S) approaches [15].

Constraint-based algorithms rely on the application of a number of Conditional Indepen-

dence (CI) tests to determine, given a conditioning set, whether two variables are independent.

16

TABLE II: SUPER-EXPONENTIAL CORRESPONDENCE BETWEEN THE NUMBER OF
VARIABLES OF A BN AND THE NUMBER OF POSSIBLE RELATED DAGS REPORTED
FOR THE FIRST 10 VALUES.

Number of Number of
Variables Possible DAGs

1
3
25
543
2.9 % 10*
3.8 % 106
1.1%10°
7.8 % 101
1.2 %101
4.2 %108

© 00 N O Ot ke W N =

—
o

First they learn direct dependences between variables and build an undirected graph struc-
ture, then they direct edges by means of orientation rules.

A CB procedure requires in the simplest implementations a number of CI tests growing
exponentially with the number of variables: as a consequence CB methods incorporate different
assumptions to ensure independence correctness as well as to restrict condition set size; indeed,
as described by Margaritis in [17], “the existence of these independences in the actual population

depends on the extent to which these assumptions hold. These are:

17

Causal Sufficiency Assumption: there exist no common unobserved (also known as hidden
or latent) variables in the domain that are parent of one or more observed variables of

the domain.

Markov Assumption: Given a Bayesian network model B, any variable is independent of all

its non-descendants in B, given its parents.

Faithfulness Assumption: a BN graph G and a probability distribution P are faithful to one
another iff every one and all independence relations valid in P are those entailed by the

Markov assumption on G.”

CB strategies are deterministic and characterized by a well-defined stopping criterion: a CB
algorithm is iterated so that an edge per time is checked for CI with respect to a condition set
of increasing size, until no variable has more than a certain number of adjacencies or when the
maximum allowed size for the condition set has been explored in all cases.

As Kruse et al. stated in [18], “unfortunately, CI tests tend to be unreliable unless the

volume of data is enormous,” thing that makes CB methods sensitive to failures in these tests.

Search and Score approaches are based on a search within the space of possible structures,
driven by the outcomes of a scoring function, that measures the fitness of each structure to the
data.

The learning process operates by moving from one structure to another through the usage

of some wvariation operators so to explore the possible structures and maximize the score at

18

each step, until an optimal score is found or a stop-criterion is met.

Latest advances in Bayesian Network Structure Learning involve the adoption of an Hybrid

approach that attempts to take the best of both CB and S&S worlds, in which first a CB

method is applied in order to constrain and reduce the search space, and then a S&S method

is used so to identify the possibly optimal structure in the remaining portion of the search space.

2.3.4 D-Separation

The notion of conditional independence by itself is not sufficient to fully determine whether
two variables are dependent or not, in particular in presence of evidence variables or colliders.

As explained by Pearl in [19], “d-separation is a criterion for deciding, from a given causal
graph, whether a set X of variables is independent of another set Y, given a third set Z.”

A collider is a node characterized by a nonzero in-degree and a null out-degree, i.e. a node

with all related edges directed to it.

We need to contemplate d-separation in our reasoning because only by means of this ab-
straction we can formalize and better understand complex dependence relations and associated
complications among variables in a BN, such as Berkson’s Paradox (explained below in this

section).

19

As reported in [19], “Dependence is associated with Directional Connectedness [whereas the
opposite concept of independence is associated with Directional Separation] and is based on

three rules:

1. X and Y are d-connected if there is an unblocked path [i.e. a path not containing a

collider]| between them. [...]

2. X and Y are d-connected, conditioned on a set Z of nodes, if there is a collider-free path
between X and Y that traverses no member of Z. If no such path exists, we say that
X and y are d-separated by Z. We also say then that every path between X and Y is

‘blocked’ by Z. [...]

3. if a collider is a member of the conditioning set Z, or has a descendant in Z, then it no

longer blocks any path that traces this collider.”

Last statement finds an explanation in Berkson’s Paradoz [20]: “when we measure a common
effect of two independent causes, these become dependent, because finding the truth of one
makes the other less likely (or ‘explained away’ [...]), and refuting one implies the truth of the

other” [19].

As a consequence of first and second d-separation rules, we say that X and Y are d-separated
given Z if there is no active trail between X and Y given Z [21]. We denote Z as the separation

set (SepSet) of X and Y.

20

3 Evolutionary Computation

Evolutionary Computation uses computational models of natural evolutionary processes as
key elements in the design and implementation of computer-based problem solving systems [22].
Evolutionary computation became an increasingly promising machine learning field during

the last two decades only, although their theoretical foundations date back to late 1950’s.

As pointed out by Vafaee in her PhD thesis [22], “compared to traditional formal approaches,
evolutionary search techniques have the key advantages of being flexible and adaptable to the
task in hand, in combination with robust performance and global search characteristics. Vari-
ous evolutionary computational models have been thus far developed and studied, all of which

are referred to as Evolutionary Algorithms (EAs).”

In nature, the genotype is the “source code” for an individual, encoded in its genome. The
phenotype encompasses the individual’s observable characteristics, acquired as the individual
develops. The genotype and the environment both influence the way the phenotype develops.

When two individuals reproduce, their genotypes are copied and recombined to obtain the
genotype of their offspring: the latter thus inherits characteristics described in the genotype of
its parents.

Random mutations occur in the genotype as well: the blind variation caused by genotype

recombination and mutation occasionally produces an individual with a superior phenotype;

21

this individual will be more fit for reproduction, and therefore will produce more offspring.

Any kind of optimization problem can be tackled by means of an evolutionary algorithm:
if we have the possibility to encode the problem parameters in some way so to constitute an
individual and to evaluate an individual’s fitness when it is needed, then the problem can be
addressed by pursuing the same dynamics underlying natural evolution.

More precisely, first a population of individuals, i.e. potential solutions of the problem, is
initialized in a random way; then the population evolves through a number of iterations named
generations, according to rules of selection and reproduction by means of genetic operators.

During reproduction, individuals are altered by genetic operators such as mutation, that
allows the emergence of new genetic information, and recombination or crossover, that allows
the actual reproduction of existing individuals. The selection procedure on the other hand

favors the propagation of high-fitness individuals to later generations.

As the search progresses, an evolutionary algorithm population converges to fitter and fitter
individuals: the algorithm stops after a specified number of iterations, when a sufficiently good

solution is found, or after the fitness of the population stops improving.

EAs are useful for optimization problems where the search space is non-linear and mul-

timodal, or where the fitness function cannot be differentiated: indeed their stochastic and

population-based nature allow them to identify multiple local optima.

4

Research Motivation

22

Bayesian Network Structure Learning is a task that, if accomplished, would pave the path

for Bayesian modeling and would therefore contribute to provide further insight into countless

state-of-the-art research topics.

As pointed out by Uusitalo in [23],

“Bayesian modelling [sic| techniques have several features that make them useful
in many real-life data analysis and management questions. They provide a natural
way to handle missing data, they allow combination of data with domain knowledge,
they facilitate learning about causal relationships between variables, they provide
a method for avoiding overfitting of data [24], they can show good prediction ac-
curacy even with rather small sample sizes [25], and they can be easily combined
with decision analytic tools to aid management [26-28]. On the other hand, their
ability to deal with continuous data is limited [28], and such data generally needs
to be discretized, which may cause certain difficulties. Bayesian networks are also a
useful tool for expert elicitation and combining uncertain knowledge when used with
care. Furthermore, building models forces us to think clearly about the subject, and

articulate that thinking in the form of the model. This is often beneficial in and of

23

itself [27,29].”

For what concerns medical and biomedical contexts, available applications include:

medical diagnosis [30, 31];

pathway modeling [32,33];

integrative modeling and combinatorial control of RNA alternative splicing [34];

cellular networks inference [35];

e genetics and phylogeny linkage analysis [36]

Learning the structure of Bayesian Networks may also contribute to conduct research on
many topics related to several other domains, including;:

e bayesian networks applied to Information Retrieval [37];

e environmental modeling and management [27,38-46];

e text analysis [47];

e evaluation of scientific evidence [48];

e image semantic retrieval and object recognition [49,50];

e setup of an internet security network [51].

The variety of possible applications and BNs generalization capability make the above-

mentioned task as ambitious as complex: as a matter of fact, in the literature a plethora of

24

methods for BN structure learning are already provided, although each of them results to be
more suitable only for certain applications or only if we constrain the problem itself in terms

of network or data sample sizes.

5 Contribution of This Work

Given a well-defined set of nodes and fully observed data, this work aims at providing a
method able to learn the structure of the Bayesian network underlying a set of data samples,
by focusing on problems with a limited amount of available data, that is often the case of

biomedical applications.

In particular, in this thesis work we aim at designing a hybrid BN structure learning al-
gorithm able first to reliably reduce the search space and then to exhaustively explore it as
optimally as possible, by taking advantage of data-informed expedients as well.

Aside the first CB phase used to restrict the search landscape, the proposed approaches
involve a parameterized Genetic Algorithm in order to pursue the task: this metaheuristic has
been chosen because of its efficient global search capabilities even across a very large search
space (in this case the space of DAGs extractable from a set of vertices, or rather a related
super-structure) and because of its flexibility and adaptability; on the other hand Evolutionary
Algorithms are generally characterized by a numerous set of parameters, that have to be care-
fully tailored with respect to the application in hand in order to make them efficiently explore

the search space.

25

Another primary target we want to achieve is indeed to design a method that is as insensi-
tive as possible to any parameter variation, that is conceivably capable of adapting to a wide
range of problems in terms of size and density — for what concerns the Bayesian network itself

—and in terms of sample size — for what concerns data, in an as unsupervised as possible fashion.

This work in the first place utilizes Vafaee et al.’s findings in [52,53] in order to enhance
the search phase performed by the genetic algorithm in two ways: by optimally steering search
efforts towards some data-driven direction on the basis of [52] and by keeping the balance be-
tween exploration and exploitation on the basis of [53]: we will outline more in detail these

improvements in Section 5.4.

Moreover, we propose a novel, additional enhancement suitable for any of previously pre-
sented genetic strategies in Section 5.5 and a further variation of it in Section 5.6, based on a
dynamic, data-informed determination of the parents set of each node of any individual across
the evolution, aimed to smartly limit the above-mentioned set and thus allow the application
feasibility of presented methods to large networks, address data fragmentation issues and fur-

ther reduce the search space throughout the evolutionary process.

6 Thesis Outline

The remainder of this thesis is organized as follows:

26

e Chapter 2 provides an extensive literature overview about Bayesian networks structure

learning.

e Chapters 3 and 4 present the theoretical foundations of the two branches underlying the
generic approaches to Bayesian network structure learning, i.e. Constraint-Based and

Search and Score methods.

e Chapter b first gives a brief introduction on Hybrid methods, as well as an overview of the
strategies and objectives taken into consideration in the design of our algorithms; then
it provides a detour across the progressive enhancements that characterized the creative
process underlying the implementation of our methods; in particular this additive process
culminates with the research contribution offered in this work, covered by the two final

strategies reported in this chapter.

e In Chapter 6 it is reported an exhaustive evaluation of the proposed methods within a rich
benchmark composed of a plethora of test cases, jointly with a performance comparison
with respect to a variety of other competitor strategies, as well as among the introduced

algorithms themselves.

e Chapter 7 summarizes the proposed methods as well as related advantages and disadvan-

tages emerged from experimentation.

e Finally, Chapter 8 outlines the future research directions under the thesis topic.

CHAPTER 2

A DETOUR INTO BAYESIAN NETWORK STRUCTURE LEARNING

LITERATURE

This chapter offers an exhaustive literature survey on the topic of Bayesian network structure
learning. The collection of methods included in this historical overview is here classified with
respect to the standard Bayesian network structure learning taxonomy distinguishing among

Constraint-Based (CB), Search and Score (S&S) and Hybrid methods.

1 Constraint-Based Structure Learning

Historically, the first developed methods for bayesian network structure learning were Constraint-
Based. The idea is straightforward: an optimal structure among all the possible ones is found

by progressively constraining the search space in some way.

1.1 Inductive Causation algorithm

Inductive Causation (IC) method by Pearl [4] is based on Inferred Causation, a definition
derived from Occam’s Razor [54]: “a variable X is said to have a causal influence on a variable

Y if a directed path from X to Y exists in every minimal structure consistent with the data.” [4]

27

28

At the beginning the graph is initialized as empty. Then, in a first loop, for each pair of
vertices, it is driven a search for the minimal set (i.e. the minimum size set that satisfies a
condition) Sy so that a 1L b | Sy ; if this set is empty, a and b can be connected with an edge.

In a second loop, for each non adjacent pair (a,b) with a common neighbor ¢, if ¢ ¢ Sy
then this means that the compound (a, ¢, b) is a v-structure, i.e. a collider pointed by two other
vertices; when a v-structure is identified, the procedure adds arrowheads to c.

As a last step, the built structure is explored in order to orient as many as undirected edges
as possible so that vertices are not added nor cycles are created.

At the end of the procedure some edges may be not oriented: indeed this algorithm does
not return a DAG but a Partially Directed Acyclic Graph, i.e. a PDAG or a pattern. Hence, a

further method is needed to convert the PDAG in a DAG compatible with the BN.

1.2 Causality Search Algorithm

The Causality Search (PC) algorithm by Spirtes [7] is another traditional and basic CB

method for BN structure learning.

It is based on four hypotheses, here directly reported from [7].

1. “The set of observed variables is causally sufficient.

2. Every unit in the population has the same causal relations among the variables;

29

3. The distribution of the observed variables is faithful to an acyclic directed graph of the
causal structure (in the discrete case) or linearly faithful to such a graph (in the linear

case).

4. The statistical decisions required by the algorithms are correct for the population.”

The first step in this algorithm is to initialize the complete graph given the V set. Further-
more, for each pair (X,Y) an (initially empty) Separation Set SepSet(X,Y) is initialized.

Next a sequence of loops starts, with each loop characterized by an increasing index n,
initially 0: for each pair (X,Y") of adjacent nodes so that their neighbors are in equal or higher
number to n, all possible combinations of neighboring sets as condition sets are evaluated with
CI tests; as soon as a CI test results in independence between X and Y, the edge of the pair is
deleted and the separating condition set is recorded in SepSet(X,Y).

This sequence of loops stops when all the sets of neighbors of each pair of nodes is of
cardinality lower than n. Then it begins the second part of the algorithm, where edges are
directed on the basis of v-structures identification and induction rules.

V-structures identification works exactly as in the IC algorithm: given a triplet of nodes
(X,Y, Z), if only one of them is adjacent to both the other two and if it does not belong to the
separation set of the other two nodes, then the triplet results to be a v-structure with the node
adjacent to the other two being the collider.

Induction rules are then applied until there exists an unoriented edge in the graph; as

reported by Pearl in [4]:

30

1. “Orient (B—C) into (B — C) whenever there is an arrow (A — B) such that A and C

are nonadjacent.

2. Orient (A—B) into (A — B) whenever there is a chain (A — C — B).”

1.3 Three-Phase Dependency Analysis algorithm

The Three-Phase Dependency Analysis (TPDA) algorithm, developed by Cheng et al. [55]
is an information-theory based approach structured in three phases, i.e. drafting, thickening

and thinning, followed by a final orientation for undirected edges.

First drafting phase consists in the Chow-Liu algorithm [56]: it starts with a null graph,
then a mutual information based independence test is executed for each couple of vertices and
subsequently all nodes pairs are ordered in a list with respect to the dependence value, in
decreasing order; for each pair (X,Y’) of nodes in the list, if there does not exist an adjacency
path between X and Y then edge (X —Y) is added to the graph and pair (X,Y) is removed
from the list.

Second thickening phase checks whether an edge is needed by examining all remaining edges
in the list and, if that is the case, it adds the edge.

Third thinning phase, given each edge in the built graph, first verifies whether there exists
at least one path connecting the two vertices of the edge, besides the edge itself; if at least an

alternative path exists, then the edge is temporarily removed and its need is checked: if the

31

edge is not needed the temporary removal is confirmed, otherwise the edge is reinserted in the
graph.
Lastly all edges are directed by means of standard orientation rules inherited by Pearl’s

method [4].

1.4 Grow-Shrink algorithm

The Grow-Shrink (GS) algorithm [57] operates in a local fashion: it first identifies the local
neighborhood of each variable in the BN, then applies a series of conditional independence test

by taking into account a vertex neighborhood per time.

The Markov Blanket of a node X, Mb(X), is the set of parents, children and spouses
(children’s parents) of X [58]: it can be found by grouping all variables that result (one per
time) in a dependence relationship with X, conditioned on all remaining vertices.

This algorithm is based on the Total Conditioning property: given a faithful causal graph,
each parent, child or spouse of a node stores information about that node that cannot be ob-

tained from any other variable.

First the Markov Blanket of each node is calculated, and the graph is converted to its moral
graph, i.e. its undirected version with all spouses into each Markov Blanket linked together by

additional edges.

32

One node per time, a CI test between it and each vertex in its Markov Blanket conditioned
on all possible subsets of the remaining portion of the Markov Blanket is executed: in case it
results independence, the edge between the two vertices taken into account is deleted.

What follows next is the orientation phase: for each vertex X and every vertex Y € Mb(X),
all neighbors Z of X but not of Y are considered; for each neighbor the algorithm tries to orient
Y towards X: if it results that there exists a Z so that Y and Z are conditionally dependent
given all combinations of their markov blankets, then orientation is confirmed, otherwise it is

removed.

1.5 Recursive Autonomy Identification algorithm

A more recent, recursive method is given by the Recursive Autonomy Identification algo-
rithm, developed by Yehezkel et al. [59]; this approach attempts to tackle the problem when
few data are available (although sample dataset should be large enough to ensure sufficiently

reliable CI tests).

An important concept which this method deals with is the d-separation resolution: it is
defined between a pair of two non-adjacent nodes as the size of the smallest condition set
that d-separates them; furthermore, d-separation resolution of a graph is defined as the highest

d-separation resolution within it [59].

33

The graph G is decomposed through the identification of substructures and exogenous
causes; a node Y is an erogenous cause to a subgraph G’ € G if Y is not within G’ and if
Y is a parent or a neighbor of X, for all vertices X in the substructure.

A substructure QA(VA, EA) € G is defined to be autonomous in G given a set Vexr € V of
exogenous causes to G4 if all vertices’ parents in the substructures are in the substructure itself
or in the exogenous causes set; moreover, if all parents are within the substructure, the latter
is named a completely autonomous substructure [59].

A fundamental principle which this algorithm is based on is that if two variables are inde-
pendent within a substructure, then they are independent in the whole graph as well.

This method needs also to assume two hypotheses, i.e. that a DAG can encode all the inde-
pendences entailed from given data and also that data sample size is large enough for reliable

CI tests.

Recursion occurs with respect to n, the d-separation resolution; at each recursive iteration
three actors are involved: Ggiqre, with a d-separation resolution of n — 1, G.,., constituting a set
of structures, each having possible exogenous causes to Ggtart, and Gy, that contains Gsrart, Ger
and edges connecting them.

At initialization phase n is set to 0 and Ggert and G,y are initialized as the complete

undirected graph.

34

As a first step, in the recursive function it checks the exit condition: if all nodes in Vg
have a number of potential parents lower than n 4+ 1 then the branch reached the end of its
recursive path and G, is returned as output graph.

If the exit condition is not undertaken, here it is executed the phase involving the thinning of
the link between G, and Ggqrt: for every edge between G, and Ggtqrt, if there exists a condition
set sized n that d-separates the two vertices of the edge, then the latter can be removed from
Gair; then it follows a possible orientation of G4+ edges by means of standard orientation rules.

A similar step to previous one is then executed: now the focus is on Ggqre, that is thinned,
directed and decomposed. Now all edges contained in Ggqrt are taken into account, tested for CI
and possibly removed; next edges that can be directed are oriented; finally the decomposition
occurs: first lowest topological order nodes are grouped into a descendant substructure Gp, then
all unconnected structures resulting from G,;;\Gp are defined as ancestors Gay,...,Ga.

Recursion is then triggered, first for all ancestor substructures (with G/, = G.;) and then

for the descendant one (with G/, = {Ga1,...,Gar}); then the recursive function returns.

An advantage of this method is that graph decomposition decreases dependence on node
ordering, because it is not arbitrary as it happens for instance in PC algorithm.
On the other hand, in general the algorithm returns a partially directed acyclic graph, so

an external procedure to orient remaining undirected edges is required.

35

Authors refer also to the possibility of an interrupted learning approach, where the stop
condition is enhanced with the reaching of some d-separation resolution order: in this way
what we get is a PDAG with more undirected edges with respect the base case, but also a more

reliable graph.

1.6 Opt01SS algorithm

An efficient state-of-the-art CB-based method is the Opt01SS algorithm [60]: it learns
super-structures using only 0"— and 1°*—order CI tests in a way that takes into account the
presence of approximate-deterministic relationships and inconsistent ClIs, commonly found in

data scarcity contexts.

A super-structure is an undirected graph assumed to contain all true edges [of the target
BN structure G] [59].
A sound super-structure of G is any PDAG S that contains the skeleton of G; a super-

structure that is not sound is said to be incomplete [59].

Opt01SS aims at tackling two problems that are especially relevant when sample is small:
presence of approximate deterministic relationships and inconsistency in CI testing.

An Approximate Deterministic Relationship (ADR) is a “fortuitous” strong association be-
tween two variables, related to the fact that a consistently large portion of data exhibits by

accident a deterministic relation for those variables.

36

Inconsistent Conditional Independence and Dependence (CIDS) statements are occurrences
“that cannot be simultaneously represented on a perfect map” [60]; this problem is caused by
false detected Cls: they commonly lead to edges removal, even if they should not be removed.

Both presented problems may lead to a wrong choice for a pair of nodes’ separator, i.e. the
vertex that actually d-separates the two nodes in the pair: strength of this algorithm resides

exactly in its ability to identify the correct separator, even after a wrong choice.

At initialization phase the super-structure, from now on named SS, is initialized as the
complete undirected graph underlying the whole set of vertices; a cache C.x y~ containing a
slot for each pair of nodes is also allocated; the cache, when a query is asked, returns the (last)
separator node recorded for the pair of nodes taken into account.

First step is given by 0%-order CI tests: for all edges in SS, if it results unconditional
independence between the nodes of the edge then the latter is deleted from SS and the cache
entry for the edge is updated with an empty set.

Next it begins the 1%¢-order CI tests phase: the set of edges to check, i.e. E2Check is
initialized as the set of edges in SS remained after first step of the algorithm; then a loop starts:
it will stop only when E2Check = ().

All edges in E2Check so that both vertices in the edge have more than one only neighbor
are then considered one per time in an inner loop, where three sets are built: first set contains
neighbors of both vertices whereas the second and the third ones include only the neighbors

to one vertex but not to the other one; moreover the vertices pair’s separator Z (if any) is

37

retrieved from the cache. The same looping procedure, given the edge under analysis, is then
executed for each of the three above-mentioned sets: if the CI test, conditioned on each vertex
in the set (but excluding the last separator Z retrieved from the cache), succeeds, then the
edge is deleted from SS and inserted into the set of deleted edges, i.e. EDel, and the procedure
continues with the next edge in EF2Check.

After a preliminary check on all 1%%-order CI tests, the separators robustness verification
phase starts: E2Check is set as empty and all edges in FE Del are taken into account in a second
inner loop; if the last separator recorded in the cache for the current edge is not a neighbor of
any of the two vertices in the edge, then an ADR is identified: the edge is thus reinserted in
the E2Check set.

The final step is needed to solve inconsistent non-edges: here the necessary path condi-
tion [61] is exploited in order to restore inconsistently deleted edges. First the set F Restored is
initialized as empty, then, for each pair of vertices not in SS so that their cache entry contains
a separator, if there does not exist at least one path connecting each vertex with the connector
that does not include the other vertex, then the absent edge is considered to be inconsistent

and it is added to E Restored; finally all edges in F'Restored are added to SS.

2 Search and Score Structure Learning

Score-based learning is another canonical technique useful to identify the optimal structure

of a BN: its core resides in a scoring function used to estimate the goodness of fit of a structure

38

to the data, whereas its goal is to find the highest fitting structure.

As Liu et al. pointed out in [62], “solving the learning problem exactly becomes impractical
if the number of variables is too large. Consequently, much early work focused on approximate
algorithms, such as greedy hill climbing approaches [63,64], tabu search with random restarts
[65], limiting the number of parents or parameters for each variable [66], searching in the space
of equivalence classes of network structures [67] and the optimal reinsertion algorithm (OR) [68].
These algorithms use local search to find ‘good’ networks; however, they offer no guarantee to
find the one that globally optimizes the scoring function.

Recently, exact algorithms for learning optimal BNs have been developed based on dynamic
programming [69-73], branch and bound [74], linear and integer programming [75, 76] and
heuristic search [77-79].”

Another recent S&S-based approach is given by evolutionary computation methods such as

genetic algorithms.

In Section 1 it is provided a review on most known scoring methods in the literature.

2.1 K2 Algorithm

The popular K2 algorithm by Cooper and Herskovits [63] uses a greedy search method and

does not necessarily need an upper bound on the number of parents a node can have, even if a

39

maximum indegree is requested as input.

The K2 search begins by assuming that a node has no parents and then greedily selects as
its parents the variables from a given ordering whose addition best improves as much as possi-

ble the score of the resulting structure in an incremental fashion, until the score stops to increase.

The scoring function employed in this heuristic is the K2 metric, described more in detail
in Section 1; one advantage of this approach is that K2 score prefers simpler structures [80].
On the other hand, a limitation to this method is that BN evaluation depends on the choice

of a node ordering, needed as input to the algorithm.

2.2 Maximum Weight Spanning Tree algorithm

The Chow-Liu [56] Mazimum Weight Spanning Tree (MWST) algorithm was among the
first S&S methods for BN structure learning; its goal is to find a tree that maximizes the data

likelihood.

First step is to compute a weight for each possible edge of the graph: in other words, each
edge is provided with a score associated with data, defined by the mutual information function.
Then the algorithm attempts to find a maximum weight spanning tree, i.e. a tree with

the greatest total weight that reaches all nodes; one common practice is to follow a greedy

40

approach, i.e. to greedily add edges making sure the structure is a tree at every step. Standard
approaches for tree construction are used, such as Kruskal or Prim algorithms.
Last step consists in edges orientation: it can be done after the scoring step because the

weighting method assigns a score to each edge regardless of its orientation.

A limitation of this approach is the need to choose a root node.

2.3 Tree-Augmented Naive Bayes algorithm

This algorithm, written by Friedman et al. [81] is an extension to the MWST algorithm,

specialized in building a tree augmented network for a given class node.

The first step determines the weight of each edge of the network, on the basis of a conditional
mutual independence scoring method, conditioned on the class node.
Remainder of the algorithm is the same as in MWST, with the difference that it will return

a specialized tree with a class node as parent of all the remaining nodes.

A tree built by this method has one node with no parent (class node), one node with only
the class node as parent (root) and all the other nodes with two parents (class node and some
other node in the tree).

An advantage given by this algorithm is search space reduction: the set of parents of each

variable is restricted to a small subset of candidates. On the other hand its behavior depends

41

on the choice of equivalence class and root nodes.

2.4 Hill Climbing algorithm

The Hill Climbing (HC) algorithm, developed by Buntine in 1994 [82], is a local method for
BN structure learning, in the sense that at each step the algorithm considers all available local

operations and chooses the one that yields the best improvement.

This method starts by taking as input a dataset defined over V' and a DAG defined over V,
usually the empty graph. At each step the algorithm computes the differences in the overall
score with respect to all possible local arc operations, i.e. addition, deletion and reversal, and
chooses the one with the highest positive difference; the process is repeated until score improve-

ment occurs.

2.5 Sparse-Candidate algorithm

In 1999 Friedman et al. [66] proposed the Sparse-Candidate algorithm: it constitutes a way

to accelerate learning BN structures from data sets with many variables.

First the set of possible parents (candidates) for each nodes is restricted by means of sev-
eral metrics, then a BN is learnt on the basis of these restrictions, through a traditional HC

algorithm; after that the obtained network is used to update the sets of candidate parents, the

42

entire procedure is iterated.

The main advantage of this algorithm with respect to traditional HC method is the speed

enhancement on large data sets.

2.6 Optimal Reinsertion algorithm

The Optimal Reinsertion (OR) algorithm, introduced by Moore and Wong [68] works along
the following lines: at each step a target node is chosen, all edges entering or leaving the target
are deleted, and after that the optimal combination of in- and out-edges is found the node is

re-inserted in the network with these edges.

The Sparse-Candidate enhanced version of this algorithm is characterized to be faster and
more suitable to large networks. This algorithm is especially useful on large data sets and
resulted to be faster and more performing than HC, in particular when the search space has

many local minima.

2.7 Greedy Equivalent Search algorithm

The Greedy Equivalent Search was developed by Chickering [9] in 2002.

The graph is initialized with no edges, then it follows the forward phase and the backward

phase.

43

During the forward phase, at each step it is considered the essential graph related to current
PDAG instantiation, and it is added the edge that allows to get the highest possible score for
the newly obtained essential graph; this process is repeated until it is not possible to improve
the score anymore.

In the backward phase the essential graph related to current PDAG instantiation is consid-
ered once again: by taking into account all DAGs formed from the current PDAG after the
edge deletion that leads to the highest possible scoring PDAG, if one of them has a higher score
than all possible instantiations of current essential graph, then the deletion is confirmed; the

process is repeated until score improves.

2.8 Ordering Search algorithm

In 2005, Teyssier and Koller [83] presented another learning method that searches over the

space of node orderings.

It consists in a greedy hill climber with tabu lists and random restarts and resulted to be
competitive with more complex algorithms; its efficiency is explained by the same main advan-
tage of K2 algorithm, i.e. the best network can be found very efficiently, with a given node
ordering. Indeed the orderings search space “is much smaller, makes more global search steps,

has a lower branching factor and avoids costly acyclicity checks” [83].

44

2.9 Markov Chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a
probability distribution based on constructing a Markov chain that has the desired distribution
as its equilibrium distribution [84]; they operate by generating each sample on the basis of a

random change to the preceding sample.

A consistent amount of work in BN structure learning literature (e.g. [85-87]) involves
the Metropolis-Hastings strategy, that belongs to the category of Random Walk Monte Carlo
methods.

The Metropolis-Hastings algorithm allows to sample any probability distribution P(z) given
a known function f(z) which is proportional to P density; in this context, the probability distri-
bution is given, in the simplest implementation, by the space of DAGs constituting all possible

instances of the target BN, whereas the known function is the scoring metric.

At each iteration, the algorithm uses some heuristic to select a candidate to sample next
value on the basis of current one (Markov Property): if the candidate is more fit than starting

sample then it is accepted, otherwise old sample is restored.

In particular, the candidate selection heuristic must be based on a symmetric distribution,

i.e. the probability of transitioning from sample x to sample z’ is the same of the opposite

45

transition. A usual choice is to let the selection probability density be a gaussian distribution
centered at current sample, making the sequence of samples into a random walk.
Moreover, Gibbs sampling methods can be used to implement algorithms able to work with

incomplete data, as in Antal et al. [87].

2.10 Simulated Annealing methods

Several Simulated Annealing approaches are present in the literature for what concerns BN
structure learning [85,88-90]: they are all based on the same principle of simulated anneal-
ing, a general method for solving unconstrained and bound-constrained optimization problems;
specifically, it is a metaheuristic useful to approximate a large search space.

Simulated annealing [91] interprets slow cooling as a slow decrease in the probability of ac-
cepting worse solutions as it explores the solution space, with the advantage of a more extensive

search.

The algorithm presented by Carrillo et al. [85] constitutes an application of simulated an-
nealing to BN structure learning with Bayesian score (described in Section 1) as a measure of
goodness, focused on small datasets.

This method, although relatively faster with respect to other metaheuristics such as genetic

algorithms, requires a predefined ordering on the nodes, and results sensitive to it as well.

46

First step consists in computing mutual information distribution for each pair of vertices
following a particular pattern: each computed value MI(z;, ;) is added at the corresponding
position of a n x n matrix (n = |V|) to the sum of previous pair MI(z;—1,z;): as a result, each
matrix column will contain a distribution of MI of the variable X;.

In the simulated annealing step, all possible parents for the current node are eligible to be
chosen on the basis of their associated probability, defined as their MI value normalized with
respect to all nodes. According to this distribution, nodes characterized by the highest MI with
current node are more likely to be selected as its parents; when a parent node is selected, if the
arc from it to the current node is not already included in the structure and if the node’s fan-in
is not already at the maximum allowed value, then it is added, otherwise it is not inserted.

Once the neighbor configuration of parents is obtained it is scored: the configuration is
accepted and will replace previous one only if its evaluation yields a better score, on the basis
of Metropolis-Hastings approach. The process is then repeated until no more improvement on
the score can be obtained.

This procedure is iterated for each node: after all nodes have been analyzed, the constructed

BN structure is deprived of redundant arcs and then it is returned as the best found structure.

2.11 Evolutionary Algorithms

Among the various application fields, genetic algorithms, categorized as a branch of evolu-

tionary algorithms, have been also previously used for BN structure learning, in S&S as well as

47

in Hybrid methods [15,92-97].

2.11.1 Larranaga algorithm

In 1996, Larranaga et al. [92] proposed one of the first GAs for learning BN structure:
individuals are given by adjacency matrices (a possible representation for graphs) and the LL
score, presented in 1 has been used as fitness function.

Their mutation and crossover operators are able to always generate a valid DAG, with a
given node ordering; they also tackled the learning problem without having a node ordering
available, by providing the procedure with a repair operator which randomly removes edges
within cycles until the DAG property is satisfied. They also restrict the maximum number of

parents for any node to four.

2.11.2 K2GA algorithm

This method, developed by Larranaga et al. [93], is basically a GA enhancement of the K2

algorithm.

The K2 method can generate a BN from a dataset once a node ordering is given: the GA
is indeed used to search for a near-optimal ordering between the variables, with the K2 score
(described in Section 1) serving as fitness function.

The authors compared numerous crossover and mutation operators that were previously

used for the Traveling-Salesman problem. One limitation bounded to the employment of the

48

K2 algorithm is given to the need to set a maximum fan-in for each node.

2.11.3 Chain-Model Genetic algorithm

To reduce the time complexity of K2GA [93], Kabli et al. [95] proposed a Chain-Model GA

which attempts to evaluate and thus select node orderings by relying on chain structures.

The base hypothesis in this approach is that node ordering mainly determines the score for
a given network structure: in other words the final K2 score on the overall structure, given a
node ordering, is assumed to be directly proportional to the K2 score evaluated on the simple

chain structure obtained given the same ordering.

Given that each individual’s node has at most one parent only, fitness evaluation during

evolution is much faster with respect to standard K2GA.

Analogously to K2GA, also this method is dependent to the maximum fan-in parameter.

2.11.4 Carvalho’s Cooperative Coevolution Genetic Algorithm

In 2011, Carvalho et al. [96] proposed a cooperative-coevolution GA for learning BN struc-
tures. Here two independent subpopulations are considered, the permutation species, repre-
senting a node ordering, and the binary species, that represent actual DAGs, or rather upper-

triangular adjacency matrices constituting BN graphs, given a node ordering.

49

The authors used cycle crossover and swap mutation for the permutation subpopulation,
and two-point crossover and bit-flip mutation for the binary subpopulation. This method allows

no restrictions on the number of parents a node can have.

2.11.5 uGP algorithm

uGP is an EA software developed by the CAD Group of Politecnico di Torino [98]: provided
with its capability of encoding individuals as tagged graphs, it was used by Tonda et al. [97] to

learn BN structures as an S&S technique.

The individual representation has two parts: a DAG and a node ordering; arcs are generated

only from one node to nodes that follow it in the order, so to avoid loops by construction.

This method deals with a maximum number of parents per variable.

3 Constraint-Based — Search and Score Hybrid Structure Learning

Latest advances in Bayesian Network Structure Learning involve the adoption of a Hybrid
approach that attempts to take the best of both CB and S&S worlds, in which first a CB
method is applied in order to constrain and reduce the search space, and then a S&S method

is used so to identify the possibly optimal structure in the remaining portion of the search space.

50

3.1 CB algorithm

In 1995, Singh and Valtorta [99] presented their CB algorithm, an iterative method for

learning BN structures.

It is articulated in several phases: first CI tests are used to restrict the search space and
create an undirected graph of the variables; then some edges orienting heuristics are applied,
so to obtain an ordering of the nodes; finally K2 is executed using the obtained node ordering.

This process repeats until K2 score stops improving.

3.2 Wong’s Cooperative Coevolution Genetic Algorithm

In 2004 Wong et al. [94] presented their Hybrid Cooperative-Coevolution Genetic Algorithm

(CCGA) for learning BN structures.

Starting from the complete DAG, in the first phase they apply all possible 0?*- and 1*-order
CI tests so to possibly exclude from consideration certain edges, thereby reducing the search
space.

In the second phase they use a collaborative-coevolution algorithm that splits the structure-
learning problem into a set of subproblems, one per variable: each subproblem aims at learning
a set of parents for each node, and constitutes a single, independent population to evolve, with

each row of the network’s adjacency matrix being the string representation of the individual.

o1

In order to reduce the chance of creating cyclic structures they adopted an approximate
ordering on the nodes.
Wong et al. reported that their algorithm outperforms the previous Minimum Description

Length and Evolutionary Programming (MDLEP) algorithm of their own.

3.3 Hybrid Structure Learner using Genetic Algorithm

In 2014 Vafaee [15] proposed her Hybrid Structure Learner using Genetic Algorithm (HSL-
GA), focused in particular on problems involving networks of medium to large size and a limited

dataset.

This Hybrid strategy first builds a super-structure, i.e. an undirected super-graph that is
possibly likely to contain the target DAG: 0*"-order CI tests are performed in a constraint-based
fashion in order to get a reliable super-structure; this is done so to deal with a reduced search
space.

At the second stage, the GA procedure attempts to pick the highest-scoring DAG among
all possible subgraphs of the original super-structure. An individual is built as a ternary string
of loci, where each locus represents an edge that was present in the starting super-graph and
that can assume three possible states during evolution: orientation in one of the two possible

directions or absence.

52

The used approach is elitist: indeed during selection the best individual is retained and will
be propagated to next generation, in the case it will still be the most performing one. The

best-fitting part of population is then selected to undergo the reproduction phase.

This method involves a conventional uniform mutation and single-point crossover; moreover
a Minimum Feedback Arc Set removal function is applied to each individual after reproduction

phase, so to ensure the validity of the reproduced DAGs population.

Since the goal of Vafaee’s work was to get an as close as possible representation of reality
she decided to evaluate performance by means of matching accuracy, i.e. Fy score [100].

Vafaee reported that HSL-GA outperforms a set of other relevant BN structure learning
methods (including MWST and K2) regardless of data size, for sample sizes varying from 30 to

100.

CHAPTER 3

CONSTRAINT-BASED STRUCTURE LEARNING

Constraint-Based (CB) algorithms rely on a number of Conditional Independence tests to
determine, given a conditioning set, whether two variables are independent.

They usually construct DAGs in two stages: first by learning the direct dependences between
variables so to produce an undirected graph structure, then by directing the edges through the
employment of orientation rules. The first stage requires a number of CI tests that grows ex-
ponentially with the number of variables, thing that makes CB methods adopt some heuristics

to restrict the size of the condition set [15].

Possible constraints may be conditional independence or structure-based statements, but the
latter case is applicable only in certain cases where latent variables are taken into account [8];
thus, since in this thesis work we are only interested in domains without missing values or latent

variables, the constraints we take into account are only conditional independence statements.

1 Conditional Independence Test

CI testing is commonly implemented through a metric estimating statistical independence

between variables, such as Pearson’s x?, likelihood-ratio G2-test or by thresholding Conditional

53

54

Mutual Information.

1.1 Mutual Information

Mutual Information between variables X and Y is described by the Kullback-Leibner Diver-
gence between the joint distribution Pr (X, Y") and the product of single distributions Pr (X) Pr (Y)
[101]:

MI(X:;Y)= > Pr(m,y)logppr(x’y)

&Y (3.1)
veXaey r(z)Pr(y)

It measures the amount of information shared between the variables X and Y': if this quantity is
considered to be negligible, i.e. below some threshold, then the two variables can be considered
independent [102].

As reported in [103], the Conditional Mutual Information between X and Y measures the
information flow between X and Y given a conditioning set S:

Pr (2, ls)
Pr (a]s) Pr (y]s)

CMI(X;Y|S)= > Pr(z,y,s)log
zeX,yeY,seS

1.2 Pearson’s y?

The standard, most popular CI test is Pearson’s x? test for statistical significance [104]: it
is a statistical hypothesis test, i.e. a method that proves a hypothesis by observing a process
modeled via a set of random variables, where the sampling distribution of the test statistic is a

x? distribution when the null hypothesis is true.

95

As stated by Pearson in [104], “the quantity
X = S(—) (3.3)

is a measure of the goodness of fit [of data to the model given by the distribution, where m
is the vector, with each element related to a random variable, of the theoretical frequencies
supposed known a priori, e is the error vector, with each element related to a random variable,
between the observed frequencies and the theoretical frequencies and with S indicating a sum
over all the elements of the resulting vector].”

In this case this test is used to reject the hypothesis that data and related random variables

are independent.

1.3 G2 Likelihood-ratio

A theoretical generalization to Pearson’s x? test is given by the G? likelihood-ratio test [105],

that formally correlates likelihood ratio to Pearson’s test.

By quoting the words of McDonald in [105], “the G-test uses the log of the ratio of two
likelihoods as the test statistic, which is why it is also called a likelihood ratio test or log-

likelihood ratio test. [...] The equation is

2y (O ‘In (g)) (3.4)

56

[where O constitutes the vector of observed values and FE the vector of expected values relatively

to the set of random variables.]”

As MacKay and Sokal et al. reported in [106,107]: “in general, with smaller amounts of
data, the chi-squared test will sometimes give incorrect answers, whereas the G-test will not,

and so is the recommended test.”

Both x? and G? statistical tests return a value: if it is lower than the critical value, i.e.
some predefined threshold, then the null hypothesis cannot be rejected and involved variables

are considered to be (conditionally) independent.

CHAPTER 4

SEARCH AND SCORE STRUCTURE LEARNING

Search and Score (S&S) methods involve a strategy for searching through the space of pos-
sible structures and a scoring function able to estimate the fitness of each structure to the data.
It works as any test-and-set approach: in this particular case the goal is to maximize the score
at each step by transitioning from one structure to another through some local variation oper-
ators (e.g., edge deletion or addition), and iterating this process until score stops improving or

a stop condition is met [15].

When tackled in this way, the task can be formalized as a static optimization problem of

the type

max f(z)|lz € { =, <, + }l, (4.1)

where x is a ternary string of length [(i.e., a solution) and f(z) € R* is its score.

1 Scoring Function

The core of a S&S method is given by the employed scoring metrics, usually categorized

into Bayesian and information-theoretic scoring functions.

o7

o8

A score is said to be decomposable if it can be written as the sum or the product of functions

that depend only of one vertex and its parents [108], as in Equation 4.2.

n n
S(B)=> s(Xi,Pa(X;)) or S(B)=]]s(X; Pa(X;)) (4.2)
i=1 =1
An interesting property for scoring functions is score equivalence: a scoring function ¢ is

said to be score equivalent if it assigns the same score to all DAGs that are represented by the

same essential graph [109].

1.1 Bayesian Scoring Functions

The general idea of Bayesian scoring functions is to compute the posterior probability dis-
tribution, starting from a prior probability distribution on the possible networks, conditioned

to data D, i.e. Pr(B|D). The best network is the one that maximizes the posterior probability.

Pr(D|B)

Pr(BID) = 5

(4.3)

Since the term Pr (D) is the same for all possible networks, in practice, given that we deal
with comparisons, computing Pr (B|D) is sufficient. Moreover, as it is easier to work in the

logarithmic space, the scoring functions use the value log Pr (B|D) instead of Pr (B|D) [109].

99

1.1.1 Bayesian Dirichlet score

Heckerman et al. [24] proposed this score function on the basis of four assumptions on

Pr(B|D):

1. data D is exchangeable, i.e. if an instance of the data is replaced with another instance,

exchanged data has the same probability as the original one;

2. parameters © related to B have a Dirichlet distribution, i.e. the probability density

function for ©;; is given by

-1
k
2J|g CHH’LJ;CJ

with N i > 0, where N ~are the hyperparameters of the Dirichlet distribution;

ijkg=1..
3. the parameters associated with each variable in the network are independent;

4. the parameters associated with each possible parents combination of a variable are also

independent.

The Bayesian Dirichlet (BD) score, derived from Heckerman, Geiger and Chickering theorem

[24] is defined as

Pr (B, D) = log(Pr (B +ZZ <10g(P(]_IF])V)> —|—Zilog (W)) (4.4)

i=1 ij ijk

Unfortunately, as Heckerman et al. recognized, specifying all N k for all 4, j and k is un-

manageable in realistic situations: this makes the BD score unusable in practice.

60

Regarding the term log(Pr (B)), which appears in BD and all expressions derived from it
(K2, BDe, BDeu) in general it is assumed a uniform distribution except if, for some reason,
some structure is strongly preferred. In case of a uniform distribution, this term becomes a

constant and can be removed.

1.1.2 K2 score

Cooper and Herskovits [63] proposed one of the first usable Bayesian scoring functions. The
K2 metric is a particular, simplified case of the BD score, where it is simply applied the as-

signment (N; k= 1), corresponding to zero pseudo-counts.

1.1.3 BDe score

The BD metric involves a parameter that depends on all possible combinations among a

variable and its parents; furthermore it is not score equivalent.

Heckerman et al. [24] addressed this issue by developing a score equivalent version of BD,
called likelihood-equivalence Bayesian Dirichlet (BDe): given a single hyperparameter called the
equivalent sample size, referred to as «, and a prior distribution over network structures, the
BDe metric is able to score a DAG with respect to a sample dataset; its expression is identical

to the BD equation.

This scoring approach is based on two further assumptions, besides BD hypotheses:

61

Likelihood equivalence two equivalent DAGs cannot be discriminated by means of the set

of parameters ©p extracted from data D;
Structure possibility the probability of any complete DAG is nonzero.
Similarly to the BD score, the BDe metric requires knowing Pr (X; = x;, Ilx, = w;;|G) for all

i,j and k: since this knowledge might not be elementary to find, this score is of little practical

interest [109].

1.1.4 BDeu score

A particular case of BDe is given when the prior network assigns a uniform probability to

each configuration of the set of variables and priors distributions:

1

Tiq;

The resulting score is called uniform joint distribution likelihood-equivalence bayesian Dirichlet,

BDeu, and was originally proposed by Buntine [110]:

" Z r= i I'(Nijr + T%.
Pr(B,D) = log(Pr (B)) +>_ 3 <log (F(Niiqﬁ g.)) +3 log (W)) (4.6)

i=1 j=1 k=1 Tigi

This score only depends on one parameter, the equivalent sample size «: it expresses the

strength of our prior belief in the uniformity of the conditional distributions of the network [109].

62

Since this score is very sensitive with respect to the above-mentioned hyperparameter, that
is directly related to the density of the network to be learnt [62], several values are commonly
attempted. As Liu et al. claimed in [62], “if the density of the network to be learned is un-

known, selecting an appropriate « is difficult.”

1.2 Information-Theoretic Scoring Functions

Information-theoretic metrics are based on compression. In this context, the score of a
Bayesian network B is related to the compression that can be achieved when we try to describe

data D with B.

Shannon’s source coding theorem establishes a theoretical lower bound to lossless data com-

pression, as well as Shannon entropy operational meaning.

Theorem 2 (Shannon’s Source Coding Theorem [111]) As the number of instances of
an i.i.d. (independent and identically-distributed) data stream tends to infinity, no compression
of the data is possible into a shorter message length than the total Shannon entropy, without

losing information.

Given data D, it is possible to score a BN B by the size of an optimal code, induced by B,

when encoding D. This value is the information content of D by B and is given by:

n qi T

L(DIB) ==Y Nyilog(6y) (4.7)

i=1 j=1 k=1

63

On the basis of Gibbs inequality, the equation above is minimized when the Bayesian net-
work that induces a code that compresses D the most is precisely the Bayesian network that

maximizes the probability of observing D.

1.2.1 Log-Likelihood score

By applying a logarithm to L(D|B) we obtain the log-likelihood (LL) of D given B: maxi-

mizing the log-likelihood is equivalent to minimizing the information content of D by B [109].

n g T

L(B|D) = ZZZ Nijx log(”k
Nij

=1 j=1k=1

) (4.8)

This score cannot be used as it is, since it does not follow the basic rule of Occam’s razor:
indeed it tends to favor complete network structures without taking into account independence
assumptions of the learned network.

This problem is commonly overcome by using some structure-related penalization function

f(N) over the LL score, of the type:

¢(B|D) = LL(B|D) — f(N)|B], (4.9)

where | B| denotes the network complexity [112], that is, the number of parameters in © for the

network B.

64

1.2.2 Minimum Description Length score

Minimum Description Length is an Occam’s razor approach (the simplest explanation is

the best) to fitting, rigorously defined as:

MDL(B|D) = LL(B|D) %log(N) S (s — 1) (4.10)
=1

where the second term represents the network complexity, i.e. the numbers of parameters in ©
for the network B; each parameter is weighted by %log(N) bits. This score coincides with the
Bayesian Information Criterion (BIC) score based on Schwarz Information Criterion, with the
difference that the latter “is derived based on the asymptotic behavior of the models, that is,

BIC is based on having a sufficiently large amount of data” [62].

1.2.3 Akaike Information Criterion score

The AIC metric [113] is a derivation of MDL score: here we have that f(NN) = 1.

AIC(B|D) = LL(B|D) — |D| (4.11)

1.2.4 Normalized Maximum Likelihood score

The Normalized Mazimum Likelihood (NML) score, recently proposed by Kontkanen et
al. [114], is another approach attempting to formalize the penalizing function appearing in the

LL equation.

65

The idea behind NML codes is the same of universal coding, recasted in a stochastic con-
text [109]. Given a set of probability distributions H the encoder relies on the best-fitting
hypothesis H, i.e. one distribution H € H that will assign high likelihood (low code length) to
the incoming data Dj; therefore, we will like to design a code, related to a distribution H’, that

for all D it will compress D as close as possible to the best-fitting hypothesis H.

In order to compare the performance of a distribution H with respect to H' of modeling D

we can compute:

—log (Pr(D|H)) +log (Pr(D|H")). (4.12)

In the NML metric the penalty term is defined as regret: it is derived from the equation above
in a way that allows a comparison in performance between the best-fitting hypothesis in a set
of probability distributions H and a distribution H not necessarily in H; the regret of H relative
to H for D is:

~ log (Pr(D|H)) - min (— log (Pr(D|H))). (4.13)

We can define Hy(D) as the distribution that minimizes — log(Pr(D|H)).
The universal distribution relative to H for data of size N is one that minimizes the worst-

case regret:

Hy(N) = min max (— log (Pr(D|H)) + log (Pr(D\HH(D)))> (4.14)

66

The penalizing term in this scoring function is given by the parametric complexity of H for

data of size N:

CN(H):10g< > Pr(DHH(D))) (4.15)

D:|D|=N

Thus, for a fixed network structure G, we have:
NMVL(B|D) = LL(B|D) — Cn(Bg). (4.16)

Unfortunately, it is not possible to compute Cn(Bg) efficiently, since it involves an expo-

nential sum over all possible data of size N. Moreover, this score is not decomposable.

1.2.5 Factorized Normalized Maximum Likelihood score

This scoring function is an heuristic enhancement of NML developed by Roos et al. [115] to
make NML method usable in practice.

Factorized Normalized Mazimum Likelihood (fNML) idea is to approximate Cn(Bg) ex-
pression by considering only the contribution to the parametric complexity of the multinomial
distributions associated to each variable given a parent configuration.

This makes the score decomposable as well.

On the other hand this metric is not score equivalent.

67

1.3 Scoring Function Selection

There is no scoring function that is suitable for any situation: each of them is characterized
by advantages and disadvantages. As pointed out by Liu et al. [62], by averaging on the sample
size, BDeu is able to converge to the target network but with an appropriate « value, fNML can
converge very quickly but sometimes it converges to a different network, whereas MDL presents
the best behavior because it often converges to the target network; moreover, with little data,
fNML seems to be a good scoring function and performs better than MDL, that in general still

converges but does it more slowly.

1.4 Indegree and Data Fragmentation

In all S&S methods, if we have not available an extremely large training set, it is reasonable
to put a restriction on the maximum indegree of a variable, i.e. the maximum allowed number
of parents.

Berzan explained the rationality of this supposition in [12] by means of the following exam-

ple:

“Consider a BN where all variables are binary. If a variable X has no parents,
then to compute the Bayesian score we only need two counts from the training set:
D(X = 0) and D(X = 1).