
Bayesian Network Hybrid Learning

Using a Parent Reducing Site-specific Mutation Rate Genetic Algorithm

BY

CARLO CONTALDI

B.S., Politecnico di Torino, Turin, Italy, 2014

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2016

Chicago, Illinois

Defense Committee:

Peter C. Nelson, Chair and Advisor

Fatemeh Vafaee, Co-Advisor, University of Sydney

Rashid Ansari

Mariagrazia Graziano, Politecnico di Torino

To my father, for silently instilling the mastery of the art of perseverance and always giving

me a chance to thrive.

To my mother, for accepting nothing less than completion from me and having the faith to

intercede for me to my grandfather.

To my sister, for always having the power to show me where the light is or how to create it

with the brightest of smiles, when my path or even hers is the darkest.

ii

ACKNOWLEDGMENTS

Though only my name appears on the cover of this dissertation, its production would have

not been possible without the contribution and guidance of many, remarkable individuals.

This thesis work is of great significance to me: convinced that my Master’s thesis would

constitute the apex of my graduate experience, I spent a long time seeking the research task that

best suited my intellectual proclivities. Despite my exhaustive search, my meticulous demands

made me delay my choice until I realized a limited time divided me from expected submission

date: I would like to express my deep appreciation and gratitude to my advisor, Dr. Peter C.

Nelson, for promptly providing me with the freedom to pursue a task that inspired my creativity

more than anything else in my academic career, and always committing to patiently addressing

every single requirement of my graduate program. I am also thankful to him for believing in

me from the very first moment we met; his enlightened and affable gaze always succeeded in

dispelling my doubts and giving me the strength to achieve my final goal. Furthermore, I thank

him for providing the academic support to carry out my research work within the Computer

Science Department.

I am extremely grateful to Dr. Fatemeh Vafaee, co-advisor and mentor. She gave me the

freedom to explore on my own, and at the same time the guidance to recover when my steps

faltered. She has always been there to patiently listen and give advice, and I deeply respect the

enthusiasm she expressed during her supervision. Despite the thousands of miles that divided

us during this experience, she was intellectually entangled with me in the task more than anyone

iii

ACKNOWLEDGMENTS (continued)

else, always on the front line, ready to tackle the challenge by my side. Moreover, I am thankful

to her for encouraging consistency, as well as her critical analysis and research professionalism

through the process of writing this thesis.

My grateful thanks are also extended to the rest of my thesis committee, Dr. Mariagrazia

Graziano and Dr. Rashid Ansari, for their support and for always being there.

Lynn Thomas deserves a special mention: she has been my primary guide across my whole

graduate experience in the USA; she took care of countless administrative duties related to my

permanence in the States and flawlessly organized my path as a graduate student. This adven-

ture would not have been the same without her genuine friendship and sympathetic support to

my self-realization.

I would like to acknowledge the entire Artificial Intelligence Laboratory staff for being ready

to promptly address my requests and for providing the facilities to carry out the research work.

I am deeply thankful for my relatives and friends for always being there for me, as well as

for helping me stay sane and keep my humanity.

Most importantly, I would like to express my heart-felt gratitude to my family, who has

been a constant source of love, concern, support and strength throughout these years.

I owe sincere and earnest thankfulness to all those people who have made this thesis possible

and because of whom my graduate experience has been one that I will cherish forever.

CC

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1 Probability Theory . 2
1.1 Fundamentals and Basic Notation 2
2 Bayesian Networks . 4
2.1 Bayesian Networks: a Simple Example 6
2.2 Graph Theory . 8
2.3 Bayesian Network Structure Learning 10
2.3.1 Available Challenges . 11
2.3.2 Theoretical Foundations . 13
2.3.3 Approximate Structure Learning 15
2.3.4 D-Separation . 18
3 Evolutionary Computation . 20
4 Research Motivation . 22
5 Contribution of This Work . 24
6 Thesis Outline . 25

2 A DETOUR INTO BAYESIAN NETWORK STRUCTURE LEARN-
ING LITERATURE . 27
1 Constraint-Based Structure Learning 27
1.1 Inductive Causation algorithm 27
1.2 Causality Search Algorithm . 28
1.3 Three-Phase Dependency Analysis algorithm 30
1.4 Grow-Shrink algorithm . 31
1.5 Recursive Autonomy Identification algorithm 32
1.6 Opt01SS algorithm . 35
2 Search and Score Structure Learning 37
2.1 K2 Algorithm . 38
2.2 Maximum Weight Spanning Tree algorithm 39
2.3 Tree-Augmented Näıve Bayes algorithm 40
2.4 Hill Climbing algorithm . 41
2.5 Sparse-Candidate algorithm . 41
2.6 Optimal Reinsertion algorithm 42
2.7 Greedy Equivalent Search algorithm 42
2.8 Ordering Search algorithm . 43
2.9 Markov Chain Monte Carlo methods 44
2.10 Simulated Annealing methods 45
2.11 Evolutionary Algorithms . 46

v

TABLE OF CONTENTS (continued)

CHAPTER PAGE

2.11.1 Larrañaga algorithm . 47
2.11.2 K2GA algorithm . 47
2.11.3 Chain-Model Genetic algorithm 48
2.11.4 Carvalho’s Cooperative Coevolution Genetic Algorithm 48
2.11.5 µGP algorithm . 49
3 Constraint-Based – Search and Score Hybrid Structure Learning 49
3.1 CB algorithm . 50
3.2 Wong’s Cooperative Coevolution Genetic Algorithm 50
3.3 Hybrid Structure Learner using Genetic Algorithm 51

3 CONSTRAINT-BASED STRUCTURE LEARNING 53
1 Conditional Independence Test 53
1.1 Mutual Information . 54
1.2 Pearson’s χ2 . 54
1.3 G2 Likelihood-ratio . 55

4 SEARCH AND SCORE STRUCTURE LEARNING 57
1 Scoring Function . 57
1.1 Bayesian Scoring Functions . 58
1.1.1 Bayesian Dirichlet score . 59
1.1.2 K2 score . 60
1.1.3 BDe score . 60
1.1.4 BDeu score . 61
1.2 Information-Theoretic Scoring Functions 62
1.2.1 Log-Likelihood score . 63
1.2.2 Minimum Description Length score 64
1.2.3 Akaike Information Criterion score 64
1.2.4 Normalized Maximum Likelihood score 64
1.2.5 Factorized Normalized Maximum Likelihood score 66
1.3 Scoring Function Selection . 67
1.4 Indegree and Data Fragmentation 67

5 HYBRID CONSTRAINT-BASED – SEARCH AND SCORE STRUC-
TURE LEARNING WITH GENETIC ALGORITHMS 69
1 The Logic Underlying Hybrid Strategies 69
2 An Overview of Proposed Methods 70
3 Graph Representation . 73
4 Super-Structure Construction 75
5 DAGs Evolution . 76
5.1 Evolutionary Computation in the Literature 77
5.2 Evolutionary Computation Fundamentals 77
5.2.1 Individual Representation . 77

vi

TABLE OF CONTENTS (continued)

CHAPTER PAGE

5.2.2 Initialization . 78
5.2.3 Mutation . 79
5.2.4 Crossover . 80
5.2.5 Selection . 81
5.3 A Simple Genetic Algorithm . 82
5.3.1 Line 1: Population Initialization 83
5.3.2 Lines 2, 9, 13: Directed Structure to DAG conversion 84
5.3.3 Lines 3, 10, 14: Parents Limitation 85
5.3.4 Lines 5, 15: Fitness Computation 86
5.3.5 Lines 6, 16: Elite Propagation 87
5.3.6 Line 7: Selection . 87
5.3.7 Line 8: Crossover . 88
5.3.8 Line 12: Mutation . 88
5.4 A Site-specific Rate Genetic Algorithm 88
5.4.1 Lines 12, 13, 14: Site-specific Rate Mutation Scheme 91
5.4.2 Diversity Guide Enhancement 94
5.5 Towards Automatic Parents Reduction: an Elite-Guided Par-

ents Limitation Approach . 100
5.5.1 Parents Limitation in the Literature 101
5.5.2 Parents Limitation in the Proposed Method 105
5.5.3 Lines 13, 21: Elite-Guided Parents Reduction 110
5.5.4 Elite-Guided Parents Reduction Approach: an Example . . . 111
5.6 “Self Parent Reducing” Enhancement 114
5.6.1 Line 21: Node-specific Maximum Parents Threshold Adaptive

Reduction . 117
5.6.2 Node-specific Maximum Parents Threshold Adaptive Reduc-

tion: an Example . 120

6 EXPERIMENTS AND RESULTS . 126
1 Compared Algorithms . 126
2 Benchmark Specification . 128
2.1 Bayesian Networks Selection . 129
2.2 Simulation Settings . 133
2.3 Dataset . 135
2.4 Dataset and Network Sizes in the Literature 136
3 Super-Structure Construction 137
3.1 Performance estimation . 139
3.2 Conditional Independence Tests Evaluation 140
3.3 CB Methods Comparison . 142
3.4 Search Space Reduction: Quantitative Evaluation 143
4 Optimal DAG Evolution . 145
4.1 Performance estimation . 147

vii

TABLE OF CONTENTS (continued)

CHAPTER PAGE

4.2 Standard GA Results . 148
4.3 SiRG Results . 151
4.4 Sensitivity Analysis: Amount of Edges Directed at Initialization 156
4.5 New Methods Testing . 158
4.5.1 Evaluation with Large MP Value 159
4.5.2 Parents Reduction Methods Reliability Analysis 159
4.5.3 Parents Reduction Methods Performance Comparison 164
4.5.4 Adaptive Parents Reduction Statistics Evaluation 166
4.5.5 Final Results . 169

7 SUMMARY AND CONCLUSION . 177

8 FUTURE WORK . 179

APPENDIX . 181

CITED LITERATURE . 187

VITA . 200

viii

LIST OF TABLES

TABLE PAGE

I DIFFERENT TASKS IN LEARNING BAYESIAN NETWORKS.
N/A INDICATES A NON-EXISTING TECHNIQUE FOR THE RE-
LATED TASK. 12

II SUPER-EXPONENTIAL CORRESPONDENCE BETWEEN
THE NUMBER OF VARIABLES OF A BN AND THE NUMBER
OF POSSIBLE RELATED DAGS REPORTED FOR THE FIRST 10
VALUES. 16

III PARENT WEIGHT VECTOR FOR NODE 6 DERIVED FROM
THE SITUATION DEPICTED IN THE EXAMPLE, INCREASINGLY
ORDERED WITH RESPECT TO THE WEIGHT. 113

IV PARENT WEIGHT VECTOR FOR NODE 6 DERIVED FROM
THE SITUATION DEPICTED IN THE EXAMPLE, INCREASINGLY
ORDERED WITH RESPECT TO THE WEIGHT. 121

V DEFAULT PARAMETER VALUES USED IN ALL BENCH-
MARK METHODS. 135

VI TEST CASES AND DATASET SIZES TAKEN INTO AC-
COUNT IN OUR BENCHMARK. 136

VII A COMPARISON AMONG NETWORK AND DATASET SIZES
IN LITERATURE BENCHMARKS. 138

VIII SPACE REDUCTION ANALYSIS ON INSURANCE AND ALARM
NETWORKS. 144

IX DEFAULT SET OF PARAMETERS FOR USE IN THE EX-
PERIMENTS. 146

X FINAL RESULTS ON ALARM, INSURANCE AND HEPAR-
II NETWORKS ASSUMING N = 100 AND M = 100. 175

XI FINAL RESULTS ON ALARM, INSURANCE AND HEPAR-
II NETWORKS ASSUMING N = 200 AND M = 50. 176

ix

LIST OF FIGURES

FIGURE PAGE

1 Simple Bayesian Network provided with each node’s related
Conditional Probability Distribution. Source: RUSSELL, STUART;
NORVIG, PETER, ARTIFICIAL INTELLIGENCE: A MODERN AP-
PROACH, 3rd, ©2010, p. 529. Reprinted by permission of Pearson
Education, Inc., New York, New York. 7

2 General structure of our presented hybrid methods. 74

3 Elite-guided parents reduction example: situation before par-
ents limitation. 112

4 Elite-guided parents reduction example: during the limitation
procedure, worst parents are identified and related edges (depicted in
red) are deleted, for each individual. 124

5 Elite-guided parents reduction, example with a lower threshold:
result of the reduction process. 125

6 The ASIA Bayesian network. 130

7 The INSURANCE Bayesian network. 131

8 The ALARM Bayesian network. 132

9 The HEPAR II Bayesian network. 133

10 Comparison between Pearson’s χ2 test and G2 likelihood-ratio
test for conditional independence. 141

11 Comparison between the two tested constraint-based methods:
Opt01SS and Opt0SS. 143

12 Comparison between standard GA and external competitors
over differently-sized datasets sampled from ASIA, ALARM and HEPAR-
II networks: F1 scores. 149

x

LIST OF FIGURES (continued)

FIGURE PAGE

13 Comparison between standard GA and external competitors
over differently-sized datasets sampled from ASIA, ALARM and HEPAR-
II networks: sensitivities. 150

14 Comparison between standard GA and external competitors
over differently-sized datasets sampled from ASIA, ALARM and HEPAR-
II networks: specificities. 151

15 Comparison between standard GA and external competitors
over differently-sized datasets sampled from ASIA, ALARM and HEPAR-
II networks: Bayesian scores. 152

16 Standard genetic and SiRG algorithms results over differently-
sized datasets sampled from ASIA, ALARM and HEPAR II networks:
F1 scores. 153

17 Standard genetic and SiRG algorithms results over differently-
sized datasets sampled from ASIA, ALARM and HEPAR II networks:
sensitivities. 154

18 Standard genetic and SiRG algorithms results over differently-
sized datasets sampled from ASIA, ALARM and HEPAR II networks:
specificities. 155

19 Standard genetic and SiRG algorithms results over differently-
sized datasets sampled from ASIA, ALARM and HEPAR II networks:
Bayesian scores. 156

20 Standard genetic and SiRG algorithms results tested with dif-
ferent POI values (expressed as percentages) on the ALARM-70 sam-
ple dataset: F1 scores and sensitivities. 157

21 Standard genetic and SiRG algorithms results tested with dif-
ferent POI values (expressed as percentages) on the ALARM-70 sam-
ple dataset: specificities and Bayesian scores. 158

22 Comparison between standard DiG-SiRG strategy and the pro-
posed PaRe-DiG-SiRG method with a large MP value (F1 scores and
sensitivities): it results a performance variation that is not significant. 160

xi

LIST OF FIGURES (continued)

FIGURE PAGE

23 Comparison between standard DiG-SiRG strategy and the pro-
posed PaRe-DiG-SiRG method with a large MP value (specificities
and Bayesian scores): it results a performance variation that is not
significant. 161

24 MP sensitivity analysis between standard DiG-SiRG strategy
and the proposed PaRe-DiG-SiRG method (F1 scores and sensitivi-
ties): two different values for MP are applied to each method on four
test cases with ALARM and HEPAR-II networks. 162

25 MP sensitivity analysis between standard DiG-SiRG strategy
and the proposed PaRe-DiG-SiRG method (specificities and Bayesian
scores): two different values for MP are applied to each method on
four test cases with ALARM and HEPAR-II networks. 163

26 Performance comparison between DiG-SiRG strategy and the
proposed PaRe-DiG-SiRG method (F1 scores and sensitivities): the
minimum value for MP is applied to each method on six test cases
with ALARM, INSURANCE and HEPAR-II networks. 165

27 Performance comparison between DiG-SiRG strategy and the
proposed PaRe-DiG-SiRG method (specificities and Bayesian scores):
the minimum value for MP is applied to each method on six test cases
with ALARM, INSURANCE and HEPAR-II networks. 166

28 Statistics describing the dynamic and adaptive MP threshold
reduction process throughout a 100 generations evolution, extracted
from tests on the ALARM network driven with differently-sized datasets;
in particular Max indicates the maximum number of parents over all
nodes at the current generation, RMS is the Root Mean Square be-
tween the vector containing the actual number of parents of the target
DAG and the MP vector at the given generation, Below reports the
sum over the difference vector NP-MP, but by considering only those
MP values that are lower than the actual number of parents in the
target DAG, i.e. NP, at the given generation. 167

29 Performance comparison between DiG-SiRG strategy and the
proposed PaRe-DiG-SiRG and SPaRe-DiG-SiRG methods (F1 scores
and sensitivities): experiments involved six test cases related to ALARM,
INSURANCE and HEPAR-II networks. 170

xii

LIST OF FIGURES (continued)

FIGURE PAGE

30 Performance comparison between DiG-SiRG strategy and the
proposed PaRe-DiG-SiRG and SPaRe-DiG-SiRG methods (specifici-
ties and Bayesian scores): experiments involved six test cases related
to ALARM, INSURANCE and HEPAR-II networks. 171

31 Performance comparison between DiG-SiRG strategy and the
proposed PaRe-DiG-SiRG and SPaRe-DiG-SiRG methods (F1 scores
and sensitivities): experiments involved six test cases related to ALARM,
INSURANCE and HEPAR-II networks with a different setting for
population size and number of generations parameters. 172

32 Performance comparison between DiG-SiRG strategy and the
proposed PaRe-DiG-SiRG and SPaRe-DiG-SiRG methods (specifici-
ties and Bayesian scores): experiments involved six test cases related
to ALARM, INSURANCE and HEPAR-II networks with a different
setting for population size and number of generations parameters. . . 173

xiii

LIST OF ABBREVIATIONS

BN Bayesian Network

DAG Directed Acyclic Graph

PDAG Partially Directed Acyclic Graph

CPDAG Completed Partially Directed Acyclic Graph

S&S Search and Score

CB Constraint-Based

SS Super-Structure

CI Conditional Independence

GA Genetic Algorithm

SiRG Site-specific Rate Genetic

DiG Diversity Guided

PaRe Parent Reduced

SPaRe Self Parent Reducing

xiv

SUMMARY

Bayesian networks constitute a powerful framework for probabilistic reasoning and expert

elicitation, capable of representing inner relationships underlying any kind of phenomenon in

both causal and diagnostic directions. Motivated by the fact that Bayesian networks have been

extensively used in a variety of research domains, I focused this thesis work on unsupervised

Bayesian network structure learning: it is an ambitious as challenging task that, if accomplished,

would pave the path for Bayesian modeling and would therefore contribute to provide further

insight into countless state-of-the-art research topics.

The problem of Bayesian network structure learning can be formalized as a search task and,

from its inception back to 1980s, it has been tackled by means of two distinct strategies or their

hybrid combination: a Constraint-Based method operates by progressively reducing the search

space, whereas the Search and Score generic approach explores the search space guided by some

knowledge-driven metric.

This thesis work aims at providing a method able to learn the structure of the Bayesian

network underlying a set of data samples, by focusing on problems with a limited amount of

available data. In particular, the main contribution of this work is a Hybrid learning algorithm

able first to reliably reduce the search space and then to exhaustively explore it, by taking

advantage of data-informed expedients as well. The proposed approach involves a parameterized

Genetic Algorithm in order to pursue the task: this metaheuristic has been chosen because of

its efficient global search capabilities even across a very large search space and because of

xv

SUMMARY (continued)

its flexibility and adaptability; on the other hand it consistently suffers from time and space

complexity relatively to other search methods in the literature, and moreover its performance

is heavily influenced by the choice of a large set of parameters.

The research covered in this work is concerned with designing a series of hybrid methods

on a build-up basis: they are provided with enhancements already existing in the literature but

not yet applied to the Bayesian network structure learning topic and also with novel improve-

ments able to further restrict the search space during the evolutionary process, in a data-driven

manner. In the experimental chapter of this thesis it is possible to ascertain how presented

algorithms allow to better address time and space complexity, sensitivity to parameters setting

issues as well as the problem of data fragmentation, with the advantage of higher performances

in some cases.

xvi

CHAPTER 1

INTRODUCTION

In the part of world accessible by man’s senses or existing instruments, knowledge that can

be empirically inferred from any experience or experiment is in general affected by uncertainty

and nondeterminism. In several domains, such as medicine, law or business, any assertion is

always characterized by a certain degree of belief. For example, a robot needs to know about

the possible outcomes of its actions, and a medical expert system needs to know which causes

lead to which effects.

The final goal in this context is the availability of a general framework to enable probabilis-

tic reasoning in any new application without reinventing everything from scratch. Bayesian

networks offer exactly such a domain-independent framework for probabilistic reasoning, but

a problem still remains: since there does not exist a universal method for Bayesian Network

Structure Learning yet, a human expert is still generally needed in order to design the network

of interest.

This chapter first provides some background about probability theory, Bayesian networks

fundamentals – including a brief overview on graph theory and Bayesian network structure

learning – and evolutionary computation, so to supply the reader with the knowledge needed

to understand what this thesis work deals with. The research motivation and the contribution

1

2

of this work are then discussed. At the end of the chapter, an outline of the thesis is given.

1 Probability Theory

As stated by Russell and Norvig in [1], “probability provides a way of summarizing the

uncertainty that comes from our laziness and ignorance.” In fact, it is not the real world to be

affected by nondeterminism: if we define the complex of means through which the phenomenon

of interest is investigated as the agent, probability statements describe only the agent’s view of

the world, i.e. his state of knowledge, and not the actual world.

1.1 Fundamentals and Basic Notation

In probability theory a possible world ω is defined to be an assignment of values to all of

the random variables under consideration.

The set of all possible worlds is called the sample space, denoted as Ω; in this space all

possible worlds are mutually exclusive and exhaustive.

A fully specified probability model associates a numerical probability Pr (ω) with each pos-

sible world, so that:

0 ≤ Pr (ω) ≤ 1 ∀ω
∑
ω∈Ω

Pr (ω) = 1

Probabilities that refer to degrees of belief in propositions in the absence of any other

information are called priors or unconditional probabilities. On the other hand, when we have

3

some information to exploit (called evidence) we can make use of a posterior or conditional

probability :

Pr (a|b) =
Pr (a ∧ b)

Pr (b)
, Pr (b) ≥ 0

Variables in probability theory are called random variables; every random variable has a

domain, i.e. the set of possible values it can take on.

Given a set of random variables, their joint probability distribution is a probability distri-

bution containing the probabilities of all combinations of variable values.

A probability model is fully determined by the full joint probability distribution.

Probability theory is based on Kolmogorov Axioms [2]:

Pr(ω) ∈ R, Pr(ω) ≥ 0 ∀ω ∈ Ω

Pr(Ω) = 1

Pr

(⋃∞
i=1 ωi

)
=
∑∞

i=1 Pr(ωi)

(1.1)

Bayes’ Rule describes the probability of an event, based on conditions that might be related

to the event [3].

Pr (b|a) =
Pr (a|b) Pr (b)

Pr (a)
(1.2)

If b is the cause and a the effect, Pr (a|b) quantifies the relationship in the causal direction,

whereas Pr (b|a) describes the diagnostic direction.

4

Two events are said to be independent of each other when the probability that one event

occurs in no way affects the probability of the other event occurring. Similarly, two events a

and b are conditionally independent given a third event c if the occurrence or non-occurrence

of a and the occurrence or non-occurrence of b are independent events in the portion of the

sample space defined by knowledge on c occurrence.

Pr (a, b|c) = Pr (a|c) Pr (b|c)

The general concept of independence is denoted in this work with the symbol ⊥⊥. Therefore:

• independence between two events a and b can be denoted with the expression a ⊥⊥ b;

• conditional independence between two events a and b with respect to a third event c can

be described with the expression a ⊥⊥ b | c .

If, given n+1 variables, we can represent them as conditionally independent with respect to

one of them, the size of this new representation grows as O(n) instead of O(2n) as in the case

in which all variables are dependent. Indeed, conditional independence assertions may allow

probabilistic systems to scale up.

2 Bayesian Networks

Nowadays, Bayesian Networks are more and more used for modeling knowledge in various

domains such as computational biology, bioinformatics, medicine, information retrieval, seman-

5

tic search, image processing and security.

A Bayesian Network (BN) is a data structure that represents dependencies among random

variables.

B(G,Θ), G = (V,E)

Each node Xi in V corresponds to a random variable, which may be discrete or continuous.

A set of directed links defined in E connects pairs of nodes, so that the resulting graph G

is a Directed Acyclic Graph (DAG), i.e. a graph not containing any cycle.

Each node Xi is characterized by a Conditional Probability Distribution (CPD) Pr [Xi|Parents(Xi)],

that quantifies parents’ effect on it; Θ is a set of parameters that determines the graph edges

by specifying the above-mentioned local conditional probabilities.

The topology of the network specifies the conditional independence relationships that hold

in the domain – causes should be parents of effects.

The CPD for a discrete variable is represented as a conditional probability table (CPT),

where each row contains the conditional probability of each node value for every conditioning

case, i.e. every possible combination of values for the parent nodes [1].

A Bayesian Network can be seen as a representation of the joint probability distribution: a

generic entry of it is the probability of a particular combination of assignments to all variables

in the sample space.

6

In order to construct a Bayesian Network we can apply the chain rule:

Pr (X1, . . . , Xn) =
n∏
i=1

Pr (Xi|Xi−1, . . . , X1) = Pr [Xi|Parents(Xi)]

Definition 1 (Latent Structure) [4] A latent structure is a pair L = (D,O), where D is a

causal structure over V and where O ⊆ V is a set of observed variables.

Definition 2 (Consistency) [4] A latent structure L = (D,O) is consistent with a distribu-

tion P̂ over O if D can accommodate some model that generates P̂ – that is, if there exists a

parameterization ΘD such that P[O](D,ΘD) = P̂

2.1 Bayesian Networks: a Simple Example

In Figure 1 it is represented a simple, canonical BN originally introduced in [1]. The

four variables in the system are discrete: this means that their CPDs are represented by means

of CPTs; moreover each variable is binary.

Given that the variables are binary, the probability that each conditioning case happens

sums up to one with the probability that it does not happen: indeed in the reported CPTs only

the probability of the type Pr(X = T) is shown, because we can simply calculate Pr(X = F)

as 1− Pr(X = T).

In this system we can identify a variable that has no parents and thus specifies a prior,

“Cloudy,” two intermediate variables “Sprinkler” and “Rain,” and an observed variable “Wet-

Grass.” It models an inference system in which, on the basis of a prior knowledge about the

7

Figure 1: Simple Bayesian Network provided with each node’s related Conditional Probability
Distribution.
Source: RUSSELL, STUART; NORVIG, PETER, ARTIFICIAL INTELLIGENCE: A MOD-
ERN APPROACH, 3rd, ©2010, p. 529. Reprinted by permission of Pearson Education, Inc.,
New York, New York.

likelihood of a cloudy weather and the state of the grass (wet or not wet), we attempt to infer

the likelihood of intermediate events occurrence, i.e. how much it is likely that grass has been

watered by sprinkler action or by rain.

8

2.2 Graph Theory

In this subsection is provided a set of definitions and notions in the field of Graph Theory

constituting the basis of any Bayesian network structure learning strategy presented in this

thesis work.

Definition 3 (Adjacency) [5] Two variables X and Y are adjacent if there is an edge between

X and Y .

Definition 4 (Partially directed acyclic graph) [6] A Partially Directed Acyclic Graph

(PDAG) is a graph where some edges are directed and some are undirected.

A PDAG is also known as a pattern [7].

Definition 5 (v-structure) [8] In a DAG, a v-structure is given by two converging arrows

whose tails are not connected by an arrow.

Definition 6 (Equivalence) [9] Two DAGs G and G′ are distributionally equivalent if for

every Bayesian network B = (G,Θ) there exists a Bayesian network B′ = (G′,Θ′) such that B

and B′ define the same probability distribution, and vice versa.

Definition 7 (Compelled edge) [9] A directed edge X → Y is compelled if that edge exists

in every DAG G′ that is equivalent to G.

If an edge is not compelled in a graph, then it is reversible in the graph [9].

9

Definition 8 (Completed Partially Directed Acyclic Graph) [9] A Completed Partially

Directed Acyclic Graph (CPDAG) corresponding to an equivalence class is the PDAG consisting

of a directed edge for every compelled edge in the equivalence class, and an undirected edge for

every reversible edge in the equivalence class.

A CPDAG is also known as an essential graph [10].

The essential graph of a DAG is its skeleton.

Theorem 1 (Verma and Pearl [8]) Two DAGs are equivalent iff they have the same skele-

ton and the same v-structures.

As stated by Pearl and Verma in [8], “the structural constraints that an underlying dag

imposes upon the probability distribution are equivalent to a finite set of conditional indepen-

dence relationships asserting that, given its parents, each variable is conditionally independent

of all its non-descendents. Therefore two causal models are equivalent (i.e. they can mimic

each other) if and only if they relay the same dependency information.”

Theorem 1 is founded upon the dependency information.

Definition 9 (Perfect Map) [9] G is a perfect map of a probability distribution P if every

independence constraint in P is implied by the structure G and every independence implied by

the structure G holds in P .

If there exists some DAG that is a perfect map of a probability distribution P , we say that

P is DAG-perfect (or perfect with respect to a DAG) [9].

10

Definition 10 (Vertex Indegree) [11] The indegree of a vertex v in a directed graph, denoted

as deg−(v), is the number of edges directed to it.

A vertex with deg−(v) = 0 is called a source [11].

Definition 11 (Vertex Outdegree) [11] The outdegree of a vertex in a directed graph,

denoted as deg+(v), is the number of edges directed out of it.

A vertex with deg+(v) = 0 is called a sink [11].

The degree sum formula [11] states that, for a directed graph,

∑
v∈V

deg+(v) =
∑
v∈V

deg−(v) = |E|, (1.3)

where E denotes the set of edges in the directed graph.

If deg+(v) = deg−(v) ∀v ∈ V , the graph is called a balanced directed graph [11].

2.3 Bayesian Network Structure Learning

Bayesian Networks constitute a powerful tool for understanding the dynamics underlying a

complex system behavior, including what concerns causal relationships among the single agents

composing the system itself.

In order to use Bayesian Networks to model domain variables and their relationships from

empirical observations or sampled data, one has to:

learn the underlying DAG structure;

11

estimate the conditional probability distributions.

We can create BNs manually by interviewing experts in the problem domain, but this pro-

cess is time-consuming and error-prone, and the resulting problem not only would inherit any

flaws in the experts’ reasoning but would also be greatly affected by scalability issues; moreover,

in some domains simply there is no expert with all the required knowledge.

2.3.1 Available Challenges

A goal of Bayesian Network Structure Learning is, given a phenomenon and a dataset

directly sampled on its basis, to get an as complete as possible picture of inner interactions

underlying it; in other words, if we can:

• identify the complete set of relevant entities that play a non-negligible role in the phe-

nomenon, i.e. the set of agents;

• get some information from the agents by means of a source of knowledge so that a set of

raw data is available directly from the phenomenon itself;

then it is possible to get insights on a subset of causal relationships possibly existing for each

pair of agents, including which one of the two agents triggers a variation on the other one’s

behavior.

Structure learning given a set of variables and fully observed data constitutes the objective

which this thesis work is focused on, but it is not the only possible formulation for the structure

learning problem. Indeed we can deal with partially observed data, or even hidden variables;

12

for what concerns the model itself, we could already have available the structure and have to

learn the parameters only.

All possible tasks in BN Structure Learning are represented in Table I [12].

TABLE I: DIFFERENT TASKS IN LEARNING BAYESIAN NETWORKS. N/A INDICATES
A NON-EXISTING TECHNIQUE FOR THE RELATED TASK.

Model constraints

Known structure.
Learn parameters

Known set of variables.
Learn structure +

parameters

Known subset of
variables. Learn hidden
variables + structure +

parameters

D
a
ta

ob
se

rv
a
b

il
it

y Fully
observed

closed-form MLE /
closed-form Bayesian
parameter estimation

constraint-based
approaches /

search-and-score
approaches

N/A

Partially
observed

gradient ascent /
expectation

maximization (EM)

approximate score /
structural EM

N/A

Hidden
variables

N/A N/A (here be dragons)

Source: C. Berzan, An exploration of structure learning in Bayesian networks, Doctoral Dissertation,
Tufts University, 2012.

Another important distinction to do is the purpose we want to achieve: the standard goal is

given by knowledge discovery, i.e. learn a model in order to gain knowledge about the domain;

other objectives can be classifier learning, when we need to use the model as a classifier or

13

density estimation, when we want to construct a (simpler) model representing a distribution

that resembles as much as possible the true distribution, able to capture only relevant aspects

of it.

In the rest of this thesis, we will focus on a single flavor of the learning problem: learning BN

structure from fully observed data given a known set of variables, for the purpose of knowledge

discovery.

2.3.2 Theoretical Foundations

Sometimes it is not easy to directly infer the causality role in a variable, because actual

causality may occur at a different level than the one taken into account [4].

By quoting Whitehead’s words in [13], “causality is an abstraction that indicates how the

world progresses, so basic a concept that it is more apt as an explanation of other concepts

of progression than as something to be explained by others more basic [i.e. it is such a basic

concept that it is more suitable to clarify other progression concepts than any other abstraction,

even a more primitive one]. [. . .] For this reason, a leap of intuition may be needed to grasp it.”

In order to clarify what a different level means, let us have an explanatory example through

a physics analogy. Let us imagine a body that is falling near Earth’s surface: a derivation to

Newton’s Second Law of Motion tells us that X ≈ 1
2gt

2 represents the distance to the ground

of the falling body in terms of time elapsed t. Even if X depends on t, it is not true that t

14

causes X: indeed Newton’s Law (F = ma) states that forces cause the motion, and not time

itself. However, a covariation analysis would make us deduce that a causal relationship exists

between time and falling height.

As stated by Pearl in [4]: “an autonomous intelligent system attempting to build a workable

model of its environment cannot rely exclusively on preprogrammed causal knowledge; rather, it

must be able to translate direct observations to cause-and-effect relationships. However, given

that statistical analysis is driven by covariation, not causation, and assuming that the bulk of

human knowledge derives from uncontrolled observations, we must still identify the clues that

prompt people to perceive causal relationships in the data. We must also find a computational

model that emulates this perception.”

Given a learning algorithm that has to generate a discrete-variable Bayesian Network from

data and a scoring criterion that favors the simplest structure for which the model is as faithfully

as possible able to represent the distribution, it results that, as Chickering et al. describes in [14]:

“identifying high-scoring structures is NP-hard, even when any combination of one or more of

the following hold:

• the generative distribution is perfect with respect to some DAG containing hidden vari-

ables;

• we are given an independence oracle;

• we are given an inference oracle;

15

• we are given an information oracle;

• we restrict potential solutions to structures in which each node has at most k parents, for

all k ≥ 3.”

Indeed, the number of possible structures grows super-exponentially by the number of vari-

ables n, i.e. with a complexity O(n!2(n2)): consequently, exact methods result to be infeasible

for any domain [14,15].

In particular, Murphy pointed out in [16] that “the number of DAGs as a function of the

number of nodes, G(n), is given by the following recurrence:

G(n) =

n∑
k=1

(−1)k+1

(
n

k

)
2k(n−k)G(n− k).” (1.4)

In Table II the first few values of the above-mentioned super-exponential correspondence are

provided.

2.3.3 Approximate Structure Learning

Approximate structure learning algorithms are usually categorized into Constraint-Based

(CB) and Search and Score (S&S) approaches [15].

Constraint-based algorithms rely on the application of a number of Conditional Indepen-

dence (CI) tests to determine, given a conditioning set, whether two variables are independent.

16

TABLE II: SUPER-EXPONENTIAL CORRESPONDENCE BETWEEN THE NUMBER OF
VARIABLES OF A BN AND THE NUMBER OF POSSIBLE RELATED DAGS REPORTED
FOR THE FIRST 10 VALUES.

Number of
Variables

Number of
Possible DAGs

1 1

2 3

3 25

4 543

5 2.9 ∗ 104

6 3.8 ∗ 106

7 1.1 ∗ 109

8 7.8 ∗ 1011

9 1.2 ∗ 1015

10 4.2 ∗ 1018

First they learn direct dependences between variables and build an undirected graph struc-

ture, then they direct edges by means of orientation rules.

A CB procedure requires in the simplest implementations a number of CI tests growing

exponentially with the number of variables: as a consequence CB methods incorporate different

assumptions to ensure independence correctness as well as to restrict condition set size; indeed,

as described by Margaritis in [17], “the existence of these independences in the actual population

depends on the extent to which these assumptions hold. These are:

17

Causal Sufficiency Assumption: there exist no common unobserved (also known as hidden

or latent) variables in the domain that are parent of one or more observed variables of

the domain.

Markov Assumption: Given a Bayesian network model B, any variable is independent of all

its non-descendants in B, given its parents.

Faithfulness Assumption: a BN graph G and a probability distribution P are faithful to one

another iff every one and all independence relations valid in P are those entailed by the

Markov assumption on G.”

CB strategies are deterministic and characterized by a well-defined stopping criterion: a CB

algorithm is iterated so that an edge per time is checked for CI with respect to a condition set

of increasing size, until no variable has more than a certain number of adjacencies or when the

maximum allowed size for the condition set has been explored in all cases.

As Kruse et al. stated in [18], “unfortunately, CI tests tend to be unreliable unless the

volume of data is enormous,” thing that makes CB methods sensitive to failures in these tests.

Search and Score approaches are based on a search within the space of possible structures,

driven by the outcomes of a scoring function, that measures the fitness of each structure to the

data.

The learning process operates by moving from one structure to another through the usage

of some variation operators so to explore the possible structures and maximize the score at

18

each step, until an optimal score is found or a stop-criterion is met.

Latest advances in Bayesian Network Structure Learning involve the adoption of an Hybrid

approach that attempts to take the best of both CB and S&S worlds, in which first a CB

method is applied in order to constrain and reduce the search space, and then a S&S method

is used so to identify the possibly optimal structure in the remaining portion of the search space.

2.3.4 D-Separation

The notion of conditional independence by itself is not sufficient to fully determine whether

two variables are dependent or not, in particular in presence of evidence variables or colliders.

As explained by Pearl in [19], “d-separation is a criterion for deciding, from a given causal

graph, whether a set X of variables is independent of another set Y , given a third set Z.”

A collider is a node characterized by a nonzero in-degree and a null out-degree, i.e. a node

with all related edges directed to it.

We need to contemplate d-separation in our reasoning because only by means of this ab-

straction we can formalize and better understand complex dependence relations and associated

complications among variables in a BN, such as Berkson’s Paradox (explained below in this

section).

19

As reported in [19], “Dependence is associated with Directional Connectedness [whereas the

opposite concept of independence is associated with Directional Separation] and is based on

three rules:

1. X and Y are d-connected if there is an unblocked path [i.e. a path not containing a

collider] between them. [. . .]

2. X and Y are d-connected, conditioned on a set Z of nodes, if there is a collider-free path

between X and Y that traverses no member of Z. If no such path exists, we say that

X and y are d-separated by Z. We also say then that every path between X and Y is

‘blocked’ by Z. [. . .]

3. if a collider is a member of the conditioning set Z, or has a descendant in Z, then it no

longer blocks any path that traces this collider.”

Last statement finds an explanation in Berkson’s Paradox [20]: “when we measure a common

effect of two independent causes, these become dependent, because finding the truth of one

makes the other less likely (or ‘explained away ’ [. . .]), and refuting one implies the truth of the

other” [19].

As a consequence of first and second d-separation rules, we say that X and Y are d-separated

given Z if there is no active trail between X and Y given Z [21]. We denote Z as the separation

set (SepSet) of X and Y .

20

3 Evolutionary Computation

Evolutionary Computation uses computational models of natural evolutionary processes as

key elements in the design and implementation of computer-based problem solving systems [22].

Evolutionary computation became an increasingly promising machine learning field during

the last two decades only, although their theoretical foundations date back to late 1950’s.

As pointed out by Vafaee in her PhD thesis [22], “compared to traditional formal approaches,

evolutionary search techniques have the key advantages of being flexible and adaptable to the

task in hand, in combination with robust performance and global search characteristics. Vari-

ous evolutionary computational models have been thus far developed and studied, all of which

are referred to as Evolutionary Algorithms (EAs).”

In nature, the genotype is the “source code” for an individual, encoded in its genome. The

phenotype encompasses the individual’s observable characteristics, acquired as the individual

develops. The genotype and the environment both influence the way the phenotype develops.

When two individuals reproduce, their genotypes are copied and recombined to obtain the

genotype of their offspring : the latter thus inherits characteristics described in the genotype of

its parents.

Random mutations occur in the genotype as well: the blind variation caused by genotype

recombination and mutation occasionally produces an individual with a superior phenotype;

21

this individual will be more fit for reproduction, and therefore will produce more offspring.

Any kind of optimization problem can be tackled by means of an evolutionary algorithm:

if we have the possibility to encode the problem parameters in some way so to constitute an

individual and to evaluate an individual’s fitness when it is needed, then the problem can be

addressed by pursuing the same dynamics underlying natural evolution.

More precisely, first a population of individuals, i.e. potential solutions of the problem, is

initialized in a random way; then the population evolves through a number of iterations named

generations, according to rules of selection and reproduction by means of genetic operators.

During reproduction, individuals are altered by genetic operators such as mutation, that

allows the emergence of new genetic information, and recombination or crossover, that allows

the actual reproduction of existing individuals. The selection procedure on the other hand

favors the propagation of high-fitness individuals to later generations.

As the search progresses, an evolutionary algorithm population converges to fitter and fitter

individuals: the algorithm stops after a specified number of iterations, when a sufficiently good

solution is found, or after the fitness of the population stops improving.

EAs are useful for optimization problems where the search space is non-linear and mul-

timodal, or where the fitness function cannot be differentiated: indeed their stochastic and

22

population-based nature allow them to identify multiple local optima.

4 Research Motivation

Bayesian Network Structure Learning is a task that, if accomplished, would pave the path

for Bayesian modeling and would therefore contribute to provide further insight into countless

state-of-the-art research topics.

As pointed out by Uusitalo in [23],

“Bayesian modelling [sic] techniques have several features that make them useful

in many real-life data analysis and management questions. They provide a natural

way to handle missing data, they allow combination of data with domain knowledge,

they facilitate learning about causal relationships between variables, they provide

a method for avoiding overfitting of data [24], they can show good prediction ac-

curacy even with rather small sample sizes [25], and they can be easily combined

with decision analytic tools to aid management [26–28]. On the other hand, their

ability to deal with continuous data is limited [28], and such data generally needs

to be discretized, which may cause certain difficulties. Bayesian networks are also a

useful tool for expert elicitation and combining uncertain knowledge when used with

care. Furthermore, building models forces us to think clearly about the subject, and

articulate that thinking in the form of the model. This is often beneficial in and of

23

itself [27, 29].”

For what concerns medical and biomedical contexts, available applications include:

• medical diagnosis [30,31];

• pathway modeling [32,33];

• integrative modeling and combinatorial control of RNA alternative splicing [34];

• cellular networks inference [35];

• genetics and phylogeny linkage analysis [36]

Learning the structure of Bayesian Networks may also contribute to conduct research on

many topics related to several other domains, including:

• bayesian networks applied to Information Retrieval [37];

• environmental modeling and management [27,38–46];

• text analysis [47];

• evaluation of scientific evidence [48];

• image semantic retrieval and object recognition [49,50];

• setup of an internet security network [51].

The variety of possible applications and BNs generalization capability make the above-

mentioned task as ambitious as complex: as a matter of fact, in the literature a plethora of

24

methods for BN structure learning are already provided, although each of them results to be

more suitable only for certain applications or only if we constrain the problem itself in terms

of network or data sample sizes.

5 Contribution of This Work

Given a well-defined set of nodes and fully observed data, this work aims at providing a

method able to learn the structure of the Bayesian network underlying a set of data samples,

by focusing on problems with a limited amount of available data, that is often the case of

biomedical applications.

In particular, in this thesis work we aim at designing a hybrid BN structure learning al-

gorithm able first to reliably reduce the search space and then to exhaustively explore it as

optimally as possible, by taking advantage of data-informed expedients as well.

Aside the first CB phase used to restrict the search landscape, the proposed approaches

involve a parameterized Genetic Algorithm in order to pursue the task: this metaheuristic has

been chosen because of its efficient global search capabilities even across a very large search

space (in this case the space of DAGs extractable from a set of vertices, or rather a related

super-structure) and because of its flexibility and adaptability; on the other hand Evolutionary

Algorithms are generally characterized by a numerous set of parameters, that have to be care-

fully tailored with respect to the application in hand in order to make them efficiently explore

the search space.

25

Another primary target we want to achieve is indeed to design a method that is as insensi-

tive as possible to any parameter variation, that is conceivably capable of adapting to a wide

range of problems in terms of size and density – for what concerns the Bayesian network itself

– and in terms of sample size – for what concerns data, in an as unsupervised as possible fashion.

This work in the first place utilizes Vafaee et al.’s findings in [52, 53] in order to enhance

the search phase performed by the genetic algorithm in two ways: by optimally steering search

efforts towards some data-driven direction on the basis of [52] and by keeping the balance be-

tween exploration and exploitation on the basis of [53]: we will outline more in detail these

improvements in Section 5.4.

Moreover, we propose a novel, additional enhancement suitable for any of previously pre-

sented genetic strategies in Section 5.5 and a further variation of it in Section 5.6, based on a

dynamic, data-informed determination of the parents set of each node of any individual across

the evolution, aimed to smartly limit the above-mentioned set and thus allow the application

feasibility of presented methods to large networks, address data fragmentation issues and fur-

ther reduce the search space throughout the evolutionary process.

6 Thesis Outline

The remainder of this thesis is organized as follows:

26

• Chapter 2 provides an extensive literature overview about Bayesian networks structure

learning.

• Chapters 3 and 4 present the theoretical foundations of the two branches underlying the

generic approaches to Bayesian network structure learning, i.e. Constraint-Based and

Search and Score methods.

• Chapter 5 first gives a brief introduction on Hybrid methods, as well as an overview of the

strategies and objectives taken into consideration in the design of our algorithms; then

it provides a detour across the progressive enhancements that characterized the creative

process underlying the implementation of our methods; in particular this additive process

culminates with the research contribution offered in this work, covered by the two final

strategies reported in this chapter.

• In Chapter 6 it is reported an exhaustive evaluation of the proposed methods within a rich

benchmark composed of a plethora of test cases, jointly with a performance comparison

with respect to a variety of other competitor strategies, as well as among the introduced

algorithms themselves.

• Chapter 7 summarizes the proposed methods as well as related advantages and disadvan-

tages emerged from experimentation.

• Finally, Chapter 8 outlines the future research directions under the thesis topic.

CHAPTER 2

A DETOUR INTO BAYESIAN NETWORK STRUCTURE LEARNING

LITERATURE

This chapter offers an exhaustive literature survey on the topic of Bayesian network structure

learning. The collection of methods included in this historical overview is here classified with

respect to the standard Bayesian network structure learning taxonomy distinguishing among

Constraint-Based (CB), Search and Score (S&S) and Hybrid methods.

1 Constraint-Based Structure Learning

Historically, the first developed methods for bayesian network structure learning were Constraint-

Based. The idea is straightforward: an optimal structure among all the possible ones is found

by progressively constraining the search space in some way.

1.1 Inductive Causation algorithm

Inductive Causation (IC) method by Pearl [4] is based on Inferred Causation, a definition

derived from Occam’s Razor [54]: “a variable X is said to have a causal influence on a variable

Y if a directed path from X to Y exists in every minimal structure consistent with the data.” [4]

27

28

At the beginning the graph is initialized as empty. Then, in a first loop, for each pair of

vertices, it is driven a search for the minimal set (i.e. the minimum size set that satisfies a

condition) Sab so that a ⊥⊥ b | Sab ; if this set is empty, a and b can be connected with an edge.

In a second loop, for each non adjacent pair (a, b) with a common neighbor c, if c /∈ Sab

then this means that the compound (a, c, b) is a v-structure, i.e. a collider pointed by two other

vertices; when a v-structure is identified, the procedure adds arrowheads to c.

As a last step, the built structure is explored in order to orient as many as undirected edges

as possible so that vertices are not added nor cycles are created.

At the end of the procedure some edges may be not oriented: indeed this algorithm does

not return a DAG but a Partially Directed Acyclic Graph, i.e. a PDAG or a pattern. Hence, a

further method is needed to convert the PDAG in a DAG compatible with the BN.

1.2 Causality Search Algorithm

The Causality Search (PC) algorithm by Spirtes [7] is another traditional and basic CB

method for BN structure learning.

It is based on four hypotheses, here directly reported from [7].

1. “The set of observed variables is causally sufficient.

2. Every unit in the population has the same causal relations among the variables;

29

3. The distribution of the observed variables is faithful to an acyclic directed graph of the

causal structure (in the discrete case) or linearly faithful to such a graph (in the linear

case).

4. The statistical decisions required by the algorithms are correct for the population.”

The first step in this algorithm is to initialize the complete graph given the V set. Further-

more, for each pair (X,Y) an (initially empty) Separation Set SepSet(X,Y) is initialized.

Next a sequence of loops starts, with each loop characterized by an increasing index n,

initially 0: for each pair (X,Y) of adjacent nodes so that their neighbors are in equal or higher

number to n, all possible combinations of neighboring sets as condition sets are evaluated with

CI tests; as soon as a CI test results in independence between X and Y , the edge of the pair is

deleted and the separating condition set is recorded in SepSet(X,Y).

This sequence of loops stops when all the sets of neighbors of each pair of nodes is of

cardinality lower than n. Then it begins the second part of the algorithm, where edges are

directed on the basis of v-structures identification and induction rules.

V-structures identification works exactly as in the IC algorithm: given a triplet of nodes

(X,Y, Z), if only one of them is adjacent to both the other two and if it does not belong to the

separation set of the other two nodes, then the triplet results to be a v-structure with the node

adjacent to the other two being the collider.

Induction rules are then applied until there exists an unoriented edge in the graph; as

reported by Pearl in [4]:

30

1. “Orient (B—C) into (B → C) whenever there is an arrow (A → B) such that A and C

are nonadjacent.

2. Orient (A—B) into (A→ B) whenever there is a chain (A→ C → B).”

1.3 Three-Phase Dependency Analysis algorithm

The Three-Phase Dependency Analysis (TPDA) algorithm, developed by Cheng et al. [55]

is an information-theory based approach structured in three phases, i.e. drafting, thickening

and thinning, followed by a final orientation for undirected edges.

First drafting phase consists in the Chow-Liu algorithm [56]: it starts with a null graph,

then a mutual information based independence test is executed for each couple of vertices and

subsequently all nodes pairs are ordered in a list with respect to the dependence value, in

decreasing order; for each pair (X,Y) of nodes in the list, if there does not exist an adjacency

path between X and Y then edge (X − Y) is added to the graph and pair (X,Y) is removed

from the list.

Second thickening phase checks whether an edge is needed by examining all remaining edges

in the list and, if that is the case, it adds the edge.

Third thinning phase, given each edge in the built graph, first verifies whether there exists

at least one path connecting the two vertices of the edge, besides the edge itself; if at least an

alternative path exists, then the edge is temporarily removed and its need is checked: if the

31

edge is not needed the temporary removal is confirmed, otherwise the edge is reinserted in the

graph.

Lastly all edges are directed by means of standard orientation rules inherited by Pearl’s

method [4].

1.4 Grow-Shrink algorithm

The Grow-Shrink (GS) algorithm [57] operates in a local fashion: it first identifies the local

neighborhood of each variable in the BN, then applies a series of conditional independence test

by taking into account a vertex neighborhood per time.

The Markov Blanket of a node X, Mb(X), is the set of parents, children and spouses

(children’s parents) of X [58]: it can be found by grouping all variables that result (one per

time) in a dependence relationship with X, conditioned on all remaining vertices.

This algorithm is based on the Total Conditioning property: given a faithful causal graph,

each parent, child or spouse of a node stores information about that node that cannot be ob-

tained from any other variable.

First the Markov Blanket of each node is calculated, and the graph is converted to its moral

graph, i.e. its undirected version with all spouses into each Markov Blanket linked together by

additional edges.

32

One node per time, a CI test between it and each vertex in its Markov Blanket conditioned

on all possible subsets of the remaining portion of the Markov Blanket is executed: in case it

results independence, the edge between the two vertices taken into account is deleted.

What follows next is the orientation phase: for each vertex X and every vertex Y ∈ Mb(X),

all neighbors Z of X but not of Y are considered; for each neighbor the algorithm tries to orient

Y towards X: if it results that there exists a Z so that Y and Z are conditionally dependent

given all combinations of their markov blankets, then orientation is confirmed, otherwise it is

removed.

1.5 Recursive Autonomy Identification algorithm

A more recent, recursive method is given by the Recursive Autonomy Identification algo-

rithm, developed by Yehezkel et al. [59]; this approach attempts to tackle the problem when

few data are available (although sample dataset should be large enough to ensure sufficiently

reliable CI tests).

An important concept which this method deals with is the d-separation resolution: it is

defined between a pair of two non-adjacent nodes as the size of the smallest condition set

that d-separates them; furthermore, d-separation resolution of a graph is defined as the highest

d-separation resolution within it [59].

33

The graph G is decomposed through the identification of substructures and exogenous

causes; a node Y is an exogenous cause to a subgraph G′ ∈ G if Y is not within G′ and if

Y is a parent or a neighbor of X, for all vertices X in the substructure.

A substructure GA(V A, EA) ∈ G is defined to be autonomous in G given a set Vex ∈ V of

exogenous causes to GA if all vertices’ parents in the substructures are in the substructure itself

or in the exogenous causes set; moreover, if all parents are within the substructure, the latter

is named a completely autonomous substructure [59].

A fundamental principle which this algorithm is based on is that if two variables are inde-

pendent within a substructure, then they are independent in the whole graph as well.

This method needs also to assume two hypotheses, i.e. that a DAG can encode all the inde-

pendences entailed from given data and also that data sample size is large enough for reliable

CI tests.

Recursion occurs with respect to n, the d-separation resolution; at each recursive iteration

three actors are involved: Gstart, with a d-separation resolution of n− 1, Gex, constituting a set

of structures, each having possible exogenous causes to Gstart, and Gall, that contains Gstart, Gex

and edges connecting them.

At initialization phase n is set to 0 and Gstart and Gall are initialized as the complete

undirected graph.

34

As a first step, in the recursive function it checks the exit condition: if all nodes in Vstart

have a number of potential parents lower than n + 1 then the branch reached the end of its

recursive path and Gall is returned as output graph.

If the exit condition is not undertaken, here it is executed the phase involving the thinning of

the link between Gex and Gstart: for every edge between Gex and Gstart, if there exists a condition

set sized n that d-separates the two vertices of the edge, then the latter can be removed from

Gall; then it follows a possible orientation of Gstart edges by means of standard orientation rules.

A similar step to previous one is then executed: now the focus is on Gstart, that is thinned,

directed and decomposed. Now all edges contained in Gstart are taken into account, tested for CI

and possibly removed; next edges that can be directed are oriented; finally the decomposition

occurs: first lowest topological order nodes are grouped into a descendant substructure GD, then

all unconnected structures resulting from Gall\GD are defined as ancestors GA1, . . . ,GAk.

Recursion is then triggered, first for all ancestor substructures (with G′ex = Gex) and then

for the descendant one (with G′ex = {GA1, . . . ,GAk}); then the recursive function returns.

An advantage of this method is that graph decomposition decreases dependence on node

ordering, because it is not arbitrary as it happens for instance in PC algorithm.

On the other hand, in general the algorithm returns a partially directed acyclic graph, so

an external procedure to orient remaining undirected edges is required.

35

Authors refer also to the possibility of an interrupted learning approach, where the stop

condition is enhanced with the reaching of some d-separation resolution order: in this way

what we get is a PDAG with more undirected edges with respect the base case, but also a more

reliable graph.

1.6 Opt01SS algorithm

An efficient state-of-the-art CB-based method is the Opt01SS algorithm [60]: it learns

super-structures using only 0th− and 1st−order CI tests in a way that takes into account the

presence of approximate-deterministic relationships and inconsistent CIs, commonly found in

data scarcity contexts.

A super-structure is an undirected graph assumed to contain all true edges [of the target

BN structure G] [59].

A sound super-structure of G is any PDAG S that contains the skeleton of G; a super-

structure that is not sound is said to be incomplete [59].

Opt01SS aims at tackling two problems that are especially relevant when sample is small :

presence of approximate deterministic relationships and inconsistency in CI testing.

An Approximate Deterministic Relationship (ADR) is a “fortuitous” strong association be-

tween two variables, related to the fact that a consistently large portion of data exhibits by

accident a deterministic relation for those variables.

36

Inconsistent Conditional Independence and Dependence (CIDS) statements are occurrences

“that cannot be simultaneously represented on a perfect map” [60]; this problem is caused by

false detected CIs: they commonly lead to edges removal, even if they should not be removed.

Both presented problems may lead to a wrong choice for a pair of nodes’ separator, i.e. the

vertex that actually d-separates the two nodes in the pair: strength of this algorithm resides

exactly in its ability to identify the correct separator, even after a wrong choice.

At initialization phase the super-structure, from now on named SS, is initialized as the

complete undirected graph underlying the whole set of vertices; a cache C<X,Y > containing a

slot for each pair of nodes is also allocated; the cache, when a query is asked, returns the (last)

separator node recorded for the pair of nodes taken into account.

First step is given by 0th-order CI tests: for all edges in SS, if it results unconditional

independence between the nodes of the edge then the latter is deleted from SS and the cache

entry for the edge is updated with an empty set.

Next it begins the 1st-order CI tests phase: the set of edges to check, i.e. E2Check is

initialized as the set of edges in SS remained after first step of the algorithm; then a loop starts:

it will stop only when E2Check = ∅.

All edges in E2Check so that both vertices in the edge have more than one only neighbor

are then considered one per time in an inner loop, where three sets are built: first set contains

neighbors of both vertices whereas the second and the third ones include only the neighbors

to one vertex but not to the other one; moreover the vertices pair’s separator Z (if any) is

37

retrieved from the cache. The same looping procedure, given the edge under analysis, is then

executed for each of the three above-mentioned sets: if the CI test, conditioned on each vertex

in the set (but excluding the last separator Z retrieved from the cache), succeeds, then the

edge is deleted from SS and inserted into the set of deleted edges, i.e. EDel, and the procedure

continues with the next edge in E2Check.

After a preliminary check on all 1st-order CI tests, the separators robustness verification

phase starts: E2Check is set as empty and all edges in EDel are taken into account in a second

inner loop; if the last separator recorded in the cache for the current edge is not a neighbor of

any of the two vertices in the edge, then an ADR is identified: the edge is thus reinserted in

the E2Check set.

The final step is needed to solve inconsistent non-edges: here the necessary path condi-

tion [61] is exploited in order to restore inconsistently deleted edges. First the set ERestored is

initialized as empty, then, for each pair of vertices not in SS so that their cache entry contains

a separator, if there does not exist at least one path connecting each vertex with the connector

that does not include the other vertex, then the absent edge is considered to be inconsistent

and it is added to ERestored; finally all edges in ERestored are added to SS.

2 Search and Score Structure Learning

Score-based learning is another canonical technique useful to identify the optimal structure

of a BN: its core resides in a scoring function used to estimate the goodness of fit of a structure

38

to the data, whereas its goal is to find the highest fitting structure.

As Liu et al. pointed out in [62], “solving the learning problem exactly becomes impractical

if the number of variables is too large. Consequently, much early work focused on approximate

algorithms, such as greedy hill climbing approaches [63, 64], tabu search with random restarts

[65], limiting the number of parents or parameters for each variable [66], searching in the space

of equivalence classes of network structures [67] and the optimal reinsertion algorithm (OR) [68].

These algorithms use local search to find ‘good’ networks; however, they offer no guarantee to

find the one that globally optimizes the scoring function.

Recently, exact algorithms for learning optimal BNs have been developed based on dynamic

programming [69–73], branch and bound [74], linear and integer programming [75, 76] and

heuristic search [77–79].”

Another recent S&S-based approach is given by evolutionary computation methods such as

genetic algorithms.

In Section 1 it is provided a review on most known scoring methods in the literature.

2.1 K2 Algorithm

The popular K2 algorithm by Cooper and Herskovits [63] uses a greedy search method and

does not necessarily need an upper bound on the number of parents a node can have, even if a

39

maximum indegree is requested as input.

The K2 search begins by assuming that a node has no parents and then greedily selects as

its parents the variables from a given ordering whose addition best improves as much as possi-

ble the score of the resulting structure in an incremental fashion, until the score stops to increase.

The scoring function employed in this heuristic is the K2 metric, described more in detail

in Section 1; one advantage of this approach is that K2 score prefers simpler structures [80].

On the other hand, a limitation to this method is that BN evaluation depends on the choice

of a node ordering, needed as input to the algorithm.

2.2 Maximum Weight Spanning Tree algorithm

The Chow-Liu [56] Maximum Weight Spanning Tree (MWST) algorithm was among the

first S&S methods for BN structure learning; its goal is to find a tree that maximizes the data

likelihood.

First step is to compute a weight for each possible edge of the graph: in other words, each

edge is provided with a score associated with data, defined by the mutual information function.

Then the algorithm attempts to find a maximum weight spanning tree, i.e. a tree with

the greatest total weight that reaches all nodes; one common practice is to follow a greedy

40

approach, i.e. to greedily add edges making sure the structure is a tree at every step. Standard

approaches for tree construction are used, such as Kruskal or Prim algorithms.

Last step consists in edges orientation: it can be done after the scoring step because the

weighting method assigns a score to each edge regardless of its orientation.

A limitation of this approach is the need to choose a root node.

2.3 Tree-Augmented Näıve Bayes algorithm

This algorithm, written by Friedman et al. [81] is an extension to the MWST algorithm,

specialized in building a tree augmented network for a given class node.

The first step determines the weight of each edge of the network, on the basis of a conditional

mutual independence scoring method, conditioned on the class node.

Remainder of the algorithm is the same as in MWST, with the difference that it will return

a specialized tree with a class node as parent of all the remaining nodes.

A tree built by this method has one node with no parent (class node), one node with only

the class node as parent (root) and all the other nodes with two parents (class node and some

other node in the tree).

An advantage given by this algorithm is search space reduction: the set of parents of each

variable is restricted to a small subset of candidates. On the other hand its behavior depends

41

on the choice of equivalence class and root nodes.

2.4 Hill Climbing algorithm

The Hill Climbing (HC) algorithm, developed by Buntine in 1994 [82], is a local method for

BN structure learning, in the sense that at each step the algorithm considers all available local

operations and chooses the one that yields the best improvement.

This method starts by taking as input a dataset defined over V and a DAG defined over V ,

usually the empty graph. At each step the algorithm computes the differences in the overall

score with respect to all possible local arc operations, i.e. addition, deletion and reversal, and

chooses the one with the highest positive difference; the process is repeated until score improve-

ment occurs.

2.5 Sparse-Candidate algorithm

In 1999 Friedman et al. [66] proposed the Sparse-Candidate algorithm: it constitutes a way

to accelerate learning BN structures from data sets with many variables.

First the set of possible parents (candidates) for each nodes is restricted by means of sev-

eral metrics, then a BN is learnt on the basis of these restrictions, through a traditional HC

algorithm; after that the obtained network is used to update the sets of candidate parents, the

42

entire procedure is iterated.

The main advantage of this algorithm with respect to traditional HC method is the speed

enhancement on large data sets.

2.6 Optimal Reinsertion algorithm

The Optimal Reinsertion (OR) algorithm, introduced by Moore and Wong [68] works along

the following lines: at each step a target node is chosen, all edges entering or leaving the target

are deleted, and after that the optimal combination of in- and out-edges is found the node is

re-inserted in the network with these edges.

The Sparse-Candidate enhanced version of this algorithm is characterized to be faster and

more suitable to large networks. This algorithm is especially useful on large data sets and

resulted to be faster and more performing than HC, in particular when the search space has

many local minima.

2.7 Greedy Equivalent Search algorithm

The Greedy Equivalent Search was developed by Chickering [9] in 2002.

The graph is initialized with no edges, then it follows the forward phase and the backward

phase.

43

During the forward phase, at each step it is considered the essential graph related to current

PDAG instantiation, and it is added the edge that allows to get the highest possible score for

the newly obtained essential graph; this process is repeated until it is not possible to improve

the score anymore.

In the backward phase the essential graph related to current PDAG instantiation is consid-

ered once again: by taking into account all DAGs formed from the current PDAG after the

edge deletion that leads to the highest possible scoring PDAG, if one of them has a higher score

than all possible instantiations of current essential graph, then the deletion is confirmed; the

process is repeated until score improves.

2.8 Ordering Search algorithm

In 2005, Teyssier and Koller [83] presented another learning method that searches over the

space of node orderings.

It consists in a greedy hill climber with tabu lists and random restarts and resulted to be

competitive with more complex algorithms; its efficiency is explained by the same main advan-

tage of K2 algorithm, i.e. the best network can be found very efficiently, with a given node

ordering. Indeed the orderings search space “is much smaller, makes more global search steps,

has a lower branching factor and avoids costly acyclicity checks” [83].

44

2.9 Markov Chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a

probability distribution based on constructing a Markov chain that has the desired distribution

as its equilibrium distribution [84]; they operate by generating each sample on the basis of a

random change to the preceding sample.

A consistent amount of work in BN structure learning literature (e.g. [85–87]) involves

the Metropolis-Hastings strategy, that belongs to the category of Random Walk Monte Carlo

methods.

The Metropolis-Hastings algorithm allows to sample any probability distribution P (x) given

a known function f(x) which is proportional to P density; in this context, the probability distri-

bution is given, in the simplest implementation, by the space of DAGs constituting all possible

instances of the target BN, whereas the known function is the scoring metric.

At each iteration, the algorithm uses some heuristic to select a candidate to sample next

value on the basis of current one (Markov Property): if the candidate is more fit than starting

sample then it is accepted, otherwise old sample is restored.

In particular, the candidate selection heuristic must be based on a symmetric distribution,

i.e. the probability of transitioning from sample x to sample x′ is the same of the opposite

45

transition. A usual choice is to let the selection probability density be a gaussian distribution

centered at current sample, making the sequence of samples into a random walk.

Moreover, Gibbs sampling methods can be used to implement algorithms able to work with

incomplete data, as in Antal et al. [87].

2.10 Simulated Annealing methods

Several Simulated Annealing approaches are present in the literature for what concerns BN

structure learning [85, 88–90]: they are all based on the same principle of simulated anneal-

ing, a general method for solving unconstrained and bound-constrained optimization problems;

specifically, it is a metaheuristic useful to approximate a large search space.

Simulated annealing [91] interprets slow cooling as a slow decrease in the probability of ac-

cepting worse solutions as it explores the solution space, with the advantage of a more extensive

search.

The algorithm presented by Carrillo et al. [85] constitutes an application of simulated an-

nealing to BN structure learning with Bayesian score (described in Section 1) as a measure of

goodness, focused on small datasets.

This method, although relatively faster with respect to other metaheuristics such as genetic

algorithms, requires a predefined ordering on the nodes, and results sensitive to it as well.

46

First step consists in computing mutual information distribution for each pair of vertices

following a particular pattern: each computed value MI(xi, xj) is added at the corresponding

position of a n×n matrix (n = |V |) to the sum of previous pair MI(xi−1, xj): as a result, each

matrix column will contain a distribution of MI of the variable Xj .

In the simulated annealing step, all possible parents for the current node are eligible to be

chosen on the basis of their associated probability, defined as their MI value normalized with

respect to all nodes. According to this distribution, nodes characterized by the highest MI with

current node are more likely to be selected as its parents; when a parent node is selected, if the

arc from it to the current node is not already included in the structure and if the node’s fan-in

is not already at the maximum allowed value, then it is added, otherwise it is not inserted.

Once the neighbor configuration of parents is obtained it is scored: the configuration is

accepted and will replace previous one only if its evaluation yields a better score, on the basis

of Metropolis-Hastings approach. The process is then repeated until no more improvement on

the score can be obtained.

This procedure is iterated for each node: after all nodes have been analyzed, the constructed

BN structure is deprived of redundant arcs and then it is returned as the best found structure.

2.11 Evolutionary Algorithms

Among the various application fields, genetic algorithms, categorized as a branch of evolu-

tionary algorithms, have been also previously used for BN structure learning, in S&S as well as

47

in Hybrid methods [15,92–97].

2.11.1 Larrañaga algorithm

In 1996, Larrañaga et al. [92] proposed one of the first GAs for learning BN structure:

individuals are given by adjacency matrices (a possible representation for graphs) and the LL

score, presented in 1 has been used as fitness function.

Their mutation and crossover operators are able to always generate a valid DAG, with a

given node ordering; they also tackled the learning problem without having a node ordering

available, by providing the procedure with a repair operator which randomly removes edges

within cycles until the DAG property is satisfied. They also restrict the maximum number of

parents for any node to four.

2.11.2 K2GA algorithm

This method, developed by Larrañaga et al. [93], is basically a GA enhancement of the K2

algorithm.

The K2 method can generate a BN from a dataset once a node ordering is given: the GA

is indeed used to search for a near-optimal ordering between the variables, with the K2 score

(described in Section 1) serving as fitness function.

The authors compared numerous crossover and mutation operators that were previously

used for the Traveling-Salesman problem. One limitation bounded to the employment of the

48

K2 algorithm is given to the need to set a maximum fan-in for each node.

2.11.3 Chain-Model Genetic algorithm

To reduce the time complexity of K2GA [93], Kabli et al. [95] proposed a Chain-Model GA

which attempts to evaluate and thus select node orderings by relying on chain structures.

The base hypothesis in this approach is that node ordering mainly determines the score for

a given network structure: in other words the final K2 score on the overall structure, given a

node ordering, is assumed to be directly proportional to the K2 score evaluated on the simple

chain structure obtained given the same ordering.

Given that each individual’s node has at most one parent only, fitness evaluation during

evolution is much faster with respect to standard K2GA.

Analogously to K2GA, also this method is dependent to the maximum fan-in parameter.

2.11.4 Carvalho’s Cooperative Coevolution Genetic Algorithm

In 2011, Carvalho et al. [96] proposed a cooperative-coevolution GA for learning BN struc-

tures. Here two independent subpopulations are considered, the permutation species, repre-

senting a node ordering, and the binary species, that represent actual DAGs, or rather upper-

triangular adjacency matrices constituting BN graphs, given a node ordering.

49

The authors used cycle crossover and swap mutation for the permutation subpopulation,

and two-point crossover and bit-flip mutation for the binary subpopulation. This method allows

no restrictions on the number of parents a node can have.

2.11.5 µGP algorithm

µGP is an EA software developed by the CAD Group of Politecnico di Torino [98]: provided

with its capability of encoding individuals as tagged graphs, it was used by Tonda et al. [97] to

learn BN structures as an S&S technique.

The individual representation has two parts: a DAG and a node ordering; arcs are generated

only from one node to nodes that follow it in the order, so to avoid loops by construction.

This method deals with a maximum number of parents per variable.

3 Constraint-Based – Search and Score Hybrid Structure Learning

Latest advances in Bayesian Network Structure Learning involve the adoption of a Hybrid

approach that attempts to take the best of both CB and S&S worlds, in which first a CB

method is applied in order to constrain and reduce the search space, and then a S&S method

is used so to identify the possibly optimal structure in the remaining portion of the search space.

50

3.1 CB algorithm

In 1995, Singh and Valtorta [99] presented their CB algorithm, an iterative method for

learning BN structures.

It is articulated in several phases: first CI tests are used to restrict the search space and

create an undirected graph of the variables; then some edges orienting heuristics are applied,

so to obtain an ordering of the nodes; finally K2 is executed using the obtained node ordering.

This process repeats until K2 score stops improving.

3.2 Wong’s Cooperative Coevolution Genetic Algorithm

In 2004 Wong et al. [94] presented their Hybrid Cooperative-Coevolution Genetic Algorithm

(CCGA) for learning BN structures.

Starting from the complete DAG, in the first phase they apply all possible 0th- and 1st-order

CI tests so to possibly exclude from consideration certain edges, thereby reducing the search

space.

In the second phase they use a collaborative-coevolution algorithm that splits the structure-

learning problem into a set of subproblems, one per variable: each subproblem aims at learning

a set of parents for each node, and constitutes a single, independent population to evolve, with

each row of the network’s adjacency matrix being the string representation of the individual.

51

In order to reduce the chance of creating cyclic structures they adopted an approximate

ordering on the nodes.

Wong et al. reported that their algorithm outperforms the previous Minimum Description

Length and Evolutionary Programming (MDLEP) algorithm of their own.

3.3 Hybrid Structure Learner using Genetic Algorithm

In 2014 Vafaee [15] proposed her Hybrid Structure Learner using Genetic Algorithm (HSL-

GA), focused in particular on problems involving networks of medium to large size and a limited

dataset.

This Hybrid strategy first builds a super-structure, i.e. an undirected super-graph that is

possibly likely to contain the target DAG: 0th-order CI tests are performed in a constraint-based

fashion in order to get a reliable super-structure; this is done so to deal with a reduced search

space.

At the second stage, the GA procedure attempts to pick the highest-scoring DAG among

all possible subgraphs of the original super-structure. An individual is built as a ternary string

of loci, where each locus represents an edge that was present in the starting super-graph and

that can assume three possible states during evolution: orientation in one of the two possible

directions or absence.

52

The used approach is elitist : indeed during selection the best individual is retained and will

be propagated to next generation, in the case it will still be the most performing one. The

best-fitting part of population is then selected to undergo the reproduction phase.

This method involves a conventional uniform mutation and single-point crossover; moreover

a Minimum Feedback Arc Set removal function is applied to each individual after reproduction

phase, so to ensure the validity of the reproduced DAGs population.

Since the goal of Vafaee’s work was to get an as close as possible representation of reality

she decided to evaluate performance by means of matching accuracy, i.e. F1 score [100].

Vafaee reported that HSL-GA outperforms a set of other relevant BN structure learning

methods (including MWST and K2) regardless of data size, for sample sizes varying from 30 to

100.

CHAPTER 3

CONSTRAINT-BASED STRUCTURE LEARNING

Constraint-Based (CB) algorithms rely on a number of Conditional Independence tests to

determine, given a conditioning set, whether two variables are independent.

They usually construct DAGs in two stages: first by learning the direct dependences between

variables so to produce an undirected graph structure, then by directing the edges through the

employment of orientation rules. The first stage requires a number of CI tests that grows ex-

ponentially with the number of variables, thing that makes CB methods adopt some heuristics

to restrict the size of the condition set [15].

Possible constraints may be conditional independence or structure-based statements, but the

latter case is applicable only in certain cases where latent variables are taken into account [8];

thus, since in this thesis work we are only interested in domains without missing values or latent

variables, the constraints we take into account are only conditional independence statements.

1 Conditional Independence Test

CI testing is commonly implemented through a metric estimating statistical independence

between variables, such as Pearson’s χ2, likelihood-ratio G2-test or by thresholding Conditional

53

54

Mutual Information.

1.1 Mutual Information

Mutual Information between variables X and Y is described by the Kullback-Leibner Diver-

gence between the joint distribution Pr (X,Y) and the product of single distributions Pr (X) Pr (Y)

[101]:

MI(X;Y) =
∑

x∈X,y∈Y
Pr(x, y) log

Pr (x, y)

Pr (x) Pr (y)
(3.1)

It measures the amount of information shared between the variables X and Y : if this quantity is

considered to be negligible, i.e. below some threshold, then the two variables can be considered

independent [102].

As reported in [103], the Conditional Mutual Information between X and Y measures the

information flow between X and Y given a conditioning set S:

CMI(X;Y |S) =
∑

x∈X,y∈Y,s∈S
Pr(x, y, s) log

Pr (x, y|s)
Pr (x|s) Pr (y|s)

(3.2)

1.2 Pearson’s χ2

The standard, most popular CI test is Pearson’s χ2 test for statistical significance [104]: it

is a statistical hypothesis test, i.e. a method that proves a hypothesis by observing a process

modeled via a set of random variables, where the sampling distribution of the test statistic is a

χ2 distribution when the null hypothesis is true.

55

As stated by Pearson in [104], “the quantity

χ =

√
S
(e2

m

)
(3.3)

is a measure of the goodness of fit [of data to the model given by the distribution, where m

is the vector, with each element related to a random variable, of the theoretical frequencies

supposed known a priori, e is the error vector, with each element related to a random variable,

between the observed frequencies and the theoretical frequencies and with S indicating a sum

over all the elements of the resulting vector].”

In this case this test is used to reject the hypothesis that data and related random variables

are independent.

1.3 G2 Likelihood-ratio

A theoretical generalization to Pearson’s χ2 test is given by the G2 likelihood-ratio test [105],

that formally correlates likelihood ratio to Pearson’s test.

By quoting the words of McDonald in [105], “the G-test uses the log of the ratio of two

likelihoods as the test statistic, which is why it is also called a likelihood ratio test or log-

likelihood ratio test. [...] The equation is

2
∑(

O · ln
(O
E

))
, (3.4)

56

[where O constitutes the vector of observed values and E the vector of expected values relatively

to the set of random variables.]”

As MacKay and Sokal et al. reported in [106, 107]: “in general, with smaller amounts of

data, the chi-squared test will sometimes give incorrect answers, whereas the G-test will not,

and so is the recommended test.”

Both χ2 and G2 statistical tests return a value: if it is lower than the critical value, i.e.

some predefined threshold, then the null hypothesis cannot be rejected and involved variables

are considered to be (conditionally) independent.

CHAPTER 4

SEARCH AND SCORE STRUCTURE LEARNING

Search and Score (S&S) methods involve a strategy for searching through the space of pos-

sible structures and a scoring function able to estimate the fitness of each structure to the data.

It works as any test-and-set approach: in this particular case the goal is to maximize the score

at each step by transitioning from one structure to another through some local variation oper-

ators (e.g., edge deletion or addition), and iterating this process until score stops improving or

a stop condition is met [15].

When tackled in this way, the task can be formalized as a static optimization problem of

the type

max f(x)|x ∈ { →, ←, 6— }l, (4.1)

where x is a ternary string of length l (i.e., a solution) and f(x) ∈ R+ is its score.

1 Scoring Function

The core of a S&S method is given by the employed scoring metrics, usually categorized

into Bayesian and information-theoretic scoring functions.

57

58

A score is said to be decomposable if it can be written as the sum or the product of functions

that depend only of one vertex and its parents [108], as in Equation 4.2.

S(B) =
n∑
i=1

s(Xi,Pa(Xi)) or S(B) =
n∏
i=1

s(Xi,Pa(Xi)) (4.2)

An interesting property for scoring functions is score equivalence: a scoring function φ is

said to be score equivalent if it assigns the same score to all DAGs that are represented by the

same essential graph [109].

1.1 Bayesian Scoring Functions

The general idea of Bayesian scoring functions is to compute the posterior probability dis-

tribution, starting from a prior probability distribution on the possible networks, conditioned

to data D, i.e. Pr (B|D). The best network is the one that maximizes the posterior probability.

Pr (B|D) =
Pr(D|B)

Pr(D)
(4.3)

Since the term Pr (D) is the same for all possible networks, in practice, given that we deal

with comparisons, computing Pr (B|D) is sufficient. Moreover, as it is easier to work in the

logarithmic space, the scoring functions use the value log Pr (B|D) instead of Pr (B|D) [109].

59

1.1.1 Bayesian Dirichlet score

Heckerman et al. [24] proposed this score function on the basis of four assumptions on

Pr (B|D):

1. data D is exchangeable, i.e. if an instance of the data is replaced with another instance,

exchanged data has the same probability as the original one;

2. parameters Θ related to B have a Dirichlet distribution, i.e. the probability density

function for Θij is given by

ρ(Θij |G) = c

ri∏
k=1

θ
N
′
ijk−1

ijk

with N
′
ijk > 0, where N

′
ijkk=1...ri

are the hyperparameters of the Dirichlet distribution;

3. the parameters associated with each variable in the network are independent;

4. the parameters associated with each possible parents combination of a variable are also

independent.

The Bayesian Dirichlet (BD) score, derived from Heckerman, Geiger and Chickering theorem

[24] is defined as

Pr (B, D) = log(Pr (B)) +

n∑
i=1

qi∑
j=1

(
log
(Γ(N

′
ij)

Γ(Nij +N
′
ij)

)
+

ri∑
k=1

log
(Γ(Nijk +N

′
ijk)

Γ(N
′
ijk)

))
(4.4)

Unfortunately, as Heckerman et al. recognized, specifying all N
′
ijk for all i, j and k is un-

manageable in realistic situations: this makes the BD score unusable in practice.

60

Regarding the term log(Pr (B)), which appears in BD and all expressions derived from it

(K2, BDe, BDeu) in general it is assumed a uniform distribution except if, for some reason,

some structure is strongly preferred. In case of a uniform distribution, this term becomes a

constant and can be removed.

1.1.2 K2 score

Cooper and Herskovits [63] proposed one of the first usable Bayesian scoring functions. The

K2 metric is a particular, simplified case of the BD score, where it is simply applied the as-

signment (N
′
ijk = 1), corresponding to zero pseudo-counts.

1.1.3 BDe score

The BD metric involves a parameter that depends on all possible combinations among a

variable and its parents; furthermore it is not score equivalent.

Heckerman et al. [24] addressed this issue by developing a score equivalent version of BD,

called likelihood-equivalence Bayesian Dirichlet (BDe): given a single hyperparameter called the

equivalent sample size, referred to as α, and a prior distribution over network structures, the

BDe metric is able to score a DAG with respect to a sample dataset; its expression is identical

to the BD equation.

This scoring approach is based on two further assumptions, besides BD hypotheses:

61

Likelihood equivalence two equivalent DAGs cannot be discriminated by means of the set

of parameters ΘD extracted from data D;

Structure possibility the probability of any complete DAG is nonzero.

Similarly to the BD score, the BDe metric requires knowing Pr (Xi = xik,ΠXi = wij |G) for all

i,j and k: since this knowledge might not be elementary to find, this score is of little practical

interest [109].

1.1.4 BDeu score

A particular case of BDe is given when the prior network assigns a uniform probability to

each configuration of the set of variables and priors distributions:

Pr (Xi = xik,ΠXi = wij |G) =
1

riqi
. (4.5)

The resulting score is called uniform joint distribution likelihood-equivalence bayesian Dirichlet,

BDeu, and was originally proposed by Buntine [110]:

Pr (B, D) = log(Pr (B)) +

n∑
i=1

qi∑
j=1

(
log
(Γ(αqi)

Γ(Nij + α
qi

)

)
+

ri∑
k=1

log
(Γ(Nijk + α

riqi
)

Γ(α
riqi

)

))
(4.6)

This score only depends on one parameter, the equivalent sample size α: it expresses the

strength of our prior belief in the uniformity of the conditional distributions of the network [109].

62

Since this score is very sensitive with respect to the above-mentioned hyperparameter, that

is directly related to the density of the network to be learnt [62], several values are commonly

attempted. As Liu et al. claimed in [62], “if the density of the network to be learned is un-

known, selecting an appropriate α is difficult.”

1.2 Information-Theoretic Scoring Functions

Information-theoretic metrics are based on compression. In this context, the score of a

Bayesian network B is related to the compression that can be achieved when we try to describe

data D with B.

Shannon’s source coding theorem establishes a theoretical lower bound to lossless data com-

pression, as well as Shannon entropy operational meaning.

Theorem 2 (Shannon’s Source Coding Theorem [111]) As the number of instances of

an i.i.d. (independent and identically-distributed) data stream tends to infinity, no compression

of the data is possible into a shorter message length than the total Shannon entropy, without

losing information.

Given data D, it is possible to score a BN B by the size of an optimal code, induced by B,

when encoding D. This value is the information content of D by B and is given by:

L(D|B) = −
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log(θijk) (4.7)

63

On the basis of Gibbs inequality, the equation above is minimized when the Bayesian net-

work that induces a code that compresses D the most is precisely the Bayesian network that

maximizes the probability of observing D.

1.2.1 Log-Likelihood score

By applying a logarithm to L(D|B) we obtain the log-likelihood (LL) of D given B: maxi-

mizing the log-likelihood is equivalent to minimizing the information content of D by B [109].

LL(B|D) = −
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log(
Nijk

Nij
) (4.8)

This score cannot be used as it is, since it does not follow the basic rule of Occam’s razor :

indeed it tends to favor complete network structures without taking into account independence

assumptions of the learned network.

This problem is commonly overcome by using some structure-related penalization function

f(N) over the LL score, of the type:

φ(B|D) = LL(B|D)− f(N)|B|, (4.9)

where |B| denotes the network complexity [112], that is, the number of parameters in Θ for the

network B.

64

1.2.2 Minimum Description Length score

Minimum Description Length is an Occam’s razor approach (the simplest explanation is

the best) to fitting, rigorously defined as:

MDL(B|D) = LL(B|D)− 1

2
log(N)

n∑
i=1

(ri − 1)qi (4.10)

where the second term represents the network complexity, i.e. the numbers of parameters in Θ

for the network B; each parameter is weighted by 1
2 log(N) bits. This score coincides with the

Bayesian Information Criterion (BIC) score based on Schwarz Information Criterion, with the

difference that the latter “is derived based on the asymptotic behavior of the models, that is,

BIC is based on having a sufficiently large amount of data” [62].

1.2.3 Akaike Information Criterion score

The AIC metric [113] is a derivation of MDL score: here we have that f(N) = 1.

AIC(B|D) = LL(B|D)− |D| (4.11)

1.2.4 Normalized Maximum Likelihood score

The Normalized Maximum Likelihood (NML) score, recently proposed by Kontkanen et

al. [114], is another approach attempting to formalize the penalizing function appearing in the

LL equation.

65

The idea behind NML codes is the same of universal coding, recasted in a stochastic con-

text [109]. Given a set of probability distributions H the encoder relies on the best-fitting

hypothesis H, i.e. one distribution H ∈ H that will assign high likelihood (low code length) to

the incoming data D; therefore, we will like to design a code, related to a distribution H ′, that

for all D it will compress D as close as possible to the best-fitting hypothesis H.

In order to compare the performance of a distribution H with respect to H ′ of modeling D

we can compute:

− log
(

Pr(D|H)
)

+ log
(

Pr(D|H ′)
)
. (4.12)

In the NML metric the penalty term is defined as regret : it is derived from the equation above

in a way that allows a comparison in performance between the best-fitting hypothesis in a set

of probability distributions H and a distribution H̄ not necessarily in H; the regret of H̄ relative

to H for D is:

− log
(

Pr(D|H̄)
)
− min
H∈H

(
− log

(
Pr(D|H)

))
. (4.13)

We can define HH(D) as the distribution that minimizes − log(Pr(D|H)).

The universal distribution relative to H for data of size N is one that minimizes the worst-

case regret:

HH(N) = min
H̄

max
D:|D|=N

(
− log

(
Pr(D|H̄)

)
+ log

(
Pr(D|HH(D))

))
(4.14)

66

The penalizing term in this scoring function is given by the parametric complexity of H for

data of size N :

CN (H) = log

(∑
D:|D|=N

Pr(D|HH(D))

)
(4.15)

Thus, for a fixed network structure G, we have:

NML(B|D) = LL(B|D)− CN (BG). (4.16)

Unfortunately, it is not possible to compute CN (BG) efficiently, since it involves an expo-

nential sum over all possible data of size N . Moreover, this score is not decomposable.

1.2.5 Factorized Normalized Maximum Likelihood score

This scoring function is an heuristic enhancement of NML developed by Roos et al. [115] to

make NML method usable in practice.

Factorized Normalized Maximum Likelihood (fNML) idea is to approximate CN (BG) ex-

pression by considering only the contribution to the parametric complexity of the multinomial

distributions associated to each variable given a parent configuration.

This makes the score decomposable as well.

On the other hand this metric is not score equivalent.

67

1.3 Scoring Function Selection

There is no scoring function that is suitable for any situation: each of them is characterized

by advantages and disadvantages. As pointed out by Liu et al. [62], by averaging on the sample

size, BDeu is able to converge to the target network but with an appropriate α value, fNML can

converge very quickly but sometimes it converges to a different network, whereas MDL presents

the best behavior because it often converges to the target network; moreover, with little data,

fNML seems to be a good scoring function and performs better than MDL, that in general still

converges but does it more slowly.

1.4 Indegree and Data Fragmentation

In all S&S methods, if we have not available an extremely large training set, it is reasonable

to put a restriction on the maximum indegree of a variable, i.e. the maximum allowed number

of parents.

Berzan explained the rationality of this supposition in [12] by means of the following exam-

ple:

“Consider a BN where all variables are binary. If a variable X has no parents,

then to compute the Bayesian score we only need two counts from the training set:

D(X = 0) and D(X = 1). If X has one parent Y , then we need four counts:

D(X = 0, Y = 0), D(X = 0, Y = 1), D(X = 1, Y = 0) and D(X = 1, Y = 1). If X

has two parents we need eight counts, and so on. In general, if X has k parents, we

need a total of 2k+1 counts: as the number of parents PaX increases, it becomes less

68

and less likely to find representative [and reliable] counts for all possible assignments

D(PaX = paX , X = x) in the training set. This phenomenon of data fragmentation

means that we can only learn networks where each node has a small number of

parents. Thus, setting the maximum indegree k to a small value is justified.”

CHAPTER 5

HYBRID CONSTRAINT-BASED – SEARCH AND SCORE STRUCTURE

LEARNING WITH GENETIC ALGORITHMS

In this chapter a new collection of Hybrid methods for BN structure learning is proposed:

each of them consists of a first Constraint-Based part – useful to optimally reduce the search

space – and of a second Search and Score part – responsible of finding the best-performing

structure – given by a Genetic Algorithm.

1 The Logic Underlying Hybrid Strategies

As explained in Chapter 3 and Chapter 4, we can tackle the BN structure learning problem

by progressively reducing the number of possible structures belonging to the search landscape

until one only, hypothetically the best one, remains (CB strategy) or by moving across the

search space on the basis of some guiding criterion until some suitable stop condition occurs

(S&S strategy).

Both above-mentioned strategies are characterized by insidious disadvantages, more and

more relevant as the search space increases in size:

• CB methods need a great amount of data to be considered sufficiently trustworthy, and

even in such a case, they lose in reliability as soon as they make use of CI tests charac-

terized by too high orders [7] (a common phenomenon with large networks);

69

70

• S&S approaches are always limited by bounds such as the maximum number of iterations:

even if one generic S&S algorithm is able to efficiently explore the landscape related to

one particular network, the more we increase the network size (and thus search space size)

the less the search landscape will be exhaustively explored by the algorithm.

What Hybrid methods attempt to do is try to achieve the best of both CB and S&S worlds,

so that they can better deal with reasonably small datasets (a serious problem for CB-only

strategies) as well as reasonably large networks (a major issue to S&S strategies).

A consistent amount of past work focused on tackling the task by means of Hybrid proce-

dures, as we reported in Section 3.

2 An Overview of Proposed Methods

In this thesis work we aim at designing a Hybrid BN structure learning algorithm charac-

terized by the following claims:

1. it should be able in a first moment to reliably reduce the search space, in a way that a

larger but safer search landscape is preferred to a more restricted one; in other words the

priority in the first phase is to get a super-structure that is as sound as possible, i.e. it

should include the largest possible portion of the BN to learn;

2. in the second phase it should search as homogeneously as possible across the result-

ing landscape, and at the same time by optimally steering search efforts towards some

knowledge-guided direction;

71

3. during the second phase it should also be able to further reduce the search landscape on

a test-and-set basis without affecting exploration (reliability is still the main priority) so

to allow feasible execution time and space requirements for large networks and address

data fragmentation issues.

In order to justify the first two claims, we decided to make use of an algorithm similar to

Vafaee’s HSL-GA [15], enhanced with Vafaee et al.’s ultimate findings on GA methods [52,53]:

indeed we will make use of the most reliable CB method for search space reduction among those

taken into account (it experimentally resulted to be the same employed by Vafaee in [22]) and

of a GA (able to operate a global search across the landscape) for the second phase, specifically

characterized by an evolution process informed by data – based on Vafaee et al.’s contribution

in [52] – and able to keep the balance between exploration and exploitation – on the basis of

Vafaee et al.’s contribution in [53].

GAs are powerful tools, very suitable to globally explore huge search landscapes, and this

is why we suppose they are the best choice to operate the search.

Unfortunately, nothing ever comes for free: aside from relevant computational time and

space amounts, that heavily depend on network size and that are relatively larger with respect

to other S&S techniques, an important limitation in GAs is the strong dependence on parameters

values.

In general, evolutionary algorithms are characterized by several parameters, such as pop-

ulation size, number of iterations, genetic operator (mutation and crossover) rates, and often

72

many others: they all require to be carefully adjusted and tailored not only with respect to the

general problem in hand, but also to each particular instance of the problem. For example, in

this context we can consider BN Structure Learning as the general problem and the ALARM

network [116,117] as a particular instance of the problem; furthermore, several related datasets,

characterized by different sizes, constitute each a distinct sub-instance of the problem, to be

tackled with a different set of parameters.

Consequently, besides above-mentioned claims, these methods are implemented with an-

other clear objective in mind, that is to make them as insensitive as possible to the various

adjustable parameters. We will find out in Sections 5.4 and 5.4.2 and experimentally ascertain

in Section 4.3 how Vafaee et al.’s findings in [52,53] will help with this further issue as well.

Finally, we propose another procedure characterized by a new strategy based on parent

reduction in order to fulfill our above-mentioned third claim: it attempts to reduce the search

space across the evolution by selecting at each iteration a subset of current parents set for each

node, so to restrict all possible DAGs contained by the super-structure to a subset of them,

that is as smaller as the lower is the maximum size for the parents set.

Since this novel enhancement introduces an additional parameter (i.e. the maximum num-

ber of parents threshold for each node), we also propose a further variation of this new method,

that attempts to achieve an improved insensitivity with respect to this parameter.

In Figure 2 it is represented the general structure of our hybrid methods.

73

First, we can observe that the CB part is the same for all of them: the Opt0SS algorithm,

on the basis of provided dataset D and set of vertices V , returns a super-structure SS; then,

each of our hybrid methods involves a specific genetic algorithm for the S&S phase: each of

them – namely Standard GA, SiRGA, DiG-SiRGA, PaRe-DiG-SiRGA and SPaRe-DiG-SiRGA

– takes as input the super-structure (denoted by SS) and returns the DAG constituting the

structure of the learnt BN.

All mentioned algorithms are described in details in Sections 4 and 5.

In the schematics depicted in Figure 2 we can also observe that presented GAs blocks are

portrayed in a superposed arrangement: we will see in Section 5 how each S&S method, starting

from Vafaee et al.’s Site-specific Rate GA [52] can be considered as an extension to the previous

one, constituting its basis.

The presented methods have been implemented within MATLAB by means of the Bayesian

Network Toolbox – Structure Learning Package (BNT-SLP) [108], developed on top of the

Bayesian Network Toolbox (BNT) [16].

3 Graph Representation

The required representation for this Hybrid approach should encompass graphs constituted

of directed as well as undirected edges: the standard adjacency matrix representation suits our

needs.

74

Figure 2: General structure of our presented hybrid methods.

Given |V | variables, a generic graph G(V,E) can be represented as a |V |×|V | binary matrix,

where a position (x, y) with a 1 denotes the presence of a directed edge X → Y and a position

(x, y) with a 0 denotes the absence of that directed edge. In other words:

• (x, y) = (0, 0) ⇐⇒ (X 6— Y)

• (x, y) = (0, 1) ⇐⇒ (X → Y)

• (x, y) = (1, 0) ⇐⇒ (X ← Y)

• (x, y) = (1, 1) ⇐⇒ (X — Y)

In particular, since the target DAG cannot contain cycles by definition, the matrix main diag-

onal will be kept null during the whole algorithm, in the original super-structure as well as for

any individual in the population.

75

Even if this representation requires a double access to the matrix to know the state of an

edge (because we have to check both edge extremes), we chose it to get input compatibility

with BNT-SLP toolbox functions without the need of any conversion procedure. Used toolbox

routines are the cond_indep_chisquare function, needed for CI tests, and the score_dags

function, i.e. the scoring function.

4 Super-Structure Construction

We tried to use the Opt01SS algorithm, described in Section 1.6, for the CB phase of the

algorithm: given a set of variables and related fully observed data, it attempts, by primarily

focusing on reliability, to provide a super-structure containing the target DAG, on the basis of

a test-and-set procedure driven by CI tests of the type that resulted to be the most performing

experimentally, as we will report in Section 3; this method is carefully tailored to address issues

that heavily occur with data scarcity, i.e. Approximate Deterministic Relationship (ADR) and

Inconsistent Conditional Independence and Dependence (CIDS) statements.

This first stage is required in order to limit the DAGs space that will be explored by the

GA, so to focus its search on a reduced number of structures and simplify its job.

As we will see in Section 3, since we want to make the algorithm suitable especially in

situations characterized by extreme data scarcity, a simpler, basic and more reliable approach

will be preferred: starting from the complete graph, 0th-order CI tests will be applied to all

76

node pairs; whenever two nodes in a pair result to be unconditionally independent then the

edge between them is removed. Its reliability resides in the fact that only 0th-order tests are

used: indeed the higher the order, the less reliable the CI test [7].

We will name this method Opt0SS, as opposed to Opt01SS.

5 DAGs Evolution

Provided with a reliable super-structure containing the final DAG, the GA is at this stage

responsible of efficiently exploring the search space driven by a scoring metric so to finally

produce an highly-scoring and possibly highly-performing DAG.

Five different implementations of this stage are proposed: a first simple routine shaped

as any standard GA, a Site-specific Rate GA based on Vafaee’s algorithm [52], its adaptive

enhancement reported in [53] defined as DiG-SiRG algorithm, a novel method where parent

reduction is performed based on Elite guidance and another new method based on previous

one, where the threshold defining maximum number of parents per each node is automatically

adjusted on the basis of current Elite population.

First we will present a brief introduction on Evolutionary Computation history, then a re-

view of main Evolutionary Computation constituents is proposed, and finally we will go through

our genetic methods.

77

5.1 Evolutionary Computation in the Literature

In 1950, Turing [118] proposed a ”learning machine” which would parallel the principles of

evolution. After some years, in 1957 Fraser [119] published a series of papers on simulation of

organisms artificial selection. Rechenberg et al. in 1973 [120] presented an efficient optimization

method based on evolution strategies able to solve complex engineering problems.

Another method was Fogel’s evolutionary programming technique, which was proposed for

generating artificial intelligence [121].

Genetic algorithms (GAs) were introduced by Holland in 1975 [122].

Research in GAs remained largely theoretical until The First International Conference on

Genetic Algorithms in 1985.

5.2 Evolutionary Computation Fundamentals

In this section the main components of evolutionary algorithms are presented in their vari-

ations, from the perspective of the employed method, i.e. Genetic Algorithms (GAs).

5.2.1 Individual Representation

Canonical GAs use a binary representation of individuals as fixed-length strings over the

alphabet 0, 1 [122]. In this particular context, each individual is represented by a ternary string,

where each ternary digit describes the state of a specific edge that was included in the original

super-structure as oriented in one of the two available directions or as absent. Length l of the

78

string is given by the number of undirected edges in the original super-structure.

From an implementative point of view, each individual is actually given by an adjacency

matrix: it is manipulated with respect to a list of index pairs that include relevant matrix po-

sitions, i.e. edges that were originally present in the input super-structure; all other positions

are kept null during the whole evolution process.

5.2.2 Initialization

With the Initialization procedure, we can generate a population of N individuals to evolve,

possibly provided with some input. In very large search spaces (i.e. with large network sizes)

it would be a good idea to spread the population across the search space so to cover it as

uniformly as possible: indeed all methods seen in the literature generate the initial population

in a random fashion.

A full genetic S&S method would initialize the population without any constraint, i.e. by

generating a set of structures over the whole DAGs space defined by the V set. As previously

explained, the above-mentioned space becomes very large even with a few nodes only: indeed

the number of possible structures grows super-exponentially by the number of variables |V |, i.e.

with a complexity O(|V |!2(|V |2)) [14, 15]. This means that, even provided with a powerful GA,

in order to keep the same learning performance with respect to an increase in the number of

variables, we should raise the value of some parameter (such as population size or number of

79

iterations) with a relatively larger rate: in this way, we will eventually deal with parameters

involving very high computational power, which is what makes a basic method inapplicable to

real cases with many variables.

Moreover, network edges density may be an issue, because this (commonly unknown) charac-

teristic of the network may increase the sensitivity of the method with respect to the individual

density in the initial population.

The first presented problem can be addressed by reducing the search space before the

evolution: the CB stage of the Hybrid approach allows us to ascertain the absence of a set of

edges in the complete graph, so to make the GA deal with a super-structure bounded to a greatly

reduced DAGs space (quantitative experimental results about this reduction are provided in

Section 3). Indeed, all individuals in the population will be particular instances of the original

super-graph, and not of the complete undirected graph.

In 5.4 we will see how to overcome the second problem: Vafaee et al. SiRG method [52] is

capable of making GA performance independent of initial individual’s density.

5.2.3 Mutation

Mutation in canonical GAs works through the bit-flip technique: each bit is flipped with

probability µ where µ ∈ (0, 1) is a control parameter referred to as mutation rate.

Accordingly, the mutation probability for a single individual is Pr(mutation) = 1− (1−µ)l.

80

By following a näıve approach, mutation operator in GAs has been set in many works in

the literature as equal to 1/L, where L is the individual’s length.

Mutation allows an individual to perform with some chance a little step in the search space,

along any of its dimensions: it is indeed useful to explore the space. In the standard approach,

this step is taken in a random way, with the possibility of undertaking disadvantageous choices;

Vafaee et al. [52] proposed a smart way to focus mutation on more convenient directions, con-

sisting in their Site-specific Rate mutation scheme. It will be analyzed in-depth in Section 5.4.

5.2.4 Crossover

Crossover or recombination is a binary genetic operator responsible of generating some off-

spring from two parents. Once that two individuals are selected for reproduction, it actually

occurs if an independent random experiment yields a positive outcome: the crossover rate χ

indicates the probability that the above-mentioned experiment succeeds.

In the literature there are two forms of crossover operators:

n-point crossover : the two parent strings are cut into n + 1 segments along the randomly

chosen crossover points. The first offspring is obtained by concatenating odd segments

from the first parent and even segments from the second one, whereas the second child

is given by combining odd segments from the second parent and even segments from the

first one.

81

n-point crossover for n > 2 is rarely used in GA applications [22].

An example of this crossover method is given by [123].

uniform crossover : each bit of the first child is randomly picked from one of the two parents,

whereas the second offspring will be constituted by bits taken by means of opposite

decisions.

In [124] is reported an example of uniform crossover.

We employed uniform crossover strategy in this thesis work, in a slightly modified ap-

proach: each individual of the population constitutes the first parent; the second parent

is randomly chosen in the same population after a series of random experiments, in which

an individual xi is eligible for mating if f(xi) > U(0, 1), where U(0, 1) represents a real

number randomly picked in the interval (0, 1); a single offspring is finally added (without

replacing any existing individual) to the population, by following the standard uniform

crossover operation.

5.2.5 Selection

Any selection operator operates by considering fitness values of individuals so to let best-

performing ones keep evolving and to remove bad individuals from population.

Various selection schemes have been applied to GAs in the past:

82

Proportional selection : this scheme uses the relative fitness

Pr (xi) =
f(xi)∑n
j=1 f(xj)

(5.1)

to determine the selection probability of an individual xi.

An example of this method is given by [125].

This is the selection strategy we employed in this work.

Rank-based selection : individuals are ordered with respect to their fitness, then their rank

(order position) is used as selection probability after being normalized with respect to the

sum of the ranks.

[126] constitutes an example of a linear mapping technique following this idea.

Tournament selection : as explained by Vafaee in [22], “this method works by first taking a

random uniform sample of a certain size (called tournament size) from the population. It

then selects the best of these individuals to survive for the next generation, and repeats

the process until the new population is filled.”

[127] is an example of this selection method.

5.3 A Simple Genetic Algorithm

In this section the base version of our method, directly inspired by Vafaee’s method in [22],

is described: it will be explained in detail line-by-line by referring to Algorithm 1.

83

Algorithm 1: Standard genetic algorithm.

Input: SS – complete super-structure

data – dataset

N – population size

M – maximum number of generations

MP – maximum fan-in

scoring fn – scoring function

Output: x∗ – elite individual

1 P ←− Init-Population(SS, 2N)

2 Pdag ←− Make-DAG(P)

3 Pdag ←− Limit-Parents(Pdag, MP)

4 score←− Score-DAG(data, Pdag, scoring fn)

5 for i = 1 :M do

6 x∗ ←− Get-Elite(score, Pdag)

7 [Pdag,1, score1]←− Selection(Pdag, score)

8 P2 ←− Crossover(Pdag,1)

9 Pdag,2 ←− Make-DAG(P2)

10 Pdag,2 ←− Limit-Parents(Pdag,2, MP)

11 P ′dag ←− [Pdag,1 Pdag,2]

12 P ′′ ←− Mutation(P ′dag)

13 P ′′dag ←− Make-DAG(P ′′)

14 P ′′dag ←− Limit-Parents(P ′′dag, MP)

15 score′′ ←− Score-DAG(data, P ′′dag, scoring fn)

16 [Pdag, x∗]←− Place-Elite(score′′, P ′′dag, x∗)

17 end

5.3.1 Line 1: Population Initialization

The Init-Population routine is responsible of initializing a population of individuals start-

ing from the super-structure, by producing 2N directed instances of it, where N is an input

parameter denoting the size of selected population at each generation.

Each individual is built as in the following: only edges existing in the original super-structure

are taken into account, whereas edges that were absent in the super-structure won’t be con-

84

sidered and will be absent in every individual, till the end of the evolution process; for any

individual, given each super-structure edge, a random choice decides whether setting it to one

of the two orientations or whether removing it.

This choice can be calibrated so to produce a population of denser or sparser individuals, i.e.

structures characterized respectively by a high or low number of edges with respect to the total

number of undirected edges in the super-structure: for instance, by setting the probability of

orientation at initialization, denoted as POI, to 0.2, the initial population will be constituted

of individuals having in the average a number of directed edges approximately equal to 1/5 of

the number of edges in the original super-structure.

This possibility to calibrate the starting number of individuals’ edges will allow us to esti-

mate the improved insensitivity of our Site-specific Rate method’s performance with respect to

variations in individuals’ initial density.

5.3.2 Lines 2, 9, 13: Directed Structure to DAG conversion

Since any individual – being an adjacency matrix – can represent any possible directed or

undirected structure, it may be provided with cycles during the crossover or mutation processes.

The Make-DAG routine is indeed needed to convert a generic directed graph to its as similar

as possible DAG, i.e. with the minimum number of changes.

Its core consists in a slightly modified version of a heuristic method developed by Eades et

al. [128] called GR algorithm, capable of solving the minimum Feedback Arc Set problem with

85

a fast heuristic approach and with close-to-optimal results.

The slightly modified, improved version is taken directly from Vafaee’s contribution on the

matter [15], where in particular the vertex degree is defined so to give precedence to nodes

with more children and less parents, in a way that further minimizes the Feedback Arc Set;

finally at the end of this procedure the Feedback Arc Set is deleted, so to yield a DAG as output.

5.3.3 Lines 3, 10, 14: Parents Limitation

The Limit-Parents function constrains the maximum fan-in for each node in the input

DAG(s) to the value MP (Maximum number of Parents): in this basic GA its usefulness is to

only solve a logistic problem, indeed it is used to avoid high computational requirements, caused

by the large size of Conditional Probability Tables related to nodes with too many parents.

In this basic implementation, as well as in its variations inspired on Vafaee et al.’s work

in [52, 53], we assume that structure evolution is practically unconstrained with respect to the

maximum number of parents a node can have at each generation. Indeed, given that in the

experiments we will consider a sufficiently high value for the maximum number of parents so

that:

• computational requirements are bounded in a way that allows the used machine to execute

within a reasonable time frame and without running out of memory,

• parents reduction action influences the evolution process in a negligible way,

86

we decided to adopt a very simple strategy to perform parent reduction.

Given the parents set of a vertex of exceeding size with respect to the maximum fan-in

threshold value MP , a parent per time is randomly picked from the set and detached from the

node, until the parents set size is reduced to MP . We will see how we can actually exploit

parent reduction to further reduce the search landscape and better steer the evolution process

to convergence in sections 5.5 and 5.6; in this context we suppose to deal with a sufficiently

high constant value for MP just to solve our computational problems.

5.3.4 Lines 5, 15: Fitness Computation

A GA should be driven by some metric, a way to score each individual with some fitness

value so to consequently be able to perform the selection procedure: the Score-DAG routine

evaluates such score when needed.

As reported in Section 1 of this thesis work, a plethora of methods for scoring BNs with

respect to their fitness to some related data have been introduced in the past; however, given

that in real situations we are not provided with the necessary elements of information (such

as network density or prior distribution) to fully rely on any of the available scoring functions,

we should always consider them as part of an informative but also deceptive environment. In

other words, scoring functions can help but don’t constitute the perfect source of knowledge,

especially in data scarcity conditions.

87

In this work we chose to use the BDeu score with equivalent sample size α = 1 as fitness

function; its cached implementation is already provided in the BNT-SLP toolbox.

5.3.5 Lines 6, 16: Elite Propagation

This method is elitist : it means that the highest-fitting member is replicated from the

population at the current generation and reinserted in the next generation population, if it still

results to be the best individual.

This operation is executed by Get-Elite and Place-Elite routines: at the beginning of

each generation the highest-scoring DAG is stored in x∗; at the end of the current generation

the x∗ score is compared with the fitness of the best individual of the current population after

crossover and mutation: if the original x∗ is still the highest-scoring individual then it replaces

the worst-fitting individual in the population, otherwise x∗ is updated with the new, highest-

scoring individual.

5.3.6 Line 7: Selection

At the beginning of each generation the population of 2N individuals goes through the

Selection procedure, along with their scores.

For a reason of computational convenience useful in the crossover phase, fitness values are

normalized with respect to best and worst scores in the current population, then N individuals

are selected on the basis of the proportional selection scheme: a loop cycles on all 2N indi-

88

viduals so to compare each individual’s fitness to a random value extracted from the uniform

distribution and to possibly admit it in the selected population, until the latter is filled with N

individuals.

5.3.7 Line 8: Crossover

A modified uniform crossover strategy is applied in this method with the Crossover pro-

cedure so to produce a population of 2N individuals starting from N individuals, as described

in Section 5.2.

5.3.8 Line 12: Mutation

After recombination, each individual undergoes the Mutation procedure: one edge per

time, among those ones allowed to mutate (i.e. edges that existed in the original super-

structure), mutates with probability 1/L, where L is the individual length, or rather the number

of its mutable edges; if the random experiment results in a mutation for the edge, then its state

is randomly changed to one between the other two available (e.g., if edge before mutation is

(0, 1) /→, then after mutation it becomes (1, 0) /← or (0, 0) / 6— with equal likelihood).

5.4 A Site-specific Rate Genetic Algorithm

The second method we chose to use is directly derived from one of Vafaee et al.’s contri-

butions [52] and adapted for the BN structure learning task. It consists in a Site-specific Rate

Genetic (SiRG) algorithm, i.e. a GA that embeds an adaptive mutation scheme able to make

89

exploration and exploitation search mechanisms work together, whereas in standard GAs these

two dynamics behave as opposite forces, as it is commonly known [129].

As stated by Vafaee et al. in [52], “Exploration is the ability of a search algorithm to

discover unseen regions of the search space, and to avoid convergence to local optima. On

the other hand, exploitation is defined as ‘the ability of an algorithm to step into the direction

of the desired improvement’ [130], or ‘the capability of the good use of good information’ [131].”

The proposed method aims at retaining the balance of exploration and exploitation by

developing them where it is needed: the mutation operator is dynamically adapted to each

individual with respect to its fitness and to each edge with respect to its profusion among

the best individuals. Mutation rates are derived in order to preserve good individuals and to

freely disrupt bad individuals, so to make them further explore the search space; furthermore,

these mutation rates are defined to be dynamic in the sense that they are adaptively controlled

throughout the evolution.

This SiRG approach was originally derived from the biological theory of motif representation.

As Vafaee et al. pointed out in [52], “in genetics, a DNA motif is defined as a nucleotide acid

sequence pattern that is widespread and has some biological significance [132]. Given a set of

m DNA sequences, the problem of motif discovery can be roughly defined as finding a set of m

90

subsequences X = {x1.x2, . . . , xm}, one from each input sequence, that maximizes a predefined

scoring criterion.”

The set of discovered patterns can be represented in a complete matrix form. Given that a

subsequence is supposed to lie in one among l possible specific sites in a generic sequence, the

above-mentioned matrix, denoted as position frequency matrix (PFM), stores the frequency of

each possible subsequence residing in a specific site over all sequences, for all sites.

The method is provided in Algorithm 2: structurally it is the same as the first one, excepting

for the Form-Elite-Group, Construct-PWM and SiRG-Mutation routines.

As previously done with the standard GA, new functions will be explained in detail below by

referring to their line numbers in Algorithm 2. For the reader’s convenience, newly introduced

procedures, with respect to the standard GA, are indicated in bold in the pseudocode.

91

Algorithm 2: Site-specific rate genetic algorithm.

Input: SS – complete super-structure

data – dataset

N – population size

M – maximum number of generations

MP – maximum fan-in

scoring fn – scoring function

α – elite eligibility threshold

ε – small positive number

Output: x∗ – elite individual

1 P ←− Init-Population(SS, 2N)

2 Pdag ←− Make-DAG(P)

3 Pdag ←− Limit-Parents(Pdag, MP)

4 score←− Score-DAG(data, Pdag, scoring fn)

5 for i = 1 :M do

6 x∗ ←− Get-Elite(score, Pdag)

7 [Pdag,1, score1]←− Selection(Pdag, score)

8 P2 ←− Crossover(Pdag,1)

9 Pdag,2 ←− Make-DAG(P2)

10 Pdag,2 ←− Limit-Parents(Pdag,2, MP)

11 P ′dag ←− [Pdag,1 Pdag,2]

12 E ←− Form-Elite-Group(P ′dag, α)

13 PWM ←− Construct-PWM(E)
14 P ′′ ←− SiRG-Mutation(P ′dag, PWM, ε)

15 P ′′dag ←− Make-DAG(P ′′)

16 P ′′dag ←− Limit-Parents(P ′′dag, MP)

17 score′′ ←− Score-DAG(data, P ′′dag, scoring fn)

18 [Pdag, x∗]←− Place-Elite(score′′, P ′′dag, x∗)

19 end

5.4.1 Lines 12, 13, 14: Site-specific Rate Mutation Scheme

The Site-specific Rate Mutation procedure starts by recruiting best individuals in the pop-

ulation by means of the Form-Elite-Group routine (line 12), in order to constitute the Elite

set : each individual’s fitness is compared with respect to the Elite Eligibility Threshold, denoted

92

by α (with α ∈ [0.5, 1]) and, if the score is above α, the individual is admitted in the Elite set;

the comparison consists in the following inequality:

f(xk) ≥ αfmax. (5.2)

In this context we define a mutable sequence of the individual, i.e. an edge with a mutable

state, as a locus; moreover each component in the set of values that a locus can assume is

defined to be an allele. Individuals in the Elite set can be thought as leaders guiding the people

towards higher peaks in the search landscape, at least for what concerns the loci states. Indeed

their overall structural information is employed in order to consequently yield a high mutation

chance for those loci whose state is not spread among the elitist population, and conversely, to

reduce the mutation probability for “good” loci.

The presented mechanism is implemented through the Position Weight Matrix, similarly to

the motif discovery context described in Section 5.4; by means of the Construct-PWM func-

tion (line 13) we can indeed construct a PWM = (wi,j), in which each element wi,j corresponds

to the probability of occurrence of allele i ∈ {6—,←,→} (encoded as 1, 2, 3) at locus j ∈ [1, L]

(with L equal to the individual length), weighted by individual’s fitness. More formally, let

χ = {x1, x2, . . . , xm} be the set of selected individuals and let wi,j , derived by Equation 5.3, be

the probability of occurrence of allele i at position j within the elite set; in Equation 5.3 f(xk)

93

is the fitness of individual xk, while the delta function δ(xk,j = i) goes to 1 when the allele of

the individual xk at locus j is equal to i.

wi,j =

∑m
k=1 f(xk) · δ(xk,j = i)∑m

k=1 f(xk)
(5.3)

Provided with a PWM embodying the underlying pattern of the promising solutions discov-

ered so far, the SiRG-Mutation procedure (line 14) computes a distinct mutation rate µk,j for

each site j = 0, . . . , l− 1 of every individual xk ∈ P ′dag and possibly performs mutation on that

specific site; if mutation, driven by a random experiment, succeeds, then the state of current

individual’s related site is randomly changed to one between the remaining two possible alleles.

µk,j is computed according to Equation 5.4, where wi,j is the (i, j)th element of PWM, f(xk)

is the current individual’s fitness, fmax is the fittest-individual’s fitness and ε is a small positive

number to avoid zero probabilities:

µk,j =

[
ε+

(
1− ε

)(
1− f(xk)

fmax

)]
∗
[
ε+

(
1− ε

)(
1− wi,j

)]
. (5.4)

Equation 5.4 meaning is explained here by quoting Vafaee et al. words in [52]:

“the mutation rate at each site is gauged based on the following two criteria:

1. The probability of having the corresponding allele at that site based on the

PWM constructed out of high-quality individuals. Since the pattern of good

94

solutions is somehow represented by a PWM, being in conformity with this

pattern should give rise to lower rates of mutation and vice versa.

2. The fitness of the individual which is about to get mutated; in general better

individuals are more probable to carry more valuable information; accordingly,

they need to be modified more carefully. In other words, assigning them high

mutation rates is rather risky and may cause destruction of useful information.”

5.4.2 Diversity Guide Enhancement

The SiRG scheme allows the GA to retain a good ratio between exploration and exploitation,

but there is still the possibility that this adaptive mechanism, led by the Elite set, eventually

goes out of control.

The proposed method can be augmented with a diversity control process so to more directly

monitor the balance between exploration and exploitation and to ensure its retention across

the search procedure.

Diversity refers to differences among individuals: “loss of diversity corresponds to the lack

of exploration, resulting in premature convergence and trapping into local optima. Excessive

diversity, on the other hand, is counterproductive when high exploitation is required” [53].

In a large, complex and strongly multimodal landscape such as any DAGs space, a diver-

sity monitoring feature in the Elite set can be a good enhancement, especially if we want to

95

make the algorithm suitable to networks characterized by different sizes. E.g., when we deal

with a small-sized network, the search space can be explored efficiently even with an Elite set

that is little with respect to the remainder of the population, because such a landscape would

be generally characterized by a small number of peaks (where the few elitist people can still

distribute): in this context the non-elitist individuals can focus on the few directions given by

the little Elite set, thus contributing more to exploitation; on the other hand, if we employ the

same little Elite set on a larger landscape (associated to a larger network), then it is likely that

the few elitist individuals cannot distribute uniformly across a reasonable portion of peaks in

the search space: the population will probably evolve in the direction of small, sub-optimal

peaks; in this second case it is clearly needed a relatively larger Elite set, more prone to explore

the landscape instead of directly converging to nearest peaks.

The entire mechanism described above depends on individuals’ diversity, that can be more

concretely defined as the individuals’ strings reciprocal Hamming distances and, consequently,

on the distribution of alleles probabilities on each row of the PWM matrix. As explained

by Vafaee et al. in [53], “if E happens to contain genotypically identical individuals – i.e.,

no diversity – all the allele probabilities (wi,j ’s) of the corresponding PWM matrix drop off

to 0 or raise to 1. Such PWM will possibly lead the evolution towards trapping into local

optima and premature convergence resulted from the loss of enough exploration. Conversely,

by an excessively diverse E , the PWM loses the information content required for an effective

exploitative search.”

96

Hence, the key to solve our issue is to find a diversity-driven way to adjust α, i.e. the Elite

eligibility threshold: when we need to expand the Elite set so to promote diversity and explo-

ration then it is sufficient to reduce this parameter, on the other hand when more exploitative

power is required we can restrict the access to the Elite set by increasing the threshold.

In this work we make use of an entropy-based diversity measure in order to monitor the ex-

ploration/exploitation equilibrium, accordingly to the same method described by Vafaee et al.

in [53]. The amount of elitist population disorder can indeed be used as a measure of its diversity.

In information theory, entropy is a measure of uncertainty or disorder in a signal or a

random event. Shannon [111] defines the entropy of a random event X, with possible states

{X1, . . . , Xn} as:

H(X) = −
n∑
i

pi log2(pi), (5.5)

where pi is the probability of observing the ith outcome, Xi.

By quoting Vafaee et al.’s words in [53], “when more states are available to a system, the

systems’ unpredictability and disorder/diversity increase, and thus, entropy rises. When only

one outcome is observed, there is no uncertainty, and therefore, the entropy of the system is

97

zero. Conversely, entropy becomes maximal if all the outcomes are equally likely – i.e., if the

system has n states which are equiprobable (pi = 1/n), the entropy is maximum”:

Hmax = −
n∑
i

1

n
log2

(1

n

)
= log2(n) (5.6)

In this context, we define the entropy for a set of selected population E of size E by first

placing each individual xi into a genotype class Ci. C0, C1, . . . , Cl are possible genotype classes

where l is the individual length and Ci comprises individuals whose hamming distance1 with

the best individual in the current population, x∗(Pdag) is i.

pi in Equation 5.6 constitutes the proportion of the population related to partition Ci. More

formally, pi is derived by Equation 5.7 where h∗(xk) is the hamming distance between the best

individual x∗(P) and the current individual xk, E is the Elite set size and δ(c) returns 1 if its

boolean argument (i.e. h∗(xk) = i) holds and 0 otherwise.

pi =
1

E

m∑
k=1

δ
(
h∗(xk) = i

)
(5.7)

The procedure is provided in Algorithm 3: structurally it is the same as the second one (i.e.

the SiRG algorithm), excepting for the addition of the Update-Alpha procedure.

As previously done with the SiRG algorithm, the new function will be explained in detail

below by referring to its line number in Algorithm 2. For the reader’s convenience, the newly

1Hamming distance between two strings of equal length is the number of positions at which the
corresponding symbols are different.

98

introduced procedure with respect to its basic method (i.e. the SiRG algorithm) is indicated

in bold in the pseudocode.

Algorithm 3: Diversity guided site-specific rate genetic algorithm.

Input: SS – complete super-structure

data – dataset

N – population size

M – maximum number of generations

MP – maximum fan-in

scoring fn – scoring function

α – elite eligibility threshold

ε – small positive number

d1 – healthy diversity interval at generation 1

dM – healthy diversity interval at generation M

Output: x∗ – elite individual

1 P ←− Init-Population(SS, 2N)

2 Pdag ←− Make-DAG(P)

3 Pdag ←− Limit-Parents(Pdag, MP)

4 score←− Score-DAG(data, Pdag, scoring fn)

5 for i = 1 :M do

6 x∗ ←− Get-Elite(score, Pdag)

7 [Pdag,1, score1]←− Selection(Pdag, score)

8 P2 ←− Crossover(Pdag,1)

9 Pdag,2 ←− Make-DAG(P2)

10 Pdag,2 ←− Limit-Parents(Pdag,2, MP)

11 P ′dag ←− [Pdag,1 Pdag,2]

12 E ←− Form-Elite-Group(P ′dag, α)

13 α←− Update-Alpha(E , α, d1, dM)

14 PWM ←− Construct-PWM(E)
15 P ′′ ←− SiRG-Mutation(P ′dag, PWM, ε)

16 P ′′dag ←− Make-DAG(P ′′)

17 P ′′dag ←− Limit-Parents(P ′′dag, MP)

18 score′′ ←− Score-DAG(data, P ′′dag, scoring fn)

19 [Pdag, x∗]←− Place-Elite(score′′, P ′′dag, x∗)

20 end

99

The Update-Alpha procedure (line 13) is used to update α value so to guarantee a sufficient

and constant amount of diversity in the Elite set across the evolution process in its entirety:

at each step α can be incremented, decremented or kept as it is, depending on current elitist

diversity measure.

Let H(E) be the entropy diversity measure of Elite set E , as defined by Equation 5.6 and

Equation 5.7. By directly quoting Vafaee et al. words in [53]: “we can define [dmin, dmax] ⊂

[0, Hmax] to be a healthy diversity interval such that if H(E) falls within this interval, then

exploration and exploitation are assumed to be in good ratio, and thus the process is proceeded

without concern; otherwise, H(E) < dmin implies that evolution is starved of exploration, while

H(E) > dmax means that the process falls into excessive exploration.”

α update procedure is enclosed in Equation 5.8.

αt =



αt−1 − 0.01, if H(E) < dmin

αt−1 + 0.01, if H(E) > dmax

αt−1, otherwise

(5.8)

Two possible methods are proposed by Vafaee et al. for what concerns the healthy diver-

sity interval (denoted as d = [dmin, dmax]) definition: we can assign constant values a · Hmax

and b · Hmax respectively to dmin and dmax, with a ∈ (0, 1), b ∈ (0, 1) and a < b; another

preferable practice, as stated by Vafaee et al. in [53], is “to make the healthy diversity interval

100

time-sensitive based on the intuition that at the earlier stages of evolution more exploration is

required while towards the end of the process exploitation is mode demanding”: this results in

a time-sensitive interval dt based on the definition of two interval pairs, i.e. one identifying the

interval values at the beginning of the evolutionary process (denoted as d1) and one referring

to interval values applied at the last generation of the process (denoted as dM).

5.5 Towards Automatic Parents Reduction: an Elite-Guided Parents Limitation

Approach

All of the methods taken into account up to now, as well as related experiments in Chapter

6, assume a maximum fan-in MP , i.e. a Maximum number of Parents, per node: even if we

keep this maximum bound MP to a sufficiently large value so to make its influence negligible

to GAs behavior, we still need it to avoid the need of huge computational power as soon as

any individual randomly and eventually gets too many parents for one node, a recurring issue

peculiarly with a large number of vertices.

Another important problem we can address with parents reduction, especially in the per-

spective of using a GA to learn large BNs, is data fragmentation, as pointed out in Section 1.4.

Furthermore, it is worth to say that parent reduction can also be an advantage: if we know

a sufficiently reliable value for the maximum fan-in per each node in a network to learn, then we

can bound any evolving DAG to keep the number of parents per node below that threshold: as

101

a result, the population will be eligible to explore only a portion of the overall search landscape

related to the complete input super-structure, and this means that the efforts of each individual

will be focused on a more restricted and direct search space.

5.5.1 Parents Limitation in the Literature

Parents Reduction is a practice typical of S&S approaches: indeed in CB methods we only

deal with CI tests, where a node indegree does not contribute to algorithm complexity. On

the other hand S&S algorithms always use a scoring metric: its computational requirements

depend on the conditional probability table size per each node, and they are likely to not be

applicable to real-life contexts when a node has too many parents.

The K2 algorithm [63] assumes an upper bound on the number of parents per node: even

if this upper bound is there only to prevent high computational requirements, the inner heuris-

tic method on which parent reduction is based is oriented to prefer the minimum number of

parents possible, per each node. Indeed the K2 heuristic greedily adds one parent per time to

each node until the score of the substructure does not increase: if a substructure with more

additional parents than one only yields a better score, then the K2 algorithm would never know.

The CB [99] and Ordering Search [83] algorithms, as well as the K2 [93] and Chain-

Model [95] genetic algorithms makes use of parent reduction through the K2 method, embedded

102

in them.

The Chow-Liu MWST algorithm [56] is limited by the need to choose a root node and the

greedy approach: at each step the structure adds the maximum scoring edge among those that

make the structure keep being a tree. This does not bound a number of maximum parents to

any node, but establishes an ordering among nodes for what concerns parenting: in other words

only nodes that are already part of the tree have the possibility to be parents of the nodes that

have still to be included.

As an extension to the MWST approach, the TAN algorithm [81] is affected by the same

limitations of its core component.

The HC algorithm [82] is not characterized by any limitation on the number of parents, but

its computational needs are very likely to become inapplicable to real-life situations with large

networks throughout the execution, because the greedy process of structure construction is not

controlled, in the sense that it allows any substructure of the complete graph; as we already

said, with large networks this is likely to result in huge computational needs and a long time

to complete the execution.

The Sparse-Candidate algorithm [66] focuses its method exactly on the choice of a good set

of parents – here named candidates – for each node: the main claim of this strategy is that

103

it can optimally reduce the search space so to better steer the exploration process operated

by HC algorithm. The candidate set construction is based on the mutual information existing

between the node taken into account and its potential parents. Limitations to this method are

the need to choose a candidate selection measure and a size for the candidate set, together with

the relevant sensitivity of method’s performance to these parameters.

In particular, proposed candidate selection measures are the discrepancy, shielding and

score based metrics. The discrepancy measure is analogous to an independence test with the

Kullback-Leibner divergence, described in Section 1; on the other hand, the shielding measure

estimates how strongly a conditional independence statement is violated with respect to the

parents set of the node; finally the score based metric is based on the score improvement we get

by adding the potential candidate to the parents set of the node. The candidate set size is the

maximum number of parents allowed per each node.

The basic version of Optimal Reinsertion algorithm [68] does not involve a limit for the in-

degree of each node, and so its computational needs could not be feasible especially with large

networks. Anyway the authors developed an OR version enhanced with the Sparse-Candidate

strategy, characterized by same properties and conclusions related to it.

The Greedy Equivalent Search algorithm [9] contains in its procedure a routine that converts

a DAG to its essential graph; since this procedure needs to be set with a maximum number

of parents per node, we can say that this can be a limitation if we don’t know exactly the

104

maximum fan-in, even more than other methods if we consider that in an essential graph an

undirected edge between two nodes denotes one parent more in the parents set of both nodes,

and not only one of them.

Carrillo’s Simulated Annealing [85] algorithm adopts a parent limitation strategy with fixed

threshold based on mutual information between current node and its parent.

In Larrañaga’s genetic algorithm [92], for each individual, edges within cycles and directed

to nodes having more than k parents are randomly removed until DAG property and maximum

fan-in equal to k property are satisfied.

Carvalho’s Cooperative Coevolutionary genetic algorithm [96] does not restrict the number

of parents of each node, but still needs a huge computational power when too many parents are

added to a node during the evolution process.

In the µGP genetic algorithm [97] a maximum number of parents per node has to be given

as input: when a node reaches this parents limit, no more arcs can be oriented towards it until

at least one among other edges directed to it is removed.

Wong’s Cooperative Coevolution genetic algorithm [94] sets a maximum parents threshold

to each node and attempts to tackle the learning problem by decomposing it in n subproblems

105

(with n denoting the number of vertices), where each of them consists in finding, per each

node, its actual parents set, on the basis of mutual information metrics between a node and its

potential parents.

In particular, the parents set of each node undergoes mutation across the evolution by means

of the move operator: it modifies the parents set of a node by replacing one of the parents with

a nonparent.

The Hybrid Structure Learner Genetic Algorithm [15] does not set any limit to the number

of parents per node: indeed with large networks computational time speeds up with exponential

rate.

5.5.2 Parents Limitation in the Proposed Method

Every time that an individual is evaluated, the scoring function extracts a set of statistics

from the whole dataset in conjunction with the individual structure: this evaluation becomes

more and more expensive as the number of data instances or structure complexity grows.

By structure complexity we refer in particular to each node’s parents set size: in the case of

a tabular conditional probability distribution, time and space complexity for score evaluation of

each node Xi grows with respect to each possible configuration of Xi ∪ Pag(Xi), and is indeed

O
(∏k

i=1 ri

)
, where the considered set of nodes sized k is Xi ∪Pag(Xi) and ri is the number of

values that the ith node in the set can assume.

106

Primary target to achieve with parent reduction is to allow the learning on large networks

in a reasonable time frame and with feasible space requirements for Conditional Probability

Tables allocation: indeed by setting a maximum fan-in, the time and space complexity for the

evaluation of a single node score does not depend on network size anymore: we can thus limit

the parents set in any case, regardless of how many potential parents a node can have. As a

consequence, the entire scoring procedure on a single DAG with any S&S method driven by

standard scoring metrics grows at a bounded-exponential rate with the number of variables,

and not exponentially as by leaving unconstrained the maximum indegree.

Furthermore, as stated by Berzan in [12] and explained in Section 1.4, if we try to evaluate

the score of a node having too many parents, any scoring function behavior may be compro-

mised by the phenomenon of data fragmentation, especially in situations of data scarcity: by

putting a limit on the maximum fan-in, our method is able to address this issue.

Our task is given by the following: given a node with a number of parents NP higher

than MP , we should delete the edges between the node and the set of its NP −MP worst

parents, i.e. the nodes that are less likely to be the actual parents of the node in the target DAG.

In all our previous methods, we dealt with the parent limitation problem by employing the

näıve approach to the issue: given a node and its parents set of exceeding size with respect to

107

MP , one parent per time is randomly picked from the set and consequently detached from the

node, until we bring the fan-in for that node below the MP threshold.

This approach can be advantageous sometimes because it is very simple and fast with respect

to any other strategy, and moreover, it is unbiased. On the other hand, it is not informed from

data, in the sense that it does not employ any information extractable from available data (the

unique source of knowledge we can make use of) in order to choose the parents to detach.

What we propose in this section is a parent limitation strategy that possibly gets the infor-

mation it needs directly from available data, the unique source of knowledge we have available:

our claim is that our method constitutes a more refined approach to search for the highest-

scoring DAG, because it takes advantage from available data in order to dynamically restrict

the search space across the evolution.

We already saw in Section 5.4.2 how the Elite set E , already used by the Site-specific Rate

approach, is exploited via the population disorder entropy metric so to provide the algorithm

with a exploration/exploitation ratio dynamic monitoring method. The Elite set E , being the

best we can get at any generation across the evolution, is indeed a valuable resource that can

be employed in this context as well.

By following an incremental approach in the design of our hybrid methods, we present in this

section, in Algorithm 4, an extended version of DiG-SiRG method denoted as Parent Reduced

Diversity Guided Site-specific Rate Genetic (PaRe-DiG-SiRG) algorithm.

108

All the information we need is enclosed in the PWM, which is built during the Construct-

PWM procedure: this is why before that first PWM instance is built the used parent limitation

routine is still the basic version, and afterwards all calls to the Limit-Parents routine are

replaced by calls to the new Elite-Guided-Limit-Parents procedure – as shown (at lines 13

and 21) in Algorithm 4.

As previously done with the other algorithms, the new function will be explained in detail

below by referring to its line number in Algorithm 4. For the reader’s convenience, the newly

introduced procedure with respect to its basic method (i.e. the DiG-SiRG algorithm) is indi-

cated in bold in the pseudocode.

109

Algorithm 4: Parent reduced diversity guided site-specific rate genetic algorithm.

Input: SS – complete super-structure

data – dataset

N – population size

M – maximum number of generations

MP – maximum fan-in

scoring fn – scoring function

α – elite eligibility threshold

ε – small positive number

d1 – healthy diversity interval at generation 1

dM – healthy diversity interval at generation M

Output: x∗ – elite individual

1 P ←− Init-Population(SS, 2N)

2 Pdag ←− Make-DAG(P)

3 Pdag ←− Limit-Parents(Pdag, MP)

4 score←− Score-DAG(data, Pdag, scoring fn)

5 for i = 1 :M do

6 x∗ ←− Get-Elite(score, Pdag)

7 [Pdag,1, score1]←− Selection(Pdag, score)

8 P2 ←− Crossover(Pdag,1)

9 Pdag,2 ←− Make-DAG(P2)

10 if i == 1 then

11 Pdag,2 ←− Limit-Parents(Pdag,2, MP)

12 else

13 Pdag,2 ←− Elite-Guided-Limit-Parents(Pdag,2, MP, PWM)

14 end

15 P ′dag ←− [Pdag,1 Pdag,2]

16 E ←− Form-Elite-Group(P ′dag, α)

17 α←− Update-Alpha(E , α, d1, dM)

18 PWM ←− Construct-PWM(E)
19 P ′′ ←− SiRG-Mutation(P ′dag, PWM, ε)

20 P ′′dag ←− Make-DAG(P ′′)

21 P ′′dag ←− Elite-Guided-Limit-Parents(P ′′dag, MP, PWM)

22 score′′ ←− Score-DAG(data, P ′′dag, scoring fn)

23 [Pdag, x∗]←− Place-Elite(score′′, P ′′dag, x∗)

24 end

110

5.5.3 Lines 13, 21: Elite-Guided Parents Reduction

The function Elite-Guided-Limit-Parents is a simple strategy adopted to deal with

parent reduction, that employs what is already provided in the base algorithm, i.e. the Elite-

related PWM.

Given a node, first all its parents indexes are stored as keys in a key-value vector, referred

to as Parent Weight Vector, PWV; next the routine searches in the PWM for allele and locus

positions related to the specific oriented edge of the type (parent→ current node), retrieves its

value, i.e. the probability of occurrence of that parent-node edge, and stores it at the respective

parent location in the PWV. Then the vector is sorted with respect to the values in increasing

order, and finally edges related to the first NP −MP parents in the PWV (found by means of

the indexes, i.e. the keys) are removed.

In this way we can say that the Elite set, constructed on the basis of data and evolutionary

progress up to that point, constitutes the selector that decides the worst edges to remove among

the available ones.

Moreover, it may happen that all the PWM values related to the set of edges between a

node and each of its current parents are exactly the same (e.g. 0): in this case the basic random

picking strategy (used in previous algorithms) is enabled for that particular node of that specific

individual.

111

5.5.4 Elite-Guided Parents Reduction Approach: an Example

For the sake of clarity a practical, näıve example of application of the new parents reduction

technique is provided in this section.

Let us suppose to apply the PaRe-DiG-SiRG algorithm to learn the ASIA BN with a popu-

lation size N of 7 (we consider such a low value in order to keep things simple) and a maximum

number of parents MP equal to 3, and let us consider a generic situation that could occur at

any generation across the evolution process, in particular the situation depicted in Figure 3:

as we can observe in the representation, we can locate the execution point of this hypothet-

ical run at the beginning of line 21 in Algorithm 4, just before the application of the novel

Elite-Guided-Limit-Parents procedure.

As shown in the representation, let us suppose that the elite set E has been previously

defined by the Form-Elite-Group function as the set constituted of individuals 1,2 and 3.

Moreover, since parents reduction procedure is applied independently on each node of each

individual, let us consider for simplicity the application of the new technique to one node only

in all individuals: in this example we focus on the variable X = 6.

As a first operation in the cycle referring to each node, the Elite-Guided-Limit-Parents

procedure builds the PWV of the node.

In Table III it is represented the Parent Weight Vector (PWV) for node 6 related to the

current situation: we can observe that parents recurring more across elite individuals are char-

112

Figure 3: Elite-guided parents reduction example: situation before parents limitation.

acterized by an edge towards the node having higher weights.

When reduction time comes, the parents set size of the node is compared with the MP

threshold, for each individual: if the threshold is overcome for any individual, then a parent

per time is deleted from the parents set of that individual on the basis of the PWV.

113

TABLE III: PARENT WEIGHT VECTOR FOR NODE 6 DERIVED FROM THE SITUA-
TION DEPICTED IN THE EXAMPLE, INCREASINGLY ORDERED WITH RESPECT TO
THE WEIGHT.

Parent Node Edge Weight

2 0.00

5 0.00

8 0.00

1 0.33

4 0.33

3 0.67

7 0.67

In the example, none of elite individuals is affected by reduction, contrarily to individuals

4, 5 and 6, containing respectively 4, 4 and 5 parents for node 6, a fan-in that is higher than

MP value (3).

Parents reduction is finally applied on each individual by simply parsing the PWV and,

whenever the parent related to current PWV slot is found in the parents set of the node, by

detaching it from the node, until the parents set size becomes equal to the threshold MP . Par-

ents limitation stage is portrayed in Figure 4, where deleted edges related to detached parents

are drawn in red.

As can be seen in the example, the proposed parents reduction technique, if provided with

sufficiently reliable data, is able to decide in an informed way which parents to retain for any

node of any individual, at a generic iteration of the evolutionary process.

114

As we can ascertain in Section 4.5.2, the proposed method is not overcome by the baseline

random parents reduction approach in any conducted experiment, and results to be as efficient

and performing as the input dataset size grows, i.e. as it becomes more informative.

5.6 “Self Parent Reducing” Enhancement

As shown in Section 5.5 and as we will ascertain in Section 6, we formulated a new, reliable

method to efficiently reduce the number of parents for each node in a DAG during its evolution.

In this subsection we will propose an enhancement to the new method that attempts to take

advantage from the safe parent limitation procedure presented in Section 5.5.3, so to optimally

reduce the search space size and to produce a method insensitive to MP parameter setting.

In particular, if we know a sufficiently reliable value for the maximum fan-in per each node

in a network to learn, then we can bound any evolving DAG to keep the number of parents per

node below that threshold: as a result, the population will be eligible to explore only a portion

of the overall search landscape related to the complete input super-structure, and this means

that the efforts of each individual will be focused on a more restricted and direct search space.

If we can rely on a particular MP value, supposed to be a minimum bound near enough the

actual maximum number of parents in the target network, then the PaRe-DiG-SiRG method

would be our first choice; on the other hand, if we are not able to get such knowledge, we

propose a further method able to utilize again the Elite set in order to optimally adjust the

115

MP value so to constrain the search space as much as possible.

The strategy we propose involves a set of n node-specific MP values (one per each node),

denoted as MP, utilized in a dynamic and adaptive approach: related method, named Self

Parent Reducing DiG-SiRG (SPaRe-DiG-SiRG) algorithm, is described in Algorithm 5, whereas

details of it are shown below; specifically, the only relevant variation with respect to the PaRe-

DiG-SiRG method is given by the addition of the new Update-MP function.

As previously done with the other algorithms, the new function will be explained in detail

below by referring to its line number in Algorithm 5. For the reader’s convenience, the newly

introduced procedure with respect to its underlying method (i.e. the PaRe-DiG-SiRG algo-

rithm) is indicated in bold in the pseudocode.

Since huge computational requirements are still a concern to us, in order to comply with

the need to set a maximum number of parents overall, we consider the value MP given as input

to the algorithm as a maximum bound for any ith value in the MP vector.

116

Algorithm 5: Self parent reducing diversity guided site-specific rate genetic algo-

rithm.

Input: SS – complete super-structure

data – dataset

N – population size

M – maximum number of generations

MP – maximum fan-in

scoring fn – scoring function

α – elite eligibility threshold

ε – small positive number

d1 – healthy diversity interval at generation 1

dM – healthy diversity interval at generation M

Output: x∗ – elite individual

1 P ←− Init-Population(SS, 2N)

2 Pdag ←− Make-DAG(P)

3 Pdag ←− Limit-Parents(Pdag, MP)

4 score←− Score-DAG(data, Pdag, scoring fn)

5 for i = 1 :M do

6 x∗ ←− Get-Elite(score, Pdag)

7 [Pdag,1, score1]←− Selection(Pdag, score)

8 P2 ←− Crossover(Pdag,1)

9 Pdag,2 ←− Make-DAG(P2)

10 if i == 1 then

11 Pdag,2 ←− Limit-Parents(Pdag,2, MP)

12 MP←− [MP MP . . . MP]n

13 else

14 Pdag,2 ←− Elite-Guided-Limit-Parents(Pdag,2, MP, PWM)

15 end

16 P ′dag ←− [Pdag,1 Pdag,2]

17 E ←− Form-Elite-Group(P ′dag, α)

18 α←− Update-Alpha(E , α, d1, dM)

19 PWM ←− Construct-PWM(E)
20 P ′′ ←− SiRG-Mutation(P ′dag, PWM, ε)

21 MP←− Update-MP(n, MP, MP, E)
22 P ′′dag ←− Make-DAG(P ′′)

23 P ′′dag ←− Elite-Guided-Limit-Parents(P ′′dag, MP, PWM)

24 score′′ ←− Score-DAG(data, P ′′dag, scoring fn)

25 [Pdag, x∗]←− Place-Elite(score′′, P ′′dag, x∗)

26 end

117

5.6.1 Line 21: Node-specific Maximum Parents Threshold Adaptive Reduction

During the evolution, at each generation every individual’s node is characterized by a cer-

tain number of parents; ideally, throughout the evolution each node’s parents set eventually

converges to the actual nodes’ parents set in the target DAG.

Convergence speed could depend, among other factors, on the maximum parents threshold:

indeed, given the actual number of parents of a node in the target DAG, NP , and a maximum

parents threshold, MP , if MP > NP it is trivial to conclude that, at any generation, even if

the parents set for that node already includes optimal (hopefully actual) parents, this set will

be continuously altered with the addition or deletion of other nodes as parents.

The Update-MP procedure can serve for helping the above-mentioned convergence process:

at each generation this procedure decides whether to increase or decrease by an unitary step

the MP (i) threshold (related to the ith node), or keep it unchanged, for each node.

In the case the actual number of parents for a node is consistently lower with respect to

the MP threshold, the Elite set E at each iteration can dynamically adjust it, in this case by

means of a unitary decrement, until the threshold stabilizes.

On the other hand, if evolution leads the Elite set to decrease the MP (i) threshold too

much, i.e. below the actual number of parents for the ith node, the procedure is still reversible

and leaves enough freedom to the Elite set to recover from its errors and possibly raise the

threshold when it needs to.

118

In any case, the dynamic threshold MP (i) is not allowed to exceed the starting overall

threshold MP , provided as input to the SPaRe-DiG-SiRG algorithm.

The method through which the Elite set in its entirety can decide if and how to modify the

MP (i) threshold for the ith node of each individual at any generation is enclosed in Equation 5.9:

in brief, it consists in an adaptive adjustment strategy in which each node-specific threshold at

each step independently follows the value of a time-varying reference threshold, referred to as

the Safety Threshold Sth.



Sth(i) = 1 + EnP (i)

MP (i) =



MP (i)− 1, if MP (i) > Sth(i)

MP (i), if MP (i) = Sth(i)

MP (i) + 1, if MP (i) < Sth(i)

(5.9)

EnP (i) denotes the cardinality of the set given by all distinct parents of the ith node over all

individuals in the Elite set E at the current generation: this member in the equation allows all

elite individuals to take part to the MP adjustment choice.

If the problem could be solved by a node-specific threshold reduction only, we would need

just EnP (i) as reference to compare with current MP (i) value, but in fact we need to provide

119

this threshold variation strategy with the possibility to raise the MP (i) limit when it is needed,

i.e. when the evolution process brings at least one of elite individuals to get one more parent

(or several additional ones) for the ith node. We included EnP in the safety threshold Sth ex-

pression as its main contribution, but, in order to address the above-mentioned need, we should

augment its definition.

If in the Elite set it happens that the same value for the number of parents of ith node is

kept and if we consider the ith Safety Threshold Sth(i) as equal to EnP (i) only, then the equa-

tion does not give the chance to increase the number of parents for the ith node to any elite

individual. Since we don’t want to affect in any way the evolution process, we included in the

safety threshold expression a constant additional unitary value, so to provide the evolutionary

process with total freedom even when all elite individuals have exactly the same value as the

number of parents for current node.

The presented strategy aims to enhance any Elite-driven genetic method with a dynamic

node-specific MP threshold so to reduce the search space as much as possible at each genera-

tion and help convergence, but at the same time by providing the parents acquisition process

of Elite DAGs with enough freedom and adaptiveness so to not affect the evolutionary process

itself.

120

5.6.2 Node-specific Maximum Parents Threshold Adaptive Reduction: an Example

For the sake of clarity a practical, näıve example of application of this adaptive variation

to the parents reduction process is provided in this section.

Let us suppose to be in the same situation portrayed in the example at Section 5.5.4, with

a slight variation for the MP value: the PaRe-DiG-SiRG algorithm is applied to learn the

ASIA BN with a population size N of 7 (we consider such a low value in order to keep things

simple), until evolution gets to a generic situation that could occur at any generation across

the evolutionary process, in particular the situation depicted in Figure 3; in this case, let us

consider a slight variation with respect to the example in Section 5.5.4: let us assign to MP a

lower value of 2 instead of 3.

Given that the proposed parents reduction technique is driven by an informative environ-

ment (defined by data), we should take into account that the same environment can also be

deceptive, especially in data scarcity situations: if we use the PaRe-DiG-SiRG algorithm with

a too low value for MP , it is more likely that the number of wrong choices decided by the elite

set (or rather the PWV) for what concerns parents reduction relevantly grows at a point that

the evolutionary process results to be affected.

Consequently, by following the Elite-Guided-Limit-Parents procedure in our example,

on the basis of related PWV (reported in Table IV for the convenience of the reader), the parents

121

TABLE IV: PARENT WEIGHT VECTOR FOR NODE 6 DERIVED FROM THE SITUA-
TION DEPICTED IN THE EXAMPLE, INCREASINGLY ORDERED WITH RESPECT TO
THE WEIGHT.

Parent Node Edge Weight

2 0.00

5 0.00

8 0.00

1 0.33

4 0.33

3 0.67

7 0.67

reduction technique results in the situation depicted in Figure 5: in this occasion, individuals

reduced with respect to X = 6 are individuals 1, 4, 5 and 6.

As we can observe from Figure 5, in opposition to previous case depicted in Figure 4, a slight

decrease on MP threshold may lead the parents reduction process to undertake wrong decisions

about nodes parenthood: indeed node 6 of sixth individual results in this case deprived of one

of its actual parents (node 4), whereas node 7 is erroneously kept as potential parent of the

node.

The proposed variation to the definition of MP threshold, enclosed in the SPaRe-DiG-SiRG

algorithm (specifically in the Update-MP function), may help to overcome wrong decisions by

dynamically adjusting the threshold itself, because it takes into account elite set uncertainty

about the parents set of any node.

122

Let us suppose to apply the SPaRe-DiG-SiRG method to the presented example, so that

at current generation the value in the MP vector referred to node 6 results equal to 2, i.e.

MP(6) = 2: we can thus locate the execution at line 21 of Algorithm 5, before the application

of the parents reduction routine and just before MP update.

When the execution of the Update-MP function starts, first we need to compute the

cardinality of the set given by all distinct parents of the 6th node over all individuals in the

Elite set E , denoted by EnP (6): as we can see in Figure 3 the above-mentioned set is given by

1, 3, 4, 7, and thus EnP (6) = 4, i.e. the size of the set.

We can now define the Safety Threshold Sth(6) as Sth(6) = 1 + EnP (6), and thus we have

Sth(6) = 5. By following Equation 5.9, it results that the MP threshold for node 6, being lower

than Sth(6), is incremented from 2 to 3.

Thanks to this adjustment, the Elite-Guided-Limit-Parents procedure (consequently

executed at line 23 in Algorithm 5) avoids to undertake too hazardous decisions that may lead

to the situation depicted in Figure 5, and results to apply a safer parents reduction as in Figure 4.

As can be seen in the example, the proposed parents reduction enhancement allows to auto-

matically and dynamically decide the maximum fan-in value for each node over all individuals

in the population in a way that is supposed to not affect the overall evolutionary process.

The proposed technique has the peculiarity to be knowledge-driven (since it is based on

Elite parents sets information) and is provided with a recovery feature that allows any elite

123

individual to raise the MP threshold for a particular node in the case a new parent is found

for that node.

124

Figure 4: Elite-guided parents reduction example: during the limitation procedure, worst par-
ents are identified and related edges (depicted in red) are deleted, for each individual.

125

Figure 5: Elite-guided parents reduction, example with a lower threshold: result of the reduction
process.

CHAPTER 6

EXPERIMENTS AND RESULTS

In this chapter it is described the experimental environment we used to evaluate presented

methods and results of several experiments are reported in terms of a set of relevant performance

metrics.

In particular, in the first place the set of algorithms included in the benchmark is presented,

together with all the details about simulation settings and employed datasets. Then two ex-

periments aimed at identifying the best performing method for the CB phase are reported.

Finally, a series of statistics and experiments developed in an incremental manner, similarly to

the inner structure of introduced genetic algorithms themselves, is described and provided with

all relevant results in order to validate all claims stated in previous chapters of this thesis.

1 Compared Algorithms

In order to make our methods deal with a systematic and fair comparison with other com-

petitor approaches, this thesis work involves a rich benchmark constituted by a series of well-

known and widely-used structure learning algorithms. All of them are described in detail in

Chapter 2, and have been implemented within the BNT-SLP package [108] for experimental

use. We will briefly describe them in this section, for the convenience of the reader.

126

127

PC by Spirtes [7] is a traditional CB method that starts with the complete graph and is

articulated in two phases: first it is executed a sequence of loops, each characterized by

an increasing index n; within each loop all possible combinations of node pairs and related

condition sets of cardinality n are evaluated by means of CI tests, and, in case the test is

positive, related edge is deleted; the sequence of loops stops when all sets of neighbors of

each pair of nodes is of cardinality lower than n; in the second part of the method edges

are directed on the basis of v-structures identification and induction rules.

Maximum Weight Spanning Tree (MWST) by Chow and Liu [56] attempts to find on a

S&S basis a tree that maximizes the data likelihood; in particular, first each possible edge

of the graph is provided with a weight defined by the mutual information between the

two nodes of the edge, then a maximum weight spanning tree algorithm (such as Kruskal

or Prim methods) is applied so to finally get a sub-optimal structure in a greedy fashion.

Tree-Augmented Näıve Bayes method by Friedman et al. [81] is an extension to the MWST

approach specialized in building a tree augmented network based on a given class node.

First it is assigned a weight to each edge of the complete graph on the basis of a conditional

mutual independence scoring method, conditioned on the class node; then the MWST

algorithm is executed so to obtain the final DAG, or rather the final tree.

K2 algorithm by Cooper and Herskovits [63] is a popular S&S greedy approach employing the

K2 metric, reported in Section 1. The K2 search begins by assuming that a node has no

parents and then greedily selects as its parents the variables from a given ordering whose

addition best improves the score of the resulting structure in an incremental fashion, until

128

the score stops to increase. It needs a node ordering as input: since we assume to not

have available any information about node ordering, we fed the algorithm with a random

permutation of nodes sequence directly generated at each trial.

Hill Climbing by Buntine [82] is a local S&S method for BN structure learning: at each step

the algorithm considers all available local operations and chooses the one that yields the

best improvement. Specifically, at each step the algorithm computes the differences in

the overall score with respect to all possible local arc operations (addition, deletion and

reversal) and chooses the one with the highest positive difference; the process is repeated

until score improvement occurs.

Hybrid Structure Learner using Genetic Algorithm (HSL-GA) by Vafaee [15] is pro-

vided in this thesis work (with some minor variations) as the hybrid conjunction of the

Opt0SS algorithm, presented in Section 4, and the first of our presented S&S methods,

defined in Section 5.3 as Standard GA. Variations are given by: the adoption of the G2

likelihood-ratio test instead of Pearson’s χ2 test for CI evaluation in the CB part, a pro-

portional selection instead of a rank selection strategy and a uniform crossover in place

of a single-point crossover approach, for what concerns the S&S part.

2 Benchmark Specification

In this section we devise the experimental environment that was employed for the evalua-

tion of our methods: first we focus on the set of problem instances to tackle, i.e. we describe

the collection of chosen target BNs; then we define default, general parameters for use with all

129

benchmark algorithms; finally details on generation and composition of sample datasets used

in the experiments are provided.

2.1 Bayesian Networks Selection

Given that a generic BN structure learning method may yield varying performance results

with respect to variations in network and/or dataset sizes, we decided to select a set of four

networks of various sizes as benchmark problems, each with a set of associated datasets of

assorted amounts.

Here are described in details the four tested networks, chosen from Bayesian Network

Repository [116]; they are provided with a three-elements tuple reporting [|V|, |E|,NPmax],

i.e. [number of nodes, number of edges, maximum number of parents].

Declared sizes are based on BN Repository categorization.

• ASIA [8,8,2] is a small BN also known as LUNG CANCER, portrayed by Lauritzen et

al. in [100]: it describes a simple expert system designed for medical diagnosis, useful in

particular to diagnose tuberculosis, lung cancer or bronchitis on the basis of the occur-

rence of three causal factors given by dyspnoea, a recent visit to Asia or smoking. It is

represented in Figure 6.

• INSURANCE [27,52,3] is a medium BN for car insurance risk estimation reported by

Binder et al. in [133]: it is useful to estimate the expected claim costs for a car insurance

policyholder. It is represented in Figure 7.

130

Figure 6: The ASIA Bayesian network.

• ALARM [37,46,4] is a popular, medium-sized BN outlining a monitoring system for

medical diagnosis purposes, as reported by Beinlich et al. in [117]. Its name stands

for A Logical Alarm Reduction Mechanism, and refers to a diagnostic application that

implements an alarm message system for patient monitoring; it is able to accept a set of

physiologic measurements and to generate specific text messages when they are outside

of their normal range, so to advise the user of possible problems. It is represented in

Figure 8.

131

Figure 7: The INSURANCE Bayesian network.

• HEPAR II [70,123,6] is a large BN that constitutes a probabilistic causal model for

diagnosis of liver disorders, as reported by Onisko in [134]. It constitutes an extension of

the original HEPAR project [135]: it involves the HEPAR system, containing a database

of patient records of the Gastroenterological Clinic of the Institute of Food and Feeding

132

Figure 8: The ALARM Bayesian network.

in Warsaw, currently used in the clinic as a diagnostic and training aid; this BN aims at

providing an expert system for medical diagnosis, as well as a means to train physicians.

It is represented in Figure 9.

133

Figure 9: The HEPAR II Bayesian network.

Since the BNs in BN Repository are given in Bayes net Interchange Format (BIF), bench-

mark networks were first converted to the BNT format, readable by BNT-SLP package, using

the bif2bnt program developed by Shan [136].

2.2 Simulation Settings

The machine used for the experiments is provided with a Intel i7 [137] CPU of 2.60 GHz,

and a RAM of 32.0 GB.

134

To have a feasible running time and a fair comparison across different methods, all routines

are adjusted to stop when either the maximum number of iterations is reached or when the

maximum allotted CPU time T is reached, whichever occurs the first.

Based on our resources, T is set to the values reported in Table V, one specifically defined

for each tested network.

We chose to use the nonparametric Wilcoxon signed-rank test [138] in order to validate

statistical significance in the comparison between two methods results.

As Gibbons and Chakraborti explain in [139], “the Wilcoxon signed rank test is a nonpara-

metric test for two populations when the observations are paired. In this case, the test statistic,

W , is the sum of the ranks of positive differences between the observations in the two samples.”

Basically, provided that the p-value is defined as the probability that the null hypothesis is

true [140] and given two data vectors x and y, this procedure returns the p-value of a paired,

two-sided test for the null hypothesis that x− y comes from a distribution with zero median;

if resulting p-value is below some predefined threshold called significance level, it is possible to

reject the null hypothesis and thus conclude that the results improvement yielded by the best

performing method is statistically significant.

In our benchmark the same settings for free parameters that are common between two or

more methods are adopted: used default settings are reported in Table V. The parameters in

135

the rest of compared algorithms are all set to their default values (see [108] for details).

TABLE V: DEFAULT PARAMETER VALUES USED IN ALL BENCHMARK METHODS.

Parameter Variable Value

ASIA Max CPU Time T_as 200

INSURANCE Max CPU Time T_in 1000

ALARM Max CPU Time T_al 4000

HEPAR II Max CPU Time T_he 12000

CI Test CI_test G2 likelihood-ratio

CI Significance Level CI_th 0.01

Scoring Function scoring_fn Bayesian (BDeu)

Maximum Number of Parents MP 12

Statistical Significance Level ss_th 0.05

2.3 Dataset

The sample_bnet function implemented in BNT [16] has been used to generate synthetic

datasets of various sizes: exact sizes employed in the experiments are reported in Table VI.

In particular, each dataset is not generated from scratch every time: in order to ensure a fair

comparison among benchmark methods, the same instances of 30 randomly generated datasets

136

were stored and repeatedly used (in their entirety or partially) in all experiments.

TABLE VI: TEST CASES AND DATASET SIZES TAKEN INTO ACCOUNT IN OUR
BENCHMARK.

Network Network Size Datasets Sizes

ASIA 8 50, 1000

INSURANCE 27 50, 100, 1000

ALARM 37 30, 50, 70, 100, 1000

HEPAR-II 70 100, 1000

2.4 Dataset and Network Sizes in the Literature

In all publications reported in Chapter 2, the authors try to apply their methods to learn

networks of different sizes with variously-sized datasets.

In order to realize where past work focused its efforts and where this thesis work aims to,

in Table VII we reported the benchmarks taken into account by other authors and by us.

Mentioned benchmark networks belong to the Bayesian Network Repository [116] and to

the UCI Repository of Machine Learning Databases [141].

137

Accordingly to Bayesian Network Repository [116], a small-sized network has less than 20

nodes, a medium-sized one has between 20 and 60 nodes whereas a large network has more

than 60 nodes.

For what concerns dataset sizes, the literature qualitatively defines the same amounts of

samples as being “small-,” “medium-” or “large-”sized, depending on the case.

As we can deduce from Table VII, this thesis work attempts to tackle the task by considering

relatively small sample sizes with respect to the other experiments reported in the literature:

only GS, Opt01SS, K2, Carrillo’s, µGP and HSL-GA experiments took into account datasets

of comparable sizes (relatively to similarly sized networks) to those under analysis in this work.

3 Super-Structure Construction

In order to restrict the huge search landscape we deal with, we need to focus our attention

on a subset of the totality of DAGs extractable from the complete graph on n nodes: the basis

of a Hybrid approach such as ours is indeed to take into account the set of those edges in the

complete graph that we suppose may contain an actual oriented edge in the target DAG.

We chose to estimate the performance of the Opt01SS algorithm: by means of a series of

unconditional and conditional independence tests it is supposed to yield a sufficiently reliable

super-structure, that should hopefully contain our target DAG.

138

TABLE VII: A COMPARISON AMONG NETWORK AND DATASET SIZES IN LITERA-
TURE BENCHMARKS.

Algorithm Network (#Nodes) Dataset

PC ALARM (37) 2000–10000

TPDA ALARM (37), HAILFINDER (56) 1000 to 10000, 2500 to 20000

GS
ALARM (37), INSURANCE (27),

HAILFINDER(56), DIABETES (413)
100 to 500, 500, 500, 500

RAI ALARM (37) 10000

Opt01SS
ALARM (37), CHILD (20), INSURANCE

(27), HAILFINDER (56)
250–500–1000–10000 each

K2 ALARM (37) 100–200–500–1000–2000–3000–10000

CB
ALARM (37), LED (8), LETTERS (17),

SOYBEAN (36)
10000, 199, 10000, 683

TAN
CHESS (36), FLARE (10), GERMAN

(20), SATIMAGE (36), . . .
2130, 1066, 1000, 4435

SC ALARM (37) 10000

OR
ADULT (15), ALARM (37), LETTERS

(17), . . .
49000, 20000, 20000

GES
MSWEB (50), HOUSEVOTES (17),

MUSHROOM (22), . . .
5000, 435, 8124

OS ALARM (37), DIABETES (413) 100–1000–10000–20000, 10000

Carrillo’s ALARM (37) 300 to 10000

Larrañaga ASIA (8), ALARM (37) 500–1000–2000–3000 each

K2GA ALARM (37) 3000

Chain-Model GA ASIA (8), CAR (18), ALARM (37) 5000, 10000, 3000

Carvalho’s CCGA ALARM (37), INSURANCE (27) 1000–3000–5000 each

µGP ALARM (37) 100

Wong’s CCGA ALARM (37), PRINTD (26) 1000–2000–5000–10000, 5000

HSL–GA ASIA (8), ALARM (37), HEPAR-II (70) 50, 30–50–70–100, 100

This Work
ASIA (8), ALARM (37), INSURANCE

(27), HEPAR-II (70)
50–1000, 30–50–70–100–1000, 50–1000,

100–1000

Even if the Opt01SS algorithm claims to return a sound SS [60] (i.e. any PDAG that

contains the skeleton of the target DAG), we decided to compare its performance with respect

to a simple application of 0th-order CI tests to all pairs of nodes in the graph and consequent

edges removal on node pairs characterized by independence: in order to deal with an analogy,

139

we denote this simple method as Opt0SS. Opt01SS and Opt0SS algorithms are deterministic:

by feeding them with the same dataset as input, they will always yield the same super-structure.

The CI significance level was set to 0.01 in all experiments.

All experiments involve a benchmark constituted by all available test cases for ALARM

and INSURANCE networks; results are reported as average values over 30 trials for each test

case, each provided with related standard deviation over the set of trials. As a matter of fact,

we will see in this section how much data availability strongly affects the quality of the final

super-structure.

3.1 Performance estimation

We will estimate the quality of obtained super-structures by means of three normalized

scoring metrics explained in-depth in [100]: F1 score, sensitivity and specificity.

In order to adapt the above-mentioned metrics to this context, we make the following

assumptions for what concerns a super-structure with respect to the target DAG, given any

pair of vertices (A,B):

• a true positive (TP) occurrence is identified as the presence of an undirected edge (A—B)

in the super-structure and the presence of the same edge directed as (A→ B) or (A← B)

in the target DAG;

• a true negative (TN) occurrence is identified as the absence of an edge (A 6—B) in the

super-structure and the absence of the same edge (A 6—B) in the target DAG;

140

• retrieved instances, i.e. the sum of true positives and false positives (TP+FP), correspond

to the set of edges in the obtained super-structure;

• the set of positives (P), i.e. the sum of true positives and false negatives (TP + FN), is

identified by the set of edges that are oriented in the target DAG;

• the set of negatives (N), i.e. the sum of true negatives and false positives (TN +FP), is

identified by the set of edges that are absent in the target DAG.

Provided with the definitions above, we can compute F1 score, sensitivity and specificity for

any obtained super-structure. In particular:

Sensitivity is the proportion of directed edges in the target BN that are associated to undi-

rected edges in the learnt SS;

Specificity is the proportion of absent edges in the target BN that are associated to absent

edges in the learnt SS;

Precision is the proportion of undirected edges in the learnt SS that are associated to directed

edges in the target BN;

F1 score is defined as the harmonic mean of sensitivity and precision measures [100].

3.2 Conditional Independence Tests Evaluation

In this section performances related to two different CI tests are compared, so to choose the

method that is the most suitable to our task.

141

We compared the SS outcomes of the basic Opt0SS algorithm when it is enabled with Pear-

son’s χ2 test with respect to when it is provided with the G2 likelihood-ratio test: in Figure 10

are reported F1, sensitivity and specificity scores averaged on the 30 available datasets per each

size of both networks; error bars on the bar graphs express standard deviations of results over

each set of 30 trials.

Figure 10: Comparison between Pearson’s χ2 test and G2 likelihood-ratio test for conditional
independence.

142

In the resulting graphs we can observe what we expected: as stated in [106,107], the G2 test

results to be more reliable with respect to Pearson’s χ2, especially in a data scarcity condition;

moreover the G2 test seems to be characterized by a slightly more deterministic behavior: we

can indeed ascertain lower values for G2 test standard deviations overall. Hence, we decided to

make use of the G2 test in the entirety of this thesis work.

3.3 CB Methods Comparison

Here the target is to achieve a SS that contains as much as possible of the target DAG:

more formally it consists in maintaining the false negatives (edges present in the target DAG

but not detected neither included in the SS construction) rate as low as possible.

Results are reported in Figure 11.

What we really care of in this context is sensitivity: the higher it is, the lower the false

positives rate is; this means that a SS characterized by high sensitivity contains a relevant

portion of the final DAG.

As we can observe in both ALARM and INSURANCE resulting trends, sensitivity is al-

ways higher with the base method involving only 0th-order CI tests, and F1 scores are always

comparable in experiments conducted with few data (below 1000 test cases). We indeed chose

the basic method Opt0SS for use in our Hybrid approach.

143

Figure 11: Comparison between the two tested constraint-based methods: Opt01SS and
Opt0SS.

3.4 Search Space Reduction: Quantitative Evaluation

In this subsection we will experimentally quantify how much the application of Opt0SS CB

method actually restricts the search space, regardless of its soundness (already discussed in

previous subsection).

In Table VIII the percentage reported for each test case expresses the ratio between the

number of (undirected) edges in the reduced SS and the number of (undirected) edges in the

associated complete graph.

144

Simulation settings are the same of previous experiments: employed benchmark is consti-

tuted by all available test cases for ALARM and INSURANCE networks; results are reported

in Table VIII as average values over 30 trials for each test case, each provided with related

standard deviation over the set of trials, reported between brackets.

TABLE VIII: SPACE REDUCTION ANALYSIS ON INSURANCE AND ALARM NET-

WORKS.

Test Case
INSURANCE ALARM

50 100 1000 30 50 70 100 1000

% Space

Reduction

51.320 23.666 41.206 43.118 27.638 14.855 16.582 31.156

(0.951) (1.832) (1.892) (0.726) (1.160) (1.658) (1.580) (0.914)

As we can see in Table VIII, it results that adopted CB method succeeds in reducing the

search landscape (i.e. the number of edges to take into account for the search) to a portion

approximately in the range [15, 50]% of the original complete structure.

Furthermore, if we look at the same results we can also ascertain that, by moving from

small-sized datasets to larger ones, it can be observed first a relative reduction in the search

space and then an increase of it.

145

We can justify this behavior by stating the following:

• relatively high percentages bounded to small datasets can be explained by data scarcity

and (as a consequence) data fragmentation, because this phenomenon causes inconsistency

on a relevant portion of executed CI tests: whenever a CI test fails, the related edge is

kept in the super-structure;

• relatively high percentages bounded to large datasets can find an explanation in ADRs

(Approximate Deterministic Relationships); as we reported in Section 1.6, an ADR is a

“fortuitous” strong association between two variables, related to the fact that a consis-

tently large portion of data exhibits by accident a deterministic relation for those variables:

it is indeed reasonable to conclude that the amount of ADRs grows with data availability.

4 Optimal DAG Evolution

In this section it is estimated the performance related to employed genetic methods, and

thus to the final learnt DAGs.

The sets of super-structures obtained with the first CB part of the algorithm constitute

now the input to each of the proposed strategies: they are described together with their F1

measures, sensitivities and specificities in Section 3.

Each of the proposed GAs requires a set of parameters: in order to guarantee an adequate

comparison among them, a default set of parameters, reported in Table IX, is adopted; in

146

particular, a POI value of 1 indicates that all edges in the input super-structure are randomly

oriented in every individual. Any possible variation to this set will be expressed in the descrip-

tion of each experiment.

TABLE IX: DEFAULT SET OF PARAMETERS FOR USE IN THE EXPERIMENTS.

Parameter Variable Value

Population Size N 100

Maximum #Iterations M 100

Probability of Orientation at Initialization POI 1

Elite Eligibility Threshold alpha 0.9

Small Constant in µ equation epsilon 0.01

In order to adjust for the stochasticity effect of datasets, especially relevant in small-sized

ones, and to obtain more reliable performance measures, all experiments were run on the first

20 datasets extracted from the pre-built sets, described in Section 2.3; error bars on the bar

graphs express standard deviations of resulting statistics over each set of 20 trials.

147

4.1 Performance estimation

We will estimate the quality of obtained DAGs by means of three normalized scoring metrics:

F1 score, sensitivity and specificity, explained in detail in [100].

In order to adapt the above-mentioned metrics to this context, we make the following

assumptions for what concerns an output DAG with respect to the target DAG, given any pair

of vertices (A,B):

• a true positive (TP) occurrence is identified as the presence of the directed edge (A→ B)

in both the output DAG and the target DAG or of the directed edge (A ← B) in both

the output DAG and the target DAG;

• a true negative (TN) occurrence is identified as the absence of an edge (A6—B) in both

the output DAG and the target DAG;

• retrieved instances, i.e. the sum of true positives and false positives (TP+FP), correspond

to the set of oriented edges in the obtained DAG;

• the set of positives (P), i.e. the sum of true positives and false negatives (TP + FN), is

identified by the set of edges that are oriented in the target DAG;

• the set of negatives (N), i.e. the sum of true negatives and false positives (TN +FP), is

identified by the set of edges that are absent in the target DAG.

Provided with the definitions above, we can compute F1 measure, sensitivity and specificity

for any obtained DAG. In particular:

148

Sensitivity is the proportion of directed edges of the type (A→ B) in the target BN that are

associated to edges directed in the same orientation, i.e. (A→ B), in the learnt BN;

Specificity is the proportion of absent edges in the target BN that are associated to absent

edges in the learnt BN;

Precision is the proportion of directed edges of the type (A → B) in the learnt BN that are

associated to edges directed in the same orientation, i.e. (A→ B), in the target BN;

F1 score is defined as the harmonic mean of sensitivity and precision measures [100].

4.2 Standard GA Results

In this section differently-sized datasets from ASIA, ALARM and HEPAR-II networks are

tested on the first presented method (Standard GA) and on competitor methods included in

our benchmark, i.e. HC [82], MWST [56], K2 [63], TAN [81] and PC [7] algorithms.

Resulting graphs are reported in Figure 12, Figure 13, Figure 14 and Figure 15.

As we can observe in results graphs, our Standard GA performs generally better than its

competitors; this is what we expected, since a similar trend was observed relatively to HSL-GA

(a slightly different method with respect to our Standard GA) in Vafaee’s experiments in [15].

149

Figure 12: Comparison between standard GA and external competitors over differently-sized
datasets sampled from ASIA, ALARM and HEPAR-II networks: F1 scores.

In particular HC seems to perform well with small-sized datasets, but timing issues hinder

its exploration process as we increase network size: its execution ends due to time stop condition

in all experiments with ALARM and HEPAR-II networks.

PC suffers even more than HC from time complexity: in medium and large problems it is

forced to stop after 24 hours spent on a single run (and this explains the absence of related

bars on graphs).

150

Figure 13: Comparison between standard GA and external competitors over differently-sized
datasets sampled from ASIA, ALARM and HEPAR-II networks: sensitivities.

K2 and MWST are characterized by comparable specificities and Bayesian scores on the

ALARM network with respect to Standard GA, but related sensitivities and F1 scores are

comparatively lower.

MWST performs similarly to Standard GA for what concerns F1 scores and sensitivities on

HEPAR-II network test cases, but performs worse in all other cases.

TAN performs always slightly worse than its founding strategy, MWST.

151

Figure 14: Comparison between standard GA and external competitors over differently-sized
datasets sampled from ASIA, ALARM and HEPAR-II networks: specificities.

4.3 SiRG Results

In Figure 16, Figure 17, Figure 18 and Figure 19 are reported respectively F1 scores, sen-

sitivities, specificities and Bayesian scores related to the application of Simple GA and three

versions of the Site-specific Rate genetic strategy on differently-sized datasets extracted from

ASIA, ALARM and HEPAR II networks. In particular, first and second SiRG versions involve

a standard SiRG algorithm with α respectively equal to 0.9 and 0.5, whereas the third version

is the DiG-SiRG (adaptive SiRG) method.

152

Figure 15: Comparison between standard GA and external competitors over differently-sized
datasets sampled from ASIA, ALARM and HEPAR-II networks: Bayesian scores.

In particular, in all experiments: initial value for α in the DiG-SiRG procedure is set to 0.5

and the healthy diversity interval extremes are set accordingly to the time-sensitive method.

Specifically, at the beginning the healthy diversity interval is set to [1
5Hmax,

3
5Hmax] then this

interval is gradually reduced, generation after generation, so to get an end-of-evolution interval

equal to [1
10Hmax,

1
2Hmax].

153

Figure 16: Standard genetic and SiRG algorithms results over differently-sized datasets sampled
from ASIA, ALARM and HEPAR II networks: F1 scores.

As we can observe in Figure 16 and Figure 17 the standard SiRG method with α = 0.9

performs better than the other basic SiRG algorithm with α = 0.5 with ALARM-30, ALARM-

1000 and HEPAR-II-1000 sample datasets, whereas the situation is reversed with the ASIA

datasets and ALARM-70 dataset: as a conclusion we can say that an α value that is optimal

for a particular size for the dataset, or rather for the consequent search landscape, can generally

cease to be optimal with other sizes.

154

Figure 17: Standard genetic and SiRG algorithms results over differently-sized datasets sampled
from ASIA, ALARM and HEPAR II networks: sensitivities.

On the other hand, the DiG-SiRG method has been implemented with a time-sensitive di-

versity guided strategy, which claim is that the α value should be adaptively adjusted depending

on the situation.

As we can observe in Figure 16, the DiG-SiRG approach in all cases (excepting for the

ALARM-1000 dataset, where the Wilcoxon test returns F1 scores and sensitivities that are

better in a statistically significant manner for the SiRGA with α = 0.9), yields comparable or

slightly better results with respect to other static-α strategies: hence we can say that theoretical

expectations are confirmed by this experiment, especially when very scarce amounts of data are

155

Figure 18: Standard genetic and SiRG algorithms results over differently-sized datasets sampled
from ASIA, ALARM and HEPAR II networks: specificities.

available, i.e. when the diversity guidance given by Elite set information source is as deceptive

as possible.

As a consequence, provided also with an improved insensitivity with respect to α parame-

ter setting, we chose to use the DiG-SiRG method as a starting point for the development of

reduced parents strategies.

156

Figure 19: Standard genetic and SiRG algorithms results over differently-sized datasets sampled
from ASIA, ALARM and HEPAR II networks: Bayesian scores.

4.4 Sensitivity Analysis: Amount of Edges Directed at Initialization

Another achievement of the Site-specific Rate approach, especially of its adaptive version,

resides in its improved insensitivity to initialization with respect to a traditional GA.

As shown in Figure 20 and Figure 21, we can observe how performance of the standard GA

is more sensitive to the amount of oriented edges at initialization with respect to its site-specific

rate counterparts; even if the GA performs better than the SiRG methods with certain specific

POI parameter values (specifically with POI = 0), it is more important to deal with a more

157

Figure 20: Standard genetic and SiRG algorithms results tested with different POI values
(expressed as percentages) on the ALARM-70 sample dataset: F1 scores and sensitivities.

insensitive approach, able to return a more conservative and stable result.

By comparing SiRGAs, we can notice that performances with the DiG-SiRG method are

slightly better and more robust. Indeed we focused our attention on how to improve the more

insensitive method, i.e. the DiG-SiRG algorithm.

158

Figure 21: Standard genetic and SiRG algorithms results tested with different POI values
(expressed as percentages) on the ALARM-70 sample dataset: specificities and Bayesian scores.

4.5 New Methods Testing

In this section a comparison among the method that experimentally resulted to be the

best performing one and the novel Parents-Reduction-related methods, i.e. among DiG-SiRG,

PaRe-DiG-SiRG and SPaRe-DiG-SiRG algorithms, is presented.

The objectives here are:

159

1. to prove the reliability and added sustain to the evolutionary process given by the data-

driven parent reduction technique provided in PaRe-DiG-SiRG method, able to allow to

learn large networks in a reasonable time frame and with feasible space requirements and

to further enhance the learning process by dynamically restricting the search space across

the evolution, in a way that addresses the phenomenon of data fragmentation.

2. to show that with the SPaRe-DiG-SiRG algorithm we can get comparable performances

with respect to its basic version, i.e. the DiG-SiRG algorithm, but with an improved in-

sensitivity to one needed parameter for use in most of BN structure learning algorithms:

the maximum number of parents per node MP .

4.5.1 Evaluation with Large MP Value

This experiment was conducted to evaluate whether the MP value chosen in previous ex-

periments (MP = 12) is large enough to make parents reduction action negligible with respect

to final outcome performance, in a way that the evolutionary process is not altered.

As we can observe in Figure 22 and Figure 23, with such a large MP setting it results no

statistically significant change in final performance related to the application of the baseline

DiG-SiRG and its enhancement PaRe-DiG-SiRG, so initial hypothesis is confirmed.

4.5.2 Parents Reduction Methods Reliability Analysis

Before executing any comparison between the two presented parent reduction methods, we

should first check how performance varies by applying each method at different intensities. We

160

Figure 22: Comparison between standard DiG-SiRG strategy and the proposed PaRe-DiG-
SiRG method with a large MP value (F1 scores and sensitivities): it results a performance
variation that is not significant.

can indeed increase the effect of parent reduction by just reducing the MP threshold: if one

method yields a better performance with a lower threshold value, it means that it succeeds in

reducing the search space by retaining actual node’s parents and by detaching the others.

In order to better compare the sensitivites to a variation in the MP parameter related to

DiG-SiRG and PaRe-DiG-SiRG methods, we propose in Figure 24 and Figure 25 a view in

161

Figure 23: Comparison between standard DiG-SiRG strategy and the proposed PaRe-DiG-
SiRG method with a large MP value (specificities and Bayesian scores): it results a performance
variation that is not significant.

parallel of both methods performances for two different values of MP (minimum possible for

the network and 12) on test cases related to two benchmark networks (ALARM and HEPAR

II) with various dataset sizes. The minimum possible MP setting for each network is basically

its maximum indegree: we indeed set the more effective value for MP as equal to 2 for ASIA,

4 for ALARM, 3 for INSURANCE and 6 for HEPAR II.

162

Figure 24: MP sensitivity analysis between standard DiG-SiRG strategy and the proposed
PaRe-DiG-SiRG method (F1 scores and sensitivities): two different values for MP are applied
to each method on four test cases with ALARM and HEPAR-II networks.

As we can observe in Figure 24 and Figure 25, for what concerns the standard DiG-SiRG

method, the MP variation experiments on large ALARM-1000 and HEPAR-II-1000 test cases

seem to not influence performance in any case, but if we take into account the experiments

driven on the remaining small-sized datasets, we can see a slight drop in the performance

163

Figure 25: MP sensitivity analysis between standard DiG-SiRG strategy and the proposed
PaRe-DiG-SiRG method (specificities and Bayesian scores): two different values for MP are
applied to each method on four test cases with ALARM and HEPAR-II networks.

whenever we try to intensify the standard random picking MP reduction technique. This could

be explained by the fact that the basic MP reduction technique takes a consistent amount of

wrong choices for what concerns parents selection, driving the search towards cases in which

nodes have the wrong parents.

164

By observing again Figure 24 and Figure 25, we can ascertain a different trend on PaRe-

DiG-SiRG method results. Indeed ALARM-70 and HEPAR-II-100 performances still remain

comparable for both tested MP values, but on the other hand we can observe a slight improve-

ment in large dataset test cases, especially on the 1000-samples ALARM test case.

As suggested by above-mentioned results, we can say that the Elite-guided parent reduction

technique does not perform worse than standard random picking method in correctly retaining

actual nodes parents, but unfortunately, in the environment defined by used parameters, it does

not result any statistically significant improvement on any metric, excepting for the Bayesian

score on the ALARM-1000 test case: here it results that a stronger parents reduction action

operated by the new method significantly improves the Bayesian score.

We can also observe that PaRe-DiG-SiRG performance always improves by increasing data

sample size, because more information is available for data-driven parents reduction.

4.5.3 Parents Reduction Methods Performance Comparison

In this section it is provided a performance comparison between the two presented parents

reduction techniques, i.e. the random picking baseline and the elite-guided parents reduction

method.

In order to make this comparison operational, we set MP to the minimum allowable value

relatively to each test case, i.e. a value equal to the maximum fan-in in the network: MP = 3

for INSURANCE, MP = 4 for ALARM and MP = 6 for HEPAR-II.

165

Figure 26: Performance comparison between DiG-SiRG strategy and the proposed PaRe-DiG-
SiRG method (F1 scores and sensitivities): the minimum value for MP is applied to each
method on six test cases with ALARM, INSURANCE and HEPAR-II networks.

As can be seen in Figure 26 and Figure 27, when we intensify the parents reduction action it

results that the novel PaRe-DiG-SiRG method yields comparable or better results than the base-

line. In particular, it results a statistically significant improvement relatively to F1, sensitivity

and Bayesian metrics on test cases with large datasets, i.e. ALARM-1000 and INSURANCE-

1000, but not on smaller-sized ones: the more significant improvement on large datasets can

be explained by the higher availability of information, useful to steer the elite-guided parents

reduction mechanism.

166

Figure 27: Performance comparison between DiG-SiRG strategy and the proposed PaRe-DiG-
SiRG method (specificities and Bayesian scores): the minimum value for MP is applied to each
method on six test cases with ALARM, INSURANCE and HEPAR-II networks.

4.5.4 Adaptive Parents Reduction Statistics Evaluation

In Figure 28 are reported some statistics concerning the per-node MP threshold reduction

process related to tests with SPaRe-DiG-SiRG on 70 and 1000 sample sizes extracted from the

ALARM network.

On the x axis it is reported the generation number, whereas on the y axis it is reported the

number of nodes related to each of the following statistics:

Max indicates the maximum number of parents over all nodes at the current generation;

167

Figure 28: Statistics describing the dynamic and adaptive MP threshold reduction process
throughout a 100 generations evolution, extracted from tests on the ALARM network driven
with differently-sized datasets; in particular Max indicates the maximum number of parents
over all nodes at the current generation, RMS is the Root Mean Square between the vector
containing the actual number of parents of the target DAG and the MP vector at the given
generation, Below reports the sum over the difference vector NP-MP, but by considering only
those MP values that are lower than the actual number of parents in the target DAG, i.e. NP,
at the given generation.

RMS is the Root Mean Square between two vectors, one being the actual number of parents

of the target DAG and the other one being the MP vector at the given generation;

168

Below reports the sum over all differences NP (i) − MP (i) related to those MP (i) values

that are lower than the actual number of parents in the target DAG NP (i) at the given

generation.

The optimal trend for these statistics would be a RMS value rapidly converging to 0, a Max

value rapidly converging to the overall maximum number of parents in the target DAG and a

Below value at a constant 0.

We can observe in Figure 28 that the Max statistic, in the ALARM-1000 test case, is kept at

the constant maximum allowable value (12): this means that at least one node in the network

at every generation has a numerous set of parents across the whole elite set, i.e. many nodes

in the network are considered to be good parent candidates for that specific node.

The candidate parents set results to be more various with a larger dataset: we presume

that the greater information availability encourages and intensifies possible (even fortuitous)

dependences between a node and its potential parents.

By looking again at the graphs, specifically by focusing on the Below statistic, it is possible

to ascertain another significant property of the elite-driven MP threshold update process: with

more data availability the amount of “wrong choices” relatively to MP threshold setting is

decreased: indeed with a dataset size of 70 the Below statistic surpasses the value 2 on average,

whereas with a greater dataset of 1000 samples the Below trend seems to stabilize at around

1.5 on average. Consequently, we can conclude that the information extracted from the elite

169

set and thus from data is correctly employed to guide the MP threshold update process.

4.5.5 Final Results

In this section SPaRe-DiG-SiRG performance is evaluated and compared to DiG-SiRG and

PaRe-DiG-SiRG performances with two different parameter sets: in particular we set the first

experiment with previously used values for population size N and number of generations M

(respectively N = 100 and M = 100), whereas in the second experiment we set N and M

respectively to 50 and 200.

Moreover, DiG-SiRG and PaRe-DiG-SiRG are evaluated with the minimum allowable value

for MP , as in previous experiment; on the other hand, since it only constitutes the maximum

allowable value in the dynamic adaptation process, MP is set to 12 (sufficiently large value)

for the SPaRe-DiG-SiRG algorithm.

As we can observe in Figure 29 and Figure 30, the adaptive method for parents reduction,

SPaRe-DiG-SiRG, in no case performs worse than the baseline DiG-SiRG, thus it yields com-

parable results with the advantage that it is not needed to choose a suitable value for MP since

it is automatically found by the algorithm, per each node.

As it already happened with PaRe-DiG-SiRG, also the self parent reducing GA yielded a

statistically significant improvement on the INSURANCE-1000 test case with respect to F1

score, sensitivity and specificity metrics.

170

Figure 29: Performance comparison between DiG-SiRG strategy and the proposed PaRe-DiG-
SiRG and SPaRe-DiG-SiRG methods (F1 scores and sensitivities): experiments involved six
test cases related to ALARM, INSURANCE and HEPAR-II networks.

Moreover, SPaRe-DiG-SiRG yields a statistically significant improvement on the INSURANCE-

50 test case with respect to the baseline (DiG-SiRG) for what concerns sensitivity and specificity

metrics: the relevance of this result is empathized by the fact that, on the other hand, in this

case PaRe-DiG-SiRG does not yield a statistically significant improvement with respect to the

baseline.

171

Figure 30: Performance comparison between DiG-SiRG strategy and the proposed PaRe-DiG-
SiRG and SPaRe-DiG-SiRG methods (specificities and Bayesian scores): experiments involved
six test cases related to ALARM, INSURANCE and HEPAR-II networks.

By varying the parameters setting so to have N = 200 and M = 50, we obtain the graph

bars reported in Figure 31 and Figure 32.

As can be observed in Figure 31 and Figure 32, PaRe-DiG-SiRG keeps being the best per-

forming method with ALARM-1000 and INSURANCE-1000 test cases: this can be considered

as a confirmation that the knowledge-driven parents reduction outperforms the baseline when

the algorithm is provided with enough data in more than one among the possible parameter

settings.

172

Figure 31: Performance comparison between DiG-SiRG strategy and the proposed PaRe-DiG-
SiRG and SPaRe-DiG-SiRG methods (F1 scores and sensitivities): experiments involved six
test cases related to ALARM, INSURANCE and HEPAR-II networks with a different setting
for population size and number of generations parameters.

With this particular parameter set we can also observe that SPaRe-DiG-SiRG outperforms

the baseline (DiG-SiRG) on the ALARM-70 test case with respect to F1 score and sensitivity

metrics. In all other cases, the three presented algorithms yield significantly similar results.

All results presented in this section are reported in terms of F1 scores, sensitivities, speci-

ficities and Bayesian scores in Table X and Table XI. In particular, the result metrics indicated

173

Figure 32: Performance comparison between DiG-SiRG strategy and the proposed PaRe-DiG-
SiRG and SPaRe-DiG-SiRG methods (specificities and Bayesian scores): experiments involved
six test cases related to ALARM, INSURANCE and HEPAR-II networks with a different setting
for population size and number of generations parameters.

in bold are those with the highest values, as well as values whose difference with the highest

one are statistically insignificant.

In conclusion, we can say that overall it is preferable to use the PaRe-DiG-SiRG method,

especially in a data scarcity situation: the unique issue in this case is the need to choose an

acceptable and efficient value for MP .

174

On the other hand, if we don’t have available the knowledge about an acceptable MP value,

then we can still make use of the SPaRe-DiG-SiRG method.

175

TABLE X: FINAL RESULTS ON ALARM, INSURANCE AND HEPAR-II NETWORKS AS-
SUMING N = 100 AND M = 100.

Method

ALARM

70 1000

F1 Sens Spec Score F1 Sens Spec Score

DiG-SiRG
0.565 0.5 0.987 -1016.4 0.555 0.585 0.975 -12372.0

(0.078) (0.071) (0.004) (48.7) (0.065) (0.066) (0.004) (160.15)

PaRe-DiG-
SiRG

0.568 0.503 0.987 -1015.1 0.606 0.645 0.977 -12143.0

(0.074) (0.063) (0.004) (50.40) (0.061) (0.06) (0.005) (178.48)

SPaRe-
DiG-SiRG

0.577 0.514 0.987 -1016.0 0.553 0.593 0.974 -12354.0

(0.072) (0.061) (0.005) (48.25) (0.07) (0.078) (0.004) (206.59)

Method

INSURANCE

50 1000

F1 Sens Spec Score F1 Sens Spec Score

DiG-SiRG
0.303 0.219 0.979 -1028.4 0.604 0.520 0.978 -15545.0

(0.075) (0.055) (0.007) (37.04) (0.069) (0.068) (0.006) (210.34)

PaRe-DiG-
SiRG

0.33 0.24 0.98 -1023.0 0.656 0.571 0.981 -15377.0

(0.084) (0.06) (0.007) (35.73) (0.065) (0.058) (0.006) (236.27)

SPaRe-
DiG-SiRG

0.35 0.263 0.975 -1027.1 0.644 0.569 0.977 -15409.0

(0.071) (0.058) (0.01) (34.04) (0.056) (0.049) (0.007) (181.57)

Method

HEPAR II

100 1000

F1 Sens Spec Score F1 Sens Spec Score

DiG-SiRG
0.145 0.096 0.992 -3552.6 0.36 0.268 0.993 -33883.0

(0.037) (0.026) (0.002) (51.63) (0.047) (0.037) (0.001) (209.69)

PaRe-DiG-
SiRG

0.149 0.098 0.992 -3552.8 0.371 0.276 0.993 -33899.0

(0.034) (0.024) (0.002) (51.88) (0.04) (0.028) (0.002) (230.45)

SPaRe-
DiG-SiRG

0.143 0.093 0.99 -3552.2 0.381 0.284 0.993 -33886.0

(0.035) (0.025) (0.002) (51.26) (0.041) (0.031) (0.002) (225.13)

176

TABLE XI: FINAL RESULTS ON ALARM, INSURANCE AND HEPAR-II NETWORKS
ASSUMING N = 200 AND M = 50.

Method

ALARM

70 1000

F1 Sens Spec Score F1 Sens Spec Score

DiG-SiRG
0.523 0.467 0.984 -1036.2 0.434 0.482 0.964 -12936.0

(0.063) (0.054) (0.004) (52.14) (0.058) (0.061) (0.005) (247.08)

PaRe-DiG-
SiRG

0.532 0.473 0.986 -1030.4 0.528 0.565 0.971 -12603.0

(0.064) (0.06) (0.005) (50.76) (0.059) (0.059) (0.005) (172.27)

SPaRe-
DiG-SiRG

0.563 0.5 0.986 -1036.5 0.433 0.49 0.961 -13002.0

(0.072) (0.061) (0.005) (48.25) (0.07) (0.078) (0.004) (206.59)

Method

INSURANCE

50 1000

F1 Sens Spec Score F1 Sens Spec Score

DiG-SiRG
0.31 0.226 0.976 -1046.9 0.531 0.465 0.968 -15969.0

(0.048) (0.036) (0.009) (34.8) (0.056) (0.054) (0.009) (235.55)

PaRe-DiG-
SiRG

0.332 0.243 0.98 -1036.0 0.636 0.558 0.979 -15537.0

(0.052) (0.041) (0.005) (34.0) (0.073) (0.069) (0.006) (199.66)

SPaRe-
DiG-SiRG

0.277 0.208 0.971 -1059.8 0.52 0.468 0.963 -15931.0

(0.068) (0.057) (0.01) (36.38) (0.038) (0.035) (0.007) (164.64)

Method

HEPAR II

100 1000

F1 Sens Spec Score F1 Sens Spec Score

DiG-SiRG
0.154 0.101 0.992 -3552.7 0.326 0.248 0.991 -34034.0

(0.036) (0.025) (0.002) (51.63) (0.031) (0.023) (0.001) (225.4)

PaRe-DiG-
SiRG

0.148 0.098 0.992 -3552.9 0.305 0.231 0.991 -34032.0

(0.034) (0.024) (0.002) (51.25) (0.04) (0.031) (0.002) (225.05)

SPaRe-
DiG-SiRG

0.152 0.099 0.992 -3552.6 0.31 0.234 0.991 -34034.0

(0.036) (0.025) (0.002) (51.4) (0.031) (0.023) (0.002) (227.94)

CHAPTER 7

SUMMARY AND CONCLUSION

Motivated by the fact that Bayesian networks constitute a powerful framework for proba-

bilistic reasoning and expert elicitation and have been extensively used in a variety of research

domains, this thesis work offers and analyzes new methods for unsupervised Bayesian network

structure learning.

In this work it is provided a method able to learn the structure of the Bayesian network

underlying a set of data samples, by focusing on problems with a limited amount of available

data. In particular, the main contribution of this thesis is a Hybrid learning algorithm able first

to reliably reduce the search space and then to exhaustively explore it, by taking advantage

of data-informed expedients as well. The proposed approach involves a parameterized Genetic

Algorithm in order to pursue the task: this metaheuristic has been chosen because of its efficient

global search capabilities even across a very large search space and because of its flexibility and

adaptability; on the other hand it consistently suffers from time and space complexity relatively

to other search methods in the literature, and moreover its performance is heavily influenced

by the choice of a large set of parameters.

The research covered in this work is concerned with designing a series of hybrid methods on

a build-up basis: they were provided with enhancements already existing in the literature but

not yet applied to the Bayesian network structure learning topic and also with novel improve-

ments able to further restrict the search space during the evolutionary process, in a data-driven

177

178

manner. In the experimental chapter of this thesis it is possible to ascertain how presented

algorithms allow to better address time and space complexity, sensitivity to parameters setting

issues as well as the problem of data fragmentation, with the advantage of higher performances

in some cases.

CHAPTER 8

FUTURE WORK

Future work of this research is twofold: it is focused on enhancing the novel methods pre-

sented in Sections 5.5 and 5.6, as well as identifying and formalizing problem instances and

conditions in which their peculiarities are fully operative and efficacious.

In this thesis work we have successfully applied genetic rate adaptation enhancements al-

ready existing in the literature to our task and then we have concentrated our efforts on a smart

way to perform parent reduction: the number of opportunities for further improvement still

waiting to be undertaken is large as the quantity of genetic subroutines and parameters that

have still to be considered for optimization. Hence, our future efforts may be directed towards

refinement of elite selection or initialization procedures, as well as an adaptive approach to the

population size parameter, among the others.

Furthermore, it would be interesting to analyze which Bayesian network structure learning

problem instances are most suitable to be tackled by means of the proposed methods, so to

identify related real-life contexts to address.

For instance, in the first place we will investigate about the performance of our method

when applied to learn very large or massive networks (respectively with a network size com-

prised between 100 and 1000 nodes and larger than 1000 nodes, accordingly to Bayesian Network

179

180

Repository [116] categorization). After that we ascertain the most suitable applications, we will

apply our algorithms to real data and conduct all pertinent analysis, preferably by providing a

concrete contribution to some specific on-going research topic.

APPENDIX

PERMISSION LETTERS TO REPRINT COPYRIGHT MATERIAL

1 Pearson Education

In this section it is reported the permission letter I received from Pearson Education (US-

APermissions@pearson.com) related to Figure 1.

181

Permissions
200 OLD TAPPAN ROAD

OLD TAPPAN, NJ 07675
Fax: 201-767-5956
Vineta.Lewis@Pearson.com
USAPermissions@pearson.com

Apr 28, 2016 PE Ref # 195446

CARLO CONTALDI

809 S. Damen Ave., Apt. 911D

Chicago, IL 60612

Dear Carlo Contaldi,

You have our permission to include content from our text, ARTIFICIAL

INTELLIGENCE: A MODERN APPROACH, 3rd Ed. by RUSSELL, STUART;

NORVIG, PETER, in your M.S. thesis at UNIVERSITY OF ILLINOIS AT CHICAGO.

Content to be included is:

p. 529 Fig. 14.12a

Please credit our material as follows:
RUSSELL, STUART; NORVIG, PETER, ARTIFICIAL INTELLIGENCE: A

MODERN APPROACH, 3rd, ©2010, p. 529. Reprinted by permission of Pearson

Education, Inc., New York, New York.

Sincerely,

Vineta Lewis, Permissions Supervisor

182

APPENDIX (continued)

183

APPENDIX (continued)

2 Constantin Berzan

In this section it is reported the permission letter related to Table I. It is constituted by an

e-mail exchange I had with Mr. Constantin Berzan.

Carlo Contaldi <cconta2@uic.edu>

Permission Request

Carlo Contaldi <cconta2@uic.edu> Tue, Apr 12, 2016 at 6:04 AM
To: cberzan@gmail.com

Dear Mr. Berzan,

I would like to use a table included in one of your past publications. Please have a look at the details in the attached
permission request document.
If possible, please reply to this e-mail with the signed permission.

Thank you for your attention,

Best regards.
Carlo Contaldi

Permission Request.pdf
84K

University of Illinois at Chicago Mail - Permission Request https://mail.google.com/mail/u/2/?ui=2&ik=9a9ffa3791&view=pt&q=be...

1 of 1 6/15/2016 9:18 PM

184

APPENDIX (continued)

Carlo Contaldi

Artificial Intelligence Laboratory
University of Illinois at Chicago

www.engr.uic.edu

cconta2@uic.edu
 http://it.linkedin.com/in/carlocontaldi

04/11/2016

Dear Mr. Berzan,

I am writing to request permission to use the following material from your honors thesis for the
Department of Computer Science at Tufts University “An Exploration of Structure Learning in Bayesian
Networks” (2012), in my thesis. This material will appear as originally published (or with
changes noted below). Unless you request otherwise, I will use the conventional style of the Graduate
College of the University of Illinois at Chicago as acknowledgment.

I would like to use the Table 2 at page 8 of your thesis (Different tasks in learning Bayesian Networks) as
part of my M.S. thesis because it clearly describes all possible goals related to Bayesian Network Structure
Learning.

A copy of this letter is included for your records. Thank you for your kind consideration of this
request.
Sincerely,
Carlo Contaldi
809 S. Damen Ave., Apt. #911D
Chicago, IL 60612

The above request is approved.
Approved by:__ Date:________________

185

APPENDIX (continued)

Carlo Contaldi <cconta2@uic.edu>

Permission Request

Constantin Berzan <cberzan@gmail.com> Tue, Apr 12, 2016 at 7:13 AM
To: Carlo Contaldi <cconta2@uic.edu>

Hi Carlo,

You are free to use whatever content from my thesis, provided you cite
it in the standard way that academic publications are cited.

Best wishes,
Constantin

University of Illinois at Chicago Mail - Permission Request https://mail.google.com/mail/u/2/?ui=2&ik=9a9ffa3791&view=pt&q=be...

1 of 1 6/15/2016 9:19 PM

186

APPENDIX (continued)

CITED LITERATURE

1. Russell, S. J. and Norvig, P.: Artificial Intelligence, A Modern Approach - Third Edition.
Upper Saddle River, New Jersey, Prentice Hall, 2010.

2. Rietz, H. L.: Review: Grundbegriffe der wahrscheinlichkeitsrechnung by a. kolmogoroff.
Bull. Amer. Math. Soc., 40:522–523, 1934.

3. Stuart, A. and Ord, K.: Kendall’s Advanced Theory of Statistics: Volume I –
Distribution Theory. Edward Arnold, 1994.

4. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press,
2000.

5. Diestel, R.: Graph Theory. Springer-Verlag, 1997.

6. Kalisch, M. and Bühlmann, P.: Estimating high-dimensional directed acyclic graphs with
the pc-algorithm. Journal of Machine Learning Research, 8:613–636, 2007.

7. Spirtes, P., Glymour, C., and Scheines, R.: Causation, Predition and Search - 2nd
edition. Mit Press, 2000.

8. Verma, T. S. and Pearl, J.: Equivalence and synthesis of causal models. Proceedings of
the Sixth Annual Conference on Uncertainty in Artificial Intelligence, 6:255–270,

June 1990.

9. Chickering, D. M.: Optimal structure identification with greedy search. Journal of
Machine Learning Research, pages 507–554, 2002.

10. Andersson, S. A., Madigan, D., and Perlman, M. D.: A characterization of markov
equivalence classes for acyclic digraphs. Ann. Statist., 25:505–541, 1997.

11. Satyanarayana, B. and Prasad, K. S.: Discrete Mathematics and Graph Theory. PHI
Learning Pvt. Ltd., 2014.

12. Berzan, C.: An Exploration of Structure Learning in Bayesian Networks. Doctoral dis-
sertation, Tufts University, 2012.

187

188

CITED LITERATURE (continued)

13. Whitehead, A.: Process and reality. an essay in cosmology. In Gifford Lectures Delivered
in the University of Edinburgh During the Session 1927–1928, 1929.

14. Chickering, D. M., Heckerman, D., and Meek, C.: Large-sample learning of bayesian
networks is np-hard. Journal of Machine Learning Research, 5:1287–1330, October
2004.

15. Vafaee, F.: Learning the structure of large-scale bayesian networks using genetic algorithm.
In Genetic and Evolutionary Computation Conference, July 2014.

16. Murphy, K.: The bayes net toolbox for matlab. Computing science and statistics,
33:1024–1034, 2001.

17. Margaritis, D.: Learning Bayesian Network Model Structure from Data. Doctoral disser-
tation, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
2003.

18. Kruse, R. and Borgelt, C.: Data mining with graphical models. In Proceedings of the 5th
International Conference on Discovery Science, pages 2–11, 2002.

19. Pearl, J.: Causality. Cambridge University Press, 2009.

20. Berkson, J.: Limitations of the application of fourfold table analysis to hospital data.
Biometrics Bulletin, 2:47–53, June 1946.

21. Koller, D. and Friedman, N.: Probabilistic Graphical Models – Principles and
Techniques. MIT Press, Adaptive Computation and Machine Learning series, 2009.

22. Vafaee, F.: Controlling Genetic Operator Rates in Evolutionary Algorithms. Doctoral
dissertation, University of Illinois at Chicago, July 2010.

23. Uusitalo, L.: Advantages and challenges of bayesian networks in environmental modelling.
Ecological Modelling, 203:312–318, 2007.

24. Heckerman, D., Geiger, D., and Chickering, D. M.: Learning bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20:197–243,
1995.

189

CITED LITERATURE (continued)

25. Kontkanen, P., Myllymki, P., Silande, T., and Tirri, H.: Comparing predictive inference
methods for discrete domains. In Proceedings of the sixth International Workshop
on Artificial Intelligence and Statistics, pages 311–318, 1997.

26. Kuikka, S., Hildén, M., Gislason, H., Hansson, S., Sparholt, H., and Varis, O.: Modeling
environmentally driven uncertainties in baltic cod (gadus morhua) management
by bayesian influence diagrams. Can. J. Fish. Aquat. Sci., 56:629–641, 1999.

27. Marcot, B., Holthausen, R., Raphael, M., Rowland, M., and Wisdom, M.: Using
bayesian belief networks to evaluate fish and wildlife population viability under
land management alternatives from an environmental impact statement. Forest
Ecol. Manage., 153:29–42, 2001.

28. Jensen, F. V.: Bayesian Networks and Decision Graphs. Springer-Verlag, 2001.

29. Walters, C. and Martell, S.: Fisheries Ecology and Management. Princeton University
Press, 2004.

30. Jr., C. E. K., Roberts, L. M., k. A. Shaffer, and Haddawy, P.: Construction of a bayesian
network for mammographic diagnosis of breast cancer. Computers Biol. Med.,
27:19–29, 1997.

31. Xia, J., Neapolitan, R., Barmada, M. M., and Visweswaran, S.: Learning genetic epistatis
using bayesian network scoring criteria. BMC bioinformatics, 12, 2011.

32. Sachs, K., Perez, O., and Pe’er, D.: Causal protein-signaling networks derived from
multiparameter single-cell data. Science, 308:523–529, 2005.

33. Hill, S. M., Lu, Y., J.Molina, Heiser, L. M., Spellman, P. T., Speed, T. P., Gray, J. W.,
Mills, G. B., and Mukherjee, S.: Bayesian inference of signaling network topology
in a cancer cell line. Bioinformatics, 28:2804–2810, 2012.

34. Zhang, C., Frias, M. A., Mele, A., Ruggiu, M., Eom, T., Marney, C. B., Wang, H.,
Licatalosi, D. D., Fak, J. J., and Darnell, R. B.: Integrative modeling defines the
nova splicing-regulatory network and its combinatorial controls. Science, 329:439–
443, 2010.

35. Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science,
303:799–805, 2004.

190

CITED LITERATURE (continued)

36. Beaumont, M. and Rannala, B.: The bayesian revolution in genetics. Nat. Rev. Genet.,
5:251–261, 2004.

37. de Campos, L. M., Fernández-Luna, J. M., and Huete, J. F.: Bayesian networks and
information retrieval: an introduction to the special issue. Information Processing
and Management (Elsevier), 40:727–733, 2004.

38. Varis, O., Kettunen, J., and Sirviö, H.: Bayesian influence diagram approach to complex
environmental management including observational design. Computat. Stat. Data
Anal., 9:77–91, 1990.

39. Lee, D. C. and Rieman, B. E.: Population viability assessment of salmonids by using
probabilistic networks. N. Am. J. Fish. Manage., 17:1144–1157, 1997.

40. Varis, O.: Bayesian decision analysis for environmental and resource management.
Environ. Modell. Software, 12:177–185, 1997.

41. Reckhow, K. H.: Water quality prediction and probability network models. Can. J. Fish.
Aquat. Sci., 56:1150–1158, 1999.

42. Borsuk, M. E., Stow, C. A., and Reckhow, K. H.: A bayesian network of eutrophication
models for synthesis, prediction, and uncertainty analysis. Ecol. Model., 173:219–
239, 2004.

43. Little, L., Kuikka, S., Punt, A., Pantus, F., Davies, C., and Mapstone, B.: Information
flow among fishing vessels modelled using a bayesian network. Environ. Modell.
Software, 19:27–34, 2004.

44. Wooldridge, S. and Done, T.: Learning to predict large-scale coral bleaching from past
events: a bayesian approach using remotely sensed data, in-situ data, and envi-
ronmental proxies. Coral Reefs, 23:96–108, 2004.

45. Bromley, J., Jackson, N., Clymer, O., Giacomello, A., and Jensen, F.: The use of hugin
to develop bayesian networks as an aid to integrated water resource planning.
Environ. Model. Software, 20:231–242, 2005.

46. Uusitalo, L., Kuikka, S., and Romakkaniemi, A.: Estimation of atlantic salmon smolt
carrying capacity of rivers using expert knowledge. ICES J. Marine Sci., 62:708–
722, 2005.

191

CITED LITERATURE (continued)

47. Dong, A. and Agogino, A. M.: Text analysis for constructing design representations.
Artif. Intell. Eng., 11:65–75, 1997.

48. Garbolino, P. and Taroni, F.: Evaluation of scientific evidence using bayesian networks.
Forensic Sci. Int., 125:149–155, 2002.

49. Huang, L., Nan, J., Guo, L., and Lin, Q.: A bayesian network approach in the relevance
feedback of personalized image semantic model. Advances in Multimedia, Software
Engineering and Computing, 1, 2012.

50. Nikolopoulos, S., Papadopoulos, G. T., Kompatsiaris, I., and Patras, I.: Evidence-
driven image interpretation by combining implicit and explicit knowledge in a
bayesian network. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 41, 2011.

51. Yan, G., Lee, R., Kent, A., and Wolpert, D.: Towards a bayesian network game framework
for evaluating ddos attacks and defense. In ACM Conference on Computer and
Communications Security, 2012.

52. Vafaee, F., Turán, G., Nelson, P. C., and Berger-Wolf, T. Y.: Among-site rate variation:
Adaptation of genetic algorithm mutation rates at each single site. In GECCO’14,
2014.

53. Vafaee, F., Turán, G., Nelson, P. C., and Berger-Wolf, T. Y.: Balancing the exploration
and exploitation in an adaptive diversity guided genetic algorithm. In CEC’14,
2014.

54. Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M.: Occam’s razor. Information
Processing Letters, 24:377–380, 1987.

55. Cheng, J., Bell, D., and Liu, W.: Learning bayesian networks from data: An efficient ap-
proach based on information theory. In Proceedings of the 6th ACM International
Conference on Information and Knowledge Management, 1997.

56. Chow, C. K. and Liu, C. N.: Approximating discrete probability distributions with de-
pendence trees. IEEE Trans. Inform. Theory, 14:462–467, 1968.

57. Pellet, J. and Elisseeff, A.: Using markov blankets for causal structure learning. The
Journal of Machine Learning Research, 9:1295–1342, 2008.

192

CITED LITERATURE (continued)

58. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

59. Yehezkel, R. and Lerner, B.: Bayesian network structure learning by recursive autonomy
identification. Journal of Machine Learning Research, 10:1527–1570, 2009.

60. Villanueva, E. and Maciel, C. D.: Efficient methods for learning bayesian network super-
structures. Neurocomputing, 123:3–12, 2014.

61. Steck, H. and Tresp, V.: Bayesian belief network for data mining. In Proceedings of the
second DMDW, 1999.

62. Liu, Z., Malone, B., and Yuan, C.: Empirical evaluation of scoring functions for bayesian
network model selection. In Proceedings of MCBIOS Conference, 2012.

63. Cooper, G. F. and Herskovits, E.: A bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9:309–347, 1992.

64. Heckerman, D.: A tutorial on learning with bayesian networks. Studies in Computational
Intelligence, 156:33–82, 1998.

65. Glover, F.: Tabu search: A tutorial. Interfaces, 20:74–94, 1990.

66. Friedman, N., Nachman, I., and Peér, D.: Learning bayesian network structure from
massive datasets: The “sparse candidate” algorithm. Uncertainty in Artificial
Intelligence, pages 206–215, 1999.

67. Chickering, D. M.: Learning equivalence classes of bayesian network structures. J Mach
Learn Res, 2:445–498, 2002.

68. Moore, A. and Wong, W. K.: Optimal reinsertion: A new search operator for accelerated
and more accurate bayesian network structure learning. In Proceedings of the 20th
International Conference on Machine Learning (ICML ’03), pages 552–559, 2003.

69. Koivisto, M. and Sood, K.: Exact bayesian structure discovery in bayesian networks.
Journal of Machine Learning Research, pages 549–573, 2004.

70. Silander, T. and Myllymaki, P.: A simple approach for finding the globally optimal
bayesian network structure. In Proceedings of the 22nd Annual Conference on
Uncertainty in Artificial Intelligence, 2006.

193

CITED LITERATURE (continued)

71. Malone, B., Yuan, C., and Hansen, E. A.: Memory-efficient dynamic programming for
learning optimal bayesian networks. In Proceedings of the 25th AAAI Conference
on Artificial Intelligence, pages 1057–1062, 2011.

72. Ott, S., Imoto, S., and Miyano, S.: Finding optimal models for small gene networks.
Pac Symp Biocomput 2004, pages 557–567, 2004.

73. Singh, A. and Moore, A.: Finding optimal bayesian networks by dynamic programming.
Technical report, Carnegie Mellon University, 2005.

74. de Campos, C. P., Zeng, Z., and Ji, Q.: Structure learning of bayesian networks using con-
straints. In Proceedings of the 26th Annual International Conference on Machine
Learning, pages 113–120, 2009.

75. Jaakkola, T., Sontag, D., Globerson, A., and Meila, M.: Learning bayesian network struc-
ture using lp relaxations. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, 2010.

76. Cussens, J.: Bayesian network learning with cutting planes. In Proceedings of the
Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial

Intelligence, 2011.

77. Yuan, C., Malone, B., and Wu, X.: Learning optimal bayesian networks using a×
search. In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, pages 2186–2191, 2011.

78. Malone, B., Yuan, C., Hansen, E., and Bridges, S.: Improving the scalability of opti-
mal bayesian network learning with external-memory frontier breadth-first branch
and bound search. In Proceedings of the Twenty-Seventh Conference Annual
Conference on Uncertainty in Artificial Intelligence, pages 479–488, 2011.

79. Yuan, C. and Malone, B.: An improved admissible heuristic for finding opti-
mal bayesian networks. In Proceedings of the 28th Conference on Uncertainty in
Artificial Intelligence, 2012.

80. Borgelt, C. and Kruse, R.: An empirical investigation of the k2 metric.
In Proc. of the 6th European Conf. on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, pages 240–251, 2001.

194

CITED LITERATURE (continued)

81. Friedman, N., Geiger, D., and Goldszmidt, M.: Bayesian networks classifiers. Machine
Learning, 29:131–163, 1997.

82. Buntine, W.: Operations for learning with graphical models. Journal of Artificial
Intelligence Research, 2:159–225, 1994.

83. Teyssier, M. and Koller, D.: Ordering-based search: A simple and effective algorithm
for learning bayesian networks. In Proceedings of the Twenty-first Conference on
Uncertainty in AI (UAI), pages 584–590, July 2005.

84. Mkenyeleye, M.: MCMC Analysis for Optimization of Stochastic Models. Doctoral dis-
sertation, Lappeenranta University of Technology, November 2011.

85. Carrillo, M. A., Ortiz, F. J. C., Morales-Menéndez, R., and non, L. E. G. C.: Learning
bayesian network structures from small datasets using simulated annealing and
bayesian score. In IASTED International Conference on Artificial Intelligence and
Applications, part of the 23rd Multi-Conference on Applied Informatics, 2005.

86. Friedman, N. and Koller, D.: Being bayesian about network structure: A bayesian
approach to structure discovery in bayesian networks. In Proc. Conference on
Uncertainty in Artificial Intelligence, pages 201–210, 2000.

87. Antal, P., Millinghoffer, A., and Hullam, G.: Structure learning of bayesian networks with
mcmc: extension to incomplete data and decision trees as local models. IEEE
Signal Processing Magazine, 2009.

88. Ye, S., Cai, H., and Sun, R.: An algorithm for bayesian networks structure learning
based on simulated annealing with mdl restriction. In International Conference
on Computing, Networking and Communications, 2013.

89. Wang, T., Touchman, J. W., and Xue, G.: Applying two-level simulated annealing
on bayesian structure. In Proceedings of the 2004 IEEE Computational Systems
Bioinformatics Conference, 2004.

90. Hesar, A. S.: Structure learning of bayesian belief networks using simulated annealing
algorithm. Middle-East Journal of Scientific Research, 18:1343–1348, 2013.

91. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.: Optimization by simulated annealing.
Science, 220:671–680, 1983.

195

CITED LITERATURE (continued)

92. Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R. H., and Kuijpers, C. M. H.: Struc-
ture learning of bayesian networks by genetic algorithms: A performance analy-
sis of control parameters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18:912–926, 1996.

93. Larrañaga, P., Kuijpers, C. M. H., Murga, R. H., and Yurramendi, Y.: Learning bayesian
network structures by searching for the best ordering with genetic algorithms.
IEEE Transactions on Systems, Man and Cybernetics, 26:487–493, 1996.

94. Wong, M. L., Lee, S. Y., and Leung, K. S.: Data mining of bayesian networks using
cooperative coevolution. Decis. Support Syst., 38:451–472, December 2004.

95. Kabli, R., Herrmann, F., and McCall, J.: A chain-model genetic algorithm for bayesian
network structure learning. In GECCO ’07, 2007.

96. Carvalho, A.: A cooperative coevolutionary genetic algorithm for learning
bayesian network structures. In Proceedings of the 13th Genetic and Evolutionary
Computation Conference, pages 1131–1138, 2011.

97. Tonda, A. P., Lutton, E., Reuillon, R., Squillero, G., and Wuillemin, P.-H.: Bayesian net-
work structure learning from limited datasets through graph evolution. EuroGP,
pages 254–265, 2012.

98. Sourceforge: Host of µgp3, http://sourceforge.net/projects/ugp3.

99. Singh, M. and Valtorta, M.: Construction of bayesian network structures from data:
a brief survey and an efficient algorithm. International Journal of Approximate
Reasoning, pages 259–265, 1995.

100. Rijsbergen, C. J. V.: Information Retrieval (2nd ed.). Butterworth, 1979.

101. Hobson, A.: Concepts in statistical mechanics. Gordon and Breach, 1971.

102. Cover, T. M. and Thomas, J. A.: Elements of Information Theory - 2nd edition. Wiley
Series in Telecommunications and Signal Processing, 1991.

103. Wyner, A. D.: A definition of conditional mutual information for arbitrary ensembles.
Information and Control, 38:51–59, 1978.

196

CITED LITERATURE (continued)

104. Pearson, K.: On the criterion that a given system of deviations from the probable in the
case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling. Philosophical Magazine Series, 5:157–175,
2013.

105. McDonald, J. H.: Handbook of Biological Statistics (Third ed.). Baltimore, Maryland:
Sparky House Publishing, 2014.

106. MacKay, D. J.: Bayes or chi-squared? or does it not matter?, July 2005.

107. Sokal, R. R. and Rohlf, F. J.: Biometry: The Principles and Practices of Statistics in
Biological Research - 3rd edition. W.H. Freeman, 1994.

108. Leray, P. and Francois, O.: Bnt structure learning package: Documentation and experi-
ments. Technical report, Laboratoire PSI, Universitè et INSA de Rouen, 2004.

109. Carvalho, A. M.: Scoring functions for learning bayesian networks. Inesc-id Tec. Rep,
2009.

110. Buntine, W. L.: Theory refinement on bayesian networks. In Proc. UAI’91, pages 52–60,
1991.

111. Shannon, C. E.: A mathematical theory of communication. Bell System Technical
Journal, pages 379–423, 1948.

112. Rissanen, J.: Stochastic complexity and modeling. Annals of Statistics, 14:1080–1100,
1986.

113. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on
Automatic Control, 19:716–723, 1974.

114. Kontkanen, P. and Myllymäki, P.: A linear-time algorithm for computing the multinomial
stochastic complexity. Inf. Process. Lett., 103:227–233, 2007.

115. Roos, T., Silander, T., Kontkanen, P., and Myllymäki, P.: Bayesian network structure
learning using factorized nml universal models. In Proceedings ITA’08, 2008.

116. Scutari, M.: Bayesian network repository, March 2016.

197

CITED LITERATURE (continued)

117. Beinlich, I. A., Suermondt, H. J., Chavez, R. M., and Cooper, G. F.: The alarm monitor-
ing system: A case study with two probabilistic inference techniques for belief net-
works. In Proceedings of the 2nd European Conference on Artificial Intelligence
in Medicine, pages 247–256, 1989.

118. Turing, A. M.: Computing machinery and intelligence. Mind, 238:433–460, 1950.

119. Fraser, A.: Simulation of genetic systems by automatic digital computers. Aust. J. Biol.
Sci., 10:484–491, 1957.

120. Rechenberg, I.: Evolutionsstrategie. Holzmann-Froboog, 1973.

121. Fogel, L. J., Owens, A., and Walsh, M.: An evolutionary prediction tech-
nique. In IEEE International Symposium on Microwaves, Circuit Theory, and
Information Theory, pages 173–174, 1964.

122. Holland, J. H.: Adaptation in natural and artificial systems. In MI: The Univ. of Michigan
Press, 1975.

123. Eshelman, L. J., Caruna, R. A., and Schaffer, J. D.: Biases in the crossover landscape. In
Proc. 3rd Int. Conf. on Genetic Algorithms, pages 10–19, 1989.

124. Syswerda, G.: Uniform crossover in genetic algorithms. In Proc. 3rd Int. Conf. on Genetic
Algorithms, 1989.

125. Goldberg, D. E.: Genetic algorithms in search, optimization and machine learning. Ad-
dison Wesley, 1989.

126. Baker, J. E.: Adaptive selection methods for genetic algorithms. In Proc. 1st Int. Conf.
on Genetic Algorithms and Their Applications, pages 101–111, 1985.

127. Goldberg, D. E., Korb, B., and Deb, K.: Messy genetic algorithms: Motivation, analysis
and first results. Complex Syst. 3, 5:493–530, 1989.

128. Eades, P., Lin, X., and Smyth, W. F.: A fast and effective heuristic for the feedback arc
set problem. Information Processing Letters, 47:319–323, 1993.

129. Tsutsui, S., Ghosh, A., Corne, D., and Fujimoto, Y.: A real coded genetic algorithm with
an explorer and an exploiter populations. In Proc. of the 73th Int. Con. on GAs,
pages 238–245, 1997.

198

CITED LITERATURE (continued)

130. Beyer, H. G.: On the explorative power of es/ep-like algorithms. In Proceedings of the
7th Annual Conference on Evolutionary Programming, 1998.

131. Eiben, A. E. and Schipper, C. A.: On evolutionary exploration and exploitation.
Fundamenta Informaticae, 35:35–50, 1998.

132. Das, M. K. and Dai, H. K.: A survey of dna motif finding algorithms. BMC Bioinformatics,
page 8, 2007.

133. Binder, J., Koller, D., Russell, S., and Kanazawa, K.: Adaptive probabilistic networks
with hidden variables. Machine Learning, 29:213–244, 1997.

134. Onisko, A.: Probabilistic Causal Models in Medicine: Application to Diagnosis of Liver
Disorders. Doctoral dissertation, Institute of Biocybernetics and Biomedical En-
gineering, Polish Academy of Science, Warsaw, March 2003.

135. Bobrowski, L.: Hepar: Computer system for diagnosis support and data analysis. In
Prace IBIB 31, 1992.

136. Shan, C.: Converting bayes nets from bif format to bnt format: bif2bnt program, January
2014.

137. Intel: Core i7 processors, http://www.intel.com/content/www/us/en/processors/core/core-
i7-processor.html, April 2016.

138. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin, 1:80–83,
1945.

139. Gibbons, J. D. and Chakraborti, S.: Nonparametric Statistical Inference, 5th Ed.. Chap-
man & Hall/CRC Press, Taylor & Francis Group, 2011.

140. Hubbard, R.: Blurring the distinctions between p’s and a’s in psychological research.
Theory Psychology, 14:295–327, 2004.

141. Murphy, P. M. and Aha, D. W.: Uci repository of machine learning databases, machine-
readable data repository.

142. Geiger, D., Verma, T. S., and Pearl, J.: Identifying independence in bayesian networks.
Networks, 20:507–534, 1990.

199

CITED LITERATURE (continued)

143. Duan, R., Yang, Y., and Li, G.: Controlling the inconsistent of the bayesian network struc-
ture learning with the recursive autonomy identification. In Sixth International
Conference on Intelligent Human-Machine Systems and Cybernetics, 2014.

144. Grossman, D. and Domingos, P.: Learning bayesian network classifiers by maximiz-
ing conditional likelihood. In Proceedings of the 21th International Conference on
Machine Learning, 2004.

145. Kontkanen, P., Myllymaki, P., Sliander, T., and Tirri, H.: On supervised selection
of bayesian networks. In Proceedings of the 15th Conference on Uncertainty in
Artificial Intelligence, 1999.

146. Dobrushin, R. L.: General formulation of shannon’s main theorem in information theory.
Ushepi Mat. Nauk, 14:3–104, 1959.

147. Messaoud, M. B., Leray, P., and Amor, N. B.: Integrating ontological knowledge for
iterative causal discovery and visualization. In ECSQUARU, pages 168–179, 2009.

148. Lauritzen, S. and Spiegelhalter, D.: Local computation with probabilities on graphical
structures and their application to expert systems (with discussion). Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 50:157–224, 1988.

VITA

NAME Carlo Contaldi

INTERESTS

Artificial Intelligence

Machine Learning - Pattern Recognition, Data Mining

EDUCATION

Master of Science in Electrical and Computer Engineering, University
of Illinois at Chicago, Chicago, Illinois, USA, 2016

Master of Science in Embedded Systems Computer Engineering, Po-
litecnico di Torino, Turin, Italy, 2016

Bachelor of Science in Computer Engineering, Politecnico di Torino,
Turin, Italy, 2014

LANGUAGE SKILLS

Italian Native speaker

English Full working proficiency

A.Y. 2015/16 One Year of study abroad in Chicago, Illinois

A.Y. 2014/15. Lessons and exams attended exclusively in English

2014 - IELTS examination (6.5/9)

SCHOLARSHIPS

Spring 2016 Research Assistantship (RA) position (10 hours/week) with monthly
stipend at UIC

Fall 2015 Scholarship for joint double-degree program TOP-UIC students at
Polytechnic of Turin

Fall 2015 Tuition Fees Reduction for merit at Polytechnic of Turin

Fall 2014 Tuition Fees Reduction for merit at Polytechnic of Turin

AWARDS

Spring 2012 Ranked among excellent students at SATs, and consequently awarded
with a netbook via the “Vinci un PC” (Win a PC) competition

200

201

VITA (continued)

Polytechnic of Turin, Italy

TECHNICAL SKILLS

Technical Knowl-
edge

Problem Solving, Kernel Programming, Machine Learning, Data Min-
ing, Data Analysis, Concurrent Programming, Automatic Controls, IC
Design

Programming
Languages

C, Java, Assembly x86, VHDL

IDE Eclipse, MATLAB, Microsoft Visual Studio, MASM, LATEX

OS UNIX, Embedded Linux, Linux Kernel, WIN32 API

PUBLICATIONS

2015 Graupe, D., Contaldi, C., Sattiraju, A. Comparison of Lamstar NN &
Convolutional NN Character Recognition. Chicago, IL: University of
Illinois.

WORK EXPERIENCE AND PROJECTS

Oct 2015 - Dec
2015

A LAMSTAR Neural Network for Sentiment Classification

A semi-supervised learning approach involving a Word Embedding
strategy in conjunction with an implementation of the LAMSTAR Neu-
ral Network has been developed and used to classify a corpus of tweets
with respect to their sentiment polarity.

• Selected the ”Twitter Sentiment Analysis Dataset” as
target corpus and splitted in pre-training, training and test
datasets

• Pre-processed the target corpus through a carefully tailored
polishing pipeline in order to make tweets suitable for learning

• Set up and utilized a Word Embedding tool to build a new
language model for tweets representation in order to enable them
for use as input to a neural network

• Implemented and set up an ad-hoc version of LAMSTAR
Neural Network for actual classification

• Analyzed results and compared performance with respect
to other supervised methods

202

VITA (continued)

Feb 2015 - Jul
2015

Top-Down Design of a DLX RISC Processor

The project consisted in developing a DLX processor through all phases
of the design flow, from its RTL description until its physical imple-
mentation.

• Developed working prototypes for datapath components
and control unit through coordinated teamwork

• Collaborated with external consultant to assemble proces-
sor on basis of multiple metrics

• Optimized and enhanced each component w.r.t. expected
overall implementation in experimental fashion

• Simulated processor through a worst-case benchmarking
approach

• Produced processor physical design outcome, together with
documentation and schematics

Feb 2014 Implementation of a Range Sensor on a Microcontroller

• Added system calls set to kernel of an Embedded Linux
operating system template (loaded on the programmable board)
to allow interfacing with ultrasonic range module

• Developed custom loadable kernel module for Embedded
Linux kernel, to enhance flexibility and portability

Feb 2013 - Jul
2013

Markovian Classifier for Gestures Extraction from EMG Data

A machine learning algorithm based on Hidden Markov Models has
been implemented for extracting hand gestures from a large database
of electromyographic signals.

• Characterized differences for concerns of gestures recording
and training between disabled and healthy subjects

203

VITA (continued)

• Analyzed given database to accurately devise learning
strategy and signal features to be extracted on basis of computa-
tional power availability, data redundancy, noise and deviations
from expected pattern

• Set environment by choosing IDE (MATLAB) and suitable
tools

• Implemented a classifier algorithm based on Hidden
Markov Models and Viterbi Path, resulting in relevant matching
performance

• Optimized algorithm by fitting it for real-time purposes

Jan 2013 - Jun
2013

Politecnico di Torino – Polincontri Classica (classical music concerts)
Usher and Attendant

• Supervised entrance and accommodated customers with a
pleasant demeanor

• Promptly assisted customers in front-desk operations and
during concert performances

• Guaranteed silence during performances by monitoring
door opening and by handling noisy occurrences

