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SUMMARY

Nowadays, the power and the complexity of computing systems are evolving and increasing

at an unprecedented rate. The advantages of highly-parallel systems could benefit an enormous

variety of fields. However, the growing complexity is making it unfeasible for the average

programmer to weight all the constraints and optimize the system for a wide range of machines

and scenarios. The burden on programmers is noticeable and many research efforts were spent

in addressing this issue. Clearly, it is not feasible to rely on human intervention to tune a

system: conditions change constantly, rapidly, and unpredictably. It would be desirable to have

the system automatically adapt to the mutating environment.

A new paradigm is to be explored for these systems to be developed. Self-adaptive systems

seem to be the answer to most of the problems previously described. They adapt their behavior

and resources to automatically find the best way to accomplish a given goal despite changing

environmental conditions and demands. Therefore, this kind of systems needs to monitor itself

and its context, discern significant changes, determine how to react, and execute decisions:

implementing the Observe Decide and Act control loop.

The research work presented in this document aims at augmenting the GNU/Linux oper-

ating system with autonomic features. The idea is to make the system aware of the level of

data contention among different tasks and to allow it to take smart decisions about how to

actually map them on the cores. Theoretical concepts about synchronization methods, memory

hierarchy, and task scheduling and mapping help in sustaining that moving threads with high

contention on the same core can lead to a reduction of the tasks execution time. To put this

design into practice, the following contributions were made:

• a monitoring infrastructure able to quantify the lock contention among threads was im-

plemented;

• an adaptation policy to smartly move tasks onto cores was designed;

• the modifications to the kernel of the Linux operating system, in order to include this

policy, were made;

• a framework for the on-line learning of strategies able to exploits these principles was

developed.
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SUMMARY (Continued)

The remainder of this dissertation is organized as follows. Chapter 1 better introduces the

work developed for this thesis, by clarifying the problem that has to be solved and defining a

common terminology in order to provide a shared background. Chapter 2 describes the context

in which this work was born, with a deep introduction to the autonomic computing field.

The attention is then focused on the state of the art on topics directly related to this thesis:

monitoring infrastructures and self-aware scheduling algorithms. The theoretical aspects behind

the designed system and the developed framework are reported in Chapter 3, while the details

of the actual implementation are specified in the following Chapter 4. In order to validate the

proposed approach some experiments were performed: the results are reported and commented

in Chapter 5. Last, Chapter 6 sums up the contributions of this work of thesis, proposing some

interesting future development.
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CHAPTER 1

INTRODUCTION

The power and the complexity of computing systems are evolving and increasing at an

unprecedented rate: multi/many-core processors can be easily found in servers, desktops and

laptops systems, complex and heterogeneous architectures are nowadays widely diffused in zts,

mobile phones, and game consoles [81]. On one hand, the advantages of highly-parallel systems

could benefit an enormous variety of fields. On the other hand, the growing complexity is making

it unfeasible for the average programmer to weight all the constraints and optimize the system

for a wide range of machines and scenarios [38]. Even though technologies have improved, making

a system perform at its best is a non-trivial task. The burden on programmers is noticeable and

many research efforts were spent in addressing this issue. Clearly, it is not feasible to rely on

human intervention to tune a system: conditions change constantly, rapidly, and unpredictably.

It would be desirable to have the system automatically adapt to the mutating environment [62].

A common believe is the need for new paradigms to be explored and for new frameworks

to be developed. Among those, self-adaptive systems seem to be the answer to most of the

problems previously described [62]. Self-Aware Adaptive computing systems adapt behavior

and resources to automatically find the best way to accomplish a given goal despite changing

environmental conditions and demands. Therefore, this kind of system needs to monitor itself

and its context, discern significant changes, determine how to react, and execute decisions.

The work described in this document is strictly related to the concepts introduced above, and

this chapter serves as an introduction to the whole document. In particular, Section 1.1 gives

an high-level description of the problem this thesis aims at overcoming, while the basic concepts

needed to understand the issues and the implications described in the following chapters are

defined in Section 1.2.

1.1 Problem Statement

The design of a self-aware system able to abstract from low-level architecture details and

capable of dynamically adapting to them, taking away this burden from the user, is a complex

engineering problem. A wide range of issues is to be taken into consideration while thinking

at its structure: among them the problem of resources allocation. Run-time information can

be exploited in order to better perform an hard problem such as resource allocation. The term

1
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resource is very general: it can refer to the number of cores, to the working frequency of the

cores, to the quantity of memory, and so on. In the same way, different types of quantities

can be considered and monitored in order to make the system aware of itself and able to

better perform: cores temperature, power consumption, applications performance, . . . . Many

different aspects of self-adaptability can be implemented, by coupling one (or more) resource(s)

with one (or more) quantity(ties).

The research work presented in this thesis aims at exploiting information about resource

contention (focusing on the contention of data shared among tasks) in order to distribute more

efficiently the applications on the cores available in the system. The task of moving the exe-

cuting entities (technically called tasks) on the available processors is commonly known with

the name of task mapping, and is usually coupled with the task scheduling problem: a brief

overview of this concepts and some basic definitions are given in Section 1.2.2. The schedul-

ing algorithms implemented in modern operating systems running on multi-core architectures

exploit, as primary strategy for placing tasks on cores, load balancing [87]. This means that

the scheduler tries to balance the runnable tasks across the available resources to ensure fair

distribution of CPU time. However, this approach completely neglects the fact that a core is

not an independent processor, but rather a part of a larger on-chip system, sharing resources

with other cores. It has been documented in literature (see [71,73] for further details) that the

performance of a task can vary greatly depending on which threads run on the other cores

of the same chip: this is especially true if several cores share some memory components. For

this reason, an introduction to the hierarchical structure of memory in modern architectures is

needed and is given in Section 1.2.3.

Nowadays, processes schedulers do not take the non-uniform sharing overheads into account.

Threads that heavily share data will not typically be co-located on the same chip, resulting in

many high-latency inter-chip communications. If the Operating System (OS) can detect the

thread sharing pattern and schedule the tasks accordingly, then tasks that intensively exchange

information could be scheduled on the same core and, as a result, the communication overhead

would be reduced by exploiting the processor cache levels. In order to provide the necessary

information about resource contention to the OS, a monitoring infrastructure must be designed.

Programming languages and libraries support mechanisms to spawn threads and to make com-

munication and synchronization between them possible (threads synchronization methods are

presented in Sections 1.2.4). The approach embraced in this work consists in instrumenting a
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user-space locking library in order to provide the OS enough information to understand how

much threads share information, i.e. how much they contend for a data.

Once the needed information is made available to the OS, it can be used to affect the work of

the process scheduler, by influencing the mapping of the tasks on the cores, in order to reduce

data contention, thus improving applications performance in term of their execution time. This

is possible by implementing simple heuristics designed a-priori or relying on automated tech-

niques, based on artificial intelligence or machine learning. For this reason, a brief introduction

on this techniques will be given in Section 1.2.5.

The long term idea is to integrate the developed framework in a completely self-aware op-

erating system, named Autonomic Operating System (AcOS), and born within the Computing

in Heterogeneous, Autonomous ’N’ Goal-oriented Environments (CHANGE) research group at

Politecnico di Milano. This framework should represent only a single service within the whole

operating system, i.e. it should provide only one of many possible autonomic capabilities to

the OS. This scenario introduces the problem of efficiently orchestrating the available services,

in order to meet the, possibly conflicting, goals of the different applications or of the system

itself. This topic was addressed in previous research works [78] and falls beyond the scope of this

document.

1.2 Background Definition

In order to better understand the motivations behind the investigation of the problem de-

scribed in the previous section and the solution that was found, a clearer explanation of the

context in which this work has been developed is needed. First of all, a definition of autonomic

computing is to be given and its fundamental pillars must be introduced (Section 1.2.1). The

attention is then focused on topics directly related to the ones this research work is based

on: the problem of task scheduling and mapping (Section 1.2.2) and the hierarchical memory

organization of modern computer architectures (Section 1.2.3). Last, data sharing and syn-

chronization methods are investigated in Section 1.2.4 and machine learning is introduced in

Section 1.2.5.

1.2.1 Autonomic Computing

The research work presented in this document finds its natural location in the field of au-

tonomic or self-adaptive computing. This term was firstly coined by Paul Horn in 2001 [38],

deliberately referring to biological self-adaptation mechanisms. In particular, the analogy is

made taking into account the nervous system of living beings, able to control common body ac-
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tions and parameters, taking away this burden from the conscious part of the brain. Inspired by

the same idea, autonomic systems should be able to adjust and manage their vital parameters,

taking actions autonomously (monitoring the internal state of the system and the surrounding

environment) and not asking the user to take care about these problems.

While formalizing the definition of an autonomic system in his manifesto [38], Horn listed

some properties a system must own in order to show a self-adaptive behavior and called them

self-* properties. How these self-* properties can be inserted into an autonomic system is not a

straightforward topic: in literature, it is not possible to find a commonly shared model able to

solve this issue, but there is no doubt a new system design paradigm must be introduced. This

new paradigm is called autonomic control loop [38] and various definitions and description of this

control loop can be found. All these description share a common basic idea: the system must

somehow be able to monitor itself and the relevant element of the surrounding environment,

reason on these data in order to take a decision according to its goals, and put into practice

the computed decision by properly tuning its parameters.

For the purpose of this thesis, it is interesting to investigate how the autonomic loop can be

embedded in a specific system such as a computing system. First of all, monitors and actuators

are to be identified, then a policy is to be designed to properly use the available information

and effectively exploit the actuators.

In a common computing system, there are many quantities their monitoring could prove

to be interesting: from the temperature of the cores to their power consumption, from the

throughput of the system to its latency. Looking at the problem description provided in Sec-

tion 1.1, it is clear that the quantity that is to be monitored to solve it must provide hints

about how much variables are contended between different tasks.

1.2.2 Task Scheduling and Task Mapping

A topic which is crucial for this research and needs to be investigated is how tasks are

scheduled for execution by the operating systems and how they are located on the available

resources. Having a clear idea of these subjects is fundamental to realize how the behavior of

the overall computing system can be modified by acting on them.

Preliminary Definitions

When dealing with operating systems, it is worth having a clear idea of some elementary

concepts. In particular [50,74]:
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• Process. A process is an abstraction of a running program which represents an executing

program, including its code, its data, and all the information about its execution status.

• Thread. A thread of execution, usually shortened to just thread, is a sub-entity within

a process; it is a specific part of the executing program in charge of doing some precise

elaboration. A process may be split into several threads which share the same address

space, open files, and, in general, the resources assigned to the process.

• Task. A task is a schedulable entity (either a process or a thread).

While the first two definitions are universally accepted and adopted (since proposed in the

Portable Operating System Interfaces for uniX (POSIX) standard), the last one is specifically

related to the Linux kernel. However, the definition of what a task is, is fundamental to

understand the following chapters and it is consistent with the context in which this thesis is

developed. Summing up, from the point of view of the process scheduler and of the thread

mapper, processes and threads are perfectly equal and they can be both called tasks.

Now, definitions of both process scheduling and thread mapping are needed [64].

• Process Scheduling. The problem of process scheduling can be traced back to a more

general problem known with the name of Resource Constrained Scheduling (RCS). In a

few words, it is a generic problem modelling a situation in which a set of activities must

be completed by using a limited set of available resources in order to optimize one or more

objective function(s).

• Thread Mapping. The thread mapping problem is quite orthogonal to the process

scheduling one. As said, the latter problem consists in choosing which and how much to

execute a task; the former one deals with moving the task chosen for execution on the

available resources, taking into consideration their specific conditions. Examples of this

conditions are units load, temperature, power consumption, . . . .

Process Scheduling

In the context of a computing system, the activities to be scheduled are what we called

tasks and the available resources are the execution units or cores. In particular, the scheduling

algorithm of an operating system is in charge of choosing the execution order of the tasks and

how much time to give them for execution.
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The role of the scheduler became more and more important with the attempt for computing

systems to give the illusion of multiple processes executing at the same time. The phenomenon

of apparent contemporaneity of execution of several tasks on the same computer is referred to

as multitasking and it is obtained by rapidly interleaving the execution of the running tasks

on the available processor(s) [50,74]. The decision power of the scheduler depends on the kind

of multitasking adopted by the operating system. In cooperative multitasking the scheduler is

not allowed to stop the execution of a task: it must wait the task itself to explicitly yield the

assigned resource (the processor on which it is executing) [74]. Such a paradigm was adopted

by oldest operating systems (Microsoft Windows up to 3.1 and Mac OS up to 9): it allows a

simpler implementation, but relies on tasks good faith to avoid system starvation. To avoid this

major drawback, preemptive multitasking was introduced in modern operating system (Linux

and the most recent versions of Microsoft Windows and Mac OS) [74]. In this case, more power

is given to the scheduler: it is allowed to suspend a task execution in favor of another task. A

maximum execution time, called quantum, is given to each task before being preempted. While

preemptive multitasking requires a more complex implementation, it allows to avoid malicious

tasks to take control of the system or normal program to get stuck in infinite loops due to bugs,

preventing the processing unit to be available for other tasks.

An interesting classification of the process schedulers can be done by looking at the goals

they pursue. These goals are formalized by objective functions, depending on the specific

scheduling environment [74]:

• Batch systems usually process a series of programs, or jobs, sequentially and without the

need for manual intervention. Consequently, nonpreemptive algorithms, or preemptive

algorithms with long time periods for each process are often acceptable, since they reduce

process switches, improving performance.

• Interactive systems, as the name suggests, foreshadow a significant interaction between

the system and the users. In this case preemption is essential to prevent a task to own

the CPU for so much time to deny the service to the other users.

• Real-time systems run jobs which have to meet time constraints. Preemption in real-time

systems is sometimes not needed because the processes know that they may not run for

long periods of time and usually do their work and block quickly. Real-time systems can

be further classified in:
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TABLE I: SCHEDULING GOALS AND ALGORITHMS ACCORDING TO THE
SCHEDULING ENVIRONMENT.

Goals Algorithm

All Systems Fairness
Policy Enforcement

Balance

Batch Systems Throughput First-Come First-Served
Turnaround time Shortest Job First
CPU utilization Shortest Remaining Time Next

Interactive Systems Response time Round Robin
Proportionality Priority Scheduling

Multiple Queues
Shortest Process Next

Real-Time Systems Meeting deadlines Rate Monotomic Scheduling
Predictability Earliest Deadline First

– Soft real-time: when time constraints are not that strict and the scheduler provides

its best effort to meet the deadlines, but it does not ensure any sort of warranty.

– Hard real-time: when time constraints are strict. An error must be returned by the

scheduler if a deadline is missed.

Specific scheduling goals for each type of system can be formulated according to the scheduling

environments classification given before. In the same way, among all the designed scheduling

algorithms some are more suitable for a type of system, some others are more suitable for other

type of systems. Table I summarizes these two important aspects of tasks scheduling. It does

not claim to exhaust the topics, but only to give some hints about them. A comprehensive

dissertation about scheduling is out of the scope of this document; scheduling algorithms that

are strongly related to this thesis will be analyzed in the next chapter, while you can refer

to [50,74] for a first introduction.

Thread Mapping

The problem of thread or task mapping arose later in the operating system design field, due

to the relative youth of multi-core and multi-chip architectures. Besides the choice of which
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task has to run and when, it is important to decide where it has to execute. The performance

of current shared-memory multi-processors systems heavily depends on the allocation of cores

to parallel applications, especially in Non-Uniform Memory Access (NUMA) systems [23]. Per-

forming the core allocation without taking into account some specific characteristics of the

executing tasks (e.g. maximum speed-up or average parallelism) or the actual conditions of

the processors, can result in a bad system exploitation. Two simple examples: allocating a

high number of processors to a parallel application with small speed-up will result in a loss of

efficiency; running a great number of tasks on a single core, while leaving the other available

ones unloaded will result, again, in a loss of processor utilization.

The latter example introduces a problem which is solved, in modern operating systems,

by introducing a new component in the process scheduler, called load balancer. The goal of a

load balancer is for each processor to perform an equitable share of the total work load. In

literature [26], it is possible to find a clear distinction between:

• static load balancing: relies on an off-line a priori estimation of work distribution, so that

a programmer can build load balancing right into a specific applications program.

• dynamic load balancing: refers to the case in which no a priori estimation of load distri-

bution is possible and load information is available only during actual program execution.

Unfortunately the simplest form of load balancing, in which tasks requiring differing times

for completion are to be as equally distributed as possible between n processors, is clearly

equivalent to the partition problem, thus it is a NP-Complete problem as well [74]. As a result

of this fact, research on dynamic load balancing (the one implemented in modern OSes) has

focused on suboptimal procedures that use local information in a distributed memory architec-

ture. Generally speaking, these procedures describe rules for migrating tasks from overutilized

processors to underutilized processors. Tradeoffs exist between achieving the complete balance

of the load and the communications costs associated with migrating tasks.

The Linux kernel implementation of the load balancing was deeply investigated and consid-

ered as an example for a possible implementation for the development of this work. For this

reason, it is further analyzed in Chapter 2.

1.2.3 Memory Hierarchy

Memory is a fundamental resource in a computing system, used, for example, for data/code

storing and for Inter Process Communication (IPC): the OS is in charge of managing this
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important resource. The OS should be able to provide the programmer with an infinitely large,

infinitely fast memory abstraction, that is also non-volatile (i.e. it does not lose its contents

when the electronic power fails). Unfortunately, even if the pace of technological development

is getting faster and faster, such a memory is not available. Consequentially, most computing

system relies on a memory hierarchy, exploiting different types of memories (with different

speed/storage capability ratio), to provide the requested abstraction [74].

Level 1
cache

Registers

Level 2
cache

Level 2
cache

Level 3 cache

Main
Memory

C0 C0C1 C1

C2 C2C3 C3

Non-volatile Memory

Figure 1: Memory hierarchy for a multi-core, multi-chip architecture.

Figure 1 shows an intuitive representation of the different memory levels in a multi-core,

multi-chip computing architecture. Only few registers are directly available on the same chip the

core is on. Thus, few levels of small, very fast, expensive, volatile cache memory, some gigabytes

of medium-speed, medium-price, volatile main memory (sometimes referred as Random-Access

Memory (RAM), inaccurately), and terabytes of slow, cheap, non-volatile disk storage memory
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are necessary. Network storage represents an highest level in the hierarchy level; however, for

the purpose of this work, the attention is limited to the previously presented levels.

• Processor Registers. Processor registers are at the top of the memory hierarchy, pro-

viding the fastest way to access data (usually only 1 CPU cycle) [32]. They offer a small

amount of storage capability (the most common registers are 8-bit, 32-bit or 64-bit capa-

ble) and come in a limited number (from a few tens in x86, x86-64 and ARM architectures

to more than two hundred on the high-performance Intel Itanium architecture) [42].

• Cache Memories. The slow access speed to the main memory represents a bottleneck

in modern computing system [32]. A solution to this problem is the introduction of one or

more levels of cache memory. Cache memories are small and volatile memories, but allow

a high access speed (usually less than one hundred clock cycles).

• Main Memory. In contrast with caches, the main memory may take hundreds of cycles

to retrieve the requested data, but is way more capable (up to tens of gigabytes). Caches

and main memory are both RAM (classified into SRAM and DRAM [32]), thus volatile

memories: their state is lost or reset when power is removed from the system.

• Non-volatile Memory. The lowest level of the memory hierarchy is occupied by per-

sistent storage devices, which maintain the information stored in them even when they

are not connected to power. Many technologies are used to produce storage devices:

from older but more reliable Hard-Disk Drive (HDD) to newer and faster Solid-State

Disk (SSD). Non-volatile storage devices are extremely slow in performing read and write

operations if compared with the other levels of the hierarchy: this is the reason why all

this hierarchy was created.

For the purpose of this thesis, it is worth better understanding how caches actually work

and how they can be exploited in order to improve applications performance.

Cache Memories

The effectiveness of the introduction of different levels, i.e., a hierarchy, of cache memories

relies on computer programs peculiarity to obey to the principle of locality :

• temporal locality: if a particular memory location is referenced by a processor during

the i-th cycle of execution, then with high probability the same memory location will be

accessed during the execution cycle (i+ p) (where p is a small enough positive integer);
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• spatial locality: if the data located at the address i is accessed by the processor, then

with high probability the data located at the address (i+ q) will be accessed too (with q

being a small enough non-zero integer).

In order to exploit this locality principle, caches employ buffering to reuse commonly occurring

items [33]. When the Central Processing Unit (CPU) finds a requested data item in the cache,

a cache hit takes place. A cache miss occurs when the CPU does not find a data item it needs

in the cache. In this case, a fixed-size collection of data containing the requested word, called

block or cache line, is retrieved from the main memory and stored in the cache. This approach

allows the cache to exploit both temporal locality (since the processor is likely to need this word

again in the near future) and spatial locality (there is high probability that the other data in

the block will be needed soon). Obviously, there is a performance improvements if the majority

of the CPU data requests results in a cache hits, and the communication overhead with the

main memory is reduced as much as possible.

A new issue now arises: larger caches have better hit rates but longer latency. Thus, the

trade-off between cache latency and hit rate is to be considered and analyzed. To address this

trade-off, multiple levels of cache were introduced, with small fast caches backed up by larger

and slower caches. Multi-level caches generally operate by checking the smallest Level 1 (L1)

cache first. If the result is a cache hit, then the processor can proceed at high speed. If the

smaller cache misses, the next larger Level 2 (L2) cache is checked, and so on, until the main

memory is reached. Modern architectures usually provides as many as three levels of on-chip

caches [42].

L1 caches are usually dedicate to a single core, while L2 and L3 caches can be shared among

different cores and chips. Multi-level caches can be strictly inclusive, in the sense that all data

in the L(n) cache must also be in the L(n+ 1) cache, or exclusive, meaning that the same data

cannot be both in L(n) and L(n+ 1) cache. Many other intermediate policies are implemented

in commercial processors, but they have not a universally accepted name [33].

The cache and the main memory have the same relationship as the main memory and disk

storage. In fact, not all the objects referenced by a program need to reside in main memory:

some of them may reside on the disk. When a CPU references an item within a page (blocks

the address space is broken into) that is not present in the cache or main memory, a page

fault occurs. In this case, the entire page is moved from the disk to main memory, with a
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consequently high overhead in terms of time (so high that usually the CPU switches to some

other executable task while the disk access occurs).

1.2.4 Race Conditions and Synchronization Methods

The importance of synchronization methods become clear when thinking about shared mem-

ory applications, i.e., applications that share the entire address space or portion of memory with

other applications during their execution. Shared resources require protection from concurrent

access: if multiple threads/processes access and manipulate the same resource at the same

memory location at the same time, the threads/processes may overwrite each other’s changes

or access data while it is in an inconsistent state [50]. These situations, where two or more

thread/processes are reading or writing some shared data and the final result depends on who

runs precisely when, are called race conditions [74]. Race conditions are source of instability and

are usually hard to debug, due to the non-determinism they introduce. For this reason, race

conditions are to be avoided when writing code.

When dealing with concurrency problems, it is important to identify in the source code the

instructions that may create race conditions or deadlocks. That part of the program where the

shared memory is accessed is called critical region or critical section [74]. To prevent problems

when executing code inside a critical region, it is important for the programmer to ensure the

code executes atomically : instructions complete without interruption as if the entire critical

region was one indivisible instruction. Each OS offers different methods to provide atomicity: in

the following paragraphs the attention is focused on both hardware and software synchronization

methods. In the case of software solutions, POSIX compliant synchronization methods are

presented [10].

Atomic Operations

The lowest level of synchronization primitives is represented by atomic operations. Atomic

operations provide instructions that execute atomically: the OS assures that these instruc-

tions are completed without interruption. This is possible by disabling interrupts while their

execution.

Two types of atomic operations exists: one operates on integer values, the other operates

on individual bits. Most architectures contain instructions that provide atomic versions of

simple arithmetic operations. Other architectures, lacking direct atomic operations, provide

an operation to lock the memory bus for a single operation, thus guaranteeing atomicity [50].
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Referring in particular to the two sets of interfaces for atomic operations supported by Linux,

we have:

• atomic integer operations: these methods operate on a special data type, named atomic t.

The use of this special type ensures that the data types are not passed to any nonatomic

functions and that clever but erroneous compiler optimizations are performed. Common

uses of atomic integer operations are: counters implementation (through atomic inc()

and atomic dec() functions) or atomically performing an operation and testing the result

(e.g., atomic {sub|dec|inc} and test()).

• atomic bitwise operations: unlike integer ones, these operations are architecture-specif-

ic and operate on generic memory addresses. Due to this reason, their arguments are a

pointer (to whatever data type) and a bit number. Examples of atomic bitwise operations

are {set|clear|change|test} bit() or test and {set|clear|change} bit().

The use of atomic operations is to be preferred, when possible, over more complicated locking

mechanisms, since the former ones, on most architectures, incur less overhead in terms of time

and less memory waste.

Fences

Fences are an hardware synchronization mechanism which allows to instruct the compiler

not to reorder instructions around a given point, called barrier or fence. Occasionally, it is

important that memory writes are seen by other code and by the outside world in the specific

order the programmer intends. This is often the case with hardware devices but is also common

on multiprocessing machines [50].

The use of fences is quite wide: a read memory barrier ensures that no loads are reordered

across its call. This means that no loads prior to the call will be reordered to after the call,

and no loads after the call will be moved before the call. A write memory barrier functions in

the same manner of a read memory barrier, but with respect to stores instead of loads. Last

a simple memory barrier provides both a read and a write barrier. Special types of barrier are

conditional barriers: it proved to be useful to have a read memory barrier but only for loads

on which subsequent loads depend.

Spin Locks

The simplest software mechanism which allows to avoid race conditions is to have a single

variable, shared among all the concurrent processes and called lock variable. This variable is
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initialized to 0 and can assume only two values: 0 and 1. When a process attempts to enter

its critical region has to check the value of this variable: if the value of the lock variable is

0 it means there is no possibility of race conditions and the process can continue executing.

Otherwise, if the value is 1, the process has to stop, waiting for the lock variable to change

its value: continuously testing a variable until some value appears is called busy waiting. The

synchronization method that uses busy waiting is called spin lock.

Spin locks are the most trivial type of lock and are used only when there is a reasonable

expectation that the wait will be short. If not, more complex and efficient locks are needed.

Semaphores

A different synchronization approach is offered by semaphores. While tasks consume com-

puting resources in waiting for a spin lock to be released, semaphores manage to avoid resource

wasting in this sense. When a task attempts to acquire a semaphore that is unavailable, the

semaphore places the task onto a wait queue and puts it to sleep [50]. This mechanism provides

better processor utilization than spin locks because there is no time spent busy looping. How-

ever, semaphores have much greater overhead than spin locks: the programmer must take into

consideration the execution context in order to select the most suitable synchronization method

among the two. In particular, semaphores are well suited to locks that are held for a long time.

Another interesting feature of semaphores is that they allow for an arbitrary number of

simultaneous lock holders. This number can be set at declaration time and it is called usage

count or simply count. If the maximum allowed value for count is set to 1, the semaphore is

called binary semaphore or mutex.

Mutexes

Binary semaphores are so widely used that they deserved a specific implementation and,

thus, deserve some more investigation. In literature they are better known as mutexes, since

they enforce mutual exclusion. They behaves similar to semaphores with a count of one, but

they have a simpler interface, more efficient performance, and additional constraints on their

use. This means that only one task can hold the mutex at a time, whoever locked a mutex

must unlock it, and recursive locks and unlocks are not allowed.

On one hand, preferring mutexes to semaphores is a matter of usage count. On the other

hand, the reasons for using spin locks instead of mutexes are the same presented in the previous

paragraph, writing about semaphores.
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Condition Variables

Another synchronization device related to mutexes are condition variables [52]. Condition

variables provide an efficient way to execute some code only when a flag is set, and pausing

when the flag is not set, having the flag shared between tasks. Correctly, this can be done

by protecting the shared flag with a mutex, but this implementation is not efficient, since the

task function will spend lots of CPU whenever the flag is not set, checking and rechecking the

flag, each time locking and unlocking the mutex. Condition variables allow to put the thread

to sleep when the flag is not set, until some circumstance changes that might cause the flag to

become set.

Barriers

Barriers allow to synchronize different threads by creating a checkpoint at which the calling

thread shall block until the required number of threads has reached the same barrier. If a thread

has to wait for other threads, it is put to sleep. When the last thread reaches the barrier, a

signal is delivered to all the sleeping threads, awaking them and allowing them to continue their

execution.

Table II sums up the main features of the different typologies of synchronization methods,

trying to compare them and to underline when using one mechanism is better than using

another.

Using synchronization methods is a solution to guarantee the correct execution of multi-

threaded applications but, writing correctly synchronized code is hard and a new class of bugs

may arise, called deadlocks [52]. A deadlock occurs when one or more threads are stuck waiting

for something that will never be available. Two simple examples of deadlock situations are the

following [50]:

• self-deadlock. If a thread of execution attempts to acquire a lock it already holds, it has

to wait for the lock to be released. But it will never release the lock, because it is busy

waiting for the lock, as shown in Table III.
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TABLE II: SYNCHRONIZATION METHODS COMPARISON.

Requirement Advantages Disadvantages Features

Atomic
Operations

Low overhead Low expressiveness Single lock holder

Fences Low overhead Low expressiveness No instruction re-
ordering allowed

Semaphores CPU free during ex-
ecution

High overhead Multiple lock holders

Spin Locks Low overhead, high
expressiveness

CPU busy during ex-
ecution

Single lock holder,
suitable for short
lock hold time

Mutexes CPU free during ex-
ecution, high expres-
siveness

High overhead Single lock holder,
suitable for long lock
hold time

Condition
Variables

CPU free during ex-
ecution

High overhead Conditional Execu-
tion

Barriers Low overhead, CPU
free during execution

Low expressiveness Checkpoints creation

TABLE III: SELF-DEADLOCK PSEUDO-CODE.

Thread 1

Acquire lock A

Acquire lock A, again

Wait for lock A to become available

... deadlock ...
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• deadly embrace. Consider n threads and n locks; if each thread holds a lock that another

thread wants, all threads will be stuck waiting for their respective locks to become avail-

able. Each thread is waiting for the other, and none of them will ever release its original

lock; therefore, none of the locks will ever be available. The following Table IV explains

the problem in the case n = 2.

TABLE IV: DEADLY EMBRACE PSEUDO-CODE.

Thread 1 Thread 2

Acquire lock A Acquire lock B

Try to acquire lock B Try to acquire lock A

Wait for lock B Wait for lock A

... deadlock ... ... deadlock ...

1.2.5 Artificial Intelligence and Machine Learning

In order to allow the system to autonomously take decisions on the actions to be performed

different approaches can be considered. First, simple heuristics can be designed: however this

approach requires the programmer to design a static strategy a-priori, thus relying on previous

studies and assumptions on the system. A different approach consists in providing the system

a brief description of the executing domain and let the system itself understand which are the

bests actions to be performed to meet the desired goals. This is possible by exploiting artificial

intelligence and machine learning techniques.

Artificial intelligence is a relatively young and developing field of science. Finding a defini-

tion for artificial intelligence is quite difficult; however, artificial intelligent machines are usually

defined as rational agents [61]. An agent is defined as any entity that is placed in an environ-

ment, can collects information about the it through sensors and can operate on the it through

actuators. An agent could have knowledge of the environment through what sensors are sensing

at that moment, as well as what they sensed during the entire life span of the agent. Agent’s
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behaviour is described by an agent function: an agent function is nothing more than a table

mapping states to actions. A state is defined as a function of the history of all that has been

sensed by the agent during its history.

Moreover, an intelligent agent is expected to be rational. An agent shows rationality in choosing

which action to perform next. This choice is affected by different factors: the available actions

in a given moment, what the agent knows of the environment from its sensor of what it knew

a priori.

Environments Taxonomy

Environments can be of very different nature: many different aspects are to be considered

when dealing with them [61].

• Single/Multi Agent : depending on the number of agents present in the environment;

• Competitive/Cooperative: if an environment is multi-agent, the agents can either pursue

a common goal or they can act one against the other;

• Fully/Partially Observable: when an environment shows some degree of uncertainty, it is

possible for the agent to exploit its sensors to obtain a complete picture of the environ-

ment. Sometimes, however, sensors are noisy or just missing and the environment is only

partially observable by the agent;

• Deterministic/Stochastic: an environment is defined as deterministic if the next state of

the system is univocally associated, with a function, to the current state and the action

performed; stochastic the function is replaced by a probability distribution;

• Stationary/Non-Stationary: if the relations described at the previous point do not change

over time, the environment is called stationary. Non-stationary if the opposite happens;

• Episodic/Sequential : in sequential environments, any decision could affect all future de-

cisions. In episodic environment, agent’s experience is divided into atomic episodes;

• Static/Dynamic: a dynamic environment changes even when the agent is not performing

any action;

• Discrete/Continuous: the property of being discrete rather than continuous may apply

to several elements: time, states and percepts could be discrete or continuous, but also

actions could be continuous.
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Agents Classification

Referring to the previous definition, an agent is any entity that can collects information

about the environment and can somehow operate on the it. While sensors and actuators refer

to the architecture of the agent, its behaviour is influenced only by what we called its agent

function. Different types of agents can be distinguished with reference to the agent function

that describes their behavior [61]:

• Goal-based Agents. Sometimes it is not possible, intuitive or useful for the agent to choose

which action to take next, by only looking at the internal state. Sometimes, the agent

only knows about which state (or states) is desirable. This state is called goal or goal-

state and these agents are called goal-based agents. Goal-based agents require a quite

relevant overhead of computation in deciding the action they will perform. Even if not

very efficient, goal-based agents are flexible and able to solve a broad and complex set of

problems.

• Utility-based Agents. Utility-based agents can be considered a generalization of goal-based

agents. They are needed to overcome one major limitation of goal-based agents: the rough

separation they made between what is desirable (the goal states) and what is not. This

simple binary classification could lead to the impossibility of making the right decision in

some non-trivial situations. Utility-based agents use a utility function to make the correct

decisions, trading off between more and less desirable situations. They are suitable for

complex environments that show uncertainty and stochasticity. They will use complex

probabilistic reasoning to choose their next action in order to maximize the expected

utility they desire.

• Learning Agents. As their name suggests, learning agents are agents that are are able to

learn and they represent an an extension of the agents we have discussed so far. Learning

agents are in general much more complex than the other rational agents. It is important

to distinguish between agents that learn “on-line”, while performing their task, and agent

that learn before being deployed in the actual environment.

Making Decisions: Markov Decision Process

Intelligent, or rational, agents make decisions: these decisions usually concern the actions

the agent will perform. If decisions have to be made in environments that contain aspects of
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uncertainty, a probability distribution is used to describe in which state the agent will be after

having performed a certain action. Thus, a tool to capture and describe the agent’s preferences

is needed: the way is usually pursued is explained by the utility theory [61].

A utility function U(s) returns a value describing how desirable a state s is. The expected

utility of an action a, given evidence e is defined as:

EU(a|e) =
∑
s′

P (result(a) = s′|a, e)U(s′) (1.1)

Intuitively, the expected results represents the average utility value of the result of an action,

weighted on their probability. The action that should be performed next is selected according

to the principle of Maximum Expected Utility (MEU), as the one that maximize the expected

utility:

action = arg max
a

EU(a|e) (1.2)

In general, the decision making process is made difficult not only by uncertain environments,

but also by non-episodic environments. Problems in these environments are called sequential

decision problems and they require to integrate in the rational agents the ability to do planning.

In such a context, the planning process is a Markov processes or Markov Chains. In order to

introduce this concept, Markov assumption must be introduced. Markov assumption states

that the current state depends only on a finite fixed number of previous states [61].

The simplest Markov processes are the called first-order ones: the current state only depends

on the previous one. In a stochastic environment, this property can be formalized as:

P (Xt|X0:t−1) = P (Xt|Xt−1) (1.3)

By extending this idea in the context of an agent performing actions, a transition function is

to be specified:

P (s′|s, a) (1.4)

If we also assume, or grant, that such transition function does not change over time (the

environment is stationary), then we have a powerful and simple model of our environment and
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it is possible to simply define a Markov Decision Process (MDP). In particular, a MDP is a

problem defined in a fully observable, stochastic, stationary environment and is made up of

four elements [59]:

• a set of states S, containing one initial state s0 and at least one final state;

• a set of actions A for each state;

• a stochastic transition model P (s′|s, a);

• a reward function R(s), that returns a value for each state s;

The solution of a MDP is a policy π(s), i.e., a function defined over every state in S, which

returns an action a to be performed. The policy must be defined over all the possible states

because, due to the stochastic nature of the environment, the agent might, in general, end up

in any state. The best solution is an optimal policy, i.e., the policy with the maximum expected

utility. A proper policy, instead, is a policy that is granted to eventually reach a final state.

The performance measure (also known as Utility) of an agent in a MDP is based on the rewards

that the agent collects over the states it explores during its life span: U([s0, s1, . . .]). Several

ways to express this utility exist:

• Finite Horizon. U([s0, s1, . . . , sN ]) = U([s0, s1, . . . , sN+k]): any reward collected after the

n− th step is not relevant.

• Infinite Horizon - Additive Rewards. U([s0, s1, . . . , sN ]) = R(s0)+R(s1)+. . .: the simplest

way to express the utility of a sequence of states is adding the rewards of each state.

• Infinite Horizon - Discounted Rewards. U([s0, s1, . . . , sN ]) = R(s0) + λR(s1) + λ2R(s2) +

. . .: it represents a generalization of additive rewards, with λ being a parameter in the

interval [0, 1]. It allows to have finite values even if infinite sequences of states are con-

sidered.

In order to compute the optimal policy, thus to solve a MDP, two main algorithms have

been designed:

• Value Iteration Algorithm: the utilities of all the states (Ui) are first randomly initialized

and then uploaded, until convergence, through the rule:

Ui+1(s)← R(s) + λ max
a∈A(s)

∑
s′

P (s′|s, a)Ui(s
′) (1.5)
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• Policy Iteration Algorithm: first a policy π0 is computed, then it is improved. The utilities

under the current policy are computed solving the linear system:

Ui(s) = R(s) + λ
∑
s′

P (s′|s, πi(s))Ui(s
′) (1.6)

Then, for each state s, if:

max
a∈A(s)

∑
s′

P (s′|s, a)Ui(s
′) >

∑
s′

P (s′|s, πi(s))Ui(s
′) (1.7)

the policy is updated changing the recommended action for that state with the one max-

imizing the expected utility. The two step procedure is iterated until convergence.

Once the utility of each state and the transition model are known, the action suggested by the

optimal policy in each state can be easily computed:

π∗(s) = arg max
a∈A(s)

∑
s′

P (s′|s, a)U(s′) (1.8)

Automating the solving process

The aim of formalizing problems as MDP is to ease their automating solving process. In

this concept Reinforcement learning carries a huge expectations, since it promises to provide

a way of programming agents by reward and punishment without needing to specify how the

task is to be achieved [46]. Reinforcement learning can be either passive or active. The former

case consists of algorithms to learn utilities of states of a MDP when a fixed policy to follow

has been specified. In the latter one an agent must learn behaviour through trial-and-error

interaction with a dynamic environment.

Moreover, we can distinguish between reinforcement learning algorithms that perform a

search in the space of possible behaviors (this is the case of genetic algorithms and genetic

programming) and algorithms that use statistical techniques to estimate the utility of concepts

such as states and actions. The first class of algorithms go beyond the scope of this work: the

attention is focused here on the second class of algorithms. A general framework for active

reinforcement learning is composed by:

• S: a set of states the environment can assume;

• A: a set of actions the agent can perform;
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• scalar reinforcement signals: a binary signal or a real numbers, representing a reward.

The agent is placed in the environment and performs actions that change its state. When

there is a state transition and/or an action is performed, the agent receives immediately a

reward/reinforcement signal. Moreover, the agent receives some information about the current

state of the environment. The goal of a reinforcement learning algorithm is to learn a policy

that maximizes the long run collection of rewards.

In practice, active learning agents, able to solve a MDP and to obtain an optimal policy for

it, can be implemented using Adaptive dynamic programming (ADP). This is not an impossible

task, thanks to the perfect observability we have assumed for the MDP. The adaptive dynamic

programming agent uses two tables:

• Nsa[s, a]: used to keep track of how many times the agent performed action a when in

state s;

• Ns′|sa[s′, s, a]: needed to store the times the agent performed action a when in state s and

moved to state s′.

At each learning iteration, for those state-action pairs who have non-zeroNsa[s, a], the estimated

transition model is updated with the rule:

P ′(s′|s, a)← Ns′|sa[s′, s, a]/Nsa[s, a] (1.9)

Having an estimated (by maximum likelihood) transition model, utilities of each state can be

computed by using the iterative procedure:

Ui+1(s)← R(s) + λ max
a∈A(s)

∑
s′

P (s′|s, a)Ui(s
′) (1.10)

Every time a new state is encountered, its utility is initialized with its reward value. Even if it

usually simple, and sometimes reasonable, to directly choose the optimal policy looking at this

estimated model, this is not always the best choice.

Unlike passive reinforcement algorithms, active reinforcement learning algorithms require

exploration of the environment. Exploration is probably one of the hardest problem in active

reinforcement learning [76], but a full overview of this topic fall beyond the scope of this dis-

sertation. An indirected exploration method, in which exploratory actions are chosen using
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some basically randomized criterion: no additional knowledge is stored or used to perform the

exploratory task. In Random Exploration, in particular, the next exploration action that the

active learning agent will perform is chosen using a uniform probability distribution over all the

possible actions in the current state. This technique is quite inefficient if we look at the fact

that it is completely unable to exploit any of the knowledge the agent has during the explo-

ration phase. Furthermore, it does not move to knowledge exploitation at any point, we should

explicitly state when the agent will have to switch to the exploitation phase. It makes sense to

use this technique when the problem is particularly simple and the exploration/learning phase

and the exploitation phase are clearly separated: this is the case.

1.3 Summary

This first chapter introduced the research work that this document describes. First, an

high-level description of the context and of the problem to be solved were given (Section 1.1).

Then, the background needed to fully understand the context was defined in Section 1.2. A

brief discussion on the field of self-aware computing systems was done in Section 1.2.1, since

further room is dedicated to them in the next chapter. The rest of the chapter analyzed the

basic concepts related to the issue of processes scheduling and mapping (Section 1.2.2), to the

hierarchical structure of memory in modern computing architectures (Section 1.2.3), and to

processes synchronization methods (Section 1.2.4) in order to create a common terminology

and make the remainder of the document more easily comprehensible. In conclusion, the

fundamental definitions of machine learning and artificial intelligence are given, in order to

introduce the reader to how autonomicity is reached (Section 1.2.5).

Next chapter moves the attention on a more specific and detailed definition of the context

within this work is developed. First of all, a description of the field of autonomic computing

is given both from a theoretical an from a practical point of view (thus giving the fundamen-

tal definitions and presenting the more significant examples of autonomic operating systems).

Then, the focus is on the state of the art related to the topics treated and developed in this

thesis: process monitoring and self-aware task mapping and scheduling.



CHAPTER 2

CONTEXT DEFINITION

The research work developed and described in this document finds its natural location in the

field of autonomic computing. In particular, the aim of this work is to modify the Linux kernel

in order to add autonomic capabilities to the GNU/Linux Operating System (OS). Before

discussing the approach exploited to insert these capabilities into the chosen OS and its actual

implementation, it is useful to take stock of the research already done on autonomic OSs and

of the state of the art on system monitoring and self-aware scheduling.

In the last few years the awareness of the design of the most popular and traditional oper-

ating systems being outdated, grew considerably. New computing systems, made up with het-

erogeneous components and way more complex, require the design of the OS to be rethought.

Contemporary OSes were conceived to manage uniform and cache-coherent systems, not con-

sidering the increasing number of programmable units available in modern architectures [56] and

their growing heterogeneity [81].

One step in the OS redesign process is, exactly, the introduction of autonomic capabilities:

the aspect is addressed in Section 2.1. In Section 2.2 particular attention is deserved to the

state of the art on system monitoring and tracing (Section 2.2.1), fundamental for the system

to know something about its status and the status of the surrounding environment. Last, in

Section 2.2.2, the field of *-aware tasks scheduling and mapping is deeply analyzed, particularly

focusing on the topic of contention-aware scheduling and mapping, tightly coupled to the work

presented later.

2.1 Autonomic Operating Systems

Taking into consideration autonomic capabilities while designing new OSes is not a mere

academic exercise, but helps applications developers in avoiding explicitly handle parallelism,

and explicitly consider energy efficiency, reliability and predictability issues [36]. New OSes

should provide a further abstraction layer between the hardware and the programmer, hiding

the complexity of the underlying system by self-managing their resources. The following sections

address exactly this topic, first from a theoretical point of view, analyzing the principles that

lead the design of a new autonomic operating system, then from the practical one, introducing

the projects available in literature.

25
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2.1.1 Design Principles

The self-* properties proposed by Horn in [38], were further investigated by Kephart and

Chess [47] and put in a taxonomy, presented in [63] by Salehie. The different levels at which

Self-* properties are considered, are shown in Figure 2 and presented below:

Self-
adaptiveness

Self-configuring

Self-protecting

Self-optimizing

Self-healing

Self-awareness

Context-awareness

General
Level

Major
Level

Primitive
Level

Figure 2: Self-* properties hierarchy.

• Properties such as self-awareness and context-awareness are located at the lowest level

of the hierarchy proposed: the primitive level. These two capabilities allow the ones in

the higher levels of the hierarchy to appear. They refer to the ability of the system of

monitoring and being aware of its self states and behaviors, and of its context, i.e. the

operational environment.

• The main properties envisioned by Horn belong to a major level and, as already said, are

the ones directly related to the human body self-adaptation capabilities to the changes in
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its status or in the environment it lives in. Due to their specific interest, these properties

are listed and further analyzed in the following paragraphs.

– Self-configuring. The capability of a system of installing, configuring and integrate

different sub-modules automatically and dynamically. All this should be done in re-

sponse to changes in the internal status of the system or in the external environment.

High-level policies are to be specified in order to lead the system to the desired goal,

without forcing constraints on how this goal is to be reached.

– Self-healing. Directly linked to self-diagnosis and self-repairing, it is the ability of a

system to react to localized problems both in software and hardware. It is achieved

by firstly discovering and diagnosing faults, and then trying to fix them; proper

actions can be taken also to prevent failures.

– Self-optimizing is the capability of managing performance and resource allocation;

more in general, to autonomously tune the parameters the system works on, in order

to satisfy the different requirements. This property is also known with the name of

self-tuning or self-adjusting [70].

– Self-protecting. This capability allows the autonomic system both to detect and

recover from the effects of malicious attacks, and to anticipate problems, taking

actions in advance to avoid them or, at least, to mitigate their effects.

• The highest level, named general level, refers to properties which consider the whole sys-

tem as a single entity. Self-organization and a plethora of self-* properties, which fall un-

der the umbrella of self-adaptiveness (such as self-management/government/maintenance-

/control/evaluation), belong to this level.

So far, the basic definitions of autonomic computing were given and its fundamental pillars

introduced: now, the steps a system must implement to show an autonomic behaviour deserve

to be further investigated. In literature, it is not possible to find a commonly shared model able

to solve this issue, but there is no doubt a new system design paradigm must be introduced.

This new paradigm is called autonomic control loop [38]. Various definitions and description of

this control loop can be found: the most common ones are described in the remainder of this

section.

A first version of the autonomic control loop is described by Salehie again in [63]. A clear

description of the stages the Self-adaptation control loop is made up of is given in Figure 3. The
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Monitoring stage allows the autonomic system to interface with self and with the environment,

reading the data coming from the available sensors. These data are analyzed in the Detecting

stage, asked for identifying when and where the system must change, according to current

internal and external conditions. During the Decision stage, the system is in charge of deciding

what is to be changed in the system and how these actions must take place. The mapping of

actions into tasks, performed by actuators, is carried out in the Acting stage of the loop.

Monitoring

Detecting Deciding

Acting

Module
Module

Module

System

Environment

Sensors
Actuators

Figure 3: From [78] – Self-adaptation control loop.

This first interpretation of the autonomic control loop highlights the difference between the

when/where and the what/how of a change, decoupling them in two different stages (Detection

ad Decision, respectively). While sharing with this one the same basic ideas, other interpreta-

tions focus their attention on slightly different details. The Monitoring, Planning, Analyzing,

Executing with shared Knowledge (MAPE-K) loop [47] (Figure 4), for example, emphasizes the

presence of a central entity storing the global knowledge about the system. Monitoring, Ana-
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lyzing, Planning and Executing are the four stages the loop is constituted, with K standing for

the shared knowledge, accessible from all the steps.

Module
Module

Module

Monitor

Analyze Plan

Execute
Knowledge

ActuatorsSensors

System

Figure 4: From [78] – MAPE-K control loop.

The Observe Decide Act (ODA) loop [67], shown in Figure 5, represents a third version of

the autonomic control loop. Even if it can be considered equivalent to the other interpretations

of the autonomic loop, the ODA loop better captures the essence of autonomic computing,

by clearly dividing the system design in three simple and sharply distinct stages. Due to this

reason, each single step of this loop deserves to be further investigated:

• Observe. The observation phase consists in sensing both the external environment and

the internal behavior of all the sub-systems in order to maintain and update information

about the state of the system. The sensing task is accomplished by monitors: ther-
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Observe

Decide

Act

Input

Environment

Internals

Output

Figure 5: ODA control loop.

mometers, voltmeters and throughput meters are only a few examples of widely diffused

monitors.

• Decide. This phase is performed taking into account the data obtained by the monitors

and an high-level goal. The knowledge of the goal guides the logic of the system in coming

up with a suitable decision which should approach the state of the system to the desired

one.

• Act. Once the decision has been taken, it is put into practice in the acting phase through

the actuators. Actuators are able to modify some system parameters in order to alter its

behavior.

Even if the presented autonomic loops come with different names and number of steps, they

are all based on the same basilar concepts, as the reader can easily realize.

The following section lists some interesting research projects trying to insert autonomic

capabilities in an operating system. Their analysis is interesting in order to understand their

strong and weak points for the implementation of a new autonomic operating system.
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2.1.2 Existing Projects

In literature, it is possible to find many examples of operating systems specifically designed

to provide autonomic capabilities: some of them are more targeted towards multi- and many-

core systems (fos – Section 2.1.2, Corey – Section 2.1.2, Sefos – Section 2.1.2), while others are

more focused on supporting heterogeneous architectures (Barrelfish – Section 2.1.2, Helios –

Section 2.1.2, K42 – Section 2.1.2).

Factored Operating System (fos)

The Factored Operating System (fos) [81] has been designed and implemented at the MIT

and, as anticipated, targets many-cores computing systems. In facts, the trend in computer

architectures is heavily going in the direction of packing an increasing number of computer units

on a single chip [2]. The belief this project is based on is that the real bottleneck in contemporary

OSes is represented by the use of hardware locks and global cache-coherent shared memories.

The novel design introduced by fos suggests to exploit the available parallelism by separating

the execution resources of the operating system and the applications.

To obtain this separation, the OS was designed in three layer: a thin micro-kernel, at the basis;

an OS layer, made up of servers providing typical system services; and an application layer,

which makes use of the services offered by the operating system. By executing a portion of the

micro-kernel on each core, the system is able to better control the access to hardware resources

and to exploit caches for messages delivery, allowing servers and applications to communicate.

Such an approach proved to be valid in system with an high number of cores (hundred and

more) or in cloud-systems [53,82].

Recent improvements of the operating systems blazed new trails toward the introduction of

autonomic capabilities in fos [53]. First, the OS should adapt the use of resources to changing

system needs, by measuring the utilization of each service and allocating more or less cores to

its servers according to the current need. In this context, it is worth noting how, in the fos

OS, the task scheduler has to deal with space (cores) multiplexing, instead of the classical time

multiplexing problem. Second, the introduction of autonomic capabilities could improve the

faults detection and recovery process: faults in system services must be detected by a watchdog

process and handled by the name server by reassigning faulted communication channels.

Corey

As fos, Corey [83] is an experimental OS targeting towards multi-core systems and, as fos,

it is developed at the Computer Science and Artificial Intelligence Laboratory (CSAIL) at
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Massachusetts Institute of Technology (MIT). In contrast with fos, however, Corey implements

a less radical approach, not requiring a computing system with hundreds of core to work prop-

erly. The specific goal of Corey is to improve applications scalability with reference to the

number of cores, by better managing and exploiting processor caches and shared data struc-

tures. The idea underlying the implementation of such OS is the following: in order to avoid

contention on data shared by different cores, new interfaces must be proposed to improve the

management of these shared data, avoiding the use of shared structures unless strictly necessary.

Three are the interfaces that have been implemented:

• Address ranges. They are an abstraction, provided by the kernel, corresponding to a

range of virtual-to-physical memory mappings. Multiple ranges can be defined by an

application; each of these ranges has to be mapped as shared or private. This flag allows to

mark as shared only the data structures that really need sharing, reducing synchronization

issues on data that are private to one thread. Comparing this interface with the classical

paradigms implemented in common OSes, a new degree of freedom is introduced in the

shared memory management.

• Kernel cores. This abstraction allows applications to declare that a specific core is to be

dedicated to kernel functions. Hardware device managing or system calls execution are

two simple examples of what dedicating a single core to a specific function means.

• Shares. This last interface offers to the application the possibility to create shared data

and to specify at which level these data must be shared. As it was for address ranges, this

interface introduces a further degree of freedom in the management of data contention

and makes it possible to avoid unnecessary contention on data that need not to be shared.

Thanks to these new interfaces, the Corey OS proved to be more flexible if compared with fos,

since it gives to applications the possibility of choosing the level of separation between the OS

and application resources (while fos statically enforces this separation).

The main drawback of the described approach is the higher complexity of the exposed

interfaces. Thus, the operating system has to rely on a wise use of such interfaces by the

application: a future development of the system is the introduction of autonomic capabilities

to reduce the exposed complexity [83].
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The Angstrom Project

The Angstrom project [79] was born, again, in the CSAIL at MIT and aims at extending the

already described fos OS, coupling it with a SElf-awarE Computational model (SEEC). SEEC

introduces new autonomic features to the existing operating system, creating a new Self-aware

factored operating system (Sefos), i.e., a self-aware operating system able to meet the challenges

introduced by many-cores architectures.

As explained in the first section of this chapter, fos offers basic services (e.g., file system,

memory management, network management), bounding them to specific cores. The aim of the

Angstrom project is to create a new service in charge of introducing more autonomic features

into fos. This new service is made available through SEEC, a framework which implements

the typical ODA decision loop (see Section 1.2.1). The autonomic system, augmented with

SEEC, executes and monitors itself using sensors. The system is able to react to the sensed

conditions, taking decisions and acting to guarantee applications performance. The adopted

monitoring interface is Application Heartbeats (further analyzed in Section 2.2.1). There is a

decision engine acting on the system to set the values of each decision parameter. This decision

engine exploits a control theory based control system, working on the following services to tune

several parameters of the system:

• a frequency scaler which implements a Dynamic Voltage and Frequency Scaling (DVFS)

policy to adjust the clock speed of the available cores;

• a core allocator, able to assign a subset of the system processors to the running processes;

• a DRAM allocator which efficiently manages multiple memory controllers (if more than

one is available in the system) and assigns them to running tasks;

• a power manager, in charge of combining the previous services in order to directly affect

the power consumption of the computing system.

However, when multiple decisions are to be taken at the same time, it is not clear how the

coordination between the different actuation mechanisms available in the system takes place.

Analyzing the implementation of the system, some possible vulnerabilities/weak points can

be identified. First of all, SEEC is completely written in user-space, limiting the actual effective-

ness of the approach: the implementation of some services in kernel-space would be advisable

and more effective. Notice also that Sefos relies on trusted actuators: no security checks are

performed on the taken decision, thus malicious entities cannot be detected and deactivated.
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Barrelfish

While the OSes analyzed up to now where focused on multi/many-core systems, an operating

system devoted to improve scalability on heterogeneous architectures is Barrelfish [14]. When

talking about heterogeneity, it can be classified at least in three different levels [65]:

• Non-uniformity : it refers to non-uniform memory architectures, for example Non-Uniform

Memory Access (NUMA), and it is a characteristic more and more present in modern

architectures, making the set of processing units similar to a network.

• Core diversity : is related to heterogeneity on multiprocessor architectures. Nowadays,

common architectures contain processors that are exactly the same, thus homogeneous;

Graphics Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs) con be

seen as diverse cores if used for specific tasks. However, it is normal to find heterogeneous

cores in embedded systems, where often there are different specialized processing units.

• System diversity : is the most high level type of diversity and indicates diversity among

the hardware components of different systems. A mobile phone and a internet server

represent a significant example of system diversity: it is quite difficult for application

programmers to write software required to run efficiently on diverse platform.

The main idea Barrelfish is based on is the design of a completely distributed operating sys-

tem, made up of functional units using explicit message passing to communicate. This design

technique allows the system to work properly and efficiently even if programmable units that

cannot be made cache coherent with the rest of the system (such as GPUs and Network Inter-

face Controllers (NICs)) or do not support shared memory at all are part of the architecture.

This is possible trough a multi-kernel model [14] in which all the inter-process communications

are managed explicitly.

The multi-kernel idea is exemplified in Figure 6. Here it is possible to see how separate entities

execute on each programmable component of the system and asynchronously communicate by

means of message passing. The main advantage of such an approach is the possibility to exe-

cute architecture-dependent code on each node, while leaving the operating system completely

unaware of the specific architectures of the processors it is running on: with this meaning, the

OS is considered to be hardware-neutral.

Barrelfish shows an autonomic behavior in the sense that exploits a System Knowledge Base

(SKB) to make the operating system aware of its status. The knowledge base stores information



35

OS node

State
replica

OS node

State
replica

OS node

State
replica

OS node

State
replica

Asynchronous
messages

Application Application Application Application

x86 x86_64 ARM GPU

Interconnection

Figure 6: Multi-kernel model in the Barrelfish Operating System.

about the hardware available in the system and its performance; information is maintained

so that using a subset of First Order Logic (FOL) some reasoning is made possible [58]. This

reasoning is exploited mainly by the process scheduler, as it is clear reading the design principles

(described in [58]) which inspired its implementation:

• The System Knowledge Base can be exploited to take on-line decisions about the hardware

on which processes are to be scheduled: this should permit to select the best policy on

each node.

• While distributing resources, the scheduler must be aware of all applications workload and

requirements. Applications can expose this information through a scheduling manifest,

written in the ECRC Common Logic Programming System (ECLiPSe) language [20].

• In contrast with fos, the scheduling problem cannot be reduced to a mere spatial parti-

tioning: time multiplexing is also needed on each core.

• Different time scales can be identified in order to make the scheduling algorithm more

effective: long-term placement of application on cores, medium-term resource allocation in

reaction to application demands and short-term fine-grained per-core thread scheduling.
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• Communication between the applications and the OS is needed to obtain efficient resource

allocation: dispatcher groups are in charge of tuning system parameters to let applications

meet their performance goals.

Along with the analysis of the OS design, a single drawback arose: as several of the pre-

viously described projects, Barrelfish relies too much in applications programmers’ ability and

good will.

Helios

Helios is an operating system designed in the Microsoft Research laboratories to simplify the

task of writing, deploying, and tuning applications for heterogeneous platforms [56]. To achieve

these goals, Helios introduces the concept of satellite kernels, which export a single, uniform set

of OS abstractions across CPUs of disparate architectures and performance characteristics. This

model is very similar to the one proposed by Barrelfish with the multi-kernel (Section 2.1.2). A

satellite kernel can run indifferently on any programmable component having at least: a CPU,

an (even little) amount of Random-Access Memory (RAM), a timer, an interrupt handler, and

a mechanism able to catch exceptions. The listed constraints are not that loose, even if they

appear to be so: GPUs, for example, are not allowed to run a satellite kernel since they are

not usually equipped with timers or interrupt controllers. Authors rely on future generations

of these hardware components for the obstacle to be overcome [56].

Through satellite kernels the heterogeneity of the underlying hardware is hidden to the ap-

plication programmer, who can rely on the Application Programming Interface (API) and on

the abstractions offered by the OS. Each satellite kernel can be considered a micro-kernel and

is made up of a scheduler, and memory/namespace/communication managers. In particular,

access to I/O services such as file systems are made transparent via remote message passing,

which extends a standard micro-kernel message-passing abstraction to a satellite kernel infras-

tructure. The message-passing system is provided by the Singularity framework [41] and offers

both local message passing (for communications within a single satellite kernel) and remote

message passing (for communications between different satellite kernels). This framework al-

lows to implement safe and efficient process software isolation and a fast zero-copy means of

passing messages within the same address space (highly reducing the local message passing

overhead).

Helios offers to the application programmer a unique system abstraction over heterogeneous

hardware: this is possible by encapsulating the Instruction Set Architecture (ISA) of each pro-
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cessing unit and providing a unique programming language for the applications development.

To do that a two-stage compilation strategy [28] is implemented: applications, written in Sing#

(a derivative of the C# programming language), are first compiled into an intermediate lan-

guage, called Common Intermediate Language (CIL) and part of the .NET framework, and then

translated to the specific ISA of the node where are to be executed.

To simplify the process of application deploy and performance tuning, Helios exposes an affinity

metrics to developers. Affinity provides a hint to the OS about whether a process would benefit

from executing on the same platform as a service it depends upon. Processes are allowed to

specify a [56]:

• processes affinity : indicates the coupling level between two processes. It can be positive

(two processes should run on the same satellite kernel – e.g., a driver and a process that

uses it) or negative (preference for separate execution).

• platform affinity : indicates the preference for an application to run on a specific type of

architecture (Out-of-order x86 and Vector CPU are only two examples of architectures,

a typical x86 processor and a GPU, respectively).

• self-reference affinity : indicates the ability of a process to efficiently scale-out its perfor-

mance by running multiple instances of itself on different devices or NUMA domains.

K42

K42 [9] is an open source research operating system designed and developed by IBM with the

collaboration of the University of Toronto, since 1998. It is focus on supporting heterogeneous

architectures, thus specifically targets Shared-Memory symmetric Multi-Processor (SMMP) and

NUMA 64-bit computing systems (currently running on PowerPC and

Microprocessor without Interlocked Pipeline Stages (MIPS) platforms) [4]. The OS, which con-

sists mainly in a Linux-compatible kernel, is based on the Tornado and Hurricane operating

systems [31], both developed by the University of Toronto.

K42 aims at reaching the following goals [4,9]:

• scalability and performance: K42 efficiently scales on a variety of heterogeneous sys-

tems, from large multi-processors and NUMA systems to small multi-processors or single-

processor systems;

• adaptability : K42 manages system resources in a way that matches the evolving needs of

the running applications, contributing to the autonomic behavior of the overall system;
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• customizability, extensibility and maintainability : due to its open source nature, K42

guarantees a natural high degree of customizability; moreover, it is extensible in the

sense that allows new platforms and applications to be simply added; last, the possibility

of straightforwardly upgrade the system with new components without interrupting the

services makes it easily maintainable.

All these goals are reached through simple yet interesting design principles:

• object-oriented design: K42 implements each system resource (i.e., an open file or a run-

ning process) as an object, storing a reference to it in a globally shared Object Translation

Table (OTT). This object-orientation allowed the development of a scalable kernel, since

every system resource is managed by a per-instance object or set of objects. This choice

wisely guarantees applications the ability to best serve their needs, which can vary as the

time goes on. Autonomic capabilities are provided to swap on-the-fly these per-instance

objects;

• avoidance of centralized code and data structures: the K42 design includes the use of

distributed code and data structures, allowing the programmer to avoid global locks,

which usually degrade both performance and scalability;

• micro-kernel design [8]: the overall structure of K42 is based on a micro-kernel design,

made up of a small exception-handling component (the micro-kernel) and many servers

which marshal all of the operating system functionalities. The micro-kernel is in charge

of providing basic functionalities (memory, process, and network management, IPC, . . . ),

while servers provide more advanced OS features (file system, sockets, . . . ). Moreover,

some system functionalities are moved from the kernel to user-space libraries, allowing

applications developers to redefine the behavior of such modules.

Figure 7 should help the reader to better understand the structure of the K42 OS.

Looking more specifically into the autonomic capabilities K42 is equipped with, the object

oriented design allows the support of online reconfiguration [68] and dynamic update [15] mecha-

nisms. These mechanisms allow the components of the OS to be modified on-line and to apply

updates to the system without any downtime. The realization of these ideas is made possible

trough the so called hot-swap procedure, which enables the switch among available implemen-

tations of the same living component. More specifically, monitoring code, diagnostic code and

implementations can be dynamically inserted and removed in functioning systems [7,40].
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Figure 7: The K42 operating system structure.

Thanks to the hot-swap mechanism, K42 can be highly optimized for the common case of ex-

ecution, hot-swapping ad-hoc solutions for uncommmon cases. With the same idea in mind,

caches and memory management policies can be changed at runtime, taking into consideration

the current data access patterns in order to always use the best performing policy; shared and

partitioned versions of the file pages caching mechanisms are hot-swappable, allowing optimiza-

tion for sequential or highly parallel applications. Exploiting user-space libraries, applications

can provide specific implementation of the OS services that can be hot-swapped by K42, if

needed. Last, monitoring objects can be interposed into the relevant OS code sections by appli-

cations that benefit from the information gathered by such monitors: in this way applications

that do not require monitoring are not slowed down by the execution of the monitoring code.
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2.2 State of the Art

Thanks to the definitions given at the beginning of this chapter, it is possible to clearly

state which are the main objectives of this thesis:

1. the implementation of a monitoring infrastructure which would allow to gather infor-

mation about the level of lock-protected data contention among different threads in the

system;

2. the design of a decision mechanism able to improve applications performance in term of

their execution time, by mapping tasks on cores taking into consideration the information

provided by the newly designed monitor;

3. actually find a way, i.e., the right actuation technique, to perform this tasks migration.

With this aims clear in mind, the state of the art related to this topics is to be investigated.

In particular, the field of system monitoring and tracing (related to point 1.) and the one of

self-aware tasks scheduling and mapping (according to the points 2. and 3.), with reference not

only to contention but also to other relevant quantities.

2.2.1 System Monitoring

Augmenting an operating system with autonomic capabilities cannot abstract from a simple

and lightweight, yet powerful and comprehensive monitoring infrastructure. The monitor must

be able to provide to decision engine all the information needed to perform its work on the

system, and only it: for this reason it must be carefully designed and implemented. There are

many quantities their monitoring could be interesting (cores temperature and power consump-

tion, applications performance, resources contention, . . . ): some of them are easily accessible

and quantifiable, some others are trickier to be retrieved and synthesized.

Temperature monitoring is quite straightforward to be performed, due to the presence of spe-

cialized sensors on all modern architectures. Moving from single-core processors to multi/many-

core architectures, temperature sensors evolved from a single analogical element located in the

middle of the Integrated Heat Spreader (IHS) (and monitoring the temperature of the whole

package) to several on-chip Digital Thermal Sensors (DTS) located in the most significant hot-

spots of each processor [60]. Since many sensors are present for each core, a more accurate

measurement is possible: by convention the core temperature is the highest among the mea-

sured ones. Temperature sensors resolution is usually 1 Celsius degree. The data measured
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by these sensors are stored in processor registers and made available to the OS through simple

interfaces, depending on the architecture producer (see [42] for an example).

The interest in monitoring also processors power consumption is becoming more and more

important, due to the increasing diffusion of mobile battery-constrained devices. In opposition

with temperature, on-line measurement of processors power consumption proved to be difficult:

the simplest and most accurate way to do that is by connecting an oscilloscope to the output pins

of a processor. Obviously, this is possible only in laboratory and for research purposes, but it

is not feasible on common devices [44]. When dealing with mobile devices, a power consumption

estimation can be performed by evaluating the variation of the battery charge level [45,86]. In

the case of desktop or server machines, mathematical models can be built [16,30]: a model can

provide only an estimation and usually its accuracy its directly proportional to its complexity.

Other two fundamental quantities to be monitored to implement autonomic capabilities are

applications performance and resources contention. Both these topics proved to be really inter-

esting and challenging: for this reason, next sections (Sections 2.2.1.1 and 2.2.1.2, respectively)

are devoted to their investigation.

2.2.1.1 Performance

In this Section, performance monitoring and tracing infrastructures are investigated. In

particular the ones that allow K42 and Sefos to have a performance-aware behavior are pre-

sented. A lot of attention is dedicated to a framework not introduced before: Heart Rate

Monitor (HRM). This framework is based on ideas similar to the ones proposed by Application

Heartbeats (the Sefos monitoring layer), but aims at improving it under many aspects. It has

been developed by the Computing in Heterogeneous, Autonomous ’N’ Goal-oriented Environ-

ments (CHANGE) resource group at Politecnico di Milano and it is the framework chosen to

be modified and adapted in order to offer information about resource contention too.

K42 Monitoring and Tracing Infrastructure

As described in Section 2.1.2, the K42 operating system shows an autonomic behavior: in

order to retrieve enough information to do so, it is equipped with a tracing infrastructure that

manages the logging of any interesting system event [6]. The coupling of such an infrastructure

with the K42 ability to hot-swap system components and dynamically insert monitoring objects

into the OS code, is crucial for the system to show autonomic capabilities. This framework is

characterized by the following features:
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• A unified set of event is available for each monitoring activity: from correctness debugging,

to performance debugging and monitoring.

• It is lightweight and non-invasive in the sense that, even when not in use, the monitoring

infrastructure is kept compiled-in, allowing data gathering to be dynamically enabled or

disabled at runtime. However, it is also possible to exclude it from the compilation, if

zero impact is to be obtained.

• As the definition of monitor explains, the infrastructure is in charge only of collecting and

making available the gathered information, leaving the analysis task to another compo-

nent.

• The event logging mechanism is flexible enough to provide cheap collection of data for

both small and large amounts of data per event.

Sefos Monitoring Infrastructure – Application Heartbeats

The monitoring infrastructure offered by SEEC for the Sefos OS is known with the name of

Application Heartbeats [34]. Application Heartbeats offers a portable, simple and usable user-

space library for monitoring an application actual progress towards its goals. This framework

implements a simple, yet effective and extremely powerful monitoring infrastructure: the API is

made of a small set of functions that makes it straightforward to use. This API provides a simple

abstraction, the heartbeat, which allow to measure applications performance in critical sections.

More formally, an heartbeat can be defined as a periodic signal sent from the application to

the API to indicate its progress. Heartbeats makes it possible to declare performance goals

through another simple concept: the heart rate. The hear rate is simply defined as the number

of heartbeat generated by an application in a time unit and is measured in heartbeats
seconds

[
hb
s

]
.

Any application using the Application Heartbeat API has standardized methods to:

• assert its performance goals specifying a certain number of parameters when it registers:

minimum and maximum heart rate, the size of the monitoring window, the size of the

heartbeats history buffer, and others.

• update at runtime its progress calling a function that emits an heartbeat. The framework

automatically updates all the necessary information about the global heart rate and the

window heart rate, and other internal structures;
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• monitor the progress of the execution. The available information is made available to

either external interested observers or to the application itself: these two scenarios are

shown in Figure 8.

Application

APIHeartbeats

Code

APIParameters

Application

APIHeartbeats

Code

Application

APIHeartbeats

Code

Adaptation
controller

Global parameters

API

API

(a) (b)

Figure 8: From [78] – (a) Heartbeats statistics used by the application itself to perform
self-optimization; (b) optimization of system parameters by an external observer, working on

one or more applications.

A typical example of Application Heartbeats use is a video encoder [34], which measures the

quality of its service (QoS) in frames per second: 30 − 35 frames per second are usually to be

delivered to offer a good quality. The video encoder can be instrumented in order to generate

an heartbeat every time a video frame is processed. An external observer can consequently

improve (or reduce) the encoder performance through the modification of some parameters,

such as the number of cores assigned to it.

The Application Heartbeats monitor is particularly suitable for instrumenting applications

where there is a computational intensive code section, realized as a loop in the code: one

heartbeat is sent at each iteration of the loop. Unfortunately, it is not possible to find such a

behavior in all the applications: Application Heartbeats proved to be a lightweight and effective

monitoring infrastructure, even if limited to a specific class of applications [27,35,37].
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Heart Rate Monitor (HRM)

The ideas behind Heart Rate Monitor (HRM) [13] resemble those behind Application Heart-

beats (see the previous Section). However, the authors aim at improving its functionality. The

fact that Application Heartbeats is a portable user-space active monitor prevents a portion

of commodity operating systems (i.e., the kernel) to easily access the information it provides,

making the development of kernel-space adaptation policies troublesome. Moreover, Appli-

cation Heartbeats only supports multi-threaded applications forgetting about multi-processed

applications and makes use of synchronization even for signaling progresses. HRM is an active

monitor, integrated with Linux, supporting applications with multiple threads, multiple pro-

cesses, and any feasible mix of threads and processes, which avoids synchronization to reduce

its overhead as much as possible. HRM sacrifices portability to functionality and, just like Ap-

plication Heartbeats, it exposes a compact API, allowing applications and system developers

to instrument applications and build both user- and kernel- space adaptation policies. The

HRM framework is deeply analyzed in this Section, since it represents the starting point for

the implementation of this research work.

The HRM framework inherits from Application Heartbeats the definition of heartbeat as a

signal emitted by any of the application’s tasks at a certain point in the code and indicating

application’s progresses. A new concept is introduced: hotspot ; an hotspot is a performance-

relevant portion of code executed by any of the application’s tasks and usually abstracts the

most time consuming portion of a program. Since an application is a set of tasks pursuing a

set of objectives, any of the tasks working towards one of such objectives can emit heartbeats.

For this reason, the definition of group as a subset of application’s tasks pursuing a common

objective was introduced. Groups are non-intersecting subsets; hence, a task belongs to only one

group at a time. It is important to notice how such a definition does not neglect the existence of

multi-grouped applications (e.g., a group encoding the audio stream and a group encoding the

video stream in an audio/video encoder), a case Application Heartbeats completely neglects.

The concept of group allows HRM to support multi-programmed applications adopting multiple

threads, multiple processes, or a mix of both processes and threads: it is enough to attach each of

the application’s tasks to the relevant group. Within HRM, a unique Group IDentifier (GID)

identifies a group. Given the definitions of hotspot and group, it comes natural to define a

relation n to 1 between such entities. Each of the tasks belonging to a group executes the same

hotspot, which is characterized by its heartbeats count, performance measures, and performance
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goal. The heartbeats count is linked to the number of times each task executed the hotspot.

Performance measures are expressed in heartbeats per second and capture the concept of heart

rate, which is the frequency at which tasks emit heartbeats. The performance goal is expressed

as a desired heart rate range, delimited by a minimum heart rate and a maximum heart rate,

similarly to Application Heartbeats.

The implementation of HRM consists of two parts, a user-space library and the kernel-space

code. The user-space library exposes the API for both applications and systems developers;

the API’s basics are reported in Table V. While the API’s functions for applications developers

grant the ability to instrument applications, providing a way to specify performance goals and

signal progresses, the API’s functions for systems developers are meant to retrieve applications’

performance measures and performance goals.

The API exposes two functions, hrm attach and hrm detach, to attach the current task to the

TABLE V: FUNCTIONS EXPOSED BY THE HRM USER-SPACE API

Function Description

heartbeat Emit a heartbeat
heartbeatN Emit n heartbeats
hrm attach Attach the task to group identified by GID
hrm detach Detach from group
hrm set {active|inactive} Set the task active or inactive
hrm set {min|max} heart rate Set the minimum or maximum heart rate
hrm set window size Set the sliding window size
hrm set timer period Set the timer period
hrm get {global|window} heart rate Get the global or window heart rate
hrm get {min|max} heart rate Get the minimum or maximum heart rate
hrm get {window size|timer period} Get the window size or the timer period

group identified by a GID and to detach the current task. Two functions, hrm set active and
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hrm set inactive, are implemented to either set active or inactive the current task: a task is

said to be active if it is executing the hotspot, inactive otherwise. These two states prove to

be useful to maintain performance measures in programs using “spawn & kill” parallelization

(e.g., x264 in the PARSEC 2.1 benchmark suite [17]), in which there is no guarantee that at

least one active task is always alive.

Different applications may be concerned with either long- or short-term trends. Therefore,

the API exposes both hrm get global rate, to catch long-term trends through the average

heart rate over the whole execution time, and hrm get window heart rate, to catch short-

term trends (i.e., variable-length trends) through the heart rate measured over a time window.

The window size, which is expressed in timer periods, is used to control the amount of past

measures to account for; the timer period controls how often performance measures are up-

dated. The window size and the timer period can be set through hrm set window size and

hrm set timer period respectively. Two additional functions,

hrm set min heart rate and hrm set max heart rate, are exposed to adjust performance

goals, which are defined as a desired heart rate range. Other functions are available to re-

trieve performance goals and performance goals related parameters. The most important API’s

functions are heartbeat and heartbeatN. Calls to these functions are inserted within the

hotspot of a program to signal progresses by incrementing the summation of heartbeats either

by 1 or by a generic integer value.

The kernel-space implementation of HRM consists of an API that mimics a subset of the

functions described above, and the core of the active monitor. Figure 9(a) shows the globally

accessible list of groups at the very base of the implementation of HRM. The list of groups can be

read in parallel and written serially by hrm attach and hrm detach function calls; to guarantee

correctness, the list of groups is protected by a read/write lock. Each group is provided with a

set of memory pages devoted to heartbeats count and a memory page dedicated to performance

measures and performance goal. The amount of memory pages to store heartbeats is a compile

time tunable parameter.

Memory pages are shared between the kernel-space and the user-space to reduce the overhead

in accessing the information as much as possible. More specifically, the content of memory

pages devoted to heartbeats count is the most critical to HRM since it can be concurrently

accessed at a high rate by both kernel-space tasks and user-space tasks. A way to avoid

overheads and concurrency issues consists in splitting the heartbeats count in a set of per-task
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Figure 9: Figure 9(a) denotes the structure of the implementation of HRM; Figure 9(b) shows
the organization of memory pages devoted to heartbeats count; Figure 9(c) shows the

organization of the memory page dedicated to performance measures and performance goal

heartbeats counts; hence, function calls to both heartbeat and heartbeatN reduce to an atomic

variable increment. The amount of heartbeats counts stockpiled in memory pages is architecture

dependent since they are cache line aligned. The implementation of HRM instantiates standard-

sized memory pages of 4 Kbytes and x86 and x86-64 microprocessors feature cache lines of 64

bytes: this implies that each memory page can contain up to 64 heartbeats counts. Figure 9(b)

shows the organization of the memory pages devoted to heartbeats count focusing on tasks

accessing dedicated cache line aligned heartbeats counts.

Different applications and adaptation policies may be concerned with either long- or short-

term trends. Therefore, the 64 bytes of the memory page dedicated to performance measures

and performance goal contain both a global heart rate, which accounts for the whole execution

of a group and catches long-term trends, and a window heart rate, which accounts for the

execution of a group over a time window and catches short-term trends. The global heart rate

and the window heart rate are respectively computed according to Equation Equation 2.1 and

Equation Equation 2.2. In the Equations, g indicates the group, t indicates the current time,

t0 indicates the time at which the group was created, and tw indicates the time at which the
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window started. The performance measures are asynchronously updated in kernel-space in the

context of a High-Resolution (HR) timer.

ghrg(t) =

∑
i cnti(t)

t− t0
(2.1)

whrg(t) =

∑
i cnti(t)− cnti(tw)

t− tw
(2.2)

The second chunk of 64 bytes of the memory page, dedicated to performance measures

and performance goals, contains a minimum heart rate and a maximum heart rate to define

a performance goal through a heart rate range. Other available parameters are the window

size and the timer period; the latter sets the frequency at which performance measures are

updated, while the former sets the window size expressed in timer periods. Figure 9(c) shows

the organization of the memory page dedicated to performance measures and performance goal;

each task accessing these information maps the whole memory page.

2.2.1.2 Resource contention

With reference to the work described in this dissertation, the most interesting quantity to be

monitored is the contention of resources among different threads. Monitoring such a quantity

is not that easy as it could be for temperature: there are no sensors able to measure how much

a data is contended among different tasks. Previous works about this topic faced this issue

mainly undertaking two different roads: by exploiting hardware techniques or by implementing

higher-level software approaches.

Hardware Approaches

Detecting sharing patterns of threads automatically has always been a challenge. One of

the first idea in this direction was to exploit page protection mechanisms to identify active

sharing among threads. In [3] this approach is used to implement software Distributed Shared

Memory (DMS). However it has some important drawbacks [72]: first of all, the coarse granu-

larity of detecting page-level contention can lead to an high degree of false sharing. Moreover,

protecting pages results in high overhead with an attendant increase in page-table traversals

and Translation Look-aside Buffer (TLB) flushing operations.

A more effective and low-weight way to gather data about contention is by using the data

sampling features of the Performance Monitoring Unit (PMU) available in today’s processing

units. PMUs integrate Hardware Performance Counters (HPCs) that can be used to monitor

and analyze performance in real-time, offering finer-grained information and having far lower
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overheads (since most of the monitoring is offloaded to the hardware) [72]. HPCs allow the

counting of detailed micro-architectural events in the processor, such as branch miss-predictions

and cache misses. Thresholds can be set on individual quantities in order to interrupt the

processor when they are overcome. Moreover, PMUs make additional registers available for

user inspection: from the addresses that cause cache misses to the corresponding offending

instructions.

The quantities that can be monitored through HPCs are not directly related to data con-

tention. However programmers often use these counters to improve application performance

by monitoring section of code to detect and optimize hotspots and by building a model from

this information in order to quantify the contention among different tasks. For example in [72]

the system maintains vector of cache accesses to detect threads that share data and examines

memory access stalls to determine which threads are using data from a faraway cache. A dif-

ferent methodology, always exploiting HPCs, is described in [71]: the marginal gain metric is

defined as the derivative of task’s miss-ratio curve over time. Hardware counters are used to

measure the miss-ratio and some modifications to cache controllers are introduced. The obser-

vation subsystem proposed in [48] inspects relevant performance counters, gathering information

on a per-thread basis. In particular, processors counters taken into account during measure-

ments are: Last Level Cache (LLC) misses, LLC references, instruction retired, core cycles,

and reference cycles. The choice of the performance counters to be taken into consideration

while designing a monitoring system exploiting them is fundamental. In fact, the quantity of

counters that can be enabled is limited. Moreover many constraints are posed on their use and

the documentation describing them is quite poor [72].

A great work on contention monitoring was performed by Federova et al. [18,29,87]. After a

deep state of the art analysis, the authors came up with a methodology which allows to identify

the solo LLC miss rate as one of the most accurate predictors of the degree to which applications

will suffer when co-scheduled. Then, they propose the design of a threads classification scheme,

according to their memory behavior, used to design a suitable scheduling policy.

Software approaches

The resource contention monitoring issue is traditionally related to the use of hardware

counters: only a few examples of meaningful software approaches relying on system simulation

can be found in literature. Among them the most important proved to be the one by Cho and

Jin [21]: this work involves simulation on a chip multithreading and multiprocessing processor,
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comparing private and shared caches among cores in a platform with a novel architecture in

which memory pages map into cache slices. Exploiting this enhancement, the authors demon-

strated that the OS, using its knowledge of memory page usage, can make intelligent cache

management decisions.

The monitoring infrastructure proposed in Chapter 3 and described in Chapter 4 does

neither exploits hardware counters (due to the limitations previously exposed) nor architecture

simulation. The designed approach aims at instrumenting a user-space lock library with the

HRM framework (presented in 2.2.1.1), exploiting it not to monitor application performance,

but lock contention among threads.

2.2.2 *-aware Scheduling and Mapping

Autonomic capabilities can be shown in many different ways within an operating system:

by dynamically swapping the implementation of a system feature with reference to the present

conditions [67,78], by adjusting cores frequencies in order to meet security requirements related to

temperature [12,85], by modifying the applications nice value to meet their goals [78]. This work

of thesis is focused on introducing autonomic capabilities in a system by working on how tasks

are mapped on the available cores, with the explicit aim of reducing resource contention. For

this reason, this Section investigates the state of the art on scheduling and mapping algorithms

which take into consideration several run-time information to perform their job.

Power-aware and temperature-aware scheduling are both interesting and challenging topics,

but unfortunately go beyond the scope of this dissertation. The former topic is well introduced

in [37], which proposes PowerDial a system for dynamically adapting application behavior to

execute successfully in the face of load and power fluctuations, actually reducing the computa-

tional resources that the application requires to produce its results. These reductions translate

directly into performance improvements and power savings. Experimental results show also

that PowerDial can significantly reduce the number of machines required to service intermit-

tent load spikes, enabling reductions in power and capital costs.

A comprehensive overview on temperature-aware scheduling is given in [11]. Moreover, the

authors propose Dimetrodon, a framework implementing a software preventive thermal man-

agement mechanism by the injection of CPU idle cycles while scheduling tasks. This technique

proved to be extremely flexible and demonstrated its efficiency compared to hardware techniques

under throughput and latency-sensitive real-world workloads, achieving profitable trade-offs for

temperature reductions up to 30% due to rapid heat dissipation during short idle intervals.
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Performance-aware and contention-aware scheduling are, instead, strictly related to the

work proposed in the next chapters. Thus, both of them are deeply analyzed in the following

sections. First of all, however, a brief introduction to the evolution of the process scheduler in

Linux is necessary: the Linux scheduler does not provide an autonomic behavior, but represents

the base case on which some of the presented works have been built and this thesis work is built

on, as well.

2.2.2.1 Base case: the Linux Scheduler

One of the components that is most frequently updated and improved in an operating system

is the process scheduler. The Linux process scheduler does not represents an exception: this

section analyses the evolution of the scheduling algorithm from the its first implementation to

the present Completely Fair Scheduler (CFS). This component has been continuously improved,

thanks to, for example, load balancing techniques, but it is not possible to state that it shows

autonomic capabilities: many improvements are thus possible under this point of view.

The scheduler algorithm included in the first versions of the Linux kernel (released by Linus

Torvalds in 1991 [50]) did not aim at obtaining the best performance, but above all to be reliable.

It was very simply designed, providing quite poor scaling capabilities with reference both to

the number of executing processes and to the number of available execution units. Despite this,

the first implementation of the algorithm did not change until 2004, when Linux 2.6.8.1 was

released [1]. In this Linux release, a new version of the scheduling algorithm was inserted: it was

designed in order to take into account the heterogeneous targets of Linux (used both in desktop

and in server environments). The main feature of this new scheduler, the one that gives the

name to it, is its ability to pick the next task to be executed in a constant time, not depending

on the number of tasks to be scheduled or on the number of available processors. Using a

mathematical term, it has a O(1) complexity, with the Big-O notation [25]. This important

feature allows the process scheduler to achieve better scaling performance than the previous

implementation, introducing two fundamental data structures:

• a runqueue structure for each processor in the system, storing a pointer to the task

assigned to that CPU for execution;

• two priority arrays for each runqueue: tasks are moved from the first one, named active

to the second one, named expired, when they run out of their execution quantum. When

the active array is empty, the scheduler simply inverts the two labels. The two priority

arrays contain linked lists, one for each priority level.
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Each task is assigned a priority level by combining a static value, called nice, and a dynamic

value computed by the scheduler to improve interactivity. In the O(1) scheduler, this is possible

through a quite complex heuristics (well describe in [43]) which classifies the task into CPU-

bound or I/O-bound, giving the latter ones higher priority.

This implementation of the scheduling algorithm introduces, for the first time in Linux, the

idea of load balancing: in order to keep the workload distributed on the available processors,

tasks are moved from overloaded runqueues to the underloaded ones.

A great innovation in the scheduling algorithm was introduced by the Completely Fair

Scheduler (CFS), released with Linux 2.6.23 in 2007 [50], and representing the scheduling al-

gorithm used in the current versions of the kernel. This scheduler was designed by the same

author of the O(1) scheduler and aims at solving the limitations of it predecessor: the com-

plex heuristics for tasks classification mainly. To do that the basic idea of Rotating Staircase

Deadline Scheduler (RDSL) was embraced: being fair in CPUs assignment without trying to

characterize the behaviour of each task [49]. The fairness the name of the scheduler refers to is

related to assigning computing resources to the tasks in execution. This is obtained by intro-

ducing the concept of virtual runtime and by discarding the concept of quantum of execution,

fundamental in the O(1) scheduler implementation. The virtual runtime [50] of a task is the

actual amount of time spent by the task running on a processor, normalized by the number

of runnable tasks. This quantity is measured in nanosecond and represents the time the task

would have run on an ideal machine able to support perfect parallel execution, with an ideal

number of processors equal to the number of runnable tasks. The CFS updates the virtual

runtime of each task periodically (at each kernel tick) and, when needed, chooses the task with

the lowest value of virtual runtime for execution.

The CFS algorithm inherits the runqueues data structure from the O(1) scheduler, but imple-

ments it in a different way. In order to optimize performance in choosing the next task for

execution, runqueues are implemented as red-black trees [25]. This particular class of balanced

binary trees allows insertion and deletion of elements with a O(log(n)) complexity, where n

refers to the number of tasks in the tree, and is topologically ordered so that the task with

the minimum virtual runtime is always the leftmost leaf of the tree [50]. The algorithm previ-

ously described achieves good scheduling performance with reference both to interactivity and

throughput, while it does not really allow the user to influence the scheduler job.

In CFS the load balancer was improved too: with the diffusion of multi-core architectures its
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role become crucial. The load balancer is invoked periodically by the scheduler code, randomly

on one of the CPUs available in the system. The balancing algorithm tests whether there is in

the system a core that is busier than the one on which it is executing. If the answer is yes, the

busiest runqueue is selected and one task is moved from that runqueue to the current one. On

the other hand, if the answer is no, nothing happens. This algorithm relies on the fact that

its code will be statistically executed with the same frequency on each CPU. This is true, in

the sense that experimental results show the load balancer allows, on average, to reach an even

fairer distribution of the tasks on the CPUs runqueue.

2.2.2.2 Performance-aware Scheduling and Mapping

Once the most interesting infrastructures for performance monitoring has been introduced,

it is time to see how the information gathered by them is exploit in order to make the scheduling

algorithm autonomic and behave differently according to the changing conditions.

Scheduling in Sefos

Due to the fact that the SEEC framework is completely implemented in user-space, the

Linux scheduler algorithm was not directly modified, but its decisions are indirectly affected

from a user-space library [36]. More specifically, the work of the scheduler in SEEC is guided by

a service named core allocator. This service is in charge of assigning a subset of the available

processing units in the system to the running applications. This is possible, in Linux and from

user-space, by duly modifying the affinity mask of the interested process. An affinity mask

is a bit mask associated with each task indicating what processor(s) it should be run on by

the scheduler of the OS. Each bit in the bit mask represents an available processor: if the

corresponding bit value is 1 the task is allowed to run on that processor, if it is set to 0 this is

not true.

Experimental results [51] show that this approach is enough to obtain performance improve-

ments. However the realization of such service in user-space poses a number of limitations on

the precision of the service in affecting the system status. The main limitation is that the

core allocator can only indirectly map the tasks on the available processors, by modifying their

affinity mask, but the final decisions are taken by the kernel-level Linux scheduler, which au-

tonomously determines, for instance, when a certain task is to be moved. Despite the simplicity

of the approach, this main drawback convinced the authors that a kernel-space implementa-

tion of the same service would be advisable when merging the SEEC framework with the fos

operating system.
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Scheduling in K42

The tracing infrastructure that K42 offers, allows the implementation of a performance-

aware scheduler. This component implements an interesting approach, known as two-level

scheduling [5], which is designed in order to divide the process scheduler in two subsystems: the

first one running in kernel-space and the second one in user-space. This approach, absolutely

consistent with the micro-kernel idea the OS is based on, permits to achieve the following

advantages:

• Improve performance by having only a single thread scheduler running in user-space

(which avoids context switches), without the kernel ever being aware of what it does;

• Allow applications to tailor the scheduler at the user-space level according to their needs,

simply by reimplementing the library.

The user-space scheduler is in charge of managing threads belonging to the same process (thus,

sharing the same address space). Threads are packed into an entity called dispatcher : the

kernel-space scheduler is not able to distinguish among threads contained in the same dispatcher,

leaving the burden of managing them to the user-space scheduler. The kernel-space scheduler

can only schedule the dispatchers, assigning them the resources by using resource domains,

entities at a higher level in the hierarchy. More formally, each resource domain groups a set of

dispatchers; the rights to use the hardware resources is given by the kernel-space scheduler to a

resource domain. Resource domains are supposed to fairly assign CPU time to users by binding

one resource domain to each user. Within a resource domain, each dispatcher is bound to a

specific CPU and the kernel may move a dispatcher to a different processor for load-balancing

purposes.

Such an approach leaves a lot of freedom and control to the application developer, relying on

its ability. In fact, the programmer could decide to create a process using a single dispatcher with

many threads and define the scheduling policy that marshals the threads by reimplementing the

user-space scheduler code. On the other hand, the programmer could use multiple dispatchers

to obtain real parallelism or to assign them different scheduling characteristics.

Performance-Aware Fair Scheduler (PAFS)

As described in Section 2.2.1.1, the HRM framework has been developed within the Linux

kernel. Thus, the Performance-Aware Fair Scheduler (PAFS) [13] modifies, exploiting data com-

ing from HRM, the Linux Completely Fair Scheduler (CFS) in order to make it aware of the
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applications performance. When designing PAFS the authors considered three main goals: first,

applying a best-effort approach to drive the instrumented applications towards meeting their

performance goals; second, being able to flawlessly manage also legacy applications; and third,

being safe, ensuring that no task of any application (either instrumented or legacy) ever results

in starvation. PAFS observes the performance measures of the instrumented applications, try-

ing to speed up or slow down their tasks according to whether they are matching or not their

performance goals.

HRM allows expressing performance goals in terms of a heart rate range delimited by

a minimum heart rate and a maximum heart rate. These two bounds are interpreted by

the proposed adaptive process scheduler as follow: the minimum heart rate defines a strong

lower bound for performance while the maximum heart rate defines a weak upper bound for

performance. The adaptive process scheduler assigns microprocessors’ time to tasks in order

to keep the performance measures of monitored applications above their minimum heart rate,

penalizing as needed the ones that are performing over their maximum heart rate. However, no

guarantees on performance goals matching are given (for instance, this could even be impossible

due to resources scarcity).

The default, performance-unaware CFS scheduler implemented in Linux exposes two inter-

esting properties that make it a solid base to build PAFS on: fairness and second non-starvation.

PAFS introduces the concept of performance-aware fairness, meaning that the process sched-

uler gets fair in assigning microprocessors time accounting also for applications performance

and performance goals. The introduction of performance-aware fairness consists in modifying

the computation of the virtual runtime, taking into consideration application’s current per-

formance and its performance goals. The non-starvation property is proved to be preserved

by these modifications. The decision policy which decides how much the application’ current

performance and its goals are related to the virtual runtime is a simple yet effective heuristics,

which defines this relationship as the ratio between either the global heart rate or the window

heart rate and an average between the minimum heart rate and maximum heart rate. In this

way, tasks are progressively advantaged when their heart rate is less than the minimum heart

rate while they are progressively disadvantaged when their heart rate is greater than the max-

imum heart rate. When the heart rate matches the performance goal the behavior of PAFS

replicates that of CFS.



56

Other interesting research works related to performance-aware scheduling are Performance-

Driven Processor Allocation (PDPA) [22] and Scheduler for Multimedia And Real-Time appli-

cations (SMART) [54,55]. The former project focuses on processor allocation in shared-memory

multiprocessor systems, where no knowledge of the application is available when applications

are submitted. SelfAnalyzer is used to dynamically analyzing speed-up, efficiency and execution

time of running applications and a new scheduling policy that distributes processors consid-

ering both the global conditions of the system and the particular characteristics of running

applications is designed. The importance of the interaction between the medium-term and the

long-term scheduler to control the multiprogramming level in the case of the performance-aware

scheduling policies is also highlighted. The second project, SMART, supports applications with

time constraints, and provides dynamic feedback to applications to allow them to adapt to

the current load. The integrated support for real-time applications and conventional processes

allows the user to prioritize across real-time and conventional computations, and dictates how

the processor is to be shared among applications of the same priority. Dynamic and seamless

resource allocation is also granted by the framework itself: real-time tasks are shed and their

execution rates are regulated when the system is overloaded, while providing better value in

underloaded conditions than previously proposed schemes.

These projects are not further investigated in this document (the interested reader can refer

to the cited bibliography for more information) in order to focus the attention on the state of

the art on contention-aware scheduling (treated in the next section).

2.2.2.3 Contention-aware Scheduling and Mapping

While the contention monitoring approaches proposed in literature differ a lot from the

one proposed in this work (based on HRM, as explained in Chapter 3), the scheduling policies

that have been designed provide an interesting background to compare and improve the one

presented in this document.

DI, DIO, and DINO

Based on the classification schemes derived from the evaluation of the LLC miss rate (via

hardware performance counters), a scheduling policy named Distributed Intensity (DI) was

designed [18]. In the DI algorithm all the tasks are assigned a value equal to their solo miss rate,

and classified as memory intensive or non-intensive. The goal is then to spread the threads

across the system such that the miss rate are distributed as evenly as possible. In order to

move the tasks in the best way possible, the notion of memory hierarchy entities is taken into
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account. Memory hierarchy entities are distinct hardware modules (e.g., cores, chips, packages)

each of which is located on its own level of memory hierarchy (see Section 1.2.3). During the

initialization phase, the algorithm determines the number of memory hierarchy levels and the

number of distinct entities on each level. DI then tries to even out the miss rate on all levels

of memory hierarchy, assigning tasks on the base on the solo miss rates of the applications.

The real miss rate of applications will change when they share a cache with a co-runner. The

DI scheduler is implemented as a user-space scheduler running on top of the Linux kernel. It

enforces all scheduling decisions via system calls which allow it to bind threads to cores.

However, DI uses solo miss rate estimated using stack distance profiles as the input to the

classification scheme. The stack distance profiles require extra work to obtain while the algo-

rithm is running, thus the presented approach is not feasible online. An improvement of such

algorithm, exploiting the same classification scheme and scheduling policies as DI, was imple-

mented in order to obtain the miss rates of applications dynamically online via performance

counters. This algorithm is named Distributed Intensity Online (DIO) [18,29]. The dynamic

nature of the obtained miss rates makes DIO more resilient to applications that have a change

in the miss rate due to LLC contention. While running, DIO continuously monitors the miss

rate of applications and thus accounts for phase changes. To minimize migrations due to phase

changes of applications, miss rates are collected not more frequently than once every billion

cycles and an average of them is used for scheduling decisions. Every billion cycles the new

miss rates are measured and the tasks assignment is re-evaluated based on the updated miss

rate running average values for the workload. As DI, also DIO is completely implemented in

user-space, thus managing the assignment of tasks to cores using affinity interfaces exposed by

the Linux kernel.

The DIO algorithm proved to have the inherent ability to predict when a group of tasks co-

scheduled on the same memory domain will improve or degrade each other’s performance.

Further research revealed that this ability could be exploited to build a power-aware scheduler

(called DIO-POWER) that would not only mitigate resource contention, but also reduce system

energy consumption. The idea which inspired the design of such algorithm is that clustering

tasks on as few memory domains as possible reduces power consumption [18].

The same research group tried to bring the same algorithm on a NUMA system obtaining

poor results [19]: not only contention was not manage efficiently, but sometimes performance

were even hurt when compared to a default contention-unaware scheduler. This is due to the
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fact that NUMA-agnostic migrations fail to eliminate contention for some of the key hardware

resources on multi-core systems and create contention for additional resources. To overcome

these difficulties a new version of the DIO algorithm was designed and named Distributed

Intensity NUMA Online (DINO). DINO prevents superfluous thread migrations, but when it

does perform migrations, it moves the memory of the threads along with the threads themselves.

DINO represents an evolution of DIO, thus it inherits the same basilar concepts, reviewed, when

needed, in order to adapt to NUMA architectures.

Futex Aware Scheduling Technique

A work even more related to the one presented in the next chapters is the one discussed

in [69]. The aim of the Futex Aware Scheduling Technique (FAST) project is to efficiently reuse

the thread’s state that is already in a processor’s cache by enforcing an affinity between the

processor and threads executing on them, applying this idea to locks and data in critical sections

protected by these locks.

The whole framework is developed, again, in user-space, modifying only partially the O(1)

scheduler implementation in the Linux 2.6 kernel. Contention is monitored through Perfmon [39],

a performance monitoring tool which allows to collect counts or samples from unmodified bi-

naries and uses hardware performance counters. The additional information coming from this

monitor enables the scheduler to take intelligent decisions for tasks that are contending for

locks. In order to obtain such an intelligent behavior, the OS has been modified as follows:

• a new entry was added to the structure describing each sigle task, named cpu lock. This

new field is supposed to store the identifier of the physical Central Processing Unit (CPU)

the task will need to run on when it acquires a lock;

• the futex wake() function was modified in order to set the cpu lock field for the acquiring

task equal to the identifier of the CPU of the releasing task;

• the O(1) scheduler was modified to check the cpu lock field when migrating a task or

when trying to activate a blocked task. In particular, if the cpu lock value is valid the

task is accordingly migrated, if not the scheduler performs its operations as usual.

Moreover, in order to avoid any load balancing problem, the default scheduler tasks migration

mechanisms is given higher priority over the presented policy.

The results reported in [69] are very interesting under the point of view of cache miss rate

reduction, showing good improvements both with micro-benchmarks and with more general
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benchmark. However, no results are described about the overall execution time, useful to

understand if a real improvement was reached. Moreover, the described approach is nowadays

outdated, due to the new Completely Fair Scheduler implemented in the Linux kernel.

The two projects presented in this section are the ones that are more strictly related with

and that mainly inspired the approach described in the next chapters. Some other interesting

works on contention-aware scheduling are [48] and [72]. They do not introduce original elements,

thus they did not deserve a specific paragraph in this chapter.

2.3 Summary

This chapter provided a wide and high-level birds eye view on the context this thesis deals

with. First, in Section 2.1 the design principles for autonomic systems to be implemented

are shown and most important operating systems providing autonomic capabilities were pre-

sented. After this introduction the work state of the art on system monitoring and *-aware

process scheduling is investigated (Section 2.2). In particular, Section 2.2.1 described monitor-

ing techniques focusing on performance monitoring (specifically HRM) and resource contention

monitoring, in order to make a comparison between existing approaches and the proposed one

possible. Then, Section 2.2.2 explained how the information gathered by the monitor infras-

tructure is exploited to improve the process scheduling mechanism, both for performance and

resource contention quantities. Moreover, a brief evolution of the Linux scheduling algorithm

was sketched in order to introduce the basic concepts used by the *-aware algorithms and by

the one implemented for this research work.

At this point, all the concepts needed to understand the work have been introduced and

the related works have been investigated. The original part of this thesis can presented: next

Chapter 3 describes in the details how the monitoring framework and the scheduling policy

have been designed, leaving the implementation details explanation in Chapter 4.



CHAPTER 3

PROPOSED APPROACH

The aim of this third chapter is to introduce the real contribution of this thesis to the

research in the field of autonomic computing. The work developed in the last months is only

a small brick in a more ambitious research project: CHANGE. The goal of this project is to

implement a new autonomic operating system, named AcOS, from scratch: nowadays the whole

system has been designed, while the actual implementation relies on the GNU/Linux operating

system.

The author gave his contribution to the design of the overall idea behind the creation of the

AcOS operating system and actually contributed, with the work described in this document,

in the following two directions:

• in the implementation, based on the HRM framework, of a new type of monitor for lock

contention among threads;

• in the design of an adaptation policy able to exploit the information gathered from the

newly introduced monitor to map the tasks executing in the system to the available

CPUs in order to achieve a performance improvement, in term of a reduction of the tasks

execution time.

• in the design of a framework able to autonomously create adaptation policy at run-time,

exploiting active reinforcement learning techniques, always perceiving the aim of reducing

task execution time.

The structure and the ideas the AcOS project is based on, are presented in Section 3.1.

The following two sections are devoted at explaining in the details the concepts this specific

work is built on. First, in Section 3.2 why and how HRM, which is born as a performance

monitor, can be converted to a resource contention monitor is shown and the modification

needed to the framework in order to allow this new use are presented. Then, Section 3.3

explains the theoretical foundations that guided the implementation of an adaptation policy

for the mitigation of the lock contention and the resulting improvement in tasks performance

through the reduction of their execution time.

60
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3.1 The CHANGE view

The CHANGE (standing for Computing in Heterogeneous, Autonomous ’N’ Goal-oriented

Environments) research group works at the Dipartimento Elettronica e Informazione (DEI) in

Politecnico di Milano in the field of operating systems. The aim of the research developed by

the group is the design and the implementation of a completely new operating system showing

self-aware capabilities. The Operating System (OS) should be able to run on any modern

computing device: from desktop to server computing systems, from mobile phones to tablets.

This is possible thanks to a powerful autonomic layer that allows the system to understand the

features and the limitation of the environment it is running on, continuously ensuring optimal

performance. In this context the concept of performance is wider than usual. In fact, this term

does not refers only to the throughput of the system or to the execution time of the running

applications, but considers also aspects such as the system safety (in term of temperature, for

example) or the system uptime and duration (considering its power consumption in relation

with the battery length, in a mobile system). Thus, the operating system has to meet two types

of needs:

• system goals: referring to objectives related to the system as a whole, such as keeping the

temperature of the cores under a certain threshold in order to avoid protection mechanisms

to be activated or minimizing the power consumption of the system to let it last/consume

as little as possible. System goals are specified by the system designer and are strictly

related to the hardware the system is equipped with.

• application-specific goals: are specified, through a standardized interface, by the applica-

tions running on the system. The system itself is in charge of providing the best effort

in order to achieve the goals of al the applications, being fair in doing this and paying

attention to its goals too.

3.1.1 Terminology

Before getting into the details of how the envisioned operating system works, some termi-

nology is needed to avoid any kind of misunderstanding.

• Application. An application is an element capable of making one or more entities of the

system aware of its performance goals and its current status.

• Monitor. A monitor is an entity equipped with sensors able to gather information from the

monitored applications or from the system. Within this context, it is important to notice
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that goals, expressed by an application, are defined using data that can be measured

through a monitor.

• Adaptation Policy. An adaptation policy is an element whose objective is to observe

applications through monitors, in order to decide on a strategy to change the behavior of

the self-adaptive computing system for meeting the goals declared by the applications. A

self-optimizing application is a special application in which the roles of application and

adaptation policy co-exist.

• Adaptation Manager [57]. The adaptation manager is a singleton element detecting whole

system problems and applications meeting or not their goals, allocating (de-allocating)

them to (from) adaptation policies.

3.1.2 The AcOS self-adaptive control loop

As described in Section 1.2.1, a computing system that aims at showing an autonomic

behavior has to implement the so called self-adaptation control loop. Among the ones presented

in the cited section, the control loop design chosen to be embedded in the new OS is the Observe

Decide Act (ODA) control loop. Differently from the autonomic systems analyzed in the state

of the art (Section 2.1), the OS here described aims at exploiting the control loop at different

levels. At a lower level, the single component can benefit from autonomic management via

internal ODA loop and, at higher level, a broader control loop, having a clear knowledge of

all the components the system is made up of and aware of the system status as a whole, can

orchestrate the different components in order to achieve system and application-specific goals.

This self-awareness should allow the burden of the system parameters tuning process to be

taken away from the programmer. Moreover, it should also allow the applications developers to

concentrate on what their applications must do, leaving all the architecture-dependant details to

be managed by the autonomic features of the system where their software will be deployed. The

resulting system is a self-adaptive computing system whose structure is presented in Figure 10.

3.1.2.1 Observe

In this context, two distinct roles are clearly defined: applications developers and systems

developers. The former are in charge of writing applications and, if needed, of instrumenting

them in order to provide as much information as possible to the self-adaptive computing system

(e.g., user-specified goals). The latter are in charge of writing monitors, which can be either
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Figure 10: Block diagram of the approach proposed to design and implement self-adaptive
computing systems.

active or passive and allow the self-adaptive computing system to collect as much information

as possible, adaptation policies, providing as many ways as possible to change the behavior

of the self-adaptive computing system (e.g., a specialized adaptive process scheduler), and

the adaptation manager. With reference to monitors, a monitor is said to be active when

applications require to be to manually instrumented to provide information: this is the case of

Heart Rate Monitor (HRM) when used as a performance monitor as described in Section 2.2.1.1.

On the other hand, a monitor is considered passive when no intervention on the application

code is required to the programmer in order to provide relevant information: a temperature

monitor, exploiting cores sensors, is a passive monitor. A special case is represented by the

contention monitor described in the next section: while exploiting HRM to emit heartbeats,

there is a locking library level between the monitor and the application. In this sense, the

monitoring of the locking library is actually active, since its instrumentation was needed, while

the monitoring of the application can be considered to be passive: if the programmer is using

the instrumented locking library to manage contention in its code, no further modifications to

the application are needed for contention information to be made available to the system.

3.1.2.2 Decide and Act

The resulting self-adaptive computing system exploits the ODA control loop, as pointed

out in Figure 10. Monitors are responsible for yielding measures and goals (e.g., performance,
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temperature, power consumption, resource contention, . . . ), hence implementing the observe

phase of the ODA control loop. The decide phase of the ODA control loop is partitioned

between the adaptation manager and adaptation policies. The adaptation manager is in charge

of detecting problems through measures and goals reported by monitors and of deciding on

a strategy to allocate applications to adaptation policies. Adaptation policies are meant to

change the behavior of the self-adaptive computing system by working on a set of parameters

that can belong to either the computing system or the applications, and tuning their influence

in accordance with measures and goals retrieved through monitors.

The role of the adaptation manager in the system economy is challenging and important,

yet not fundamental [78]. It stands at the center of the higher-level decision loop and exploits

the awareness given by the available monitors to elaborate a plan for future behavior. The aim

is to tune performance in order to make each monitored process achieve its performance goals.

In particular, the adaptation manager is in charge of: determine and constantly updating the

available adaptation policies and the monitored applications; gathering the information coming

from the monitored processes; analyzes the performance-related data in order to understand

whether to enact a correction policy; decides which application are to be allocated (de-allocated)

to (from) adaptation policies and communicate them this decisions. The decision policy that

drives the adaptation manager is based on machine learning techniques, which were proved

powerful tools for managing the increasing complexity of computing systems [27]. The design

principles that guided the implementation of the adaptation manager are the following:

• the interface between the adaptation manager and the adaptation policies is extremely

simple, allowing fast and low-overhead communication;

• there is no need to model the behavior of the adaptation policies, and for the adaptation

manager to know its effects in advance: this capability is provided by the machine learning

engine.

The adaptation policies, AdaM is required to orchestrate, can be created at design-time by

the programmer (as the heuristics presented in the next chapters) or can be learnt at run-time

by AdaM itself. In fact, AdaM is able to exploit artificial intelligence and machine learning

techniques to create suitable mappings among the available monitors and actuators: example

of this capability is presented later in this work.
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3.1.3 CHANGE over Linux

In order to realize a first prototype of the sketched operating system, named Autonomic

Operating System (AcOS), the GNU/Linux OS was chosen as a starting point. The advantages

of relying on an already established open-source OS instead of starting writing the whole system

from scratch are summarized below:

• Linux is widespread and an autonomic framework on top of it allows to keep full compat-

ibility with legacy applications and to offer a well known development environment for

the creation of new applications.

• The diffusion of Linux in many environments (from mobile and embedded devices to

servers and supercomputers) offers support for a wide set of architectures where the

autonomic OS can natively run.

• The open and community-based development style of Linux allows to directly access all the

source code and easily find documentation and support. Moreover, Linux is continuously

tested against security bugs and any fix distributed for Linux is automatically available

for the Linux-based autonomic OS.

• Linux, through its developers, already addresses the major issues with contemporary

operating system. Thus, the CHANGE group can be more focused on the autonomic

features, without the need to invest too much time in other issues that would require a

lot of attention in a OS developed from scratch.

The next two sections focus more specifically on the work developed for this thesis: the

design both of a monitor, able to provide the system information about the contention of locks

within different threads, and of a adaptation policy which exploits the information provided by

this monitor in order to improve application performance, acting on task mapping within the

Linux kernel.

3.2 HRM for Contention Monitoring

The Heart Rate Monitor (HRM) was presented and deeply analyzed in Section 2.2.1.1,

introducing it as a framework for applications performance monitoring. The approach proposed

by HRM and, before, by Application Heartbeats, can have a wider interpretation, since provides

the applications a way to communicate that something is happening with a certain frequency,
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not strictly coupled with the concept of the progress of the job they are performing. It is

possible to state that the meaning of an heartbeat emission and of the heart rate value depend

on the interpretation the adaptation policy gives to it. Having this idea in mind, it is possible

to interpret the emission of an heartbeat as a communication by a task which notifies that it is

stuck waiting for a lock to be released and cannot go on with its job.

This new meaning of an heartbeat inspired the research work presented here and demonstrates

the flexibility of the HRM framework. When dealing with HRM for lock contention measuring,

an heartbeat is emitted every time a task is not able to access its critical section, since another

task is holding the lock. In this scenario, some endpoints of the HRM performance version need

a review:

• if when considering performance a greater heart rate means a better application behaviour,

a lower heat-rate represents better performance if lock contention is considered;

• the definition of a maximum and minimum heart rate is quite useless if dealing with con-

tention, since the desired heart rate value should be the lowest possible. In the case of

performance monitoring, the definition of a minimum heart rate threshold was fundamen-

tal to tune the system parameters and, when possible, strictly respected. The maximum

heart rate value, on the other hand, was to be set in order to fix an upper bound to

the required quality of service, in order to avoid useless computation and, consequently,

a temperature increase or an energy waste. However, meeting this constraint was not

considered to be crucial.

• a desired heart rate equal for all the applications and not depending on them is 0. In fact,

if an heart rate of 0 is reached, it means that no tasks is trying to acquire a lock without

being able to do that: thus, there is no contention between threads.

Intuitively, the idea is to write a lock library instrumented with HRM and emitting one

heartbeat every time the acquisition of a lock fails. In particular, it makes sense to emit an

heartbeat not every time a lock acquisition fails, but if and only if the lock acquisition fails and

the task holding the lock is actually executing on another processor.

To demonstrate the validity of the proposed approach a simple lock library was imple-

mented, containing only spin-locks. As described in Section 1.2.4, spin-locks are one of the

simplest implementation of locks: they simply wait for the lock variable to change its value

and continuously test it, in a busy waiting fashion. Spin-locks are still widely used, while their
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use is usually coupled with other synchronization methods. For these reasons, a library lock

containing spin locks is enough to demonstrated that the described methodology is valid, while

it would be advisable to extend the instrumented lock library with other synchronization meth-

ods to obtain a better description of threads contention.

In order to put into practice the described methodology, each lock is to be associated with

a HRM group, allowing the system to retrieve an heart rate for each group (i.e., a number

describing the contention over the associated lock). However, the current implementation of

HRM does not allow to do this, since, as mentioned before, groups are non-intersecting subsets:

a task belongs to only one group at a time (the support for multi-task groups come by default

with HRM). In the envisioned approach, each lock must be associated with a group: by main-

taining the previous implementation, it would be possible to consider applications contending

only for a single lock, which is not a very common case in real applications. Thus, a redesign

of the HRM framework was needed in order to insert this new feature in it (implementation

details are discussed in Section 4.1).

Even after these modifications, the HRM monitoring infrastructure maintain some basic

design goals:

• instrumented applications performance should suffer as little as possible from the moni-

toring overhead;

• non-instrumented applications performance should not suffer at all from the presence of

monitored applications;

• the information gathered by the monitor should be easily accessible by other interested

system components, both in kernel-space and in user-space.

These design principles are met thanks to some wise implementation choices. First of all, the

computation of the statistics is decoupled from the emission of the heartbeats: this was done

by moving the code in charge of doing the calculation in a routine periodically executed thanks

to the high resolution timers available within the Linux kernel. Moreover, the tasks registration

to a group is made possible through a clear Application Programming Interface (API) (only

partially modified for the introduction of multi-group registration support): in this way the

monitoring is activated only on interested application, making the direct overhead on non

monitored applications zero.

The gathered information is shared with the interested components in user-space exploiting
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the great support to shared data structures provided by Linux. This mechanisms proved to be

simple and convenient in many cases, while leading to possible performance issues in multi-core

and multi-processor systems where a poor design of shared data may generate useless traffic

on the buses to maintain cache coherency. The communication of the monitored information is

even simpler within the kernel, where a global groups list is stored and easily accessible. Last,

it is worth noting that the heartbeats emission is, also, completely lock-less: locks are needed

only for adding and removing tasks to/from a group and for guaranteeing the correctness of

the statistics computation.

The statistics that are made available by the monitor are exactly the same exposed by the

original HRM and are computed for each group:

• the global heart rate, defined as the number of heartbeats emitted by all the member of

a given group divided by the total monitoring time. More formally, the global heart rate

is:

global hrn(t) =

∑N
i=0 cntri(t)

t

[
heartbeats

seconds

]
where n is the Group IDentifier (GID), t is the time, in seconds, passed since the creation

of the group, and the index i goes from 0 to N (the number of tasks in the group).

• the window heart rate, calculated on the last W time slots, i.e. on the last W× times-

lot duration seconds. With a mathematical formula:

window hrn(t) =

∑N
i=0 cntri(t)−

∑N
i=0 cntri(t− w)

w

[
heartbeats

seconds

]
where all the variables have the same meaning as before and w is the effective duration,

in seconds, of the time slot.

Next section is devoted to the explanation of the algorithms implemented in order to reduce

contention, thus improving application performances.

3.3 Adaptation Policies

In order to exploit the locality of the critical section, data tasks that require the same lock

should be moved to the processor that is executing the task that currently holds the lock. The

advantages of implementing such a policy are several. For example, when a lock is released

and the thread that blocked on the lock is awakened, it directly uses the data in its local cache
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rather than doing remote bus requests to fetch the data [69]. This is quite important, given

the fact that the current microprocessors are much faster than the memory subsystem and the

system bus, and hence have to use the data in their cache very efficiently. Additionally, this

translates into a reduction in the number of requests in the bus and hence improvement in the

scalability of Symmetric Multi-Processor (SMP) systems. The thread is then able to perform

the computation in the critical section faster and to release the lock quicker, since the data is

already present in its local cache. All these advantages should speed up applications that have

heavy synchronization overhead.

According to these concepts, a-priori designed adaptation policies should be able to move

tasks that contend for the same lock on the same processor. By design, if all threads that share

the same lock are moved on the same execution unit, no more heartbeats will be generated

within that group, leading to a decreasing global heart rate and null window heart rate. This

is due to the fact that if a thread is not able to acquire a lock it is not possible for the lock

owner to be in execution, since all the threads are mapped to the same processor. Thus, the

adaptation policy that has to be implement should aim at reaching a zero window heart rate for

each existing group, remembering that an higher heart rate corresponds to an higher contention

on the considered lock.

The adaptivity of the system is thus enhanced allowing it to use policies that are based on

sets of sensors and actuators that were not expected to be available. Not every combination of

sensors and actuators might have a specific policy implemented in the system, different policies

could have results that are hard to compare (e.g. if each one is completely failing in reaching

one of the objectives), moreover, even if an ad-hoc policy, this could not be the optimal one

or not even a suitable one. By exploiting the capability offered by AdaM, it is also possible to

let the system create suitable adaptation policies on its own, at run-time. Obviously, a certain

description of the execution domain and of the goals, that are to be reached, (i.e., a model of

the system) should be passed to AdaM. This knowledge is implicitly given to the system while

designing the state space S and the reward function R(s).

3.3.1 Lock Contention Data

Before looking at the adaptation policies, it is worth investigating which are and how are

organized the data that can be exploited. The implemented system gathers information about

the current status of the instrumented processes periodically. This period can be varied: in

the performed experiments this value, after some tuning, was set to 1 second, which provides
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a good trade-off between the algorithm reactivity and its overhead. Contention data are read

from the monitor and stored in specific data structures before starting operating on them, with

the specific aim of reducing memory accesses and of optimize storing space. The available data

structure are the following:

• group array: an array with a dynamic length which is constantly updated in order to

contain the GIDs of the groups active in the system;

• heartrate array: an array of the same length of the group array storing their respective

window heart rate;

• sorted group array: another array of the same length of the previous two, containing

the indexes of the first one so that they are sorted by decreasing window heart rate

• task array: an array containing pointers to the task struct describing each instru-

mented task running in the system;

• incidence matrix: a n×m matrix, where n is the number of monitored tasks and m is

the number of active groups. The cell (i, j) in the matrix is equal to 1 if and only if the

group gj contains the task ti.

Just to clarify the concepts, Figure 11 proposes a visualization of the storing structures pre-

sented above.

3.3.2 Implemented Heuristics

Two different adaptation policies where designed for this work of thesis, both based on

simple heuristics. The first and the simplest one does not use all the described structures: in

particular, it does not sort the group array at each iteration, but it simply find the group with

the highest window heart rate, neglecting the others. Once the group has been selected, the

incidence matrix is parsed in order to find all the tasks belonging to that group. All these

tasks are then moved to the same processor. A CPU counter is then increased and the cycle

starts again. The pseudo-code for this simple heuristics is shown in Listing 1.

The second heuristics is more complex. At each iteration the sorted group array is filled

in with the indexes of the group array, sorted by decreasing value of the corresponding window

heart rate. Then, for each group, following the order of the sorted array, the tasks belonging

to that group are retrieved. All these tasks are again, moved to the same processor. When a

task is selected for the first time, its row in the incidence matrix is set to all zeros in order to
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Figure 11: Data structures used to store information about the monitored tasks.

avoid the policy to move the task again, to accomplish the needs of other groups with a lower

heart rate. Again, a CPU counter is used and incremented in order to equally distribute the

tasks on all the available processors. The pseudo-code also for this second heuristics has been

written and it is reported in reported in Listing 2.

The first approach proved not to provide good performance when dealing with an high num-

ber of groups, since the number of cycles required to spread the tasks among all the CPUs was

too high. For this reason, after the first experiments, this first implementation was abandoned

in favour of the second one which showed better performance, as shown later in Chapter 5.

Execution Example

A practical example of this second implementation can help in understanding how it works.

Imagine to have 7 tasks, attached to 3 different groups as shown in the incidence matrix in

Table VI.

When the adaptation policy notices the presence of new groups in the system, all the data

structures are filled in, retrieving the window heart rate of each group, and computing the array
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Algorithm 1 PSEUDO-CODE FOR THE FIRST HEURISTICS.

initialize cpu counter to 0
loop

update contention data
find max in the heart rate array

store the index of this element in j
for all i in task array do

if incidence matrix(i,j) == 1 then
move task i to the processor cpu counter % online cpus

end if
end for
increment cpu counter

end loop

Algorithm 2 PSEUDO-CODE FOR THE SECOND HEURISTICS.

initialize cpu counter to 0
loop

update contention data
sort the heart rate array

store the sorted indexes in the sorted group array

for all i in sorted group array do
for all j in task array do

if c == 1 then
move task with index i to the processor cpu counter mod online cpus

for all k in group array do
set incidence matrix(i,j) = 0

end for
end if

end for
increment cpu counter

end for
end loop
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TABLE VI: ADAPTATION POLICY EXAMPLE: STARTING SCENARIO.

GID 10 20 30

window hr / / /

sorted index / / /

PID CPU cnt 0

10000 0 0 1
10001 1 0 1
10002 1 1 1
10003 0 1 0
10004 0 1 0
10005 1 0 0
10006 1 0 0

containing the their sorted indexes. The data structures at this step of execution are shown in

Table VII.

Now, the heuristics starts doing its job: the group with the highest window heart rate is

selected (with GID 20 in this example) and the three tasks belonging to it (with PID 10002,

10003 and 10004, respectively) are moved on the same processor. The rows related to these

tasks are filled with zeros and the CPU counter is incremented. Following the window heart

rate in a decreasing order, the group with GID 30 is considered: the tasks still belonging to

this group according to the incidence matrix are the ones with PID 10000 and 10001. They are

moved to the processor with ID 1, the corresponding rows are set to 0 and the CPU counter is

newly incremented. Last, the two remaining tasks are moved to CPU 2. The first iteration of

the cycle ends since no more groups are to be analyzed: after the selected period the algorithm

is executed again, working on updated data.

3.3.3 Active Reinforcement Learning Policies

A different approach, with reference to the one presented in the previous sections, requires

not to a-priori design a heuristics, but to set up the system in order to let it create autonomously

adaptation policies, exploiting trial-and-error algorithms at the basis of reinforcement learning

techniques.
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TABLE VII: ADAPTATION POLICY EXAMPLE: DATA STRUCTURES
INITIALIZATION.

GID 10 20 30

window hr 10K 30K 20K

sorted index 2 0 1

PID CPU cnt 0

10000 0 0 1
10001 1 0 1
10002 1 1 1
10003 0 1 0
10004 0 1 0
10005 1 0 0
10006 1 0 0

A framework for policies learning was already developed within AcOS and it is named

Adaptation Manager (AdaM) [57]. The cited work created an autonomic manager capable of

driving an instrumented application (i.e., a managed element) towards its objectives thanks to

an active monitoring infrastructure and to a set of adjusting knobs. AdaM provides a skeleton

to evaluate many different adaptation policies and algorithms capable of learning adaptation

policies at runtime: it concretely allowed to explore the possibility to implement artificial

intelligence and reinforcement learning in order to bring autonomicity in an operating system.

In this thesis, the same considerations about the environment are done. In particular, the

environment in which AdaM acts, is:

• Fully Observable: the environment consists of the underlying hardware architecture, the

system software, and the autonomic element itself. Fully observability of such an environ-

ment is achieved through the selfmonitoring capabilities provided by HRM. The goodness

of such a minimalistic approach is confirmed by other similar works [75];

• Stochastic: the environment is also uncertain because there is no a-priori knowledge of

how the selfadjusting capabilities of the actuator will affect it: hence, the transition model

is stochastic;
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TABLE VIII: ADAPTATION POLICY EXAMPLE: HEURISTICS.

GID 10 20 30

window hr 10K 30K 20K

sorted index 2 0 1

PID CPU cnt 0

10000 0 0 1
10001 1 0 1
10002 1 1 1
10003 0 1 0
10004 0 1 0
10005 1 0 0
10006 1 0 0

10 20 30

10K 30K 20K

2 0 1

CPU cnt 1

0 0 1
1 0 1
0 0 0
0 0 0
0 0 0
1 0 0
1 0 0

10 20 30

10K 30K 20K

2 0 1

CPU cnt 2

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
1 0 0

10 20 30

10K 30K 20K

2 0 1

CPU cnt 2

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

• it is not possible to know if the environment is Stationary or not. This fact represents

one more reason for reinforcement learning algorithms to be applied since, in presence

of a suitable exploration policy, it is possible to cope with slowly evolving nonstationary

environments.

• Sequential : according to the chosen set of action A, described in the following paragraphs,

future decisions are affected by the previous ones;

• Dynamic: the environment changes even when the agent is not performing any action;
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However, in [57] only one managed element (i.e., one instrumented application) is considered

at a time, thus creating a single-agent environment. One of the aims of this work is to extend

the AdaM framework and prove its usability also in the case of multi-agent environments,

thus allowing multiple instrumented application to run simultaneously. In such a scenario, two

different approaches for decisionmaking are available:

• Centralized decisions: the system as a whole is a considered as a single Markov Decision

Process (MDP).

– Pros: the solution is the optimal global strategy.

– Cons: possible statespace (exponential) explosion with the number of instrumented

applications.

• Distributed decisions: the system is a collection of MDPs.

– Pros: scalability with the number of application.

– Cons: decisions are made locally, possibly needing a resource arbiter.

Starting from the singleapplication scenario, reformulating the multiapplication problem

as a single MDP would mean: going from O(1) application to O(n) applications, going from

O(k) actions to O(k · n) ≈ O(n) actions, and going from O(m) states to O(m · n) states. This

produces a remarkable increase in the size of the set of actions and an exponential increase of

the dimension of the set of states. This latter aspect could make the problem intractable in

practice for a large number of applications.

For these reasons, a centralized approach was discarded in favor of the distributed approach.

A rational agent is created for each instrumented application running on the system; the be-

havior each rational agent should learn is either ”force the interleaved execution of contending

threads placing them on the same core or ”enforce the parallel execution of noncontending

threads depending on the application and assuming that serialized execution is advantageous

in presence of finegrain synchronization while parallel execution of threads is advantageous in

absence of synchronization between them. AdaM is in charge of coordinating all the agents,

thus acting as the envisioned resource arbiter : it guarantees the actions taken by the agents to

be performed, while avoiding inconsistencies and smartly assigning resources. In this particular

case AdaM is in charge also of balancing the load of the available cores, always respecting the

number of threads of the same application that are to be mapped on the same core.
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The implemented reinforcement learning algorithms use utilitybased learning agents moving

in an environment that is treated as Markovian. Recall that the elements needed in order to

do formalize the system under analysis into a MDP are:

• a set S of states that can be obtained doing the Cartesian product and discretizing the

domains of each sensor;

• a set A of actions and, consequently, a set of calls to actuator libraries;

• a reward function R(s) that can be represented as any distance function of the current

state from the state identified by the desired values of each sensor.

Set S of states

The first step in allowing the system to create adaptation policies is the definition of a

discrete state space, i.e. subdivide the environment in which the agent lives into a limited

number of states. A two-dimension space is considered in performing this operation; the two

selected dimensions are:

• Window heart rate: heartbeats are emitted by threads contending for shared resources

and can be monitored through the Heart Rate Monitor (HRM). The window heart rate

represents the number of heartbeat emitted in the last n milliseconds. Only two intervals

are created, by setting a threshold t: from 0 to t and from t to +∞. The threshold t has

been tuned during the experiments and 0 ended up to be the best value to be assigned to

it, in order to brain the best results;

• Grouped Thread: it represents the second dimension of the designed state space and

it quantifies the number of threads belonging to the same application which are currently

mapped on the same core. Each value of this variable can be used as a different set of

state and depends on the number of threads the running application is made up of. In

the case of the experiments presented in the following chapters, 4-threaded application

were used, thus 4 different values for this dimension.

As Figure 12 shows, the number of states in the states space depends on the number of thread

m the instrumented application has. However, once m if fixed, it is not possible for the system

to exist in a point of the space that is outside the 2m squares.
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Figure 12: Representation of the states space S.

Set A of actions

The set of available actions has been designed taking into account the available actuators.

Since the only actuator currently used in the system is the task mapper, able to move task to

core to another, the set of actions is made up of the following ones:

• Increase: move one spread thread (if there is one) to the same core the other grouped

threads are mapped on.

• Stay : do not perform any action.

• Decrease: move one grouped thread (if there is more than one), to a core different from

the one other grouped threads are mapped on.

Other possible sets of actions could be envisioned. A simple example is the following: map

exactly n threads together, where n represents an integer number from 1 to the number of thread

of the application in exam. This choice is slightly equivalent to the one presented before, but

implies an higher number of possible actions (linearly increasing with the number of threads)

and a number of states explosion. Moreover an higher number of states requires more time for

the state space to be explored and an higher complexity for the controlling mechanism. These

are the reasons why keeping the set of actions A as simple as possible seems to be the right

choice.
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Reward function R(s)

As seen in the first chapter (Section 1.2.5), a reward function R(s) returns a value for each

different state s, describing how much the agent is benefiting from staying in that particular

state. In our case, an integer value will be associated to each of the 2m states described in

the states space: more suitable states will have an higher reward, less suitable ones will have a

lower reward. Figure 13 shows how all the states with an heart rate greater than the threshold t

are penalized with a negative reward value. On the other hand, states with an under-threshold

heart rate are desirable and, thus, characterized by a positive reward value. Moreover, a state

is more desirable if the number of grouped threads is low, i.e. if threads belonging to the

same application are spread among cores, i.e. higher parallelization is possible. This is the

reason why the reward value should increase as the number of threads grouped on the same

core decreases.
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Figure 13: Representation of the reward function R(s): a single value is coupled with each
possible state.

Obviously the choice of the reward function is not univocal: the described reward func-

tion was designed after having performed some exploration experiments and having obtained

satisfying results.
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3.4 Summary

This chapter presented the original contribution of this work to the CHANGE project

and to the autonomic operating system field. In particular, the attention was focused on the

explanation of the theoretical concept behind the developed work. Section 3.1 presented the

design principles that inspired the creation of the AcOS operating system and its conceptual

structure, in which this thesis is located. The focus was then moved to the methodology

that was followed in the design of the lock contention monitoring infrastructure and in the

instrumentation of a simple locking library, in Section 3.2. Last, Section 3.3 described the

adaptation policy for the tasks performance improvement from an high-level point of view,

providing a simple example in order to better understand its behavior. Both a-priori designed

adaptation policies, based on simple heuristics, and adaptation policies learned on-line, thanks

to machine reinforcement learning techniques, were presented. Implementation details of the

whole framework, made up of both the monitoring infrastructure and the adaptation policies,

are presented in the next Chapter 4.



CHAPTER 4

PROPOSED IMPLEMENTATION

This chapter describes the main technical and implementation details which allowed to put

into practice the concepts presented in the previous chapter. This practical part required both

to understand and modify already existing code, and also to design and write part of the code

from scratch. It was also required to implement code both in user-space and in kernel-space. In

particular, the extension of the Heart Rate Monitor (HRM) framework (see Section 4.1) needed

a lot of modification in kernel-space, while leaving the user-space library quite unmodified.

The lock library, presented in Section 4.2, and the machine learning system (Section 4.4) were

completely developed in user-space, while the heuristics adaptation policies (Section 4.3) were

coded in kernel-space.

As already pointed out, the whole framework is developed within the GNU/Linux operating

system, with the 2.6.35.14 kernel version [77]. The 2.6.35 version of the kernel was chosen since

it was the latest longterm release at the time this work of thesis began (and it is still the latest

long term release at the time this thesis is written). In Linux lingo if a release is marked as

longterm, it means that it will be supported with bug fixes and security patches for a longer

time than standard stable releases (in fact, the last final .14 version number is an incremental

number used for updates to the base long term release, registered as 2.6.35).

4.1 HRM Extension

The first step performed to get in touch with the already developed Heart Rate Monitor

(HRM) library was writing a patch for the 2.6.35.14 kernel version, since the at the time it

was available up to the 2.6.35.13 kernel release. This task was quite straightforward, since the

differences in the two releases were not related to files and structures interesting the monitoring

library. However, this was a great occasion to become familiar both with the Linux kernel and

with the library itself, starting to understand what and where was to be added code in order

to allow one task to be in many groups.

The HRM framework is made up of a kernel-space implementation which does mainly all the job

and a user-space library that exposes the functions needed to exploit the features implemented

in kernel-space. The main modification that were needed to introduce to possibility for a task

to attach to more than one group can be summarized as follow:

81
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• the task struct data structure, which contains all the important information about a

task and is located in include/linux/sched.h, was modified to store a list of data structures

about groups (named

hrm struct), instead of only one;

• the main monitoring structure, hrm struct in include/linux/hrm.h (the one representing

the real monitor: one for each group and for each task) was integrated with some fields

allowing to better managing the new features;

• all the related functions, in kernel/hrm.c and fs/proc/base.c, and their definitions, in

include/linux/hrm.h, were modified in order to be consistent with the new concepts.

1 struct hrm_struct {

2 int counter_index;

3

4 struct hrm_counter *counter;

5 struct hrm_stats *stats;

6 struct hrm_target *target;

7

8 struct hrm_group *group;

9

10 unsigned long counter_user_address;

11 unsigned long stats_user_address;

12 unsigned long target_user_address;

13

14 struct task_struct *task;

15

16 struct list_head link_group;

17 struct list_head link_monitor;

18 };

Listing 4.1: THE hrm struct DATA STRUCTURE IN include/linux/hrm.h.

The hrm struct in Listing 4.1 is the data structure that allows the monitored information to

be made available in the kernel both for periodic statistics computation and for the kernel

components interested in accessing it.

It contains information about the group counter, the computed statistics and the group

goals (*counter, *stats, and *target, respectively) and the relative memory addresses to

allow data to be read from user-space components. link group is a pointer to a global list

containing all the groups currently available in the system. All these fields were inherited from

the previous implementation of HRM and maintained, even if some are useless in this case, in
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order to guarantee the compatibility with the performance use of the monitor. The new fields

are underlined in Listing 4.1 and their use is explained below:

• struct task struct *task: this field allows to store a pointer to the task struct of the

task the hrm struct is coupled with. The previous implementation allowed, by browsing

the *counter pointer to retrieve the PID of the task; however, it was absolutely not

convenient to access the PID and then retrieve the

task struct from this, when it is easily available in kernel and the storing of this pointer

does not required a big overhead.

• struct list head link monitor: is a pointer to a list storing the hrm struct data

structures of all the other groups the current task is attached to. It allows to easily go

through all the groups a task is part of without retrieving all the existing groups before.

Some helper functions are exported by include/linux/hrm.h in order to make the use of

HRM capabilities in kernel easier.

1 int hrm_add_task_to_group(struct task_struct *task , int gid);

2 int hrm_delete_task_from_group(struct task_struct *task , int gid);

3 int hrm_task_is_enabled(struct task_struct *task);

4 int hrm_task_is_enabled_group(struct task_struct *task , int gid);

5 int hrm_task_is_active(struct task_struct *task , int gid);

Listing 4.2: HELPER FUNCTIONS EXPORTED BY include/linux/hrm.h.

This functions signatures have been slightly modified in the new HRM version. First of all,

the concepts of a task being enabled and active have a new meaning. A task is said to be simply

enabled if it exists at least one group it is attached to; the fact to be enabled can be also re-

stricted to single group: a task is said to per enabled for the group with GID gid if it is attached

to that group. This is the reason why the function named hrm task is enabled group() was

introduced. A task is considered to be active with reference to a group with GID gid if its

counter is set to active, i.e. when it is within an hotspot.

The hrm delete task from group() function has a new parameter, int gid, which represents

the GID of the group the task is to be removed from. Obviously this parameter was not needed

in the previous implementation, since a task was able to attach only to a single group.

hrm add task to group() maintains the same signature as before, but necessarily its imple-

mentation is changed due to the need of keeping all the lists containing the hrm struct updates.

A global variable named hrm groups count was also introduced, in order to store the number
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of existing groups, and kept updated every time a groups is created or destroyed. The presence

of this variable is needed to make the creation of the data structures used by the adaptation

policy more optimized.

The modifications introduced in kernel-space reflects in a few corrections in libhrm, the user-

space library that allows user space application to use the monitoring infrastructure. These

modifications are not that interesting and deserve not to be further investigated here. Simply,

the need for the GID to be specified when detaching from a group is made explicit and the

related functions writing (in user-space) and reading (in kernel-space) the /procfs were changed

accordingly.

4.2 Lock Library Implementation and Instrumentation

In order to test the validity of the approach explained in the previous chapter, it was

necessary to instrument a lock library with the new HRM monitoring infrastructure, allowing

a single task to attach to more than one group. The doubt was about writing a lock library

completely from scratch or trying to adapt an already existing library. The latter option was

discarded because it was not easy to find trustable code to start from and the GNU/Linux

lock library (implemented in the glibc) proved to be too much optimized and offered too many

features to make the instrumentation feasible. For these reasons, it was decided to create a new

lock library from scratch, implementing only the functionalities needed to prove the validity and

the feasibility of the proposed approach. Thus, the attention was focused on spin-locks, which

represents the simplest type of memory synchronization methods that allows the presented

research to work.

The data structure which defines the spin-lock is simple and contains only two fields: a

volatile bool named lock, and a variable pid lock of type pid t (see Listing 4.3). The former,

is the variable which says if there is any task currently holding the lock;the latter field contains

the PID of the task, if any, currently holding the lock.

1 typedef struct lock_t{

2 bool lock;

3 pid_t pid_lock;

4 };

5 typedef struct lock_t lock;

Listing 4.3: SPIN-LOCK TYPE DEFINITION.

The functionalities exposed by the library are the basic ones expected for a lock library to

provide. In particular, an initialization function and the two functions to acquire (or try to
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acquire) and release a lock (Listing 4.4). Each function is further analyzed in the remainder of

this section.

1 void init(lock_t *L);

2 void acquire(lock_t *L, hrm_t *monitor);

3 void release(lock_t *L);

Listing 4.4: FUNCTION PROTOTYPES EXPOSED BY THE LOCK LIBRARY.

The initialization function, as can be seen in Listing 4.5, simply takes the pointer to a lock

and initialize its fields to meaningful values: in particular, the lock is set not to be hold and

the PID of the task holding the lock, which does not exist, is set to 0.

1 void init(lock_t *L)

2 {

3 L->lock = false;

4 L->pid_lock = 0;

5 }

Listing 4.5: SPIN-LOCK INITIALIZATION FUNCTION.

More interesting is the lock acquisition function, fully report in Listing 4.6. The atomic

instruction sync lock test and set() (see Section 1.2.4) is exploited to atomically test the

value of the lock variable and to set it to true if possible, in order to avoid race conditions to

appear.

sync lock test and set() returns the value previously stored in memory: thus, in the case

the lock is already hold by another task, the execution enters the while loop. For the reasons

already exposed in the previous chapter, it is meaningful for a task to emits heartbeats if and

the only if the task currently holding the lock is currently running. However this information

is not available in user-space: in this context it is possible to know only if a task is runnable. A

task is said to be runnable either if it currently running or it is on a runqueue waiting to run.
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1 void acquire(lock_t *L, hrm_t *monitor)

2 {

3 while ( __sync_lock_test_and_set (&L->lock , true) ){

4 if (syscall(__NR_isrunning , L->pid_lock)) {

5 heartbeat(monitor);

6 }

7 else {

8 pthread_yield ();

9 }

10 }

11 L->pid_lock = (pid_t) syscall(__NR_gettid);

12 }

Listing 4.6: SPIN-LOCK ACQUISITION FUNCTION.

The information about a task effectively running or not is available only in kernel-space:

for this reason a new syscall was implemented to expose this information also in user-space.

Listing 4.7 shows the code for the new system call: taking as input parameter the PID of the

task, it checks if it is running on one of the available CPUs and returns a value accordingly.

1 SYSCALL_DEFINE1(isrunning , pid_t , pid){

2 struct task_struct *task;

3 int i;

4

5 task = find_task_by_vpid(pid);

6 for(i = 0; i < get_present_cpus (); i++) {

7 if(task_running(cpu_rq(i), task)) {

8 return 1;

9 }

10 }

11 return 0;

12 }

Listing 4.7: IMPLEMENTATION OF THE isrunning() SYSCALL IN kernel/sched.c.

Going back to Listing 4.6, if the task holding the lock is running the task executing the code

emits an heartbeat meaning that it is stuck waiting for it and continues to do that in a busy

waiting fashion, until it is preempted or it is able to acquire the lock. On the other hand, if the

PID stored in the lock structure belongs to a task that is not running the current task yields

the CPU it is running on, without emitting any heartbeat. Thus, it is useless for it to continue

waiting if it wont have the possibility to acquire the desired lock. When the task is able to

acquire the lock saves its PID in the provided field in the lock structure, retrieving it thanks to
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another syscall, this time already exported by the kernel. Obviously, the acquire function takes

as input parameter also an hrm t *monitor, which represents the monitor on which heartbeats

are to be emitted.

Last, the lock release function was implemented (Listing 4.8). It is kept as simple as possible:

the lock variable value is set to false, without the need to use atomic instruction, since it is

not possible for race conditions to arise (the lock is hold by only one task a time and there is

no possibility for two different tasks to try to release the same lock at the same time).

1 void release(lock_t *L)

2 {

3 __sync_lock_test_and_set (&L->lock , false);

4 }

Listing 4.8: SPIN-LOCK RELEASE FUNCTION

For an application to be instrumented with this framework, it has to make use of this lock

library and of the libhrm too, in order to create the hrm t *monitor to be passed to the lock

library.

4.3 Kernel-space Adaptation Policies Implementation

The actual implementation of the adaptation policy is the one that required most of the

efforts spent in this thesis work. Mainly not in the design of a suitable heuristics, but in

understanding:

• where and when to insert the periodical gathering of the contention data from the monitor

infrastructure: the choice of the instant in which to perform this task is not trivial at all

and must be carefully investigated;

• how to actually move tasks from one runqueue to another, in a legal way.

These are the two main issues this paragraph addresses and to which tries to find a solution.

4.3.1 When and Where

Choosing the proper time in which to let the adaptation policy act proved not to be an easy

task. Different roads were pursued before finding the one which seems to be the best available

one:

• kernel tick. The time inside the kernel is beaten by a tick, which is emitted with a

period of 1 millisecond. A timer interrupt handler exists and is invoked every time one
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tick is charged to the current process. This component calls a update process times()

function (located in kernel/timer.c), which is in charge of performing all the periodical

operations related to the kernel tick, in particular: run local kernel timers, run POSIX

CPU timers, and propagate the tick to the scheduler. The first idea was to add a function

performing the work of mapping threads on core according to contention information in

this function. However, in this context was not possible, due to the high number of locks

hold, to efficiently modify the affinity mask of the task. Thus, the only possible actuation

was to directly move task from one runqueue to another. Unfortunately this approach,

as better explained later, has a serious drawback and was discarded.

• high resolution timers. High resolution timers, also known with the name of hrtimer,

provide an infrastructure for the implementation of timers with a resolution up to a 1

nanosecond. Thanks to them it is possible to schedule a function to be executed periodi-

cally inside the kernel. This was exactly what it was needed. However, hrtimers have the

not really known drawback of executing always on the same CPU: in particular, the one

on which they were initialized. This fact, coupled with the limitation of moving tasks from

one runqueue to another, implied the need for creating a timer for each CPU available

in the system and to synchronize them. This approach, however, proved to have an high

overhead on the system and was, then, discarded.

• kernel threads. This last option was, finally, the chosen one. Kernel threads are, as the

name suggests, an implementation of threads in kernel-space. The advantages of this

approach is that the thread function is executed outside the context of any other task,

thus allowing to operate in an environment where locks can be easily managed.

Once that the suitable technique to periodically manage the available data about con-

tention has been chosen, it is possible to explain how it was implemented. First of all a

new file, kernel/contention.c, was created and added to the compilation tool-chain. The

initialization of the kernel thread is done through a module init() call, which invoke the

kthread contention init() function, showed in Listing 4.9. Here the kernel thread is ini-

tialized to call the manage contention() function, where an infinite loop executes a sleep

of CONTENTION CHECK PERIOD milliseconds and then call the main function for managing the

contention:

manage contention().
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1 static int __init kthread_contention_init(void)

2 {

3 struct task_struct *ts;

4

5 ts = kthread_run(__manage_contention , NULL , "Contention thread");

6 return 0;

7 }

8

9 static void __manage_contention(void)

10 {

11 for (;;)

12 {

13 msleep(CONTENTION_CHECK_PERIOD);

14 manage_contention ();

15 }

16 }

Listing 4.9: THE KERNEL THREAD INITIALIZATION FUNCTION.

The function that actually implement the heuristics policy described in the previous chapter

can be found in kernel/sched.c and is fully reported in Listing 4.10. This function exactly follows

the pseudo-code showed in Listing 2. Only some aspects are to be underlined:

• the initAndPopulateGroupArrays() is in charge of filling in all the data structures with

the data gathered from the HRM monitor at each cycle;

• the lock on the HRM group list is acquired at the beginning of the function in order to

read the group list without risks for a race condition, and released at the end;

• cpu count is an integer global variable initialized to 0;

• sched setaffinity() is used to actually map tasks on cores, as will be explained in a few

paragraphs.
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1 int manage_contention(void) {

2 struct hrm_group *group;

3 struct hrm_struct *hrm;

4 struct hrm_stats *stats;

5 int *grp_incid_matrix , *grp_array , *ordered_grp_array , *heartrate_array;

6 struct task_struct ** task_array , *task;

7 struct rq *curr_rq;

8 unsigned long groups_lock_flags;

9 int index , curr_cpu , groups_count_loc , i, j, tmp;

10 cpumask_var_t new_mask;

11

12 read_lock_irqsave (& hrm_groups_lock , groups_lock_flags);

13

14 if (hrm_groups_count > 0) {

15 /* ... data structure allocation ... */

16 initAndPopulateGroupArrays(grp_incid_matrix , grp_array , task_array ,

heartrate_array);

17 groups_count_loc = hrm_groups_count;

18 read_unlock_irqrestore (& hrm_groups_lock , groups_lock_flags);

19 /* ... sorting groups according to their window heart rate ... */

20 for (i = 0; i < groups_count_loc ; i++) {

21 if (heartrate_array[ordered_grp_array[i]] > 0) {

22 for (j = 0 ; j < MAX_TASKS; j++) {

23 if (grp_incid_matrix[j * groups_count_loc + ordered_grp_array[i]]

== 1) {

24 cpumask_clear (& new_mask);

25 cpumask_set_cpu(cpu_count % num_present_cpus (), &new_mask);

26 sched_setaffinity(task_array[j]->pid , new_mask);

27 memset (& grp_incid_matrix[j * groups_count_loc], 0,

sizeof(int) * groups_count_loc);

28 }

29 }

30 cpu_count ++;

31 } else {

32 break;

33 }

34 }

35 /* ... cleaning up the allocated data structures ... */

36 } else {

37 read_unlock_irqrestore (& hrm_groups_lock , groups_lock_flags);

38 }

39 return 0;

40 }

Listing 4.10: HEURISTICS IMPLEMENTATION IN kernel/sched.c.



91

4.3.2 How

Two are the considered ways to map the tasks on the cores: both are briefly presented here.

• Inspired by the work done by the load balancer, an idea is to directly move a certain task

from a runqueue to another. The role of the load balancer within the process scheduler

is to find the busiest runqueue in the system and move a task from that runqueue to the

one the load balancer code is executing. To do that, this component exploits a function

named pull task(), which takes as input parameters the source and the destination

runqueues, the destination CPU and the task to be moved. Due to the context in which

this function is executed, a major limitation arises: the destination runqueue must be the

local runqueue. This means that the task can be moved only on the runqueue of the CPU

on which the core is running. This drawback was enough for the use of this function to

be avoided.

• The second approach is indirect, in the sense that consists in modifying the affinity mask

of the task that has to be moved. The definition of affinity mask has been already given

in Section 2.2.2.2 when talking about Sefos. However, simply setting the affinity mask

of the task is not enough, since in this way the task has to wait for the load balancer to

be invoked before being actually moved. In order to trigger this mechanism, a specific

function, as the one called by sched setaffinity() system call is to be invoked, or the

sched setaffinity() itself. However this is possible if and only if this function is exe-

cuted outside the context of any other task: as the one offered by the kernel thread.

4.4 User-space Adaptation Policies Learning

In order to exploit the already developed Adaptation Manager (AdaM) framework [57], the

on-line learning algorithm was developed in user space. One of the reasons why heuristics were

implemented in kernel space was the direct availability of the monitoring data computed by

HRM in kernel.

4.4.1 Monitor

Now that the implementation is moved to user space, a communication issue between HRM

and AdaM arises. HRM exploits the procfs pseudo-filesystem [24] to provide an interface be-

tween kernel space and user space for allowing the communication to take place. In particular

the /proc/hrm file exposes global information about instrumented processes that are human
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readable and easily parsable by user space application (such as our framework). The organiza-

tion of the /proc/hrm has been adapted in order to show, on top, the number of existing HRM

groups, immediately followed by the list of the GIDs of these groups. The remainder of the file

provides more statistics for each registered groups, in particular:

• gid : the identifier of the group;

• tids: the list of identifiers of the threads belonging to the specified group;

• global heart rate: current value of the global heart rate for the specified group;

• window heart rate: current value of the window heart rate for the specified group;

• minimum heart rate: lower bound for the heart rate window (not used);

• maximum heart rate: upper bound for the heart rate window (not used);

• window size: dimension (in hundreds of milliseconds) of the window on which the window

heart rate is computed.

Listing 4.11 shows the content of the /proc/hrm file during the execution of two instru-

mented applications, i.e. two managed elements. The first line specifies that the statistics

about two processes (the first one with GID 41 and the other one with GID 31) will follow; the

remainder of the file shows the information about the advertised groups.

1 2 41 31

2

3 gid: 41

4 tids: 3389 3390 3392 3381

5 global heart rate: 130856

6 window heart rate: 17580

7 minimum heart rate: 0

8 maximum heart rate: 0

9 window size: 2

10

11 gid: 31

12 tids: 3386 3382 3384 3380

13 global heart rate: 187586

14 window heart rate: 650970

15 minimum heart rate: 0

16 maximum heart rate: 0

17 window size: 2

Listing 4.11: EXAMPLE OF /proc/hrm FILE CONTENT.
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4.4.2 Actuator

As in the kernel-space case, the actuator’s aim is to move tasks from one core to another,

according to the actions defined in Section 3.3.3. However, the actuators described in the

kernel-space heuristics implementation (i.e., direct cores run-queues and tasks affinity masks

modification) cannot be exploited since are not available in user-space. From user-space, it is

possible to use the Linux taskset command to influence the scheduling of processes/threads

over cores of a multi-core processor. taskset is used to set or retrieve the CPU affinity of a

running process given its PID. The taskset core allocator library is implemented as a shared

library: this allow us to keep have only one copy of it in memory, thus having lighter APs

executable. While in the previous implementations of system similar to this one [36], the taskset

command was used as an abstract actuator without a precise definition and encapsulation of it,

we use a library to define an actuator to bound it to the idea of a “set of actions”. This logical

restriction allows to exploit the reinforcement learning algorithms presented later.

4.4.3 Policy Learning Algorithm

As said, one agent is created for each existing HRM group, while a resource arbiter is needed

to coordinate agents and manage load balancing. Both the agents and the resource arbiter are

implemented in a single process, due to the plainness of the performed experiments. First

Listing 4.12 presents the structure describing a generic agent.

1 typedef struct {

2 pid_t gid;

3 hrm_t* monitor;

4 pid_t* monitor_tids;

5 int grouped_together;

6 int observed[STATES ];

7 double U[STATES ];

8 double R[STATES ];

9 int N[STATES ][ ACTIONS ];

10 int N2[STATES ][ ACTIONS ][ STATES ];

11 double P[STATES ][ ACTIONS ][ STATES ];

12 int last_state;

13 int last_action;

14 int optimal_policy[STATES ];

15 } agent;

Listing 4.12: GLOBAL STRUCTURES USED BY THE AGENTS.
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Coherently with the concepts presented in Section 1.2.5, the structure fields have the fol-

lowing meanings:

• gid stores the GID of the group coupled with the current agent;

• monitor is a pointer to the HRM monitor object which allows the agent to retrieve the

stats;

• monitor tids is a pointer to a vector containing the list of PIDs of the threads belonging

to the selected group;

• grouped together stores the number of threads belonging to the agent’s group that are

currently mapped on the same core;

• observed[STATES] contains a boolean value for each state, saying if it has been visited

or not;

• U[STATES] stores the utility value of each state;

• R[STATES] contains the reward value of each state;

• N[STATES][ACTIONS] contains the number of times action a is performed in state s;

• N2[STATES][ACTIONS][STATES] stores the number of times, performing action a from

state s1, the resulting state is s2;

• P[STATES][ACTIONS][STATES] stores the probability of resulting in s2 starting from s1

and performing action a, computed starting from the previous two quantities;

• last action specifies the last performed action;

• last state saves the last state in which the agent;

• optimal policy[STATES] contains the optimal policy computed up to that point.

Algorithms 3 and 4 show the pseudo code for the whole system. Two different algorithms

are provided in order to show the difference between the exploration step (the first one), in

which the action is chosen randomly in order to try explore all the possible states, and the

exploitation phase (the second one), where the best available action is computed according to

the info gathered up to that time.

It is possible to see how the only difference between the two algorithms stays in the choice

of the next action selection policy. In the first case, the next action is selected in a random
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Algorithm 3 Pseudo-code for the exploration phase

retrieve HRM groups list
initialize agents
loop

retrieve updated HRM stats
compute the current state
update agent’s counters and probabilities
randomly select next action
execute the action

end loop
clean all the structures

fashion, no matter the state in which the agent is. The aim of this procedure is to gather as

much information as possible about the environment: actions random choice is a simple, yet

effective technique to achieve a reasonable uniform exploration of the states space. This first

phase ends whether a maximum number of iterations is reached or the states space has been

enough explored. In the experiments performed in this work, a threshold was fixed to move

from the exploration to the exploitation phase.

Algorithm 4 Pseudo-code for the exploitation phase

retrieve HRM groups list
initialize agents
loop

retrieve updated HRM stats
compute the current state
update agent’s counters and probabilities
compute the best action to be executed
execute the action

end loop
clean all the structures
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When the exploration phase ends, the action to be performed is no more chosen randomly,

but it is computed taking into consideration the contents of the array N[][], N2[][], and

P[][] and saved in optimal policy[]. This last vector contains the best action which allows

to maximize the utility function, using the information gathered up to that time. In fact, even

after the exploration phase, the algorithm continues to learn and to refine the optimal policy

on-line.

The presented pseudo-algorithms are implemented in a single process; usual C constructions

and simple math are exploited in order to implement the different functions. An example is

the compute optimal policy() function, shown in Listing 4.13. Note that the three available

action are mapped to constants in the following way: STAY is 0, INCREASE is 1, and DECREASE

is 2.

1 void compute_optimal_policy(agent* curr_agent) {

2 for(int i = 0; i < STATES; i++) {

3 double q[ACTIONS ];

4 for (int j = 0; j < ACTIONS; j++) {

5 q[j] = 0.0;

6 for (int k = 0; k < STATES; k++)

7 q[j] = q[j] + curr_agent ->P[i][j][k]* curr_agent ->U[k];

8 }

9 double max = q[0];

10 curr_agent ->optimal_policy[i] = 0;

11 for (int h = 1; h < ACTIONS; h++) {

12 if (q[h] >= max) {

13 curr_agent ->optimal_policy[i] = h;

14 max = q[h];

15 }

16 }

17 }

18 }

Listing 4.13: compute optimal policy() FUNCTION IMPLEMENTATION.

Last, the perform action() function deserves to be further investigated, mainly due to the

use of the taskset to actually perform task mapping (Listing 4.14). In the first lines, the

number of threads to be mapped on the same core is selected, considering the action chosen

(increase, decrease or stay). Than the threads are mapped on the selected core thanks to the

taskset function: the threads that have to stay together are first mapped on the core given
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as input parameter to the function, while the other ones are mapped on other cores, balancing

their load as much as possible. This is done thanks to the getFreestCore() function.

1 int perform_action(agent *curr_agent , int coreid , int step) {

2 char command [256];

3 int ret_value_taskset , i, g, new_coreid;

4

5 /* ... Exceptional cases management ... */

6 switch(step) {

7 case INCREASE: if(grouped[coreid] == NUM_CORES)

8 return 1;

9 else

10 curr_agent ->grouped ++;

11 break;

12 case DECREASE: if(curr_agent -> == 1)

13 return 1;

14 else

15 curr_agent ->--;

16 break;

17 case STAY: return 1;

18 break;

19 default: printf("%d: Unknown command!", step);

20 return 1;

21 }

22 cores[coreid] = cores[coreid] + curr_agent ->grouped;

23 for(i = 0; i < curr_agent ->grouped; i++) {

24 sprintf(command , "taskset -pc %d %d", coreid , curr_agent ->tids[i]);

25 ret_value_taskset = system(command);

26 if (ret_value_taskset ==-1) {perror("taskset error"); return 1;}

27 }

28 for(g = 1; curr_agent ->tids[i] != 0; i++, g++) {

29 new_coreid = getFreestCore ();

30 if (new_coreid == coreid) {

31 grouped[coreid ]++;

32 }

33 sprintf(command , "taskset -pc %d %d", new_coreid , curr_agent ->tids[i]);

34 ret_value_taskset = system(command);

35 if (ret_value_taskset ==-1) {perror("taskset error"); return 1;}

36 }

37 return 1;

38 }

Listing 4.14: USE OF THE taskset FUNCTION TO ACTUALLY MOVE TASKS FROM A

CORE TO ANOTHER ONE.
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4.5 Summary

The implementation details that allowed to write a completely working system were pre-

sented in this chapter. In particular, the modification introduced to the HRM framework in

order to allow it to support multigroup and then to be used as a monitor for lock contention

were described in Section 4.1. The motivations for the implementation of a simple spin-lock li-

braries and some interesting details about the exposed functions are summarized in Section 4.2.

Section 4.3 contains the heuristics that have been designed in order to solve the two main is-

sues related to the kernel space adaptation policies implementation: when and where add the

code that synthesizes the monitoring information and computes the decision and how actually

implement the mapping of tasks on the available cores. Last, Section 4.4 presented the im-

plementation details related to the system, based on active machine learning techniques, that

allowed to create adaptation policies at runtime. After having seen how the proposed contention

monitor and the adaptation policies have been designed and implemented (in Chapter 3 and

Chapter 4, respectively), some preliminary results that validate the effectiveness of the proposed

approach are presented in the following Chapter 5.



CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter the experiments performed and the gathered results are shown and explained.

In particular, in Section 5.1 the testing environment on which the experiments were performed

are presented. Section 5.2 describes some experiments aiming at proving the validity of the

proposed approach through synthetic micro-benchmarks. Following Section 5.3 describes the

experiments related to the enhancement of the OS scheduling algorithm with kernel-space

thread mapping heuristics: particular attention is paid to the applications instrumentation

overhead, to the explanation of how the adaptation policy actually works, and to data related

to the real performance improvements obtained in term of reduction of process execution time

of both micro-benchmarks and real world applications. The presentation of the results related

to the automatic learning of adaptation policies is left to Section 5.4, trying to pointing out

the same aspects considered for the kernel-space heuristics. In conclusion, a simple comparison

between the two approaches is discussed in Section 5.5.

5.1 Experimental Environment

The Linux kernel used for the implementation of the kernel part of the monitoring in-

frastructure and for the adaptation policy is the 2.6.35 released, since marked as longterm.

The development started from the 2.6.35.13 minor release and a patch was written in order

to port the HRM monitoring infrastructure to the following 2.6.35.14 release. The modified

Linux version was used as the kernel of GNU/Linux operating system, in is Debian 6.0 squeeze

distribution.

The experiments described in the following sections were done on a x86 − 64 machine

featuring a quad-core Intel Core i7 − 870 microprocessor running at 2.93 GHz with 8 MB

of shared Last Level Cache (LLC), and 4 GB of DDR3 − 1066; this microprocessor supports

Simultaneous Multi-Threading (SMT) through Intel Hyper-Treading (HT) technology and offers

the Intel Turbo Boost Technology, but these advanced features were disabled for all experiments.

5.2 Preliminary Experiments

In order to validate the approach described in the previous chapters, some specific tests

were performed. In particular it would be interesting to analyze how the monitored heart rate

99
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changes according to the number of threads that shares a single lock and to the length of the

critical section (quantified as the number of instructions executed between the lock acquisition

and its release). These experiments were run writing an application instrumented with the

developed locking library, but without enabling the adaptation policy in the kernel.

The first aspect to be analyzed is the relation between heart rate and the number of thread

effectively contending for a single lock. In the following plot, it is shown the global heart rate

when the same simple application is run with a number of threads varying from 2 to 8. The

function executed by the threads simply increments a counter after having acquired the lock,

and releases it immediately. The number of times the counter is incremented each time is used

to vary the length of the critical section. As an example the case in which the counter is incre-

mented 10000 times is presented.

As expected, the global heart rate is proportional to the number of threads contending for the
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lock, independently from the length of the critical section. The lowest heart rate is obtained

with only two threads sharing the same lock; the value of the heart rate then increases when

the number of threads gets bigger. This behaviour is better explained by Figure 15, in which

the final value of the global heart rate, representing the average heart rate of the application

during the whole execution, is plotted.
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Figure 15: Average heart rate behavior varying the number of threads (10000 instructions in

the critical section).

The average heart rate increases quite linearly when the number of threads goes from 2 to 4,

while the steepness of the fitting curve decreases when the number of threads grows again. This

is due to the fact that the the machine on which the experiments are performed has 4 physical
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cores, thus only for threads can actually run in parallel (remember the Intel Hyper-Treading

technology is disabled).

In order to test the behavior of the system according to the length, expressed in number of

instructions, of the critical section the same application was used, varying the times the counter

is incremented each time the lock is acquired. According to the results shown in the following

plots (Figures 16, zoomed in Figures 17, and Figures 18), as expected, the heart rate increases

as the length of the critical section increases. However, looking at the value the heart rate

assumes when the number of instructions in the critical section is in the order of magnitude of

1, 100, and 10000, it is possible to say that this factor influences the behavior of the heart rate

to a lesser extent.
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– Zoom in.

It is possible to see that the behavior of the heart rate is quite heterogeneous when varying

the number of instruction in the critical sections from 1, to 100 to 10000. However, it is clear

that the higher the number of threads sharing a lock is, the higher the measured heart rate of

the group related to that lock will be.

Looking at the plots, it is also possible to note how the execution time varies as expected.

In particular, in Figure 14 the executed time is directly proportional to the number of threads

sharing the lock: if a lower number of threads shares the lock, the synchronization overhead is

lower, thus the overall execution time. Similarly, from Figure 16 it is possible to see that the

execution time is lower if the number of increments executed in critical section is higher. This

is because the number of synchronization instruction is reduced, and the threshold value of the

counter is reached in less time.
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Figure 18: Average heart rate behavior with 2 threads (1 increment in the critical section).

5.3 Kernel space Heuristics Evaluation

The aim of the first set of experiments is to validate the first of the two proposed approaches:

the modification of the kernel mapping policy. In this case simple heuristics able to manage all

the instrumented applications all together is applied.

5.3.1 Instrumentation Overhead

One of the first experiments performed to evaluate the modification to the HRM framework

and the newly developed locking library was the evaluation of their overhead on real word appli-

cations. The benchmark suite chosen to be instrumented is the Stanford Parallel Applications

for Shared Memory (SPLASH) suite [66], in its second review [84], applying the patch provided

by the University of Delaware [80] in order to allow the compilation on modern operating sys-

tems. The SPLASH-2 suite of parallel applications aims at facilitating the study of centralized

and distributed shared-address-space multiprocessors. The suite provide several benchmarks

classified by their computational load balance, communication to computation ratio and traf-

fic needs, important working set sizes, and issues related to spatial locality. One of the main
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targets is to assist people who will use the programs in architectural evaluations to prune the

space of application and machine parameters in an informed and meaningful way.

This benchmark suite was chosen since it offer multi-threaded applications sharing a lot

of data and makes use, among the others, of spin-locks as synchronization methods. The

instrumentation of all the applications proved not to be that easy, and sometimes infeasible.

Thus, it was decided to focus the attention on the applications that seemed to be the best

suitable one for performing test: raytrace.

This application renders a three-dimensional scene using ray tracing. A hierarchical uniform

grid is used to represent the scene, and early ray termination and antialiasing are implemented.

A ray is traced through each pixel in the image plane, and reflects in unpredictable ways off

the objects it strikes. Each contact generates multiple rays, and the recursion results in a ray

tree per pixel. The image plane is partitioned among processors in contiguous blocks of pixel

groups, and distributed task queues are used with task stealing. The major data structures

represent rays, ray trees, the hierarchical uni- form grid, task queues, and the primitives that

describe the scene. The data access patterns are highly unpredictable in this application.

Many tests were run on the application that were correctly instrumented (by substituting

the old synchronization mechanisms with the new spin lock library) and an overhead spanning

the range 2% to 11%, with an average under the 5%. The variation of the overhead is due to

the different number of threads spawn by the application, the input file provided to it or the

level of anti-aliasing requested by the user. Obviously, this percentage gives only an idea of

the overhead, since it depends on the number of lock operations by the specific application.

The obtained results are quite positive, since the overhead introduced by the instrumentation

is acceptable. Moreover, the time lost with the overhead is, in many cases, widely regained by

the advantages introduced by the adaptation policy that exploits this new information.

5.3.2 Scheduler Adaptivity

The following experiments are aimed at proving and explaining how the adaptation policy

works. The working scenario is the following one: 3 different threads (t1, t2, and t3) are running

in the system and two locks are contended, lock lA and lock lB. t1 contends only for lA, t3

contends only for lB, while t2 contends first for lA, then for lB. The experiment in two different

cases: once with a version of the kernel with the adaptation policy switched off, once with the

adaptation policy enabled.



106

During the execution two HRM groups will be created, since two are the locks on which

the three threads contend. t1 attaches only to group lA, t3 only to group lB, while t2 to both

the groups. Figure 19 shows the behavior of the global heart rate (solid line) and the window

heart rate (dashed line) of the two groups when the adaptation policy is switched off. The three

threads are mapped by the CFS on three different cores (as shown in Figure 20) and remain

of the same cores during all the execution time. At the beginning the lA group has a positive

window rate, since thread t1 and t2 are contending for it. The global heart rate is high until

t2, after about 10 seconds of execution, starts contending for lB: at this time the window heart

rate of the lA group falls down to zero and its global heart rate starts to decrease. In a similar

way,when t2 starts contending for the other lock the window and global heart rate of the second

group show a similar behavior. The window heart rate reaches its maximum value suddenly

until the end of the execution, and the global heart rate increases exponentially.

By enabling the adaptation policy in the kernel, the plot that is obtained is reported in

Figure 21. Figure 22 shows how the threads are mapped on the available cores during all the

execution time. Again, the threads are mapped by the CFS on three different cores. When

t1 and t2 start contending for lA, thus generating a positive heart rate, the adaptation policy

moves both the threads to the same core: in this way the window heart rate suddenly falls to 0

and the global heart rate starts decreasing. When t2 starts contending for lB a positive heart

rate is emitted by the second group: both the global and the window heart rate were zero until

that time. The adaptation policy moves the second thread to the same core of the third thread,

thus reducing the emitted heart rate: the window heart rate falls to zero, while the global heart

rate decreases.

5.3.3 Performance Improvements

A simple micro-benchmark was implemented in order to show the improvements in term of

the reduction of the execution time if the adaptation policy is enabled within the kernel. The

micro-benchmark simply consists in a process spawning a variable number of threads. These

threads try to increment a counter that is shared among them, thus contending for the lock it

is protected with.

Table IX shows the resulting execution times, comparing the case in which the adaptation

policy is enabled within the kernel and the case in which it is not. The data in the Free execution

column refers to the case in witch the kernel is not augmented with the adaptation policy; data
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in the Constrained Execution column are gathered with the adaptation policy enabled. Each

test was repeated 5 times, the reported data are the average ones.

TABLE IX: EXECUTION TIMES IMPROVEMENTS ON A SIMPLE
MICRO-BENCHMARK.

Free Execution Constrained Exec.

Threads Increm. Avg.
Exec.

Time [s]

Std. Dev. Avg.
Exec.

Time [s]

Std. Dev. Speed-up

2 100M 23.279 0.032 9.935 0.319 2.343×
2 1G 233.070 1.091 103.395 2.528 2.254×
4 100M 24.346 0.27 20.227 0.752 1.204×
4 1G 242.883 0.92 207.553 2.687 1.170×
8 100M 38.405 1.312 19.868 0.932 1.933×
8 1G 389.087 25.452 415, 562 6.556 0.936×

The results showed in the table testifies the validity of the pursued approach and the cor-

rectness of the developed implementation. Notifiable improvements are obtained: in particular,

the reduction in the applications execution times is higher if the number of threads contending

the lock is smaller. Moreover, when the number of threads becomes high with reference to the

number of available execution units, other factors start to have more influence on the execution

(e.g., context switches). The only case in which a negative speed-up is obtained (i.e., a value

lower than 1) is the last one. However, the adaptation policy proves to provide a higher stabil-

ity to the execution since the obtained standard deviation (6.556 s) is way lower than the free

execution case (25.452 s).
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In order to test the performance improvement not on a simple micro-benchmark, but on

a real application, the already presented raytrace application from the SPLASH-2 benchmark

suite was considered. The test were performed running a varying number of instances of the

application, always with 4 threads each and all with the same parameters related to the input

file and the anti-aliasing. Again, the experiments were repeated 5 times: average data and

statistics are listed in Table X.

TABLE X: EXECUTION TIMES IMPROVEMENTS ON THE RAYTRACE BENCHMARK.

Processes Statistics Free Exec. Constrained Exec. Speed-up

4 Avg. Exec. Time [s] 35.08 25.259 1.389×
Std. Deviation [s] 0.736 1.528

3 Avg. Exec. Time [s] 26.29 25.133 1.046×
Std. Deviation [s] 4.822 1.634

2 Avg. Exec. Time [s] 17.641 25.042 0.704×
Std. Deviation [s] 3.849 1.907

In the first case, in which 4 instances of raytrace are run, all the cores are busy and there is

high contention among the different threads: a real speed-up of 1.389× is obtained. This is the

best condition in which to obtain improvements: in fact, by reducing the number of processes

executing in parallel, the speed-up decreases. This is due to the fact that, in the case cores are

not so busy, spawning the different threads of the same application to different cores (thus, not

having advantages from sharing the same processor) can lead to better performance (with a

negative speed-up of 0.704× in the case of only 2 processes running): in this case the bottleneck

is represented by the available executing resources and not by data contention. In conclusion,

by looking at the trend, the speed-up is likely to grow in the case the number of threads or

processes increases.

It is worth also noting how the execution time in the case of constrained execution (i.e., when the
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adaptation policy is enable in the kernel) is quite constant, since all the 4 threads of a process

are always moved to one processor, independently of the number of executing processes. On

the other hand, the execution time in the case of free execution is clearly decreasing.

5.4 User space Policies Learning

The second set of experiments aims at proving the validity of the other proposed approach:

a framework able to learn adaptation policies at run-time, with only a limited knowledge about

the domain. The first step towards the execution of the experiments is the clearly definition

of the states space S and the reward function R(s) (∀s ∈ S), for the specific case we are

considering.

5.4.1 Problem Parameters Tuning

The missing parameters for the definition of the states space S are the heart rate threshold n

and the number of threads m for the instrumented application. After some tuning experiments

the parameter n is set to 0, meaning that in order to be into the states under the threshold a

null heart rate must be registered. On the other hand, all the applications tested in the system

are made up of 4 threads, thus m is 4 and 8 states are available in the states space (numbered

from 0 to 7). A graphical representation of it can be found in Figure 23.
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Figure 23: Representation of the states space S for the experiments scenario.
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The other aspect that has to be better defined is the reward function R(s): for each state in

the states space an integer value, representing the benefit of the agent of staying in that state,

is to be chosen. Referring to the discussion about the design of a reward function for such a

problem (reported in Section 3.3.3), all the states over the threshold have been penalized with a

common negative reward of −40. The states under, or with an heart rate equal to the threshold,

which are more suitable since no contention is actually happening, are awarded with a positive

reward, increasing with the decreasing of the number of grouped threads: from a minimum of

5 (when the threads of an application are all grouped on one core) to a maximum of 50 (when

threads are completely spread on different cores). Figure 24 reports the values chosen for all

the states: they were tuned by performing some preliminary experiments with several values.
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Figure 24: Representation of the reward function R(s): a single value is coupled with each

possible state.

Last, the number of iterations after which ends the exploration phase and the exploitation

phase begins, has to be chosen. After some preliminary experiments, 6000 iterations were

observed to be enough for a suitable policy to be learnt. Hence, random actions are chosen

for the first 6000 times, storing all the statistics and computing the best policy; after these
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iterations, best policy actions are performed, while continuing to learn and update the best

policy.

5.4.2 Instrumented Applications and Performed Experiments

As already explained in the description of the overall system, a distributed approach is

adopted in order to cope with multiple applications, thus multiple agents co-existing in the

system. Each agent (one for each HRM group) learns its own policy; they are then managed

by AdaM, which avoids conflicts to take place and cores to be overloaded. The experimental

environment for these experiments is the same of the previous ones, as presented in Section 5.1.

The framework described in the previous chapters was tested on simple ad-hoc written ap-

plications. One type of application have 4 threads contending (i.e., lock/unlock of a critical

section) a per-application shared resource; the other type executes without the need for syn-

chronization. Both of them attach to only a HRM group, different from the one used by the

other applications: in this way a lock is shared only between the threads belonging to the

same application. Three different executing scenarios were envisioned, mixing the two types of

applications:

• mix 1 : four 4-threaded instances of instrumented applications with high synchronization

execute in the system.

• mix 2 : two 4-threaded instances of instrumented applications with high synchroniza-

tion and two 4-threaded instances of instrumented applications with no synchronization

execute in the system.

• mix 3 : four 4-threaded instances of instrumented applications with no synchronization

execute in the system.

The behavior the rational agent should learn is either “force the interleaved execution of con-

tending threads placing them on the same core” or “enforce the parallel execution of non-

contending threads” depending on the application and assuming that serialized execution is

advantageous in presence of fine-grain synchronization while parallel execution of threads is

advantageous in absence of synchronization.

Each experimental scenario is executed 100 times: next section reports the policies learnt

and the performance of the system running our framework.
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5.4.3 Experimental Results

This section reports the results of the experiments performed in the three described sce-

narios. First the best policies learnt during the exploration phase are shown in Figure 25, 26,

and 27 for mix 1, mix 2, and mix 3 scenarios, respectively.

Referring to the three plots, clockwise arrows mean INCREASE grouping, anti-clockwise

arrows mean DECREASE, and equals mean STAY (i.e., do not perform any action). Moreover,

for each state, the color intensity shows how frequently the state was visited during the explo-

ration phase, i.e., which is the “weight” of the state and of the learnt action. As it is possible

to evince from the plots, the learnt policy does not depends on the other agents running in the

system, but only on the type of application, if it executes several synchronization instruction

or not. Thus, the optimal policies can be summarized, as listed in Table XI, according to the

type of the executing application.

TABLE XI: OPTIMAL POLICIES LEARNT BY THE RATIONAL AGENTS, CLASSIFIED
BY THE TYPE OF THE EXECUTING APPLICATION.

State High Synchronization No Synchronization

0 INCREASE decrease

1 INCREASE decrease

2 INCREASE decrease

3 STAY decrease

4 decrease DECREASE

5 decrease DECREASE

6 decrease DECREASE

7 INCREASE DECREASE
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The states with a lower case action are the ones that resulted with a very low or null

frequency of visiting, thus no enough data has been collected in order to learn a meaningful

action. All these states are characterized by the decrease action, which is the default one.

Moreover, it is worth noting that the states 0, 3, 4, and 7 seems to be always the most visited

ones. This is due to the fact that when in the states 0 and 4 two actions out of three (stay and

decrease) will have the same effect, and it is less probable to select the increase action, which

would allow the agent to change state. A similar reasoning can be done for the states 3 and 7.

High Synchronization High Synchronization

High Synchronization High Synchronization

Figure 25: Optimal policies learnt in the mix 1 execution scenario.
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High Synchronization High Synchronization

No Synchronization No Synchronization

Figure 26: Optimal policies learnt in the mix 2 execution scenario.

No Synchronization No Synchronization

No Synchronization No Synchronization

Figure 27: Optimal policies learnt in the mix 3 execution scenario.
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After the exploration phase ended, execution times, with the optimal policy acting, were

recorded in order to be compared with execution time in the case of state of the art system

(the plain Linux OS). Table XII reports the execution times in both cases and some other

data, while a brief commentary follows. It is worth notice the speed-up values of the three

cases. The first and the second workloads experience a speed-up between 1.24 − 1.28× since

grouping or spreading threads can actually improve performance due to contention reduction

and performance improvement. On the other hand, the third workload experiences a negligible

slowdown due to the presence of the self-monitoring and self-adjusting capabilities that takes

times without being actually exercised. This last scenario evaluates the actual overhead of the

the user-space policy on the overall system.

TABLE XII: STANDARD MEAN, STANDARD DEVIATION, AND SPEED–UP OVER
THE EXECUTION TIME OF EACH WORKLOAD RUN EITHER UNMANAGED OR

MANAGED. EXPERIMENTS WERE REPEATED 100 TIMES.

Workload Unmanaged Execution Time Managed Execution Time Speed–Up
Std. Mean [s] Std. Dev. [s] Std. Mean [s] Std. Dev. [s]

mix 1 151.25 5.10 118.00 0.70 1.28×
mix 2 176.25 2.90 142.50 1.10 1.24×
mix 3 216.00 0.20 217.00 0.20 0.995×

5.5 Approaches Comparison

Before concluding this chapter, it is interesting to sketch a brief comparison between the two

proposed approaches, even if the aims of the two are clearly different. In fact, the first approach

focused on the modification of a vanilla Linux kernel in order to patch the standard scheduling

algorithm with simple heuristics able to improve HRM instrumented applications execution

time. On the other hand, the second approach was mainly focused on creating a framework

for active learning of adaptation policies, with a low or null knowledge of the domain (a high
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knowledge of the domain is needed in order to design effective heuristics). Both the approaches

exploit a locking library instrumented with HRM, emitting heartbeats when contention among

threads on a shared resource is taking place.

First of all, the overhead of the two approaches can be evaluated. Quite surprisingly, the

kernel space heuristics have an overhead greater than the user space learnt policy: 5% and 0.5%

on average, respectively. This is mainly due to the fact that, in user-space, once the optimal

policy is computed, its update is really cheap in terms of time; on the other hand, the heuristics

implemented in kernel-space need to re-compute its structures at each step. For the sake of

completeness, the initial overhead of computing the optimal policy is neglected when calculating

the overhead; however this assumption can be considered reasonable since the initialization is

done only once.

When looking at the performance of the two approaches, the first one clearly outperforms

the second one, with a speed-up that ranges from 2.34× to 1.17× compared with 1.28× to

1.24×, on simple micro-benchmarks. Moreover, with the kernel-space heuristics, it is possible

to experience actual speed-up also on real world applications, such as raytrace from the SPLASH

benchmark suite. Learning useful policies for such a complex application did not succeeded in

real speed-up, thus proving that this framework can achieve good results but more effort is

needed in this way.

5.6 Summary

This chapter presented the experimental results obtained putting into practice the approach

and the implementation details described in the previous chapters. First, the environment

on which the experiments were performed is described, both the architecture the computing

system is equipped with and the operating system (Section 5.1). Different types of experiments

were designed in order to validate the proposed approach (Section 5.2), show the overhead in

terms of execution time introduced by the instrumentation (Section 5.3.1), and explain how the

adaptation policy actually works (Section 5.3.2) and which are the performance improvements,

both on simple micro-benchmarks and on a real word application (Section 5.3.3).

Chapter 6, which concludes this dissertation, wraps up the work developed, trying to high-

lights its major contributions and some criticalities. Moreover, some possible improvements of

the approach are proposed and left as future works.
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Figure 19: Hear-rate for the described execution scenario, when the adaptation policy is
switched off.

Figure 20: Threads mapping on cores, while executing the described scenario, when the
adaptation policy is switched off.
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Figure 21: Hear-rate for the described execution scenario, when the adaptation policy is
switched on.

Figure 22: Threads mapping on cores, while executing the described scenario, when the
adaptation policy is switched on.



CHAPTER 6

CONCLUSIONS

This chapter concludes the description of the developed work. After having analyzed the

context of autonomic operating systems and having investigated the state of the art on mon-

itoring and self-aware scheduling, the original contributions of the work were presented and

described in the details. These contributions are briefly summarized here.

• Starting from the existing HRM framework, designed for performance monitoring, it was

extended to allow a task to attach to more than one group. In this way, it was possible

to use this framework as a basis for contention monitoring too, showing the flexibility of

the concept of heartbeat and heart rate.

• A simple locking library was implemented, containing only the functionality necessary to

the proposed approach to be validated. This user-space library was then instrumented

with the new HRM framework, to enable applications written using it to share information

about their shared data contention.

• Two different adaptation policies, based on simple heuristics were designed. These policies

decide how to move tasks on the available cores, integrating the work done by the Linux

process scheduler. Based on the fact that tasks running on the same core experience lower

communication overhead when they share data, the policy moves tasks with an high heart

rate value on the same core, in order to improve their performance.

• The adaptation policies were actually implemented within the Linux kernel, focusing the

attention on avoiding the criticalities related to the moment in which the policy acts and

how it acts.

• A user-space policies learning framework, namely AdaM, was extended in order to cope

with multiple agents environments, i.e. to have the possibility to manage more instru-

mented application at the same time.

• Adaptation policies were actually learnt and tested for different scenarios running simple

micro-benchmarks instrumented with the developed locking library: promising results

were recorded.

119
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The work presented in this document introduced the enabling technology for monitoring

contention of data shared among threads and showed how the new information can be exploited

in order to insert autonomic capabilities within an operating system. This autonomic capability

is represented by the ability of moving tasks on the available cores, according to the information

about contention provided by the monitor. The advantage of this autonomic capability can be

noticed at the user level in the decreasing of the execution time of threads heavily sharing data

with other threads. Moreover, the possibility to let the system autonomously learn adaptation

policies on-line to improve the instrumented application performance, without having a deep

understanding of the domain by the programmer, was proved.

6.1 Future Works

The good results obtained and described in Chapter 5 prove the validity of the implement

approach and stimulate the research on this field to go on. There are some aspects of the

implementation that represent a limitation or that can be further investigated: these are left

as future works. In particular:

• at the moment, the implemented lock library allows the applications to use only spin-

locks. If an application needs to use more complex synchronization systems has to exploit

other libraries, obviously not able to be monitored. Thus, in order to have more precise

information about data contention, the instrumented library should be extended to include

other synchronization methods, such as condition variables, barriers, . . . .

• the adaptation policies designed are based on really trivial heuristics. It would be in-

teresting to explore other possibilities for the monitoring data to be exploited: control

theory is only on example of the techniques that the policies can rely on.

• in the current implementation, even if both the data related to the global and the window

heart rate of the application are exposed by the monitor, only the window heart rate is

actually used in the calculation of the heuristics. The global heart rate could be exploited

in order to have an idea of the past behavior of the threads contention and to implement

a more accurate policy.

• it would be interesting to dynamically vary the period at which the policy is executed,

may relating it to the heart rate of the tasks running on the system. At the moment the

period is fix and it is necessary to recompile the whole kernel to change it.
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• the work on the multi-agent policy learning framework should be enhanced in order to

obtain good results even with real world applications.
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