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SUMMARY

This thesis considers the Black-Scholes and CEV financial models for underlying asset move-

ment, and their associated PDEs for valuing options. A Discontinuous-Galerkin Method for

approximating solutions to these PDEs is formulated in one and two dimensions. The focus

in the one-dimensional case is on valuing the European and American Put option, with com-

parisons to the Binomial Method, Finite Difference Methods, and exact formulas in the case

of the European option. In two dimensions, examination is placed on the weighted put basket

option. A list of tables and figures are provided to display comparison and accuracy. Codes

were written in Matlab.
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CHAPTER 1

INTRODUCTION

1.1 The Study of Options

An option, sometimes referred to as a “derivative”, is a financial contract that derives its

value from an underlying asset. Often, the underlying asset is a stock (as will be studied in

this thesis), but it may be other things, such as a future or an index. The commonly traded

options for stocks are calls and puts, with American or European exercise rights.

A call option gives the buyer the right, but not the obligation, to purchase the underlying

asset at a set price (called the strike price) on a set date (called the expiry date). If the option

is American, the buyer may exercise this purchase at any time before the expiry, whereas a

European option may only be exercised on the expiry date. If the buyer exercises the option,

the asset is “called away” from the writer (seller) of the option. On the day of expiry, the value

of the call option is equal to max(S - E, 0), where E is the strike price and S is the value of

the asset on the day of expiry. If the underlying asset is trading above the strike price, the call

option is said to be “in-the-money”.

A put option gives the buyer the right, but not the obligation, to sell the underlying asset

at the strike price on the expiry date. Once again, if the option is American, the holder of the

option may exercise at any time before the expiry date. If the holder of the option exercises,

the asset is “put” to the writer of the option. On the day of expiry, the value of the put option

1
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is equal to max(E - S, 0), with E being the strike and S being the value of the underlying asset

on the day of expiry.

Typically, in real market situations, options at expiration are settled in cash for their value,

and the underlying assets may never actually change ownership. This cash settlement behavior

has lead to the development of “exotic” options such as: Asian options (where the option value

is based on the average value of the underlying asset over the length of the contract), barrier

options (where the underlying asset must reach one, or many, “barrier” prices in order for the

option to activate or deactivate), digital options (which may pay a fixed amount of cash if the

underlying is trading above or below a strike price). A barrier option is an example of a path-

dependent option, where the payoff is not simply determined by the price of the underlying

asset at expiry, but the path that was taken to reach that price.

One may also consider options with more than one underlying asset, so-called basket options.

A basket option is typically a cheaper alternative for hedging multiple assets over a portfolio of

individual calls and puts. If the basket components correlate negatively, movements in the value

of one component neutralize opposite movements of another component. Basket options are

popular for hedging foreign exchange risk, where each underlying may be priced in a different

currency.

This thesis studies the valuation of vanilla put options with American and European exer-

cise styles, as well as basket put options. It is well known that the value of an American call is

the same as the value of a European call (a proof is provided in Appendix A), but this is not the

case for put options. The early-exercise feature of an American Put leads to a free-boundary
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problem, tracking the location where it first becomes optimal to exercise early. The goal in

studying options is to determine the “fair market value” of the option before the expiry date.

1.2 Underlying Assumptions and Models

An arbitrage is a trade (or series of trades) that requires zero cost and yields a risk-free

profit. For example, if an asset can be purchased below market value and be immediately sold

at (or above) market value with no risk, the trader has made a risk-free profit. For an option

at the expiry date, the fair market value of the option must be equal to its payoff function in

order to eliminate an arbitrage opportunity. The study of options is dedicated to determining

the value of the option prior to the expiry date so that no arbitrage trades can be made.

It is standard practice to assume that a trader may borrow or save cash at a risk-free

interest rate, r. This can be thought of as a bank account, but is generally taken to be the

interest rate for a treasury bond. Whether or not a bond can really be considered “risk-free”

is an open question. It is also assumed that trades can be conducted instantaneously, in any

denomination with no transaction costs, and that there are always buyers and sellers for an

asset at fair market value.

What is then needed is a mathematical model for the movement of the underlying asset.

The most famous framework is to assume the asset price follows a lognormal distribution, or

equivalently, to assume the asset undergoes Geometric Brownian Motion. This leads to the

famous Black-Scholes PDE for valuing options. The lognormal approach assumes a constant

volatility parameter, σ, which attempts to encapsulate the variation of the asset movement
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over time. A generalization of this approach is to assume that the volatility is proportional to

the price of the asset to some power, this is the Constant Elasticity of Variance (CEV) model

[7]. Quite a number of alternative models for asset movement have been considered, including

Merton’s Jump Diffusion Model (which attempts to account for randomly occurring “jumps”

in the asset price), stochastic volatility models (the Heston model, among others), as well as

models that incorporate a stochastic interest rate (see [6]). The Black-Scholes and CEV models

are considered in this thesis.

1.3 Numerical Methods

The fun does not end here, however! Once an option type and model have been chosen, there

is then the matter of pricing the option itself. Many numerical methods have been developed

for this purpose, and entire books have been dedicated to this topic alone ([2], [3], [6]) . For

European calls and puts, exact solutions are known for the Black-Scholes and CEV models ([6],

[7]). Pricing American puts are more difficult, as there are no known exact formulas. If one is to

take a PDE approach (as is done in this thesis) one can make use of approximation methods for

PDEs, including Finite Difference Methods (FDM) ([3], [4]), Finite Element Methods (FEM) [3],

Discontinous-Galerkin Methods (DG as is discussed in this thesis) [1] and asymptotic methods

[10]. Numerical methods that do not rely on a PDE formulation include binomial and Monte

Carlo Methods.

Binomial Methods involve the generation of an asset price binary tree, where each node in

the tree has two children: One corresponding to a downward price movement with a certain

probability, and the other corresponding to an upward price movement with the complement
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probability, and moving from one level to the next represents a small change in time. The final

nodes of the tree (the bottom level) then correspond to “all” possible asset prices that can be

obtained in the given time to expiry. The payoffs (and hence the values) of an option are thus

known at the bottom of the tree, and one can work backwards through the tree using the risk-

free probabilities and appropriate discounting of the interest rate in order to obtain the value

of the option at any time prior to the expiry date. Binomial Methods are capable of pricing

American options, since working backwards through the tree easily allows for the checking of

early exercise opportunities. A Binomial Method for the CEV process was developed by Lu

and Hsu [7] and is used in this thesis for comparing convergence to the DG Method.

Taking the PDE approach, there are a number of approximation methods that may be

considered. The Finite Difference approach involves approximating the partial derivatives with

first or second (or higher) order Taylor methods on a uniform mesh of the domain. FD Meth-

ods can be computationally expensive, and are not ideally suited for problems on geometrically

complicated domains. The Finite Element Method is an improved technique that computes

interpolation functions on entire subsets of the domain (known as elements), and utilizes in-

formation from adjacent elements to enforce conditions such as continuity between boundaries.

FEMs are flexible enough to conform to complicated domains and accuracy can be increased

both by refining the element size or increasing the order of the interpolating polynomials. An

abstraction to the FEM approach is the class of Galerkin Methods, of which, the Discontinuous-

Galerkin Method is considered here. As the name implies, DG does not enforce a continuity

condition across elements, but transmits information from adjacent elements through the use of
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a flux term. This flux term can be chosen at implementation, often with respect to the inherent

physical dynamics of the underlying process. In wave-like equations for example, an upwind

flux term numerically simulates the direction of propagation of the wave.

DG Methods offer a variety of computational benefits. First, they allow much in the way

of flexibility for element sizing and spacing. The elements need not be uniformly sized, and

smaller elements can be grouped in locations of particular interest in the domain. For options

valuation, a grouping of smaller elements localized near the strike price provides for increased

accuracy in computing valuations in this region. Second, DGMs can be parallelized to greatly

speed up computation times over traditional methods. DGMs also allow for tracking of the

free-boundary for American options, and compute the option value on the entire stock-space,

as opposed to the Binomial Method which computes a valuation for a single stock value only.



CHAPTER 2

PREVIOUS WORK

This thesis follows the framework developed by Hesthaven and Warburton [1] in formulation

of the DG Method for parabolic equations. A detailed study of valuing options in the Black-

Scholes setting is provided by Higham [2] as well as Wilmott, Howison and Dewyne [3], Hull

[5] and Wilmott [6]. A study of the CEV process is provided by Wong and Zhao [8], Hsu,

Lin and Lee in [13] and Wilmott [6] briefly gives formulas for valuing European options under

CEV. Lu and Hsu [7] provide a binomial method for pricing options in the CEV environment.

Knessl and Xu [10] provide asymptotic analysis for the American put under the CEV process.

Glasserman [15] provides a Monte Carlo method for a specific choice of the exponent parameter

in CEV. Barrier option types under CEV have been considered by Hu and Knessl as well as by

Lo, Tang, Ku and Hui [12].

A useful reference on Finite Difference Methods is provided by Strikwerda [4], and Finite

Element Methods (applied to options) by Achdon and Pironneau [11]. Cont, Lantos and Piron-

neau provide a Galerkin Method using Black-Scholes solutions as basis functions for CEV in

[9], but do not provide an extension to basket options. Basket options under CEV are consid-

ered by Alexander and Venkatramanan [14] as well as by Xu and Zheng [16] for local volatility

jump-diffusion models.

7



CHAPTER 3

THE CEV PROCESS

CEV stands for Constant Elasticity of Variance. It is a stochastic model used in finance

for pricing options with an underlying stock price. The CEV model describes a process, S(t),

which evolves according to the following stochastic differential equation:

dS = µSdt+ σSαdW. (3.1)

Here, µ is taken to be the risk free interest rate r, and σ is a constant volatility parameter,

and W is a Wiener process. Note that for α = 1 we reduce to simple Brownian motion, and

the resulting PDE is the well-known Black-Scholes equation. The parameter α allows for the

volatility to be a function of the stock price. For α < 1, the volatility of a stock increases as its

price decreases, and conversely for α > 1 [7].

3.1 Itō’s Lemma

Itō’s lemma can be stated as follows: Given a stochastic differential equation of the form

dS = adt+bdW with a = a(S, t) and b = b(S, t), and a twice differentiable function, V = f(S, t),

then V itself is a function of the stochastic variable S, and its process is described by:

dV = (Vt + aVS +
1

2
b2VSS)dt+ (bVS)dW. (3.2)

8
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3.2 The CEV PDE

Using Itō’s lemma, taking V to be the value of an option, substituion of (3.1) into (3.2)

yields:

dV = (Vt + µSVs +
1

2
σ2S2αVSS)dt+ (σSαVS)dW. (3.3)

We set up a portfolio long one unit of the option and short ∆ units of the stock:

Π = V −∆S,

the instantaneous change in the value of the portfolio is

dΠ = dV −∆dS,

which becomes

dΠ = (Vt + µ(SVS −∆S) +
1

2
σ2S2αVSS)dt+ (σSαVS − σSα∆)dW. (3.4)

Setting ∆ = VS , we find

dΠ = (Vt +
1

2
σ2S2αVSS)dt. (3.5)

This is a riskless change in the portfolio, hence its growth must be the same as an equivalent

cash deposit at the risk free interest rate (otherwise there would be an arbitrage opportunity).

dΠ = rΠdt.

Letting τ = T − t, the backward-time CEV equation is then given by:

Vτ − rSVS −
1

2
σ2S2αVSS + rV = 0. (3.6)
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With α = 1 we arrive at the backward-time Black-Scholes equation:

Vτ − rSVS −
1

2
σ2S2VSS + rV = 0. (3.7)

Boundary data for a put option is given by: V (0, t) = Ee−rτ and V (∞, t) = 0, see [2, 3].

If the stock price goes to 0, the put will then pay the strike value, but discounted until the

time to expiry. In approximation methods, a truncation of the boundary at a sufficiently large

stock value is neceassry, and the put has value 0 at this artificial boundary. Since the equation

is time-backward, the initial condition is given by the payoff function. For a put, we have

V (S, 0) = max(E − S, 0).



CHAPTER 4

FINITE DIFFERENCE METHODS

4.1 Time Forward Space Centered

We begin by considering a time forward space centered finite difference scheme of the PDE

(3.6) for t ∈ [0, T ], x ∈ [0, 2L]:

V i+1
j − V i

j

k
− 1

2
σ2(jh)2α

V i
j+1 − 2V i

j + V i
j−1

h2
− rjh

V i
j+1 − V i

j−1
2h

+ rV i
j = 0 (4.1)

Here, k =
T

NT
represents the size of the time step, h =

2L

Nx
represents the size of the spacial

step, ti = ik, xj = jh and V i
j is the value of the option at time level i, spacial point j. Let

Vi = (V i
0 , V

i
1 , · · · , V i

Nx
)T be the vector of options prices at time level i. Since this is an explicit

scheme, we can solve for Vi+1 in terms of Vi as follows:

Vi+1 = FVi + pi. (4.2)

Where F = (1− rk)I + 1
2krD1T1 + 1

2kσ
2D2T2,

11
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D1 =



1 0 · · · 0

0 2 · · · 0

...
...

. . .
...

0 0 · · · Nx − 1


, D2 =



(1h)2α

h2
0 · · · 0

0 (2h)2α

h2
· · · 0

...
...

. . .
...

0 0 · · · ((Nx−1)h)2α
h2



T1 =



0 1 0 · · · 0

−1 0 1
. . . 0

0 −1 0
. . .

...

0 0 · · · −1 0


, T2 =



−2 1 0 · · · 0

−1 −2 1
. . . 0

0 −1 −2
. . .

...

0 0 · · · −1 −2



pi =



1
2k(σ2 h

2α

h2
− r)V i

0

0

...

0

1
2k(Nx − 1)(σ2(Nx − 1)2α h

2α

h2
+ r)V i

Nx


.

4.2 Time Backward Space Centered

The formulation for the time backward space centered finite difference scheme is as follows:

V i+1
j − V i

j

k
− 1

2
σ2(jh)2α

V i+1
j+1 − 2V i+1

j + V i+1
j−1

h2
− rjh

V i+1
j+1 − V

i+1
j−1

2h
+ rV i+1

j = 0. (4.3)

This leads to the implicit scheme system of linear equations:
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BVi+1 = Vi + qi. (4.4)

Where B = (1 + rk)I− 1
2krD1T1 − 1

2kσ
2D2T2 and,

qi =



1
2k(σ2 h

2α

h2
− r)V i+1

0

0

...

0

1
2k(Nx − 1)(σ2(Nx − 1)2α h

2α

h2
+ r)V i+1

Nx


.



CHAPTER 5

DG FORMULATION

5.1 Notation

Before discussing our DG method for pricing European and American puts for assets evolv-

ing under a CEV process, we introduce notation required for the specification of a DG method.

We consider a domain Ω with boundary ∂Ω. We approximate the domain with K nonoverlap-

ping elements, Dk. The local inner product and L2(Dk) norm are:

(u, v)Dk =
∫
Dk uvdx, ||u||2

Dk
= (u, u)Dk .

For the 1-D case, Dk = [xkl , x
k
r ]. On each element we represent the solution as a polynomial

of order N = Np − 1. For x ∈ Dk, we have

ukh(x, t) =

Np∑
n=1

ûkn(t)ψn(x) =

Np∑
i=1

ukh(xki , t)`
k
i (x).

The first is known as the modal form, where the ψn’s are the local polynomial basis. The second

is known as the nodal form, where the `i’s are the interpolating Lagrange polynomials,

`i(x) =

Np∏
j=1
j 6=i

x− xj
xi − xj

.

Note: `i(xj) = δi,j .

5.2 Reference Element

We map our intervals to the reference element [−1, 1] so that for x ∈ Dk we have:

x(r) = xkl +
1 + r

2
hk, hk = xkr − xkl , r ∈ [−1, 1].

14
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We can now choose our basis functions and gridpoints on the reference element, and map

them to the physical grid.

5.3 A Choice of Basis Functions

For the modal basis functions, ψn’s, a simple choice would be ψn = rn−1. A better choice

[1] would be an orthonormal basis, so that (ψi, ψj) = δi,j . The benefit is that the modal mass

matrix would then be the identity. Starting with rn and applying Gram-Schmidt, we obtain:

ψn(r) = P̃n−1(r) =
Pn−1(r)√
γn−1

,

where Pn(r) are the Legendre polynomials of order n and γn =
2

2n+ 1
.

To determine the modes, ûn from the nodal values, we assume our modal representation is

interpolatory.

u(ri) =

Np∑
n=1

ûnP̃n−1(ri),

for the gridpoints ri. Then, in matrix form, we have:

Vû = u, VT `(r) = P̃(r),

where

Vi,j = P̃j−1(ri), ûi = ûi, ui = u(ri),

and V is a generalized Vandermonde matrix.

5.4 Determining the grid points

We see that the choice of grid points will define the Vandermonde matrix. We would like

V to be well-conditioned. This will amount to maximizing Det(V) (see [1]). The choice of grid

points that maximize this determinant are the Np zeros of:

f(r) = (1− r2)P̃ ′N (r).
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These are known as the Legendre-Gauss-Lobatto (LGL) quadrature points.

The local (nodal) mass matrix on the reference element is now given by:

Mi,j = (`i(r), `j(r))[−1,1] = (VVT )−1i,j .

By transforming back to the element Dk we have:

Mk
i,j =

hk

2
Mi,j .

The local (nodal) stiffness matrix on the reference element is given by:

Si,j = (`i(r),
d`j
dr

)[−1,1] = (`i(x),
d`i
dx

)Dk = Ski,j .

If we define

Dr,(i,j) =
d`j
dr

∣∣∣∣
ri

,

then MDr = S and Dr = VrV−1 where Vr,(i,j) =
dP̃j
dr

∣∣∣∣∣
ri

.

5.5 Timestepping and Flux Term

We use the standard fourth-order explicit Runge-Kutta method for timestepping [17]. Ex-

plicit timestepping, in particular, makes American option valuation easy. We simply enforce at

each time step that the value of the option is V (i, j) = max(V (i, j),max(E − S(i, j), 0)). We

can also keep track of the free boundary in this way.

DG Methods involve the use of a flux term across element interfaces. The flux can be

chosen appropriately to model the physics of the problem, e.g. “upwinding” for wave-like

equations. For the heat equation, which is naturally dissipative and has no preferred direction

of propagation, one generally uses a central flux, but other fluxes can be considered [1]. Since
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the Black-Scholes PDE is heatlike, when transferring information across element interfaces, we

make use of the central flux:

u∗h = {{uh}} =
u− + u+

2
,

where u− refers to the interior information of the element and u+ refers to the exterior infor-

mation. In the multidimensional setting, u will be a vector.

5.6 A DG Method for the Black-Scholes PDE

We begin by re-writing the Black-Scholes PDE (3.7) as follows:

Vτ =
∂

∂S
(
1

2
σ2S2VS) +

∂

∂S
((rS − σ2S)V ) + (σ2 − 2r)V. (5.1)

Following Hesthaven and Warburton [1], we rewrite this second order PDE as a system of two

first order PDEs. Letting q = SVS we have:

Vτ =
∂

∂S
(
1

2
σ2Sq) + (r − σ2)q − rV. (5.2)

We assume V and q can be approximated as:V (S, t)

q(S, t)

 '
Vh(S, t)

qh(S, t)

 =
⊕K

k=1

V k
h (S, t)

qkh(S, t)

 =
⊕K

k=1

∑Np
i=1

V k
h (Si, t)

qkh(Si, t)

 `ki (S).

We are representing V and q by (Np − 1)-order piecewise polynomials on K elements. We

form the residual for the Black-Scholes equation:

Rh(S, t) =
∂Vh
∂τ
− ∂

∂S
(
1

2
σ2Sqh)− (r − σ2)qh + rVh, (5.3)
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and, following the classical Galerkin approach, require that the residual is orthogonal to our

nodal basis functions represented as the interpolating Lagrange polynomials `ki (S):

∫
Dk
Rh`idS = 0, 1 ≤ i ≤ Np, (5.4)

Integration by parts yields:

∫
Dk

(
∂V k

h

∂τ
− (r − σ2)qkh + rV k

h )`idS +

∫
Dk

1

2
σ2Sqkh

d`i
dx
dS =

∫
∂Dk

n̂ · 1

2
σ2Sqkh`idS. (5.5)

Substitution of the nodal forms yields the ”weak form” [1]:

Mk(
d

dτ
Vk
h − (r − σ2)qkh + rVk

h) = −ST (
1

2
σ2qkh) + (

1

2
σ2qh)∗`i|S

k
r

Sk`
, (5.6)

Mkqkh = −S̃TVk
h +

∫
∂Dk

n̂ · (SV k
h )∗`kdS. (5.7)

The strong form given by:

Mk(
d

dτ
Vk
h − (r − σ2)qkh + rVk

h) = S̃(
1

2
σ2qkh)−

∫
∂Dk

n̂ · ((1

2
σ2qkh)− (

1

2
σ2qkh)∗)`kdS (5.8)

Mkqkh = SVk
h −

∫
∂Dk

n̂ · ((SV k
h )− (SV k

h )∗)`kdS (5.9)

Where Mk
i,j = (`i, `j), Si,j = (S`ki ,

d`kj
dS ), S̃i,j = (`ki ,

dS`kj
dS ).
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5.7 A DG Method for the Generalized (CEV) Black-Scholes PDE

We proceed in a similar fashion to the previous section to derive the DG formulation for

the generalized Black-Scholes PDE for puts under the CEV process. We rewrite the PDE (3.6)

as follows:

Vτ =
∂

∂S
(
1

2
σ2S2αVS) +

∂

∂S
((rS − σ2αS2α−1)V ) + (σ2α(2α− 1)S2α−2 − 2r)V. (5.10)

Again, we rewrite this as a system of two first order PDEs by letting q = SαVS , and re-write

as:

Vτ =
∂

∂S
(
1

2
σ2Sαq) + (rS1−α − σ2αSα−1)q − rV. (5.11)

We form the residual for this PDE as:

Rh(S, t) =
∂Vh
∂τ
− ∂

∂S
(
1

2
σ2Sαqh)− (rS1−α − σ2αSα−1)qh + rVh. (5.12)

The orthogonality condition (5.4) together with integration by parts yields:

∫
Dk

(
∂V k

h

∂τ
− (rS1−α − σ2αSα−1)qkh + rV k

h )`idS +

∫
Dk

1

2
σ2Sαqkh

d`i
dx
dS =

∫
∂Dk

n̂ · 1

2
σ2Sαqkh`idS.

(5.13)

Substitution of the nodal form yields the weak form:

Mk(
d

dτ
Vk
h −Aqkh + rVk

h) = −ST (
1

2
σ2qkh) + (

1

2
σ2qh)∗`i|S

k
r

Sk`
, (5.14)
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Mkqkh = −S̃TVk
h +

∫
∂Dk

n̂ · (SαV k
h )∗`kdS. (5.15)

The strong form given by:

Mk(
d

dτ
Vk
h −Aqkh + rVk

h) = S̃(
1

2
σ2qkh)−

∫
∂Dk

n̂ · ((1

2
σ2qkh)− (

1

2
σ2qkh)∗)`kdS, (5.16)

Mkqkh = SVk
h −

∫
∂Dk

n̂ · ((SαV k
h )− (SαV k

h )∗)`kdS. (5.17)

Again Mk
i,j = (`i, `j), Si,j = (Sα`ki ,

d`kj
dS ), S̃i,j = (`ki ,

dSα`kj
dS ) Ai,j = rS1−α

i,j − σ2αS
α−1
i,j .



CHAPTER 6

MULTIDIMENSIONAL EQUATIONS

6.1 Basket Options

A basket option is an option with more than one underlying asset. There are many flavors

of basket options, even in a “vanilla” setting, and we consider a put option whose payoff is equal

to a fixed strike price less a weighted sum of the stock prices. The weights may be considered

as the quantity of each stock in the basket:

V (S, T ) = max(K −
n∑
i=1

wiSi, 0).

For boundary conditions, if any asset reaches zero value, we discount the remaining payoff

function. If any asset approaches infinity, the basket put approaches zero.

6.2 Multidimensional Itō’s Lemma

Itō’s lemma for processes with constant drift in many dimensions can be stated as follows:

Given a system of stochastic differential equations of the form dSi = µiSidt+gi(t, Si)dWi where

W are n-dimensional correlated Brownianian motions so that:

E[dWi] = 0, E[dW 2
i ] = dt, E[dWidWj ] = ρi,j ,

and V = f(S, t) is a sufficiently differentiable function on Rn+1 → R, then

dV = [
∂V

∂t
+

n∑
i=1

∂V

∂Si
µiSi +

1

2

n∑
i=1

n∑
j=1

∂V

∂SiSj
ρi,jgigj ]dt+

n∑
i=1

∂V

∂Si
gidWi. (6.1)

21
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6.3 Multidimensional Black-Scholes

For valuing options with many stocks as the underlying in a Black-Scholes setting, we have:

dSi = µiSidt+ σiSidWi. Letting V be the value of the option, substitution into (6.1) yields:

dV = [
∂V

∂t
+

n∑
i=1

∂V

∂Si
µiSi +

1

2

n∑
i=1

n∑
j=1

∂V

∂SiSj
ρi,jσiσjSiSj ]dt+

n∑
i=1

∂V

∂Si
σiSidWi. (6.2)

We then set up a portfolio Π long one unit of the option and short ∆i units of the i-th

stock, so that Π = V −
n∑
i=1

∆iSi. We now have:

dΠ = dV −
n∑
i=1

∆idSi, (6.3)

leading to

dΠ = [
∂V

∂t
+

n∑
i=1

∂V

∂Si
µiSi +

1

2

n∑
i=1

n∑
j=1

∂V

∂SiSj
ρi,jσiσjSiSj −

n∑
i=1

µi∆iSi]dt

+ [
n∑
i=1

∂V

∂Si
σiSi −

n∑
i=1

σi∆iSi]dWi. (6.4)

We can eliminate the risk of the portfolio by setting ∆i =
∂V

∂Si
. Noting that a risk-free portfolio

provides the same rate of return as the risk-free interest rate r, dΠ = rΠdt. Hence,

∂V

∂t
+

1

2

n∑
i=1

n∑
j=1

∂V

∂SiSj
ρi,jσiσjSiSj = rV − r

n∑
i=1

∂V

∂Si
Si. (6.5)
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Taking τ = T - t, we arrive at the backward time multidimensional Black-Scholes equation:

∂V

∂τ
− r

n∑
i=1

∂V

∂Si
Si −

1

2

n∑
i=1

n∑
j=1

∂V

∂SiSj
ρi,jσiσjSiSj + rV = 0. (6.6)

6.4 Multidimensional Generalized Black-Scholes under the CEV Process

Consider valuing options derived from many stocks evolving under CEV processes governed

by the SDEs:

dSi = µiSidt+ σiS
αi
i dWi.

Letting V be the value of the option, substitution into (6.1) yields:

dV = [
∂V

∂t
+

n∑
i=1

∂V

∂Si
µiSi +

1

2

n∑
i=1

n∑
j=1

∂V

∂SiSj
ρi,jσiσjS

αi
i S

αj
j ]dt+

n∑
i=1

∂V

∂Si
σiSidWi. (6.7)

The multidimensional CEV PDE is then derived in a similar manner as the classical Black-

Scholes equation, leading to the time-backward equation:

∂V

∂τ
− r

n∑
i=1

∂V

∂Si
Si −

1

2

n∑
i=1

n∑
j=1

∂V

∂SiSj
ρi,jσiσjS

αi
i S

αj
j + rV = 0. (6.8)



CHAPTER 7

TWO DIMENSIONAL DG FORMULATION

As in Chapter 5, some notation is required to specify our DG method in higher dimensions.

We consider a two dimensional spacial domain Ω, which can be triangulated using K elements,

so that:

Ω ' Ωh =

K⋃
k=1

Dk.

The approximation on each element is given by:

ukh(x, t) =

Np∑
i=1

ukh(xki , t)`
k
i (x) =

Np∑
n=1

ûkn(t)ψn(x),

where `i(x) is the multidimensional Lagrange polynomial defined by gridpoints xi on the element

Dk, and {ψn(x)}Npn=1 is a two dimensional polynomial basis of order N . Here, Np is the number

of terms in the local expansion for a polynomial of order N in two variables:

Np =
(N + 1)(N + 2)

2
.

7.1 Reference Element

Calculations are done on a reference triangle,

T = {r = (r, s)|(r, s) ≥ −1, r + s ≤ 0},

and if element Dk has three vertices, (v1,v2,v3), then for x ∈ Dk we have:

x = −r + s

2
v1 +

r + 1

2
v2 +

s+ 1

s
v3.

24
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7.2 Basis Functions and Grid Points

The orthonormal basis functions computed by the Gram-Schmidt procedure on the canonical

basis risj are given by:

ψm(r) =
√

2Pi(a)P
(2i+1,0)
j (b)(1− b)i, (i, j) ≥ 0; i+ j ≤ N , with

a = 2
1 + r

1− s
− 1, b = s

where P
(α,β)
n (x) is the n-th order Jacobi Polynomial.

As in the 1-D case, we seek to avoid a mesh of equidistant grid points within our reference

triangle. We follow the example of Hesthaven and Warburton [1] in the construction of a warp

function that maps an equidistant mesh to a mesh more suited for computation. Consider the

function:

w(r) =

Np∑
i=1

(rLGLi − rei )`ei (r)

1− r2
.

The numerator transforms equidistant points to the Legendre-Gauss-Lobatto points in 1-D.

Starting from an equilateral triangle with vertices (v1,v2,v3) and utilizing barycentric coordi-

nates, we establish blending and warping functions b1, b2, b3 and w1,w2,w3 which warp along

the corresponding edges v1v2, v2v3, and v3v2, and blend these points along the corresponding

inward normals (1, 0), (−1,
√

3), and(−1,−
√

3).

w1 = w(λ3 − λ2)n1, w2 =
1

2
w(λ1 − λ3)n2, w3 =

1

2
w(λ2 − λ1)n3,

b1 = 4λ3λ2, b2 = 4λ3λ1, b3 = 4λ2λ1,

where (λ1, λ3) = (
i

N
,
j

N
), for (i, j) ≥ 0, i+ j ≤ N, and λ2 = 1− λ1 − λ3.

We then form the two-dimensional transformation function: w = b1w1 + b2w2 + b3w3.
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7.3 A DG Method for the Black-Scholes PDE

In two dimensions, the backward-time Black-Scholes equation is:

Vτ =
1

2
(σ21S

2
1VS1S1 + 2σ1σ2ρ12S1S2VS1S2 + σ22S

2
2VS2S2) + rS1VS1 + rS2VS2 − rV,

and we once again rewrite this as a system of PDEs. Letting q = (S1VS1 , S2VS2)T ,

we set Q =div(

 σ21S1 σ1σ2ρ12S1

σ1σ2ρ12S2 σ22S2

 · q) =div S.Q̃ so that:

Vτ =
1

2
Q− (σ21 +

1

2
σ1σ2ρ12 − r)S1VS1 − (σ22 +

1

2
σ1σ2ρ12 − r)S2VS2 − rV,

Vτ =
1

2
Q− (σ21 +

1

2
σ1σ2ρ12 − r)q1 − (σ22 +

1

2
σ1σ2ρ12 − r)q2 − rV. (7.1)

We may now make use of the divergence theorem to obtain our DG-Formulation:

Mk(
d

dτ
Vk
h − σ · qkh + rVk

h) =
1

2
S1Q̃1

k
h +

1

2
S2Q̃2

k
h −

∫
∂Dk

n̂ · ((Q̃k
h)− (Q̃k

h)∗)`kdS (7.2)

Mkq1
k
h = S1Vk

h −
∫
∂Dk

n̂1 · ((S1Vk
h)− (S1V

k
h)∗)`kdS (7.3)

Mkq2
k
h = S2Vk

h −
∫
∂Dk

n̂2 · ((S2Vk
h)− (S2V

k
h)∗)`kdS (7.4)

Where Mk
i,j = (`i, `j), S1i,j = (S1`

k
i ,

∂`kj
∂S1

), S2i,j = (S2`
k
i ,

∂`kj
∂S2

),

Q̃ = (σ21q1 + σ1σ2ρ12q2, σ
2
2q2 + σ1σ2ρ12q1),

σ = (σ21 + 1
2σ1σ2ρ12 − r, σ

2
2 + 1

2σ1σ2ρ12 − r).

In the above, all are inner products except σ and Q̃, which are vectors.



27

7.4 A DG Method for the Generalized (CEV) Black-Scholes PDE

In two dimensions, the backward-time CEV equation is:

Vτ =
1

2
(σ21S

2α1
1 VS1S1 + 2σ1σ2ρ12S

α1
1 Sα2

2 VS1S2 + σ22S
2α2
2 VS2S2) + rS1VS1 + rS2VS2 − rV.

In a similar manner as before, we let q = (Sα1
1 VS1 , S

α2
2 VS2)T

with Q =div(

 σ21S
α1
1 σ1σ2ρ12S

α1
1

σ1σ2ρ12S
α2
2 σ22S

α2
2

 · q) =div Sα.Q̃ so that:

Vτ =
1

2
Q− (α1σ

2
1S

α1−1
1 +

1

2
σ1σ2ρ12α2S

α2−1
2 − rS1−α1

1 )q1

−(α2σ
2
2S

α2−1
2 + 1

2σ1σ2ρ12α2S
α1−1
1 − rS1−α2

2 )q2 − rV.

The strong form DG-Formulation for the two dimensional generalized Black-Scholes equa-

tion under a CEV process is then:

Mk(
d

dτ
Vk
h −A · qkh + rVk

h) =
1

2
S̃α1Q̃1

k
h +

1

2
S̃α2Q̃2

k
h −

∫
∂Dk

n̂ · ((Q̃k
h)− (Q̃k

h)∗)`kdS (7.5)

Mkq1
k
h = Sα1Vk

h −
∫
∂Dk

n̂1 · ((Sα1
1 Vk

h)− (Sα1
1 Vk

h)∗)`kdS (7.6)

Mkq2
k
h = Sα2Vk

h −
∫
∂Dk

n̂2 · ((Sα2
2 Vk

h)− (Sα2
2 Vk

h)∗)`kdS (7.7)

Where Mk
i,j = (`i, `j), Sα1 i,j = (Sα1

1 `ki ,
∂`kj
∂S1

), Sα2 i,j = (Sα2
2 `ki ,

∂`kj
∂S2

), S̃α1,i,j = (`ki ,
∂S

α1
1 `kj
∂S1

)

S̃α2,i,j = (`ki ,
∂S

α2
2 `kj
∂S2

),

A = (α1σ
2
1S

α1−1
1 + 1

2σ1σ2ρ12α2S
α2−1
2 − rS1−α1

1 , α2σ
2
2S

α2−1
2 + 1

2σ1σ2ρ12α1S
α1−1
1 − rS1−α2

2 ).



CHAPTER 8

NUMERICAL RESULTS

In this section we present results of numerical experiments of pricing European and Ameri-

can puts for different values of α in the CEV model. In these tables, N is the polynomial order,

K is the number of elements used, and E is the strike price. Figures for convergence rates of the

DG Method for these same values of α are provided. Simulations were done on a stock space

from [0, 20], risk-free interest rate r = .05, time to expiry T = .5. The choice of parameters was

taken from Wong and Zhao [8] where they list tables for α = 0 and α = 2
3 on strike prices of

90, 100, and 110. The grid has been re-scaled in this thesis by a factor of 1
10 , and the case for

α = 1
2 has been added.

Exact solutions for European puts are given in [5] where α = 1 has, of course, the classical

solution found by Black and Scholes.

α = 1 : V = −SN(−d1) + Ee−rτN(−d2),

where d1 =
log( SE ) + (r + 1

2σ
2)τ

σ
√
τ

, d2 =
log( SE ) + (r − 1

2σ
2)τ

σ
√
τ

, and N(x) is the cumulative

distribution function for the standardized Normal distribution.

α 6= 1 : V = Ee−rT [1− χ2(c, b, a)]− Sχ2(a, b+ 2, c),

where a =
[Ee−rT ]2(1−α)

(1− α)2ν
, b =

1

1− α
, c =

S2(1−α)

(1− α)2ν
ν =

σ2

2r(α− 1)
[e2r(α−1)T − 1], and

χ2(z, k, ν) is the cumulative probability that a variable with a noncentral χ2 distribution with

noncentrality parameter ν and k degrees of freedom is less than z (see [5]).

28
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α = 0
European American

E=9 E=10 E=11 E=9 E=10 E=11

N=2, K=40 0.1468 0.4423 0.9955 0.1558 0.4673 1.0733

N=2, K=80 0.1468 0.4424 0.9955 0.1524 0.4650 1.0757

N=2, K=160 0.1468 0.4424 0.9955 0.1515 0.4642 1.0752

N=2, K=320 0.1468 0.4424 0.9955 0.1513 0.4640 1.0752

N=3, K=40 0.1468 0.4423 0.9955 0.1513 0.4640 1.0750

N=3, K=80 0.1468 0.4424 0.9955 0.1513 0.4640 1.0751

N=3, K=160 0.1468 0.4424 0.9955 0.1513 0.4639 1.0751

N=3, K=320 0.1468 0.4424 0.9955 0.1512 0.4639 1.0751

N=4, K=40 0.1468 0.4424 0.9955 0.1516 0.4642 1.0747

N=4, K=80 0.1468 0.4424 0.9955 0.1513 0.4640 1.0751

N=4, K=160 0.1468 0.4424 0.9955 0.1513 0.4639 1.0751

N=4, K=320 0.1468 0.4424 0.9955 0.1512 0.4639 1.0751

Binomial (1000 nodes) 0.1468 0.4423 0.9955 0.1512 0.4638 1.0751

Binomial (5000 nodes) 0.1468 0.4424 0.9955 0.1512 0.4639 1.0751

Exact Solution 0.1468 0.4424 0.9955
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α = 1
2

European American

E=9 E=10 E=11 E=9 E=10 E=11

N=2, K=40 0.1360 0.4424 1.0065 0.1434 0.4695 1.0907

N=2, K=80 0.1367 0.4421 1.0069 0.1419 0.4657 1.0867

N=2, K=160 0.1369 0.4421 1.0070 0.1417 0.4650 1.0860

N=2, K=320 0.1369 0.4421 1.0070 0.1416 0.4646 1.0858

N=3, K=40 0.1364 0.4416 1.0065 0.1413 0.4643 1.0849

N=3, K=80 0.1368 0.4419 1.0068 0.1415 0.4645 1.0854

N=3, K=160 0.1369 0.4421 1.0069 0.1416 0.4646 1.0857

N=3, K=320 0.1370 0.4421 1.0070 0.1416 0.4646 1.0858

N=4, K=40 0.1370 0.4421 1.0071 0.1419 0.4657 1.0844

N=4, K=80 0.1370 0.4421 1.0070 0.1416 0.4646 1.0856

N=4, K=160 0.1370 0.4421 1.0070 0.1416 0.4647 1.0858

N=4, K=320 0.1370 0.4421 1.0070 0.1416 0.4646 1.0858

Binomial (1000 nodes) 0.1370 0.4419 1.0070 0.1416 0.4646 1.0857

Binomial (5000 nodes) 0.1370 0.4421 1.0071 0.1416 0.4646 1.0858

Exact Solution 0.1370 0.4421 1.0070
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α = 2
3

European American

E=9 E=10 E=11 E=9 E=10 E=11

N=2, K=40 0.1322 0.4424 1.0101 0.1410 0.4720 1.0986

N=2, K=80 0.1334 0.4421 1.0107 0.1391 0.4666 1.0909

N=2, K=160 0.1337 0.4420 1.0109 0.1386 0.4654 1.0898

N=2, K=320 0.1338 0.4420 1.0110 0.1385 0.4649 1.0887

N=3, K=40 0.1329 0.4417 1.0105 0.1381 0.4621 1.0885

N=3, K=80 0.1335 0.4419 1.0109 0.1384 0.4637 1.0893

N=3, K=160 0.1337 0.4420 1.0110 0.1386 0.4648 1.0894

N=3, K=320 0.1338 0.4420 1.0110 0.1385 0.4649 1.0894

N=4, K=40 0.1340 0.4420 1.0111 0.1398 0.4672 1.0877

N=4, K=80 0.1338 0.4420 1.0110 0.1390 0.4647 1.0893

N=4, K=160 0.1338 0.4420 1.0110 0.1386 0.4649 1.0895

N=4, K=320 0.1338 0.4420 1.0110 0.1385 0.4649 1.0894

Binomial (1000 nodes) 0.1339 0.4419 1.0110 0.1385 0.4649 1.0894

Binomial (5000 nodes) 0.1338 0.4420 1.0110 0.1385 0.4649 1.0894

Exact Solution 0.1338 0.4420 1.0110
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α = 1
European American

E=9 E=10 E=11 E=9 E=10 E=11

N=2, K=40 0.1159 0.4503 1.0108 0.1232 0.4899 1.1186

N=2, K=80 0.1266 0.4413 1.0207 0.1352 0.4689 1.1009

N=2, K=160 0.1274 0.4420 1.0189 0.1329 0.4667 1.0979

N=2, K=320 0.1276 0.4420 1.0191 0.1325 0.4659 1.0971

N=3, K=40 0.1250 0.4401 1.0186 0.1301 0.4649 1.0958

N=3, K=80 0.1270 0.4415 1.0190 0.1315 0.4654 1.0965

N=3, K=160 0.1275 0.4419 1.0191 0.1321 0.4655 1.0968

N=3, K=320 0.1276 0.4419 1.0191 0.1324 0.4656 1.0969

N=4, K=40 0.1280 0.4419 1.0192 0.1371 0.4729 1.0952

N=4, K=80 0.1276 0.4420 1.0191 0.1333 0.4674 1.0975

N=4, K=160 0.1276 0.4420 1.0191 0.1326 0.4659 1.0972

N=4, K=320 0.1276 0.4420 1.0191 0.1324 0.4656 1.0970

Binomial (1000 nodes) 0.1277 0.4418 1.0191 0.1324 0.4655 1.0970

Binomial (5000 nodes) 0.1276 0.4419 1.0190 0.1324 0.4655 1.0970

Exact Solution 0.1276 0.4420 1.0191
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Figure 1. Convergence rates for DG under the Black-Scholes model.
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Figure 4. Convergence rates for DG with α = 0.
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CHAPTER 9

CONCLUSION

The Discontinuous-Galerkin Method developed in this thesis converges to the correct option

value for both European and American puts under the CEV process as verified by exact solutions

(in the case of Europeans) and the Binomial Method (in the case of Americans). Since the DG

Method allows for valuing options on the entire stock space, this method can also be extended

to path-dependent options. With a non-uniform mesh, this method converges faster than the

Finite Difference Methods developed in Chapter 4, for stock prices at or near the strike price.

This method can be parallelized to further enhance computational speeds. This method also

outpaces the Binomial Method for computing valuations on the entire stock-space to high

degrees of accuracy. We are free to increase either the polynomial order or the number of

elements to achieve higher accuracy.
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Appendix A

AMERICAN CALLS AND EARLY EXERCISE

Proposition: On a stock with no dividends, early exercise of a call option is never optimal.

Proof: Let E be the strike price, T be the time to expiry, and r the risk free interest rate.

Consider the portfolio containing 1 call option, short 1 share of stock, and having a savings

account at interest r with balance Ee−rT , which is the present value of E dollars to be received

at time T. The value of this portfolio at T is max(S - E, 0) - S + E = max(E - S, 0), which is

the value of a put option, and thus is non-negative for all time before expiry.

So for 0 ≤ t < T ,

Ct + Ee−r(T−t) − St ≥ 0.

⇒ Ct ≥ St − Ee−r(T−t)

⇒ Ct > St − E

Thus, the value for a call option at any time before expiry is greater than the payoff one

would receive from exercising the option early. �
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