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ABSTRACT 

Joel B. Fontanarosa 

Department of Bioengineering 

University of Illinois at Chicago 

Chicago, Illinois (2013) 

 

Dissertation Chairperson: Dr. Yang Dai 

 

Genetic association studies have proven to be successful at identifying reliable 

associations with complex diseases.  However, the majority of these results are 

uninformative with respect to any functional basis, and more research is necessary 

appreciate the mechanisms by which these associations are related to pathogenic 

molecular alterations.  In this project, we propose a number of computational approaches 

to address current challenges in genome-wide association studies: detection of gene-gene 

interactions, utilization of high performance computing resources, development of 

genomic risk prediction tools, and investigation into miRNA-associated variations that 

may lead to problematic modulations in transcriptional activity.  First, we present an 

adaptive evolutionary optimization algorithm that utilizes local linkage disequilibrium 

patterns to improve the search for gene-gene interactions associated with a phenotype of 

interest.  Our method was applied to several simulated disease models and to a real 

genome-wide association study.  The results indicate that our method has improved 

power and computational efficiency for uncovering gene-gene interactions relative to one 

of the most powerful competing methods.  This optimization strategy was extended into a 

parallel algorithm that uses state of the art computing methods involving graphics 
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processing units to explore genome-wide association study data sets with maximal 

computational efficiency and minimal cost.  Next, we present an improved penalized 

lasso regression strategy to build more accurate predictions of disease risk based on 

genomic and phenotypic information for case control studies.  Using this approach on a 

simulated data set from the 1000 Genomes project, we were able to model disease risk 

using common and rare genetic variation in combination with quantitative trait 

information.  Lastly, we present a framework for the determination of genomic variation 

associated with miRNA dysregulation.  We applied our analysis method to several 

genome-wide association studies of common diseases to determine candidate targets for 

disease-associated dysfunctions in miRNA-related gene expression changes.  The 

research in this thesis represents a set of computational tools and integrative analysis 

strategies that can be used to provide a detailed description of the genetic risk associated 

with a potentially complex inherited phenotype.  Code developed in this project will be 

made available to the research community for further development and application to 

other genome-wide association studies.  
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SUMMARY 

 

Technological advancements have allowed researchers to study common genetic 

diseases with an ever increasing level of detail.  While genome-wide association studies 

have proven to be incredibly useful for the study of complex diseases, more research is 

necessary to appreciate the mechanisms by which these associations are related to 

pathogenic molecular alterations.  In this project, we propose a number of computational 

approaches to address current challenges in genome-wide association studies: detection 

of gene-gene interactions, utilization of high performance computing resources, 

development of genomic risk prediction tools, and investigation into miRNA-associated 

variations that may lead to problematic modulations in transcriptional activity.  We apply 

these methods to carefully designed simulated models of genetic disease as well as to 

case control data sets from genome-wide association studies of several diseases.  The 

research in this thesis represents a set of computational tools and integrative analysis 

strategies that can be used to provide a detailed description of the genetic risk associated 

with a potentially complex inherited phenotype.   

  



 

CHAPTER I 

INTRODUCTION 

 

 Scientific understanding of human disease has evolved dramatically over the past 

century as a result of major advances in physiology, microbiology, biochemistry, 

pharmacology, and molecular biology.  The discoveries in these and related areas directly 

led to diagnostic and therapeutic approaches that were rigorously studied and improved 

by clinicians and researchers throughout the twentieth century [2].  By the 1980s, 

molecular biology laboratory techniques were being widely used to better understand the 

genetic influence on cellular activity and to characterize a number of familial diseases.  

Since that time, an increasingly detailed and complex picture of the relationship between 

genetic factors and biological processes has emerged.  Researchers have been able to 

determine the exact molecular basis for a large number of pathologic processes and 

phenotypes with simple Mendelian inheritance patterns.  Nevertheless, many of the most 

important causes of morbidity and mortality in developed countries involve common 

diseases with complex inherited components that have defied explanation through 

traditional genetic analyses.  Genetic research on these familial diseases (e.g. Type 2 

Diabetes, Coronary Artery Disease) is undermined by the complexity of the genetic and 

environmental factors underlying them.  These factors include both rare and common 

genetic variations as well as individual risks modulated by factors such as diet, age and 

gender.  The difficulty in disentangling these risk components has limited efforts to better 

understand, treat, and prevent these highly prevalent conditions.  The work presented 
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herein represents computational tools and analysis methods that aim to better understand 

the genetic basis for common diseases using data collected in large case control studies.   

 

A. History of Human Gene Mapping 

The concepts of intra-species variation and familial inheritance were well-

recognized even in ancient civilizations.  However, scientific theories and analyses 

regarding the origin and nature of these observations about biological variation did not 

occur until the nineteenth century.  Modern genetics began in the early twentieth century 

with the rediscovery of Gregor Mendel's work in separate papers in 1900 by the German 

botanists Correns and de Vries [3].  The concepts of genetic inheritance introduced in this 

research enabled quantitative analysis of the genetic basis for biological phenotypes and 

contributed to the development and refinement of a detailed theoretical and statistical 

understanding of population genetics [3].  By 1908, the German physician Weinberg and 

the British mathematician Hardy [4] independently described what later became known 

as the Hardy-Weinberg equilibrium principle [5].  According to this principle, two alleles 

comprising a certain genotype will remain at the same frequency in a population in the 

absence of immigration, mutation, selection, non-random mating, or sampling errors.  

Within the next decade, researchers had described chromosomal linkage and the linear 

arrangement of genes [6], and the influence of inbreeding and genetic linkage on the 

probability of homozygosity in animal models [7].  Between 1918 and 1947, a 

description of the relationship between allele frequencies and the natural selection of 
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phenotypes in the population was developed by, most notably, Wright, Haldane, and 

Fisher in what became known as Modern Evolutionary Synthesis [3, 8, 9].  By the time 

the structure of DNA was first described in 1953 [10, 11], geneticists already had a well-

described set of established principles including genetic drift, chromosomal linkage, and 

the relationship between allele frequencies and the natural selection of phenotypes in a 

population [8, 12, 13].   

Concurrent with the advances in population genetics during the first half of the 

twentieth century, morbidity and mortality related to infectious diseases and nutritional 

diseases had decreased substantially in developed countries as a result of medical 

intervention and public health improvements [14, 15], allowing the inherited components 

of other common diseases in human populations to become more apparent.  Using the 

principles of population genetics established in the first half of the century, distinctive 

pedigree patterns and genetic characteristics of certain inherited phenotypes (e.g. color-

blindness, ABO blood groups) could be described and understood.  However, direct 

measurement of the specific genotypic changes underlying such phenotypes would not be 

possible until recombinant DNA [16], hybridization [17], and sequencing [18-21] 

technologies were developed and refined in the 1960s and 1970s.  These techniques were 

applied in studies conducted primarily throughout the 1980s to better understand the 

pathological genetic changes underlying a variety of Mendelian disease phenotypes [22-

25].  By using carefully designed family studies, researchers were able to map the highly 
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penetrant genetic modifications responsible for these disease traits to measurable 

locations in the genome [26].  

The promising results from these investigations helped fuel enthusiasm and 

support for the initiation in 1990 of the controversial Human Genome Project, a costly, 

decade-long effort that led to the determination of the DNA sequence and the estimation 

of probable genetic elements in the human genome [27-29].   In the process of working 

towards this landmark achievement, technology and analysis methods for automated 

sequencing were greatly improved [30].  While the Human Genome Project was being 

conducted, other researchers continued to explore molecular biology in other ways.   

Microarray technology was developed in the early 1990s, allowing the mRNA expression 

levels of numerous genes to be measured at once [31, 32].  These specialized 

hybridization arrays set the stage for the development high-throughput, genome-wide 

methods that have become common in contemporary biology laboratories.  In addition to 

using this new chip-based hybridization approach to measure expression changes, 

microarray technology also could be used to measure Single Nucleotide Polymorphisms 

(SNPs) – a DNA sequence variation in which a single position of the genome differs 

among individuals in a population.  While the Human Genome Project and microarray 

technology were in their early stages, other investigators were developing new methods 

to readily identify SNPs [33, 34].  By the mid-1990s, it was clear that linkage-based 

family studies were effective for detecting rare, highly penetrant disease variants.  

However, it was also clear that these studies were not appropriate for studying complex 
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diseases that may result from a combination of common variants with smaller effect sizes 

[33].  To study this type of genetic contribution to complex diseases, researchers had to 

design population-based studies of carefully selected individual candidate genetic 

markers.  To avoid this limited approach, reliable markers of genetic variation would 

need to be discovered across the entire genome so that systematic scans could be 

completed in large case-control studies to obtain a global picture of variation associated 

with a disease of interest.  To identify these markers, several groups collaborated in a 

large research effort parallel to the Human Genome Project to develop a map of human 

genome sequence variation, leading to the discovery of well over 1 million different 

SNPs by the time the human genome was published [35].   

 

B. Genetic Association Studies 

By 2001, a draft of the human genome sequence had been published, a large 

number of measurable genetic variants (SNPs) had been found, and the local correlation 

structure of the genome (i.e. the haplotype structure) was becoming better known [36].  

To design an efficient way to study human variation in populations, another large 

consortium, The International HapMap Project, was initiated to study linkage and 

variation information in several different populations around the world (269 individuals, 

each genotyped at over 1 million SNPs in Phase I) [37].  Completion of the initial phase 

of this project allowed genetics researchers to design reasonably inexpensive, high-

throughput approaches for measuring common variation across the genome by taking 
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advantage of the known correlation structure in the HapMap study populations [37, 38].  

By 2005-2006, using the tools made possible by the HapMap Project, the first Genome-

Wide Association Studies (GWAS) were conducted to explore the molecular causes of 

common diseases.  In this type of study, between 100,000 and 1,000,000 genetic markers 

are measured at calculated intervals across the genome for hundreds to thousands of 

people with and without a disease to discover those variants and regions that are most 

dissimilar.  Through GWAS initiatives like the Wellcome Trust Case Control Consortium 

(WTCCC) [39] and the National Center for Biotechnology Information Database of 

Genotypes and Phenotypes (NCBI dbGaP) [40], genetic association data have been made 

available for a wide range of common diseases for several different populations.   

To date, more than a thousand genomic regions have been associated with 

susceptibilities to a wide variety of common diseases and with inheritance of other 

observable phenotypes [41].  Findings from the initial single-locus analyses of GWAS of 

common diseases have been shown to be meaningful and largely reproducible for 

numerous specific disease phenotypes [40, 42].  To further extend knowledge on human 

variation, the 1000 Genomes Project was initiated to provide researchers with an in-depth 

reference with a more detailed picture of human sequence variation than was possible in 

the HapMap Project [43].  The 1000 Genomes Project can be used by researchers to 

explore rarer, potentially causal variants in a region of interest and thereby inform further 

analyses, impute genotypes from existing studies, and design new studies [43, 44].  As 

methods to rapidly sequence individual genomes methods decline in cost, it is likely that 
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future GWAS will include full sequence information.  In the meanwhile, analysis 

methods are being developed to address the computational and statistical challenges 

already present at the current scale to better utilize GWAS results and to generate 

hypotheses for future research.  

 

C. Motivation  

In the past few years, hundreds of large case-control studies of various diseases 

have been conducted to measure the common genetic variation for SNPs at strategic 

locations across the genome.  These GWAS have allowed researchers to make exciting 

new discoveries related to the genotypes, expression patterns, and other 

pathophysiological changes that may be associated with common genetic diseases.  

GWAS have led to the discovery of more reproducible genetic associations than had been 

discovered using any other approach [45].  However, GWAS have been subject to several 

criticisms and have several limitations.   First, only a minority of GWAS findings to date 

have led to meaningful insights about the molecular pathophysiology of disease 

phenotypes [42, 46, 47]. Second, the variants detected using GWAS typically have 

limited predictive power [42, 48].   Perhaps more importantly, the cumulative genetic risk 

found for most diseases studied with GWAS typically does not fully explain the strong 

heritability observed in corresponding epidemiologic studies [42, 45, 49, 50].  This 

missing heritability may be due to several causes.  In some cases, the missing heritability 

may result from disease risk that is mediated by less common sequence variations and not 
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by the common, stable variations currently measured in genome-wide association studies 

[45, 47, 49, 50].  Another hypothesis is that the missing heritability may result from 

interactions between genetic loci.  Many diseases are genetically complex, and it is 

generally suspected that multiple interacting genetic and environmental factors contribute 

to the pathogenesis and maintenance of the clinical features of multifactorial disease 

traits.  Previous efforts to understand these data by looking for complex interactions 

within the data have yielded promising results [1, 51].   We hypothesize that improved 

analyses of existing data sets will uncover meaningful findings related to the elusive 

pathogenesis of several common genetic diseases, leading to a better understanding of 

individual genetic risk and to improved application of personalized treatment strategies.  

Herein we describe a set of tools and analysis methods developed in this work to address 

several of the substantial computational challenges involved with understanding the 

relationship between genomic variation and disease.   

 

D. Project Overview 

In Chapter III, we describe an adaptive evolutionary optimization algorithm that 

integrates linkage disequilibrium information while searching for multi-locus interactions 

in genetic association studies.  This method reduces the need for exhaustive search for 

genotype combinations by taking advantage of inherent genomic structure, thereby 

improving both the power and computational efficiency of the analysis relative to 

conventional methods.  We compare our algorithm with the most powerful competing 
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methods to determine its ability to manage genomic data sets efficiently while 

maintaining adequate power to detect simulated disease loci.   

In Chapter IV, we extend the optimization strategy presented in Chapter III and 

demonstrate the utility of high performance computing methods for integrative GWAS 

analysis. We describe a parallel algorithm that implements state-of-the-art computing 

methods using graphics processing units (GPU) to explore GWAS data sets with maximal 

computational efficiency and minimal cost.  The software resulting from this research 

will be made freely available as a user-friendly, expandable parallel genetic association 

analysis tool that will be increasingly necessary as genomic data sets continue to increase 

in size and complexity.   

In Chapter V, we addresses the problem of using high density genetic association 

study data to develop predictive models for bivariate (case-control status) and 

quantitative/continuous traits.  That is, rather than seeking to identify regions of the 

genome that are associated with a disease phenotype, we seek the genetic variants that 

best describe the likelihood of an individual’s phenotype.  Several studies have addressed 

this problem, but the ability to predict disease risk accurately using GWAS markers has 

been quite variable.  Regression-based approaches have proven useful for this type of 

study, but it is necessary to avoid potentially high degrees of collinearity and overfitting 

that may occur when applying these methods to typical, high-dimensional genetic studies. 

Our analysis addresses these problems by utilizing a modification of lasso regression, a 

powerful and well-studied shrinkage and selection method for general linear models.  The 
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described approach integrates information about the genes and biological pathways 

associated with SNPs in the data set to analyze a simulated exome sequencing data set 

based on the 1000 Genomes Project data.  

In Chapter VI, we describe a framework for analyzing genomic variation related 

to microRNA (miRNA) modifications in common diseases.  miRNAs comprise a large 

family of ~22-nucleotide-long RNAs that have been shown to perform key post-

transcriptional regulation of gene expression in a wide variety of cellular processes [52, 

53].  For heritable multifactorial diseases, genotypic variation is only one component of 

the pathogenesis [54-56].  In the past few years, a number of studies have sought to 

analyze the extent to which genomic variation may pathologically modulate 

transcriptional activity in disease related genes [57].   However, data directly relating 

expression and variation information within a GWAS population are currently limited.  

To better understand possible relationships between genomic variation and mechanisms 

of disease-related expression changes, we present an analysis framework for the 

determination of genomic variation associated with miRNA dysregulation.  We applied 

our analysis methods to several GWAS of common diseases to determine candidate 

targets for disease-associated dysfunctions in miRNA-related gene expression changes.   

 

E. Significance 

 The research described herein has been conducted to addresses several major 

challenges in the analysis of common complex genetic diseases.  In this research, we 
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present efficient algorithms and powerful computing tools that can be used to better 

understand the genetic risks underlying a number of diseases.  While definitively 

determining causality through the analysis of GWAS data is not possible due to the 

nature of the study design, the analytical improvements that result from this work may 

uncover biologically interesting associations or reveal testable research hypotheses not 

yet discovered in existing data sets.  By releasing our code in a user-friendly package that 

can take advantage of state-of-the-art computing methods, we expect that other 

researchers in the field will be able to use our analysis tools to aid their own analyses of 

genome-wide association data.  
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CHAPTER II 

PRINCIPLES OF GENETIC ANALYSIS 

 

A. Introduction to Population Genetics 

The research of Mendel, Correns, and de Vries established the principles of 

genetic transmission between parents and offspring.  In the simplest case, if a gene has 

two variants (or alleles) A and a, then a cross between two heterozygous parents yields a 

predictable set of genotype probabilities for any offspring: 

   
1 1 1 1

Aa  x Aa   P(AA) = , P(Aa) = , P(aa) = 
4 4 4 4

maternal paternal

 
  

  .

 

Historically, the term allele refers generally to one of two or more possible forms of a 

gene.   At the time these principles were conceived, the concepts of alleles and allele 

frequencies were somewhat abstract.  Today, allele frequencies can be directly measured 

using single nucleotide polymorphisms (SNPs), which, as their name implies, are changes 

at a single position in genomic DNA.  SNPs most commonly have two alleles, referred to 

as “major” and “minor” alleles based on their observed frequency in a population (major 

allele frequency > 0.5, minor allele frequency < 0.5).  Population geneticists typically use 

allele frequencies as a primary measure when considering genetic variation in population.  

The Hardy-Weinberg Equilibrium (HWE) principle is an extension of the 

abovementioned Mendelian probabilities and states that allele frequencies in a population 



13 

 

 

Figure 2.1. Diagram showing how recombination events during meiosis affect 

haplotype inheritance and linkage disequilibrium patterns.  Recombination events are 

less likely to occur between two proximal loci, so genes that are close together have 

correlated genotypes.   

   

remain constant in the absence of immigration, mutation, selection, non-random mating, 

or sampling errors – factors that would interfere with independent random sampling from 

a constant distribution.  More precisely, for a genetic locus with alleles A and a, if allele 

A is observed with a frequency of p and allele a is observed with frequency q, then under 

HWE, homozygous AA would have frequency p
2
, heterozygous Aa would have 

frequency pq, and homozygous aa would have frequency q
2
.   

Genetic material is transmitted from parents to offspring via meiosis.  In this 

process, diploid germ cells (23 paired chromosomes) divide to produce haploid gametes 

(spermatozoa or ova with 23 chromosomes).  In the process of separation, the 
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chromosomal pairs cross over at various points, resulting in two offspring chromosomes 

that are each a combination of the two parental chromosomes (Figure 2.1).  This process 

of chromosomal crossover is also referred to as recombination.  The combination of 

alleles that are inherited together along one parental chromosome is known as a 

haplotype.  If two genes from the same parental chromosome are typically inherited 

together within in a haplotype, they are said to be linked.  The concept of linkage 

disequilibrium was described shortly after HWE, and refers generally to the non-

independence (or correlation) of alleles at different sites [58].  For the purposes of this 

work, we are primarily concerned with linkage disequilibrium between proximal regions 

along a chromosome as measured in a population.  The likelihood of a recombination 

event between two regions is less likely if those regions are close together, and linkage 

disequilibrium measured between two markers generally decreases as a function of the 

genetic distance between them [58].  Linkage disequilibrium is most commonly measured 

using the statistics D and r, which correspond to the covariance and correlation between 

loci [59].  For two loci on the same chromosome, suppose alleles A and a are at the first 

locus and alleles B and b are at the second locus with allele frequencies πA, πa, πB, and πb.  

There are four possible haplotype combinations between the two loci, with frequencies 

πAB, πAb, πaB, and πab.  One of the first measures introduced was [60]: 

AB ab Ab aBD      . 

For the purpose of measuring linkage disequilibrium, D is typically normalized to the 

measure: 
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max

max

min( , ) if 0
  ,  where 

min( , ) if 0

A b a B

A B a b

DD
D D

DD

   

   


   


   

which is on the interval [0,1]. Alternatively, linkage disequilibrium can be calculated 

using the correlation measure:  

A a B b

D
r

   
  

which is commonly reported as r
2 

(also on the interval [0,1]).  If two loci are statistically 

independent, then D and r will both be zero. If two loci are perfectly correlated, both D 

and r will be 1.  While these two measures are similar, they may behave differently in 

certain circumstances [58].  Here, we use r
2
, because it has been shown to have less 

random variation at a given recombination distance [58].  

Large-scale identification of SNPs in the 1990s allowed researchers to study 

linkage along a chromosome at higher resolution, and genotyping studies of dense sets of 

markers quickly revealed a structure in the human genome that consisted of discrete sets 

of haplotype blocks with a high degree of linkage disequilibrium [36].  A SNP with two 

alleles A and a has the three possible genotypes AA, Aa, and aa, and the individual 

parental contributions to the genotype are unknown.  Thus, without further information it 

is not possible to determine the haplotype frequencies πAB, πAb, πaB, and πab for a 

population of individuals measured at several SNPs on a chromosome. In direct studies of 

haplotypes (most notably [36] and the HapMap project [37, 38]), parent-child trios were 

genotyped so that it would be possible to infer which alleles were on the same 
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chromsome in the offspring (n.b. this information is known as the phase of a genotype), 

allowing further study of the haplotypes in the observed population.  Phase information is 

not directly observed in genetic case-control studies (e.g. GWAS), so it is necessary to 

estimate the haplotype frequencies to calculate linkage from these data.  This can be done 

using several approaches.  For all linkage disequilibrium calculations herein, we use a 

standard two-marker expectation-maximization procedure to estimate the haplotype 

frequencies in our linkage calculations for case-control populations [59, 61, 62].  This 

procedure has been previously described in detail [62].  Briefly, this method considers the 

observed joint genotype frequency counts for two (or more) SNPs in a population with 

alleles A and a and B and b, and uses these frequency counts in conjunction with the 

assumption of Hardy-Weinberg proportions to derive the maximum likelihood estimates 

for the of the molecular haplotype frequencies for AB, Ab, aB, and ab in the population.  

 

B. Measures of Genetic Association for Single and Multi-Locus Analysis 

Genetic associations in case-control studies are determined by comparing allele 

frequencies between the healthy and diseased populations.  For example, suppose a SNP 

(SNP1) with alleles A and a is measured at a disease locus in a case-control study, and 

assume that the disease-causing allele is a.  Designating the case counts as u (unhealthy) 

and the control counts as h (healthy), the resulting contingency table would be as shown 

in Table 2.1.  Now suppose measurements are available for a second SNP (SNP2) with 

alleles B and b at some distant locus.  To determine whether there is a gene-gene 
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 AA Aa aa Total 

Cases uAA  uAa uaa ncases 

Ctrls hAA  hAa haa ncontrols 

Total nAA nAa naa N 

 

Table 2.1. Contingency table displaying the frequency counts necessary to test for 

disease association at a single SNP.   

  

   

interaction between SNP1 and SNP2, the joint genotype frequencies are counted in cases 

and controls for the 9 possible genotype combinations (AABB, AaBB, aaBB, AABb, 

AaBb, aaBb, AAbb, Aabb, aabb) to construct a contingency table. There are a number of 

ways to describe association from these two measurements.  For the single locus case, 

descriptive epidemiologic terms are often used.  For example, the odds ratio is the ratio of 

the odds that the cases were carriers of the a allele ( Aa aa

AA

u u

u


) to the odds that the 

controls were carriers of the a allele ( Aa aa

AA

h h

h


) (n.b. the odds ratio can also be defined 

using ratios of total allele counts, rather than by allele carrier counts as shown here).  

Genotypic relative risk can be defined similarly by using probabilities instead of odds.  If 

it is assumed that the risk allele a has a stronger effect in homozygous individuals than in 

heterozygous individuals, then the Cochran-Armitage test trend is commonly used [63].  

However, if such a trend in effect size is not observed, this test may have lower power 

than a more general test statistic such as the Pearson χ
2
.  Because the underlying genetic 

model in complex diseases is typically unknown, we use the Pearson χ
2
 as the main 
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measure of genetic association in our analyses of both single-locus and multi-locus 

frequency counts.  For a genetic combination of k loci with a 2 x 3
k
 contingency table G 

with index i used for disease status and index j for the 3
k
 genotypes, this measure can be 

generally defined as: 

 
1

2
2 3

2

3
1 1

( )

k

k

ij ij

df
i j ij

G
G







 


  

where: 

. .

..

i j

ij

n n

n
  ,  and 

2

.

1

j ij

i

n G


 , 

3

.

1

k

i ij

j

n G


 , and 

2 3

..

1 1

k

ij

i j

n G
 

 . 

The Yates continuity correction was used to adjust for sparsity in genotype counts [63].  

 

C. Simulation Models for GWAS 

The scale and potential complexity of typical GWAS has necessitated the 

development of new analytical methodologies.  When designing analysis methods for 

genetic association studies of diseases with an unknown disease model, simulation data 

are necessary to properly evaluate the performance of the proposed method under known 

conditions.  There are a number of issues when considering disease simulations to 

evaluate a method designed to analyze gene-gene interactions in GWAS.  The three most 

important problems regarding simulating GWAS effects are: (1) accurately modeling a 

disease-causing genetic interaction effect given the allele frequencies, effect size, and 
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Model 1: Multiplicative 1 

 BB Bb bb 

AA α ω2 (ω2)
2 

Aa ω1 (ω1)(ω2) (ω1)(ω2)
2
 

aa (ω1)
2 

(ω1)
 2

(ω2)
 

(ω1)
2
(ω2)

2
 

 

 

Model 2: Multiplicative 2 

 BB Bb bb 

AA α α α
 

Aa α (ω1)(ω2) (ω1)(ω2)
2
 

aa α
 

(ω1)
2
(ω2)

 
(ω1)

2
(ω2)

2
 

 

Model 3: Flat 

 BB Bb bb 

AA α α α 

Aa α ω ω 

aa α
 

ω
 

ω 

 

Model 4: Additive 

 BB Bb Bb 

AA α α α
 

Aa α 2ω 3ω 

aa α
 

3ω
 

4ω 

 

Table 2.2. Risk models for genotype combinations. A and a are the alleles for locus 1, 

and B and b are the alleles for locus 2.  α is the baseline effect size, and ω is the disease 

effect size.  The baseline effect is defined as having a relative risk of 1 plus a small 

amount of random genetic variation.  The disease effect size is modeled as a relative 

risk that an individual with a specific genotype also has the disease.   

  

penetrance; (2) including realistic genomic features such as linkage disequilibrium; and 

(3) considering appropriate gene-gene interaction disease models to evaluate the power of 

the method.   

A fairly long history of simulation models have attempted to address issue 1 [64-

69].  Earlier models were largely based on coalescent genetic theory, using direct 



20 

 

simulation of an evolutionary process using the basic principles of population genetics to 

model the disease-causing genetic effect in a population.  These models are useful, but 

they can be quite inefficient and potentially inaccurate in large case-control studies [66, 

68, 70].  Two more recently published peer-reviewed software packages, gs and 

GWASimulator, have been released for simulating genetic effects (both single locus 

effects and effects caused by interacting loci) using the population structure in HapMap 

populations that were used to design the SNP genotyping platforms most commonly used 

in GWAS [68, 70].  Thus, these two software packages address issues 1 and 2 as stated 

above.  The remaining issue 3 can be addressed by carefully simulating different types of 

gene-gene interaction models for a disease-causing genetic effect.  Models of gene-gene 

interaction effects, also known as epistatic effects, have been carefully studied [71, 72].  

When evaluating a proposed method, the most common approach is to consider several of 

these interaction models and to determine the ability of the method to ascertain the causal 

effects [39, 73-76].  The independent contribution of individual SNPs to disease risk is 

known as the marginal effect.  If one of the SNP alleles in a causal gene-gene interaction 

has no marginal effect, then it does not contribute to the disease in the absence of the 

second disease-causing SNP allele.  The 4 standard types of disease models that we use 

for studies in this work are similar to those considered by comparable methods, and are 

given in Table 2.2: (1: “Multiplicative 1”) a model that includes marginal effects with 

multiplicative interactions between all risk alleles; (2: “Multiplicative 2”) a model 

without marginal effects that has multiplicative interactions between the risk alleles; (3: 

“Flat”) a model without marginal effects that has the same effect size regardless of the 
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which the effect size increases linearly with the number of interacting disease alleles in 

the genotype.  

 

D. Statistical Modeling of Genetic Disease Risk 

Rather than seeking to identify regions of the genome that are associated with a 

disease phenotype using one of the methods described above, we now consider the 

problem of selecting the genetic variants that best describe the likelihood of an 

individual’s phenotype.  There are a number of studies that have considered the 

predictive power using sets of the most significant SNPs, genotypic risk scores, or some 

combination of genotypes with a phenotypic measure [42, 77-82], but these models have 

limited ability to predict true positives [42, 81].  There are a number of variable selection 

methods that can be used to build predictive models from GWAS data [83, 84].   

Categorical and quantitative variables such as age, smoking status, waist size, or family 

history have been shown to be critical when developing predictive models for some 

diseases [49, 81], so the ability of a model to incorporate these features is highly 

desirable.  Analysis of quantitative traits can readily be conducted using standard 

regression models, but the problem for large GWAS becomes ill-posed and the results 

may not be reliable.  

There are a variety of methods that have been used to deal with this type of 

analysis, but penalized regression methods are among the most flexible and efficient [78, 

85, 86].  Numerous penalized regression methods have been shown to be effective for 
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genome wide association studies in general [78, 87, 88], and more recent studies indicate 

that such methods retain their ability to detect association even for studies containing 

both rare and common variants [85, 89].  To understand these methods, we now introduce 

a standard regression framework [63, 86].   

Let a continuous response vector 1 2( , ,..., ) ,  for 1,...,nY Y Y i n Y , (Y’ is used to 

denote the transpose of vector Y) containing the outcome variables for n subjects and a 

matrix 1

1 2( , ,..., ),  where m

n i R X X X X , with 1mR   
the set of real numbers in the 

dimension m+1. Let 0 1 for 1,...,i i n X , and let Xij for 1,...,i n , 1,...,j m  include 

the set of data measured at m predictor variables for all n subjects in the study. The 

standard linear regression model can be written:  

0

,  1,...,
m

i ij j

j

Y X i n


   

where 0 1( , ,..., )m   β
 
is the vector of regression coefficients. The ordinary least 

squares (OLS) solution to this regression is obtained by solving the problem:  

1

2

1 0

min  
m

n m

i ij j
R

i j

Y X 


 

 
 

 
 

β
 

However, this standard regression model is not well-suited for large studies with far more 

variables than samples, as it often results in inaccuracies due to model instabilities, 

collinearities, and overfitting.  Several penalized regression methods have become 

popular in the analysis of large scale genetic data sets [90, 91] for their improved ability 
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for variable selection.  In this study, we use a modification of the OLS optimization 

problem known as lasso (“Least Absolute Shrinkage and Selection Operator”) regression, 

in which the L1-norm of the non-intercept coefficients in β  is used as a penalty to 

achieve a sparse solution [86, 92].  Using this approach, β  is determined as the solution 

to the optimization problem: 

1

2

1 0 1

min  
m

n m m

i ij j j
R

i j j

Y X   


  

 
  

 
  

β
, 

where λ is a shrinkage parameter.  

For case-control studies, our outcome variable 1 2( , ,..., ) ,  for 1,...,nY Y Y i n Y , is 

the case-control status vector, with {0,1}iY  . In this situation, logistic regression is 

commonly used.  In this model, we use the observations at m predictor variables 

1

1 2( , ,..., ),  where m

n j R X X X X  and 0 1 for 1,...,i i n X , to fit the following model : 

0

( 1| )
log

( 0 | )

m

j j

j

P Y
X

P Y




 
 

 


X

X  

where: 

 

 

0

0

1
( 1| )  

1

1
( 0 | )  

1

                      1 P( 1| )

m

j jj
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j jj

X

X

i
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e
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e

Y













 




 




  

X

X
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Above, we showed that the best linear model was determined by the minimization of the 

least squared error between the responses predicted by the fitted regression model and the 

observed response variable Y.  

In logistic regression, the best model is determined by finding the model that 

maximizes the binomial log-likelihood: 

 0

1 0

1
 ( | ) log 1

m

ij jj

n m X

i ij j

i j

Y X e
n



  

 

   
      

  
 X  

Thus in lasso-regularized logistic regression, the optimal penalized model is determined 

by solving: 

1

1

max  ( | )
m

m

j

j

  




 
β

X  

Characteristics of this optimization problem cause the coefficients βj for the more 

important predictor variables in the model to be larger, while the coefficients for the less 

important features are reduced towards zero.  This reduction in the effective number of 

variables is commonly referred to as “shrinkage”.  The amount of shrinkage that occurs is 

controlled by the size of the parameter λ.   

Selection of the best value for λ is a model selection problem.  A common 

approach to finding the best λ is through v-fold cross-validation.  In this method, the data 

set is first split into v equally sized groups.  For each of the v groups, the remaining v -1 

groups (the training folds) are used to fit the lasso model, and then the error in using this 
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model to predict the v
th

 group of observations (the testing fold) can be determined.  This 

process is repeated v times, and the value of λ that minimizes the average prediction error 

across all v models is chosen.   

For the lasso analyses discussed in this work, the evaluation measures to 

determine prediction accuracy were Area Under the Receiver Operating Curve (AUC) for 

logistic models and mean squared error (MSE) for continuous linear regression models 

[86, 92].  Mean squared error is defined as: 

2

1 0

MSE = /
n m

i ij j

i j

Y X df
 

 
 

 
 

 

where df is the degrees of freedom in the model.  In the classification of a binary trait 

such as case-control status, we are primarily concerned with the proportion of correct 

predictions for cases (true positive rate) and controls (true negative rate).  The Receiver 

Operating Characteristic (ROC) Curve is a plot of the true positive rate against the false 

positive rate for a binary classifier.  In the case where the prediction accuracy is 100%, 

the AUC value will be 1.  In a truly random prediction of a binary trait (with equal 

numbers of the two classes), the AUC will be 0.5.   

The penalized lasso regression strategy described above has been used to build a 

predictive models using GWAS  [77, 78, 93].  In another risk prediction study, the 

Support Vector Machines (SVM) algorithm was used to build large and accurate 

predictive models for Type 1 Diabetes [79].  SVM is a supervised learning method that 

seeks to find the hyperplane using observed data to maximally separate two (or more) 
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classes.  In GWAS, the two classes are cases and controls, and SVM is used to determine 

a set of coefficients for a linear combination of SNP genotypes that maximally separate 

the observed classes.  In the simplest case, this separating hyperplane is the solution to 

the optimization problem:  

, 1

0

max  C

subject to:  , 1,...,
m

i ij j

j

Y X C i n





 

β β

 

where C is the size of the margin between cases and controls.  Most implementations of 

SVM expand this model using slack variables to increase flexibility of the margin in 

combination with kernel functions that map the input features in X to a higher 

dimensional space in which the variables are more likely to be linearly separable.  Note 

that regularized logistic regression may give a very similar fit as SVM. However, recall 

that the lasso logistic regression algorithm develops its predictions by fitting a regression 

line by minimizing the weighted sum of the deviation between the penalized likelihood 

function and the observed data.  In contrast, SVM develops its predictions by 

mathematically transforming the input variables to a higher dimensional space to more 

easily compute a separating hyperplane between the classes [86, 94].  With several 

exceptions, the predictive accuracies reported from these methods (except for the Crohn 

Disease results) are in sharp contrast to the typically modest predictive accuracy found 

using other approaches [42, 81]. 
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CHAPTER III 

AN EVOLUTIONARY ALGORITHM TO INVESTIGATE GENE-GENE 

INTERACTIONS IN GENETIC ASSOCIATION STUDIES 

 

A. Introduction 

High density genetic association studies have provided researchers with a wealth 

of information about the genotypic features contributing to common complex diseases.  

These studies have led to the discovery of numerous genetic variants shown to be reliably 

associated with specific disease phenotypes [95].  While these high profile studies have 

improved the understanding of genetics, the associated genetic variants typically explain 

only a small proportion of the observed heritability for the multifactorial phenotypes that 

have been considered [40, 47, 96].  There is growing evidence in support of the 

importance of interaction effects in GWAS [40, 47, 49, 96].  However, reliable detection 

of these effects remains an unresolved problem. 

 A number of combinatorial and statistical methods have been developed to 

address the problem of detecting gene-gene interactions, including χ
2
 tests [97], logistic 

regression [98], logic regression [99], neural networks [100-102], random forests [103], 

and others [39, 73-76, 103-110].  These analysis methods represent a group of diverse 

strategies used to approach a problem with severe computational and statistical 

challenges, but they can be divided into several groups: exhaustive search, heuristic/local 

search, and Bayesian modeling methods.  
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Of the data mining methods related to exhaustive search, Multifactor 

Dimensionality Reduction (MDR) is among the most popular and has been used to 

analyze a variety of real data sets [1].  MDR seeks to identify combinations of k loci that 

influence a disease outcome.  The main strategy of the method is to avoid sparse data 

cells and over-parameterization by reducing the number of dimensions by collapsing the 

multi-way contingency table into a single-dimensional model within a 10-fold cross 

validation.  For each combination, the joint genotype is classified according to the ratio of 

cases to controls.  The main problem with this approach is that even moderately sized 

analyses can be computationally prohibitive, so a filtering or data reduction step must be 

taken before MDR is used to detect gene-gene interactions in a full-scale GWAS.   

The most commonly cited Bayesian method is Bayesian Epistasis Association 

Mapping (BEAM) [39]. Bayesian model selection techniques specify a set of prior 

distributions for SNPs that are unassociated, associated, or interacting with respect to the 

disease trait, and the posterior distribution for these parameters given the observed data is 

optimized using the Markov Chain Monte Carlo (MCMC) technique [1, 39, 74, 76].   

These methods are quite powerful, but they can be limited by lack of power if the linkage 

is not properly included in the calculation of the posterior likelihood.   

While a large number of local and stochastic search methods have been proposed, 

one method shown to have superior power for a variety of two locus models while 

maintaining adequate efficiency to analyze full-scale GWAS is SNPHarvester [75].  

SNPHarvester uses a filtering approach to limit the number of SNPs with single-locus 
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Figure 3.1. Example of linkage structure in a typical genetic association study (r
2
 

values).  Each square in this figure corresponds to a linkage disequilibrium measured 

between two SNPs.  

 

 

   

effects.  The algorithm is initialized using random loci across the search space, and a 

local search procedure is used to build a “path” from each initialization point that 

considers combinations of SNPs until the end of the iteration or until the path reaches 

statistical significance. At the end of each iteration, significant paths are “harvested” and 

removed from analysis, increasing the efficiency in successive runs.   

We propose an alternative approach that considers linkage-based partitions in an 

evolutionary optimization scheme to efficiently search for interactions.  As discussed 

above, GWAS are designed such that the SNPs genotyped have a high degree of local 

correlation (Figure 3.1).  Partitioning the genome into haplotype blocks can be 
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accomplished by a number of methods [61, 111-114].  Generally, these methods optimize 

within-block linkage above some predefined statistical threshold, and each algorithm has 

a means to select whether to join or split blocks given a linkage pattern.  Using linkage 

block structure has been shown to be an effective data reduction strategy for genetic 

association studies of single loci [115, 116], but relatively few methods take advantage of 

this useful genomic feature for the purposes of identifying interactions between genetic 

markers [39, 103, 117, 118].   The main problem with using the standard block 

approaches is that they require an unacceptably large amount of computational overhead 

when applied to GWAS data.  In this study, we present an evolutionary algorithm that 

takes advantage of local linkage structure to improve the reliability and computational 

efficiency for detecting genetic interactions.  Using simulation studies modeled on 

realistic population and linkage structure, we show that our method is able to take 

advantage of this genomic feature to more efficiently and reliably detect epistatic 

interactions in a number of disease models.  

 

B. Methods 

B.1.   Simulation Model 

As discussed above, the generation of simulated data with a known genetic effect 

and a realistic linkage disequilibrium (LD) and population structure is essential for the 

proper evaluation of our method’s ability to distinguish true gene-gene interactions.  We 

considered a number of two-locus models (described above in Chapter II, Table 2.2) that 
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are similar to those used in the evaluation of other methods [39, 75, 108], using 

parameters similar to those described previously [119].  In each model, the disease 

prevalence was fixed at 0.01, the effect size (ω) was varied between 1.25 and 2.5, and the 

Minor Allele Frequency (MAF) was fixed at 0.15, 0.30, or 0.45.  In this model definition, 

effect sizes (ω, a measure of relative risk used in [68]) include any underlying latent 

effects (α).  

For each set of parameters, 50 replicate data sets were generated using 

GWASimulator, a peer-reviewed simulation method that retains local linkage 

disequilibrium patterns [68, 120].  Each simulation data set contained 2000 SNPs for 

1500 individuals using a case control study design. The population and linkage 

disequilibrium features in our simulation data were based on HapMap CEU phased data 

(CEPH samples with ancestry from Northern and Western Europe) for autosomal SNPs 

corresponding to the Illumina HumanHap 550K SNP array [38, 68].  In order to avoid 

extreme LD effects, the average LD (measured by r
2 

[58, 62]) was sampled across each 

chromosome at 25 SNP intervals for windows of 50 markers wide, and we only buried 

disease markers at genomic loci sampled from the middle LD quintile with a HapMap 

MAF within ±0.025 of the target parameter.  For each simulation, Haploview [61] was 

used to ensure Hardy-Weinberg Equilibrium and data integrity. 
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Figure 3.2.  Flowchart diagram of our evolutionary algorithm structure. 

 

B.2.   Block Determination  

As noted above, a number of methods exist for statistically determining block 

structure [61, 111-114] as it relates to either linkage or case-control information.  While 

these methods are useful, they introduce a large degree of unnecessary computational 

overhead.  To avoid this, we used a fixed block width that was determined on-the-fly by 
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sampling the data set for the width that gives an average intra-block r
2
 value above 0.25.  

We compared our approach with the methods implemented in Haploview [61]: the 

method by Gabriel et al (GAB) [112], the 4 Gamete method (GAM) [111], and the Solid 

Spine of LD (SPL) method [61].  

 

B.3.   Proposed Algorithm 

Evolutionary algorithms, also known as Genetic Algorithms (GA), are a well-

established strategy in optimization and artificial intelligence applications [121]. In this 

approach, a set of solutions or “population” is randomly generated and iteratively 

improved with respect to some predefined fitness function. The solutions are modified by 

introducing random variety (immigrants), small modifications (mutations), or by 

combining solutions within the set (crossover), and the solutions with the highest fitness 

are selected following each iteration. Figure 3.2 describes the basic structure of the GA 

approach, in which F
* 

denotes the updated fitness measure of a solution in the population.  

A set of probabilities is used to randomly select the solution modifications, and these 

probabilities can be adaptively modified as the algorithm progresses to maximally 

improve the solution fitness.  The pseudocode is provided in Figure 3.3.   
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GA Algorithm 

 
Input: 

Genotype Data  
Genotype Block Information (optional) 
Modifiable Functions and Parameters: 

T = Population size (100) 
k = order of the gene-gene interaction (2) 
|S| = random search depth for SNP combinations (max) 
F = fitness function (χ2) 
Z = max number of iterations (M/10 for M = # SNPs) 
tol = tolerance criteria to measure population change between iterations  

Output: 
List of k-block combinations with the strongest association measures 

 
Algorithm 

Initialization 
Randomly select T k-block combinations 
Organize these into a “population” ordered by F 

Optimization: 
while Terminate is False 

define Fleast as the least fit combination Kleast in the population 
for i=1..T do: 

Fi = fitness for population block combination i 
Randomly select a method to generate a new k-block combination Ki: 

1. Immigration: p=0.6, randomly select a new block combination 
2. Mutation: p=0.2 

a. Substitute one of the blocks with a random block 
b. Modify one of the two blocks by randomly choosing a nearby 

block 
3. Recombination: p=0.2, substitute one of the blocks with a block from 

another randomly selected combination in the population 
Calculate the fitness of the ith newly generated solution F*i

 

if F*i > Fleast then  
Ki is put into the population and the Kleast is removed 

end if 
end for 
Sort the population by fitness value, re-define Fleast and Kleast 

If termination criteria Z or tol is not met, Terminate is False 
end while 

Return a list of the block combinations with the best fitness values 
 
 

Figure 3.3. Pseudocode for a simple version of our optimization algorithm 
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In our implementation, we used this optimization strategy to determine a list of k-

block combinations with the best fitness.  The objective of genetic association studies is 

to determine a set of k loci with the highest statistical association, and the discrete GA 

optimization algorithm is particularly well-suited for this purpose.  We define the fitness 

measure for a set of blocks B1, B2… Bk as follows.  Letting 
mB  represent the number of 

SNPs in the m
th

 block, we define S to be the set of all 
1

k

mm
B

  possible combinations of 

k-SNP genotypes with exactly one SNP from each block.  The genotypes in each Bm  (1 ≤ 

m ≤ k) all have 3 possible genotypes, and the observed frequency counts for the 3
k
 

possible genotypes for each genotype combination are tallied in a 2 x 3
k
 contingency 

table Gs of case and control genotype counts.  For each s in S with contingency table Gs, 

we consider the χ
2
 statistic with 3

k
 – 1 degrees of freedom. The Yates continuity 

correction was used to adjust for sparsity [63].  The fitness of each block combination is 

then determined as:  

1

2

3
max{ ( ) : }k sF G s S    

The maximum search depth of S in each iteration is controlled as a parameter.  When k is 

small (≤ 3), a deep search for the optimal F from each set S is computationally feasible 

and was used in this study.  For larger k, F is determined by random sampling.   

  The fitness measure can be any statistic or function that maximally distinguishes 

cases from controls at the true loci.  The χ
2
-based fitness parameter used in this study is 

desirable because it is a widely-used, powerful, and efficient statistic that allows 
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Figure 3.4.  Illustrative example of a population of 2-block solutions and GA moves in 

one GA iteration.  Blocks B1… B9 represent groups of linked genetic markers in a 

GWAS.  F1, F2, F3, and F4 are the fitness measurements for the two-way block 

combinations in the population, and the corresponding F
*
 values are the fitness 

measurements for the solution proposed by the GA moves.  

   

comparison with other methods as well as a measure of statistical significance.  In this 

study, the set of solutions was a list of unique block combinations with the number of 

blocks (k) fixed at 2. The significance p-value threshold used was 2.5 x 10
-6

.  

The probability of selecting a random new solution (“immigration”) was assigned 

a value of 0.6 (adaptive range 0.4-0.8).  A point modification of an existing solution 

(“mutation”) was assigned a probability of 0.2 (adaptive range 0.1-0.3), and it involved 
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either (a) substituting one of the solution blocks with a random block or (b) modifying 

one of the two blocks by randomly choosing a nearby block. The “crossover” or 

“recombination” move involved substituting one of the solution blocks with a block from 

another randomly selected solution in the overall set. This move was assigned a 

probability of 0.2 (adaptive range 0.1-0.3).  This random selection was biased such that 

fitter solutions were more likely to be selected for recombination. For a solution with 

fitness rank x, the probability for recombination is defined as: 
( / )Pr( ) 1 x Tx e   . We 

fixed λ = 5 and T = 100, the size of the solution set in our experiment.   

A schematic of the GA moves is shown in Figure 3.4.  The algorithm was allowed 

to run until one of the two termination criteria was reached: (1) a pre-set maximum 

number of iterations (default = M/10, where M is the number of SNPs) or (2) a set 

number of iterations pass without any change in the set of fittest solutions. 

 

B.4.   Evaluation 

To assess the performance of our algorithm, we chose to SNPHarvester [75] for 

comparison.  This algorithm provides a good comparison with our method because (1) it 

was shown to have impressive power relative to competing methods (e.g. BEAM) [39], 

(2) it has a well-written program that could be executed for comparison, and (3) it was 

shown to be computationally efficient enough for use with real GWAS.  In 

SNPHarvester, we set k=2 and paths=50 as suggested by the authors in the publication of 

their method [75].  
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Label Model ω 

A Model 2* (lower penetrance) 2.5 

B Model 2 2.5 

C Model 2 (MAF = 0.45) 2.5 

D Model 3* (one marginal effect) 1.5 

E Model 2* (one marginal effect) 2.5 

F Model 3 2.5 

G Model 4 1.5 

H Model 4 2.5 

I Model 1 1.5 

 

Table 3.1. Disease models used for the power comparison shown in Figure 2.5 for 

Models 1-4 as defined in Table 2.2 with effect size ω and modifications as indicated 

(*). MAF = 0.3 except in model C.   

 

For both methods considered, we set the true solution to be the entire block 

containing the simulated causal SNP.  Power was defined as the proportion of simulations 

in which the true solution was found using each algorithm. 

 

C. Results 

C.1.   Block Method Comparison 

To empirically determine that the power of our algorithm would not be affected 

by our proposed fixed block method, we compared our approach with 3 standard 

haplotype blocking algorithms using simulations for several disease models.  We also 

computed the power of our method for the case in which there are no blocks (all blocks 

defined as containing a single SNP).  Each of the 9 comparisons shown in Figure 3.5 

consists of 50 simulation data sets using the disease simulation parameters described in 

Table 3.1.  Blocks for GAB, GAM, and SPL were determined using Haploview using the 

parameters suggested by the authors [61].  For each method, the entire block containing 
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Figure 3.5. Power comparison of our GA approach run using standard block methods 

(teal), the block approximation approach described in the text (red), and a run with no 

blocks (or single-SNP blocks, shown in black) for a number of interactive models with 

varying strength (labeled A-I). Models are described in Table 3.2.  

   

the causal SNP was defined as being causal for the purpose of these power calculations.  

As is evident in Figure 2.5, the power across these approaches is very similar (average 

standard deviation in power between the 4 methods across the 9 models is 0.024). This 

indicates that our method for determining an appropriate fixed block width was effective 

for determining unnecessary computations that do not lead to improved power.  

  

C.2.   Simulation Model  

Results from the analysis of simulation data are shown in Figure 3.6a and Figure 

3.6b.  The power of SNPHarvester is comparable to that of our proposed method for the 

disease models described above.  This approximate equivalence is expected, as these two 
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n Our method SNPHarvester 

1500 45.4s 159.4s 

3000 64.5s 415.1s 

4500 84.9s 967.8s 

6000 104.5s 1551.3s 

 

 

Table 3.2. Running time comparison between our method and SNPHarvester (in 

seconds) for varying numbers of case-control subjects (n). 

 

  

methods use the same statistical evaluation for the solutions considered in the search.  

Thus, if each algorithm samples the same set of SNP combinations in a given run, the 

statistical power of the two methods to detect the true solution will be equal. To assess 

the false positive rate for our method and for SNPHarvester, we generated 300 

simulations as in Models 1-4 above, but without any simulated effects (i.e. ω=α for all 

loci). SNPHarvester detected false positives in 11% of the null simulations with an 

average of 0.19 false positives per simulation (median 0.0).  Our method detected false 

positives in 38% of the null simulations, with an average of 0.87 per simulation (median 

0.0).   

Performance benchmarks were computed on an Intel Core i5 750 2.67GHz Linux 

system with Python 2.6, gcc 4.4.3, and Java 1.6.0_20 using a set of null simulations.  The 

average running time for one simulation with default parameters and 1500 subjects was 

about 45 seconds for our method and about 159 seconds for SNPHarvester.  Our method 

achieves additional search efficiency by utilizing linkage disequilibrium information.  As 

shown in Table 3.2, the improvements in running time are more evident when the study 

size is larger.   
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Figure 3.5a. Power of our proposed method (blue) compared with SNPHarvester (gray) 

for the 4 simulation models described in Table 2.2 for minor allele frequencies (0.15, 

0.30, and 0.45) and effect sizes (ω) for the multiplicative disease models. 
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Figure 3.5b. Power of our proposed method (blue) compared with SNPHarvester (gray) 

for the 4 simulation models described in Table 2.2 for minor allele frequencies (0.15, 

0.30, and 0.45) and effect sizes (ω) for disease models 3 and 4.  
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p-value SNP1 SNP2 

1.46E-08 'rs1061170' 'rs1926489' 

6.69E-08 'rs10254116' 'rs3903445' 

2.45E-07 'rs800292' 'rs10254116' 

4.49E-07 'rs10503499' 'rs1740752' 

4.53E-07 'rs931798' 'rs2828155' 

4.53E-07 'rs931798' 'rs2828151' 

4.77E-07 'rs1061170' 'rs9301772' 

5.46E-07 'rs931798' 'rs10501439' 

5.52E-07 'rs10511130' 'rs1972634' 

5.61E-07 'rs10518433' 'rs3903445' 

6.17E-07 'rs970476' 'rs10511467' 

6.18E-07 'rs10511130' 'rs10517546' 

6.26E-07 'rs6967345' 'rs3913094' 

6.81E-07 'rs800292' 'rs1853882' 

7.32E-07 'rs1061170' 'rs2402053' 

7.51E-07 'rs1061170' 'rs284806' 

7.61E-07 'rs6967345' 'rs3914244' 

7.97E-07 'rs800292' 'rs1740752' 

8.21E-07 'rs1978419' 'rs3913094' 

8.43E-07 'rs800292' 'rs10483314' 

8.97E-07 'rs1740752' 'rs7104698' 

 

Table 3.3.  Results from the AMD data set  

  

C.3.   Age-related Macular Degeneration Genome-Wide Association Study 

Having shown the utility of our method for assessing gene-gene interactions in 

limited simulation data sets, we now consider a real GWAS of Age-related Macular 

Degeneration (AMD) that consists of 103,611 autosomal SNPs genotyped for 96 cases 

and 50 controls (after quality control) [122].  In this landmark study, two significant 

SNPs, rs380390 and rs1329428, were found on chromosome 1 that lie in an intron of the 
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gene for complement factor H.  This discovery allowed researchers to further investigate 

the genetically associated molecular pathophysiology associated with AMD.   

Following our quality control, there were 103,156 autosomal SNPs in our 

analysis.   As noted elsewhere, the dominant effect is on chromosome 1 in the region near 

rs380390. However, our method was able to detect a number of interactions that did not 

include this locus but had p-values < 1 x 10
-6

.  These loci are shown in Table 3.3.  

  

D. Discussion 

We have studied our block-based evolutionary optimization method under various 

conditions similar to those observed in high-density genetic association studies.  We 

sought to assess the expected power and computational efficiency of our method by 

comparing it with another well-designed and efficient stochastic search method, 

SNPHarvester.  The combination of our block strategy with the evolutionary optimization 

approach enables a comparatively powerful solution method with practical running time.  

Other studies have shown that sets or blocks of SNPs can be used to increase the 

efficiency and power in association studies [103, 114-116, 120].  Evolutionary 

optimization is well-suited as a tool for manipulation of decision trees or logic 

expressions that are useful for multi-locus analysis of genetic data [123-127].  Our 

method can be considered an extension of these methods that utilizes LD structure in a 

stochastic search framework to determine the genetic loci most reliably associated with 

disease status.  Meaningful, non-additive gene-gene interactions cannot occur between 
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highly correlated loci, justifying the elimination of within-block interactions from 

consideration in our search strategy.  As with other heuristic local search strategies that 

have considered this problem, our method is expected to have limited ability to detect 

effects in the absence of either linkage disequilibrium or marginal effects.  

We determined the power of our method to detect diseases caused by two 

interacting loci, but this model can readily be applied to uncover higher-order 

interactions.  While our algorithm can computationally manage these higher order 

interactions, other analyses of genome-wide association study data for k > 2 have not 

convincingly revealed reliable results. Comprehensive power analyses of our algorithm 

for simulated disease models with 3 or more loci are necessary.  Our evolutionary search 

strategy provides a flexible optimization framework that can be readily extended by using 

alternative fitness functions to distinguish cases from controls or by incorporating gene or 

pathway information to group sets of SNPs as opposed to local linkage disequilibrium 

structure.   
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CHAPTER IV 

EXTENDING AN EVOLUTIONARY ALGORITHM FOR GENE-GENE 

INTERACTION INVESTIGATION USING HIGH PERFORMANCE 

COMPUTING METHODS 

 

A. Introduction 

As researchers seek to better understand genetic diseases by using analyses of 

gene-gene interactions, by collecting denser genetic association data, or by conducting 

meta-analyses of large combined data sets, the scale and complexity of the computations 

involved in the analysis increase dramatically [1, 128].  Concurrent with the genetic 

advances observed throughout the past decade, methods that use Graphics Processing 

Units (GPUs) for general purpose parallel computing have been engineered that make 

high performance computing methods more accessible and affordable [129].  There have 

been numerous applications of parallel GPU processing technology to scientific 

computing, most of which have yielded speedups of 10-100x relative to the original CPU 

applications [130, 131].  As discussed above, studies of epistatic interactions in GWAS 

sets have led to meaningful findings [45, 47, 49, 50], but the combinatorial nature of 

testing joint effects between genetic loci quickly leads to statistical and computational 

difficulties given the scale of current GWAS data sets.  Among the applications that this 

type of high-performance computing has been successfully applied to is the detection of 

gene-gene interactions in GWAS [132, 133].  In this chapter, we present a parallelized 
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GPU implementation of the approach introduced in Chapter III to improve the efficiency 

of searching for gene-gene interactions.  The GPU parallel platform provides researchers 

with a cost-effective means to obtain immense computational power to combat the ever-

growing complexity of genomic studies. Several research groups have presented 

impressive results using GPUs to improve the computational speed of analyses for 

minimal cost [132-134].  These methods have significantly reduced the amount of time 

required to analyze interactions in large genetic association studies. Our parallel 

algorithm expands on the recent papers describing GPU-accelerated gene-gene 

interaction analysis to take advantage of the previously demonstrated improvement in 

algorithmic performance in a powerful evolutionary optimization framework [135].  We 

demonstrate the computational speed of our method using an exhaustive analyses of 

simulation data sets with varying sizes, and show that the power of our GPU-accelerated 

implementation to detect causal interactions is equivalent to that of our the method 

described in Chapter III [135]. 

To demonstrate the utility of this software tool, we consider the Wellcome Trust 

Case Control Consortium (WTCCC) Crohn Disease data set.  The diseases studied in the 

WTCCC have been analyzed using a number of methods, including several gene-gene 

interaction approaches [75, 106, 133, 134, 136].  In this chapter, we apply our high 

performance tools to a real GWAS using a biochemical pathway approach to search for 

meaningful interactions.  This integrative approach highlights the applicability of our 
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software to a real data set with the goal of better understanding genetic interactions 

underlying the molecular pathophysiology of common diseases.    

 

B. Methods 

B.1.   Proposed algorithm and GPU implementation 

The motivation for the development of a GPU procedure for analyzing genetic 

data is to extend the general optimization procedure described in Chapter III to determine 

the LD block combinations with the best fitness [135].  For convenience, we briefly 

summarize the algorithm and notation as described above.  S is the set of all possible k-

SNP genotype combinations with exactly one SNP from each linkage block.  The 

observed frequency counts for each k-SNP combination are tallied in a 2 x 3
k
 contingency 

table Gs of case and control genotype counts.  For each s in S with contingency table Gs, 

we consider the χ
2
 statistic with 3

k
 – 1 degrees of freedom. The fitness of each block 

combination is once again defined as: 1

2

3
max{ ( ) : }k sF G s S   . The maximum search 

depth of S in each iteration is set as a parameter.  For studies in this chapter, we used a 

deep search.  The evolutionary move probabilities were once again defined as follows: 

1. Immigration: p=0.6, randomly select a new block combination 

2. Mutation: p=0.2 

a. Substitute one of the blocks with a random block 

b. Modify one of the two blocks by randomly choosing a nearby block 
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3. Recombination: p=0.2, substitute one of the blocks with a block from another 

randomly selected solution in the population 

The size of the population of solutions, T, is a parameter that was set at 100, and the 

termination criteria are the same as above.   

The main computational burden in our evolutionary optimization algorithm is the 

calculation of genotype frequency counts for k-SNP combinations.  Tallying the genotype 

counts for a set of k-SNP combinations in a large population of individuals can be 

computed very efficiently on a GPU using a modified parallel reduction algorithm (a toy 

example for k=2 for 4 subjects is shown in Figure 4.1) [132, 137].  We used the NVIDIA 

Compute Unified Device Architecture (CUDA) for our GPU implementation.  The 

CUDA programming model is a single-instruction, multiple-data platform that executes 

functions using parallel threads within units of data grouped into GPU blocks.  Multiple 

GPU blocks can then be run in parallel using the GPU multiprocessors. Our 

implementation uses two main memory spaces on the GPU: (1) the larger (and slower) 

global memory for genotype storage, and (2) the smaller (and faster) shared memory for 

tallying frequency counts.  Global memory is the largest memory space on the GPU, can 

be accessed by any GPU block, and is the only data directly accessible from the CPU.  

By contrast, shared memory is much smaller, and is only accessible by threads within a 

single GPU block.   
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Figure 4.1.  Overview of the parallel reduction approach.  In this example, there are SNP 

combinations (k=2) P1 through PB sent to B GPU blocks in GPU global memory.  We show 

an example parallel reduction for P1 with a two-SNP combination for 4 subjects in the case 

group.  These genotype frequency counts are copied from the GPU global memory to shared 

memory to rapidly tally the frequency counts in parallel for all B GPU blocks.  The frequency 

counts are then copied back to the GPU global memory, where they can be used to calculate 

the fitness measure before being copied to the CPU. 

 

As described in previous implementations of GPU gene-gene interaction analysis, 

a common way to achieve optimal performance is to structure the data such that the load 

is balanced across the resources of the GPU, with the majority of data-operations 

occurring in the fastest performing shared memory cache [132, 134, 137].  Genotypes are 

copied onto the GPU in global memory.  For a study with N patients, each k-SNP 

combination is then copied into a N*3
k
 element vector in shared memory and reduced to a 

list of frequency counts for each of the possible 3
k
 genotypes (Figure 4.1).  If a vector of 

N*3
k
 elements does not fit within a single GPU block, the frequency counts are split into 
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multiple GPU blocks, and the frequencies for all N patients are combined in global 

memory after the reduction.  Performance of our parallel reduction on a random 

simulation data set as a function of shared memory usage per GPU block is shown in 

Figure 4.2a.  Current CUDA hardware limits the number of thread processors to 32 per 

GPU block.  Thus, designating a larger number of threads to operate in parallel in each 

GPU block (the “GPU Block Size”, which can be up to 1024 on the NVIDIA GTX 470 

and is directly proportional to shared memory usage in our algorithm) may decrease 

performance in smaller studies.  This is because the amount of time it takes to initialize 

the genotype data in shared memory for our parallel reduction is not offset by the 

improved speed afforded by shared memory when there is less data. For larger studies, 

however, the performance gains obtained by increasing the usage of shared memory is 

worth the initialization cost.  To maximally take advantage of the GPU resources and to 

minimize overhead due to data transfer between the GPU and the CPU, we define a 

parameter B as the number of k-SNP combinations calculated in parallel on the GPU 

during each iteration.  The value of B depends on the specific GPU being used, and is 

based on the amount of GPU memory, the number of GPU multiprocessors, the 

maximum number of GPU blocks that may be run concurrently on the GPU, and the 

number of GPU blocks used per frequency count (based on N and the amount of GPU 

shared memory).  Performance of our code as a function of B is shown in Figure 4.2b and 

Figure 4.3.  For all calculations in this chapter, we set B to be the maximum value 

permitted for our hardware (65,535 for the NVIDIA GTX 470). 
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Figure 4.2. Parameter tuning for (a) the amount of shared memory used per joint SNP 

frequency calculation (GPU Block Size) and (b) B, the number of pair-wise SNP 

combinations calculated on the GPU during each pass.  Each data point represents the 

average running time from 5 repeated analyses of a random case control study simulation 

(no causal disease loci).  In each run, our exhaustive GPU procedure was used to 

calculate χ
2
 values between all pairs of SNPs.  N is the number of subjects, and the 

number of SNPs in each study was fixed at 2000.  Genotypes were stored on the GPU in 

these calculations.  In each pass, the indices for successive sets of B SNP pairs were sent 

to the GPU, and the frequency counts and χ
2 

values were calculated on the GPU and 

returned to the CPU.  
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Figure 4.3. Parameter tuning for B, the number of pairwise SNP combinations 

calculated on the GPU during each pass if the genotypes are also sent to the GPU in 

each pass. Depending on memory constraints of a given GPU, it may not be possible to 

store all the genotypic data on the GPU.  As in Figure 4.3, each data point represents the 

average running time from 5 repeated exhaustive pairwise χ
2
 analyses of a random case 

control study simulation (no causal disease loci).  In this case, the genotypes were not 

stored on the GPU, and instead were sent to the GPU in each pass -- making the 

parameter B more important.  This situation arises for our software when the number of 

SNPs and/or the number of subjects becomes large.  Data in this figure were collected 

for N=1000, M=1000.  

 

The evolutionary population size (T) that was determined to be the best for 

exploring genetic interactions in our previous study is much smaller than B.  To adapt our 

evolutionary optimization framework to a parallel version that maximally takes 

advantage of the GPU resources while maintaining power to detect causal k-SNP 

interactions, we used a parallel islands approach (Figure 4.4).  In this method, we 

initialize a set of L separate populations (which we refer to as islands), each of which has 

T solutions, such that there are a total of B k-SNP combinations across all islands.  Each 

island population is then modified using immigration, mutation, and recombination for a 
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finite number of iterations.  The evolutionary moves, the move probabilities, and the 

definition of F are the same as in the CPU implementation. The island populations are 

independently optimized for a set number of iterations until the fitness of the solutions in 

each island is improved.  The combinations across all islands are then shuffled together 

and regrouped into L populations, and the procedure is repeated until a stable set of gene-

gene combinations results.   

The number of independent islands (L) is a parameter that was defined as a 

function of the number of GPUs, B, and the number of fitness measures to calculate in 

each population.  This approach allows our model to be adjusted to fit the resources of 

the specific GPU being used in order to maximize performance.  We determined the 

performance of our code using a computer with an i5 Quad-core 2.66GHz processor, 

8GB of RAM and a NVIDIA GTX 470 GPU running CUDA 3.2 on Ubuntu Linux 10.10.  

GPU code was implemented and tested in CUDA or C for best performance and then 

wrapped with Python 2.6 using the PyCUDA library (2011.1) [138].   

 

B.2.   Simulation model and performance analysis 

To establish equivalence in power of our GPU implementation with that of the 

CPU implementation of our evolutionary optimization strategy for moderately sized 

studies, simulation models were built as described previously [68, 135] using a 

multiplicative two-locus disease model (Model 1).  In each simulation data set of 5000 

SNPs, the disease prevalence was fixed at 0.01, the genotypic effect size was set at a 
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Figure. 4.4.  Schematic comparing the CPU Evolutionary Algorithm with the GPU 

Parallel Islands implementation.  In our CPU procedure, an initial “population” of 

combinations is iteratively modified using the immigration, mutation, and 

recombination moves described in the text.  This process continues until a maximum 

number of iterations is reached or a convergence criterion is satisfied.  In the GPU 

implementation, we initialize a set of L “island” populations.  Each island is a 

population of combinations that is independently modified using the evolutionary 

moves.  After a set number of iterations, the combinations across all islands are shuffled 

and the process repeats until the convergence criteria is satisfied. 

 

relative risk of ω=1.25, the Minor Allele Frequency (MAF) was set at 0.15 or 0.30, and 

the population was set to 1000, 2000, and 5000.  The disease model included two loci: 

each with a marginal effect and an effect size of ω*ω for any interaction between disease 

alleles at the two causal loci.   

Because the running time of our optimization procedure is dependent on several 

parameters and random chance, we used exhaustive analyses over smaller sets of SNPs 
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on random simulation data (no simulated effect) to measure the performance of our code: 

N = (2000, 5000, 10000), M = (1000, 2000, 5000), where N is the number of samples and 

M the number of SNPs. 

The population and linkage disequilibrium features in our simulation data were 

based on HapMap CEU phased data (CEPH samples with ancestry from Northern and 

Western Europe) for autosomal SNPs corresponding to the Illumina HumanHap 550K 

SNP array [38, 68].  Linkage structure was measured and included in our models as 

described previously [135].  

 

B.3.   Linkage Disequilibrium Calculations 

To expand the utility of our GPU software, we implemented several basic 

functions for conducting genetic analysis (LD, HWE calculations, simple plotting 

functions).  Single locus analysis (e.g. HWE calculations, single-locus association tests) 

of GWAS is not particularly computationally expensive, and these functions are included 

for convenience.  However, for intensive analysis of LD patterns, the computational 

efficiency of GPU-accelerated frequency counts offer an improvement to commonly used 

methods.  Large-scale LD patterns can be approximated using efficient matrix methods to 

compute a correlation matrix that estimates patterns of non-independence between SNPs 

[98].  However, a more precise analysis of LD patterns requires the direct estimation of 

two-locus haplotype frequencies, as discussed in Chapter II.  One of the most commonly 

cited software packages that can be used for this purpose is Haploview [61, 139].  We 
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adapted the standard LD procedures used in Haploview to take advantage of GPU 

resources.  In our LD calculations, the GPU was used to compute the joint frequency 

counts for each pair of SNPs, and these frequency counts passed back to the CPU for the 

calculation of the LD statistics as described above [59, 61, 62, 139].  We compared the 

performance of our code [139] using the abovementioned computer (i5 Quad-core 

2.66GHz processor, 8GB of RAM, NVIDIA GTX 470 GPU) with Haploview 4.2 (64-bit 

Java 1.6.0_20). Both methods were run from the command line, and the running times 

were measured using the linux time utility (reported as elapsed “real” time in seconds).  

The number of subjects in the study (N) was set to 1000, 2500, 5000, and 10000, and the 

number of SNPs in the study (M) was set to 1000 and 2500.  LD measures (D’, the 95% 

confidence interval for D’, and r
2
) were calculated for all pairs of SNPs in each 

simulation.   

 

B.4.   WTCCC Data Processing and Analysis 

Having demonstrated the utility of our GPU-accelerated approach for GWAS 

analysis, we applied our software to a subset of data from the WTCCC [39].  Of the 

WTCCC diseases studied, the findings for Crohn Disease were unique in that they 

revealed a set of biochemical pathways that were consistently enriched with significant 

SNPs in a number of studies [140, 141].  There have also been published analyses of 

gene-gene interactions within this data set [1, 142].  However, the set of gene-gene 
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interactions within the subset of pathway SNPs in the WTCCC Crohn Disease data set 

has not been determined.    

We accessed the Affymetrix GeneChip Mapping 500K array set called by the 

CHIAMO algorithm [39] for the Crohn Disease (CD) case cohort and for the 1958 birth 

control cohort.  Following the recommendations of the WTCCC, we excluded a number 

of subjects (as listed the “exclusion-list-05-02-2007.txt” file accompanying the GWAS 

data), and any SNPs not conforming to the criteria: (1) missing data proportion > ~0.05, 

(2) MAF < 0.05 and missing data proportion > 0.01 or MAF < 0.01, (3) combined control 

group (58C+National Blood Service) HWE Exact Test p-value < 5.7e-7, (4) Inter-control 

group (58C vs NBS) 1df Trend Test p-value < 5.7e-7 (as measured by WTCCC) (5). 58C 

vs NBS 2df General Test p-value < 5.7e-7 (as measured by WTCCC). CHIAMO SNP 

measurements with a score < 0.9 were considered missing data.    Following these 

exclusions, there were 1,480 control subjects and 1,748 CD subjects genotyped at 

496,410 SNPs.   

Next, we updated the information obtained in the WTCCC to be consistent with 

current genomic info for hg19/Genome Reference Consortium Human genome build 37 

(GRCh37). Data about the reference positions for SNPs in the study were downloaded 

from NCBI dbSNP (build 132) for GRCh37, information about genetic locations were 

downloaded from RefSeq using the UCSC Genome Browser [143], and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) Pathways and their mappings to our data 

set were downloaded from existing peer-reviewed sources [144-146]. We used this 
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information to remove any SNPs in the WTCCC data not associated with any KEGG 

pathway, resulting in 39,664 autosomal SNPs in 3,666 genes in 212 pathways.  As 

reported previously, there are several very strong single locus effects present within the 

set of pathway SNPs [141].  After confirming these strong, previously published single-

locus associations in our data set, we removed any SNPs with a p-value < 1 x 10
-3

.   We 

then analyzed the data set for interactions for k=2 using our GPU-accelerated 

optimization procedure as described above.  After running our analysis, any interactions 

between two blocks with SNPs in a nearby chromosomal region (within 100kb) with a 

LD measurement of either r
2
 ≥ 0.8 or D’≥ 0.8 were not reported as significant 

interactions.   For this analysis, the typical missing value cutoff of 0.95 was relaxed to 

0.94 to allow exploration of a previously published, top-ranked interaction between the 

KEGG pathway SNPs rs7154773 and rs10130695 in the WTCCC Crohn Disease Data 

Set [142].  While this interaction is indeed very significant (χ
2

8df = 88.62, p < 1 x 10
-16

), 

these two loci (rs7154773: Chromosome 14, GRCh37 position 60749118; rs10130695: 

Chromosome 14, GRCh37 position 60755984) have a D’ value of 0.962 – indicating that 

they are strongly correlated.  For comparison with our results in a separate analysis, we 

also tested the set of SNPs involved in the top interactions reported in [1] using our 

objective function (rs10027689, rs10156534, rs11649428, rs12647454, rs12751992, 

rs1584444, rs1601668, rs17825620, rs2201677, rs2358356, rs2478836, rs301630, 

rs4471699, rs4677143, rs509544, rs511435, rs524731, rs636646, rs6532916, rs668394, 

rs7202714, rs7217284, rs7773053, rs8006622, rs9436212, rs9540533).  rs4471699 was 

excluded because of a high proportion of missing data in the control group (~10%), and 
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Figure 4.5. Comparison of GPU and CPU running times in seconds for exhaustive 

search on data sets of varying size.  N is the number of subjects and M is the number of 

SNPs. 

 

the other SNPs were not included in our optimization algorithm since they are not on any 

of the KEGG pathways.   Our approach seeks to provide information about meaningful 

gene-gene interactions between separate genetic loci by limiting our analysis to SNPs that 

are not in strong LD within the set of pathway SNPs.  While we consider a limited data 

set in this analysis, our method is capable of analyzing the full data set of 496,410 SNPs, 

and an exhaustive search for combinations in this data set is planned in future work.   
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Figure 4.6.  Comparison of the power of the GPU and CPU implementations to detect 

causal genetic markers.  Power is reported as the proportion of times the causal gene-

gene interaction was found in 50 simulations for M=5000, and N=(1000,2000,5000). 

 

C. Results 

C.1.   Simulation Performance 

Since the running time of our optimization procedure may be variable, we elected 

to use a limited exhaustive search to assess the comparative running time of our GPU and 

CPU code.  The sample sizes N=(2000, 5000, and 10000) correspond roughly with a 

moderately sized GWAS, a large GWAS [39], and a combined analysis of more than one 

GWAS.  As shown in Figure 4.5, the running times are comparable for small studies, but 

the computational benefit of the parallel implementation becomes readily evident for 

exhaustive analyses of even a limited set of SNPs.  
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It was important to establish that the GPU and CPU implementations of our 

optimization approach had equivalent power to detect a simulated gene-gene interaction.  

We defined power as the proportion of times out of 50 replicate simulation data sets that 

the causal interaction was detected. As shown in Figure 4.6, the GPU and CPU versions 

of our optimization algorithm have nearly identical power.   

 

C.2.   Linkage Disequilibrium 

Results for the LD calculation running time comparison between our software and 

Haploview for simulation data sets with varying numbers of subjects and SNPs are 

shown in Figure 4.7.  Care was taken to ensure that the same procedures were completed 

in both software packages to ensure a fair comparison of computational efficiency.  Our 

software increased the speed between 6x and 38x, with more impressive improvements in 

computational efficiency observed for the larger studies.  Further improvements in the 

performance of our LD calculation may be possible in the future through the use of CPU 

multithreading resources to parallelize the CPU computations for improved performance 

relative to the single-processor results from our method shown in Figure 4.7.   
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Figure 4.7.  Comparison of exhaustive LD calculation running times (in log(s)) for our 

method (blue) and Haploview (green) for varying numbers of subjects (N) and SNPs (M).  
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SNP1 
  

 SNP2 
  

Interaction 

ID Chrom Gene χ2 p-value   ID Chrom Gene χ2 p-value   χ2 p-value 

rs1328199 1 VAV3 1.66 0.4354   rs6121731 20 CDH4 11.13 0.0038   51.8 1.84E-08 

rs2710779 3 FGF12 13.5 0.0012  rs12709950 19 UBE2S 4.47 0.1069  49.09 6.12E-08 

rs3769222 2 RAPGEF4 6.01 0.0496  rs12544197 8 TRHR 2.29 0.3189  47.85 1.06E-07 

rs2686322 3 KAT2B 0.41 0.8156  rs2830075 21 APP 7.96 0.0187  47.69 1.13E-07 

rs2686322 3 KAT2B 0.41 0.8156  rs2186302 21 APP 9.55 0.0084  47.61 1.17E-07 

rs2686322 3 KAT2B 0.41 0.8156  rs2234988 21 APP 9.77 0.0075  47.19 1.41E-07 

rs4950485 1 GJA5 5.3 0.0708  rs6592775 11 GAB2 4.2 0.1225  46.86 1.63E-07 

rs17664296 3 PRICKLE2 4.07 0.1309  rs11784860 8 ZNF34 4.13 0.127  46.85 1.64E-07 

rs7303842 12 CRY1 4.19 0.1233  rs7995795 13 CLDN10 9.61 0.0082  46.74 1.72E-07 

rs1048156 10 PPYR1 2.54 0.2812  rs3923871 11 OR4B1 7.29 0.0261  46.02 2.35E-07 

rs2246209 1 NR5A2 2.66 0.2643  rs9333117 10 ITGA8 9.56 0.0084  45.93 2.45E-07 

rs8041887 15 ARNT2 12.9 0.0016  rs2837193 21 IGSF5 6.42 0.0403  45.79 2.61E-07 

rs697690 1 PER3 10.9 0.0043  rs1249873 1 PLXNA2 6.22 0.0447  45.76 2.64E-07 

rs3772074 2 TPO 1.01 0.6028  rs1893572 18 DCC 10.2 0.0061  45.61 2.81E-07 

rs17591814 1 PLA2G4A 0.36 0.8341  rs1345423 16 GRIN2A 1.14 0.5669  45.58 2.86E-07 

rs1867971 10 HK1 2.53 0.2823  rs6061892 20 CDH4 5.76 0.0562  45.3 3.23E-07 

rs2566539 2 CTNNA2 4.61 0.0996  rs2538990 7 CNTNAP2 7.84 0.0198  45.2 3.37E-07 

rs12613346 2 GALNT13 0.72 0.6981  rs1980846 2 ABCA12 11.88 0.0026  45.15 3.45E-07 

rs3118182 1 LAMC2 6.07 0.0482  rs7192535 16 PLCG2 11.82 0.0027  45.04 3.61E-07 

rs6679356 1 IL12RB2 0.31 0.8571   rs13361707 5 PRKAA1 13.8 0.001   44.9 3.84E-07 

 

Table 4.1. Table of the most significant pairwise interactions resulting from our analysis of the WTCCC Crohn 

Disease and Control data sets.  

 

C.3.   WTCCC 

Results from our analysis of the WTCCC Crohn Disease and 58C Control data set 

are included in Table 4.1.  Our evolutionary optimization procedure was run using the 

same parameters and block procedures described above.  Our analysis revealed a number 

of significant loci in different genetic regions that have not been described in previous 

analyses of interaction effects in this data set.  The approach in [142] only yielded 

interactions between SNPs that are on the same chromosome, and the most significant 

pair of interacting SNPs reported in this paper involved SNPs from the same gene that 
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had a high degree of correlation as measured by D’.  While the  method in [142]  reported 

the strongest interaction occurring between SNPs rs7154773 and rs10130695 (χ
2

8df = 

88.62, p < 8.8 x 10
-16

), our analysis found a slightly stronger interaction within the same 

locus between SNP rs7154773 and rs8011227 (χ
2

8df = 91.03, p < 2.9 x 10
-16

) (Our method 

also returned the previously reported rs7154773 and rs10130695).  These interactions 

were removed from our results because of the high degree of correlation between these 

two SNPs.  The reason our algorithm was able to detect these strongly correlated 

interactions is that they happened to be split up in two separate linkage blocks in our 

analysis.  Note that if either of these two SNP combinations had been within the same LD 

block (as is plausible, given their strong LD measures), our method would not have been 

able to detect these interactions.  The only SNP interaction published for the WTCCC 

Crohn Disease data set in [147] was measured to have a χ
2

8df of 30.961 (p=0.00014277) 

in our data set, and was thus not as significant as the results reported in Table 4.1.  

Similarly, the interactions found using the --fast-epistasis method in PLINK for this data 

set [1] were not as significant using our more general χ
2

8df statistic, and were also not as 

significant the interactions found in the pathway set using our approach (Table 4.2). The 

one exception was the interaction between rs4677143 and rs8006622 (χ
2

8df
 
 = 51.4, p = 

2.17 x 10
-08

).   

There are a several interesting features to highlight from our list of top results in 

Table 4.1.  There are a number of very strong interactions in our list of top results that 

had no detectable difference between cases and controls for either of the individual SNPs.  
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Second, the findings using our general χ
2

 statistic may be different from those calculated 

using the trend χ
2
 statistic used by PLINK’s --fast-epistasis method  [1].  Lastly, the 

genes reported in these interactions are largely different from those reported in previous 

pathway analyses of Crohn Disease.  In the absence of confirmatory results in separate 

GWAS or laboratory experiments, interpretation of these new interactions would be 

speculative.  However, some of the results are in keeping with previously observed 

results from pathway analyses of Crohn Disease GWAS [140].  For example, one of the 

interacting SNPs is found within the IL12RB2 gene.  Single-locus associations with this 

gene have been found in a number of GWAS, but typically at a different locus with a 

very strong marginal effect.  The SNP found in our analysis, rs6679356, had no marginal 

effect, but did have a strong interaction with PRKAA1, a signaling molecule related to 

cellular energy stores.  Further investigation into evidence supporting the disease 

association of these gene-gene interactions in other large-scale GWAS of Crohn Disease 

are necessary to confirm these findings.  
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SNP1   SNP2  Interaction 

ID Chrom χ2 p-value  ID Chrom χ2 p-value  χ2 p-value 

rs9436212 1 2.73 0.2553  rs11649428 16 3.62 0.1639  34.19 3.75E-05 

rs12751992 1 2.19 0.3351  rs1601668 12 0.09 0.9560  23.48 2.80E-03 

rs4677143 3 12.03 0.0024  rs8006622 14 6.33 0.0423  51.42 2.17E-08 

rs1584444 4 5.40 0.0671  rs2201677 4 2.38 0.3049  19.35 1.31E-02 

rs1584444 4 5.40 0.0671  rs12647454 4 1.20 0.5477  19.25 1.36E-02 

rs1584444 4 5.40 0.0671  rs6532916 4 1.69 0.4298  19.73 1.14E-02 

rs1584444 4 5.40 0.0671  rs10027689 4 1.88 0.3898  18.31 1.90E-02 

rs668394 6 3.30 0.1919  rs10156534 9 2.33 0.3116  37.66 8.70E-06 

rs511435 6 3.59 0.1661  rs10156534 9 2.33 0.3116  36.02 1.74E-05 

rs509544 6 3.14 0.2081  rs10156534 9 2.33 0.3116  36.84 1.23E-05 

rs524731 6 3.17 0.2045  rs10156534 9 2.33 0.3116  36.99 1.16E-05 

rs7773053 6 2.99 0.2248  rs17825620 14 0.62 0.7339  37.98 7.58E-06 

rs2358356 10 1.70 0.4280  rs9540533 13 0.71 0.6998  33.46 5.09E-05 

rs2478836 10 2.04 0.3611  rs7217284 17 1.44 0.4867  41.70 1.54E-06 

rs636646 13 4.13 0.1267  rs301630 16 7.04 0.0296  34.63 3.12E-05 

 

Table 4.2. A list of the top interactions from [1] computed using our objective function for 

comparison with our method. 

 

 

D. Discussion 

As shown in previous studies [132-134], parallel GPU computing techniques can 

substantially improve the performance of genetic analysis tools.  Our block-based 

evolutionary optimization strategy described in Chapter III was designed to improve the 

power and efficiency of gene-gene interaction detection by taking advantage of local LD 

structure. This parallel implementation of our algorithm extends this approach so that it 

can be more conveniently applied for exploratory analysis of genome-scale data.  We 

demonstrated that our GPU method has equivalent power using a standard multiplicative 

two-locus disease model that included marginal effects.  As has been shown previously, 
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this power is expected to be higher for our method when the sample size is large and 

when the causal allele is more common. Any differences in power between the two 

implementations (as shown in Figure 4.6) are due to random variations in our 

evolutionary algorithm or a slightly increased search space of the GPU implementation of 

the algorithm   

We expanded the set of genomic association analysis tools accelerated by our 

parallel implementation to include basic calculations of HWE and LD, and demonstrated 

that our method offers substantial improvements in performance relative to a widely cited 

method.  We demonstrated the utility of our approach by applying our analysis method to 

the WTCCC Crohn Disease data set.  In this analysis, we report a number of gene-gene 

interactions that were not previously reported by other large scale analyses of epistasis in 

the WTCCC Crohn Disease data set [1, 142, 147].  Further study of these interactions in 

other GWAS to confirm our findings is necessary. A previously conducted semi-

exhaustive analysis of 89,294 SNPs from this data set took 14 days on a single node of a 

computer cluster [1].  An analysis using BEAM on a data set of 47,727 SNPs took 

roughly 8 days [39, 136].   Our analysis of the set of 39,664 SNPs using our GPU 

evolutionary algorithm described above took slightly more than one hour.  We plan to 

expand our analysis of the WTCCC data in exhaustive analyses of pairwise interactions.  

However, prior to undertaking this large-scale task, the efficiency of our analysis method 

can be improved even further using CPU multiprocessing techniques.  The calculations 

reported above only take advantage of one CPU core and one GPU card at a time.  While 
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the speed improvement we observe is quite useful for studies of limited sets of SNPs, full 

scale analysis (which would take about 8 days with our current GPU code and about 195 

days with our CPU code, each only using one CPU core) cannot be offloaded onto a 

single GPU concurrently.  Thus, this type of analysis has more CPU involvement and will 

benefit substantially from multiprocessing techniques as well as the use of multiple 

separate GPUs [133].   

One limitation of our current software is that it will only run on devices 

compatible with NVIDIA CUDA – which is free for academic use, but is currently 

restricted to NVIDIA hardware.  Forthcoming versions of our code will allow our 

software to be run on hardware from other vendors by translating the necessary GPU 

functions from CUDA to OpenCL [148].  In our future research, we plan to expand the 

set of genomic association analysis tools accelerated by our parallel implementation, and 

we will also explore new ways of further improving the performance of our code as new 

hardware and techniques emerge. 
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CHAPTER V 

USING LASSO REGRESSION TO DETECT PREDICTIVE AGGREGATE 

EFFECTS IN GENETIC STUDIES 

 

A. Introduction 

Besides the associations with common complex diseases discussed in the previous 

chapters, GWAS of common variants have revealed numerous genetic loci that 

significantly modulate phenotypes for a wide assortment of other important clinical 

phenotypes ranging from the expected risk of certain malignancies [149, 150] to 

commonly measured clinical traits such as lipid levels [151].  These results are 

promising, but it is nevertheless increasingly evident that the common variants found in 

GWAS provide an incomplete picture of the underlying genetic risk for many of the 

familial diseases that have been studied [152-154].  Thanks to the increased availability 

of sequencing technologies and to large scale efforts such as the 1000 Genomes Project, 

exome scans are becoming increasingly popular in complex disease genetics.  These 

studies represent several new challenges in genetic analysis.   

Although a variety of machine learning methods have been used in GWAS [90], 

penalized regression methods are among the most flexible and are thus well-suited for 

analysis of data sets such as exome scans, which may contain both common and rare 

effects.  Numerous penalized regression methods have been shown to be effective for 

both common and rare variants [87, 89, 91, 152].  Zhou et al [152] proposed a 
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combination of group and lasso penalties to find both rare and common variants using 

sets of markers grouped by pathway and gene. However, their method was evaluated 

using family breast cancer registry data, and its performance is unclear for larger scale 

data from GWAS.   

To improve accuracy, some studies have imposed an arbitrary p-value cutoff to 

limit the number of genetic variants in the lasso model [91], whereas others have applied 

the model across all variants using the lasso penalty and a group penalty for the gene or 

pathway [152].  In this study, we propose an approach using a lasso model that first 

selects sets of genetic variants for each pathway and gene and then generates an 

optimized lasso model based on the selected marker sets. Taking advantage of 

information provided in the Genetic Analysis Workshop 17 (GAW17) exome data set, we 

can build two lasso models for each pathway or gene based on regression on disease 

status or on a quantitative trait. This approach is more time-consuming than optimization 

of a lasso model for the full set of variants. However, our strategy permits us to build 

individual optimal models on each of the variant sets related to the pathway and gene, 

allowing a more flexible and accurate model determination. In the remainder of this 

Chapter, we examine the performance of this new approach using the GAW17 exome 

scan simulation data set.  
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Figure 5.1. Multidimensional scaling plot showing population stratification in this 

simulation study.  In this graph, each point is an individual, and the two axes correspond to 

a reduced representation of the data in two composite dimensions (arbitrarily labeled C1 

and C2).  We generated 3 binary features to include in our model, assigning patients to their 

corresponding Asian (blue and teal), European (red and yellow), and African (green and 

purple) strata. 

 

B. Methods 

B.1.   Data Description 

The GAW17 data set contains 697 unrelated individuals from the 1000 Genomes 

Project genotyped at 24,487 autosomal SNPs from 3205 genes [155].  206 pathways from 

the Kyoto Encycolpedia of Genes and Genomes (KEGG) [144] are represented, spanning 

7,929 different SNPs and 1100 different genes.  We restricted our analysis to the 13,572 

non-synonymous variants in the study.  Each of the 200 simulated datasets includes the 

following information for each individual:  case-control status, 3 continuous quantitative 

traits (Q1, Q2, Q4), and 3 phenotypic features (Age, Smoking status, and Gender).  We 

used a multidimensional scaling analysis (Figure 5.1) based on genomewide pairwise 

identity-by-state distances computed in PLINK [98] to independently verify the 3 main 
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continental population strata described by other groups at GAW17 (African: Luhya, 

Luhya - additional, Yoruba-1, Yoruba-2, Yoruba-additional; Asian: Denver Chinese, 

Denver Chinese-additional, Han Chinese -1, Han Chinese-2, Han Chinese-additional, 

Japanese-1, Japanese-2, Japanese - additional; European: CEPH - 1, CEPH - 2, Tuscan, 

and Tuscan – additional) ) [156-158].  We then generated 3 binary features to include in 

our model, assigning patients to their corresponding Asian, European, and African 

populations.  Two population outliers were removed from our analysis. 

B.2.   Analysis 

We use the R software package glmnet in our analysis for lasso regression [92] 

and evaluate our models using a 5-fold cross-validation procedure for each simulation 

dataset. More specifically, we split the datasets into 5 independent folds of approximately 

equal size such that the case-control ratios in each population are maintained in each fold.  

Models are trained using 4 folds of the data and then tested using the remaining fold. This 

procedure is repeated for each of the 5 training and testing fold combinations.  To 

determine an optimal value λ* for each training set, we apply an inner loop of 10-fold 

cross-validation.  Then λ* is used on the entire training set to build the final model for the 

evaluation of the testing fold.  Finally, the averaged evaluation measures over the 5 

testing folds are reported as testing accuracy. In our analysis the evaluation measures are 

the area under the receiver operating curve (AROC) for logistic models and the mean 

squared error for continuous linear regression models.   

We consider three basic models:   
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1)  Lasso logistic regression with all genetic variants included 

2)  Lasso logistic regression for each of the (a) 3,205 genes or (b) 206 

pathways, followed by a lasso regression using the combined set of 

selected variants from all genes or pathways; and 

3)  Three separate lasso linear regression models for each of the continuous 

quantitative traits Q1, Q2, and Q4 for each pathway, followed by a lasso 

logistic regression over the entire set of selected variants across all 

pathways. 

For each of these strategies, we consider a genotype-only model, a combined 

model that includes phenotype information (Age, Smoking, and Gender), and a restricted 

model that is limited to a fixed number of variables.  In this study, the restricted models 

are limited to have a maximum of 50 variables.  

Model 1 is similar to most other applications of the lasso regression model, in 

which a single regularization parameter is used.  This model is convenient and 

computationally efficient, but its ability to detect local effects within biologically 

meaningful subsets of genes that are of interest in an exome study may be limited.  

Models 2 and 3 first determine optimized models for each gene or pathway, and then run 

a lasso regression over the combined set of variants selected for each gene or pathway.   
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 Model Training AROC Testing AROC # True Size N 

1 

Genotypes Only 0.57 0.55 3.57 179.43 200 

Genotypes Restricted 0.56 0.55 0.84 22.07 200 

Combined Model 0.82 0.82 1.27 28.38 200 

Combined Model Restricted 0.82 0.82 1.06 18.70 200 

2a 

Genotypes Only 0.61 0.54 9.98 545.33 50 

Genotypes Restricted 0.56 0.55 0.86 21.66 50 

Combined Model 0.83 0.81 2.78 94.32 50 

Combined Model Restricted 0.83 0.82 1.14 20.57 50 

2b 

Genotypes Only 0.73 0.54 11.65 348.86 150 

Genotypes Restricted 0.58 0.56 2.01 29.57 150 

Combined Model 0.85 0.78 9.35 228.43 150 

Combined Model Restricted 0.83 0.82 2.48 29.26 150 

3 

Genotypes Only 0.62 0.54 11.32 294.68 200 

Genotypes Restricted 0.58 0.56 1.75 22.84 200 

Combined Model 0.83 0.82 3.94 64.17 200 

Combined Model Restricted 0.83 0.82 2.04 20.40 200 

 

Table 5.1. Prediction results for various model types. Averaged results from a 5-fold 

evaluation procedure on N simulation datasets.  “Training AROC” was obtained in the course 

of the R package glmnet’s internal 10 fold cross-validation on the training sets.  “Testing 

AROC” was determined by applying each of the trained models to the 5 independent testing 

sets. “# True” is the average number of causal simulation markers included, and “Size” is the 

average number of variables in each model.  

 

C. Results  

C.1.   Performance of the models 

Results for all the models are shown in Table 5.1.  Each of the 200 simulated 

datasets was analyzed separately.  Because model 2 had a substantially longer running 

time, it was evaluated for only 50 (Model 2a) and 150 (Model 2b) randomly selected 

datasets.  To determine the baseline performance for our models, we sampled several 

simulation datasets using 180 random variants (corresponding to the average size of the 

basic “Genotypes Only” Model 1 result). The expected average AROC for a randomly 
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selected set of variants was ~0.49.  Similarly, we used glmnet to compute optimal models 

from the set of 160 causal simulation markers, and determined that the average AROC of 

this optimal set of genotypes was 0.59.  This value represents the average predictive 

accuracy of an optimized subset of the genetic variants responsible for assigning disease 

status in the simulation, and is considered the target value of our models that use only 

genotype data.  As observed in Table 5.1, the purely genetic models had AROC values 

closer to 0.55 for all models considered. The combined models with the phenotypic 

features had an AROC of 0.82, a universally higher average testing AROC value 

independent of any genotypic combination.  Because of the high marginal effect sizes of 

the phenotypic variables (Age, Gender, and Smoking status), these effects frequently 

overpowered the effect sizes of genetic markers included in the lasso models.  The 

unrestricted lasso models often resulted in solutions with a large number of variablD.es, 

limiting the practical utility of these models. The testing AROC values of the restricted 

models were often the same as or better than those of the unrestricted models, indicating 

better generalization ability for the restricted models. However, the predictive 

performance of the genetic component did not reach the best possible level and the 

models included larger numbers of non-causal variants.  The use of gene and pathway 

information did not result in meaningful improvements in the regression models with 

respect to predictive capability.    
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  Model 1 Model 3 

 Gene SNP Count MAF Causal Gene SNP Count MAF Causal 

G
en

e 
O

n
ly

 

FLT1 C13S523 35 0.0667 Y FLT1 C13S523 71 0.0667 Y 

ADAMTS7 C15S3360 22 0.0029 N SRPR C11S6885 63 0.0014 N 

TG C8S4379 17 0.0050 N TG C8S4379 61 0.0050 N 

MDN1 C6S4146 15 0.0050 N RPA3 C7S297 58 0.0007 N 

GOLGA1 C9S4013 13 0.0308 N LAMB3 C1S10178 54 0.0007 N 

FLT1 C13S522 12 0.0280 Y RPL27 C17S2981 52 0.0007 N 

G
en

e 
R

es
tr

ic
te

d
 

FLT1 C13S523 19 0.0667 Y FLT1 C13S523 44 0.0667 Y 

TEX14 C17S3819 9 0.0043 N FLT1 C13S522 24 0.0280 Y 

FLT1 C13S522 8 0.0280 Y CYP3A43 C7S2324 21 0.0976 N 

UBA3 C3S2197 7 0.0108 N TG C8S4379 18 0.0050 N 

GOLGA1 C9S4013 7 0.0308 N PRKCA C17S4578 16 0.1664 Y 

CYP3A43 C7S2324 7 0.0976 N PIK3C2B C1S9189 15 0.0065 Y 

C
o
m

b
in

ed
 

age age 200 NA Y age age 200 NA Y 

smoke smoke 163 NA Y smoke smoke 185 NA Y 

FLT1 C13S523 49 0.0667 Y FLT1 C13S523 81 0.0667 Y 

FLT1 C13S522 16 0.0280 Y FLT1 C13S522 34 0.0280 Y 

PIK3C3 C18S2492 7 0.0172 Y PIK3C3 C18S2492 18 0.0172 Y 

HFE C6S853 3 0.0036 N PRKCA C17S4578 8 0.1664 Y 

ARNT C1S6533 3 0.0115 Y ARNT C1S6533 8 0.0115 Y 

ACP1 C2S1 2 0.0093 N UBA3 C3S2197 7 0.0108 N 

C
o
m

b
in

ed
 R

es
tr

ic
te

d
 age age 200 NA Y age age 200 NA Y 

smoke smoke 163 NA Y smoke smoke 180 NA Y 

FLT1 C13S523 49 0.0667 Y FLT1 C13S523 75 0.0667 Y 

FLT1 C13S522 17 0.0280 Y FLT1 C13S522 32 0.0280 Y 

PIK3C3 C18S2492 7 0.0172 Y PIK3C3 C18S2492 17 0.0172 Y 

ARNT C1S6533 3 0.0115 Y UBA3 C3S2197 6 0.0108 N 

LARGE C22S1540 3 0.0201 N ARNT C1S6533 6 0.0115 Y 

MMS19 C10S4869 3 0.0050 N KDR C4S1861 5 0.0022 Y 

 

Table 5.2. Feature Selection. Table of the top most frequent variables occurred in at least 

4/5 trained models for Models 1 and 3. All Models were run for the 200 simulation 

datasets.  “Count” is the number of times a given variable was observed in 4/5 trained 

models.  “Causal” indicates the variables were those used to determine disease risk by the 

GAW17 simulators. “MAF” is minor allele frequency.  
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C.2.   Variables selected by the models 

Table 5.2 shows results from each experiment for the most frequent variables that 

were selected in at least 4 out 5 trained models within a simulation dataset for Models 1 

and 3.  These results reveal that the true variants detected were predominantly common 

variants, but our model may also have some capacity to identify true rare variants. The 

gene and pathway based regression approaches did not seem to produce substantially 

different AROC values or find different casual variants than those found using the simpler 

lasso approach.  However, as shown in Table 5.2, the proportion of those casual variant 

occurring was higher in Model 3, indicating a more robust model.   

 

E. Discussion  

In this paper, we assessed the utility of several different strategies for analyzing 

exome simulation data with a range of causal allele frequencies in the presence of 

quantitative and phenotypic information.  A comparison of the three proposed approaches 

indicates that the simple lasso regression model may be an efficient means to determine 

truly associated variants, but it must be modified to reduce the number of variables to 

avoid unreasonably large models and overfitting. As discussed in other studies of these 

data at GAW17, the primary genetic effects that were expected to be observed in this 

study were those from common variants such as C13S523 and C13S522 in FLT1.  As 

shown in Table 5.2, individual genetic variants were identified consistently in 4 out 5 

training models in only a minority of simulation analyses.  For example, FLT1-C13S523 
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occurred in at most 81 out of 200 simulations in the “Combined” analysis for Model 3.  

Some loss of power was expected in our analysis, because we developed our models 

using 80% of a simulation dataset to obtain an independent evaluation of our methods’ 

predictive ability.  However, if we consider the same model calculated on all 200 

replicates using the entire set of patients (no training set), then FLT1-C13S523 is 

included in 132 of 200 datasets. In larger studies or in studies that have a pre-existing 

independent sample to validate the predictive model, this diminished power will not 

affect our method as strongly and our model may be better able to discern genetic 

predictors.   

Some variants, for example PIK3C3, appeared much more frequently in the 

models that combined genotypic and phenotypic effects than in models that considered 

only genotypes.  To further investigate this finding, we built logistic regression models 

for Y and PIK3C3, adjusting for either only population variables or both population and 

phenotypic variables.  PIK3C3 was significant (α= 0.01) in 22 out of 200 datasets for the 

model adjusted for population only and in 105 out of 200 datasets for the model adjusted 

for both population and phenotypic variables, providing an explanation for this 

observation. Our analysis also indicates a significant relationship in the linear regression 

for Q1 and PIK3C3 adjusted for population only (184 out of 200 datasets) and adjusted 

for both population and phenotypic variables (197 out of 200 datasets) at α = 0.01. This 

may also explain more frequent occurrence of PIK3C3 in Model 3 compared with Model 

1 for the combined models.        
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Our method was able to reliably ascertain some true variants using subsets of the 

data for training. In addition, the signs of the regression coefficients for the frequently 

selected variants were highly consistent (about 99%) over different simulation datasets.  

However, the ability of our model to find true variants was also accompanied by a large 

number of non-causal variants.  Because several long-range correlations exist within the 

GAW17 data set, a portion of the variants classified as non-causal in our study may 

actually be truly associated with the disease state or phenotypic traits.  The predictive 

ability of the lasso model using only genetic information is limited, because none of the 

genomic subsets examined had a predictive ability that was comparable to that of the 

phenotypic variables.  Nevertheless, incorporating these phenotypic variables into our 

model increases the proportion of causal genetic variants found using our method.  

Our method is able to detect some causal rare variants, but the results do not 

indicate that this is a promising approach for the general analysis of exome sequencing 

data that includes causal rare variants.  Identifying optimal sets of genetic variants for 

every gene and pathway in a dataset may take considerably higher computation time than 

the standard lasso model and is expected to generate robust predictive models only when 

there are several adequately powered common causal variants to distinguish case subjects 

from control subjects.  While the ability of our method to reliably detect true rare variants 

was limited, our results indicate that our modified approach for optimizing the lasso 

regression for genetic prediction is an improvement over the standard lasso approach. 
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Future work will involve the application and evaluation of our improved lasso strategy to 

develop predictive genetic models for other large GWAS.   
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CHAPTER VI 

EXPLORATION OF miRNA GENOMIC VARIATION  

ASSOCIATED WITH COMMON HUMAN DISEASES 

 

A. Introduction 

In the previous chapters, we have presented analysis methods and computational 

tools that utilize useful genomic information like local linkage disequilibrium structure or 

biochemical pathway information to improve GWAS analysis.  For heritable 

multifactorial diseases, genotypic variation is thought to be only one component of the 

pathogenesis [83, 159].  In the past few years, a number of studies have sought to analyze 

the extent to which genomic variation itself may pathologically modulate transcriptional 

activity in disease related genes.  However, data directly relating expression and variation 

information within a GWAS population are currently limited.  To better understand 

possible relationships between genomic variation and mechanisms of disease-related 

expression changes, we present an analysis framework to search for genetic variation at a 

subset of loci related to miRNA. In this chapter, we discuss a general methodological 

framework to incorporate domain knowledge in order to investigate areas of genomic 

variation as they relate to molecular regulatory targets proven to be critical in numerous 

cellular processes.  As discussed above, GWAS are designed to give an accurate 

measurement of common inherited variation (MAF >0.05) as measured at SNPs at 

calculated intervals across the genome in case and control populations.  The ultimate 
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goals of GWAS research are improvements in the understanding of disease pathogenesis, 

in the accuracy of disease prediction, and in the development of personalized approaches 

to therapy based on genotype.  As knowledge of the genome and molecular biology has 

increased, there has been a growing appreciation for the numerous regulatory processes 

that play essential roles in the process from gene transcription to protein function.  While 

there are many components involved in these regulatory processes, one of the more 

important components that can be studied with GWAS is a relatively new class of non-

coding RNAs called microRNAs (miRNAs) [160]. 

miRNAs comprise a large family of ~20-nucleotide-long RNAs that have been 

shown to perform key post-transcriptional regulation of gene expression in a wide variety 

of cellular processes [161].  Recent estimates in mammals have indicated that miRNAs 

might control the activity of between 30 and 50% of all protein-coding genes, and 

changes in their expression or regulation are associated with at least 134 separate human 

diseases [160-165].  miRNAs exist in the genome as precursors known as pri-miRNAs 

that are either transcribed by RNA polymerase II from independent genes or that are 

introns of protein-coding genes[161]. With the help of miRNA machinery (RNase III 

enzymes Drosha and Dicer), the pri-miRNA is converted into its active ~20 nucleotide 

form.  Numerous other cofactors and accessory proteins may be involved in their 

maturation and regulation.   There is evidence to support a wide variety of ways that 

miRNAs regulate their targets and that they are regulated themselves [161].  Studies of 

miRNA-associated genomic variation have provided evidence that SNPs within miRNA 
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sequence targets as well as within miRNA related machinery can substantially modulate 

disease risk [160, 166-169].  Clear and extensive evidence has linked genomic variation 

measured at SNPs with alterations in miRNA-related sites that modulate cancer risk 

[160].  Saetrom et al used HapMap SNPs in conjunction with local LD patterns near 

miRNA-related sites to identify high-ranking SNPs in a breast cancer GWAS [170].  

From this analysis, a SNP in a miR-125b target site (rs1434536) upstream of bone 

morphogenetic protein receptor type 1B was validated, and miR-125b was shown to 

differentially regulate the C and T polymorphisms at that site, providing a mechanism 

that explained the observed disease risk associated with the SNP.  

Numerous other examples of genomic variation related to functional miRNA 

modifications can be taken from cancer biology, but as mentioned above, miRNAs 

themselves have been implicated in a wide variety of diseases.  Furthermore, recent data 

from an animal model have provided direct evidence of genomic variations that modify 

miRNA activity [54].  Despite this growing body of evidence in support of the vital role 

of miRNAs in molecular pathophysiology, few studies besides those related to cancer 

have considered miRNA-related SNPs in GWAS populations [169, 171].  To better 

understand possible relationships between genomic variation and disease related 

expression changes, we propose an analysis of the genetic variation at miRNA loci.  In 

this Chapter, we will use existing resources to build up a subset of miRNA-associated 

regions in which to analyze common SNP variations as measured in GWAS [172, 173].  

We consider miRNA variation in SNPs within 100kb of a known miRNA or a gene 
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  Cases 

BD 1868 
CAD 1988 
CD 1748 
RA 1860 

T2D 1924 
 

Table 6.1. Number of cases used in each study. Each analysis included 1480 controls and 

720 miRNA SNP sites.  

 

 

sequence involved in miRNA processing.  We then investigate these locations using the 

WTCCC GWAS data to determine a set of miRNA-related variations associated with 

these common diseases that can be used to follow up in laboratory studies to better 

understand possible pathophysiological aspects of disease progression, maintenance, 

and/or treatment.  

 

B. Methods 

We once again investigated disease associations in the WTCCC populations using 

the recommended guidelines for data analysis as described in Chapter IV above [39].  We 

accessed the Affymetrix GeneChip Mapping 500K array set called by the CHIAMO 

algorithm for the 1958 birth control cohort, the National Blood Service control cohort, 

and the following case cohorts: Crohn Disease (CD), Bipolar Disorder (BD), Coronary 

Artery Disease (CAD), Rheumatoid Arthritis (RA) and Type II Diabetes (T2D) [39].  For 

each data set, we used the 1958 birth cohort as our control population.  We excluded a 

number of subjects (as listed the “exclusion-list-05-02-2007.txt” file accompanying the 

GWAS data), and any SNPs not conforming to the criteria: (1) missing data proportion > 
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  snp chrom miRNA χ
2
 p-value 

BD rs2790466 10 hsa-mir-607 14.467289 7.22E-04 

 
rs1002095 9 hsa-mir-2861 12.370379 2.06E-03 

      CAD rs1108183 1 hsa-mir-3659 16.797252 2.25E-04 

 
rs6792339 3 hsa-mir-3921 12.106655 2.35E-03 

      CD rs8060598 16 hsa-mir-3181 22.141633 1.56E-05 

 
rs2304442 3 hsa-mir-4271 13.732693 1.04E-03 

      RA rs845787 20 hsa-mir-663 10.901896 4.29E-03 

      T2D rs10051407 5 hsa-mir-548f-3 14.681385 6.49E-04 

  rs2280401 19 hsa-mir-150 13.67183 1.07E-03 

 

Table 6.2. Table of the most significant miRNA-related SNPs from the 5 WTCCC data sets. 

 

0.05, (2) MAF < 0.05 and missing data proportion > 0.05 or MAF < 0.01, (3) combined 

control group (58C+National Blood Service) HWE Exact Test p-value < 5.7e-7, (4) Inter-

control group (58C vs NBS) 1df Trend Test p-value < 5.7e-7 (as measured by WTCCC) 

(5). 58C vs NBS 2df General Test p-value < 5.7e-7 (as measured by WTCCC). CHIAMO 

SNP measurements with a score < 0.9 were considered missing data. 

We updated the information obtained in the WTCCC to be consistent with current 

genomic info for hg19/Genome Reference Consortium Human genome build 37 

(GRCh37). Data about the reference positions for SNPs in the study were downloaded 

from NCBI dbSNP (build 132) for GRCh37, information about genetic locations in were 

downloaded from RefSeq using the UCSC Genome Browser [143], miRNA information 

(unique ids and GRCh37 coordinates) was downloaded from Version 17 of miRbase 

(mirbase.org). We mapped each miRNA to the nearest SNP in the WTCCC, and then 

excluded any miRNAs that were not with 100kb of any SNP.  We mapped the targets to 
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the WTCCC data in groups using the gene annotations and position information in the 

dbSNP annotation.  We also included SNPs that were within 100kb of the miRNA 

processing machinery genes: DROSHA, DGCR8, XPO5, RAN, DICER1, TARBP2, 

GEMIN4, and TNRC6B.  A summary of the data sets is included in Table 6.1.   

  

C. Results 

We calculated χ
2
 values for all single SNPs in our data set and reported results for 

χ
2
 values achieving significance at α = 0.005.  We then calculated χ

2
 values for all 

pairwise interactions in each data set, and reported values achieving significance at α = 5 

x 10
-5

.  We constructed quantile-quantile (Q-Q) plots by plotting the ordered list of log-

transformed p-values for the single locus analysis (y-axis) against the set of expected 

values obtained from the theoretical null distribution (Figure 6.1). In these plots, when 

the distribution of p-values is equal to that expected from the null distribution, the points 

will all be observed on the diagonal.  Our findings are summarized in Tables 6.2 and 6.3.  

hsa-mir-663 (RA, Table 6.2) and hsa-mir-150 (T2D, Table 6.2) have been implicated in 

immune [174, 175] and inflammatory and/or oxidative processes [176, 177]. Other well-

studied SNPs in our results include hsa-mir-21, which we found to have an interaction 

with a SNP in hsa-mir-4317 in the CAD data set (Table 6.3).  There is evidence linking 

hsa-mir-21 with regulation of inflammatory processes [178, 179], and this miRNA has 

also been implicated in coronary artery disease [180].  Further evaluation of these results 

along with validation in other large GWAS is necessary.   
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Figure 6.1. Quantile-Quantile Plots from 

the single locus analysis of miRNA-

related SNPs for the 5 WTCCC Diseases 

studied: Bipolar Disorder, Coronary 

Artery Disease Crohn Disease, 

Rheumatoid Arthritis, and Type II 

Diabetes.  These plots show the deviation 

of the observed -log10 (p-value) 

distribution calculated using the χ
2

2df test 

at the miRNA-related loci (y-axis) from 

the expected (theoretical) -log10 (p-value) 

distribution.  
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  SNP1 SNP2 Interaction 

  snp chrom miRNA χ
2
 p-value snp chrom miRNA χ

2
 p-value χ

2
 p-value 

BD rs4719842 7 hsa-mir-148a 6.14 4.65E-02 rs11864516 16 hsa-mir-662 12.10 2.36E-03 38.59 5.86E-06 

 
rs10936410 3 hsa-mir-1263 9.50 8.63E-03 rs10080387 6 hsa-mir-548b 6.00 4.97E-02 38.58 5.89E-06 

 
rs2790466 10 hsa-mir-607 14.47 7.22E-04 rs2682714 12 hsa-mir-548c 2.23 3.27E-01 36.29 1.55E-05 

             CAD rs1292053 17 hsa-mir-21 7.60 2.24E-02 rs163750 18 hsa-mir-4317 2.18 3.36E-01 35.48 2.19E-05 

             CD rs8060598 16 hsa-mir-3181 22.14 1.56E-05 rs8099430 18 hsa-mir-3929 0.79 6.75E-01 40.64 2.43E-06 

 
rs8060598 16 hsa-mir-3181 22.14 1.56E-05 rs1893321 18 hsa-mir-187 0.94 6.27E-01 40.07 3.11E-06 

 
rs8060598 16 hsa-mir-3181 22.14 1.56E-05 rs192808 19 hsa-mir-935 0.31 8.56E-01 39.96 3.25E-06 

 
rs13377158 10 hsa-mir-3611 9.23 9.89E-03 rs8060598 16 hsa-mir-3181 22.14 1.56E-05 38.41 6.32E-06 

 
rs2304442 3 hsa-mir-4271 13.73 1.04E-03 rs8060598 16 hsa-mir-3181 22.14 1.56E-05 37.91 7.82E-06 

 
rs7577243 2 hsa-mir-149 8.97 1.13E-02 rs8060598 16 hsa-mir-3181 22.14 1.56E-05 37.06 1.12E-05 

             RA rs2754163 14 hsa-mir-208b 9.38 9.18E-03 rs12928353 16 hsa-mir-365-1 8.68 1.30E-02 34.21 3.72E-05 

             T2D rs2624183 5 hsa-mir-4280 1.37 5.03E-01 rs2280401 19 hsa-mir-150 13.67 1.07E-03 38.28 6.68E-06 

  rs300917 4 hsa-mir-3139 0.94 6.25E-01 rs1332311 9 hsa-mir-491 9.27 9.69E-03 35.86 1.86E-05 

 

Table 6.3. Table of the most significant pairwise interactions between miRNA-related SNPs from 5 WTCCC 

data sets. 

 

D. Discussion 

Here we have presented an analysis that used information about the genomic 

locations of genes related to miRNA and its processing machinery to explore potential 

miRNA-related associations in several GWAS.  Our use of biological knowledge to 

explore sets of interacting SNPs related to miRNA is intended to be complementary to 

other methods.  By considering the variation in this subset of results, we hope to reveal 

meaningful statistical associations related to a subset of the genome in which 

polymorphisms may directly impact the regulation of downstream targets.  Our results 

have shown a number of potentially meaningful associations, including findings at some 

miRNA sites for which there is direct experimental evidence of miRNA modulation of 
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cellular processes that may be related to the diseases considered [175, 176].  We did not 

find any associations with the miRNA processing machinery that met our cutoff criteria.  

The strongest result we found in this subset was an association in the T2D data set with 

SNP rs784567 in gene TARBP2 that did not meet our cutoff criteria (χ
2
 = 10.168, 

p=0.0062).  The exploratory analysis presented here has highlighted a number of findings 

that we hope to look into in future research.  For example, we have explored the set of 

interactions within this group of miRNA-related SNPs, but a more complete assessment 

of miRNA SNP interactions with other (non-miRNA) SNPs in the WTCCC study is 

warranted.  The miRNA analysis framework presented here is fully compatible with the 

GPU-accelerated tools presented in Chapter IV above, allowing us to more easily 

consider larger data sets in the future.    
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CHAPTER VII 

CONCLUSION 

 

In this thesis, we have presented computational approaches and integrative 

analysis strategies to overcome several current challenges in the analysis of GWAS.  

Methods described in the above work have addressed important issues related to gene-

gene interactions, high-performance computing for genetic studies, predictive modeling 

of genetic disease risk, and investigations into candidates for disease-associated 

functional variation.  We applied these methods to carefully designed simulated models 

of genetic disease as well as to case control data sets from real GWAS.  Our gene-gene 

interaction analysis method used an adaptive evolutionary optimization framework that 

integrated local LD information to reduce the dimensionality of the search for SNP 

combinations.  Using simulation data, we showed that our method was able to outperform 

one of the most powerful competing methods in terms of both power and computational 

efficiency.  We improved this analysis approach to be even more efficient by developing 

a parallel optimization algorithm that takes advantage of state-of-the-art high 

performance computing methods for GPUs.  In our analysis of GWAS data from the 

WTCCC, we integrated information about the genomic location of biochemical pathways 

to explore a set of biologically relevant gene-gene interactions.    

Next, we presented an improved penalized lasso regression strategy to build more 

accurate predictions of disease risk based on genomic and phenotypic information for 
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case control studies.  Using this approach on a simulated exome scan based on data from 

the 1000 Genomes project, we were able to model disease risk using common and rare 

genetic variation in combination with several simulated continuous phenotypes.  While 

the genotypic predictive models were limited by the nature of the data, our results 

indicate that our modified pathway-based penalized regression procedure yields more 

robust results than the more commonly applied standard lasso model.  Further 

investigation of this method in other GWAS is warranted.   

Lastly, we conducted an exploratory analysis of genomic variation associated 

with miRNA dysregulation.  We found several significant results for each of the 5 

WTCCC diseases studied.  More research is necessary to appreciate the mechanisms by 

which these associations are related to pathogenic molecular alterations, and future 

studies will expand on these analyses using additional data sources. 
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