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SUMMARY

We investigate the Schwarzian derivatives of a polynomial and its iterates, where the polyno-

mial is defined over the field of complex numbers. The escape-rate function of the polynomial play

an important role in the study of polynomial dynamics. The study of the sequence of Schwarzian

derivatives {S f n } leads to a connection with the escape-rate function. By using the cocycle property

of the Schwarzian derivative, we show that S f n /d 2n converge locally uniformly to −2(∂G f )2 on the

complement of some compact subset of C, where G f is the escape-rate function of f .

The polynomial basin of infinity admits a natural metric, which keeps a lot of polynomial dynam-

ics information; see [11] and [12]. The quadratic differential S f n d z2/d 2n determines a Riemannian

metric on the complement of f n ’s critical points. As n →∞, this sequence of metric spaces has an

ultralimit, which is a complete geodesic space with non-positive curvature. And by the properties

inherited from the the dynamics of the polynomial, we can naturally embed the basin of infinity

isometrically to the ultralimit.

We also investigate rational functions with identical measure of maximal entropy. For a given ra-

tional function f : CP 1 →CP 1 with degree d ≥ 2, there is a unique probability measure µ f associated

with it, which achieves maximal entropy logd among all the f -invariant probability measures. From

the work of Beardon, Levin, Baker-Eremenko, Schmidt-Steinmetz, etc (1980s-90s), the set of polyno-

mials with identical measure of maximal entropy has been characterized. We construct examples of

non-exceptional rational functions with common measure of maximal entropy, and they won’t share

an iterate up to precomposition by any Möbius transformation. Following from Levin-Przytycki’s

viii



SUMMARY (Continued)

result [29] (1997), we characterize the general sets of rational functions with identical measures of

maximal entropy. Finally, we sum up some known results related to the set of preperiodic points

and maximal entropy measure, and then provide some necessary and sufficient conditions for two

rational functions sharing an iterate.
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CHAPTER 1

INTRODUCTION

The study of the dynamics of rational functions on the Riemann sphere started in the early 20th

century; see [17], [18], [19] and [25]. In the last three decades, it became popular partly due to the de-

velopment of the modern computer graphics. In this thesis, we focus on the study of Schwarzian

derivatives of polynomial iterates, and characterizing the set of rational functions with identical

measure of maximal entropy. The contents of this thesis are contained in the papers [41] and [42].

1.1 Schwarzian derivatives

Recall that the Schwarzian derivative of a holomorphic function f on the complex plane is de-

fined as

S f (z) = f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

It is well known that S f ≡ 0 if and only if f is a Möbius transformation. We can view the Schwarzian

derivative as a measure of the complexity of a nonconstant holomorphic function.

Let f : C→C be a complex polynomial with degree d ≥ 2. In this thesis we examine the sequence

of Schwarzian derivatives of the iterates f n ( f composed with itself n times) of f . Specifically, we

look at the sequence {
S f n (z)

d 2n

}
n≥1

and view it as a sequence of meromorphic functions or quadratic differentials on the Riemann sphere.

We are interested in understanding the limit as n →∞.

1
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Before we address any statement of this sequence, let’s take a look at one of the simplest exam-

ples.

Example 1. Let f (z) = zd with d ≥ 2, then we get

S f n (z) = 2(d n−1)(d n−2)−3(d n−1)2

2z2

= 1−d 2n

2z2

Since d ≥ 2, the sequence of normalized Schwarzians converges,

lim
n→∞

S f n

d 2n = lim
n→∞

1−d 2n

2d 2n z2 =− 1

2z2

locally uniformly on C\{0}.

The normalized Schwarzians as quadratic differentials
{

S f n

d 2n d z2
}

converge to − 1
2z2 d z2. The as-

sociated conformal metric d s = |d z|
|p2z| makes C\{0} isometric to an infinite cylinder of radius 1p

2
. The

cylinder’s closed geodesics are the horizontal trajectories of the quadratic differential − 1
2z2 d z2.

Local convergence. Let G f be the escape-rate function of f , which is defined as

G f = lim
n→∞

log+ | f n |
d n ,

where log+ |x| = max(log |x|,0). Let Precrit( f ) = ∪n>0{c ∈ C|( f n)′(c) = 0} be the union of the critical

points of f and their backward orbits. Note that its closure Precrit( f ) contains the Julia set J ( f ) when

f is not conjugate to zd .
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Theorem 1.1.1. Let f be a polynomial with degree d ≥ 2 and not conformally conjugate to zd . Then

the sequence of Schwarzian derivatives S f n satisfies

lim
n→∞

S f n (z)

d 2n =−2

(
∂G f (z)

∂z

)2

,

locally uniformly on C\Precrit( f ).

Remark. The choice of normalization 1
d 2n allows us to focus on the basin of infinity. Other normaliza-

tions might detect interesting properties of J ( f ). In Corollary 2.2.4, we show that
{

S f n

d 2n d z2
}

converge

on the entire Fatou set, in the sense of L
1
2

loc convergence.

Sometimes, people are also interested in the nonlinearity of a nonconstant holomorphic func-

tion onC. Similar with Theorem 1.1.1, we have limn→∞
N f n d z

d n = ∂G f locally uniformly onC\Precrit( f ),

where N f = f ′/ f ′′; see Theorem 2.2.3.

Metric space convergence. Let f be a polynomial with degree d ≥ 2. Each S f n determines a confor-

mal geodesic metric dn on the complement of the critical points of f n , given by d s =
√√√√∣∣∣∣∣− S f n

d2n d z2

∣∣∣∣∣. From

this sequence of geodesic spaces, we obtain an ultralimit (Xω,dω, aω); see Chapter I §5 [8] for more

details about the ultralimit. The limit space is a complete geodesic space.

The escape-rate function G f also determines a conformal metric on the basin of infinity Xo = {z ∈

C| f n(z) →∞} of f , given by d s =p
2|∂G f |. Given a choice of base point a ∈ Xo\Precrit( f ), we denote

this pointed metric space by (Xo ,do , a); compare [11] or [12] where this metric already appeared.

When the Julia set is not connected, the ultralimit Xω can be described as a “hairy" version of Xo .
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Figure 1.1.1. Level set structure of G f for a cubic polynomial and flat metric structure on the basin

of infinity

Theorem 1.1.2. Let f be a polynomial with degree d ≥ 2 and disconnected Julia set. There exists a

natural embedding from Xo( f )\Precrit( f ) to Xω which extends to the metric completion (X o ,do , a) as

an isometric embedding.

The metric space Xω is obtained by attaching a real ray to X o at each point in Precrit( f ), and

attaching some non trivial space (containing infinitely many real rays) to each connected component

of X o\Xo .

Remark. For J ( f ) disconnected, we use the tree structure on the basin of infinity to show the embed-

ding is an isometry. For J ( f ) connected, we also have a locally isometric embedding of Xo to Xω; this
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follows easily from the argument in the proof of the above theorem. But we do not expect the em-

bedding to be a global isometry. The reason we use the ultralimit to study the limiting space is that

the spaces are not compact and the metrics dn are not uniformly proper, so more classical notions

of convergence like Gromov-Hausdorff convergence won’t work. We are not quite sure whether the

ultralimit Xω depends on the ultrafilter ω or not. But from the above theorem, the only things that

might depend on the ultrafilter are the spaces attached to X o\Xo .

Conjugacy classes. The study of {S f n } has grown out of an attempt to better understand the mod-

uli space Md of polynomials (the space of conformal conjugacy classes). The geometric structure

( f , Xo , |∂G f |) has been studied in [12] and used to classify topological conjugacy classes. We can also

use the Schwarzian derivative to classify polynomials with the same degree. We define an equiv-

alence relation on the set of polynomials with degree d ≥ 2 as: f ∼ g if S f d z2 = A∗(Sg d z2), for

A(z) = az +b some affine transformation. From this definition, polynomials f and g are equivalent

to each other if and only if f = B ◦ g ◦ A with A and B affine transformations, and if and only if f

and g have the same critical set (counted with multiplicities) up to some affine transformation, i.e.

A(Crit( f )) = Crit(g ) for some affine transformation A. See Lemma 2.1.2 for details. Note that affine

conjugate polynomials are equivalent in this sense.

Theorem 1.1.3. Let f and g be polynomials with the same degree d ≥ 2. Then the following are equiv-

alent:

• f n ∼ g n for infinitely many n ∈N∗.

• f n ∼ g n for all n ∈N∗.
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• f and g have the same Julia set up to some affine transformation (A(J (g )) = J ( f ) with A affine

transformation).

Polynomials f and g which satisfy the above conditions are called strongly equivalent. Each such

strong equivalence class consists of finitely many affine conjugacy classes (no more than the order of

the symmetry group of the Julia set).

Notes: the above theorem relies on the classification of polynomials with the same Julia set, and

the proof uses the main result of [6] (see §2.1.2 for other references and historical context).

1.2 Measures of maximal entropy

Let f : P1 →P1 be a rational function with degree d ≥ 2. For each zo ∈P1, we can define a proba-

bility measure for n ≥ 1,

µn,zo =
1

d n

∑
f (z)=zo

δz ,

here the sum is taken over all the roots of f (z) = zo , counted with multiplicity. In 1965, Brolin [9]

showed that for each polynomial f , with at most two exceptions for zo , µn,zo converges to some

probability measure µ f independent of the choice of zo . Actually, when f is a polynomial, µ f is

the equilibrium measure of the filled Julia set of f (the set of points with bounded orbits under the

iteration of f ). In 1983, Lyubich [30] and independently Freire-Lopez-Man̄é [21] generated this result

to the the case of rational functions. They showed that this µ f is the unique one supported on the

Julia set, achieving the maximal entropy logd among all the f -invariant probability measures; this

maximal measure is also discussed in [23].



7

We focus on characterizing the set of rational functions with identical measure of maximal en-

tropy. It is well known that µ f = µ f n for all iterates f n of f , and commuting rational functions have

common measure of maximal entropy. For case of polynomials, having the same measure of maxi-

mal entropy is equivalent to having the same Julia set. During the 1980s and 90s, pairs of polynomials

with identical Julia set were characterized; see [37], [7], [6] and [4]. The strongest result is: given any

Julia set J of some non-exceptional polynomial, there is a polynomial p, such that the set of all poly-

nomials with Julia set J is

{σ◦pn |n ≥ 1 and σ ∈ΣJ }, (1.2.1)

where ΣJ is the set of complex affine maps on C preserving J . By definition, a rational function

is exceptional if it is conformally conjugate to either a power map, ±Chebyshev polynomial, or a

Lattès map. From (1.2.1), if f and g are two non-exceptional polynomials with µ f = µg , then there

exists σ(z) = az +b preserving µ f with

f n =σ◦ g m for some m,n ≥ 2. (1.2.2)

However, unlike the polynomial case, there exist non-exceptional rational functions with the

same maximal measure but not related by the formula (1.2.2).

Theorem 1.2.1. There exist non-exceptional rational functions f and g with degrees ≥ 2 and µ f =µg ,

but

f n ̸=σ◦ g m for any σ ∈ PSL2(C) and n,m ≥ 1. (1.2.3)
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Specifically, for R ,S,T being rational functions with degrees ≥ 2 such that

• For any σ ∈ PSL2(C), we have R ̸=σ◦S.

• T ◦R = T ◦S.

we set f = R ◦T and g = S ◦T , then µ f =µg and they satisfy (1.2.3).

The existence of the triples (R,S,T ) in Theorem 1.2.1 is equivalent to the existence of an irreducible

component of

VT = {(x, y) : T (x) = T (y)} ⊂P1 ×P1

with bidegree (r,r ), r ≥ 2, whose normalization is of genus 0. Explicit examples for such triples

(R,S,T ) are provided later in Chapter 3.

Let Ratd be the set of all rational functions with degree d ≥ 2. The space Ratd sits inside P2d−1(C),

and it is the complement of the zero locus of an irreducible homogenous polynomial (the resultant)

on P2d−1; therefore Ratd is an affine variety. For any rational function f ∈ Ratd , denote by M f the

set of all rational functions with the same maximal entropy measure as f . As we discussed before,

when f is non-exceptional and conjugate to some polynomial, M f has very simple expression as in

(1.2.1) by Corollary 3.2.2. However, from Theorem 1.2.1, we do not have the conclusion of (1.2.2)

for all non-exceptional rational functions f and g with µ f = µg , even we replace σ by any Möbius

transformation. Levin [27], [28] showed M f
∩

Ratn is a finite set unless f is conjugate to the power

function z±d .
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For convenience, in the rest of this thesis, generic means with the exception of at most countably

many proper Zariski closed subsets; general means with the exception of some proper Zariski closed

subset.

We will show:

Theorem 1.2.2. Let Ratd be the set of all rational functions with degree d ≥ 2. For generic rational

functions f ∈ Ratd , we have

• M f = { f , f 2, f 3, · · · }, when d ≥ 3,

• M f = { f ,σ f ◦ f , f 2,σ f ◦ f 2, f 3,σ f ◦ f 3, · · · }, when d = 2,

where σ f is the unique Möbius transformation permuting the fibers of f .

The proof of Theorem 1.2.2 is mainly based on the next two theorems. The first, Theorem 1.2.3,

asserts that for general rational functions with degree d ≥ 3, having the same measure of maximal

entropy is the same as sharing an iterate. We will say a critical value of f ∈ Ratd is simple if its

preimage contains exactly one critical point counted with multiplicity.

Theorem 1.2.3. Let f be a rational function with degree d f ≥ 3, and f has at least three simple critical

values. Then for any rational function g with degree dg ≥ 2 and µ f =µg , we have

f n = g m

for some integers n,m ≥ 1.
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Theorem 1.2.3 only works for rational functions with degree d ≥ 3. This is because that for degree

d = 2 case, there is a special nontrivial symmetry σ f ∈ PSL2(C) for each f ∈ Rat2. The symmetry σ f

is the unique Möbius transformation permuting the fibers of f with σ2
f = I d . As σ f permutes the

points in the fiber of f , we have f ◦σ f = f and then σ f preserves µ f . Hence it has µσ f ◦ f = µ f . For

any f ∈ Rat2, let g = σ f ◦ f . It satisfies µg = µ f and g n = σ f ◦ f n ̸= f n for any n ≥ 1. In other words,

f and g have the same maximal measure but they never share an iterate. In all, for any f ∈ Ratd , we

have obvious relations: { f , f 2, f 3, · · · } ⊂ M f , and when d = 2, { f ,σ f ◦ f , f 2,σ f ◦ f 2, f 3,σ f ◦ f 3, · · · } ⊂

M f . Theorem 1.2.2 asserts that, generically, there is no other rational function in M f . However, it is

still not known whether we can replace “generic" in Theorem 1.2.2 by “general", which will greatly

improve the result; at least it is clear from (1.2.1) that the statements in Theorem 1.2.2 are satisfied

for general polynomials.

Let d ≥ 2 and n ≥ 1 be integers. There is a regular map between affine varieties:

φd ,n : Ratd → Ratd n ,

defined by φd ,n( f ) = f n . We call it the iteration map of rational functions.

The next result, Theorem 1.2.4, states that the iteration map is one-to-one for general points.

Theorem 1.2.4. Let φd ,n : Ratd → Ratd n be the iteration map with d ≥ 2 and n ≥ 2. There is a Zariski

closed set A ⊂ Ratd , which is the preimage of the singularities of the variety φd ,n(Ratd ), such that

φd ,n : Ratd \A → Ratd n
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is injective. Moreover, A is a proper nonempty subset of Ratd .

Finally, we characterize the condition that two non-exceptional rational functions share an iter-

ate. Let PrePer( f ) = {x ∈ P1 | f n(x) = f m(x),n > m ∈ N} be the set of preperiodic points of rational

function f and Per( f ) = {x ∈P1 | f n(x) = x,n ∈N∗} be the set of periodic points of f .

Theorem 1.2.5. Let f and g be non-exceptional rational functions with degrees≥ 2. The following

statements are equivalent:

• f and g share an iterate, i.e. f n = g m for some n,m ∈N∗.

• There is some φ with degree≥ 2, such that f ◦φ=φ◦ f and g ◦φ=φ◦ g .

• µ f =µg , and J ∩Per( f )∩Per(g ) ̸= ;.

• PrePer( f ) = PrePer(g ) and J ∩Per( f )∩Per(g ) ̸= ;.

• Per( f ) = Per(g ).

The proof of Theorem 1.2.5 uses the following results: for non-exceptional rational functions,

Levin-Przytycki [29] showed that two rational functions having the same maximal measure should

have the same set of preperiodic points. And conversely, Yuan and Zhang [40] showed, via arithmetic

methods, that rational functions having the same set of preperiodic points should have the same

maximal measure.

A bit more historical background and related results. As a general question, what can we conclude

from two rational functions with the same maximal measure? For any non-exceptional polynomial

f , it is easy to read the symmetry group ΣJ f from the expression of f . After changing coordinates,
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we can assume that f is a monic and centered polynomial ( f (z) = zd +azd−2 +·· · ). So we can write

f (z) = z l g (zn) with g (0) ̸= 0 and maximal possible n. Then, whenever f is non-exceptional, we have

ΣJ f = {σ(z) = ζz|ζn = 1}. From (1.2.1), the expression of M f is clear for non-exceptional polynomials

f .

For any rational function f , let g ∈ M f and σ ∈Σµ f , it is clear that σ◦g and g ◦σ are both in M f . So

from Levin’s result that M f
∩

Ratn is a finite set, Σµ f has finite elements whenever f is not conjugate

to z±d . However, for rational function f , it is still not known how to get the symmetry group Σµ f or

ΣJ f (the subgroup of PSL2(C) preserving J f ) from the expression of f ; see Levin’s paper [27] [28], and

some other related results in [13] and [39]. And for rational functions, in 1997, Levin and Przytycki’s

paper [29] has the following result:

Theorem 1.2.6 (Levin-Przytycki [29]). Let f and g be two non-exceptional rational functions. The

following two are equivalent:

• µ f =µg ;

• There exist iterates F of f and G of g , integers M, N ≥ 1, and locally defined branches of G−1 ◦G

and F−1 ◦F such that

(G−1 ◦G)◦G M = (F−1 ◦F )◦F N . (1.2.4)

By analytic continuity, locally defined G−1 ◦G and F−1 ◦F can be extended to multi-valued func-

tions, acting by permuting the fibers of G and F . Equation (1.2.4) implies that f and g have the

same set of preperiodic points. Then as a consequence of Theorem 3 in Levin’s paper [27] and Levin-

Przytycki’s theorem Theorem 1.2.6, we have the following theorem:
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Theorem 1.2.7 (Levin-Przytycki). Let f and g be two non-exceptional rational functions with degrees≥

2. Then µ f =µg if and only if there are some iterates F and G of f and g such that

F ◦F = F ◦G and G ◦F =G ◦G . (1.2.5)

Although the above theorem comes directly from Theorem 3 in [27] and Theorem 1.2.6, we will

provide an easy proof later in Chapter 3 by just using Levin-Przytycki’s theorem Theorem 1.2.6.

So far as we know, (1.2.5) is the strongest algebraic relation satisfied for all non-exceptional ratio-

nal functions f and g with µ f =µg .

In the writing of the paper [42], we learned of two related articles in preparation. Related to

Theorem 1.2.4, Adam Epstein has shown that the iteration map φd ,n is an immersion for all d and

n ≥ 2; see Proposition 3.3.1. Related to Theorem 1.2.1, when T is assumed to be a polynomial, Avanzi,

Zannier, Carney, Hortsch and Zieve has provided a complete list of such examples; See [2] and [10].



CHAPTER 2

THE SCHWARZIAN DERIVATIVE AND POLYNOMIAL ITERATION

2.1 Basic properties of Schwarzian derivatives

In this section, we give useful formulas for S f n and also basic definitions that we are going to use

later in this chapter.

2.1.1 Basic formula for the Schwarzian derivative of f n

In order to find the limit of
S f n

d 2n for a general polynomial with degree d ≥ 2, we need to rewrite

S f n in terms of S f and then evaluate the limit. To do this, we use the formula for the Schwarzian

derivative of the composition of two functions f and g . An easy calculation shows that (cocycle

property)

S f ◦g (z) = S f (g (z))(g ′(z))2 +Sg (z) (2.1.1)

From this relation we derive the following important formula:

S f n (z) = S f ( f n−1(z))(( f n−1(z))′)2 +S f n−1 (z)

= S f ( f n−1(z))(( f n−1(z))′)2 +S f ( f n−2(z))(( f n−2(z))′)2 +S f n−2 (z) (2.1.2)

=
n−1∑
i=1

S f ◦ f i (z)(( f i (z))′)2 +S f (z)

14
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Proposition 2.1.1. Let f be a polynomial with degree d ≥ 2. For any point z ∈ C\Precrit( f ) and any

sequence {ni }∞i=1 of N with ni → ∞ as i → ∞, the sequences
{S f ni (z)

d 2ni

}
and

{
S

f ni −1 ( f (z))

d 2(ni −1)

}
either both

converge, diverge to infinity or diverge.

Moreover, if both of them converge, then

d 2 lim
i→∞

S f ni (z)

d 2ni
= ( f ′(z))2 lim

i→∞
S f ni −1 ( f (z))

d 2(ni−1)
.

Proof. From (2.1.1), we have:

S f ni (z)

d 2ni
=

S f ni −1 ( f (z))( f ′(z))2 +S f (z)

d 2ni

=
S f ni −1 ( f (z))( f ′(z))2

d 2d 2(ni−1)
+ S f (z)

d 2ni

By the assumption that z is not a critical point of f and d ≥ 2, it is easy to see that this proposition is

satisfied since f ′(z) is not equal to zero and S f (z) is finite.

2.1.2 The Schwarzian derivative as a quadratic differential

In this subsection, we are not only considering polynomials, but also rational maps with degree

d ≥ 2.
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Meromorphic quadratic differentials. For any Riemann surface S, a meromorphic quadratic differ-

ential Q on S is a section of the second tensor power of the cotangent bundle. In local coordinate,

Q =Q1(z)d z2, where Q1(z) is a meromorphic function. And under changing of coordinate w = w(z),

Q =Q2(w)(d w)2 =Q2(w(z))(w ′(z))2d z2

i.e., Q2(w(z))(w ′(z))2 =Q1(z).

Consider a non constant holomorphic map f : P1 →P1. This is a rational map with finite degree.

Let’s look at the Schwarzian derivative of this rational map f , and view it as quadratic differential, i.e.

S f d z2 instead of S f (z)

From the definition of the Schwarzian derivative, it is not hard to show Sg ≡ 0 if and only if g is a

Möbius transformation; see [14]. From the following identity

S f ◦g (z)d z2 = S f (g (z))(d g )2 +Sg (z)d z2,

for any two Möbius transformations g◦, g1, we have

Sg1◦ f ◦g◦d z2 = S f ◦ g◦(d g◦)2

So the Schwarzian derivative S f d z2 as a quadratic differential is well defined on P1. More generally,

for any non constant holomorphic map from some projective Riemann surface to another projective
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Riemann surface, there is an unique quadratic differential (named as Schwarzian derivative) associ-

ated to it; see [14].

Recall that in the last part of the introduction, we defined an equivalence relation of polynomials:

f ∼ g if the Schwarzian derivative of f is the same as the Schwarzian derivative of g up to some

affine transformation. The Schwarzian derivative of a polynomial is determined by the locations

and multiplicities of the critical points:

Lemma 2.1.2. Let f and g be polynomials with degree d ≥ 2. Then f ∼ g if and only if they have

the same critical set (critical points are counted with multiplicity) up to some affine transformation

(A(Crit( f )) = Crit(g ) with A some affine transformation).

Proof. Assume f ∼ g , then S f d z2 = A∗(Sg d z2), which means f = B ◦ g ◦ A for some affine transfor-

mations A and B . Indeed, by the cocycle property, A∗(Sg d z2) = Sg◦Ad z2 and then S f ◦(g◦A)−1 ≡ 0 on

some open subset of C. So B = f ◦(g ◦A)−1 is a Möbius transformation on some open subset of C. By

continuity, f = B ◦g ◦A in C, and so B is an affine transformation. This implies that A transforms the

critical set of f to the critical set of g .

Conversely, assume that there is an affine transformation A that transforms the critical set of f

to the critical set of g . Since g ∼ g ◦ A, it suffices to show that f ∼ g ◦ A. Because f and g ◦ A have the

same critical set, so we can let the critical set be {ci }d−1
i=1 . Then f = ah(z)+b and g ◦A = ch(z)+d with

a,c ̸= 0 and h(z) = ∫ z
0

∏d−1
i=1 (t − ci )d t . Which means S f = Sh = Sg◦A , i.e. f ∼ g ◦ A ∼ g .

Proof of Theorem 1.1.3. Let ≃ be the notion of strong equivalence. Assume that the polynomial f

with degree d ≥ 2 is not conjugate to zd , and there is a subsequence {ni }∞i=1 ⊂N∗ such that f ni ∼ g ni .
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By Lemma 2.1.2, there are affine transformations {Ai = ai z +bi } such that Ai (Crit( f ni )) = Crit(g ni ).

Since f is not conjugate to zd , so g is not conjugate to zd . Indeed, for n ≥ 2, Crit( f n) has at least two

distinct points, however, Crit(zd n
) has only one point. Set M1 = Diam(Crit( f 2)) > 0, M ′

1 = Diam(Crit(g 2)) >

0, M2 = Diam(Precrit( f )) and M ′
2 = Diam(Precrit(g )). Because f (C\D(0,R)) ⊂ C\D(0,R) for R suffi-

ciently large, so Precrit( f ) is bounded and then M2 <∞. Similarly, M ′
2 <∞. Moreover, since f n+m =

f n ◦ f m , then Crit( f m) ⊂ Crit( f n+m). So for the diameters Diam(Crit( f ni )) and Diam(Crit(g n
i )) of the

critical sets, we have

0 < M1 ≤ Di am(Crit( f ni )) ≤ M2 <∞, 0 < M ′
1 ≤ Di am(Crit(g ni )) ≤ M ′

2 <∞,

for any ni ≥ 2. Consequently,

0 < M3 ≤ |ai | ≤ M4 ≤∞, |bi | ≤ M5 <∞

So after passing to a subsequence and without loss of generality, we can assume Ai → A as i →∞,

where A is an affine transformation. Then it is easy to know A(J ( f )) = J (g ). Indeed, for any c ∈

Crit( f j ) ⊂ Crit( f i ), Ai (c) ∈ Crit(g i ) ⊂ Precrit(g ) with j ≤ i . It indicates that A(c) ∈ Precrit(g ) and then

A(Precrit( f )) ⊂ Precrit(g ). Similarly, by taking A−1
i instead of Ai , we get A−1(Precrit(g )) ⊂ Precrit( f ).

Because f is not conjugate to zd , the set of accumulating points of Precrit( f ) (respt. Precrit(g )) is

J ( f ) (respt. J (g )), which means that A(J ( f )) = J (g ).

If f is conjugate to zd , then by the above argument, g should also be conjugate to zd . So there is

an affine map A such that A(J ( f )) = J (g ).
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Conversely, assume f and g have the same degree d ≥ 2 and A(J ( f )) = J (g ) for some affine trans-

formation A. Since g1 = A−1 ◦ g ◦ A ≃ g and A(J (g1)) = J (g ) = A(J ( f )), so it is enough to prove that

g1 ≃ f with the condition that they have the same Julia set. First, if the Julia set is a circle, then

both of them are conjugate to zd . Indeed, we can assume J ( f ) is the closed unit disk. Let φ be the

Boettcher function of f , such that φ◦ f ◦φ−1 = zd on the basin of infinity. Since the basin of infinity

is the complement of the unit disk and φ is a conformal map that fixes the infinity, so φ should be

a rotation. Then f is conjugate to zd . So f n ∼ zd n ∼ g n
1 for any n ∈ N∗. Second, since both f n and

g n
1 have the same degree and the same Julia set which is not a circle, then f n = σn ◦ g n

1 with σn an

affine transformation in the symmetry group of the Julia set; see [6] for details. So S f n = Sg n
1

for any

n ∈ N∗. And moreover, when Julia set is not a circle, the order of symmetry group of the Julia set is

finite; see Lemma 4 in [7]. Thus there are only finitely many conjugacy classes which belongs to a

strong equivalence class.

Notes: the proof of Theorem 1.1.3 relies on the classification of polynomials with the same Julia

set. When do two polynomials have the same Julia set? Historically, commuting polynomials have

the same Julia set, as observed by by Julia in 1922 [24]. Later in 1987, Baker and Eremenko showed

when the symmetric group of the Julia set is trivial, polynomials with this Julia set commute; see [4].

In 1989, Fernández showed there is at most one polynomial with given degree, leading coefficient

and Julia set; see [20]. Finally in 1992, Beardon showed {g |deg( f ) = deg(g ), J ( f ) = J (g )} = {σ◦ f |σ ∈

symmetric group of J ( f )}; see [6].
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2.1.3 Conformal metric of quadratic differential.

For meromorphic quadratic differential Q on S, it determines a flat metric d s2 = |Q|, with singu-

larities at zeros and poles of Q.

Trajectories as a foliation. For any meromorphic quadratic differential Q on S, it determines a foli-

ation structure on S with singularities at zeros and poles of Q. A smooth curve on S is a (horizontal)

trajectory of Q, if it does not pass though any zero or pole of Q, and for any point p in the curve, the

non zero vector d z tangent to this curve satisfy:

arg(Q(p)d z2) = 0

i.e Q(p)d z2 is a positive real number. By a trajectory, we usually mean the trajectory that is not

properly contained in another trajectory, i.e. a maximal trajectory.

Lemma 2.1.3. Let f : P1 → P1 be a rational map with degree d ≥ 2. Then S f d z2 is a meromorphic

quadratic differential with poles of order two at the critical points of f . For any critical point p of f

with order k, near p

S f (z) = 1−k2

2(z −p)2 +O(
1

|z −p| )

i.e., a neighborhood of p is an infinite cylinder with closed geodesics as trajectories of length 2π
√

k2−1
2 .

Proof. The only thing we need to show here is that the coefficient of 1
(z−p)2 at p is 1−k2

2 , and for other

details of this lemma, please refer to the §6.3 [38]. The coefficient can be verified by a direct compu-

tation.
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2.1.4 L
1
2

loc integrability of quadratic differential.

For any Riemann surface S, we consider the space MQ(S) of meromorphic quadratic differentials

on S . For any α ∈ MQ(S), we say that it is L
1
2

loc integrable, if for any point q ∈ S, there is a local

coordinate at q , and write α as h(z)d z2 in this coordinate, such that the integration
∫ ∫ √

|h(z)|d xd y

over some neighborhood of p is finite. We say that {αn} ⊂ MQ(S) L
1
2

l oc -converge to α ∈ MQ(S), if both

α and αn are L
1
2

loc integrable, and for any point p, there is some local coordinate at q , and write α and

αn as h(z)d z2 and hn(z)d z2 in this local coordinate, such that the integral
∫ ∫ √

|hn(z)−h(z)|d xd y

over some neighborhood of p converges to 0. Actually, the L
1
2

loc integrable subset of MQ(S) is a vector

space.

Any meromorphic quadratic differential α ∈ MQ(S) with poles of order at most two is L
1
2

loc inte-

grable.

Lemma 2.1.4. For any rational function f with degree d ≥ 2, S f n d z2 is L
1
2

loc integrable.

Proof. Since for any rational map f , the Schwarzian derivative S f d z2 has poles of order at most two,

then S f d z2 is L
1
2

loc integrable, and also S f n d z2 is L
1
2

l oc integrable.

2.2 Local Convergence of S f n

In this section, our main goal is to prove Theorem 1.1.1, the local convergence of the normalized

S f n .

2.2.1 Bounded Fatou components

In this subsection, we are trying to show that limn→∞
S f n

d 2n = 0 on the bounded Fatou components

for any degree d ≥ 2 polynomial f , which is not conformally conjugate to zd .
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Theorem 2.2.1. For any z ̸∈ Precrit( f ) in a bounded Fatou component of a polynomial f with degree

d ≥ 2 , which is not conformally conjugate to zd , then we have:

lim
n→∞

S f n (z)

d 2n = 0.

Moreover, this is a local uniform convergence.

Proof. First, assume that z is attracted to some fix point z1 (attracting or parabolic fix point), and z1

is not a critical point. Then,

0 <λ= | f ′(z1)| ≤ 1

For any fixed 0 < ϵ< 1, since we have f n(z) converges to z1, there exists No ∈N and M <∞, such that

for any n > No , we have:

| f ′( f n(z))| ≤ 1+ϵ and |S f ( f n(z))| < M

By (2.1.2),

|S f n (z)| = |
n−1∑
i=1

S f ◦ f i (z) · (( f i )′(z))2 +S f (z)|

≤
n−1∑
i=1

|S f ◦ f i (z) · (( f i )′(z))2|+ |S f (z)|

Since we have

|S f ( f n(z))(( f n)′(z))2| < M ·M1 · (1+ϵ)2n , f or any n > No .
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where M1 = |( f No )′(z)|, by the fact that 1+ϵ< d for d ≥ 2 and ϵ< 1, it is obvious that limn→∞
S f n (z)

d 2n = 0

is satisfied.

Second assume z is attracted to a critical fix point z1. Without loss of generality, we can assume

z1 = 0, so f = azr+bzr+1+·· · , with a ̸= 0 and 2 ≤ r ≤ d−1. By Prop. 2.1.1, we can study the Schwarzian

limit at forward iterate of z instead of the Swhwarzian limit at z. Then we can assume that z is close

to 0. Let’s conjugate f to zr near 0 by a conformal map φ, such that φ(0) = 0 and φ′(0) ̸= 0,

φ◦ f ◦φ−1 = zr

By the cocycle property of Schwarzian and Example 1,

S f n (z) = Sφ−1◦zr n ◦φ(z)

= Sφ−1

(
(φ(z))r n

)
·
(
(φ−1)′(φ(z)r n

) · (r n −1)φ(z)r n−1φ′(z)
)2

+1− r 2n

2φ(z)2 · (φ′(z))2 +Sφ(z)

Since z is close to 0 and 2 ≤ r ≤ d−1, then limn→∞
S f n (z)

d 2n = 0 is obviously true in this case by the above

formula.

Third, assume that z is in some Siegel disc Do fixed by f . Similar with the previous case, we can

move the center of Do to 0, and conjugate f by φ on this Siegel disc to a rotation map, i.e.

φ◦ f =λ ·φ, with |λ| = 1



24

where we have φ(0) = 0 and φ′(0) = 1. And by (2.1.1),

S f n (z) = Sφ−1(λnφ)(z)

= Sφ−1 (λnφ(z)) · ((φ−1)′(λnφ(z)))2 +Sφ(z)

Since λnφ(z) is in φ’s image of some compact subset of Do for any n, then Sφ−1 (λnφ(z)) is uniformly

bounded. So limn→∞
S f n (z)

d 2n = 0 is obviously satisfied in this case by the above formula.

From above arguments, it is not hard to see the convergence is local uniform. For points in the

periodic bounded Fatou components and not in Precrit( f ), we can use similar arguments to show

that the result of this theorem is satisfied. And for points attracted to periodic bounded Fatou com-

ponents, Prop. 2.1.1 shows that the result is satisfied too.

2.2.2 Basin of infinity.

In this subsection, we are going to prove the local convergence of S f n on the basin of infinity.

Consider the following escape-rate function of a polynomial f with degree d ≥ 2:

G f (z) = lim
n→∞

1

d n log+ | f n(z)|,

where log+ |x| = max(log |x|,0). The escape-rate function G f (z) is the Green function of the basin of

infinity. So it is harmonic on the basin of infinity. Actually, it is a subharmonic function on C. By

taking the partial derivative of G f (z), we get g (z) = ∂G f (z)
∂z is a holomorphic function on the basin of

infinity; the zeros of g (z) are exactly the points in Precrit( f ). Moreover, from the definition of G f (z),
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it is a limit of harmonic functions converging locally uniformly. The derivatives of these harmonic

functions converge. Then we know that the partial derivative commutes with the limit, i.e.

g (z) = ∂G f (z)

∂z
= lim

n→∞
∂ 1

d n log | f n(z)|
∂z

(2.2.1)

= lim
n→∞

1

2d n

∂ log( f n(z) ¯f n(z))

∂z
= lim

n→∞
1

2

( f n(z))′

d n f n(z)

Theorem 2.2.2. For any zo ̸∈ Precrit( f ) in the basin of infinity of a polynomial f with degree d ≥ 2, we

have:

lim
n→∞

S f n (zo)

d 2n =−2(g (zo))2 =−2

(
∂G f (zo)

∂z

)2

Moreover, this is a local uniform convergence.

Proof. Since g (z) = 0 if and only if z ∈ Precrit( f ), then we have g (zo) ̸= 0, because zo ̸∈ Precrit( f ).

Let rn = ( f n (zo ))′
2g (zo )d n f n (zo ) , by (2.2.1), we get

lim
n→∞rn = 1

Moreover, let f (z) = ad zd +ad−1zd−1 +·· ·+a0 with ad ̸= 0, and an easy calculation shows that

S f (z) = 1−d 2

2z2 h(z), and lim
z→∞h(z) = 1,
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where h(z) is a rational function. Let sn = h( f n(zo)), since limn→∞ f n(zo) =∞, so we get limn→∞ sn =

1. Then

S f ( f n(zo))(( f n)′(zo))2 = (1−d 2)sn (( f n )′(zo ))2

2( f n (zo ))2

= 2(1−d 2)snr 2
n(g (zo))2d 2n ,

Substituting the above formula into (2.1.2), we get

S f n (zo )
d 2n =

∑n−1
i=1 S f ( f i (zo ))(( f i )′(zo ))2+S f (zo )

d 2n

= 2(g (zo))2(1−d 2)
∑n−1

i=0 si r 2
i d 2i

d 2n

Because both rn and sn converge to 1 as n tends to ∞, it follows that

limn→∞
S f n (zo )

d 2n = 2(g (zo))2(1−d 2) limn→∞ 1−d 2n

(1−d 2)d 2n

=−2(g (zo))2 =−2
(
∂G f (zo )

∂z

)2

The fact that this convergence is local uniform can be deduced from the fact that both rn(z) and

sn(z) converge locally uniformly.

Remark. Alternately, the result of Theorem 2.2.2 can be seen in the language of “Schwarzian between

conformal metrics". On the complex plane C, we define:

Ŝ(eσ1 |d z|2,eσ2 |d z|2) =
(
σ1zz − 1

2
σ2

1z − (σ2zz − 1

2
σ2

2z )

)
d z2,

where σz = ∂σ
∂z . Easy to know, we have

• S f d z2 = Ŝ( f ∗|d z|2, |d z|2), for any non constant holomorphic map f .



27

• Ŝ(c1ρ1|d z|2,c2ρ2|d z|2) = Ŝ(ρ1|d z|2,ρ2|d z|2), for any positive constant numbers c1 and c2.

• Ŝ(ρ1|d z|2,ρ3|d z|2) = Ŝ(ρ1|d z|2,ρ2|d z|2)+ Ŝ(ρ2|d z|2,ρ3|d z|2).

Then we have

For more properties about the Schwarzian of conformally equivalent Riemannian metrics, please

refer to [35].

Nonlinearity. Similar with the Scharzian derivative, we can define nonlinearity N f of a nonconstant

holomorphic function f on the complex plane.

N f =
f ′′

f ′

Nonlinearity N f ≡ 0 if and only if f is an affine transformation. Sometimes we can view N f as a one

form N f d z. We have the following cocycle property:

N f ◦g d z = g∗(N f d z)+Ng d z

Moreover, N f d z has a pole of order one at critical point of f . Using the same argument in Theorem

1.1.1, we have



28

Theorem 2.2.3. Let f be an polynomial with degree d ≥ 2 and not conformally conjugate to zd , and

Xo be its basin of infinity. Then we have:

• limn→∞
( f n )′d z

d n f n = ∂G f , on Xo .

• limn→∞
N f n d z

d n = ∂G f , on C\ Precrit( f ).

• limn→∞
( f n )′′′d z2

d 2n ( f n )′ =− (∂G f )2

2 , on C\ Precrit( f ).

In each case, the convergence is locally uniform.

Proof of Theorem 1.1.1. Since we have G f ≡ 0 on the bounded Fatou components of f , then this

theorem is an easy consequence of Theorem 2.2.1 and Theorem 2.2.2.

2.2.3 Global convergence on the Fatou set.

Recall the definition of L
1
2

loc integrability and L
1
2

loc convergence of meromorphic quadratic differ-

entials on the Riemann surface in §2.1.2. For any rational function f with degree d ≥ 2, by Lemma

2.1.4, S f n d z2 is L
1
2

loc integrable.

Corollary 2.2.4. Let S f n d z2 be the meromorphic quadratic differential onP1 determined by the Schwarzian

derivative of f n , where f is a polynomial with degree d ≥ 2 and not conformally conjugate to zd . Then

lim
n→∞

S f n (z)

d 2n d z2 =−2

(
∂G f (z)

∂z

)2

d z2,

on the Fatou set (including ∞) of f , converging in the sense of L
1
2

loc .

Proof. The proof of this corollary follows easily from the arguments in the proof of Theorem 1.1.1,

together with the triangle inequality. So we omit the details here.
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2.3 Geometric Limit of Metric Spaces

In this section, we discuss the possible limit of metric spaces coming from Schwarzian deriva-

tives.

2.3.1 Ultrafilter and ultralimit

A non-principal ultrafilter ω is a set consisting of a collection of subsets of N, satisfying

• If A ⊂ B ⊂N and A ∈ω, then B ∈ω.

• For any disjoint union N= A1 ∪ A2 · · ·∪ An , there exists one and only one Ai ∈ω.

• For any finite set A ⊂N, A ̸∈ω,

We can view a non-principal ultrafilter ω as a finitely additive measure on N, only taking values in

{0,1}, where any finite subset of N has measure zero and N has measure 1. By Zorn’s lemma there

exists some non-principal ultrafilter, and non-principal ultrafilter on N is not unique. Hereafter, we

fix a non-principal ultrafilter ω. For more details about the ultrafilter, please refer to Chapter I §5 [8].

Let Y be a compact Hausdorff space. For any sequence of points {yi }∞i=1 ⊂ Y , there is an unique

point yo ∈ Y such that {i |yi ∈U } ∈ ω for any open set U containing yo . This yo = limω yi is denoted

as the ultralimit of {yi }∞i=1.

Let {(Yn ,dn ,bn)}∞n=1 be a sequence of pointed metric spaces. Let Ỹω be the set of all the sequences

(yn) with yn ∈ Yn satisfying:

lim
ω

dn(yn ,bn) <∞;
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here, the ultralimit is taken in the space of [0,+∞]. Set

d̃ω((xn), (yn)) := lim
ω

dn(xn , yn) <∞,

with (xn) and (yn) ∈ Ỹω. This is a pseudo-distance on Ỹω. Let (Yω,dω,bω) := (Ỹω, d̃ω, (bn))/ ∼, where

we identify points with zero d̃ω-distance. The point metric space (Yω,dω,bω) is called the ultralimit

of {(Yn ,dn ,bn)}∞n=1; see Chapter I §5 [8].

2.3.2 The ultralimit of the Schwarzian metrics

Let f be a polynomial with degree d ≥ 2. The Schwarzian derivative S f n determines a metric

space (Xn ,dn), where Xn =C\Crit( f n) and dn is the arc length metric d s =
√∣∣∣S f n

d 2n

∣∣∣|d z|. This is a com-

plete geodesic space with non positive curvature. Fix a point a ̸∈ Precrit( f ) on the basin of infinity.

In this section we are considering the ultralimit (Xω,dω, aω) of the pointed metric spaces (Xn ,dn , a).

Proposition 2.3.1. (Xω,dω, aω) is a complete geodesic space.

Proof. The metric space (Xω,dω, aω) is complete, since the ultralimit of any sequence of pointed

metric spaces is complete; see §1 Lemma 5.53 [8]. Moreover, the geodesic property is also preserved

by passing to the ultralimit. The pointed metric space (Xω,dω, aω) is a geodesic space. Indeed,

{(Xn ,dn , a)} are pointed geodesic spaces. For any two points xω = (xi ) and yω = (yi ) in Xω, there

is (zi ) such that di (xi , zi ) = di (zi , yi ) = 1
2 di (xi , yi ). From this fact, we know that zω = (zi ) ∈ Xω and

also

lim
ω

1

2
di (xi , yi ) = lim

ω
di (xi , zi ) = lim

ω
di (zi , yi ),
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i.e., dω(xω, zω) = dω(zω, yω) = 1
2 dω(xω, yω). So xω and yω have a midpoint in Xω. Which means Xω is

a geodesic space, since it is complete.

2.3.3 The flat metric on the basin of infinity

Let Xo be the basin of infinity of f and do be the arc length metric from d s = p
2
∣∣∣∂G f

∂z

∣∣∣ |d z|; see

Figure Figure 1.1.1. The metric space (Xo ,do) is not complete. If the filled Julia set K ( f ) of f is

disconnected, then we can complete Xo as follows

Lemma 2.3.2. For polynomial f with degree d ≥ 2 and K ( f ) disconnected, the metric completion

(X o ,do) of (Xo ,do) is a quotient of C, obtained by collapsing each connected component of K ( f ) to a

point. The completion X o is homeomorphic to R2. Moreover, (X o ,do) is a geodesic space.

Proof. Since K ( f ) is disconnected, the first two conclusions of this lemma follow immediately from

the flat structure of the metric do ; compare [11]. A complete metric space is geodesic if there exists a

midpoint for any two points on this metric space. It is obvious that (X o ,do) has this property. So it is

a geodesic space.

Let E be the set of X o \ Xo . The set E is totally disconnected. So we call E the ends of Xo . Each

point e ∈ E corresponds to a connected component of K ( f ). Let C = Xo ∩Precrit( f ). For any end

in E , there is a sequence of annuli on Xo\C such that they nest down to this end with do-diameters

tending to zero; see the flat metric structure of Xo in [11]. The following lemma follows easily from

Theorem 1.1.1.
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Lemma 2.3.3. For any piece wise smooth and compact curve γ⊂ Xo \C , the dn-length dn(γ) converge

to the do-length do(γ). Moreover, for any point p ∈ Xo \C , there is a small neighborhood U ⊂ Xo \C of

p, such that limn→∞ dn(x, y) = do(x, y), uniformly for x, y ∈U .

The following proposition is an essential ingredient in the proof of Theorem 1.1.1.

Proposition 2.3.4. Let f be a polynomial with degree d ≥ 2 and J ( f ) disconnected. For any geodesic

metric d̃ on X o with (Xo , d̃) locally isometric to (Xo ,do) under the identity map, we have d̃ = do on X o .

To prove this lemma, we need the tree structure of (Xo ,do); see [11]. Specifically, this is a quotient

π : Xo −→ T ( f ), defined by collapsing each connected component of the level set of G f (z) to a point.

There is a canonical map F on T ( f ) induced from f .

Xo

π

��

f // Xo

π

��
T ( f ) F // T ( f )

The space T ( f ) has a simplicial structure, and is equipped with a metric from G f . The set of

vertices is V =∪n, m∈ZF m(F n(branch points)). The distance between two points in the same edge is

given by the difference of their G f values. Let S = π−1(V ). Then Xo \ S consists of countably many

connected components. Each of them is an annulus. So we view Xo \ S as a set of annuli. The map π

is a one to one map from the annuli to the edges of T ( f ). For any annulus A ∈ Xo \ S, it is a cylinder

with finite height in the do-metric.
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The height of A, denoted as H(A), is equal to the length of the edge π(A). Also, we define the level

of A as L(A) to be the G f value of the middle point of π(A). The closed geodesics of A are the level

sets of G f . They have the same arc length in the do-metric, denoted as C (A).

The map f sends annulus in Xo \S to annulus. For each annulus A ∈ Xo \S, there is a well defined

local degree dA , defined as the topological degree of f |A . Moreover, let N ( f ) = max{G f (c) |c is a critical point of f}.

We have the following properties:

• ∑
B∈Xo \S,L(B)=L(A)

C (B) =
p

2π (2.3.1)

•

L( f (A)) = d ·L(A), H( f (A)) = d ·H(A), C ( f (A)) = dA

d
C (A) (2.3.2)

• dA is equal to one plus the number of critical points (counted with multiplicity) enclosed in A.

• The points enclosed in A should have G f value less than L(A). If L(A) < N ( f ), then the annulus

A can not enclose the critical point(s) with G f value equals N ( f ). And because f has d − 1

critical points counted with multiplicity, then dA ≤ d −1 when L(A) < N ( f ). From (2.3.1) and

(2.3.2), for any annulus A satisfying d nL(A) < N ( f ), we have L( f i (A)) = d i L(A) < N ( f ), i.e.

d f i (A) ≤ d −1 for any 1 ≤ i ≤ n. Consequently,

C (A) ≤ (
d −1

d
)n ·C ( f n(A)) ≤ (

d −1

d
)n ·

p
2π (2.3.3)
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• Let
∣∣ f −1(A)

∣∣ be the number of annuli in the set f −1(A). We have
∣∣ f −1(A)

∣∣ equals to d minus the

total number of critical points (counted with multiplicity) enclosed in the annuli in f −1(A).

• Let A ∈ Xo \S. Any point x ∈ Xo with G f (x) ≤ L(A)/d is enclosed in one of the annulus B ∈ Xo \S

with L(B) = L(A).

• Any two annuli A,B ∈ Xo \ S with L(A) = L(B) have the same height.

For more details about these annuli and the tree structure of the basin of infinity, please see [11].

Proof of Proposition 2.3.4. Since Xo is dense in X o for both the metrics d̃ and do , then it suffices to

prove that do(x, y) = d̃(x, y) for any two points x, y ∈ Xo .

One direction: do(x, y) ≥ d̃(x, y). From the definition of do , for any ϵ > 0, there is an arc γ ⊂ Xo

connecting x and y with do length do(γ) < do(x, y)+ ϵ. Since these two metrics are locally isometric

on Xo , for the length d̃(γ) of γ in the d̃-metric, we have

d̃(x, y) ≤ d̃(γ) = do(γ) < do(x, y)+ϵ

Let ϵ→ 0, then we get d̃(x, y) ≤ do(x, y).

The other direction: do(x, y) ≤ d̃(x, y). Choose a geodesic g̃ : [0,r ] 7→ X o in the d̃-metric, with

g̃ (0) = x and g̃ (r ) = y . Our goal is to construct an arc γ ⊂ Xo from g̃ , connecting x and y with do

length do(γ) < r +ϵ for any fixed ϵ> 0.

From (2.3.3), there is some small level l > 0 such that the set of annuli T = {A ∈ Xo\S | L(A) = l } is

not empty and C (A) < ϵ
3 for any A ∈ T . Since all the annuli with the same level have the same height,
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so h = H(A) for A ∈ T is well defined. We order the elements of T as A1, A2, · · · , Ak , with C (Ai ) ≤C (A j )

for any 1 ≤ i < j ≤ k. Let Ts = f −s(T ) and decompose Ts into T −
s and T +

s , with T +
s the set of annuli

crossed by g̃ . So the length of g̃ in each annulus belonging to T +
s is at least the height of this annulus.

Let | · | be the number of elements of a set. Then we have:

∑
s∈N

|T +
s | · h

d s ≤ d̃-length of g̃ = r <∞

Form the above formula, there is some big n, such that |T +
n | · h

d n < h, i.e., |T +
n | < d n . As | f −1(A)|

is equal to d minus the total number of critical points (counted with multiplicity) enclosed in the

annuli belonging to f −1(A), and f has d −1 critical points, then

|Ts+1| = | f −1(Ts)| > d · |Ts |−d , | f −n(A)| ≤ d n

since any two annuli with the same level won’t enclose each other, i.e., they won’t share a common

critical point inside. Consequently,

|Tn | 〉 d n · |T |−d n −d n−1 −·· ·−d 〉 d n ·k −2d n

Combining the above formula with |T +
n | < d n , we have |T −

n | = |Tn |− |T +
n | > d n · (k −3). From (2.3.2),

for any 1 ≤ i ≤ k,

| f −n(Ai )| ≤ d n ,
C (Ai )

d n ≤C (B) any B ∈ f −n(Ai )
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We order Tn as B1,B2, · · · ,B|Tn |, such that β j = C (B j ) ≤ β j+1 = C (B j+1) for any 1 ≤ j ≤ |Tn |−1. From

the above formula, we have

βd n ·(i−1)+ j ≥
C (Ai )

d n , 1 ≤ i ≤ k −3 and 1 ≤ j ≤ d n ,

Then we get, ∑
B∈T +

n
C (B) =∑

B∈Tn
C (B)−∑

B∈T −
n

C (B)

≤p
2π−∑k−3

i=1

∑d n

j=1βd n ·(i−1)+ j

≤∑k
i=1 C (Ai )−∑k−3

i=1 d n · C (Ai )
d n

=C (Ak−2)+C (Ak−1)+C (Ak )

< ϵ.

Now, we can construct an arc γ⊂ Xo from g̃ as follows (without loss of generality, we can always

assume that both G f (x) and G f (y) are greater than l , and n > 1):

• Choose a minimal r1 ∈ [0,r ] such that g̃ (r1) lying on the outer boundary of some annulus B 1 ∈

T +
n .

• Choose a maximal r ′
1 ∈ [0,r ] such that g̃ (r ′

1) lying on the outer boundary of the annulus B 1.

• Replace the arc g̃ ([r1,r ′
1]) ⊂ g̃ with a shortest curve γ1 on the outer boundary of B 1 connecting

g̃ (r1) and g̃ (r ′
1).

• Do the same thing as the previous three steps, we can find a minimal r2 and maximal r ′
2 in

[r ′
1,r ], such that g̃ (r2) and g̃ (r ′

2) lying on the outer boundary of some B 2 ∈ T +
n and r ′

2 − r2 > 0.
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Replace g̃ ([r2,r ′
2]) ⊂ g̃ with a shortest curve γ2 on the outer boundary of B 2 connecting g̃ (r2)

and g̃ (r ′
2).

• Keep doing the same thing as previous step by step, we can replace sub-arcs of g̃ by arcs γi on

the boundary of B i ∈ T +
n . This process will stop under finite steps, since B i ̸= B j for any i < j

and |T +
n | <∞.

From the above construction, we get a new arc γ from g̃ . We have γ⊂ Xo . In fact, for any point p ∈ γ,

p is not enclosed by any annulus B ∈ Tn . So we have G f (p) > h
d n+1 . And

do(x, y) ≤ do(γ) ≤ r +do(γ1)+do(γ2)+·· ·

≤ r +C (B 1)+C (B 2)+·· ·

≤ r +∑
B∈T +

n
C (B) < r +ϵ.

Let ϵ→ 0, we get do(x, y) ≤ r = d̃(x, y).

Proof of Theorem 1.1.2. First, we construct a natural map ρ

ρ : Xo\C 7→ Xω,

as: for any p ∈ Xo\C , ρ(p) = pω = (pn = p) ∈ Xω. This map is well defined, since {dn(p, a)} is uniformly

bounded by Lemma 2.3.3. Let p, q be two points in Xo\C , and pω, qω the ρ image of p, q in Xω. We

want to show that dω(pω, qω) ≤ do(p, q). For any ϵ> 0, we can choose a smooth curve on the basin of

infinity with do-length less than do(p, q)+ϵ. By a small perturbation, we can assume this curve does
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not pass any point in C , and this curve is also on the basin of infinity. Since this curve is compact,

by Lemma 2.3.3, the dn-length of this curve converges to the do-length of this curve. So for n big

enough, the dn-length of this curve is less than do(p, q)+ 2ϵ. Then dω(pω, qω) ≤ do(p, q)+ 2ϵ. Let

ϵ→ 0, we get dω(pω, qω) ≤ do(p, q). Also, from Lemma 2.3.3, this is a locally isometric and distance

non-increasing embedding. Then we can extend the map ρ from Xo\C to Xo :

ρ : Xo −→ Xω

For any end e ∈ E , let Ke be the corresponding connected component of K ( f ) and X e
ω = {(xi ) ∈

Xω| limω xi ∈ Ke }. And for any c ∈C , let X c
ω = {(xi ) ∈ Xω| limω xi = c}. Obviously, the set

Xω = (∪α∈C∪E X α
ω

)∪ρ(Xo\C ),

is a disjoint union, i.e.

X α1
ω ∩X α2

ω =; and X α1
ω ∩ρ(Xo\C ) =;, for any α1 ̸=α2 ∈C ∪E

Indeed, there is a closed annulus A in Xo\C with the corresponding parts of α1 and α2 in the two

different components of C \ A. Let h be the distance between the two boundaries of A in the do-

metric. we have h > 0. Since any arc connecting two points in distinct components of C \ A should

across A. By Lemma 2.3.3, the dn-distance of the two boundaries of A converge to h. So we have
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dω(X α1
ω , X α2

ω ) ≥ h > 0. Consequently, X α1
ω ∩ X α2

ω = ;. Similarly, any point xω ∈ ρ(Xo\C ), we have

dω(X α1
ω , xω) > 0, then X α1

ω ∩ρ(Xo\C ) =;.

From above, for any two distinct points α, β in C ∪E and pω ∈ ρ(Xo\C ), we have dω(ρ(α), X β
ω) > 0

and dω(ρ(α), pω) > 0. Moveover, since X o is homeomorphic to R2 by Lemma 2.3.2, so ρ : X o 7→ ρ(X o)

is a distance non-increasing homeomorphism. We want to show (ρ(X o),dω) is a geodesic space and

ρ is locally isometric at the points in C . Then by Proposition 2.3.4, we may conclude that ρ is an

isometric embedding.

For any xω ∈ X α
ω and yω ̸∈ X α

ω , with α ∈ C ∪E , we want to show any geodesic gω connecting xω

and yω should pass through ρ(α). For any closed annulus A ⊂ Xo\C with the points limω(xi ) and

limω(yi ) lying in the different components of C \ A, as previous, Xω \ρ(A) consists two connected

components, with distance at least the distance of the two boundaries of A in the do-metric. And

since xω and yω are in different components of Xω \ ρ(A), the geodesic connecting them should

intersect ρ(A). Let {Ai }∞i=1 be a sequence of such annuli, and they nest down to α in the sense that

limi→∞diameter(α∪Ai ) = 0 in the do-metric. Choose some xi
ω in ρ(Ai )∩gω. Since {Ai }∞i=1 nest down

to α and the map ρ does not increase the distance, then we have that {xi
ω} converges to ρ(α). As the

geodesic is compact, we know that ρ(α) should in the geodesic gω.

If there is a geodesic gω ⊂ Xω with two end points in ρ(X o) such that it has some point pω ∈

gω ∩ (Xω \ρ(X o)). Assume pω belongs to X α
ω with α ∈ C ∪E . Then pω divides gω in to two parts.

Each of these two parts should pass though ρ(α). Which means gω can not be the shortest curve

connecting the two end points. In all, any geodesic with two ends in ρ(X o) should be contained in
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ρ(X o). So (ρ(X o),dω) is a geodesic space, since Xω is a geodesic space. Plus ρ|Xo \C is locally isometric

and distance non-increasing embedding, we get ρ|Xo is locally isometric.

For any α ∈ E∪C , since there always exists a sequence of {ci }∞i=1 ⊂C converging to α, then for any

l > 0 big enough, we can always choose a sequence of points {xi }∞i=1 ⊂ Xo\C , such that di (xi , ai ) = l

and limω xi in α’s corresponding subset of C. Then we have xω = (xi ) ∈ X α
ω and dω(xω, aω) = l .

For any c ∈C , to prove that X c
ω is a real ray, it suffices to prove that for any two sequence {xn} and

{yn} converging to c, with

lim
n→∞

[
dn(xn , a) = dn(yn , a)

]= l > lo = do(a,c)

then, we have limn→∞ dn(xn , yn) = 0. This follows easily from Lemma 2.3.7 proved below.

2.3.4 Real rays attached to C

In this subsection, we are going to complete the proof of Theorem 1.1.2 by showing Lemma 2.3.7.

What remains is to show that the extra pieces of Xω are real rays attached to Xo . The basic idea is to

show that Xn has no “bulb" near the critical points of f n . For doing this, we need to use the fact that

Xn is a metric space with non-positive curvature.

Let S be a closed Riemann surface with genus g ≥ 2 and Q be a holomorphic quadratic differential

on S. Then Q determines a flat metric d s2 = |Q| with finite singularities on S at zeros of Q. At non-

singular points, it is flat, so it has curvature 0; at singular points, it’s a cone with angle kπ for 3 ≤ k ∈N.

So at the singular points, it has negative curvature. Then in this metric, S is a complete arc length

metric space with non-positive curvature. For the definition and properties of the curvature, please
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refer to p. 159 [8]. Lift this metric to the universal cover S̃ of S, we also get a metric on S̃ with non-

positive curvature.

Lemma 2.3.5. S̃ is a complete CAT(0) unique geodesic space, any geodesic locally is a straight line at

non singular point.

Proof. By [1], S̃ is an unique geodesic space (any two points are connected by an unique geodesic)

with geodesic locally straight line, and S̃ is also complete. Moreover, since it is a complete and simply

connected metric space with non positive curvature, by Cartan-Hadamard Theorem, such space is a

CAT(0) space; see p. 193 [8].

Fix a point c ∈C and some very small ϵ> 0. Let cϵ ⊂ Xo\C be the closed curve at ϵ-distance from

c in the do-metric. For each n, choose some closed geodesic (in the dn-metric) cn ⊂ Xn such that cn

is sufficiently close to c; see Lemma 2.1.3. By Lemma 2.3.3 and Lemma 2.1.3, there is some M <∞,

such that the dn-length of cϵ dn(cϵ) < M · ϵ and dn(cn) < M/d n . Choose xn ∈ cϵ and yn ∈ cn , such

that rn = dn(xn , yn) = dn(cϵ,cn). We can do this is because both cϵ and cn are compact. Choose a

geodesic gn : [0,rn] 7→ Xn with gn(0) = xn and gn(rn) = yn . Let An be the open annulus bounded by

cϵ and cn . We have that gn((0,rn)) ⊂ An . Otherwise it won’t be the shortest curve connecting the two

boundaries of An .

We can construct closed Riemann surface Sn with genus g ≥ 2 from Xn . The metric space (Xn ,dn)

has finitely many infinite cylinders (cylinder with infinite height). Each such infinite cylinder lying in

some neighborhood of a critical point (including {∞}) of f n . So cut the infinite cylinders off Xn along

some of the closed geodesics inside the cylinders, such that the closed geodesic is much closer than
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cn to the critical point. Then we get X ′
n . Double X ′

n , and glue them together along the corresponding

boundaries to get a closed surface Sn . The metric on Sn is the obvious metric induced from X ′
n .

Consider the universal cover S̃n of Sn with the induced metric d̃n from Sn . Topologically, S̃n is a unit

disk. Let Ãn ⊂ S̃n be one of the connected components of the preimage of An ⊂ X ′
n . Then Ãn is a strip

on S̃n separating S̃n into two connected components. Since the projection of any curve connecting

this two components should be some curve across An ⊂ X ′
n , the distance of these two components

is dn(xn , yn) obtained by some lift g̃n of gn connecting these two components.

The boundaries ∂Ãn of Ãn are two curves in the preimages of cϵ,cn ⊂ X ′
n . The preimage of gn on

Ãn cuts Ãn into quadrilaterals. All of them can be mapped into each other by some isometry of S̃n .

Pick one of these quadrilateral B̃n with g̃n ⊂ ∂B̃n . Then B̃n is a copy of the lift of An\gn . Denote c̃ϵ

and c̃n as the lift of cϵ and cn on ∂B̃n , and g̃ o
n the other lift of gn on ∂B̃n .

Lemma 2.3.6. For any two points z̃1 ∈ c̃ϵ and z̃2 ∈ c̃n , there is an unique geodesic g̃ connecting these

two points, and if we varies z̃1 and z̃2 continuously, then g̃ varies continuously. In particular, any

point q̃ ∈ B̃n , there is some geodesic g̃q passing though q̃ with two ends in c̃ϵ and c̃n .

Proof. By Lemma 2.3.5, there is an unique geodesic g̃ connecting z̃1 and z̃2. Because S̃n is a complete

and simply connected CAT(0) metric space, by Cartan-Hadamard theorem in p. 193 [8], geodesic

varies continually with respect to the two end points.

Assume there is some point q̃ ∈ B̃n such that any geodesic with two ends in c̃ϵ and c̃n won’t pass

though it. Choose z̃1(t ) ∈ c̃ϵ and z̃2(t ) ∈ c̃n varies from the ends of g̃n to the ends of g̃ o
n . Then the

corresponding geodesics varies from g̃n to g̃ o
n without touching q̃ . From this we get that, in S̃n\q̃ ,

∂B̃n is homotopic to a point. This is impossible since S̃n is topologically a disc.
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Lemma 2.3.7. Let q̃1 and q̃2 be two points in B̃ n\(c̃n∪c̃ϵ), with l1 = d̃n(q̃1, c̃ϵ) and l2 = d̃n(q̃2, c̃ϵ). Then

d̃n(q̃1, q̃2) ≤ |l1 − l2|+9r3 +7r4, where r3 and r4 are d̃n-lengths of c̃ϵ and c̃n .

Proof. As in Lemma 2.3.6, we can choose geodesics g̃i : [0,ri ] → S̃n of length ri passing though q̃i ,

with g̃i (0) ∈ c̃ϵ and g̃i (ri ) ∈ c̃n for i = 1,2. Also, we have geodesic g̃o : [0,ro] → S̃n with g̃o(0) = g̃1(0)

and g̃o(ro) = g̃2(r2).

For 1 ≤ i ≤ 2, there is r ′
i such that q̃i = g̃si (r ′

i ) with 0 < r ′
i < ri . And since li = d̃n(p̃i , c̃ϵ) and

r ′
i = d̃n(g̃i (0), p̃i ), then li ≤ r ′

i ≤ li + r3.

First, assume that we have ro ≤ r1 ≤ r2. In the isosceles triangle with three vertices g̃1(0), g̃2(r2)

and g̃1(ro), since r ′
1 = d̃n(q̃1, g̃1(0)) = d̃n(g̃o(r ′

1), g̃1(0)), by CAT(0) property of S̃n , we have

d̃n(q̃1, g̃o(r ′
1)) ≤ d̃n(g̃1(ro), g̃2(r2))

≤ d̃n(g̃1(ro), g̃1(r1))+ d̃n(g̃1(r1), g̃2(r2)) ≤ (r1 − ro)+ r4

In the isosceles triangle with three vertices g̃2(r2), g̃1(0) and g̃2(r2−ro), since r ′
2−(r2−ro) = d̃n(q̃2, g̃2(r2−

ro)) = d̃n(g̃o(r ′
2 − (r2 − ro)), g̃1(0)), by CAT(0) property of S̃n , we have

d̃n(q̃2, g̃o(r ′
2 − (r2 − ro))) ≤ d̃n(g̃1(0), g̃2(r2 − ro))

≤ d̃n(g̃1(0), g̃2(0))+ d̃n(g̃2(0), g̃2(r2 − ro)) ≤ r3 + (r2 − ro)
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Moreover, since r3 and r4 are d̃n-lengths of c̃ϵ and c̃n , so we have

|r1 − ro | ≤ r3 + r4 and |r2 − ro | ≤ r3 + r4

Consequently,

d̃n(q̃1, q̃2) ≤ d̃n(q̃1, g̃o(r ′
1))+ d̃n(g̃o(r ′

1), g̃o(r ′
2 − (r2 − ro)))+ d̃n(g̃o(r ′

2 − (r2 − ro)), q̃2)

≤ ((r1 − ro)+ r4)+|(r ′
2 − (r2 − ro))− r ′

1|+ (r3 + (r2 − ro))

≤ |r1 − ro |+ |r ′
2 − r ′

1|+2|r2 − ro |+ r3 + r4

≤ 2(r3 + r4)+ (2r3 +|l1 − l2|)+2 ·2(r3 + r4)+ r3 + r4

= |l1 − l2|+9r3 +7r4,

Second, for all other cases, similarly, we can always get:

d̃n(q̃1, q̃2) ≤ |l1 − l2|+9r3 +7r4.



CHAPTER 3

RATIONAL FUNCTIONS WITH IDENTICAL MEASURE OF MAXIMAL ENTROPY

3.1 Graph of the multi-valued functions G−1 ◦G

In this section, we study the geometry of the algebraic curves defined by

VG = {(x, y) ∈P1 ×P1|G(x) =G(y)} ⊂P1 ×P1

for rational functions G . The irreducible components of VG correspond to multi-valued functions

G−1 ◦G , as appearing in equation (1.2.4). We prove Theorem 3.1.2 , 3.1.3 and 3.1.4 allowing us to

estimate the genus of the irreducible components of V .

3.1.1 Multi-valued functions G−1 ◦G

For a rational function G with degree d ≥ 2, we consider the correspondence VG = {(x, y) ∈

P1 ×P1|G(x) = G(y)} ⊂ P1 ×P1 of function G . Obviously, VG is a projective variety of bidegree (d ,d),

consisting of finitely many irreducible curves. Let Vo be an irreducible component of VG with bide-

gree (r1,r2). Geometrically, for i = 1 and 2, r2−i is the topological degree of the coordinate projection

map πi : Vo →P1. The diagonal △⊂P1 ×P1 is an irreducible component of VG with bidegree (1,1).

For any two distinct and noncritical points z1, z2 with G(z1) = G(z2), there is a unique holomor-

phic germ b(z) locally defined at z1, such that b(z1) = z2 and G ◦b =G . By analytic continuity, we can

extend this germ b(z) to a multi-valued function from the function on all of P1, denoted as G−1 ◦G .

To be clear, throughout this chapter, G−1 ◦G will refer to a particular multi-valued functions defined

45



46

in this way. Any such multi-valued function G−1 ◦G corresponds to an irreducible component Vo of

VG . Conversely, each irreducible component Vo corresponds to exactly one multi-valued function

G−1 ◦G . We call Vo the graph of its corresponding multi-valued function G−1 ◦G . And then VG is the

union of the graphes for all the multi-valued functions G−1 ◦G .

Let Crit(G) ⊂P1 be the set of critical points of G and C̃rit(G) be the preimage of the set of critical

values of G . Let SG =P1 \ C̃rit(G) and S̃G be the universal cover of SG , i.e. we have the covering map

S̃G −→ SG = S̃G /H , (3.1.1)

where H is a subgroup of the automorphism group of S̃G , and H is isomorphic to the fundamental

group of SG .

Fix a non-diagonal irreducible component Vo of VG and its corresponding multi-valued function

G−1 ◦G . Let (r1,r2) be the bidegree of Vo in P1 ×P1. G−1 ◦G is a multi-valued function from SG to

SG . Although it may not be single-valued, we can lift it to the universal cover, and get a single valued

function ho from S̃G to S̃G . ho is an automorphism of S̃G without fixed point, since Vo is not the

diagonal. Moreover, we have ho ̸∈ H , otherwise G−1◦G would be identity map, here H is the group in

(3.1.1). Now, we can use the index of the fundamental groups to interpret r1 and r2. For any x̃ ∈ S̃G ,

H x̃ ∈ SG = S̃G /H . For any hi ,h j ∈ H , Hhohi x̃ = Hhoh j x̃ if and only if Hhohi = Hhoh j , if and only

if hi h−1
j ∈ h−1

o Hho . Since Vo is of bidegree (r1,r2), each coset H x̃ splits into {Hi x̃}, where Hi are the

cosets of H ∩h−1
o Hho in H , for i = 1,2, · · · ,r2. As a consequence, we can write r2 = [H : H ∩h−1

o Hho].

In order to find r1, we can use h−1
o instead of ho . Similarly, we have r1 = [H : H ∩ho Hh−1

o ]. The map
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G : SG →P1 \CV (G) is a covering map of degree d , where d is the degree of G and CV (G) is the set of

critical values of G .

S̃G −→ SG = S̃G /H −→P1 \CV (G) = S̃G /H̃

Because G−1 ◦G permutes the points in each fiber of G , we have ho ∈ H̃ and [H̃ : H ] = d .

r1d = [H̃ : H ∩ho Hh−1
o ]

= [h−1
o H̃h0 : h−1

o (H ∩ho Hh−1
o )ho]

= [H̃ : h−1
o Hho ∩H ]

= r2d

Then we have r1 = r2.

Proposition 3.1.1. Let G be a rational function with degree d ≥ 2, VG = {(x, y) ∈P1 ×P1|G(x) =G(y)}.

The graph VG is of bidegree (d ,d), and any irreducible component (as a variety) of VG is of bidegree

(r,r ) with 1 ≤ r ≤ d −1. Moreover, the sum of bidegrees r of the irreducible components of VG is d.

Let Vo be an irreducible component of VG with bidegree (r,r ). It may contain singularities, but

we can normalize it and get a smooth curve Ṽo as its normalization. Then we have the following

natural projections:

Ṽo
π // Vo

πi // P1 ,

where, πi is the coordinate projection, for i = 1,2.
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We use dh,x to denote the local degree of a holomorphic map h(z) at point x. For any (x̃, ỹ) ∈ Ṽo

with π((x̃, ỹ)) = (x, y) ∈Vo , we can express the local degree of the map π1 ◦π at (x̃, ỹ) in terms of dG ,x

and dG ,y . From the local behavior of G at points x and y , it has

dπ1◦π,(x̃,ỹ) =
dG ,y

gcd(dG ,x ,dG ,y )
. (3.1.2)

3.1.2 Genus zero components of the graph VG

Theorem 3.1.2. Let G−1 ◦G be a multi-valued function with corresponding irreducible component

Vo ⊂VG . The following two are equivalent:

• The normalization Ṽo of Vo has genus zero.

• There exist rational functions G̃ and F̃ such that (G−1 ◦G)◦G̃ = F̃ .

Proof: Assume that there are rational functions G̃ and F̃ , such that (G−1 ◦G) ◦ G̃ = F̃ . Then we

have a well defined map

ρ : P1 →Vo

with ρ(z) = (G̃(z), F̃ (z)). The map ρ can be lifted to Vo ’s normalization Ṽo , and denote the lifting map

as ρ̃,

ρ̃ : P1 → Ṽo .

The lifting map ρ̃ is holomorphic from P1 to the smooth curve Ṽo . And by Riemann-Hurwitz formula,

there is no nonconstant holomorphic map from P1 to a curve with genus greater than zero. Then the

genus of Ṽo should be zero.
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Conversely, if the genus of the smooth curve Ṽo is zero. We can parameterize Ṽo by P1 using some

parametrization ρ̃,

ρ̃ : P1 → Ṽo .

After projecting it down to Vo , we get the following map:

ρ = ρ̃ ◦π : P1 →Vo ,

where ρ(z) = (G̃(z), F̃ (z)) with G̃ and F̃ being rational functions of degree r . From this parametriza-

tion, it is clear that

(G−1 ◦G)◦G̃ = F̃ .

Example. Let T (z) = z3 −3z be a degree 3 polynomial. It is easy to check that the graph VT has two

irreducible components. One of them is the diagonal of P1×P1 with bidegree (1,1) corresponding to

the identity map, and the other one Vo is of bidegree (2,2). From Riemann-Hurwitz formula, it can

be computed that the genus of Vo ’s normalization Ṽo is zero.

3.1.3 Functions G without nontrivial genus zero components of VG

Theorem 3.1.3. Let G be a rational function with degree dG ≥ 3. Assume that there are at least three

simple critical values of G. Then for any irreducible component Vo ⊂ VG with bidegree (r,r ≥ 2), its

normalization Ṽo has genus≥ 1.
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Proof. By assumption, Vo ⊂ VG is an irreducible component of VG with bidegree (r,r ≥ 2), corre-

sponding to some multi-valued function G−1 ◦G . Let {y1, y2, y3} be three simple critical values of the

rational function G . Consider the sets:

{xi ,1, xi ,2, · · · , xi ,dG−1} =G−1(yi ),

where xi ,dG−1 is a critical point of G and i = 1,2,3. Since Vo has bidegree (r,r ), there are at least r −1

noncritical points in G−1(yi ), which can be assumed to be {xi ,1, xi ,2, · · · , xi ,r−1}, such that

(xi , j , xi ,dG−1) ∈Vo , for j = 1,2, · · · ,r −1.

For each such point (xi , j , xi ,dG−1) ∈ Vo , by equation (3.1.2), any point in π−1((xi , j , xi ,dG−1)) ⊂ Ṽo is a

critical point of the projection map π1 ◦π:

Ṽo
π // Vo

π1 // P1 .

So we have at least 3∗(r −1) critical points for the map π1◦π. By Riemann-Hurwitz formula, we have

2−2genus(Ṽo) = 2r −# of critical points of Ṽo

≤ 2r −3∗ (r −1)

≤ 3− r.
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Since r ≥ 2, we have

genus(Ṽo) ≥ (r −1)/2 > 0.

For degree 2 case, we have the following:

Theorem 3.1.4. Let g be a degree two rational function with two critical orbits and none of them is

preperiodic. Let G = g n for some n ≥ 1. Assume Vo is an irreducible component of VG such that the

corresponding G−1 ◦G is not the identity map or σ f . Then its normalization Ṽo has genus≥ 1.

Proof. Let (r,r ) be the bidegree of Vo ⊂VG . Let x1,1, x2,1 be the two critical points of f and

{xi ,1, xi ,2, · · · , xi ,dG−1} =G−1(G(xi ,1)), for i = 1,2.

As the multi-valued function G−1 ◦G does not correspond to the identity map or σ f , there are r

noncritical points in {xi ,2, · · · , xi ,dG−1}, which can be assumed to be {xi ,2, xi ,3, · · · , xi ,r+1}, such that

(xi , j , xi ,1) ∈Vo , for j = 2,3, · · · ,r +1.

For each such point (xi , j , xi ,1) ∈Vo , by equation (3.1.2), any point in π−1((xi , j , xi ,dG−1)) ⊂ Ṽo is a criti-

cal point of the projection map π1 ◦π:

Ṽo
π // Vo

π1 // P1 .
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So we have at least 2r critical points for the map π1 ◦π. By Riemann-Hurwitz formula, we have

2−2genus(Ṽo) = 2r −# of critical points of Ṽo

≤ 2r −2r

= 0.

Then we have

genus(Ṽo) ≥ 1.

3.2 Rational functions with common measure of maximal entropy

In this section, we study the relation of two rational functions f and g with µ f = µg , and then

prove Theorem 1.2.3, 1.2.1 and 1.2.7. Moreover, we give examples of non-exceptional functions f

and g with µ f =µg and they do not satisfy (1.2.2).

Theorem 3.2.1. Assume f and g are rational functions with degrees≥ 2, satisfying

(g−1 ◦ g )◦ g = ( f −1 ◦ f )◦ f (3.2.1)

for some multi-valued functions g−1 ◦ g and f −1 ◦ f . Then there are some iterates F and G of f and g ,

such that:

F ◦F = F ◦G , G ◦F =G ◦G .
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Proof. Choose a point a0 ∈P1 such that a0 is neither in f ’s critical orbits nor in g ’s critical orbits. Let

a0, a1, a2, · · · be a sequence of points such that g (ai ) = ai−1. From equation (3.2.1), for any i ≥ 1, after

composing each side i times with themself, we have

(g−1 ◦ g )◦ g i = ( f −1 ◦ f )◦ f i or f ◦ (g−1 ◦ g )◦ g i = f ◦ f i . (3.2.2)

Then for each i ≥ 1, there is function germ (g−1 ◦ g )i of g−1 ◦ g , locally defined at a0, such that func-

tions germs

f ◦ (g−1 ◦ g )i ◦ g i |near ai = f ◦ f i |near ai ,

which are locally defined near ai . Let bi = (g−1 ◦ g )i (a0). Since g (bi ) = g (a0) for any i ≥ 1, there

are only finitely many distinct bi . Choose some j > 2i1 > 2 such that bi1 = b j . Then we have germs

(g−1 ◦ g )i1 = (g−1 ◦ g ) j locally defined near a0. From equation (3.2.2), we have locally defined germs

f ◦ (g−1 ◦ g )i1 ◦ g i1 |near ai1
= f ◦ f i1 |near ai1

f ◦ (g−1 ◦ g ) j ◦ g j |near a j = f ◦ f j |near a j

As (g−1 ◦ g )i1 = (g−1 ◦ g ) j , combining above two equations, it follows

f ◦ f i1 ◦ g j−i1 |near a j = f ◦ (g−1 ◦ g )i1 ◦ g i1 ◦ g j−i1 |near a j = f ◦ f j |near a j
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Because both sides of the above equation are germs of rational functions, we have

f ◦ f i1 ◦ g j−i1 = f ◦ f j .

Since j ≥ 2i1 ≥ 2, we can post compose some iterate of f to both sides of the above equation:

f j−i1 ◦ g j−i1 = f j−i1 ◦ f j−i1 .

Let fo = f j−i1 and go = g j−i1 . The above equation shows ( f −1
o ◦ fo)◦ fo = go . Consequently, ( f −1

o ◦ fo)◦

f i
o = g i

o and f i
o ◦ f i

o = f i
o ◦ g i

o for any i ≥ 1.

Since we have ( f −1
o ◦ fo) ◦ fo = go , repeating the same process of the above proof, there is some

io ≥ 1 such that g io
o ◦ f io

o = g io
o ◦ g io

o .

Let F = f io
o and G = g io

o . Then we have F ◦F = F ◦G , G ◦F =G ◦G .

As a consequence of Theorem 3.2.2, we can easily prove Theorem 1.2.7 by just using Theorem

1.2.6.

Proof of Theorem 1.2.7. From Theorem 1.2.6, there are some iterates fo and go of f and g and

M , N ≥ 1, such that

(g−1
o ◦ go)◦ g M

o = ( f −1
o ◦ fo)◦ f N

o .
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Since for any multi-valued function (g−1
o ◦ go), we can choose a multi-valued function (g−M

o ◦ g M
o )

which the same as (g−1
o ◦ go), from above equation, we have

(g−M
o ◦ g M

o )◦ g M
o = ( f −N

o ◦ f N
o )◦ f N

o .

By Theorem 3.2.1, there are iterates F and G of f N
o and g M

o , such that

F ◦F = F ◦G , G ◦F =G ◦G .

Given any non-exceptional polynomial g with degree≥ 2, for any rational function f with µg =

µ f , it was known that f should also be a polynomial; see [34]. As a corollary of Theorem 1.2.7, here

we give an easy proof of this result.

Corollary 3.2.2. Let g be a non-exceptional polynomial with degree d ≥ 2. Then any rational function

f with µ f =µg should be a polynomial. Consequently, there exist some m,n ≥ 1, s.t.

f n =σ◦ g m ,

where σ(z) = az +b is an affine transformation preserving µg =µ f .

Proof. From Theorem 1.2.7, there are some iterates F and G of f and g , such that

G ◦F =G ◦G .
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Exception set of a rational function h is the maximal finite set, which is invariant under h. Exception

set can only be an empty, one point or two points set. If the exception set is one point, then h is con-

jugate to a polynomial. Since G is a non-exceptional polynomial, its exception set is {∞}. Then {∞}

is also an invariant set of F , which means that F is a polynomial. If the exceptional set of F contains

two points, then F is conjugate to polynomial zdF , which means F is an exceptional polynomial. And

because µF = µG , G is exceptional. This contradicts to the assumption. Consequently, {∞} is the

exceptional set of F . Since F is some iterate of f , they should have the same exceptional set. Then f

should be a polynomial. The last statement comes from the main theorem of [37].

Proof of Theorem 1.2.3. Because any exceptional rational function has at most two simple critical

values, f is non-exceptional. As µg = µ f , then by Theorem 1.2.7, there are some integers m,n ≥ 1,

such that for F = f n and G = g m ,

F ◦F = F ◦G , or (F−1 ◦F )◦F = F ◦G (3.2.3)

If F =G , f and g has a common iterate. Then the statement is satisfied. So we can assume that

F ̸=G . Let k ≥ 0 be the smallest integer such that f k ◦F ̸= f k ◦G and f k+1 ◦F = f k+1 ◦G . Since

( f −1 ◦ f )◦ f k ◦F = f k ◦G , (3.2.4)

by Theorem 3.1.2 and 3.1.3, the corresponding irreducible component of the multi-valued function

( f −1 ◦ f ) in (3.2.4) should have bidegree (1,1). It means the multi-valued function σ = ( f −1 ◦ f ) is a

Möbius transformation and f ◦σ= f .
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Under changing of coordinates, we can assume that σ(z) = ζz where ζ is a k’s primitive root of

unit. If k ≥ 2, then we can decompose f (z) into

f (z) = fo(zk ).

Since k ≥ 2, from the above decomposition, f cannot have three simple critical values. This is a

contradiction. So we have

σ(z) = ( f −1 ◦ f )(z) = z.

And by (3.2.4), finally we get f k ◦F = f k ◦G , which is a contradiction to the assumption that f k ◦F ̸=

f k ◦G . In all, it has F =G , i.e. f and g share an iterate.

Remark. Theorem 1.2.3 asserts that for general f ∈ Ratd with degree d ≥ 3, µ f =µg implies that f and

g share an iterate. And as we discussed in the introduction, the existence of the special symmetry

σ f for any f ∈ Rat2 prevents the same conclusion as in Theorem 1.2.3. Precisely, for any f ∈ Rat2

and g = σ f ◦ f , we have µ f = µg , but they never share an iterate. However, we can modify it a bit,

and show that for generic f ∈ Rat2 (see Theorem 3.1.4), µ f = µg implies that g m = σ f ◦ f n or f n ; for

details see the proof of Theorem 1.2.2.

However, µ f =µg does not always imply that f and g share an iterate. Even worse, Theorem 1.2.1

asserts that f and g may not even satisfy (1.2.2) for any Möbius transformation σ.

Proof Theorem 1.2.1. Since T ◦R = T ◦S, we have f ◦ f = f ◦ g and T ◦ f i (z) = T ◦ g i (z) for any i ≥ 1.

Consequently,

( f −1 ◦ f )◦ f = g .
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Then from Theorem 1.2.6, µ f =µg .

Assume that there exist integers n,m ≥ 1 and σ ∈ PSL2(C) such that

f n =σ◦ g m .

Since f and g have the same degree, we have n = m, i.e. f n =σ◦ g n .

f n(z) = R ◦T ◦ f n−1 = R ◦T ◦ g n−1 =σ◦ g n =σ◦S ◦T ◦ g n−1

So we have R =σ◦S, which contradicts to the assumption in this theorem.

For the first statement of this theorem, see the following example.

Example. To illustrate Theorem 1.2.1, let T (z) = z3 −3z, R(z) = az + 1
az and S(z) = aωz + 1

aωz , with

ω2+ω+1 = 0 and a ∈C∗. For any a ∈C∗, it easy to check that T ◦R = T ◦S and there is no σ ∈ PSL2(C)

such that R = σ ◦ S. So from Theorem 1.2.1, we know that f = R ◦T and g = S ◦T have the same

measure of maximal entropy. And for any n,m ≥ 1,σ ∈ PSL2(C), we have

f n ̸=σ◦ g m .

It is not hard to see that neither f nor g is exceptional rational function, since they are not critical

finite. There are more such T,R and S satisfying assumptions in Theorem 1.2.1; see [2] and [10].

Remark. In the above example, rational functions fa(z) = a(z3 − 3z)+ 1
a(z3−3z) and ga(z) = faω(z)

come from composition of rational functions T (z) = z3 − 3z,R(z) = az + 1
az and S(z) = aωz + 1

aωz .
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Figure 3.2.1. The parameter space of fa Figure 3.2.2. Julia set of fa with

a = 0.4843+0.07776i

And T,R,R satisfy the assumptions in Theorem 1.2.1. Figure 3.2.1 is the parameter space of fa which

indicates that µ fζa = µ fa for any ζ with ζ6 = 1. Actually, by Theorem 1.2.1, we know that µ fωa = µ fa

for ω2 +ω+ 1 = 0 and f 2
a = f 2−a . So µ fζa = µ fa for any ζ with ζ6 = 1. Since ∞ is a supper attracting

point and fa is not a polynomial, there is a critical point attracted to ∞ and it is not periodic. As

exceptional functions are all post-critical finite, fa won’t be exceptional. By Theorem 1.2.1, fa and ga

has the same measure and there is no iterate of fa conjugated to an iterate of ga . However, for any

non-exceptional polynomials f and g with µ f = µg , there always exist iterates of f and g which are

in the same conjugacy class.
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There are more examples of such rational functions T,R and S as in Theorem 1.2.1. For example,

let t ,r, s be rational functions satisfying assumptions in Theorem 1.2.1. Then for any rational func-

tion h, T = h ◦ t ,R = r,S = s satisfy the same assumptions. All such rational functions T,R and S have

been classified, with the restriction that T is a polynomial. However, when T is not a polynomial, it

is still not known how to classify it. For details, please refer to [2] and [10].

3.3 Generic rational function with identical measure

In this section, we are going to prove Theorem 1.2.4, which indicates the iteration map is one-

to-one for general points. And then get to prove the main theorem, Theorem 1.2.2, which says: for

generic rational functions f ∈ Ratd , we have M f = { f , f 2, f 3, · · · } or { f ,σ f ◦ f , f 2,σ f ◦ f 2, · · · }, where

M f the set of rational functions with the same maximal entropy measure as f .

For d ,n ≥ 2, let x be a point in Ratd . There is an induced map between the tangent spaces of

x ∈ Ratd and φd ,n(x) ∈ Ratd ,n :

φd ,n ∗ : Tx → Tφd ,n (x).

The map φd ,n is singular at x ∈ Ratd if the induced map between the tangent spaces Tx and Tφd ,n (x) is

not injective. The map φd ,n is nonsingular if it is not singular at any point of Ratd . For any f ∈ Ratd ,

we can express it as

f (z) = h(z)

k(z)
= ad zd +ad−1zd−1 +·· ·+a0

bd zd +bd−1zd−1 +·· ·+b0
.

We can define a holomorphic map from t ∈C to ft ∈ Ratd in a neighborhood of 0 ∈C:

ft (z) = (ad + tαd )zd + (ad−1 + tαd−1)zd−1 +·· ·+ (a0 + tα0)

(bd + tβd )zd + (bd−1 + tβd−1)zd−1 +·· ·+ (b0 + tβ0)
.
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It can be checked that this parametrization map is singular at t = 0 iff

(αd zd +αd−1zd−1 +·· ·+α0)k(z)− (βd zd +βd−1zd−1 +·· ·+β0)h(z) = 0.

Take the derivative of ft with respect to t ,

d ft (z)

d t
|t=0 = (αd zd +αd−1zd−1 +·· ·+α0)k(z)− (βd zd +βd−1zd−1 +·· ·+β0)h(z)

(bd zd +bd−1zd−1 +·· ·+b0)2
.

From the above expression, the map t → ft is singular at 0 iff d ft (z)
d t |t=0 = 0.

More generally, for any holomorphic map (t → ft ) from a neighborhood of 0 ∈C to Ratd , we can

express it as

ft (z) = ad (t )zd +ad−1(t )zd−1 +·· ·+a0(t )

bd (t )zd +bd−1(t )zd−1 +·· ·+b0(t )
,

where ai (t ) and bi (t ) are holomorphic. Similar to the special case we discussed above, it can be

checked that

ft is singular at t = 0 ⇐⇒ d ft (z)

d t
|t=0 = 0. (3.3.1)

When the map t → ft is nonsingular at t = 0, then d ft (z)
d t |t=0 is a nonzero rational function with degree

at most 2d .

The following proposition has been proved by Adam Epstein [15]. For completeness, we will give

a proof here.
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Proposition 3.3.1. The map φd ,n : Ratd → Ratd n is nonsingular. In particular, φd ,n is an immersion

from Ratd to Ratd n .

Proof. In order to prove that φd ,n is nonsingular, it suffices to prove that if a holomorphic map t → ft

from a neighborhood of 0 ∈ C to Ratd is nonsingular at t = 0, then the map t → f n
t is nonsingular at

t = 0.

First assume that the holomorphic map t → ft is singular at t = 0. Let z0 ∈P1 be a periodic point

of f0 with period p ≥ 1 and multiplier
d f p

0
d z (z0) ̸= 1. Then there is a holomorphic motion zt of the

periodic point z0 in P1 such that

f p
t (zt ) = zt . (3.3.2)

We claim that d zt
d t |t=0 = 0, i.e. the holomorphic motion zt of the periodic point z0 is singular at t = 0.

Indeed, let

ψp (z1, z2) = f p
z2

(z1),

and then ψp (z, t ) = f p
t (z). By taking the derivative of t for both sides of the equation (3.3.2),

dψp (zt , t )

d t
= ∂ψp

∂z1

∂zt

∂t
+ ∂ψp

∂z2
= d zt

d t
(3.3.3)

Since t → ft is singular at t = 0, the map t → f p
t is singular at t = 0. As a consequence of (3.3.1),

∂ψp

∂z2

is zero at (z0,0). Then from equation (3.3.3):

d f p
0

d z
(z0)

∂zt

∂t
|t=0 =

∂ψp

∂z1
(z0,0)

∂zt

∂t
|t=0 = d zt

d t
|t=0.
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And by the assumption that
d f p

0
d z (z0) ̸= 1, we have d zt

d t |t=0 = 0.

Second, we prove that φd ,n is nonsingular by contradiction. Assume that the map t → ft is non-

singular at t = 0, but t → f n
t is singular at t = 0. Then for any repelling periodic point z0 ∈P1, f0(z0) is

a repelling periodic point of f0(z). Let zt be the holomorphic motion of the periodic point z0. There-

fore, ft (zt ) is the holomorphic motion of the periodic point f0(z0). Because zt and ft (zt ) are in the

repelling cycle of ft and t → f n
t is singular at t = 0. These two motions are singular at t = 0. Then by

taking the derivative of ψ1(zt , t ) = ft (zt ) with respect to t ,

dψ1(zt , t )

d t
|t=0 = ∂ψ1

∂z1
(z0,0)

∂zt

∂t
|t=0 + ∂ψ1

∂z2
(z0,0) = d ft (zt )

d t
|t=0

Since the motions zt and ft (zt ) are singular at t = 0, i.e. d zt
d t |t=0 = 0 and d ft (zt )

d t |t=0 = 0, we can reduce

the above equation to

∂ψ1

∂z2
(z0,0) = 0.

As we know from the previous discussion and the assumption that the map t → ft is nonsingular at

t = 0, ∂ψ1

∂z2
(z,0) = d ft

d t |t=0(z) is a nonzero rational function with degree at most 2d . It has finitely many

zeros. However, the set of repelling periodic points of degree≥ 2 rational functions is infinite. This

contradicts to the fact that ∂ψ1

∂z2
(z,0) vanishes at any repelling periodic points of f0.

Proof of Theorem 1.2.4. As we know, any regular map from P2d−1 to P2d n−1 is closed, i.e. the image

of any Zariski closed set is Zariski closed. And since the map φd ,n : Ratd → Ratd n is the restriction

of a regular map from P2d−1 to P2d n−1, the image φd ,n(Ratd ) is a subvariety of Ratd n . And by The-

orem 5.3 in [22], the singularities Sing(φd ,n(Ratd )) of φd ,n(Ratd ) is a proper Zariski closed subset of



64

φd ,n(Ratd ). Because the map φd ,n is regular, we have that the preimage A = φ−1
d ,n(Sing(φd ,n(Ratd )))

of Sing(φd ,n(Ratd )) is a proper Zariski closed subset of Ratd .

Choose a polynomial p ∈ Ratd such that the symmetry group ΣJp of its Julia set is trivial. From

the main theorem of [37] and Corollary 3.2.2, there is no other f ∈ Ratd such that φd ,n( f ) =φd ,n(p).

And since φd ,n is a proper (preimage of any compact set is compact) regular map and φd ,n is an

immersion by Proposition 3.3.1, p is not in A.

The set A ⊂ Ratd is φd ,n ’s preimage of some Zariski closed subset of Ratd n . After throwing away

the singularities of φd ,n(Ratd ), φd ,n(Ratd \A) is a connected smooth submanifold of Ratd ,n . More-

over, since φd ,n is a proper nonsingular map, the map φd ,n is a covering map with restricted to the

following sets:

φd ,n : Ratd \A →φd ,n(Ratd \A).

Because p ̸∈ A and there is no other f ∈ Ratd such that φd ,n( f ) =φd ,n(p). The degree of the covering

map should be 1, i.e. φd ,n : Ratd \A →φd ,n(Ratd \A) is injective.

Finally, since φd ,n(zd ) =φd ,n(ζzd ) for any ζ with ζd n−1+d n−2+···+d 0 = 1, φd ,n is not injective in Ratd .

Consequently, A is nonempty.

Theorem 1.2.4 states that φd ,n is injective at general points f ∈ Ratd . The next theorem indicates

that for generic rational functions f ∈ Ratd , any rational function g sharing an iterate with f should

be some iterate of f .
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Theorem 3.3.2. For the generic rational functions f ∈ Ratd with degree d ≥ 2, we have that any ratio-

nal function g ,

f n = g m ⇐⇒ g = f n/m and m|n.

Proof. First, for any d ≥ 2 and n ≥ 2, φd ,n(Ratd ) is a proper subvariety of Ratd n . Then the set of

rational functions, with degree d and coming from the iteration of lower degree rational functions,

is a proper Zariski closed subset of Ratd . Then for general f ∈ Ratd , it is not an iterate of some lower

degree rational function.

Second, for any d ≥ 2 and m,n ≥ 2, consider the iteration maps:

Ratd → Ratd n → Ratd mn

given by φd ,n and φd n ,m . Let Ad ,mn ⊂ Ratd and Ad n ,m ⊂ Ratd n be preimage of the singularities of

φd ,nm(Ratd ) and φd n ,m(Ratd n ). The set B = Ad ,nm ∪φ−1
d ,n(Ad n ,m) is a Zariski closed subset of Ratd .

Choose a polynomial p ∈ Ratd with trivial symmetry group ΣJp . From the proof of Theorem 1.2.4, p

is not in Ad ,nm , and φd ,n(p) is not in Ad n ,m . Then p ∈ Ratd \B , i.e. B is a proper Zariski closed subset

of Ratd . And from the choice of B , we know for any f ∈ Ratd \B ,

f mn = g m ⇐⇒ g = f n .

Third, let d1,d2,n1,n2 ≥ 2 be integers with d n1
1 = d n2

2 and n2 is not divisible by n1. We claim that

φd1,n1 (Ratd1 )*φd2,n2 (Ratd2 ).



66

Actually, from the main theorem of [37] and Corollary 3.2.2, there is a polynomial q ∈ Ratd1 such that

Mq = {q, q2, q3, · · · }. If there is an h ∈ Ratd2 such that hn2 = qn1 , then h must be in M f . Since Mq =

{q, q2, q3, · · · }, there is some i such that q i = h. Consequently, qn1 = q i∗n2 = hn2 . So n2|n1, which

contradicts to the assumption that n2 - n1. Consequently, qn1 ∈ φd1,n1 (Ratd1 ) * φd2,n2 (Ratd2 ). Then

φ−1
d1,n1

(φd2,n2 (Ratd2 )) is a proper Zariski closed subset of Ratd1 . And for any f ∈ Ratd1 \φ−1
d1,n1

(φd2,n2 (Ratd2 )),

there is no g ∈ Ratd2 such that f n1 = g n2 .

From the above three statements, we can remove countably many proper Zariski closed subsets

of Ratd . The left rational functions f ∈ Ratd satisfy the statement of this theorem.

With all these preparations, we are ready to prove Theorem 1.2.2.

Proof of the Theorem 1.2.2. The first statement of Theorem 1.2.2 is just a consequence of Theorem

1.2.3 and 3.3.2.

Let f ∈ Rat2 be rational function with two critical orbits and none of them is preperiodic. Let g

be any rational function with µg =µ f . Since all exceptional functions are post-critical finite and f is

not post-critical finite, f cannot be exceptional. So by Theorem 1.2.7, there are integers m,n,k ≥ 1,

such that

g m = ( f −k ◦ f k )◦ f n .

By Theorem 3.1.2 and 3.1.3, f −k ◦ f k should be σ f or the identity map. So it indicates

g m =σ f ◦ f n or f n .
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By Theorem 3.3.2, there is a generic subset C ⊂ Rat2, such that for any f ∈ C , f n = g m implies that

m|n and g = f n/m , and µ f =µg implies that f k =σ f ◦ g l or g l for some k, l ≥ 1.

For any f (z) = az2+bz+c
d z2+ez+r ∈ Rat2, we can write σ f down explicitly,

σ f (z) = (ar − cd)z − (br − ce)

(ae −bd)z + (ar − cd)
.

There is a free and order two automorphism ρ of Rat2,

ρ : Rat2 → Rat2,

given ρ( f ) =σ f ◦ f .

Since ρ is an automorphism, C
∩
ρ−1(C ) is a generic subset of Rat2. For any f ∈ C

∩
ρ−1(C ) and

any g withµ f =µg , we have f n =σ f ◦g m or g m for some m,n ≥ 1. If f n = g m , then m|n and g = f n/m .

If f n =σ f ◦g m , then g m = (σ f ◦ f )n . Since f ∈C
∩
ρ−1(C ), it indicates that σ f ◦ f ∈C . So we have m|n

and g = (σ f ◦ f )n/m =σ f ◦ f n/m .

3.4 Rational functions with common iterates

In this section, we characterize the condition that two non-exceptional rational functions share

an iterate.

Theorem 1.2.3 says that: generally, having the same measure of maximal entropy is the same as

sharing an iterate. It is easy to see that two rational functions sharing an iterate should have the

same set of periodic points. Conversely, for non-exceptional rational functions, having the same set
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of periodic points also guarantees that they share an iterate. However, this is not true for exceptional

functions; see Proposition 3.4.2.

Theorem 3.4.1 (restatement of Theorem 1.2.5). Let f and g be non-exceptional rational functions

with degrees ≥ 2. The following statements are equivalent:

1. f and g have some common iterate, i.e. f n = g m for some n,m ∈N∗.

2. There is some φ with degree ≥ 2, such that f ◦φ=φ◦ f and g ◦φ=φ◦ g .

3. The maximal entropy measures µ f =µg , and J ∩Per( f )∩Per(g ) ̸= ;.

4. PrePer( f ) = PrePer(g ) and J ∩Per( f )∩Per(g ) ̸= ;.

5. Per( f ) = Per(g ).

Proof Theorem 1.2.5. For (1), let φ = f n = g m . Since f and g are both commutable with φ, (1)

⇒ (2). By Ritt’s theorem, non-exceptional commutable rational functions share an iterate; see [36]

and also [16]. Since f and g are non-exceptional, f ◦φ = φ ◦ f and g ◦φ = φ ◦ g implies that φ is

non-exceptional, and f , g ,φ share an iterate. So (2) ⇒ (1).

By Yuan and Zhang’s Theorem 1.6 in [40], PrePer( f )=PrePer(g ) implies that µ f = µg . Then we

have (4)⇒(3). Two rational functions sharing an iterate must have the same set of periodic (preperi-

odic) points and also the same measure of maximal entropy. We have (1)⇒(4) and (1)⇒(5).

From Theorem 3.5 in [40] and Theorem 1.2 in [3], it shows that two rational functions sharing

infinitely many preperiodic points guarantees they have common set of periodic points. Assume

that Per( f )=Per(g ). Since Per( f ) is not a finite set, PrePer( f )=PrePer(g ). This shows that (5)⇒(4).
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It remains to show that (3)⇒ (1). The proof is inspired by [31]. Suppose µ f =µg , and J ∩Per( f )∩

Per(g ) ̸= ;. By passing to some iterates and changing of coordinates, we can assume that 0 is a fixed

point of f and g , and 0 is in their Julia set. Since 0 is in the Julia set and it is fixed by both f and g , then

R(z) = f −1◦g−1◦ f ◦g (z) is locally well defined near 0. We claim that R is the identity map. Otherwise,

since R has multiplier equaling 1 at its fixed point 0. It determines attracting and repelling flowers

near 0. Suppose that there is some point x near 0 in the Julia set and also in some attracting petal of

the flowers determined by R; see Section 10 of [33]. Then there is some fundamental domain of R

for this petal, which contains some neighborhood of this point x. As µ f is supported in the Julia set,

the fundamental domain won’t have zero measure. Since R acts on this petal like a transformation

(in appropriate coordinate) and R preserves the measure µ f , the µ f -measure of this petal cannot be

finite. However, we know that the total mass of µ f on P1 is 1, which is a contradiction. So there is no

point in the Julia set which is in the attracting petals of the flowers of R. Replace R by R−1, similarly

we see that there is no point in the Julia set which is in the attracting petals of the flowers of R−1.

As the union of the attracting petals of R and R−1 contains a small disc punctured at 0. The point 0

should be an isolated point in the Julia set of f and g . This is impossible, since a Julia set cannot have

isolated points. Therefore, R should be the identity map. Which means f and g are commutable. So

the third statement implies the first statement.

For exceptional case, we would not have this nice result.
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Proposition 3.4.2. Let f (z) = zd f and g (z) = zdg , with d f ,dg ≥ 2. Then

Per( f ) = Per(g ) ⇔∀ prime p, p|d f iff p|dg .

Proof. Assume p ≥ 2 is a prime number such that p|d f and p - dg . There are integers n ≥ 1 and m,

with

d n
g = mp +1

Let zo = e2πi /p , we have f (zo) = 1 and g n(zo) = e2πi (mp+1)/p = zo . So zo is preperiodic and not peri-

odic for f but it is periodic for g , i.e. Per( f ) ̸= Per(g ).

Conversely, assume that for any prime number p, p|d f iff p|dg . Let zo = e2aπi /b be a periodic

point of f with period n, where a and b are coprime integers. Then we have d n
f a/b = a/b +m for

some integer m.

d n
f a = a +mb ⇒ (d n

f −1)a = mb

So b|(d n
f −1), which means that b and d f are coprime integers. Then by previous assumption, b and

dg are coprime integers. There is some integer k ≥ 1 such that d k
g ≡ 1(mod b), i.e. d k

g a/b = a/b+ t for

some integer t . In all we have g k (zo) = zo . So zo is a periodic point of g . Consequently, Per( f )⊂Per(g ).

Similarly, we have Per(g )⊂Per( f ). In all, Per(g )=Per( f ).

Let f (z) = z2∗3 and g (z) = z4∗3. From the above proposition, they have the same set of periodic

points. However, they do not share an iterate, which can be seen from the degrees of them.
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There is one more thing I would like to mention here. As we know, for any two rational func-

tions, if the intersection of their sets of preperiodic points has infinitely many points, then they

have identical set of preperiodic points. For any two non-exceptional rational functions f and g ,

|Per( f )
∩

Per(g )|=∞ guarantees that Per( f )=Per(g ). However, for exceptional polynomials f (z) = z3

and g (z) = z5, we have |Per( f )∩Per(g )| =∞ and Per( f ) ̸= Per(g ) by Proposition 3.4.2, since it is not

hard to see that e2πi /2k
is a periodic point for both f and g with any k ≥ 1.
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21. A. Freire, A. Lopes and R. Mañé. An invariant measure for rational maps. Bol. Soc. Brasil Mat.
14 (1983) 45-62.

22. R. Hartshorne. Algebraic geometry. Graduate Texts in Mathematics 52, Springer-Verlag, Berlin
and New York, (1977).

23. J. Hubbard and P. Peter Superattractive fixed points in Cn . Indiana Univ. Math. J. 43(1994), no.
1, 321ĺC365.
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