
Blacksheep: a Tool for Kernel Rootkit Detection,

based on Physical Memory Crowdsourced Analysis

BY

ANTONIO BIANCHI
B.S., Politecnico di Milano, 2008
M.S., Politecnico di Milano, 2012

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2012

Chicago, Illinois

Defense Committee:

V.N. Venkatakrishnan, Chair and Advisor
Jakob Eriksson
Marco D. Santambrogio, Politecnico di Milano

ACKNOWLEDGMENTS

First of all I want to thank my parents and my brother because they have always helped

me “in their own way”. I also have to thank Andrea Bianchessi and Carlo Ongini because

we shared our school experiences for 12 years.

During all my academic career I have met tens of teachers, professors, TAs, RAs, and

Ph.D. students. Most of them did their job with passion and skill and they have been a

constant inspiration during my studies. I cannot list all of them, but I want to mention at

least Alessandro Barenghi and Simone Ceriani.

Big thanks go to Alessandra Bonetto that took care of us for four months at UIC, and

to Manual Fossemò that made us laugh.

A huge thank you to Alberto Magni. You have helped me in countless situations and

you never avoid answering my numerous questions.

I really have to thank Yanick Frantantonio for lots of different reasons. You always give

me good suggestions and without you I would have never been at UCSB.

I want to thank Vicenzo Maffione, Daniele Di Proietto, Timon Van Overveldt, and

Pierre Payet. Even though I had “stuffs to do” I really had good times being an intern at

UCSB with you.

I also want to thank Yan Shoshitaishvili. You are the one who started this project and

you patiently heard my complaints about “strange things” I found in Windows kernel.

ii

ACKNOWLEDGMENTS (Continued)

A huge thank you to all the people at UCSB SecLab: it has been a privilege to work

(and to party) with you.

I would like to thank prof. Carlo Ghezzi for his support.

I am truly thankful to professors Christopher Kruegel and Giovanni Vigna for the trust

they have placed in me.

Finally, big thanks go to the people that helped me in reviewing this work: my mother

and my brother, Alberto Magni, and Yan Shoshitaishvili.

AB

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Motivations and goals . 1
1.2 Definitions . 8
1.3 Overcoming limitations of the current tools 11

2 RELATED WORK . 13
2.1 Automatic rootkit detection 13
2.2 Physical memory analysis . 18
2.3 Invariant-based detection . 19

3 PHYSICAL MEMORY ANALYSIS ON WINDOWS OPER-
ATING SYSTEMS . 21
3.1 Memory Imaging Techniques 21
3.2 Windows memory management 24
3.3 Windows kernel modules . 33
3.4 Windows common data structures 34
3.5 User-Kernel mode switching 38

4 WINDOWS ROOTKIT OVERVIEW 42
4.1 Rootkit classification . 43
4.2 System modifications caused by kernel rootkits 44
4.3 Common rootkit uses . 48

5 MEMORY DUMP ACQUISITION AND LOW-LEVEL AC-
CESS . 49
5.1 Dumping method used . 49
5.2 Volatility integration . 53
5.3 Blacksheep overview . 58
5.4 Low level access layer . 61

6 HIGH-LEVEL ANALYSES . 70
6.1 Code analyses . 71
6.2 Kernel entry point analyses 78
6.3 Data analyses . 81

7 TECHNICAL DETAILS . 91

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

7.1 Kernel pool allocation detection 91
7.2 Double linked list detection 93
7.3 Kernel module identification 94
7.4 Detecting code and data sections within a PE file 95
7.5 Data pointer detection . 97
7.6 Function code comparison 97
7.7 Performance optimizations 99

8 EVALUATION . 101
8.1 Used data sets . 101
8.2 Tested rootkits . 102
8.3 Methodology . 106
8.4 Data set 1 - Trained Analyses 108
8.5 Data set 1 - Untrained Analyses 111
8.6 Data set 2 - Trained Analyses 113
8.7 Data set 2 - Untrained Analyses 116
8.8 Other results . 118
8.9 Execution time and memory consumption 119
8.10 Discussion . 122

9 CONCLUSIONS AND FUTURE WORK 125

CITED LITERATURE . 128

VITA . 132

v

LIST OF TABLES

TABLE PAGE

I OVERVIEW OF PHYSICAL MEMORY DUMPING METHODS 21

II OVERVIEW OF TECHNIQUES USED BY WINDOWS ROOTK-
ITS . 42

III THE SETS OF MEMORY DUMPS USED TO EVALUATE
BLACKSHEEP . 101

IV ROOTKITS USED TO TEST BLACKSHEEP 103

V ROOTKITS USED TO TEST BLACKSHEEP: WINDOWS 7
COMPATIBILITY AND HASHES 105

VI OVERVIEW OF THE RESULTS IN WINXP SET, USING TRAINED
ANALYSES . 108

VII OVERVIEW OF THE RESULTS IN WINXP SET, USING UN-
TRAINED ANALYSES . 111

VIII OVERVIEW OF THE RESULTS IN WINXP SET, USING UN-
TRAINED DATA ANALYSIS . 112

IX OVERVIEW OF THE RESULTS IN WIN7 SET, USING TRAINED
ANALYSES . 113

X OVERVIEW OF THE RESULTS IN WIN7 SET, USING UN-
TRAINED ANALYSES . 116

XI OVERVIEW OF THE RESULTS IN WIN7 SET, USING UN-
TRAINED DATA ANALYSIS . 117

XII NUMBER OF COMPARISONS NEEDED BY EACH TYPE
OF ANALYSIS . 119

vi

LIST OF FIGURES

FIGURE PAGE

1 Overview of the flow of data during utilization of Blacksheep 5

2 Execution privileges in x86-compatible CPUs 10

3 The number of signatures used by Symantec products 14

4 Page mapping in Windows 32-bit versions, with PAE enabled 27

5 PTE bits relative to address translation 28

6 Virtual address space layout in 32-bit Windows versions 32

7 Double Linked List examples . 36

8 SYSENTER-based System Call Mechanism 40

9 Process hiding using DKOM . 47

10 UML sequence diagram of the initialization of a MemDump instance 65

11 An example of the internal representation of a memory dump 66

12 An example of code untrained analysis with multiple infections . . . 118

13 Execution time during different types of comparisons 121

vii

LISTINGS

CHAPTER PAGE

1 LIST ENTRY data structure definition 35

2 POOL HEADER data structure definition 37

3 Procedure used to get the handle of the swap file 52

4 Procedure used to get a DWORD at a specified virtual address . . 69

5 An example of a detected double linked list 86

6 Procedure used to detect POOL HEADER data structures 92

7 Procedure used to decide if an address is inside a code section . . . 96

8 Procedure used to compare the code of two functions 98

9 An example of speed optimization . 100

10 A detected malicious data difference caused by a rootkit 110

11 Three examples of data modifications within the CI.dll module . . 115

viii

LIST OF ABBREVIATIONS

AMD Advanced Micro Devices

API Application Program Interface

BIOS Basic Input/Output System

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DKOM Direct Kernel Object Manipulation

DLL Dynamic-link Library

DMA Direct Memory Access

DWORD A 32-bit unsigned integer

GDI Graphics Device Interface

GDT Global Descriptor Table

IAT Import Address Table

IDT Interrupt Descriptor Table

IOMMU Input/Output Memory Management Unit

IRP I/O Request Packet

KPCR Kernel Processor Control Region

ix

LIST OF ABBREVIATIONS (Continued)

KPP Kernel Patch Protection

KVM Kernel-based Virtual Machine

MBR Master Boot Record

MD5 Message-Digest Algorithm (version 5)

MMU Memory Manager Unit

MSR Machine State Register

NDIS Network Driver Interface Specification

OS Operating System

PAE Physical Address Extension

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

PDE Page Directory Entry

PE Portable Executable

PFN Page Frame Number

PTE Page Table Entry

QEMU Quick Emulator

RAM Random Access Memory

RVA Relative Virtual Address

x

LIST OF ABBREVIATIONS (Continued)

SHA Secure Hash Algorithm

SP Service Pack

SSDT System Service Dispatch Table

SST System Service Table

TLB Transition Look-aside Buffer

TXT Trusted Execution Technology

UAC User Access Control

UML Unified Modeling Language

UPGMA Unweighted Pair Group Method with Arithmetic Mean

USB Universal Serial Bus

VT Vanderpool Technology

WDK Windows Driver Kit

xi

SUMMARY

Detecting rootkit infestations is a complicated security problem faced by modern or-

ganizations. Many possible solutions to this have been proposed in the last decade, but

various drawbacks prevent these approaches from being ideal solutions.

In this thesis, we present Blacksheep a detection tool for utilizing a crowd of similar

machines to detect rootkit infestations. In particular we focus on kernel rootkits infecting

the Windows operating system.

We propose a novel technique to detect kernel rootkits based on the analysis of physical

memory dumps acquired from a set of machines. These memory dumps are compared with

each others and the results of these comparisons are used to classify them in infected and

non-infected.

Three different comparisons are performed: code comparison, kernel entry point com-

parison and data comparison. Their results are used by two different analyses: a trained

classification and an untrained classification. The trained classifier relies on a set of mem-

ory dumps manually flagged as having been acquired from machines in a non-infected state.

The goal of this analysis is to classify a set of memory dumps as having come from in-

fected or non-infected machines. The untrained classifier generates a hierarchy of clusters

of memory dumps based on their similarity. The aim of this analysis is to separate the

analyzed memory dumps into subsets based on the state of the machines which they have

been taken from.

xii

SUMMARY (Continued)

As part of our investigation into Windows kernel rootkits, much research was needed

to be done in two main areas: the internals of the Windows kernel itself and the methods

to acquire and analyze dumps of the physical memory and copies of the swap area. Part

of our contribution is the summary of these researches.

We have tested Blacksheep on two sets of memory dumps acquired from differently

configured machines infected with eight different rootkits. Some of the analyses performed

by Blacksheep achieve a 100% detection rate, with no false positives in both sets. Others

are able to give interesting information about the behaviors of the analyzed rootkits.

This dissertation is organized as follows.

• Chapter 1 outlines the context of this work, its motivations and goals. It also

provides an overview of how Blacksheep works.

• Chapter 2 gives an overview of the state of the art in all the different research areas

we worked on.

• Chapter 3 details the crucial aspects that need to be considered during analysis of

physical memory.

• Chapter 4 provides a classification of Windows rootkits and of the techniques they

use.

• Chapter 5 explains how Blacksheep extracts data within a memory dump and how

it is internally represented.

xiii

SUMMARY (Continued)

• Chapter 6 describes the analyses performed by Blacksheep.

• Chapter 7 provides details on some technical aspects about how Blacksheep works.

• Chapter 8 presents the tests we performed and their results.

• Chapter 9 summarizes the conclusions and depicts future development of the project.

xiv

CHAPTER 1

INTRODUCTION

1.1 Motivations and goals

1.1.1 Introduction

Modern organizations rely on large networks of computers to accomplish their daily

workflows. In most cases, to simplify maintenance, upgrades, and replacement of these

computers, these organizations utilize a standard build. For example, a large company

might make a standard hard-disk image for employee workstations, another image for

servers, and so forth. At the same time, these almost-similar computers are treated as

unique entities when enforcing security policies and scanning for malware. Oftentimes, by

leveraging the similarities between these computers, malware can be detected more effec-

tively and without the limitations of modern malware detection techniques. Specifically,

the detection of kernel rootkits can greatly benefit from such an approach.

Rootkits are software designed to stealthy modify the behavior of an operating system

to achieve several goals such as hiding malicious user space objects (e.g. processes, files,

network connections), logging keystrokes, disabling security software and installing back-

doors for continued access. Although several detection and prevention techniques have

been developed and deployed, all have considerable drawbacks, and so rootkits remain

a widespread security threat: according to recent estimations the percentage of rootkits

1

2

among all antivirus detections is in the range of 7-10% (1)(2). The situation is further

complicated by the fact that the techniques used by rootkits for evasion are continuously

evolving (1).

The goal of our work is to detect kernel rootkits, a broad class of rootkits that operate

by modifying kernel code or kernel data structures. We focus on the Windows operating

system, since it is the most widespread and the most targeted platform, however most of

the concepts and techniques used are applicable to any operating system. We propose a

novel technique for detecting kernel rootkits, based on the analysis of physical memory

dumps (and, if necessary, the swap area) of a running operating system.

We demonstrate Blacksheep, as an implementation of our approach and validate it by

analyzing memory dumps acquired from two sets of computers. Two different types of

analysis are performed by Blacksheep: a trained classification and an untrained classifica-

tion.

The trained classifier relies on a set of memory dumps that have been manually flagged

as acquired from a machine in a non-infected state. The goal of this analysis is to partition

a set of memory dumps to be checked in infected and non-infected.

The untrained classifier generates a hierarchy of clusters of memory dumps based on

their similarity. The aim of this analysis is to separate the tested memory dumps in

subsets based on the state of the machines which they have been taken from. For instance,

all memory dumps acquired from non-infected machines or all those taken from a machine

with a specific infection, should be classified in separate clusters.

3

Both analyses depend on three different comparisons that are performed between pairs

of dumps:

• code comparison

• kernel entry point comparison

• data comparison

This approach has several advantages over the state of the art. Rootkits using novel

infection techniques can be detected. Additionally, Blacksheep can be deployed easily to

a crowd of pre-existing machines. Since the entire population of machines is used in the

comparison, the system can be installed on machines that are already compromised and

still deliver useful detection. Finally, because Blacksheep detects the differences among

the crowd, anti-virus software which modifies the kernel (often producing false positives

for other rootkit detection techniques) can be properly accommodated, as such software

would be deployed on all machines.

We validate our approach analyzing memory dumps taken from machines with two

different configurations. In each configuration Blacksheep is able to detect kernel modifi-

cations introduced by all the different kernel rootkits we tried and to discriminate between

memory dumps acquired from non-infected and infected machines. Additionally, it is also

able to cluster memory dumps with an adequate precision according to whether they have

been acquired from an infected machine and, in this case, to separate them based on the

infection type.

4

The main contributions of our work are:

• To show that the analysis of physical memory dump and swap file is an effective way

to detect Windows kernel rootkits.

• To infer invariant properties (kernel entry point values, code section content and data

invariants) that a non-infected system should have, analyzing different dumps.

• To automate the rootkit detection process, checking if these properties hold in dumps

acquired from machines to be tested.

• To build an untrained classifier of the infection state of a machine.

5

M
e
m

o
ry

 d
u

m
p

 s
e
t

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M
R

A
M

R
A

M
R

A
M

-
D

u
m

p
in

g
 d

ri
v
e
r

-
V

M
 i
n

tr
o
s
p

e
c
ti

o
n

-
H

a
rd

w
a
re

 d
u

m
p

in
g

 d
e
v
ic

e

S
W

A
P

S
W

A
P

R
A

M

S
W

A
P

V
o
la

ti
li
ty

 2
.0

M
em

or
y

du
m

p
in

te
rn

al
re

pr
es

en
ta

tio
n

M
em

or
y

du
m

p
in

te
rn

al
re

pr
es

en
ta

tio
n

Lo
w

-le
ve

l
ac

ce
ss

la
ye

r

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

R
A

M

S
W

A
P

B
la

c
k
s
h

e
e
p

D
at

a
Co

m
pa

re
r

Ke
rn

el
 e

nt
ry

-p
oi

nt
Co

m
pa

re
r

Co
de

 C
om

pa
re

r

H
ie

ra
rc

hi
ca

l
 c

lu
st

er
in

g

RE
PO

RT
Tr

ai
ne

d
Cl

as
si

fie
r

U
nt

ra
in

ed
Cl

as
si

fie
r

M
em

or
y

du
m

p
in

te
rn

al
re

pr
es

en
ta

tio
n

R
A

M
R

A
M

R
A

M
RE

PO
RT

F
ig

u
re

1:
O

ve
rv

ie
w

of
th

e
fl

ow
of

d
at

a
d

u
ri

n
g

u
ti

li
za

ti
on

of
B

la
ck

sh
ee

p
.

6

1.1.2 Common problems

Any rootkit detection methods has to deal with three common problems (3):

1. Knowing which security-sensitive locations of a system should be monitored or pro-

tected and what should be their expected state in a non-infected machine.

2. Getting reliable access to the system components they have to protect (e.g. processes,

file system, network flows).

3. Protecting their own code and data from being tampered by malicious code.

Regarding the first problem, many security software tools analyze the integrity of sev-

eral different Windows components (see Section 2.1.5). Developing such software requires a

deep knowledge of the operating system internals and involves dealing with undocumented

components and data structures. However, such systems can be easily circumvented by

rootkits using previously unknown techniques to execute themselves and to subvert oper-

ating system behavior. For instance, kernel modules can use function pointers stored in

their data sections that may be eventually modified by a rootkit: it is substantially impos-

sible for a rootkit detection tool to check all these pointers. Additionally, it could even be

difficult to verify the integrity of well-known system critical locations such as the system

call table: these locations are modified by some legitimate software (see Section 4.3.2) and

their content could change with any operating system updates.

The problem of getting a reliable access to system components is usually dealt with by

attempting to access resources at the lowest possible level, oftentimes bypassing or over-

7

coming standard operating system APIs. Moreover, accessing resources trough different

methods can reveal system information hidden by rootkits (see Section 2.1.6). However,

modern rootkits are able to cloak themselves in a way in which they are undetectable by

several different access methods. For this reason, many modern rootkits can be detected

and removed only using ad-hoc solutions.

Many security software face the problem of protecting their own code by hooking Win-

dows APIs that could be used to disable them (see Section 4.3.2). Additionally, some

of them allow users to scan their system before booting it, minimizing the possibilities a

rootkit has to run while the scan is performed. Nonetheless, since security software and

rootkits usually run with the same privileges it is not possible for the former to completely

defend itself.

To solve limitations current products have, solutions based on hardware support have

been proposed (see Section 2.1.5). However such solutions have not yet been implemented

in commonly used security tools. Furthermore, such technologies could also be utilized by

rootkits, allowing them to be executed at a higher privilege level than that at which the

security software is (4).

For all of these reasons, the problem of the rootkit detection is still considered an arms

race between rootkits and security software (5, Chapter 6).

The approach we propose is able to overcome problems that current approaches have,

exploiting information collected by analyzing a set of similarly configured machines (see

Section 1.3).

8

1.2 Definitions

Before going on with our discussion, it is necessary to state precise definitions of how

some terms are used in the context of this thesis.

1.2.1 Malware

Malware is any malicious software, harmful to a computer user, designed to gather

sensitive information, disrupt operations, gain unauthorized access to computer systems,

and other abusive behavior. Worms, trojan horses, computer viruses, spyware, adware,

rootkits, and other malicious programs are considered malware.

1.2.2 Rootkit

Rootkits are software designed to stealthily modify the behavior of an operating sys-

tem to achieve several goals such as hiding malicious user space objects (e.g. processes,

files, network connections), logging keystrokes, disabling security software, and installing

backdoors.

1.2.3 Kernel Rootkit

A broad class of rootkits that operate by modifying kernel code or kernel data struc-

tures. Their code is executed at the same privilege level than the operating system kernel

code. In this thesis, we restrain our analyses to kernel rootkits infecting the Windows

operating system, unless otherwise specified.

9

1.2.4 Memory dump (shortened to dump)

A copy of the physical memory of a running operating system saved on a non-volatile

memory. In case a system uses paging mechanisms (e.g. swap space) to store memory on

a secondary storage (i.e. pagefile.sys file on Windows operating systems), a copy of this

memory is considered as a part of the dump.

1.2.5 Kernel memory

The virtual memory region reserved by the operating system to its kernel. See section

3.2.3 for details.

1.2.6 Kernel module

We consider as a kernel module any unit of code that is executed at kernel level (Ring 0

in x86 terminology, see Figure 2). In Windows operating systems, they are usually loaded

from files with .sys extension and a LDR DATA TABLE ENTRY data structure is stored

in kernel memory for each loaded module (see Section 3.3). We use this term to refer

to both device drivers and operating system core components (e.g. ntoskrnl.exe, hal.dll,

win32k.sys).

1.2.7 Kernel entry point

Any pointer to kernel code locations, used when execution is switched from user mode

to kernel mode or an interrupt is processed. See section 3.5 for details.

10

Ring 2
Ring 1

Ring 0

Ring -1

Ring 3

User Mode

Kernel Mode

Hypervisor

Applications

Device drivers
Operating system core

Least privileged

Most privileged

Figure 2: Execution privileges in x86-compatible CPUs.

Notice that in Windows operating systems, Ring 1 and Ring 2 privilege levels are not used,

thus execution moves directly between Ring 3 and Ring 0. Hardware virtualization (in

processors where it is available) can be used to run a hypervisor.

11

1.3 Overcoming limitations of the current tools

Blacksheep works on a set of memory dumps acquired from similarly configured ma-

chines. We state that, under the following conditions, it is able to overcome limitations

that current detection methods have:

• Machines which the memory dumps are taken from must have the same software

(same installed software versions and same operating system version) and hardware

(installed peripherals).

• Most of the dumps must be taken from non-infected machines.

The problem of knowing which are the sensitive locations of a system to be monitored

is addressed by analyzing all running kernel modules. Moreover, the analysis take into

consideration both code and data. To know the expected state of such locations, the

system exploits the assumption that most of the dumps are acquired from non-infected

machines, thus the expected state is simply the most common among all the dumps. Since

the analyzed machines are similarly configured, we expect that most of the kernel code,

kernel entry points, and data invariants that we are able to detect should not change

between dumps acquired from non-infected machines.

To get reliable access to system resources, we directly analyze physical memory. Black-

sheep can work with physical memory dumps taken with different methods, some of these

do not rely on any operating system APIs but directly read the content of the memory at

the hardware level. Additionally, even if a rootkit could interfere with one of these meth-

12

ods, others can still be reliable (see Section 3.1). Furthermore, our work shows that it is

possible to integrate physical memory images with copies of the swap area of an operating

system to get a more complete analysis.

Since the analysis only needs memory dumps, it can be performed on different machines

than those analyzed. For this reason the analysis code cannot be tampered by malicious

code.

CHAPTER 2

RELATED WORK

Our work spans many different research areas related to rootkit detection and physical

memory analysis. In this chapter we will discuss the state of the art in all the different

areas we worked on.

2.1 Automatic rootkit detection

A considerable amount of research has been done both into detection of rootkit infec-

tions and in the development of countermeasures. Many of the studied techniques have

been implemented in commercial products (6). Usually these tools work automatically,

requiring limited user interaction. They are designed for users with little or no knowledge

about operating system design and rootkit behaviors.

2.1.1 Malware detection techniques

Although rootkit detection poses specific problems, malware detection methods can

sometimes be effective for this purpose as well.

2.1.2 Signature based detection

This classic method compares files and processes against a list of byte-level signatures

describing invariant content of known malicious software (7)(8). This technique is still

widely used, but it suffers major limitations. To begin with, as seen in Figure 3, the

number of signatures which are required to detect currently know malware infections is ex-

13

14

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

18,000,000

20,547 39,374 108,481 221,506 362,196

986,463

2,677,786

5,724,106

10,114,682

15,480,052

Signature Counts By Year Net New Signatures
Cumulative Total

Figure 3: The number of signatures used by Symantec products.

source: http://www.triumfant.com/Signature_Counter.asp

ponentially increasing. Even taking into account only kernel rootkits, it is still difficult to

generate signatures which describe polymorphic software. Additionally, writing such signa-

tures takes time, and a completely new piece of malware often enjoys precious unhindered

time while new signatures for it are manually generated.

15

Furthermore, such signature-based approaches generally utilize hooks in order to scan

software as it is written to disk or loaded for execution. This is often accomplished by

hooking system calls and other kernel entry points, but these methods can be evaded

by adequately sophisticated software. For instance, some malware programs avoid saving

themselves using filesystem APIs and instead write themselves to disk by accessing it

directly (9). Other malware samples exploit undocumented and unmonitored mechanisms

to be executed, thus evading detection by signature-based antivirus software.

2.1.3 Behavioral heuristic analysis

To overcome the limitations of signature-based detection, antivirus software often pairs

it with a heuristic behavioral analysis. With this approach, a process is analyzed while it

is running and its behavior is monitored.

For instance, a process which invokes some particular security-critical system calls with

certain parameters (e.g. modifying file access permissions or adding boot entries) might be

classified as suspicious and it might be halted. This approach has been studied in several

works (10)(11).

Such analysis is very hard to execute properly. Any framework performing this analysis

must have a very good understanding of the direct and indirect effects of monitored events.

Such understanding is often imperfect, allowing malware to evade suspicions.

2.1.4 Sandboxed execution

Some malware detection software can execute a program in a virtual environment,

isolated from the rest of the operating system, and trace actions performed by it. Using

16

this method they are able to deal with polymorphic malware, since it does not depend on

the binary content of the file to be analyzed. Moreover it allows a behavioral heuristic

analysis of a program executing it and, at the same time, preventing it to compromise the

system in which it is run.

The two biggest drawbacks of this detection method are performance and evasion.

Because detection software must wait until the sandbox execution has finished in order

to start the program on the actual system, such a detection method is noticeably slow.

Additionally, many different techniques allow malware to detect if they are executed inside

an emulated environment, and, in such a case, modify their execution flow.

2.1.5 System integrity checking

In the process of subverting normal OS behavior, rootkits must modify critical system

code and/or data structures (see Section 4.2 for details). For this reason, a possible rootkit

detection method is to check if all critical components of an operating system are in their

expected state.

Windows kernel, in 64-bit versions, implements a feature called Kernel Patch Protection

(KPP) (12). It consists in an obfuscated, periodically executed, kernel function that checks

the integrity of critical kernel code and data structures. ((13, Chapter 3.14) contains further

information as to which kernel components are checked by KPP). Additionally, x64-based

versions of Windows allow only signed code to be executed at kernel level (13, Chapter

3.15).

17

A similar approach has been implemented in System Virginity Verifier (14). This tool

is based on the idea that, excluding some specific locations (e.g. relocated pointers, data

sections), the image in memory of a kernel module should be equal to the content of the

file from which it is loaded.

Other approaches, specifically designed as a defense against function pointer hijacking

in kernel memory, have also been developed (15)(16).

Yet more solutions to system integrity checking problem based on hardware virtualiza-

tion processor features (e.g. Intel VT-x, Intel VT-d, Intel TXT, AMD-V, AMD-Vi) have

been proposed (17)(18). The idea behind these solutions is to take advantage of hardware

virtualization to perform integrity verification at a higher privilege level than that at which

the kernel code and rootkits are executed.

One fundamental challenge with all such systems is the fact that they must identify a

baseline with which to compare the current state of the system that they are protecting.

In the case of the System Virginity Verifier, the baseline is defined to be the actual files on

disk from which the kernel is loaded. However, malware that is motivated enough could

modify these files as well, thus corrupting the baseline. In other cases, the state of the

system when the software was loaded is used.

2.1.6 Cross-view detection

Cross-view detection is a another popular rootkit detection technique (19, Chapter 7.9),

which is implemented by several detection tools. This approach relies on the fact that the

same information about the state of a system can be obtained in different ways.

18

For instance, the common way to detect the presence of a file is to use specific user-

level APIs. The values returned by such APIs can be easily altered by a rootkit to hide

the presence of a file. However, scanning low-level file system structures can reveal a file

hidden in such a way. So, comparing the results collected enumerating files using user level

APIs with those collected directly scanning file system structures, can detect discrepancies

caused by a rootkit.

Another common anomaly that can be detected with this approach is that introduced

when a process is hidden unlinking it from the process list used by the Windows kernel

(see Section 4.2.5 for details).

2.2 Physical memory analysis

Physical memory analysis is an active area of research which aim is to capture reliable

and complete information from a live dump of the physical memory of a running system. It

has been studied manly for forensic and malware analysis (20)(21) and different specialized

tools exist (e.g. HBGary Responder Pro (22), Volatility (23)).

Volatility is an open source framework for physical memory analysis. It has an exten-

sible plugin structure that allows the implementation of several different types of analyses,

in particular a plugin designed specifically to malware detection and analysis has been

developed (24). Specific studies have been carried on the detection of memory allocations

in the Windows kernel memory pools (25)(26). The use of information extracted from the

Windows swap file has been examined too (albeit, mainly for forensic purposes (27)).

19

2.3 Invariant-based detection

The problem of kernel integrity verification is closely linked to that of discovering and

verifying invariant properties within the kernel memory. In particular, several works have

been proposed in order to detect invariant properties in kernel data structures. Such

invariant properties can then be automatically checked to ensure that the integrity of

kernel data structures has not been violated by malicious software to subvert normal kernel

behavior.

Petroni et al. (28) propose a framework to manually specify kernel data invariants and

to check them automatically. This framework allows to easily declare properties that must

hold inside an intact machine. However, manually specifying such properties requires a

deep knowledge of operating system internals and it is particularly difficult when no source

code is available. Furthermore, in a modern operating system the attack surface a rootkit

has modifying data structures, is very large. For this reason, it is not feasible to manually

state all data invariants that must hold in an uncompromised system. Additionally, even

if source code is present and invariants automatically specified, the ability to load kernel-

resident modules still makes this task impossible, as the contents of the kernel cannot

always be known ahead of time with complete certainty.

The state of the art in automatic invariants detection is implemented in Daikon (29). It

is a tool developed to automatically discover pre-conditions and post-conditions that hold

when program functions are called. Baliga et al. have adapted Daikon to work on kernel

20

data structures. Gibraltar (30), the tool they have developed, is able to detect previously-

known rootkit modifying data structures of Linux kernel. It works in two steps: initially, it

extracts data structures, parsing Linux kernel source code, then kernel memory snapshots

are used to infer invariant properties on fields of the data structures previously extracted.

A similar approach has been implemented for Windows kernel in KOP (31). Differently

from the solution we propose, this tool needs Windows kernel source code to extract a graph

of kernel data structure relationships.

The use of invariants based on graph-signatures, have been explored also by Sig-

Graph (32). This tool is able to work simply scanning memory snapshots, without needing

the availability of the source code.

CHAPTER 3

PHYSICAL MEMORY ANALYSIS ON WINDOWS OPERATING

SYSTEMS

3.1 Memory Imaging Techniques

TABLE I: OVERVIEW OF PHYSICAL MEMORY DUMPING METHODS.

Method
Presence of

dump artifacts

Can dump

swap file?

Can be

tampered?
Deployment

Software methods High Yes Very Easily Easy

Crash dump

Hibernation file
High No Easily

Difficult, not

always possible

Physical devices Low No Hardly Difficult

Virtual machine

introspection
Very low or None Yes

Very

Hardly

Difficult, not

always possible

21

22

Physical memory analysis is an effective way to detect rootkits, because of the so called

Rootkit Paradox (33). In fact, even if rootkits try to hide themselves, in order to run,

the operating system has to be able to find and execute them. In addition, many different

methods to dump memory exist, some of them are very difficult to be tampered since they

relay on components external to the analyzed system (external physical devices, virtual

machine host system).

3.1.1 Software methods

Different software have been developed to dump physical memory of a running Win-

dows system. They usually relay on accessing \\Device\PhysicalMemory, a device created

by Windows OS, mapping the whole physical memory of the running system. For secu-

rity reasons, the access to such device has been restricted in modern Windows versions

(Windows 2003 SP1 or newer) only to code running in kernel-mode.

Memory dumps created in this way have several artifacts for two different reasons. First

of all, the dumping application itself must be loaded in memory modifying it. More im-

portantly dumping memory by software is not an atomic operation, so, while the dumping

procedure is performed, memory itself is modified continuously. The most critical modi-

fications are those occurring in paging tables after that the memory regions where these

tables reside have been already read by the dumping process (see Section 3.2.1). For this

reason, several inconsistencies are expected in memory dumps obtained in this way.

Dumping software can be easily tampered by rootkits. Using debug registers or mod-

ifying paging tables it is possible to hide specific memory locations to specific processes.

23

Moreover, a rootkit can easily monitor all active processes and disable those that are known

to be used to dump physical memory.

3.1.2 Crash dump and Hibernation file

When a Windows system crashes or it is hibernated, the operating system saves a copy

of the memory. Such copy can then be read by memory analysis software. Even if these

methods are effective in creating memory dumps, they are not feasible for a widespread

usage, since they require the system to be rebooted.

3.1.3 Physical devices

Hardware solutions have been proposed for dumping physical memory, exploiting the

fact that external peripherals could have direct access to the system memory (DMA). In

particular, hardware devices working on Firewire, PCI, PCIe, and ExpressCard interfaces

are available.

This method does not need any running software on the target system, but some in-

consistencies in the dumped memory are still possible if the system is not suspended while

dumping. Additionally, some specific memory locations cannot be accessed by this method.

Techniques to avoid the dumping of some memory regions by hardware devices have

been studied (34). However, they are very specific on the hardware configuration of the

target machine and they are not used by common rootkits.

24

3.1.4 Virtual machine introspection

When a system is running inside a virtual machine, the virtualization software, located

on the host operating system, can easily save the memory of the guest system. In QEMU,

for instance, it is possible to use the pmemsave command to do so.

Dump artifacts are minimized because while the memory dump is acquired the guest

operating system is suspended. Minor inconsistencies are however still possible due to

in-progress memory writes, especially in multi-processor systems.

Excluding virtual machine escaping techniques, the dumping process can not be tam-

pered by rootkits running on guest operating system because it runs inside the host. How-

ever, a rootkit could use virtual machine detection techniques to modify its behavior when

running inside a virtual machine, not to be detected.

3.2 Windows memory management

In this section we will briefly summarize how memory management works under Win-

dows. For an in-detail explanation refer to (13, Chapter 9) and (35, Chapters 3 and 4).

We will focus in particular on Windows kernel virtual address layout and the virtual to

physical translation mechanism.

25

Unless otherwise specified, we will refer to Windows 32-bit versions running on an x86-

compatible processor, with Physical Address Extension (PAE) enabled and the /3GB1 boot

switch disabled, because it is the most common configuration among Windows machines.

The two primary tasks Windows memory management fulfills are:

• Provide to each running process a separate virtual address space.

• Paging some areas of the memory to the disk when necessary.

Understanding how memory is managed is the first crucial step in memory analysis of

any running operating system. Tools working on memory dumps must know how memory

is managed by the CPU and the operating system, to access it coherently on how it is done

in a running system.

In general, two problems need to be dealt with. Firstly, since all modern operating

systems use virtual memory, it is necessary to understand how to convert virtual addresses

to physical ones and vice-versa. In a running system this translation is performed in

hardware by the Memory Management Unit (MMU) of the CPU and accelerated by the

Transition Look-aside Buffer (TLB). The operating system can enhance this process, for

instance implementing a swap area or particular protection policies on memory regions.

1/3GB split is a special boot option used to extend the amount of virtual memory available
to each user-mode application. When it is enabled only virtual addresses between 0xC0000000
and 0xFFFFFFFF are assigned to the kernel, leaving 3GB of virtual memory available to user-
mode applications. On the contrary, when it is disabled, virtual addresses between 0x80000000 and
0xFFFFFFFF are assigned to the kernel.

26

Secondly, it is necessary to know which are the virtual locations where data, relevant to

the required analysis, are stored.

It should also be noted that some addresses are mapped by the operating system to

peripherals (e.g. video cards), configuring accordingly the input/output memory manage-

ment unit (IOMMU). In this way such peripherals can directly access to system memory

without using the CPU. These regions are present in memory dumps, even if they are

usually ignored during analyses.

27

3.2.1 Virtual to physical address translation

Figure 4: Page mapping in Windows 32-bit versions, with PAE enabled.

source: (13, page 769)

28

A x86-compatible processor provides two different mechanisms to translate virtual ad-

dresses to physical ones: segmentation and paging. Windows operating systems use manly

paging, configuring segmentation just to a flat segment spanning all available virtual ad-

dresses (from 0x00000000 to 0xFFFFFFFF in 32-bit systems).

Starting from the physical address stored in the CR3 register, the CPU parses a table

structure to translate each virtual address to the corresponding physical one (unless the

required value is found in the TLB). The operating system saves the CR3 value of each

running process inside a KPROCESS data structure and changes its value during task

switches. It is also responsible to create and modify paging tables correctly.

In addition, the memory manager keeps track of each page of memory in an array called

the Page Frame Number database (PFN).

3.2.2 Page types

63 M M-1 1112 10 4 1 03 2

IgnoredXD T P VPage File
Number

Page Frame Number

Figure 5: PTE bits relative to address translation (32-bit, PAE enabled).

XD: Execution Disabled – V: Valid – P: Prototype – T: Transition –

M: MAXPHYADDR (52≤MAXPHYADDR≤32, depending on processor capabilities)

29

Virtual memory is usually partitioned in 4KB pages, each of them is indexed by a

Page Table Entry (PTE). Larger pages are possible (4MB or 2MB if PAE is enabled),

for instance, we have noticed that ntoskrnl.exe is loaded in large pages for performance

reasons. Any large page is indexed by a Page Directory Entry (PDE). In this paragraph

we will always refer to 4KB pages.

When the Valid bit is set the translation is performed automatically by the CPU,

transparently to the operating system. On the contrary, if the Valid bit is not set, the page

is considered as invalid, so a PAGE FAULT exception is generated by the processor. This

exception is then handled by the OS. It checks if the requested page is really unavailable

or some operations need to be performed to retrieve it. In this case, some flags and values

stored in the PTE record specify the category of the invalid PTE and how the exception

needs to be treated. In the following paragraphs, we will discuss only categories relevant

to the analyses we have performed.

Page File

Both Prototype and Transition bits are zero, Page Frame Number is different from zero.

This entry points to a frame in a paging file. Paging files are used as a swap area by

Windows when the system memory is overcommitted. The use of more than one paging

file is allowed, however, in common configurations, only one is used, usually stored in

C:\pagefile.sys location.

The offset of the desired page within the pagefile is in bits 12—(MAXPHYADDR-1),

bits 1—4 give the page file identification number.

30

Transition

Prototype bit is zero and Transition bit is one.

These pages have been modified, but not yet written back to a paging file. Transition

pages are still in system memory and they can be retrieved by using value stored in bits

12—(MAXPHYADDR-1), like any valid entry.

Mapped File

Prototype bit is one and the PTE entry is inside a prototype PTE1.

A Mapped File is a file that is loaded into system memory on demand. For instance,

when Windows executes code from any file, it is loaded as a mapped file. Thus, its content

is not immediately read from disk and copied in memory, but the reading procedure is

performed only when code or data inside a given page needs to be accessed.

For this reason it is common that some pages belonging to an executable file are not

present in system memory. This is a problem we had to deal with during the development

of Blacksheep (see Section 6.1.1).

Even if the execute-disable (XD) bit (only available when PAE is enabled) is not used in

the address translation mechanism, during the development of Blacksheep we have analyzed

how it is used by Windows kernel. When the XD bit is set, the content of the page cannot

1Prototype PTEs are special PTEs that can be shared among different processes. They are
pointed by regular invalid PTEs.

31

be executed. So, this value could be used by an OS to enforce the security policy that

pages containing data must not be executable. While analyzing a memory dump this value

could then be used to easily detect pages containing code. However, we have noticed that

this bit is rarely used by Windows kernel. For this reason, it is ignored by Blacksheep.

32

3.2.3 Kernel virtual addresses

Figure 6: Virtual address space layout in Windows 32-bit versions.

source: (13, page 738 and 741)

33

As shown in Figure 6 each process has a dedicated virtual address space from 0x00000000

to 0x7FFEFFF. On the contrary, kernel virtual addresses (from 0x80000000 to 0xFFFFFFFF)

are shared between every process. For this reason we could assume that, for what concerns

analyses performed by Blacksheep, it exists an unique mapping between virtual addresses

and physical ones.

Session space is a significant exception to this assumption. Windows supports multiple

sessions running at the same time, even if in common usage scenarios, only one session

is active. Therefore kernel memory related to sessions can be mapped differently among

processes.

It should be noticed that page tables are stored at virtual addresses inside the kernel

memory. Virtual addresses mapped to peripherals are in kernel memory too, for instance,

usually hundreds of Megabytes are assigned to the graphic card.

3.3 Windows kernel modules

Kernel modules are PE files (36), loaded in kernel memory and executed at Ring 0

privilege level. Some of them, such as Windows core modules (e.g. ntoskrnl.exe, hal.dll,

win32k.sys, kdcom.dll, BOOTVID.dll) or most of the device drivers, are loaded during the

boot process, others are loaded when necessary. For instance some processes need to load

a kernel driver to perform system-level operations or some device drivers are loaded only

when a peripheral (e.g. an USB device) has been connected.

34

As every PE file, a kernel module is composed by a header and some sections, each of

them has a name and some associated flags. Imported and exported functions are listed

in specific data structures pointed by the PE header.

Kernel modules are loaded at a random location, their code is automatically relocated

by the loader, according to their base address, in locations listed in a specific section

(usually named .reloc).

3.4 Windows common data structures

Hundreds of data structures are used by Windows kernel. Some of them are documented

in the official Windows documentation1, others in the Windows Driver Kit2 in the form of

debugging symbols.

Blacksheep deals explicitly with two of them: double linked lists (LIST ENTRY) and

kernel pool allocations (POOL HEADER).

1http://msdn.microsoft.com/en-us/library

2http://msdn.microsoft.com/library/windows/hardware/gg487428

35

3.4.1 Double linked list

1 typedef struct LIST ENTRY

2 {

3 PLIST ENTRY Fl ink ;

4 PLIST ENTRY Blink ;

5 } LIST ENTRY, ∗PLIST ENTRY;

Listing 1: LIST ENTRY data structure definition.

Many different kernel lists, such as the list of all running processes, are stored in memory

as double linked lists. When a list is empty, only the list head is present (as shown in

Figure 7). Otherwise elements are added, creating a circularly linked structure.

36

Flink

Blink

Flink

Blink

Flink

Blink

Flink

Blink

Data

Data

Data

DataList Head

List Head List Entry 1 List Entry 2

Figure 7: An empty Double Linked List (on the left) and one with two elements

(on the right)

It is worth to note that the LIST ENTRY structure is used in two different roles: as a

list head or as a list entry. When it is used as a list entry, it can be placed at any position

inside a bigger data structure.

37

3.4.2 Kernel pool allocation

1 typedef struct POOL HEADER

2 {

3 ULONG Prev iousS i z e : 9 ;

4 ULONG PoolIndex : 7 ;

5 ULONG BlockS ize : 9 ;

6 ULONG PoolType : 7 ;

7 ULONG PoolTag ;

8 } POOL HEADER, ∗PPOOL HEADER;

Listing 2: POOL HEADER data structure definition (when a pool tag is specified).

When kernel modules require to allocate memory they use specific APIs to allocate it

inside system pools. These pools are used as common heaps shared by code running in

kernel-mode. Typically the API nt!ExAllocatePool is used.

Such allocations are wrapped inside a POOL HEADER data structure, thus they can

be recognized scanning a memory dump (25). BlockSize field can be used to determine the

size of the allocated memory.

38

Usually a pool tag is specified. It is a four-character string that identifies the code

allocating the memory. A list of tags used by Windows kernel modules is available in the

WDK.

3.5 User-Kernel mode switching

Several mechanisms are used by Windows to switch execution from user-mode to kernel-

mode and to handle hardware interrupts. In response to such events different kernel func-

tion pointers are used. We call these function pointers kernel entry points, since they are

addresses where kernel-mode execution starts.

The analysis of such pointers is crucial in rootkit detection tools, since rootkits fre-

quently modify their values allowing their functions to be executed when a specific event

occurs. In this way, a rootkit ensures that its code is executed, moreover hooking such

functions allows it to subvert kernel behavior, filtering kernel function invocations.

3.5.1 Interrupt Description Table (IDT)

IDT is the hardware mechanism provided by x86-compatible processors to allow OS

response to interrupts. It is a vector of at most 256 function pointers, every function is

associated to an interrupt and it is automatically invoked when the corresponding interrupt

is raised. Windows uses only a limited set of interrupts, assigning the remaining ones

to generic functions (named ntlKiUnexpectedlnterruptXX) In a non-infected system, all

interrupts are associated to kernel functions inside ntoskrnl.exe or hal.dll modules.

Interrupt 0x2E was used by old operating systems to switch to kernel-mode when a

system call was performed. Even though, on modern CPUs, Windows uses SYSENTER

39

instruction, this IDT entry is still set to nt!KiSystemService API. Such kernel function is

used as a generic entry point for all invoked system calls.

3.5.2 SYSENTER

SYSENTER assembler instruction is used to quickly switch from user-mode to kernel-

mode execution. When this instruction is called, the execution moves to an address set in

particular machine-specific registers (MSRs). Windows sets these registers in a way that

when SYSENTER instruction is executed the function nt!KiFastCallEntry is called.

When any system call is invoked, a SYSENTER instruction is executed, as a conse-

quence the kernel function nt!KiFastCallEntry is called. Such function, in turn, calls the

requested system call, according to the value stored in the EAX register and the currently

active thread (see Figure 8).

3.5.3 System Service Dispatch Table

A System Service Dispatch Table (SSDT) is an array of virtual addresses, where each

address is the entry point of a kernel function. When any kernel function is invoked,

nt!KiSystemService read this table to know its entry point. The address where the SSDT

is located is specified on per-thread base in the KTHREAD data structure. Moreover, a

thread can use more than one SSDT.

Usually, all threads share the same two SSDTs (KiSystemService and W32pServiceTable),

however a rootkit can create a new SSDT and modify a KTHREAD structure to make the

associated thread using the new SSDT. In this way, it may avoid to be detected by tools

checking only the two canonical SSDTs.

40

ntdll.dll
SYSENTER

System Service Number
(EAX register)

ntoskrnl.exe

KiFastCallEntry()
KiSystemService()

SELECTED
KERNEL

 FUNCTION

Bit 0Bit 31 1213

Function Index

0 0
0 1
1 0
1 1

SERVICE_DESCRIPTOR_ENTRY

Kernel Mode

User Mode

KiServiceTable
(SSDT)

W32pServiceTable
(SSDT)

MSR 0x176
register

KTHREAD

SERVICE_DESCRIPTOR_TABLE

(associated to the
currently

running thread)

SERVICE_DESCRIPTOR_ENTRY

Figure 8: SYSENTER-based System Call Mechanism.

Usually two different SSDTs are used: KeServiceDescriptorTable contains pointer to Win-

dows native APIs (implemented by ntoskrl.exe module), W32pServiceTable contains point-

ers to user and GDI functions (implemented by win32k.sys module).

41

Some threads only use KiSystemService SSDT, leaving empty the SERVICE DESCRIP-

TOR ENTRY usually pointing to W32pServiceTable.

3.5.4 Call Gates

Call Gates are an additional way to transfer control between CPU privilege levels. Call

Gate descriptors are specified in the Global Descriptor Table (GDT), a data structure used

by x86-compatible processors, defining characteristics of various memory areas.

Even if Call Gates are not used by modern operating systems, they can still be config-

ured by rootkits as a backdoor, allowing user-mode applications to call custom kernel-mode

functions, without performing any other system modifications.

3.5.5 I/O request packet handlers

I/O request packets (IRPs) are kernel data structures used by kernel modules to com-

municate with each other and with user-mode code. When a kernel module is loaded, an

array of function pointers (one for each IRP type the module can handle) is initialized.

Each of these functions is invoked when the corresponding I/O request is received by the

module.

CHAPTER 4

WINDOWS ROOTKIT OVERVIEW

TABLE II: OVERVIEW OF TECHNIQUES USED BY WINDOWS ROOTKITS.

Techniques written in blue, red and green can be detected respectively by code, kernel entry

point and data analysis performed by Blacksheep.

Code Data

User Space

Patch binary file

Patch memory image

Inject a DLL

Inject a thread

Hook process IAT

Kernel Space

Patch binary file

Patch memory image

Install a filter driver

Modify MBR

Modify Kernel Objects (DKOM)

Modify module data structures

Hook Windows structures

(SSDT, IRP)

Hook processor structures

(IDT, GDT, SYSENTER)

42

43

Table II shows the most common techniques used by Windows rootkits. For an in-detail

description of each of them, refer to (19)(37)(5, Part II). In this chapter we will give a brief

description of the topic, focusing on techniques that cause Windows kernel modifications

detectable by Blacksheep.

4.1 Rootkit classification

Rootkits are generally classified according to the execution environment in which their

code runs.

4.1.1 User-mode rootkits

They run at Ring 3 privilege level as any standard Windows application.

4.1.2 Kernel-mode rootkits

They run at Ring 0 privilege level as a Windows kernel module. Some kernel-mode

rootkits are also called bootkit, since they modify operating system bootloader, typically

the disk Master Boot Record (MBR).

4.1.3 Hypervisor rootkits

They exploit hardware virtualization functionalities to run at a higher privilege level

than the operating system.

4.1.4 Firmware rootkits

They modify device or platform firmware to create a persistent copy of their code in

hardware such as graphic card, network card or BIOS.

44

Hypervisor and firmware rootkits have been studied and developed in recent years, but

they are not widespread because of their complexity. On the contrary, user-mode rootkits

have a significant distribution, but they are easily detectable by existing tools running at

Ring 0 privilege level. For these reasons we focus our work on kernel-mode rootkits.

4.2 System modifications caused by kernel rootkits

4.2.1 Installing a kernel module

The code of many kernel rootkits is stored inside a kernel module and loaded during

Windows boot-process. The standard way of installing a kernel module consists in saving

it into the filesystem and adding it to the list of modules to be loaded at runtime by

updating Windows register keys. Such kernel modules can usually be detected by using

specific APIs. However, a rootkit can subvert the system to hide its module.

Kernel modules installed by rootkits often act as filter drivers. In Windows a filter

driver is a kernel module that is inserted into an existing driver stack to add functionalities

to a controlled device. For instance, the access to a file on a disk is managed by a stack of

different drivers (from the filesystem structure manager to the physical interface with the

disk). Inserting a filter driver in this stack allows a rootkit to filter all requested filesystem

accesses.

64-bit Windows versions require every kernel module to be signed, refusing to load

unsigned ones. Even though only verified modules, provided by trusted developers, should

45

be signed, some kernel rootkits have been correctly signed by a trusted authority (e.g.

Stuxnet (38)).

4.2.2 Kernel “entry point” modification

Function pointers discussed in Section 3.5, are typically modified by rootkits, overwrit-

ing some of them to point to their own code. This provides a stealthy way for rootkit to

be executed. Additionally it allows a rootkit to filter system function invocations. For

instance, a rootkit can hide a file by changing all filesystem-related APIs to point to its

own code and then returning fake results when any user-mode application tries to access

such file.

4.2.3 Kernel function hooking

Another way to alter system functions is to modify their code in a way that, when they

are invoked, execution is redirected to rootkit functions. This technique is usually referred

as hooking and provides similar functionality to kernel “entry point” modification.

Functions called using code pointers (typically imported and exported functions) can

be hooked by simply modifying such pointers. Other functions are usually hooked by

overwriting their first bytes with any of the following assembler instructions:

• an indirect call or an indirect jmp.

• a direct call or a direct jmp.

• a push instruction followed by a ret instruction.

However, more complex (and less easily detectable) modifications are possible.

46

4.2.4 Kernel module code patching

Code of legitimate kernel modules can be modified by rootkits to subvert their behav-

ior. This technique can be at least as effective as function hooking and more difficult to be

detected, because modifications can occur at any position inside the code of a kernel mod-

ule. It requires a deep understanding of how a module works. Additionally, each different

version of a kernel module needs to be modified in a different way.

4.2.5 Direct Kernel Object Manipulation

Rootkits can subvert a system by modifying data structures within the kernel. This

technique is called Direct Kernel Object Manipulation (DKOM). It is considerably more

difficult to be detect than code related modifications, yet it can be effectively used by a

rootkit to perform malicious tasks such as hiding processes, kernel modules, and network

connections. Altering kernel data structures can also lead the operating system to stealthily

execute rootkit code. This attack scenario has been studied for Network Driver Interface

Specification (NDIS) kernel modules (39).

A classical example of how DKOM can be used is shown in Figure 9. The Windows

kernel keeps track of the currently running processes in a specific double linked list of

EPROCESS data structures. Unlinking an element from such list causes the corresponding

process to be hidden from any Windows APIs. However, since the Windows scheduler is

based on threads (that are enumerated using other kernel lists), the process can still run.

47

Flink

Blink

EPROCESS

Flink

Blink

EPROCESS

Flink

Blink

EPROCESS

Flink

Blink

EPROCESS

Flink

Blink

EPROCESS

Process 1 Process 2 Process 3

Process 1 Process 2
(hidden)

Process 3

Figure 9: Process hiding using DKOM.

Process 1 FLINK and Process 3 BLINK fields are modified, effectively hiding Process 2.

48

4.3 Common rootkit uses

Even if a rootkit can work independently from any other software, it often operates in

conjunction with other user-mode components.

4.3.1 Rootkit and malware relationship

In many case rootkits are used to cloak other malicious applications. This possibility

allows malware writers to develop their applications without worrying about hiding their

presence, since this facility is provided by the installed rootkit. In this scenario a rootkit

can be used to protect malicious applications not only by hiding their presence, but also

interfering with detection software or with system updating mechanisms.

Another typical use case is when a rootkit is used as a stealth backdoor, allowing

remote access to an infected system. In this case the rootkit can send collected sensitive

information or install other software on demand.

4.3.2 Legitimate software using “rootkit-like” techniques

The same techniques used by rootkits are sometimes used by legitimate software. A

classical example are Antivirus tools: they often hook several system functions to intercept

filesystem accesses, process creations, and network activities.

Additionally, some legitimate applications can filter the use of critical APIs to imple-

ment self-defense techniques. For instance, some tools do not allow any other applications

to terminate their execution.

CHAPTER 5

MEMORY DUMP ACQUISITION AND LOW-LEVEL ACCESS

In a typical usage scenario three main components are used in the analysis framework:

• A method to dump physical memory and the swap area. Even though any available

method can be used, we have actively developed and used two of them.

• The Volatility Forensics Framework, with some additional plugins and modifications.

• Blacksheep software itself.

5.1 Dumping method used

5.1.1 Custom dumping software

We have developed a custom application to dump the content of the physical memory

and the swap area (i.e. pagefile.sys file) of a running Windows XP machine. Our goal

has been to create a software that could be used in a large network of computers without

interfering with users’ activities. The typical usage scenario is a set of similarly configured

machines, where users log in when they start using a machine and log out when they

finish. This scenario is common in many different situations, such as offices, libraries, and

computer laboratories in schools.

This application consists of two different components: a kernel module and a user-mode

system service, running automatically in background when the system starts. An installer

49

50

has been developed too, allowing easy and automatic installation and configuration for both

components. The dumping tool has been tested on several physical and virtual machines

running 32-bit version of Windows XP (Service Pack 3).

5.1.2 The user-mode service

The system service is responsible for dumping physical memory and, if present, the swap

file (pagefile.sys). To get a handle associated to the physical memory and the pagefile.sys

file, the kernel module is invoked because it is not possible for an user-mode process to

access these two resources directly. Once proper handles have been obtained and opened,

it maps them (using MapViewOfFile API) and copies them to a file.

The dumping process is performed without interfering with users’ activities. For this

reason, the dumping procedure is started only when an user log off and, if during the

dumping procedure an user log on into the system, it is immediately stopped. Since

rootkits usually start during the system boot process, they are still running even when no

users are logged into the system, so we think that this policy is able to minimize the impact

on the usability of a machine, while still allowing us to dump memory when a rootkit is

running.

Communication with the kernel module is performed using the standard Windows IRP

mechanism. The system service assigns a specific name to each created memory dumps,

encoding the machine name and the creation time. It is also responsible for uploading

them to a remote server using an encrypted connection.

51

5.1.3 The kernel module

The kernel dumping module is responsible for getting the handle of the physical memory

and the pagefile.sys file. The handle of the physical memory is obtained by opening device

\\Device\PhysicalMemory using ZwOpenSection API. The procedure we use to get the

handle of the pagefile.sys file is more complex, and its pseudocode is in 3 (Windows APIs

used are in comments).

52

1 getSwapFileHandle (){

2 c p r o c e s s = getCurrentProcess () //PsGetCurrentProcess

3 s p r o c e s s = getSystemProcess () // PsIn i t i a lSy s t emProces s

4 a l l h a n d l e s = getAl lHandles () //ZwQuerySystemInformation

5 for each (handle in a l l h a n d l e s){

6 p proce s s = getParentProcess (handle) //PsLookupProcessByProcessId

7 handle type = getHandleType (handle) //ObReferenceObjectByHandle

8 i f (p p roc e s s == s p r o c e s s and

9 handle type == FILE and

10 handle . f i leName == ” p a g e f i l e . sys ”){

11

12 dup handle = dupl i cateHandle (handle , c p r o c e s s) // ZwDupl icateObject

13 return (dup handle)

14 }

15 }

Listing 3: Procedure used to get the handle of the swap file.

Notice that the getCurrentProcess API returns the retrieved handle to the currently

running process, that, in practice, is the system service we have developed, since it is the

only process that interacts with this kernel module. The handle is duplicated inside the

caller process, before being returned to it.

53

5.1.4 QEMU virtual machine introspection

An alternate method we have used to dump physical memory is virtual machine in-

trospection. We have used QEMU with KVM to run a Windows 7 SP1 32-bit virtual

machine.

If it is not necessary to get a copy of the swap file, it is possible to simply use the

following command:

pmemsave 0x0 <physical memory size> <dump file>

This command automatically suspends the virtual machine while memory is dumped.

Otherwise, to also get a copy of the swap file, the following procedure is necessary:

1. suspend the virtual machine

2. dump physical memory

3. mount the hard disk image used by the virtual machine (in read-only mode)

4. locate the disk partition used by the guest operating system

5. mount the disk partition used by the guest operating system (in read-only mode)

6. copy pagefile.sys file

7. unmount the partition and the the hard disk image

8. resume the virtual machine

5.2 Volatility integration

We use Volatility (version 2.0) to retrieve crucial information that Blacksheep needs to

perform its analyses. Volatility takes as an input a memory dump (current version does

54

not handle the swap file) and command line parameters (e.g. the analysis to be performed,

the operating system version from which the memory dump has been acquired, parameters

specific to the analysis to be performed) and returns a report (written in plain text).

The Volatility version we use is compatible with any Windows versions and Service Pack

from Windows XP Service Pack 2 to Windows 7 Service Pack 1, but no 64-bit version is

supported yet.

We have developed additional plugins for Volatility and modified some of the existing

ones to get all the information we need. Additionally, we have also used the malware

analysis module (24).

Volatility implements an internal cache. For instance, locations of several data struc-

tures are saved once they are located. In this way any further analyses requiring to retrieve

the same data structures can be speed up.

5.2.1 Volatility plugins

5.2.2 mappingandswap

This plugin returns mapping information needed to translate virtual addresses to phys-

ical ones for kernel address space. As explained in Section 3.2.3, it is possible to consider as

unique the mapping between virtual and physical addresses. This plugin analyzes paging

tables of several processes, in particular, mapping information is extracted from PTE and

PDE records.

55

The output is a list of tuples in the following format:

<virtual address> <physical address> <type>

For simplicity, all addresses are always returned with 0x1000 granularity, so, even if large

pages are used, they are split in several tuples.

The type field can have one of the following values: VALID, TRANSITION or SWAP.

VALID is used when the memory at such virtual address is stored in the physical memory

dump, TRANSITION when it is still stored in the physical memory dump, but it is in

TRANSITION state, whereas SWAP is returned when it is stored in the swap file. In the

first two cases, the returned physical address is an offset inside the physical memory dump,

in the third it is an offset inside the swap file.

The plugin receives as a command line parameter the number of processes for which

paging tables are analyzed. We found that some processes do not completely map the

kernel address space. For instance, the System process does not map the win32k.sys kernel

module, since this module is loaded to session space and the process System is created

before any session is opened. For this reason, we use the policy of returning the union

of all mapping information obtained analyzing the first five processes (in creation time

order). We have found that this policy is a good trade-off between mapping completeness

and processing time. In case that inconsistencies are found between mappings obtained

from different processes, only the first acquired mapping is considered as valid. However,

the number of such inconsistencies is negligible.

56

We have found that most of the inconsistencies are due to pages in transition state.

We think that this is due to the fact that such pages are going to be moved to swap file.

For this reason we have decided to use page in transition state, only if their mapping is

present and consistent in all the analyzed processes.

5.2.3 modscan

This plugin is embedded in Volatility. It returns a list of all found kernel modules in a

memory dump. We have slightly modified it to also return the CRC field of the found kernel

modules. It works by scanning all memory and looking for LDR DATA TABLE ENTRY

data structures. This data structure is allocated by Windows when a kernel module is

loaded.

The found kernel modules are returned as a tuple:

<physical address of the LRD_DATA_TABLE_ENTRY structure>

<module full name> <module virtual base address>

<module size> <module name> <module crc>

5.2.4 idt

This plugin is embedded in the malware module. It works by parsing the Kernel Pro-

cessor Control Region (KPCR) structure. This is a crucial Windows kernel data structure,

containing information about the state of a processor (so, for each available processor a

different KPCR is present). It returns function pointers handling each interrupt that can

be raised.

57

5.2.5 driverirp

This plugin is embedded in the malware module. It works by scanning all memory

looking for kernel modules and returning the associated IRP handlers for each of them.

Such handlers are invoked when a module receives a specific IRP. For each IRP handler,

it also returns the pointed-to kernel module. Additionally, disassembling the pointed-to

code, it tries to understand if the pointed location has been hooked by any other module.

5.2.6 ssdt

This plugin is embedded in Volatility, it returns a list of all system calls detected. It

looks for pointed SSDTs in all threads, so it is able to find system calls in non canonical

SSDTs as well. For each found system call, it returns its name, the pointed virtual address,

and the kernel module where such address is located.

5.2.7 gdt

This plugin is embedded in the malware module. It works by parsing the KPCR

structure to locate the GDT location. It returns information retrieved from the GDT,

such as memory segment limits, memory segment attributes, and call gates (if present).

5.2.8 sysenter

We have created this plugin to retrieve the virtual address where the execution jumps

when a SYSENTER instruction is executed. In a running machine, this value is stored

in the MSR register 0x176, so it is not necessarily present in memory. In a live system

this value can be read with the RDMSR assembler instruction (that must be executed by

58

kernel-mode code). Using a dumping driver or virtual machine introspection, it is possible

to retrieve this value. However, it could be impossible with other methods.

We have found a workaround to this problem that we have used in the development of

this plugin. We noticed that a copy of this value is always present in memory and used by

the KiTrap01 kernel function, so we locate this function (it is always set as a handler for

the Interrupt 1) and then we look for the following assembler instructions:

mov ecx, [ebp+68h]

cmp ecx, <copy of MSR 0x176 register>

to locate the copy of the MSR 0x176 value.

We have successfully tested this approach with Windows XP Service Pack 3 machines

both non-infected and infected by the Rustock.b rootkit (this rootkit modifies the MSR

0x176 value to hook all system calls). In both cases we have been able to retrieve the

correct value. However, it is likely that this approach only works with specific Windows

versions.

5.3 Blacksheep overview

Blacksheep consists of approximately 4700 lines of code and 270 lines of comments. It

is written in Python 2.6 and it has been tested on an Ubuntu 10.4 machine (even though

the code is substantially platform independent).

We will now describe briefly main classes and files that compose Blacksheep:

59

5.3.1 MemDump

This class represents a memory dump. Its main aim is to provide transparent methods

to access memory locations at specific virtual addresses.

5.3.2 MemDumpFileAnalyzer

This class is used to perform preliminary analyses of a memory dump and it is in-

stantiated during the initialization of a MemDump object. It also manages the cache of

Volatility results and invokes Volatility if necessary. The values returned by methods of

this class are used to fill a MemDump object.

5.3.3 Utils

This file collects several utility functions such as the MemDump objects initialization

method, functions managing folders and files, and mathematical functions.

5.3.4 CodeAn

This file collects all functions related to the analysis of the code of a set of memory

dumps.

5.3.5 DataAn

This file collects all functions related to the analysis of the data of a set of memory

dumps.

5.3.6 RootAn

This file collects all functions related to the analysis of the kernel entry points of a set

of memory dumps.

60

5.3.7 DiffMatrix

This class represents a distance matrix. Functions to perform and to show results of

untrained analyses are methods of this class.

5.3.8 Driver

This class represents a kernel module.

5.3.9 Pointer

This class represents a generic pointer within the kernel address space. For example,

kernel entry points are stored as pointers.

5.3.10 FVirtualPage

This class contains the data related to a virtual page (always with 0x1000 granular-

ity). It can be filled with data read from a memory dump during the initialization of a

MemDump object or on demand.

5.3.11 DataDescr

This class describes a DWORD (a 32-bit unsigned integer) inside analyzed data. A

DWORD can have different types such as number, string, pointer to a data structure.

5.3.12 InvariantComparer

This class compares two dictionaries of DataDescr objects, enumerating differences

among them.

61

5.3.13 Logger

This class implements a static method to log text messages generated by Blacksheep.

A message is logged to a file, standard output or both according to its priority.

5.3.14 PickleCache

This class implements a manager for partial results. Many partial results are saved to

be used in further analyses without recomputing them. Partial results (encapsulated in

objects) are saved to a file and loaded when necessary, using the CPickle1 library.

5.4 Low level access layer

The aim of the low level access layer of Blacksheep is to initialize MemDump instances,

allowing fast and transparent access to memory at any virtual address within kernel space.

After its initialization, a MemDump object contains data from a memory dump. The

initialization procedure and the internal representation have been developed with two main

goals:

1. Provide methods to quickly retrieve data at a given kernel virtual address. On a

running system, address translation is performed in hardware by processor MMU

and TLB, but it is not possible to use such processor features in off-line processing of

memory dumps. In addition, during an analysis translation functions are called thou-

sands of times. For these reasons, particular attention has been given to performance

while developing address translation functions.

1docs.python.org/library/pickle.html

62

2. Allow different initialization procedures depending on which data are needed during

the analysis to be performed. For instance, it is not necessary to retrieve the list of

kernel entry points when only code is analyzed.

5.4.1 Parsing Volatility reports

Since the execution of Volatility commands can be time consuming (especially for the

mappingandswap and modscan plugins), their results are saved in a folder used as a cache.

The method exec command in MemDumpFileAnalyzer class manages this cache. It

receives a command to be executed by Volatility, if the result of such command is already

available it is retrieved from the cache. On the contrary, if the command has been never

executed before, it calls Volatility with the command, saves its result into the cache and

returns it to the caller.

5.4.2 Initialization of a MemDump object

The initialization of a MemDump object is performed by the function Utils.initMemdump.

The UML sequence diagram of this function is shown in Figure 10. During the initialization

of a MemDump instance a corresponding MemdumpFileAnalyzer object is created.

Its main tasks are to invoke Volatility (or retrieve results from the cache) and to parse its

responses. Three sub-procedures are optional and they are performed only if specified (as

function parameters) when calling Utils.initMemdump.

63

5.4.3 fillInternalRepresentation

If a lot of data needs to be read from a memory dump (for instance, during a data anal-

ysis), all mapped kernel memory is read from RAM and swap file during the initialization

of the corresponding MemDump object. Usually, hundreds of megabytes of data need to

be read from the RAM file. On the contrary, except in heavily loaded systems, only a few

megabytes of kernel memory are stored in the swap file.

Retrieving such data from the RAM file needs sparse accesses, slowing the acquisition

procedure. For this reason, since a copy procedure is performed using sequential reads, it

is possible to increase performance by temporarily copying the RAM file to the /dev/shm/

virtual device1 and accessing this copy instead of the original. A circular buffer is imple-

mented inside /dev/shm/ virtual device: when this device is full, a previously copied RAM

file is deleted.

Notice that the internal representation is always created, even when it is not filled. In

such case, data will be read from RAM or swap file only when necessary (see Section 5.4.6)

5.4.4 getKernelEntryPoints

Kernel entry points are retrieved only if necessary, typically during kernel entry point

analysis.

1Linux 2.6 kernel creates by default a RAM disk mapped to /dev/shm/ folder. It is a virtual
device which content is stored in system memory and can be accessed by any application.

64

5.4.5 findAllKernelPollAlloccations

If data analysis needs to be performed, kernel pool allocations are searched in the mem-

ory dump during its initialization. We describe how kernel pool allocations are detected in

Section 7.1.

During the initialization procedure all kernel modules loaded in a memory dump are

retrieved and their PE structure is parsed and stored.

65

Figure 10: UML sequence diagram of the initialization of a MemDump instance.

66

5.4.6 Internal representation

0x80000000

0x80001000

0x80002000

0x80003000

0xFFFFD000

0xFFFFE000

0xFFFFF000

......

None

None

FVirtualPage
FVirtualPage

FVirtualPage

FVirtualPage
FVirtualPage

FVirtualPage instance
virtual address

physical address

dataMemDump.FVPage_list

type

FVirtualPage instance
virtual address

physical address

data

type

FVirtualPage instance
virtual address

physical address

data

type

FVirtualPage instance
virtual address

physical address

data

type

FVirtualPage instance
virtual address

physical address

data

type

RAM file

Swap file

byte string

byte string

byte string

byte string

None

VALID
0x30102000
0x80000000

TRANSITION
0x0080A000
0x80001000

VALID
0x3B34C000
0x80003000

SWAP
0x127FC000
0xFFFFE000

VALID
0x35A69000
0xFFFFF000

Figure 11: An example of the internal representation of a memory dump.

67

Kernel memory is stored in a MemDump object as a tuple of 0x80000 elements1

(called FVPage list). Each element corresponds to a 0x1000 byte long page inside the

kernel memory. For instance the third element corresponds to virtual addresses between

0x80003000 and 0x80003FFF, because:

0x80003000 = 0x80000000 + (0x1000 * 3)

0x80003FFF = 0x80003000 + 0x1000 - 1

Three different situations are possible (refer to Figure 11):

• A FVPage list element is None (0x80002000 and 0xFFFFD000 pages in the example).

In this case, the corresponding memory page is unmapped.

• A FVPage list element is a FVirtualPage instance which data field is a binary

string (0x80000000, 0x80001000, 0xFFFFE000, 0xFFFFF000 pages in the example).

In this case the corresponding memory page is mapped and its content is stored in

RAM file (if its type is VALID or TRANSITION) or swap file (if its type is SWAP).

The content of the memory at such location has been already read from RAM/swap

file, so no access to the disk is necessary when accessing data within these memory

pages.

1In this chapter, unless otherwise specified, we will always assume that /3GB split is disabled.

68

• A FVPage list element is a FVirtualPage instance which data field is None (0x80003000

page in the example).

As in the previous case the corresponding memory page is mapped to RAM or swap

file. However, the content of the memory at such location has been never read

from RAM/swap file, so an access to disk is necessary when accessing these data.

Once data have been retrieved from disk, they are stored in the data field of the

FVirtualPage instance, allowing faster future access.

This internal representation allows fast access to memory at any kernel virtual address.

Additionally, it has enough flexibility to store only needed data during the initialization

phase, retrieving the content of other pages of memory only when necessary.

In 4, the pseudocode of the method to access a DWORD of memory at a given virtual

address is shown. The implemented access methods are:

• getDwordAtVirtualAddress(vaddr). It returns DWORD at vaddr virtual address.

• getRangeOfMemory(start,size). It returns memory region between virtual addresses

start and start + size.

• getDriverRVA(driver,rva). It returns DWORD at virtual address driver.base ad-

dress+rva.

If any of the required bytes are unmapped, None is returned.

69

1 getDwordAtVirtualAddress (vaddr){

2 // k e r n e l s p a c e s t a r t a d d r e s s = 0x80000000

3 fvpage = s e l f . FVPage l i s t [(vaddr − k e r n e l s p a c e s t a r t a d d r e s s)>>12]

4 i f (fvpage == None){

5 return None // t h i s l o c a t i o n i s unmapped

6 } else {

7 i f (fvpage . data == None){

8 // t h i s l o c a t i o n has been never read from d i s k

9 f i l l (fvpage)

10 }

11 }

12 s t a r t o f f s e t = vaddr & 0 x f f f

13 return (fvpage . data [s t a r t o f f s e t : s t a r t o f f s e t +4])

14 }

15

16 f i l l (fvpage){

17 p h y s i c a l p a g e s t a r t = fvpage . p h y s i c a l a d d r e s s & 0xFFFFF000

18 i f (fvpage . type == VALID or fvpage . type == TRANSITION){

19 fvpage . data = r e a d p a g e f r o m r a m f i l e (p h y s i c a l p a g e s t a r t)

20 } else i f (fvpage . type == SWAP){

21 fvpage . data = r e a d p a g e f r o m s w a p f i l e (p h y s i c a l p a g e s t a r t)

22 }

23 }

Listing 4: Procedure used to get a DWORD at a specified virtual address.

CHAPTER 6

HIGH-LEVEL ANALYSES

Blacksheep performs three different types of comparisons between any two memory

dumps:

• Code comparison

• Kernel entry point comparison

• Data comparison

The results of such comparisons are then used to perform trained analyses and untrained

analyses. So, in total, six different analyses are performed.

Trained analysis works on two sets of memory dumps: a training set, assumed to be

non-infected, and a set of memory dumps of acquired from machines to be checked. Each

memory dump to be checked is compared against the training set, looking for modifications

that are likely to have been generated by a rootkit infestation. The result of each trained

analysis is a report stating if the checked memory dump is likely to be infected.

Untrained analysis works on a single set of memory dumps. Results returned from

code, data and kernel entry point comparisons are used to compute the distance between

each pair of memory dumps. Then, hierarchical clustering (using SciPy library (40)) is

performed on the computed distance matrices. Untrained analyses assume that most of

70

71

the analyzed memory dumps have been acquired from non-infected machines. The result

of each untrained analysis is a hierarchy of clusters.

6.1 Code analyses

6.1.1 Code comparison

Code comparison examines code of two instances of the same kernel module in two

different memory dumps. The way in which kernel modules are identified is described in

Section 7.3, whereas the method by which code inside a module is identified is detailed in

section 7.4.

The comparison proceeds by performing a byte-per-byte comparison of the code be-

tween the two memory dumps. Some differences are considered as benign (i.e. they are

not caused by any malicious modification of the code). For instance, benign differences

can exist due to relocation, and many pointers have different values among the training

set. For this reason, the analysis verifies if the differences found are caused by any of the

well-known modifications that can occur when a module is loaded in memory.

Input parameters of the code comparison function are:

• The two memory dumps to be compared.

• The two kernel module instances to be compared, inside the given memory dumps.

• (optional) A list of memory pages to be checked. If this parameter is set, only the

given memory pages are compared.

As an output, this function returns:

72

• The number of differences found, classified according to their type.

• A set of memory pages in which non-benign differences have been found.

• A set of RVAs where non-benign differences have been found.

• A boolean flag indicating whether results of the comparison are reliable.

6.1.2 Benign difference types

In the following paragraphs we will detail the types of differences we consider as benign

and how we detect them. If a difference is not classified as any of these types, it is

considered to be non-benign, since it is likely that it has been caused by a rootkit infection.

The next paragraphs are ordered in the same order that we check for explanations of a

found difference. For performance reasons, the chosen order is from the most common

explanation to the rarest one.

Relocation

Kernel modules are not loaded in memory at a fixed address and their code is not position

independent. For these reasons, when a module is loaded, the loader applies relocations:

it patches pointers inside the module code to be consistent with the base address which

the module has been loaded at.

Where and how to apply these relocations is specified by the compiler inside a well-

defined section of the module file (36), usually named .reloc. We do not rely on this PE

section to detect relocations, but we simply verify if the difference found matches with the

difference of the base addresses that the compared module instances have been loaded at.

73

Imported and exported addresses

Inside a kernel module, many pointers to other modules are present. Because of module

relocation, these pointers have different values in different dumps. For this reason, when a

difference is found between two bytes, we treat the surrounding DWORDs as pointers and

we check if they are equal. Two pointers are considered to be equal if they point to the

same RVA (Relative Virtual Address)1 within the same kernel module.

PE header modifications

Modifications inside the PE header of a kernel module are suspicious, since malformed PE

headers are often used to confuse analysis tools (41). However, during the development of

Blacksheep we have observed that sometimes Windows loader modifies some specific fields

when a kernel module is loaded from the disk to the memory.

For this reason, we ignore modifications that occur in the following fields:

• ImageBaseAddress

• PointerToRelocations (for each PE section)

• NumberOfRelocations (for each PE section)

Hooks

The use of kernel hooking is described in section 4.2.3. During code comparison we need

1In Windows terminology, an RVA is a virtual address inside a loaded module. Its value is equal
to the distance between the pointed location and the base address of the module that the location
lies within.

74

to be able to detect if a hook is equal between two dumps (i.e. it makes the execution

divert to the same function). In the case of hooks pointing to other loaded kernel modules,

we simply consider them as equal if they point to the same RVA within the same module.

(This detection is already performed while dealing with imported and exported addresses).

However, there are more complicated situations to deal with, such as when a hook is

created by making a function pointer point to code written inside dynamically allocated

memory. To deal with such cases, found differences are checked to see if they are caused

by one of the following hooking techniques:

• Changing a code pointer used by an indirect call or an indirect jmp instruction.

• Modifying the argument of a direct call or jmp instruction.

• Modifying the argument of an instruction push, followed by a ret.

In these three situations, the addresses pointed by the hooks in the two dumps are extracted

and it is checked if, at such addresses, the same function is present. In this case, the two

hooks are considered as equal and the difference found is classified as benign. How the code

of two pointed functions is compared is described in Section 7.6.

6.1.3 Special cases

There are some special cases to deal with during code analysis. Unmapped pages

When a kernel module (and any PE file in general) is loaded in memory by Windows, its

content is read from disk and loaded into physical memory only partially (see 3.2.2). For

75

this reason, while comparing two module instances, we compare only memory pages that

are mapped in both dumps.

Wrongly mapped pages

Since the memory dumping process can lead to partially inconsistent dumps, it is possible

that some pages inside an analyzed kernel module are incorrectly mapped in the memory

dump. These incorrectly mapped pages can cause Blacksheep to compare wrong locations

during code comparison procedure. For this reason, we assume that, when more than 60%

of a memory page is different between two compared module instances, such differences

are caused by an error in the extracted mapping information and they are ignored.

Unreliable comparison

If too many wrongly mapped pages are detected, the comparison is stopped and the com-

pared module instance is ignored in further analyses.

6.1.4 Unstable pages

During the development of blacksheep we have noticed that, even in non-infected ma-

chines, some kernel modules have locations inside their code that change among different

memory dumps. We have detected this in:

• Some locations inside ntoskrnl.exe and peauth.sys modules.

• Kernel modules used by security software (i.e. antivirus, personal firewall).

• Kernel modules used by Digital Right Management software.

There are different reasons why kernel modules change their own code:

76

• Dynamically generated code.

• Code obfuscation used to prevent reverse engineering.

• Code obfuscation used by security software self-protection mechanisms.

To deal with such code locations, we create a list of memory pages in which the code

could change, even in non-infected systems. During the analysis, if differences are found

inside these pages, they are not considered to be caused by an infection. However, a

non-critical message is reported to allow user to conduct further investigations.

6.1.5 Trained analysis

Trained code analysis examines each kernel module in the dump to be checked. It works

in three different phases.

First, Blacksheep verifies that each module within the dump it is processing also exists

in at least one dump of the training set. If it does not exist in any training dump, it is

considered a critical anomaly, since it is likely that this new kernel module has been loaded

by a rootkit.

Then, each module is compared against the corresponding module in every dump in

the training set, searching for a corresponding module in the training set with no non-

benign differences with it. If such a module is found, the examined module is considered

as non-infected and the analysis goes on comparing the next module.

However, if no such module within the training set is identified, we enumerate the

memory pages in which non-benign differences have been found and check if these pages

77

are stable among the training set (see 6.1.4). If they are unstable even in the training set,

this means that differences found are not caused by a malicious infection. Otherwise the

module is considered as infected. A memory dump is considered to be non-infected if all of

its kernel modules are non-infected (and present in at least one dump in the training set).

Otherwise, it is considered as infected and a critical message is reported to the user.

The result of this analysis is a report (in the form of a text file). Additionally, module

instances classified as infected and modules not found in the training set are extracted from

the analyzed memory dump for further investigations.

6.1.6 Untrained analysis

Untrained analysis works by using the number of non-benign differences found between

two given dumps as a distance metric. Differences whose distance is less than four bytes

are merged and counted as one, because it is likely that they have a common cause. For

instance, when a pointer is hooked, usually two or three adjacent bytes are modified. During

this analysis, only kernel modules that are present in every memory dump are taken into

consideration since, without having a training set, it is not possible to have a list of trusted

modules.

Code comparison is performed on each possible pair of analyzed memory dumps. Since

it is symmetric, the number of necessary comparisons is halved. The linkage function used

during clustering is single: the distance between two non-singleton clusters is equal to

the minimum distance between elements of each cluster. This policy allows us to ignore

78

differences caused by wrongly mapped pages (since they are likely to be present only in a

single memory dump within a cluster).

The output of untrained code analysis is a hierarchy of clusters with analyzed memory

dumps as leaves.

6.2 Kernel entry point analyses

6.2.1 Kernel entry point comparison

Kernel entry point comparison examines differences in function pointers used when the

execution switches to kernel mode. The comparison proceeds by collecting all kernel entry

points of the two examined memory dumps and then comparing them.

The input parameters of the kernel entry point comparison function are the two memory

dumps to be compared. As an output it returns differences found, classified according to

their type.

Kernel entry points are collected using different Volatility plugins: ssdt, idt, driverirp,

gdt, sysenter. These values are internally stored as pointers and the following tuple is

saved for each of them: (<ID>,<Value>). ID is an unique string used to identify a kernel

entry point, for instance the ID of a SSDT entry is SSDT:<function number> and the ID

of an IRP is IRP:<module name>:<IRP name>. Value is the location where it is pointing

at. All kernel entry points from of a memory dump are compared with those with the same

ID of another memory dump. Found differences are classified in one of the categories listed

below.

79

6.2.2 Classification categories

In this paragraph we will refer to kernel entry points as pointers, the memory dump

to be verified will be called m verify. The dump in the training set which m verify is

compared to is called m reference.

added inside

The pointer in m verify is not present in m reference and it points inside a kernel module.

added outside

The pointer in m verify is not present in m reference and it points outside any kernel

module.

changed from inside to inside

The pointer in m verify points to a different location than in m reference. In both memory

dumps it is pointing inside a kernel module.

changed from inside to a new module

The pointer in m verify points to a different location than in m reference. In both memory

dumps it points inside a kernel module, but the module pointed in m verify is different

from that pointed in m reference.

changed from inside to outside

The pointer in m verify points to different locations than in m reference. In m reference

it points to a kernel module, whereas in m verify it points to a location outside any kernel

module.

80

changed to generic IDT handler

The pointer in m verify points to the generic interrupt handler used by Windows to manage

unexpected interrupts.

changed from outside outside - equal

The pointer in m verify points to the same location than in m reference. In both memory

dumps it points outside any kernel module.

changed from outside to outside - different

The pointer in m verify points to a different location than in m reference. In both memory

dumps it points outside any kernel module.

Any difference classified as “added outside”, “changed from inside to outside”,

“changed from outside to outside - different”, “changed from inside to a new

module” or “changed from inside to inside” is considered as suspicious since it is

likely that it has been caused by a rootkit infecting m verify.

6.2.3 Trained analysis

Trained analysis searches, for each dump to be verified, if it exists a memory dump

with no suspicious difference. If such a memory dump is not found, the analyzed one is

classified as infected.

The result of this analysis is a report (in the form of a text file). For each analyzed

memory dump it is reported whether it has been classified as infected or as non-infected.

81

Additionally, it provides details about modified kernel entry points detected in memory

dumps classified as infected.

6.2.4 Untrained analysis

Untrained analysis works by using as a distance metric the following formula:

distance = max(comparison(dump1, dump2), comparison(dump2, dump1))

Where comparison(dump1, dump2) returns the number of suspicious differences found,

using dump1 as m verify and dump2 as m reference. Linkage function used during clus-

tering is single: the distance between two non-singleton clusters is equal to the minimum

distance between elements of each cluster.

The output of untrained data analysis is a hierarchy of clusters with analyzed memory

dumps as leaves.

6.3 Data analyses

6.3.1 Data comparison

Data comparison works in three different phases. First of all, kernel pool allocations

and double linked lists are searched within kernel memory stored in a memory dump

(these steps are described in Sections 7.1 and 7.2). Then a description is given to each

DWORD allocated in data sections of all kernel modules (how data sections are identified is

described in Section 7.4). This step is performed by MemDump.DataToDescr method.

Finally, two dictionaries of DWORD descriptions relative to two different memory dumps

are compared by InvariantComparer.computeDiffs method.

82

We will now details how these functions work and how results are used by trained and

untrained analyses.

6.3.2 Memdump.DataToDescr method

This method takes as an input a DWORD and it returns its description as a DataDescr

object. Using this method DataDescr objects describing each DWORD inside any data

section of all kernel modules loaded in a memory dump are created and collected in the

DataDescriptions dictionary. This dictionary uses as values DataDescr objects and as

keys the locations (encoded as <kernel module>:<RVA>) of the corresponding described

DWORDs. Even double linked lists found previously are stored in this dictionary, in such

a case list heads are used as keys and a DataDescr objects of type DLLIST are used as

values.

A DataDescr object can have one of the following types, according to how the de-

scribed DWORD is classified by Memdump.DataToDescr method.

ZERO DWORD value is 0x0 (usually it is a NULL pointer or an unused memory

region)

NUMERIC The DWORD has a numeric value. We heuristically assume a value

as numeric if and only if: value < 0x80000000 (kernel space start address) or value >

0xFFD00000.

STRING The DWORD is a (part of a) string. We heuristically assume a value as

a string if it contains only printable characters eventually interleaved with 0x00 byte (for

Unicode).

83

PSTRING The DWORD is a pointer to a string.

POOL HEADER The DWORD is the first 4 bytes of a kernel pool allocation

header (see Section 3.4.2).

POOL TAG The DWORD is a kernel pool allocation tag (see Section 3.4.2).

FLINK and BLINK The DWORD is the FLINK /BLINK field of a double linked

list data structure (see Section 3.4.1).

POINTER The DWORD is a pointer to a RVA within a kernel module.

POINTER TO DLLIST The DWORD is a pointer to an element of a double

linked list.

ANY This type is used when we are unable to find any suitable description for a

given DWORD

The three following types are called structured because DataDescr objects of these

types recursively contain (in their data field) references to other DataDescr objects. The

maximum depth at which we limit our analysis is 3. How pointers to data are detected is

described in Section 7.5.

POINTER H The DWORD is a pointer to a pool allocation. In the data field a list

of DataDescr objects describing each DWORD of the pointed data structure is stored.

The starting address of the pointed data structure and its size are inferred analyzing the

POOL HEADER data structure.

84

POINTER S The DWORD is a pointer to allocated data within kernel space, but

we are unable to find a surrounding allocation. In the data field a list of DataDescr

objects describing the pointed DWORD and the surrounding ones is stored. How many

DWORDs are analyzed around the pointed one can be set with specific settings (by default

10 DWORDs are analyzed).

DLLIST DataDescr objects of this type are created while kernel memory is scanned

looking for double linked lists (see 7.2). In their data field a DataDescr object describing

all elements of the list is stored. It is created by “merging” descriptions of the single

elements using DataDescr.compare method.

POINTER V When a pointer to data is found but the reached depth is already

the maximum allowed, a DataDescr object of this type is created.

The field value of a DataDescr object has different meanings depending on its type.

For instance, for NUMERIC type, it is the actual value the DWORD has, for PSTRING

it is the pointed string, for POINTER it is the tuple (<pointed kernel module>,<RVA>).

In DataDescr objects of type POINTER TO DLLIST the field value is the head of the

pointed double linked list (see 7.2)

Listing 5 shows how a detected double linked list is internally represented by Blacksheep

(many lines are skipped). The found list is composed by 5 elements, all of KTHREAD type.

Two important properties that are invariant on all the elements of this list are identified:

85

• All the elements point to a process inside the system list of running processes (line 11).

• All the elements point to the same SERVICE DESCRIPTOR TABLE (line 18).

See Windows WDK and NirSoft website (42) for the definitions of some kernel data struc-

tures.

86

1 DLLIST head : 0x8055b1e0L id : .DLLIST : (’ n to sk rn l . exe ’ , 541152L , ’ . data ’) nelements : 5

2 POINTER H s i z e : 0x9dL

3 −0x8 POOL HEADER 0 xa4 f004 f − PType : 0 x5L − BSize : 0 x4f − PIndex : 0 x0 − PSize : 0 x4f

4 −0x4 POOL TAG Thre 0x65726854L // poo l t a g s u g g e s t s t h a t t h i s i s a KTHREAD data s t r u c t u r e

5 0x0 VALUE 0x1

6 0x4 ZERO 0x0

7 0x8 POINTER TO DLLIST .DLLIST : ObjT 24 440 120

8 0xc VALUE 0x22000000

9 0x10 VALUE 0x1

10 // . . .

11 0x5c POINTER TO DLLIST .DLLIST : (’ n to sk rn l . exe ’ , 537176L , ’ . data ’)

12 // .DLLIST : (’ n t o s k r n l . exe ’ , 537176L , ’ . da ta ’) i s t h e head o f t h e sys tem KPROCESS l i s t

13 0x60 ZERO 0x0

14 0x64 GVALUE

15 // . . .

16 0 xf4 ZERO 0x0

17 0 xf8 POINTER S 0x80553060L s i z e : 0xb

18 // p o i n t e r to KeServ i ceDescr ip torTab l eShadow (SERVICE DESCRIPTOR TABLE)

19 −0x8 ZERO 0x0

20 −0x4 ZERO 0x0

21 //SERVICE DESCRIPTOR ENTRY #1 (SST)

22 0x0 po in t e r (’ n to sk rn l . exe ’ , 175036L , ’ . t ext ’) // KiSe r v i c eTab l e (SSDT)

23 0x4 ZERO 0x0

24 0x8 VALUE 0x11c

25 0xc POINTER (’ n to sk rn l . exe ’ , 176176L , ’ . t ext ’) //KiArgumentTAble

26 //SERVICE DESCRIPTOR ENTRY #2 (SST)

27 0x10 POINTER (’ win32k . sys ’ , 1690496L , ’ . data ’) //W32pServiceTable (SSDT)

28 0x14 ZERO 0x0

29 0x18 GVALUE

30 0x1c POINTER (’ win32k . sys ’ , 1693840L , ’ . data ’) //W32pArgumentTAble

31 // . . .

32 0x130 FLINK

33 0x134 BLINK

34 // . . .

Listing 5: An example of a detected double linked list.

87

6.3.3 DataDescr.compare method

This method is used to get a common description of two different DWORDs. It takes

as an input two DataDescr objects and it returns a new DataDescr object giving a

description suitable for both. This method is invoked in two different scenarios:

• To get an unique DataDescr object describing all the elements of a double linked

list.

• To compute a set of invariant properties that hold in the training set during trained

analysis.

It works by finding the “less generic” description suitable for both the compared

DataDescr objects. For instance, if they are both of type NUMERIC, but they have dif-

ferent values it returns a DataDescr object of type GVALUE (generic numeric value) or if

they are both of type POINTER and they point to the same kernel module but to different

RVAs a DataDescr object of type POINTER with value (<kernel module>,GENERIC -

RVA) is returned. If no suitable description is found a DataDescr object of type ANY is

returned.

Structured types are recursively compared starting from their leaves, using a depth-first

approach.

6.3.4 InvariantComparer.computeDiffs method

This method compares two DataDescriptions dictionaries and returns their differ-

ences. It is used to compare each pair of DataDescr objects with the same key in both

88

dictionaries. If they have different types, such difference is classified in one of the following

categories:

different structure The two compared objects have both a structured type, but it

is different.

no structure One of the compared object has a structured type, but not the other.

zero to structure One of the compared object has a structured type, whereas the

type of the other is ZERO.

zero to something One of the compared object has a not structured type, whereas

the type of the other is ZERO.

different pointer The two compared objects are both of type POINTER, but their

values are different.

no pointer One of the compared objects is of type POINTER, but not the other.

no pointer to dllist One of the compared objects is of type POINTER TO DL-

LIST, but not the other.

other difference The two compared objects have different types and they do not

fit in any of the categories previously mentioned.

These types of differences have been chosen because they are related to modifications

that could be generated by a rootkit. This method returns the differences found, classified

according to one of the categories listed above.

89

6.3.5 Trained analysis

Trained analysis works in three steps. First of all, for each memory dump in the train-

ing set, DataDescriptions dictionaries are created. Then they are compared, applying

DataDescr.compare method to values with the same key. In this way an invariance

set is created: a dictionary describing data properties that are invariant among all the

memory dumps in the training set. Finally, DataDescriptions dictionaries of each dump

to be verified are compared, using InvariantComparer.computeDiffs method, to the

invariance set and found differences are logged.

Data trained analysis does not classify memory dumps in infected and non-infected,

but it returns a list of data differences that can be be manually analyzed. In particular for

each difference found the following information are logged:

• The type of the difference.

• A textual representation of the two compared DataDescr objects.

• A textual representation of the two data structures in which the compared objects

are located (if they are located within DataDescr objects of structured types).

Some differences are expected even when non-infected memory dumps are analyzed,

however in infected memory dumps some peculiar differences may be found (see Sections

8.4.2 and 8.6.2).

90

6.3.6 Untrained analysis

Untrained analysis works by using as a distance metric the number of zero to structure

differences found when comparing DataDifferences dictionaries of two memory dumps

(those found inside double linked lists are not counted). This specific type of difference has

been chosen, because it is the most likely to be caused by a rootkit infection.

Data comparison is performed for each possible pair of analyzed memory dumps. Since

it is symmetric the number of necessary comparisons is halved. Linkage function used

during clustering is average (also called UPGMA): the distance between two non-singleton

clusters A, B is equal to: 1
|A|·|B|

∑
x∈A

∑
y∈B d(x, y)

The output of untrained data analysis is a hierarchy of clusters with analyzed memory

dumps as leaves.

CHAPTER 7

TECHNICAL DETAILS

7.1 Kernel pool allocation detection

Kernel pool allocations are searched within a memory dump during the initialization

of the corresponding MemDump object, by the procedure in Listing 6. This procedure

scans kernel virtual addresses looking for a POOL HEADER data structure (see Section

2). This data structure is detected using rules listed in (25). In addition to rules shown in

Listing 6 we also exploit the fact that within the same memory page, only pool allocations

of the same type (ptype variable in the code) can be present. This allows us to reduce

the number of false matches. Virtual addresses between 0xC0000000 and 0xE1000000 are

skipped, since, according to Windows kernel memory layout, no kernel pool allocation is

stored in this range. This procedure is able to detect only allocations smaller than 0x1000

bytes, because bigger ones are stored using a different mechanism.

Detected allocations are saved within the FVirtualPage corresponding to the memory

page where they have been found. This allows a fast implementation of the function that,

given a kernel virtual address, returns the surrounding pool allocation (if present).

91

92

1 IsAPoolHeader (vaddr){

2 // check i f a t a g i v en v i r t u a l add r e s s a poo l header i s p r e s en t

3 // i f a poo l header i s found , r e t u rn s i t s s i z e , o t h e rw i s e r e t u rn s None

4

5 dword = getDwordAtVirtualAddress (vaddr)

6 p o f f s e t = vaddr & 0xFFF

7 p s i z e = 0x01FF & dword

8 b s i z e = (0 x01FF0000 & dword) >> 16

9 ptype = (0 xFE000000 & dword) >> (16 + 9)

10

11 // t h e s e r u l e s are taken from :

12 // subs . emis . de /LNI/ Proceed ings / Proceed ings97 /GI−Proceed ings −97−9. pd f

13 i f ((b s i z e > 0 and b s i z e <= 511)

14 and ((vaddr >> 12) == (((vaddr + ((b s i z e − 1) ∗ 8) − 1)) >> 12))

15 and (ptype in (2 , 3 , 4 , 5 , 6 , 7 , 8 , 33 , 34 , 35 , 36 , 37 , 38 , 39))

16 and (((p s i z e == 0) and ((vaddr % 0x1000) == 0)) or p s i z e > 0)

17 and ((p s i z e ∗ 8) <= 0x1000) and ((b s i z e ∗ 8 + po f f s e t) <= 0x1000)){

18

19 // check poo l t a g

20 poo l tag = getDwordAtVirtualAddress (vaddr + 4)

21 i f ((poo l t ag & 0x00808080)!=0){

22 return None

23 } else {

24 i n v a l i d c h a r a c t e r s = countNumberOfNonPrintableCharacters (poo l t ag)

25 i f (i n v a l i d c h a r a c t e r s > 1 and poo l tag != 0x00000000){

26 return None

27 } else{

28 return (b s i z e ∗ 8)

29 }

30 }

31

32 } else {

33 return None

34 }

35 }

Listing 6: Procedure used to detect POOL HEADER data structures.

93

7.2 Double linked list detection

Double linked lists are found during the first step of every data comparison. This pro-

cedure scans kernel virtual addresses looking for LIST ENTRY data structures correctly

linked (see Listing 1 and Figure 7). As in kernel pool allocation detection, virtual addresses

between 0xC0000000 and 0xE1000000 are skipped. While looking for double linked lists

we check if the following conditions are true:

• FLINK pointers create a closed loop.

• FLINK s and BLINK s point coherently to the next/previous element.

• A list head exists.

• All the elements of the list are within a kernel pool allocation.

If the above conditions are met, found list is saved.

We identify a double linked list using its list head. To give to each found list a head

unique and coherent among different memory dumps we use the following rules:

• If a list head is within a kernel module, it is identified using the tuple (<module>,<RVA>)

describing the virtual address where the list head is.

• Otherwise, we use the tuple (<tag str>,<flink offset>,<element size>,<head offset>),

where:

– tag str is the poll tag of the elements of the list.

– link offset is the offset the FLINK field has, within each element of the list.

94

– element size is the size of each list element.

– head offset is the offset the list head has, within the kernel pool allocation in

which it is located.

7.3 Kernel module identification

Kernel modules are enumerated using a modified version of Volatility modscan plugin.

We have chosen to identify any kernel module using the tuple (<module size>,<CRC>).

Module size is the size a module has when loaded in memory (it is always a multiple

of 0x1000). CRC is a 20-bit value computed by the compiler when a module is created,

used to verify its integrity. It is computed using a custom hashing function on the content

of the module. We believe that the probability that two kernel modules have the tuple

(<module size>,<CRC>) equal by chance is extremely low.

We do not use the module name, because we have discovered that the same kernel

module can have different names. We have noticed this behavior in two different situations:

kernel modules used during system hibernation process1 and the kernel module used by

SCSI Pass-Through Direct driver2 (it changes its name at every reboot).

1http://msdn.microsoft.com/en-us/library/windows/hardware/ff564084%28v=vs.85%29.aspx

2http://www.duplexsecure.com/en/downloads

95

A rootkit could easily modifies its content to have the same module size and CRC of

a legitimate kernel module. However, this would lead our analysis to compare the rootkit

module with a legitimate one, detecting differences between the two.

7.4 Detecting code and data sections within a PE file

A PE file is divided in sections, typically some of them contains code, others data,

others information used by the loader. Unfortunately, there is no a precise and universally

used convention to understand if a section contains code or data. However, it is possible

to use the name and the flags assigned to each section to decide with an almost perfect

approximation if a section contains code.

Listing 7 shows the pseudocode of the procedure we use to understand if a given RVA

within a kernel module is inside a code section. Rules used are similar to those used by

System Virginity Verifier tool1. It is worth to note that even if a PE section has a flag to

indicate if it is executable (IMAGE SCN MEM EXECUTE), its value is not considered by

the loader. For instance, even using hardware where it is available, the XD bit is not used,

allowing code to be executed in sections flagged as not executable too. Additionally, some

specific rules are necessary for sections within ntoskrnl.exe and hal.dll kernel modules.

1http://www.woodmann.com/collaborative/tools/index.php/System Virginity Verifier

96

1 i s In s ideCode (module ,RVA){

2 // r e t u rn s True i f g i v en RVA wi t h i n module i s in a code s e c t i o n

3 // r e t u rn s Fa l s e o t h e rw i s e .

4

5 s e c t i on = module . RVAtoSection (RVA)

6 name == se c t i on . getName ()

7 notExec = not s e c t i on . hasFlag (IMAGE SCN MEM EXECUTE) // boo l ean

8

9 i f (notExec and (name==” . data” or name==” . npdata” or name==” . bss ”)){

10 return False

11

12 } else i f (notExec and (name . f i nd (”PAGE”)>−1 and name!=(”PAGELK”))){

13 return False

14

15 } else i f (module . name==” ntoskrn l . exe ”

16 and (notExec or name==”PAGEVRFY” or name==”PAGESPEC”

17 or (name==”INIT” and s e c t i on . hasFlag (IMAGE SCN MEM DISCARDABLE)))){

18 return False

19

20 } else i f (module . name==”hal . d l l ”

21 and (notExec or (name==”INIT” and

22 s e c t i on . hasFlag (IMAGE SCN MEM DISCARDABLE)))){

23 return False

24

25 } else {

26 return True

27 }

28 }

Listing 7: Procedure used to decide if an address is inside a code section.

97

7.5 Data pointer detection

We use the following heuristics rules to determine if a given DWORD is a pointer within

kernel memory:

1. 0x80000000 (kernel space start address) ≤ (DWORD value) ≤ 0xFFD00000

2. DWORD location is four-byte aligned

3. DWORD value is four-byte aligned

It is worth to note that, even if rules 2 and 3 are not strictly enforced by x86-compatible

processors in 32-bit mode, they are always followed by compilers, since unalligned memory

accesses have big performance penalties.

In several different situations Blacksheep needs to determine if two pointers are equal.

We consider two pointers in two different memory dumps as equal if the point to the same

RVA within the same kernel module.

7.6 Function code comparison

We have developed a procedure to understand if two functions inside two different mem-

ory dumps have the same code. The problem of understanding if two set of instructions

have the same behavior is, in general, undecidable. This procedure simply deals with spe-

cific modifications that occur when code is relocated inside dynamically allocated memory

regions. Still it is able to compare correctly complex hooks installed by some security tools.

Pseudocode is shown in 8. Instructions are decompiled using diStorm31 Python library.

1http://code.google.com/p/distorm/

98

1 compareFunctionCode (vaddr1 , vaddr2 , dump1 , dump2){

2 // r e t u rn s True i f code o f t h e f u n c t i o n s a t vaddr1 and vaddr2 i s equa l ,

3 // r e t u rn s Fa l s e o t h e rw i s e

4 LIMIT = 100 //an a r b i t r a r y l i m i t

5 while (ana l y z ed in s t ru c t i on s<LIMIT){

6 ana l y z ed i n s t r u c t i o n s += 1

7 i n s t r 1 = getNext In s t ruc t i on (vaddr1 , dump1) // use diStorm3

8 i n s t r 2 = getNext In s t ruc t i on (vaddr2 , dump2) // use diStorm3

9 // i n s t r . mnemonic i s t h e a s s emb l e r i n s t r u c t i o n name (e . g . MOV, JMP)

10 // i n t r . operand i s t h e numeric v a l u e (e . g . 0xFF in MOV EAX, 0xFF)

11 i f (i n s t r 1==in s t r 2){ // t h e i r d i s a s s emb l e d code i s e x a c t l y t h e same

12 i f (i n s t r 1 . mnemonic==”RET”){ return True } else{ continue }

13 } else{

14 i f (i n s t r 1 . mnemonic!= i n s t r 2 . mnemonic){

15 return False

16 } else{ // check s i f i t i s a d i r e c t p o i n t e r s

17 po inte r1 = i n s t r 1 . operand

18 po inte r2 = i n s t r 2 . operand

19 i f (comparePointers (po inter1 , po inter2 , dump1 , dump2)){

20 continue

21 } else { // check i f i t i s an i n d i r e c t p o i n t e r s

22 po in t e r 1 i nd = dump1 . getDwordAtVirtualAddress (po in te r1)

23 po in t e r 2 i nd = dump2 . getDwordAtVirtualAddress (po in te r2)

24 i f (comparePointers (po inte r1 ind , po in te r2 ind , dump1 , dump2)){

25 continue

26 } else{

27 return False

28 }

29 }

30 }

31 }

32 }

33 return False

34 }

35

36 comparePointers (po inter1 , po inter2 , dump1 , dump2){

37 // Returns t r u e i f and on l y i f p o i n t e r 1 and po i n t e r 2 po i n t to t h e same RVA

38 // w i t h i n t h e same k e r n e l module in dump1 and dump2 r e s p e c t i v e l y .

39 }

Listing 8: Procedure used to compare the code of two functions.

99

7.7 Performance optimizations

7.7.1 Python optimizations

The code is run using Psyco library (43), a Python extension module working as a

just-in-time compiler. It is enabled by inserting the following line at the beginning of the

main function:

psyco.profile(0.01)

7.7.2 Caching

The use of /dev/shm/ device and the Volatility result cache have been already explained

in Section 5.4.1 and Section 5.4.2.

In addition, during an analysis several partial-results are saved to a file. In this way

further analyses can reuse such partial-results without recomputing them. Saving and

loading operations are managed by PickleCache class that, in turn, uses CPyckle Python

library. Examples of cached partial-results are: DataDescriptions dictionaries and all

the distances between two memory dumps computed during untrained analyses.

7.7.3 Other optimizations

Many internal methods are invoked several times using contiguous input parameters

and, most of the times, they return the same results. For instance the method that, given an

RVA in a kernel module, returns the PE section where such RVA is located always returns

the same result if it is invoked with RVAs within the same 0x80-byte aligned memory region

100

(because PE sections are always 0x80-byte aligned). As shown in Listing 9, this property

is exploited to avoid searching for a PE section every time this method is called.

1 Module RVAtoSection (module , rva){

2 stat ic l a s t modu le = None

3 stat ic l a s t r v a = None

4 stat ic l a s t r e s u l t = None

5

6 i f (l a s t modu le == module

7 and (l a s t r v a >> 7) == (rva >> 7)){ // because 2ˆ7 == 0x80

8 return l a s t r e s u l t

9 } else {

10 // search f o r the PE se c t i on at module : rva l o c a t i o n

11 // . . .

12 la s t modu le = module

13 l a s t r v a = rva

14 l a s t r e s u l t = f o u n d s e c t i o n

15 return f o u n d s e c t i o n

16 }

Listing 9: An example of speed optimization.

CHAPTER 8

EVALUATION

8.1 Used data sets

To evaluate Blacksheep we have used two sets of memory dumps acquired from dif-

ferently configured machines. Characteristics of the utilized machines are summarized in

Table III. In this chapter we will always refer to the two sets as WinXP and Win7.

TABLE III: THE SETS OF MEMORY DUMPS USED TO EVALUATE BLACKSHEEP.

Set

name

Operating

system

Last

OS

update

Installed

programs

Machine configuration

Dumping

method used

WinXP

Windows

XP SP3

Professional

31 Oct

2011

– Firefox

– Process Explorer

– Visual Studio

– VirtualBox

– 2.8 GHz, 1 32-bit Core

– 1GB RAM

Custom

dumping driver

Win7

Windows 7

SP1

Professional

31 Jan

2012

– Default

applications only

– QEMU

– 2.8 GHz, 1 32-bit Core

– 1GB RAM

– Swap file disabled

Virtual machine

introspection

101

102

8.2 Tested rootkits

We have tested Blacksheep with different Windows kernel rootkits. Their droppers

(the executable files used to install them) have been download from the Contagio blog1

and Offensive Computing2 websites.

1http://contagiodump.blogspot.com/

2http://offensivecomputing.net/

103

TABLE IV: ROOTKITS USED TO TEST BLACKSHEEP.

The name we use during testing is listed in Name column.

Name

Avast

classification

McAffe

classification

Symantec

classification

blackenergy Win32:MalOb-M [Cryp] BlackEnergy.gen.e Packed.Generic.265

mebroot Win32:Akan Generic Packed.g Trojan.Mebroot

r2d2 Win32:R2D2-E [Trj] BackDoor-FCA Backdoor.R2D2

rustock Win32:Costrat-T [Trj] Artemis!93BB8478468E Backdoor.Rustock.B

stuxnet Win32:StuxX-B [Wrm] Stuxnet W32.Stuxnet

tdl3 Win32:Jifas-FB [Trj] DNSChanger.bf Packed.Vuntid!gen1

tdss Win32:Alureon-MT [Rtk] Generic Dropper.va.gen.m Trojan.Gen.2

zeroaccess Win32:MalOb-IJ [Cryp] Artemis!3FD3D439553B Trojan.Gen

Table IV lists rootkits used during the evaluation of Blacksheep. Classifications pro-

vided by popular Antivirus have been retrieved by uploading droppers to the VirusTotal1

website.

1https://www.virustotal.com/

104

Assigning the right classification to a rootkit is an open problem. We have given names

to tested rootkits using the following criteria. In case that a manual analysis is available, we

have used the name provided in the analysis, otherwise we have chosen the most common

name returned by VirusTotal automatic analyses.

In this chapter every infected memory dump is named with the name of the rootkit

installed, followed by a three digit random number. Memory dumps acquired from machines

in a non-infected state are named as non-infected.

105

TABLE V: ROOTKITS USED TO TEST BLACKSHEEP: WINDOWS 7

COMPATIBILITY AND HASHES.

Name

Works in

Windows 7 ?
Hash

(MD5, SHA-1, SHA-256)

blackenergy %

45f3085144f6875b27ae173f22856198

f20b4a1ad872b2b78505c94c70e7f19a50438e12

58db0a680d11647fa5a74fcda1936ff54484a259300e1d92d7d8f656f62bdb96

mebroot %

de53c6367f284bba1137783c6041ee18

5549fff5f70d019c4a6f94e73a0e9e01b5c0188f

f318330548dedc76b1ce17bf53f7358e7a840f0358dd04e60764f02779257849

r2d2 !

309ede406988486bf81e603c514b4b82

a6a0f45180f5b3390ee2ef21fe4b89813ed641f4

021da2f5e892265cafd1642a44fe258ee56cf6e1393f6e0dc79add99fed1f15f

rustock %

93bb8478468e9dce3506f1f8b6655c20

4a3f4448038f042bee221747500aafb867a78156

f1bf0e9cb488074ad7a394dd4cf5e2299e241660454679c982a0d2be3abb4e48

stuxnet !

74ddc49a7c121a61b8d06c03f92d0c13

0ccbc128dd8bf73dc7b3922fb67d26bbcdbcaa89

743e16b3ef4d39fc11c5e8ec890dcd29f034a6eca51be4f7fca6e23e60dbd7a1

tdl3 !

44cd40833af9bf801999217c9247bc56

6a3f9c09c438c4cdd43895cf81bcbebcd18f37a3

dab1fa7cfc4dc2562b1f60491ecbbbdf3d51f328948a1ae211294d3f8b91af95

tdss !

31db7a22df02e1a91db9afda4f02f3bf

6ede4482be1b06c90cca93bedf3e363c096102f5

ba670c68a7e481c324bdc2e8c5c8c1c8ddc4a2772e991826771350ea8e03f2ce

zeroaccess !

3fd3d439553b6dd40b25ef28c07337ed

43c2f41d6e4d49e7082f2401b2d027565051d96f

2e0f78f3b8452e10d118e2d668fb7c5005ec8cd02e9deb7eef2e255eb0188ccf

106

Some tested rootkits do not work in Windows 7, since their droppers crash immediately

after their opening. For some rootkits, after that the execution of their droppers starts,

Windows 7 asks for user confirmation before performing system-critical operations. This

is due to how application permissions are set by default in Windows 7 User Access Control

(UAC). In this case we always give to UAC dialog forms all the confirmations required. In

addition all droppers have been executed with administrative privileges.

8.3 Methodology

From a machine in a non-infected state 20 memory dumps have been acquired. Then,

for each tested rootkit, it has been infected, rebooted and 4 memory dumps have been

acquired. Since we have used virtual machines it has been possible to infect it while always

starting from exactly the same non-infected state.

Memory dumps have been acquired in different operating system sessions, in particular,

each system have been always rebooted after the acquisition of two memory dumps. In

Win7 set the dumping procedure has been started as soon as the operating system boot

has finished. In WinXP set, before acquiring memory dumps, some installed programs

have been randomly opened.

In trained analyses 10 out of 20 memory dumps acquired from machines in non-infected

state have been used as the training set. The others have been analyzed to determine the

false positive rate.

Untrained analyses have been applied on sets of 14 dumps: 10 acquired from machines in

a non-infected state, the others from machines with a specific infection. The hierarchical

107

sets of cluster obtained as a result have been flattened using the fcluster1 function of

SciPy mathematical library. If the flattening procedure returns more than two clusters,

the smaller ones are merged together to have only two clusters. The biggest flat cluster

obtained is considered as that containing non-infected memory dumps. Ideally, the biggest

cluster should comprise all non-infected memory dumps (and only those dumps), leaving

all (and only) memory dumps acquired from machines in an infected state in the other

cluster. If only one cluster is returned (spanning all analyzed memory dumps), all dumps

are considered as non-infected.

1http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html

Parameters used:

criterion = ’maxclust’ t = 5.0 for code and kernel entry point untrained analyses.

criterion = ’maxclust’ t = 2.0 for data untrained analysis.

108

8.4 Data set 1 - Trained Analyses

8.4.1 Code and Kernel Entry Point analyses

TABLE VI: OVERVIEW OF THE RESULTS IN WINXP SET, USING TRAINED

ANALYSES.

Name

Code

Analysis

Kernel

Entry Point

Analysis

Totala Note

blackenergy 4/4 4/4 4/4

– Modifications in ntoskrnl.exe

– 1 module installed (randomly named)b

– 14 modified SSDT entries

mebroot 4/4 4/4 4/4
– Modifications in CLASSPNP.SYS

– 22 modified IRPs

r2d2 4/4 0/4 4/4 – 1 module installed: winsys32.sys

rustock 4/4 4/4 4/4

– Modifications in ntoskrnl.exe, tcpip.sys,

wanarp.sys

– SYSENTER and Interrupt 0x2E handlers

changed

stuxnet 4/4 0/4 4/4 – 2 modules installed: mrxnet.sys, mrxcls.sys

tdl3 4/4 4/4 4/4
– 1 module installed: compbatt.sysc

– 28 added IRPs and 1 modified IRP

tdss 4/4 4/4 4/4
– Modifications in hal.dll

– 1 module installed: kdcom.dlld

zeroaccess 4/4 4/4 4/4

– Modifications in ntoskrnl.exe, atapi.sys

– 1 module installed: netbt.sys

– 28 added IRPs

total 32/32 24/32 32/32 100% detection rate using both analyses

non-infected 0/10 0/10 0/10 0% false positive rate

109

a In this column memory dumps classified as infected by code analysis OR kernel entry

point analysis are counted.

b Module name format is: 00000XXX where X is any hexadecimal digit.

Module size and CRC are always 0x0000A0C9 and 0x00021E88.

c compbatt.sys is a legitimate Windows module, the installed one has the same CRC,

but a different size.

d kdcom.dll is a legitimate Windows module, the installed one has the same CRC, but

a different size.

8.4.2 Data analysis

The example in Listings 10 shows a difference found by trained data analysis on WinXP

set. In a memory dump infected by the blackenergy rootkit, the pointer to the SSDT used

by some KTHREAD elements has been changed. In this way the corresponding threads

use a modified SSDT, in which some function pointers have been modified by the rootkit.

110

1 D i f f e r en c e found : d i f f e r e n t s t r u c t u r e

2

3 //memory dump i n f e c t e d by b l a c k en e r g y r o o t k i t

4 POINTER H 0x81ed6208L s i z e : 0x11L

5 // t h i s SERVICE DESCRIPTOR TABLE has been c r e a t e d by t h e r o o t k i t

6 −0x8 HEAP HEADER 0xa090002 − PType : 0 x5L − BSize : 0 x9 − PIndex : 0 x0 − PSize : 0 x2

7 −0x4 HEAP TAG None

8 0x0 POINTER V 0x80599a74L // p o i n t e r to t h e hooked SSDT i n s t a l l e d by b l a c k en e r g y r o o t k i t

9 0x4 ZERO 0x0

10 0x8 VALUE 0x11c

11 0xc POINTER (’ n to sk rn l . exe ’ , 176176L , ’ . t ext ’)

12 0x10 ZERO 0x0

13 // . . .

14 0x38 ZERO 0x0

15

16 // i n v a r i a n t s e t (c r e a t e d us ing 10 non−i n f e c t e d memory dumps)

17 POINTER S 0x805530a0L s i z e : 0xb

18 // l e g i t i m a t e SERVICE DESCRIPTOR TABLE

19 −0x8 ZERO 0x0

20 −0x4 ZERO 0x0

21 0x0 POINTER (’ n to sk rn l . exe ’ , 175036L , ’ . t ext ’) // l e g i t t i m a t e SSDT

22 0x4 ZERO 0x0

23 0x8 VALUE 0x11c

24 0xc POINTER (’ n to sk rn l . exe ’ , 176176L , ’ . t ext ’)

25 0x10 ZERO 0x0

26 0x14 ZERO 0x0

27 0x18 ZERO 0x0

28 0x1c ZERO 0x0

29 0x20 ZERO 0x0

Listing 10: A detected data difference caused by a rootkit.

111

8.5 Data set 1 - Untrained Analyses

8.5.1 Code and Kernel Entry Point analyses

TABLE VII: OVERVIEW OF THE RESULTS IN WINXP SET, USING UNTRAINED

ANALYSES.

Name Code Analysis Kernel Entry Point Analysis Totala

True

Positives

False

Positives

True

Positives

False

Positives

True

Positives

False

Positives

blackenergy 4/4 0/10 4/4 0/10 4/4 0/10

mebroot 4/4 0/10 4/4 0/10 4/4 0/10

r2d2 0/4 0/10 0/4 0/10 0/4 0/10

rustock 4/4 0/10 4/4 0/10 4/4 0/10

stuxnet 0/4 0/10 0/4 0/10 0/4 0/10

tdl3 0/4 0/10 4/4 0/10 4/4 0/10

tdss 4/4 0/10 4/4 0/10 4/4 0/10

zeroaccess 4/4 0/10 4/4 0/10 4/4 0/10

total
20/32

62.5%

0/80

0%

24/32

75%

0/80

0%

24/32

75%

0/80

0%

112

a In this column memory dumps classified as infected by code analysis OR kernel entry

point analysis are counted.

8.5.2 Data analysis

TABLE VIII: OVERVIEW OF THE RESULTS IN WINXP SET, USING UNTRAINED

DATA ANALYSIS.

Name Data Analysis

True Positives False Positives

blackenergy 0/4 1/10

mebroot 1/4 2/10

r2d2 0/4 1/10

rustock 0/4 1/10

stuxnet 0/4 1/10

tdl3 0/4 1/10

tdss 0/4 1/10

zeroaccess 2/4 2/10

total
3/32

9.4%

10/80

12.5%

113

8.6 Data set 2 - Trained Analyses

8.6.1 Code and Kernel Entry Point analyses

TABLE IX: OVERVIEW OF THE RESULTS IN WIN7 SET, USING TRAINED

ANALYSES.

Name

Code

Analysis

Kernel

Entry Point

Analysis

Totala Note

r2d2 4/4 0/4 4/4 – 1 module installed: winsys32.sys

stuxnet 4/4 2/4 4/4
– 2 modules installed: mrxnet.sys, mrxcls.sys

– 20 added IRPs (only in 2 dumps)

tdl3 4/4 4/4 4/4
– 1 module installed: netbt.sysb

– 29 added IRPs

tdss 4/4 4/4 4/4
– 1 module installed: kdcom.dllc

– 28 added IRPs

zeroaccess 4/4 4/4 4/4

– Modifications in ntoskrnl.exe, ataport.SYS

– 1 module installed: cdrom.sysd

– 56 added IRPs

total 20/20 14/20 20/20 100% detection rate using both analyses

non-infected 0/10 0/10 0/10 0% false positive rate

114

a In this column memory dumps classified as infected by code analysis OR kernel entry

point analysis are counted.

b netbt.sys is a legitimate Windows module, the installed one has the same size, but a

different CRC.

c kdcom.dll is a legitimate Windows module, the installed one has the same CRC, but

a different size.

d cdrom.sys is a legitimate Windows module, the installed one has the same size, but

a different CRC.

8.6.2 Data analysis

By manually inspecting differences found between the analyzed memory dumps and the

invariance set, it is possible to notice that for memory dumps infected by rootkits of the

TDSS family (zeroaccess, tdss, tdl3), many are located within the CI.dll kernel module.

This module is responsible for verifying the signatures of all loaded kernel modules. It is

well known that these rootkits force Windows to disable signature verification on mod-

ules (for details see (9)). They achieve this result by booting Windows with special boot

flags or tampering its boot procedure. For these reasons we think that modifications de-

tected within the CI.dll kernel module are caused by activities performed by these rootkits.

Listing 11 shows three of these modifications.

115

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 D i f f e r en c e found : z e r o t o s t r u c t u r e

3 // l o c a t i o n CI . d l l : 0 x0000406C −−> PVOID g UnsignedHash

4

5 // in i n v a r i a n t s e t :

6 ZERO 0x0

7 // in i n f e c t e d memory dump :

8 POINTER H 0x91d5b1a8L s i z e : 0x49L

9 −0x8 HEAP HEADER 0x625020d − PType : 0 x3L − BSize : 0 x25 − PIndex : 0 x1 − PSize : 0 xd

10 −0x4 HEAP TAG CIcr

11 0 VALUE 0x2a

12 // . . .

13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

14 D i f f e r en c e found : ze ro to someth ing

15 // l o c a t i o n CI . d l l : 0 x00004090 −−> uns igned l ong g UnsignedHashChanged

16

17 // in i n v a r i a n t s e t :

18 ZERO 0x0

19 // in i n f e c t e d memory dump :

20 VALUE 0x1

21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

22 D i f f e r en c e found : ze ro to someth ing

23 // l o c a t i o n CI . d l l : 0 x00004094 −−> uns igned l ong g u lUnsignedHashCount

24

25 // in i n v a r i a n t s e t :

26 ZERO 0x0

27 // in i n f e c t e d memory dump :

28 VALUE 0x1

Listing 11: Three examples of data modifications within the CI.dll kernel module caused

by zeroaccess rootkit activities.

Names assigned by Windows debugging symbols to the three locations shown are printed in

comments (after the −→ symbol).

116

8.7 Data set 2 - Untrained Analyses

8.7.1 Code and Kernel Entry Point analyses

TABLE X: OVERVIEW OF THE RESULTS IN WIN7 SET, USING UNTRAINED

ANALYSES.

Name Code Analysis Kernel Entry Point Analysis Totala

True

Positives

False

Positives

True

Positives

False

Positives

True

Positives

False

Positives

r2d2 4/4 0/10 0/4 0/10 4/4 0/10

stuxnet 0/4 0/10 2/4 0/10 2/4 0/10

tdl3 4/4 0/10 4/4 0/10 4/4 0/10

tdss 0/4 0/10 4/4 0/10 4/4 0/10

zeroaccess 4/4 0/10 4/4 0/10 4/4 0/10

total
12/20

60.0%

0/50

0%

14/20

70.0%

0/50

0%

18/20

90.0%

0/50

0%

117

a In this column memory dumps classified as infected by code analysis OR kernel entry

point analysis are counted.

8.7.2 Data analysis

TABLE XI: OVERVIEW OF THE RESULTS IN WIN7 SET, USING UNTRAINED

DATA ANALYSIS.

Name Data Analysis

True Positives False Positives

r2d2 1/4 3/10

stuxnet 1/4 3/10

tdl3 4/4 0/10

tdss 4/4 0/10

zeroaccess 4/4 0/10

total
14/20

70.0%

6/50

12.0%

118

8.8 Other results

0246810

rustock_764
rustock_083
zeroaccess_623
zeroaccess_359
tdss_743
tdss_088
blackenergy_101
blackenergy_075
non-infected_531
non-infected_892
non-infected_747
non-infected_031
non-infected_478
non-infected_344
non-infected_262
non-infected_687
non-infected_921
non-infected_712

no
n-

in
fe

ct
ed

_7
12

no
n-

in
fe

ct
ed

_9
21

no
n-

in
fe

ct
ed

_6
87

no
n-

in
fe

ct
ed

_2
62

no
n-

in
fe

ct
ed

_3
44

no
n-

in
fe

ct
ed

_4
78

no
n-

in
fe

ct
ed

_0
31

no
n-

in
fe

ct
ed

_7
47

no
n-

in
fe

ct
ed

_5
31

no
n-

in
fe

ct
ed

_8
92

bl
ac

ke
ne

rg
y_

07
5

td
ss

_0
88

ze
ro

ac
ce

ss
_3

59

td
ss

_7
43

ru
st

oc
k_

08
3

bl
ac

ke
ne

rg
y_

10
1

ze
ro

ac
ce

ss
_6

23

ru
st

oc
k_

76
40

2

4

6

8

10

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

Figure 12: An example of code untrained analysis on a set of memory dumps with multiple

infections.

In the graph on the left the hierarchy of clusters returned by untrained code analysis is

shown, in the graph on the top the two clusters obtained after the flattening procedure are

shown. In the center, the difference matrix is drawn.

All memory dumps belong to the WinXP set.

119

8.9 Execution time and memory consumption

The execution time of Blacksheep is striclty linked to the type and the number of the

performed comparisons. Table XII shows the number of comparison needed by each type

of analysis.

TABLE XII: NUMBER OF COMPARISONS NEEDED BY EACH TYPE OF ANALYSIS.

n: number of memory dumps used in untrained analysis.

c: number of memory dumps to be checked by trained analysis.

t: number of memory dumps in the training set.

Analysis type Number of comparisons

Code untrained analysis n(n−1)
2

Kernel entry point untrained analysis n(n− 1)

Data untrained analysis n(n−1)
2

Code trained analysis between c and ct

Kernel entry point trained analysis between c and ct

Data trained analysis c + t

120

Figure 13 shows execution time of each type of comparison. Comparing memory dumps

already used in other comparisons is significantly faster, because of the several caching

mechanisms implemented in Blacksheep. The analyses have been performed on an Intel

Core i7 CPU (2.8 GHz quad-core) running Ubuntu 10.4 32-bit. Results shown in Figure 13

have been acquired by comparing 10 different couples of memory dumps from the Win7

set and computing the average execution time.

In addition to the implemented caching mechanisms, all partial results of untrained

analyses are saved and reused in further analyses. For this reason, when a memory dump

is added to a set of n already compared memory dumps, only n (for data or code untrained

analyses) or 2n (for kernel entry point untrained analysis) comparisons are necessary. The

execution time needed to perform clustering is negligible.

Memory consumption is maximum during data analyses. The maximum value recorded

while comparing memory dumps from the Win7 set is 2.5 GB.

121

ke
rn

e
l e

n
tr

y
p

o
in

t a
n

a
ly

si
s

(c

a
ch

e
d

 m
e

m
o

ry
 d

u
m

p
s)

ke
rn

e
l e

n
tr

y
p

o
in

t a
n

a
ly

si
s

 c
o

d
e

 a
n

a
ly

si
s

(c
a

ch
e

d
 m

e
m

o
ry

 d
u

m
p

s)

co
d

e
 a

n
a

ly
si

s

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

Analysis type

 d
a

ta
 a

n
a

ly
si

s
(c

a
ch

e
d

 m
e

m
o

ry
 d

u
m

p
s)

d
a

ta
 a

n
a

ly
si

s

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

V
ol

at
ili

ty
 c

om
m

an
ds

In
te

rn
al

 r
ep

re
se

nt
at

io
n

cr
ea

tio
n

C
od

e
co

m
pa

ris
on

K
er

ne
l e

nt
ry

 p
oi

nt
 c

om
pa

ris
on

D
at

aD
es

cr
ip

tio
ns

 d
ic

tio
na

ry
 c

re
at

io
n

D
at

a
co

m
pa

ris
on

D
at

aD
es

cr
ip

tio
ns

 d
ic

tio
na

ry
 lo

ad
in

g
O

th
er

T
im

e
 (

s
e

c
o

n
d

s
)

F
ig

u
re

13
:

E
x
ec

u
ti

on
ti

m
e

d
u

ri
n

g
d

iff
er

en
t

ty
p

es
of

co
m

p
a
ri

so
n

s.

122

8.10 Discussion

8.10.1 Trained analyses

In both WinXP and Win7 sets, Blacksheep is able to detect all the tested rootkits in any

memory dump acquired from an infected machine. Furthermore all non-infected memory

dumps are classified correctly. These results have been obtained using a relative small

set of 10 memory dumps as the training set. Additionally Blacksheep provides detailed

information of the anomalies detected that can be used for a preliminary analysis of the

behaviors of the installed rootkits. All kernel modules detected as infected are extracted

from the memory dump where they have been found to allow further investigations.

An interesting common behavior some detected rootkits have is that they install ker-

nel modules with names equal (e.g. kdcom.dll, cdrom.sys) or similar (e.g. winsys32.sys)

to legitimate ones. In one case, a rootkit (blackenergy) installs a kernel module with a

randomized name. In some cases, they also try to mimic CRC and size values. However

in all the infection we have tested they fail to do so correctly. From these results we can

state that the way in which Blacksheep identifies kernel modules is effective in dealing with

kernel modules installed by the analyzed rootkits.

Most of the rootkits add or modify IRPs to interfere with operating system behavior.

Two other interesting techniques have been detected too. Blackenergy modifies SSDT

entries and rustock modifies SYSENTER and Interrupt 0x2E handlers. Patching code

123

within Windows kernel modules is a widely used technique. The most targeted modules

are ntoskrnl.exe and hal.dll.

Two rootkits (stuxnet and r2d2) only install new kernel modules, without performing

any other detectable modification to the OS. For this reason they cannot be detected

correctly by kernel entry point analysis, but the modules they install are still detected by

trained code analysis.

Trained data analyses reveal interesting information too, even if manual intervention is

necessary to spot modifications related to malicious activities. In WinXP set it is possible

to understand in detail how blacksheep rootkit modifies SSDT entries. It does not directly

patch them, instead it modifies the pointer to the SERVICE DESCRIPTOR TABLE of

some threads. We think that this technique is used to deceive security tools that only check

entries within legitimate SSDTs. In Win7 set many fields within the CI.dll module that

have ZERO value in non-infected memory dumps change their values in memory dumps

infected by rootkits of the TDSS family. We think that these modifications are caused

by the fact that rootkits of this family force the OS to disable kernel module signature

verification. Further investigations should be carried out to discover the exact way in

which these modifications are caused.

8.10.2 Untrained analyses

Untrained analyses on code and kernel entry points works effectively in detecting most

of the rootkits in WinXP and Win7 sets. Two of them (stuxnet and r2d2) cannot be

detected because neither they modify kernel modules nor kernel entry points. They can be

124

detected during trained analysis because they install new kernel modules, however newly

installed modules are ignored during untrained analysis. A possible solution would be to

consider differences in loaded kernel modules while clustering memory dumps. However a

major issue needs to be addressed: some kernel modules are loaded only on demand by

operating system or applications so they are not always present. In trained analysis this

problem is solved having a sufficiently large training set, but in untrained analysis it causes

instability in the results.

Additionally, in some cases untrained analysis is able to produce a hierarchy of clus-

ters in which infected memory dumps are separated from the non-infected ones, but this

hierarchy is not flattened correctly.

Untrained data analysis achieves good results in Win7 set. Many of the detected

modifications are within the CI.dll kernel module and they have been manually inspected

using trained data analysis too. In WinXP set results are not satisfactory mainly because

the dumping method used introduces too much instability in the acquired data structures.

With some infections untrained code and kernel entry point analyses are able to generate

correct clusters even when working with a set of dumps infected by multiple rootkits (see

Figure 12). This could be particularly useful to give a preliminary automatic classification

of rootkit samples based on how they modify Windows kernel.

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In this thesis we have developed Blacksheep a tool for automatic kernel rootkit detection

and we have tested it on two different sets of memory dumps. This tool performs different

analyses on sets of memory dumps. Best results are achieved with trained analyses based

on the comparison of code and kernel entry points. In this case we are able to detect all

infected memory dumps without any false positive.

In addition, Blacksheep is able to provide useful information on how rootkits, infecting

the analyzed memory dumps, operate. So it can also be used as a tool to provide a

preliminary automatic analysis of rootkit behaviors.

The current version of Blacksheep can be improved in several ways.

A very interesting feature that may be added is the ability to analyze 64-bit versions

of Windows too. A limited number of security tools currently support these operating

systems, whereas the number of rootkits that can infect them is increasing (e.g. the TDSS

rootkit family (9)). Differently from many Antivirus software, Blacksheep is not effected by

the presence of Kernel Patch Protection because it does not need to modify the kernel in

any way. Version 2.1 of Volatility Framework (currently in alpha stage) introduces 64-bit

compatibility and it could be used by Blacksheep as well as the current one.

125

126

There is a considerable room for improvements in data comparison. Using existing

tools such as Daikon (29) it would be possible to have a more extensible and precise gener-

ation of invariant properties, following the approach already implemented in Gibraltar (30).

Some modifications are necessary to make Daikon able to deal with memory dumps be-

cause it has been originally developed to analyze invariant properties on pre-conditions and

post-conditions of function parameters. Data analysis could be further improved by the

availability of Windows data structure definitions. Even without having the source code,

it is possible to infer many Windows data structures parsing debugging symbols that are

publicly available. Many extracted data structures are already available, for instance on

NirSoft website (42).

Clustering algorithms used could be improved in several ways. An ad-hoc linkage

function could be developed and used while comparing two clusters of memory dumps,

taking into account differences caused by wrongly mapped memory pages or not loaded

kernel modules. Also the flattening procedure, used to obtain two clusters, one with the

infected memory dumps and the other with the non-infected ones, should be improved.

Many performance improvements are possible. The way in which addresses are trans-

lated could be implemented used a native language (i.e. C/C++) to maximize speed. Even

the way in which DWORD descriptions are stored could be improved by using optimized

data structures to minimize memory consumption. Comparisons needed by untrained

analyses are performed independently so they could be easily computed in parallel on a

distributed system.

127

Finally, Blacksheep could be further tested both with other rootkits and with other sets

of memory dumps acquired from machines with different configurations.

CITED LITERATURE

1. Kapoor, A. and Mathur, R.: Predicting the future of stealth attacks. Virus Bulletin
conference, October 2011.

2. Treit, R.: Some Observations on Rootkits. http://blogs.technet.com/

b/mmpc/archive/2010/01/07/some-observations-on-rootkits.aspx, Jan-
uary 2010.

3. Rutkowska, J.: Thoughts on DeepSafe. http://theinvisiblethings.blogspot.

com/2012/01/thoughts-on-deepsafe.html, January 2012.

4. Rutkowska, J.: Security Challenges in Virtualized Environments. RSA Conference,
April 2008.

5. Davis, M. A., Bodmer, S. M., and LeMasters, A.: Hacking Exposed, Malware and
Rootkits. McGraw-Hill Osborne Media, 2009.

6. Arnold, T. M.: A comparative analysis of rootkit detection techniques. Master’s the-
sis, University of Houston-Clarke Lake, May 2011.

7. Li, Z., Sanghi, M., Chen, Y., yang Kao, M., and Chavez, B.: Hamsa: fast signature
generation for zero-day polymorphic worms with provable attack resilience. In
SP 06: Proceedings of the 2006 IEEE Symposium on Security and Privacy,
pages 32–47. IEEE Computer Society, 2006.

8. Griffin, K., Schneider, S., Hu, X., and cker Chiueh, T.: Automatic Generation of
String Signatures for Malware Detection.

9. Rodionov, E. and Matrosov, A.: The Evolution of TDL: Conquering x64. ESET, June
2011.

10. Jacob, G., Debar, H., and Filiol, E.: Behavioral detection of malware: from a survey
towards an established taxonomy. Journal in Computer Virology, 4:251–266,

2008. 10.1007/s11416-008-0086-0.

128

CITED LITERATURE (Continued) 129

11. Maggi, F., Matteucci, M., and Zanero, S.: Detecting Intrusions through System Call
Sequence and Argument Analysis. IEEE Transactions on Dependable and Se-
cure Systems., 7(4), December 2010.

12. Microsoft: Kernel Patch Protection: FAQ. http://msdn.microsoft.com/en-us/

windows/hardware/gg487353, September 2007.

13. Russinovich, M. E., Solomon, D. A., and Ionescu, A.: Windows Internals. Microsoft
Press, 5th edition, June 2009.

14. Rutkowska, J.: Rootkits vs. Stealth by Design Malware. https://www.blackhat.

com/presentations/bh-europe-06/bh-eu-06-Rutkowska.pdf, 2006.

15. Wang, Z., Jiang, X., Cui, W., and Ning, P.: Countering Kernel Rootkits with
Lightweight Hook Protection. In ACM Conf. on Computer and Communica-
tions Security, November 2009.

16. Yin, H., Poosankam, P., Hanna, S., and Song, D.: HookScout: Proactive
Binary-Centric Hook Detection. In Proceedings of the 7th Conference on De-
tection of Intrusions and Malware & Vulnerability Assessment, Bonn, Germany,
July 2010.

17. Seshadri, A., Luk, M., Qu, N., and Perrig, A.: SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes, 2007.

18. McAfee: McAfee DeepSAFE. http://www.mcafee.com/us/solutions/

mcafee-deepsafe.aspx, 2011.

19. Blunden, B.: The Rootkit Arsenal. Wordware Publishing, 2009.

20. Garcia, G. L.: Forensic Physical Memory Analysis: an overview of tools and
techniques. In TKK T- 110.5290 Seminar on Network Security, 2007.

21. Burdach, M.: Finding Digital Evidence in Physical Memory. In Black Hat Federal
Conference, 2006.

22. HBGary: HBGary Responder Pro. http://www.hbgary.com/responder-pro.

CITED LITERATURE (Continued) 130

23. Walters, A.: The Volatility framework: Volatile memory artifact extraction utility
framework. https://www.volatilesystems.com/default/volatility.

24. Ligh, M. H.: Volatility malware plugins. http://code.google.com/p/

malwarecookbook.

25. Schuster, A.: Pool Allocations as an Information Source in Windows Memory
Forensics. In Pool Allocations as an Information Source in Windows Mem-
ory Forensics, 2006.

26. Schuster, A.: Searching for processes and threads in Microsoft Windows memory
dumps. In Digital Investigation, 2006.

27. Kornblum, J. D.: Using Every Part of the Buffalo in Windows Memory Analysis.
Digital Investigation, March 2007.

28. Petroni, N. L., Timothy, J., Aaron, F., William, W., and Arbaugh,
A.: An architecture for specification-based detection of semantic integrity
violations in kernel dynamic data. In Proceedings of the USENIX Security
Symposium, pages 289–304, 2006.

29. Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz, M. S.,
and Xiao, C.: The Daikon system for dynamic detection of likely invariants.
Science of Computer Programming, 69, December 2007.

30. Baliga, A., Ganapathy, V., and Iftode, L.: Detecting Kernel-Level Rootkits Using
Data Structure Invariants. IEEE Transactions on Dependable and Secure Com-
puting, Vol. 8, No. 5, September 2010.

31. Carbone, M., Lee, W., Cui, W., Peinado, M., Lu, L., and Jiang, X.: Mapping kernel
objects to enable systematic integrity checking. In ACM Conf. on Computer

and Communications Security, 2009.

32. Lin, Z., Rhee, J., Zhang, X., Xu, D., and Jiang, X.: SigGraph: Brute Force Scanning of
Kernel Data Structure Instances Using Graph-based Signatures. In the 17th

Network and Distributed System Security Symposium, 2011.

33. Kornblum, J. D.: Exploiting the Rootkit Paradox with Windows Memory Analysis.
International Journal of Digital Evidence, 2006.

CITED LITERATURE (Continued) 131

34. Rutkowska, J.: Beyond The CPU: Defeating Hardware Based RAM Acquisition (part
I: AMD case). In Black Hat DC, 2007.

35. Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume 3A.
September 2010.

36. Microsoft: Microsoft PE and COFF Specification. http://msdn.microsoft.com/

en-us/windows/hardware/gg463119, September 2010.

37. Hoglund, G. and Butler, J.: Rootkits: Subverting the Windows Kernel. Addison Wes-
ley Professional, August 2005.

38. Matrosov, A., Rodionov, E., Harley, D., and Malcho, J.: Stuxnet Under the
Microscope. ESET, January 2011.

39. Tereshkin, A.: Rootkits: Attacking Personal Firewalls. CODEDGERS, 2006.

40. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for
Python. http://www.scipy.org/, 2001–.

41. ReversingLabs: Undocumented PECOFF. Black Hat USA, 2011.

42. NirSoft: Windows Vista Kernel Structures. http://www.nirsoft.net/kernel_

struct/vista/.

43. Rigo, A.: Representation-based just-in-time specialization and the Psyco prototype
for Python. In Proceedings of the 2004 ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-based Program Manipulation, pages 15–26. ACM
Press, 2004.

VITA

Name: Antonio Bianchi

Education:

March 2009 – May 2012 M.Sc. in Computer Science

University of Illinois at Chicago

Final GPA: 3.71/4

September 2008 – April 2012 Laurea Specialistica degree (equivalent to M.Sc.)

in Computer Engineering

Politecnico di Milano

Grade: 110/110 cum laude

September 2005 – September 2008 Laurea degree (equivalent to Bachelor)

in Computer Engineering

Politenico di Milano

Grade: 108/110

132

133

Work experience:

August 2011 – October 2011 Research Assistant

Security Lab; University of California, Santa Barbara

Santa Barbara, CA, USA

October 2010 – June 2011 Tutor for foreign students

Politecnico di Milano

Milan, Italy

January 2006 – June 2008 Web developer

Liceo Scientifico Niccolò Machiavelli

Pioltello, Italy

