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SUMMARY 

 

 Interactive learning environments can provide learners with opportunities to explore rich, 

real-world problem spaces, but it can be hard for educators and educational designers to (a) 

understand what students are “up to”, and to subsequently (b) provide guidance or feedback to 

help learners make progress. Educational Data Mining (EDM) offers the potential to help diagnose 

student activities within an interactive learning environment, but it has historically been applied to 

constrained and fairly well-understood problem spaces. This work represents part of a growing 

body of research that is applying EDM techniques to more open-ended problem spaces.  

The open-ended problem space under study here was an environmental science simulation, where 

learners were confronted with the real-world challenge of figuring out where it is effective to place 

green infrastructure in an urban neighborhood so as to reduce surface flooding. Learners could try 

out many different arrangements of green infrastructure and use the simulation to test each 

solution’s impact on flooding. The solutions proposed by the learners were logged during a series 

of experimental trials with different user interface designs for the simulation. Analyzing this data 

was difficult due to the large possible solution state space, and because there are many possible 

good solutions and may possible paths to discover good solutions.  

This work proposes a procedure for reducing the state space while maintaining critical spatial 

properties of the solutions. Spatial reasoning problems are a class of problems not yet examined 

by EDM, so this work will set the stage for further research in this area. This work also 

demonstrates a procedure for discovering effective spatial strategies and solution paths, and 

demonstrates how this information can be used to give formative feedback to the designers of the 

interactive learning environment.  
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1 Introduction 

Educational data mining is aimed at developing methods to analyze the data that emerges from 

educational settings to further understand the behavior of students [1]. The increasing prevalence 

of technology in classrooms and other learning environments has the potential to both affect the 

way students learn things, as well as to help educators and educational designers get a better 

window onto the processes by which students learn things. This latter capacity, being able to track 

how students act within technological learning environments, will become increasingly important 

as our ability to create rich interactive learning experiences outstrips our ability to design 

assessments. Teachers most often informally assess learners’ progress via observation or via 

strategies like pop quizzes, and formally assess learners’ performance via written paper tests. 

These formats don’t easily cover the wide range of learning possible within an interactive learning 

environment. For example, learners can exhibit a range of skills and epistemic knowledge while 

engaged in a task that they could seldom learn from reading a textbook passage or express on a 

written test. This can hamper the ability of teachers to give meaningful feedback and guidance to 

students, and can have larger negative implications in the current high stakes testing atmosphere 

of education.  

“Stealth assessment” is one approach to automated, embedded assessment: usually applied 

to interactive simulations or games, in this approach student performance is monitored and tracked 

while they play, often without them being aware of it [2]. Compared to paper-based assessments, 

one can gain a much richer picture of learner capabilities, but with added complications: how the 

“stealth assessment” data is analyzed is highly dependent on who will use this data, and for what 

purpose. Any assessment designer can attest that the nature of the learner performance evidence 

that must be gathered rests on a number of factors, including whether the assessment is intended 
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to assist future learning (a formative assessment), to assess individual achievement (a summative 

assessment), or to assess the quality and effectiveness of an educational intervention (in other 

words, the assessment isn’t really about the individual learner, but about the learning experience 

itself) [3]. Once the purpose of the assessment has been decided upon, assessment designers must 

then specify the three aspects of the “assessment triangle”: the model of student cognition and/or 

a model of how learning takes place in the domain in an ideal case (these can be different), the 

nature of the observations that will provide evidence of learner performance, and the interpretation 

process that will convert observations into evidence [3]. 

Educational data mining researchers, then, are not always trying to solve the same kinds of 

problems. In particular, the design of the technological learning environment can greatly affect the 

types of observations of learner performances that are available for analysis. For example, while 

there have been many examples of using data mining to track students’ progress through 

interactive learning environments like games [2, 4, 5] and simulations [6, 7, 8, 9, 10, 11, 12, 13] 

using log files, most of these learning experiences are intentionally designed to be highly 

constrained so as to maximize the informational value of the logged observations. For example, 

learners may be given a well-defined, fixed goal where there are known fixed number of steps to 

reach this goal, and a known, fixed number of choices that can be made by the learner - in such 

circumstances, any user action can be constructed as taking them closer to or farther away from 

the goal. These well-constrained problem spaces can be used by data miners to do things like 

provide formative feedback to the students [7, 13] or to their teachers [6] so that student learning 

can be better managed, to provide formative feedback to the environment designers so that flaws 

in the design can be detected and corrected [4, 6], or to provide evaluative feedback on the nature 

and scope of mistakes made by learners in the environment [5, 8]. However, these constrained 
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problem spaces often do not reflect problems found in the real world. Real world problems often 

have many different solutions, which can be reached via many different paths. While presenting 

learners with simplified and constrained problems can be a good way to help them come to 

understand the core properties of a domain (i.e., conceptual learning), it does not prepare learners 

for grappling with the messiness of problem-solving in real scenarios (what can sometimes be 

called process learning, or the acquisition of a disciplinary disposition). Giving learners less 

constrained, more open-ended problems can help them get experience with disciplinary processes 

and dispositions, but one barrier to doing so is that a lot more work is required to assess student 

progress within open-ended problem spaces. Educational data mining offers the possibility of 

making assessment of open-ended problem-solving more tractable, and thus allowing for the 

increased educational use of open-ended problems. 

 

1.1 Open-Ended Problems in EDM 

Increasing the open-endedness of the problem makes it harder to use the observation of a 

given action as direct evidence of progress towards or away from a solution. When designing a 

highly-constrained learning environment, the designers usually already have a well-defined model 

of cognition underpinning the domain. In open-ended problem spaces, this cognitive model may 

as yet be poorly understood, or there may be multiple competing models of cognition at play. 

While these challenges might stymie traditional assessment designers, one of the strengths of data 

mining is its ability to discover patterns in data, and to use those patterns to build models. The 

earlier uses of EDM were just to find correlational relationships in data (e.g., demonstrating that a 

certain type of action tends to be associated with a successful outcome), but EDM is increasingly 

being used to build models of student behavior [1]. This allows researchers (and eventually, 
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educators) to do more than just compare student performance against a single (assumed) model of 

desirable performance, rather, it allows for the presence of multiple models of performance. This 

capacity for model discovery is especially useful for understanding how learners grapple with rich, 

open-ended problem spaces.  

The work presented here addresses a learning environment that is decidedly open-ended, 

with many degrees of freedom, and with no clear prescriptions for good and bad solutions: an 

environmental simulation where the relative, not absolute, spatial placements of elements matter. 

Others have begun to apply data mining approaches to open-ended learning problems as in [4], but 

in this case the problem was still fairly constrained in the following ways: (1) there were not many 

degrees of freedom in learner actions, and at each step the learner’s action was highly contingent 

on earlier learner actions, reducing the size of the problem space; (2) even though there were 

multiple solution paths, there was a single well-defined model for what constituted a “good” 

solution. The problem space we are confronted in our work with has a very large state space – 

there are 324! different possible solutions (2.28899746 E+674) – and a large number of those 

solutions are likely to be fairly equivalent in terms of their performance, even though they may not 

be at all structurally similar. These aspects make a straightforward application of existing EDM 

approaches difficult. My work, then, extends the current work on EDM for open-ended problems 

by 1) devising an approach for reducing the state space of a spatial problem with a genuinely large 

and non-contingent set of possible learner actions so that it would be tractable for analysis, (2) 

using my state-space reduction approach to discover the spatial strategies that may undergird 

student performance in the open-ended problem space, and (3) using the results of this strategy 

discovery to compare how different user interfaces can impact learners’ use of those spatial 

strategies. 
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1.2 Problem Space: Green Infrastructure in Urban Planning  

Our problem space is one drawn from urban planning and environmental science: the 

challenge of integrating green infrastructure into existing urban infrastructure in order to reduce 

surface flooding in urban areas. The urban planners’ problem task involves deciding how to 

arrange green infrastructure elements (like swales, a special type of water-retention garden) across 

a landscape to maximize the capture of rainwater (while minimizing costs). This challenge entails 

reasoning spatially about 2-dimensional patterns of swales (which can exist at different levels of 

scale to either reinforce one another, or counteract one another). A given spatial pattern might be 

very effective at one level of scale but ineffective at another level of scale, or in combination with 

other patterns at different levels of scale. So a planner can’t just recommend to say, clump all the 

swales near each other, as this approach may work at some levels of scale but not at others. 

The learning environment used in this work was developed for an NSF grant to further 

environmental science education, and is an agent-based simulation implemented in NetLogo1 and 

adapted from a green infrastructure planning simulation, L-GrID, developed for the Illinois EPA-

funded Green Infrastructure Plan for Illinois project. The goal was to provide learners with 

software that would allow them to practice making decisions about where to place green 

infrastructure elements in an urban setting, and to give them dynamic simulated feedback on their 

choices. To support collaborative placement decisions, a paper-based Tangible User Interface 

(TUI) front-end was constructed for use with the simulation, as TUIs are theorized to provide 

benefits for spatial reasoning tasks. For comparison, a custom drag-and-drop front-end was also 

                                                 
1 Available at: http://ccl.northwestern.edu/netlogo/ 
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created to support two control conditions — single mouse or multiple mice — that would link to 

the back-end ABM simulation just as the TUI does.  

In all three conditions, the swale coordinates are saved to a file that the simulation uses on 

set-up. The maps used in the experiment consist of different elements – (a) two types of land cover: 

impermeable (e.g., roads, buildings), and highly permeable (swales), (b) sewers (which drain water 

from the surface but prevent groundwater infiltration), (c) an elevation gradient, and (d) an outflow 

point at the lowest point of the map (from which water leaves the map, emulating how water will 

flow from one terrain to another – this is not a closed system). 

 

1.3 Approach & Contribution 

This work explored a method to detect spatial characteristics of the patterns created by learners 

so that different solutions could be compared against one another. A multivariate linear regression 

approach was then used to determine which patterns at which spatial scales were associated with 

improvements in rainwater capture. Essentially, we used the data generated by learners interacting 

with the problem space to bootstrap the development of a model of how these novice learners 

engage with the problem space (i.e., the combinations of spatial strategies they found to be 

effective at capturing rainwater). (It should be noted that while we are, in a sense, modeling the 

strategies used by learners, our findings in no way approach a full-fledged cognitive model, as 

might be used within an Intelligent Tutoring System – much more future work is needed to reach 

that stage). We then used these results to examine if the user interface design affected the way in 

which learners approached exploring the problem space: did they use different spatial strategies, 

or discover them more quickly or more slowly, when using different user interfaces? We found 

that this was indeed the case - certain spatial strategies were more often present in some user 
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interface conditions than others. We also used the results to examine if the patterns of spatial 

strategy exploration differed across user interface conditions, and found that certain interface 

designs did seem to promote earlier discovery of spatial strategies. 

This work is among the first in educational data mining to tackle an open-ended problem space 

with both multiple solutions and multiple solution paths, and is the first to our knowledge to 

approach a spatial reasoning problem in educational data mining domain. It demonstrates the 

potential for educational data mining approaches to help educators develop models of effective 

solution strategies in rich problem spaces. We also demonstrate that such “discovered” models can 

be used to evaluate and compare different learning environment designs. Additionally, these 

results suggest that we may be able to summatively examine the meta-strategies (e.g., the ordering 

of strategy exploration) to determine which patterns of exploration may be more or less effective 

in this complex spatial problem space. This is a finding that could be used in future work to develop 

dynamic formative feedback to help learners engage with complex spatial problem spaces.
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2 Background & Prior Work 

2.1 The Current State of Educational Data Mining 

There are many potential uses of educational data mining of learner log data. Student log 

data has been extensively used to analyze various components of student behavior and track 

student progress, but for different purposes. The use, and the nature of the log data itself, both 

shape which EDM analytic techniques should be applied. The past decade has seen an increase in 

the efforts of the researchers to utilize the hidden information in these log files. A review history 

and current trends of EDM is indicative to a shift of trends in the research from relationship mining 

to discovery with models and prediction in these recent years [1]. The logs have been extensively 

used in the past years to evaluate learning material [14, 15, 16], to study how different types of 

student behavior impact student learning [17, 18], to learn how variations in intelligent tutor design 

impact student behavior overtime [19, 20, 21, 22]. Improvement of these student models have also 

attracted a lot of attention [1] mostly to know students current knowledge, motivation, and 

attitudes.  

As concerns classifying the purpose of analysis in terms of the use of log data we have two 

major trends. One purpose can be to use the log data in a “formative” fashion to improve future 

learning. For example, Harpstead et al. use the log data to improve the design of the simulation by 

clustering features in the solutions through context free 2D grammar, aiming to improve learning 

[4]. Martinez-Maldonado et al., uses a process discovery tool on the log data which generates a 

meaningful abstraction of general process by distinguishing actions that are important to detect 

when and who needs scaffolding [6], and Corbett et al. emphasized how modelling student 

individual differences could be used to increase student learning [23] . Another purpose can be to 

use the log data in a “summative” fashion to judge or evaluate past learning, as shown by Gobert 
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and Sao Pedro through a machine learning algorithm to detect models of student inquiry skills [7]. 

Rafferty et al. uses L1 regularization to evaluate if paired student interactions are predictive of 

both students’ post test scores average and their individual scores [8]. There are also some cases 

where the log data is used both formatively and summatively - in computer adaptive testing, for 

example, student responses are used formatively to shape the next summative question to be given 

to them. 

One of the more common analytic approaches seen, especially with stealth assessment, is to 

devise approaches that can compare learner performance against an ideal model of how an expert 

or other maximally efficient person would accomplish the same task, as a way of summative 

evaluation of  their performance [8, 10] , to share with teachers, parents, administrators, etc. This 

approach works well with content areas that are well-understood (where it is possible to have 

uncontroversial models of what expert performance should look like), and well-bounded (the 

solution paths are relatively linear, so that at any point the “distance” between the learner’s current 

position in the problem space and the solution can be determined). For open-ended problems, 

learners may have many “varied” number of steps and solution paths [13]. 

There has also been considerable work in exploring the effectiveness of pedagogical support 

(in learning softwares and collaborative learning environments). [14, 24] investigated which types 

of supports were more effective overall, among different groups of students and in different 

situations. Beck et al. used learning decomposition to find the best fit model to infer the relative 

effectiveness of each support type for promoting learning by understanding the key factors 

impacting learning and to design better learning systems [14]. 
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2.2 Educational Data Mining for Open-Ended Problems  

As discussed in the preceding section, compared to other problems open ended problems 

lack structure, as in they are not well-bounded (the distance between the current state and the goal 

is difficult to be determined), and the problem’s solution set may comprise large number of 

candidates which makes it impossible to evaluate each of the possible solutions [13]. This property 

makes us incapable of using complex methodologies like Bayesian knowledge tracing and Markov 

models, which when applied to better-defined problems spaces give us a detailed insight of the of 

the learners’ behavior, as done by Pelanek et al. [10], Falakmasir et al. [25]. Also these 

methodologies consider the problem space to be divided into snippets on time. Each snippet refers 

to a move and each move would incur upon them a reward that would motivate to go ahead and 

explore in the next move, so the next move would be influenced by the previous move and the 

reward obtained in the previous move.   

There have been very few researchers who have explored open-ended problem spaces in 

educational data mining. A successful attempt to extract learning behavior of students from paired 

student interaction data with an open-ended chemistry lab to understand and estimate the 

individual knowledge is depicted in Rafferty et al. [8]. Their goal was to investigate whether paired 

interactions with an open-ended chemistry tutor can be used to predict individual student post-test 

performances. The interactive lab required the students to apply their chemistry knowledge in 

authentic, real-world contexts (like whether factories are reporting accurate pollution levels). The 

students were placed in pairs and could approach the problem however they felt comfortable by 

analyzing and testing various chemical reactions in the virtual lab, giving the open-endedness to 

the learning experience. They identified 12 features to characterize each of the activities the 

students performed, categorizing the activities as help seeking, holistic, and practical. The outcome 
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of the study was to predict an individual’s post-test scores through paired performance and pre-

test scores. 

  One other research attempt at detecting student strategies from open ended games was in 

the paper by Harpstead et al. [4], where they used a combination of data mining and automaton 

theory to extract features of the learners’ solutions and compare them to designers’ solutions. The 

paper describes a game called RumbleBlocks [4] where kids in the age group of 5- 8 years of age 

have to place blocks to build a stable structure. Their understanding of center of mass and stability 

are being assessed through the game. For each student solution a decision tree was constructed; 

once they have these trees they tried to extract features to create a vector that would describe how 

and what students were doing. The features of those structures were then matched to the features 

from the solutions of the designer of the game. The study focuses on helping the designers and 

researchers redesign aspects of the learning experience that seemed to produce discrepancies 

between how the players used it and how the designers had envisioned its use 

 

2.3 EcoCollage: a Platform for Promoting and Studying Spatial Reasoning around Urban 

Planning Problems  

The Next Generation Science Standards (NGSS) recommends that learners engage with 

simulated models both to deepen their content knowledge of systems within the content domain 

and to acquire practice skills [26]. For domains like environmental science, which spans the 

disciplines of ecology and urban planning, system functions are dependent on the relative spatial 

positions of elements (buildings, permeable surfaces, habitats) [27]. For example, much of “green 

infrastructure” planning for storm water management involves making decisions about where 
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green infrastructure elements such as green roofs and drainage swales need to be placed to yield 

maximum benefit. 

We know that relative spatial placement of swales can impact outcomes important to the 

urban planning problem space, like the amount of infiltration of rainwater into the groundwater 

system. This has important consequences for urban planning: while, in general, installing more 

swales results in more infiltration (and thus reductions in flooding), there is not a perfectly linear 

relationship between the number of swales and the amount of infiltration - certain kinds of 

placements can have greater or lesser impacts. See Figure I. 

We know that, owing to the dynamics of how water flows across paved versus unpaved 

surfaces, that certain types of patterns (like clustering swales, or deliberately spacing them out) 

can help the swales function as more than just sponges: they can also slow or direct the flow of 

water so that it can be better absorbed by other swales (or, less desirably, but still preferable to 

flooding on the ground, to be captured by sewers). 

 

Figure I: Plot showing the relationship between infiltration and density 
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From a pedagogical perspective, it’s critical to give learners practice with spatial problem 

solving. Exploring and discussing the effects of different spatial configurations of green 

infrastructure on flooding and groundwater infiltration, for example, is central to building an 

understanding of environmental science. The fields of ecology and urban planning increasingly 

make use of Agent-Based Modeling (ABM) software to model and test hypotheses about complex 

human-natural systems [28]. The most common method for specifying spatial arrangements in 

ABMs is via a programming interface, but it seemed to our team that a direct-manipulation user 

interface (where users could directly place and move representations of the simulation elements 

on a representation of the environment) would be more appropriate for novice learners, for both 

usability and pedagogical reasons.  

 

Figure II: A Depiction of Paper Condition (left), Multi-mouse (top right), Single- Mouse (bottom 

right) 
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Figure III:The simulation Interface: The Green squares represent swales, and the blue 

coloration shows the depth of water at the moment when this screen shot was taken. 

 

In a small pilot study, we confirmed that using a paper-based tangible user interface (TUI) 

to specify a (preset) configuration of 16 elements was over 7 times faster (1m 11s) than an expert 

user manually programming the same configuration (8m 18s) [29]. Theories of embodied 

reasoning claim that abstract visual and spatial concepts are acquired from embodied sensorimotor 

experiences [30], such as those gained by interacting with TUIs. If TUIs better align with users’ 

schema for perceiving and reasoning about spatial relationships, then this would allow for users’ 

spatial problem solving to be more streamlined and less cognitively taxing. 

Surprisingly, we could find little experimental work that verified these embodied benefits of 

TUIs. For instance, while our pilot demonstrated an efficiency benefit vis à vis programming [29], 

it didn’t allow us to claim that the benefit was afforded by the embodied nature of the TUI alone 
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(as programming is not a direct input method). For a more fair comparison, we conducted a second 

pilot that contrasted a TUI to a multiple mouse direct input interface, and found surprisingly few 

usability and collaboration differences [31]. This motivated us to investigate the interaction of 

access, tangibility, and collaboration by studying the same task across three conditions: a TUI, a 

multiple mouse interface, and a single mouse interface. In contrast to the second study [31], adding 

a single-mouse condition enabled us to isolate equality of access as a factor. We were interested 

in investigating how users’ problem solving was impacted, both in terms of their exploration of 

the problem space (i.e. breadth of problem solving) and in terms of their optimization of proposed 

solutions (i.e. depth of problem solving). To begin to compare problem solving across these 

conditions, though, we first needed to establish how to measure users’ spatial strategies. 

 

2.4 Metrics for Spatial Phenomena  

Everybody uses spatial skills knowingly or unknowingly in day to day routine like arranging 

the closet, placing jars in the kitchen etc. Spatial reasoning, which is the ability to mentally 

visualize and manipulate two- and three-dimensional objects, also is a great predictor of talent in 

science, technology, engineering and math, collectively known as STEM [32]. However, if we 

want to go beyond just noting this correlation to improving the success children and adults have 

in science and technology, more must be known about spatial learning [33]. Though research has 

explored how different pedagogical strategies in classrooms can improve spatial skills on post-

tests of spatial abilities [34], there is as yet little evidence for (or methods for studying) how spatial 

reasoning evidences itself during the learning process. 
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2.4.1 Spatial Pattern Characterization Methods 

Before we can hope to study how people reason about spatial problems, we need some way 

of measuring the spatial properties of their proposed solutions. The literature supporting statistics 

to measure spatial patterns is extensive. Spatial statistics caters to several fields like plant ecology, 

animal ecology, geography, mining, engineering and many more. These fields made use of spatial 

statistics either for explorative or inference purposes, and had different approaches for the same 

which included mathematical approaches like counting methods, covariance, variance, etc. [35]. 

The spatial statistic to be adopted by the research is influenced by research objective, measurement 

types and sample data [35]. For this problem space, we are concerned with the relative placement 

of items: are they near one another, or spread apart? The relative distances between swales and 

other swales, and between swales and other water-capturing elements (like sewers) meaningfully 

affect the patterns of flooding that emerge in urban settings. 

Though there are many statistical methods to measure spatial patterns there are only a few 

that fit the purpose of research and the sampling data concerned with our problem domain.  Our 

problem domain needs a method to characterize arrangements in a 2-dimensional space. All the 

spatial metrics assume the points corresponding to the location of objects or events of interest are 

surveyed and mapped [35]. 

The Nearest Neighbor (NN) method is perhaps the simplest relative location metric to 

apply. The procedure iterates through all points, tallies the distance of each point to its nearest 

neighbor, and averages together those distances. This allows one to measure the degree of 

clumping found across the map. By comparing the nearest neighbor metric against what one would 

expect from a random distribution of the same number of points across the same area, one can 

discover if the points are more likely to be spatially close than expected by chance alone. If one 
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wished to compare two patterns on the basis of NN, however, only limited conclusions could be 

reached – any spatial patterning that exists at radii beyond the NN radii for the two patterns goes 

unrecognized. It could be the case that when a NN comparison suggests that two patterns are 

different because one has a larger NN metric, in fact, the pattern with the smaller NN metric also 

has a very similar pattern at the same scale as the larger NN pattern. So these patterns would be 

marked as being dissimilar even though they shared spatial characteristics. 

Another metric called the Cumulative Distribution function (CDF) of distances, given the 

probability distribution of distance k, calculates for all events, the probability of event-to-nearest-

event distances is less than or equal to the distance k. This probability distribution can then be used 

to compare two patterns at a given scale of distance, which would resolve the issue with NN 

comparisons pointed out above, but the comparison is still limited by the window size, and cannot 

recognize certain spatial properties (like whether the patterns exhibit spatial regularities like 

overdispersion). 

 The Ripley’s K metric is considered as a refinement of the nearest-K neighbors metric. The 

Ripley’s K function can be used to summarize a point pattern, test hypotheses about the pattern, 

estimate parameters and fit models [32]. It quantifies the spatial pattern intensity of points for 

various sizes of circular windows, i.e. it computes the mean number of points lying within the 

circular search window. Alternative metrics like the nearest neighbor distance, cumulative 

distribution function (CDF) of distance (of points from random points to the nearest neighbors) do 

not calculate the metrics on varying scales of distances [32]. Ripley’s K metric can thus 

successfully detect  combinations of effects like clustering at large scales while simultaneously 

being sensitive to regularity at smaller scales. It can also compute these properties for both 

univariate (where the arrangement of an event is observed with respect the other events of the same 
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type) and multivariate (the arrangement of an event with respect to one or more other event types) 

patterns. By using circular window Ripley’s K gives an isotropic (i.e., non-direction-sensitive) 

cumulative count of all points at distance 0 to some distance t, specified by the analyst [35]. For 

this reason, we chose to employ the Ripley’s K metric (technically, we used a normalized version, 

the Ripley’s L measure) to convert the state space for our problem from one of absolute Cartesian 

placements of swales to the much smaller (and more meaningful) space of the relative spatial 

arrangements of swales.  

2.4.2 Details on the Ripley’s K(t) function 

Here we provide extra details on the Ripley’s metrics because they ended up being very 

important to our analyses. The function K(t) is defined to give the probability of finding the 

elements of interest in the specified window size given the overall density of elements in that area. 

The general definition of the Ripley’s K-function for a certain distance t is 

𝐾(𝑡) = 1/𝜆[𝐸(𝑡)] 

Equation I: Theoretical K(t) function 

Where  

𝜆 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦 𝑝𝑙𝑜𝑡 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑛 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠)𝑎𝑛𝑑 

 𝐴 (𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦 𝑝𝑙𝑜𝑡)  

𝐸(𝑡) = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡 𝑜𝑓 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑝𝑜𝑖𝑛𝑡 
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Figure IV: Illustration showing how Ripley’s univariate calculation 

 

The figure above shows an illustration of how Ripley’s univariate calculation works for the radius 

r. It sweeps a region of size r around each item of interest, i. The approach repeats this calculation 

for radii of size 1 to t, producing t different K statistics. 

 For Univariate computations: 

 

𝑲(𝒕) =
𝟏

𝝀
∑ ∑ 𝒘(𝒊, 𝒋)𝑰(𝒊, 𝒋)  

𝒎

𝒋=𝟏

𝒏

𝒊=𝟏

 

Equation II:Ripley's K Univariate 

Where i≠ 𝑗 

 𝜆(𝑑𝑒𝑛𝑠𝑖𝑡𝑦)  = 𝑛/𝐴  
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𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑜𝑟 𝑝𝑜𝑖𝑛𝑡𝑠 

 𝐴 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑝 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑤(𝑖, 𝑗) =  𝑒𝑑𝑔𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟  

 = 1 if the search circle is centered at i and passing through j is completely inside the study 

area otherwise it is the proportion of the search circle in the study area. 

𝐼(𝑖, 𝑗) = 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 1 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑖 𝑒𝑙𝑠𝑒 0  

(Determined by the Euclidian distance between point i and j) 

With  d (i,j) = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2  

being the Euclidian distance between the points pi=(xi, yi) and pj=(xj , yj) within the study region. 

 

For Bivariate computations: 

𝑲(𝒕) =
𝟏

𝝀𝟏 ∗ 𝝀𝟐
∑ ∑ 𝒘(𝒊, 𝒋)𝑰(𝒊, 𝒋)

𝒎

𝒋=𝟏

𝒏

𝒊=𝟏

 

Equation III: Ripley's K for Bivariate 

Where 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝜆1 𝑎𝑛𝑑 𝜆2 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡. 

and m and n are the number of elements of interest in each category. 
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Figure V: Illustration of how Ripley’s K Bivariate  

 

The figure illustrates how Ripley’s K Bivariate sweeps the study space, tallying the number of 

items of a second type found within radius r of each item i of the first type. The map is divided 

into a grid. For Bivariate calculation the metric calculates the number of green elements (swales) 

in the radius r around the yellow elements (in our case would be sewers). 

Because of its hyperbolic behavior, the interpretation of K-function is not straightforward, 

especially if one wishes to compare the spatial characteristics of one map against another. For this 

reason, a modification called L-function has been proposed to normalize it 

𝐿(𝑡) = √𝐾(𝑡)/𝛱 − 𝑡 

Equation IV: Ripley's L Equation 
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The expected value of the univariate L-function under CSR (complete spatial randomness) is 0 for 

all t. Complete spatial randomness (CSR) describes a point process whereby point events occur 

within a given study area in a completely random fashion. Such a process is modeled using only 

one parameter λ, i.e. the density of points within the defined area [36].  Poisson distribution is used 

to express the probability of given number of events occurring in a fixed interval of space and/or 

time independently of the last event. Thus, when the L value is positive, indicating that the pattern 

is more tightly-packed than one would expect to see by chance, we know that the pattern tends to 

be clustered, and when the L-value is negative the pattern is tending towards being overdispersed 

or regular [32]. 

The accuracy of the K value highly depends on the size and shape of the study area and the 

edge effects. The edge effect, if uncorrected, would overestimate how much “empty space” 

surrounds points of interest at the boundaries of the study plot as compared to those in the center 

of the study plot. For this reason, we curtail the size of the area used to compute the density for 

edge-adjacent points. Common practice while considering edge corrections is to keep the 

maximum search circle radius about one half of the shortest dimension of the study area [37], as 

this reduces the number of assumptions being made about the pattern. 

The edge effects should be considered when the search circle intersects the edge of the 

study plot. As shown in the figure the search circle consists of two distinctive parts one inside the 

study plot and other outside the study plot. If the points under the portion of the search circle 

denoted by 𝐴(𝑟)− are considered the area A(r) would have fewer points than expected [37].  Edge 

effects calculate the proportion of the search circle inside the study plot and utilize the area of this 

proportion in the calculations. The mechanism becomes complicated when the shape of the study 

plot is irregular, but in our case, we are using rectangular maps and this method suffices. 
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Figure VI: Study area and a search circle 

 

The figure illustrates the Study area and a search circle ci(r) with radius r centered on a point i 

within this region 𝐴(𝑟)−  and  𝐴(𝑟)+ are the area of the search circle outside and inside respectively 
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3 Analysis of EcoCollage 

3.1 Available Data 

The data used in this work was collected from a controlled within-subject with-rotation 

experiment with three conditions (each testing a different user interface for the simulation, one 

that used a paper-based TUI, one that used a single mouse input with a graphical user interface, 

and one which used a multi-mouse input with a graphical user interface). 

This data covered 30 different experiments, each of which involved 3 undergraduate students 

working together across the three conditions. In each of the three conditions (the order of which 

was varied to counterbalance any practice effects), the students tested out different possible 

placements of swales on a map of an urban setting. The participants judged the success of their 

placements (which we term “trials” in this documents) based on the amount of water captured by 

the swales, called the infiltration, and the “cost” to place that number of swales on the map – a 

fixed amount of $10,000/swale. The software converted these in-game metrics into real-world 

monetary rewards that the participants could earn (they would leave the experiment with a payout 

tallied from each of the three conditions, where each payout was equal to the highest-scoring trial 

they tested during each condition). Participants were motivated to improve the infiltration while 

keeping cost low by dint of an economic reward – they would receive more or less money for their 

participation in the experiment depending on their improvements to these two in-game scores. The 

table below shows the total number of trials attempted by the participants, as well as the average 

number of trials each participant group produced per condition. 
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  paper 
multi-
mouse 

single 
mouse 

sum 182 205 211 

AVERAGE 6.07 6.83 7.03 
 

Table I: Sum and Average of Trials attempted per condition by groups 

 

3.2 Initial Attempt to Understand EcoCollage strategies: Creating a Visualization Tool 

Our efforts to inspect the strategies used by participants initially started with a visualization 

tool that was able to “play back” the trials attempted by the learners while tackling the EcoCollage 

problem, originally created by PhD student Tia Shelley. The visualization tool was created using 

Processing.  

The visualization tool has two modes: one is default mode in which you can compare two 

trials that occur next to each other and the other is the overview mode where you can see the 

different garden placements across all the trials in that particular study. My first attempt at 

computing meaningful spatial metrics for this space involved implementing metrics proposed in 

[38]: Placement Differential (PD), Abundance Differential (AD), and Spatial Dispersion 

Dissimilarity (SDD) for both univariate and bivariate calculations. These metrics are described in 

a bit more detail in the next section, for now suffice to say that they were intended to capture trial-

to-trial differences in how the participants placed the swales, as we were interested in studying 

their solution paths. (Although ultimately, we did not find these metrics as useful for this purpose 

as we had hoped).  

After implementing the PD, AD, SDDu, and SDDb metrics, I augmented the visualization tool to 

show bar graphs of PD, AD, SDDu and SDDb along with the trials. We discovered that while 
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viewing these metrics shed some light on how dramatically players would vary their arrangements, 

because we distilled the two spatial arrangement metrics down to a single number, we missed a 

great deal of the nuance in how the participants were varying the placement of their swales.   

3.3 Second Revision to Visualization Tool 

Thus, we felt a need of further ammunition to aid our analysis. Many mathematical platforms 

like R [39], Programita [40] and many others have a functional implementations of the Ripley’s K 

function. These implementations though very elaborate lacked the transparency and help required 

to be adopted by our problem domain. We initially started out calculating the spatial 

autocorrelations with the tool called Programita, but we wanted to streamline our data mining 

process of analysis. We found it more convenient to develop our own analytic tool than trying to 

assimilate the third party tool for our analysis. I developed a Java application that would calculate 

the Ripley’s K function and provide us with the classification of the point patterns under each radii 

as either clustered, overdispersed and random. We implemented the Monte-Carlo simulations to 

calculate the confidence intervals, running 500 iterations of random placements of points of the 

same number used by the players for each of the player-generated maps.  

Each trial produced by the participants was represented by the set of (x-y) coordinates representing 

the swale positions as placed by the learners in a text file. The format for one such text file is 

shown. 
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Figure VII: The format of the data file (input) to the Java application  

 

The figure shows the format of the data file (input) to the Java application. The first line 

indicates the date and time of the trail when it was attempted. The next few lines indicate the 

experiment number, condition, conditions type trial number, etc. The series of numbers following 

the meta data, are the x and y coordinates for the swales separated by space.  Also each trial was 

associated with a particular map, which was represented as a text file as well containing the 

coordinates of the sewers on that map. When calculating the Ripley’s L value for a trial, the 

application would read the coordinates from the respective text file, and give the respective 

univariate L values. For bivariate L values, the application also refers to the text file containing 

the coordinates of the sewers for that particular map. The application stores all the L values in 

different tables in the MySQL database, with one entry for univariate and bivariate for each trial. 

So the application would give as output L values which are stored in the MySQL database tables 

with the trial names as the unique keys. Each table would have a maximum of 598 rows (1 for each 

trial) and 12 columns representing the trail name, and the 11 L values at the radii from 1 through 
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11.  While calculating the Ripley’s L value, the edge effects were the most important consideration 

to be accounted for.  

We incorporated these metrics through the Ripley’s L function into a third version of our 

visualization for easy interpretation. The visualization tool enabled us to make sense of the 

Ripley’s L values by observing the visual placements on the study maps and the plots for the 

Ripley’s L values (univariate and bivariate for the whole map only) simultaneously.  The 

screenshot of the visualization tool is presented below.  

 

Figure VIII: The second revision to the visualization tool 

 

The figure shows the visualization tool developed to aid analysis showing two trials (played one 

after the other) with the Univariate and the Bivariate values (line graphs) for each of the maps 

below the particular trial. The left panel indicates the legend, the right panel indicates the line 

graphs for the outcome metrics, and the bar graphs representing Abundance Differential, 
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Placement Differential, and Spatial Dispersion Dissimilarity for univariate and bivariate. The dots 

above represent the various studies and the dots below represent the various trials in each study. 

The color coding is unique for each mode of technology used to attempt the trials. 

This visualization was helpful for manually inspecting the solutions produced by the 

participants, which suggested differences in how participants were exploring the problem space, 

but we quickly realized that if we wanted more conclusive evidence a data mining approach would 

be warranted. 
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4 Data Mining Approach 

4.1 Reducing the State Space of the Solutions  

As with many open-ended learning problems, in our problem too there are many different 

ways that learners could attempt to solve the problem. Some may be better than others, but there 

is no single “right answer” we can judge learners efforts by or guide learners towards. In this 

problem space, learners can place swales in any of 324 different locations on the map. This means 

that there are 324! different possible solutions (2.28899746 E+674). To even begin to attempt to 

apply educational data mining techniques to this problem space, we need to explore ways to “bin” 

solutions into classes or categories of strategies. These so called strategies were the different spatial 

arrangements that the learners employed to strike a balance between infiltration and the cost 

invested. Our goal was to use data mining to track changes in the patterns to infer the spatial 

strategy or strategies the learners were using to improve their scores. 

 

4.2 Initial State Space Reduction Approach: Condensing State Space to “Change” Space 

Our first attempt in this direction was in [38] where we designed metrics to reflect changes 

learners could make to the maps. We designed the 4 differential metrics. These metrics were 

designed to track trial-to-trial changes in placements, so we could understand how learners were 

exploring the problem space. We initially thought that the specific strategies used might be less 

important than the nature of their exploration pattern: for example, slow-and-steady changes 

(analogous to “hill climbing”) might be more effective at producing good outcomes than sharp 

changes in strategy (analogous to “random restarting”). We thus chose two metrics that could 

indicate how similar or dissimilar each solution seemed to one another, in terms of the “actions” 

taken by the users to produce the solutions: 
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● Placement Dissimilarity: (PD) was designed to note the changes in the placements of 

swales. We designed this metric using the Hamming distance called the edit distance. 

Assuming the map being divided into grid of l * b blocks (l being the length of the map 

and b being the breadth) so the edit distance would consider each point on the map to be 

within the coordinate system of this map. This metric counts the number of points on the 

map that do not match if the maps are aligned on each other, normalized by the number of 

swales in each map. 

 Mathematically, PD was denoted as 

𝑃𝐷 =
∑ 𝑀𝑎

𝑖 − 𝑀𝑏
𝑖𝑛

𝑖=0

(𝑁𝑎 +  𝑁𝑏)
 

Equation V: Placement Dissimilarity 

Where a and b are the subscripts for the map a and map b  

𝑀𝑎 − 𝑀𝑏 represents the difference in the sum of squares of the first map that do not match with 

the second map 

𝑁𝑎, 𝑁𝑏 represents the number of swales in map a and number of swales in map b respectively 

 

● Abundance Dissimilarity: (AD) this measure was designed to track changes in the number 

of swales the learners used. We normalized this metric on the maximum number of swales 

of the two maps that were being considered. AD was calculated as: 

 

𝐴𝐷 =
(𝑁𝑎 −  𝑁𝑏)

𝑀𝐴𝑋(𝑁𝑎 − 𝑁𝑏)
                                                    

Equation VI: Abundance Dissimilarity 
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We also wanted to be sure to capture nuance in how (perhaps even slight) changes in placements 

might cause large impacts to spatial patterns, and so devised two spatially-dependent metrics:  

 

● Spatial Dispersion Dissimilarity: (SDDU, SDDB) To compute the Spatial Dispersion 

Dissimilarity (SDD) across two maps, a and b, we need only to compute a variant of the 

Hamming distance across the tuples, where we normalize the value across the number of 

radii, r, used in the spatial dispersion computations: 

𝑆𝐷𝐷 =
1

𝑟
∑|𝐿𝑟

𝑎  −  𝐿𝑟
𝑏|                                       

𝑛

𝑖=1

 

Equation VII: Spatial Dispersion Dissimilarity 

Where r is the radius 

𝐿𝑟
𝑎 , 𝐿𝑟

𝑏 are the normalized Ripley’s L-values of map a and map b 

 

Though these metrics were able to tell us about the changes the learners made, it appeared our 

assumptions about the importance of change trajectories in producing effective strategies for this 

problem space were wrong. We were not able to significantly and reliably correlate these changes 

in patterns in the trials to changes in the outcome metrics like the infiltration, so using these metrics 

as the basis for data mining was a non-starter. We needed to re-examine our approach - perhaps a 

different model of what constituted a strategy was needed.  
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4.3 Revised State Space Reduction Approach: Simple Spatially-Sensitive Density Metrics 

We used the visualization tool I had augmented to revisit the problem space and 

manually  inspect the learner solutions, hoping that browsing through them would yield alternative 

ideas about how to condense the problem state space. We noticed that the solutions proposed by 

the learners did seem to vary in interesting ways in terms of density. Rather than examining change, 

then, we thought we would attempt to characterize each solution in terms of different (seemingly 

meaningful) types of density. When changing the arrangement pattern of the swales students make 

changes in the densities of the swales in different regions of the map. We identified a few of them 

as hot spots like: 

 around the sink (i.e., the lowest elevation point on the map) 

 around the apogee (i.e., the highest elevation point on the map) 

 in the upstream area (i.e., the half of the map closest to the apogee) 

 in the downstream area (i.e., the half of the map closest to the sink) 

 overall density 

 

While placing the swales on the map the learners would pay more attention to the sink, which 

motivated us to divide the map into upstream and downstream portions. Here the sink and the 

apogee are recognized to be the points of lowest elevation and the point of highest elevation 

respectively. By dividing the map we could observe the patterns that affect infiltration and where 

those patterns are located -in upstream or downstream. We calculated the density of the swales in 

and around these hot spots to devise these metrics. 

We suspected the changes in the density to be closely related to the infiltration, but this 

approach lost much of the spatial nuance of the problem – like the prior state space reduction 
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techniques, the resulting metric were too simplified. Also, to understand how these density values 

were effecting the infiltration we would have to regress them against the outcome metrics. We 

realized after an initial inspection that this approach would not work, as these metrics were highly 

correlated with each other, making it difficult to interpret the results if regression was to be 

performed.  

  

correlation sink Apogee Number of 

swales              

up swales down swales 

Sink X 0.83 0.84 0.63 0.82 

apogee X X 0.79 0.83 0.65 

Number of  

swales 

X X X 0.80 0.95 

up swales X X X X 0.57 

down swales X X X X X 

 

Table II: Correlation matrix for the density metrics 

  

Multiple linear regression requires the variables to be strictly independent. When we 

computed the correlation matrix for these variables we found them to be highly correlated which 

was a result of the data being closely linked. This was true as changes in density in one of these 

metrics would have a ripple effect in some other densities too. For example, if we changed the 

density near the sink, the density in the downstream area and also the overall density metrics would 

change simultaneously. Such multi-colinearity in the data can have negative effects like exclusion 

of the most significant variable from the model [41]. Therefore, we decided to investigate yet 
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another method of state space reduction, once again returning to the Ripley’s metric, but this time 

preserving its radius-dependent information.  

 

4.4 Final State Space Reduction Approach: Radii-Preservation  

Part of the problem with these earlier approaches was that we were losing important 

information related to spatial scale. For example, with the SDDu and SDDB metrics, we were 

collapsing the spatial metrics from a format that retained information about the radii at which the 

spatial distribution patterns emerged to a single-value difference metric. Similarly, although 

density metrics contain a certain inherent scale (i.e., the area used to compute the density), it would 

conflate all scales that were smaller than that of the area. For our problem space, though, the scale 

at which a pattern exists matters (in terms of how well it supports water capture), so we needed to 

revisit our approach so as to be better able to link outcomes (like water capture) to the spatial 

patterns that exist or coexist across spatial scales. 

 The Ripley’s L calculation, developed for studying the spatial patterns (extensively used 

to study spatial patterns of plants in ecology), is designed to identify Complete Spatial Random 

(CSR) patterns in the spatial arrangements at different windows of areas (defined radially). 

Deviations from CSR can be used to detect two things: whether the elements comprising a given 

pattern are placed closer together (i.e., are clumped) or are spaced farther apart from one another 

(i.e., overdispersed) than one would expect by chance, given the radius. This metric allows us to 

characterize the arrangement patterns the student make with the swales as clumped, overdispersed 

and random statistically, and allows us to do so at multiple radii. (It can be very possible that a 

spatial pattern that exhibits overdispersion at one radius of examination can exhibit clumping at a 

different radius). So at each radii we characterize the swale arrangement made by students to be 
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clumped, random, overdispersed. This is done in a univariate fashion, to discover how students are 

placing swales relative to each other, and in a bivariate fashion, to discover how the students are 

placing swales relative to other map elements, like sewers.  

Thus, in this new state-space reduction approach, the Ripley’s L values are calculated for each 

trial as univariate and bivariate, and at each radii varying from 1 to 11 (half of the length of the 

study area) we observe the pattern to either to be clumped, random or overdispersed. We calculate 

the Ripley’s L values on all the trails: 

● Univariate pattern:  This observes the pattern that the swales form with respect to the other 

swales placed in the study map. 

● Bivariate pattern: This observes the pattern that the swales form with respect to the sewers 

on the study map. 

Each of these Ripley’s L metrics are a vector of length 11, describing the L-value at each radii 

1 through 11. In order to test the deviation from randomness (dispersion or clustering) of the point 

patterns using the univariate or the bivariate functions, we computed a 99% confidence interval of 

L(t) using the Monte Carlo method from 500 simulated CSR patterns with the same number of 

points contained inside a region with the same geometry [32]. The points above the confidence 

interval displayed clumped patterns whereas the points below the lower confidence interval 

displayed an over-dispersed pattern (regular pattern). I will now provide an illustrative example: 
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Figure IX: Visualization of learners' trials 

 

 

The figure shows a Visualization of the learners map in one of the trials. The green patches 

represent the swales they placed on the map. 

𝐿𝑢 = {1.211, 10.184, 21.339, 26.323, 29.863, 33.919, 37,264, 42.014, 45.811, 49.486, 51.841} 

These are Ripley’s L values for the map shown above. These values are also plotted in the 

graph below with the lower and the upper bounds of the confidence intervals. 
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Figure X: Plot of the Univariate L-Values 

 

The plot above shows the Univariate L-values (blue line) within the confidence intervals 

(red line and grey line). The points above the red line exhibit a clumped pattern and below the grey 

line would be overdispersed, the points between the confidence interval exhibit a random pattern. 

The plot is shown for the arrangement shown above, at radii 3 through 11 the arrangement is 

clumped and at radii 1 and 2 it random.  

Based on the confidence intervals we denote the radii which have clumped arrangements 

by 1, overdispersed arrangements by -1 and random arrangements by 0. We call this notation to 

be normalized L value notation. We hypothesized that we could find variations in the strategies at 

different radii by comparing these normalized values. For the visualization map shown in figure 

IX, then, the normalized L-values can be written as: 

𝐿𝑛𝑜𝑟𝑚 = [0,0,1,1,1,1,1,1,1,1,1] 
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Figure XI: Plot of normalized L values 

 

The figure above shows a plot of the normalized L values at various radii in three consecutive 

trials in Study 1. The plot exhibits how variation in strategies can be seen with the normalized L-

values. The first plot shows clumping at all radii except for radii 1 and 2, the second plot shows 

clumping at 3 through 11 and random pattern at the other radii, whereas the third plot shows 

clumping only through 5 to 10 and random pattern at the other radii. What this progression shows 

is that the participants changed the “granularity” of the clumping of the swales as they explored 

the problem space, moving from fairly tightly-packed clumps to more loosely-packed clumps. 

For ease of later analysis, we split each 11-tuple into two: one which captured the presence 

of any significant clumping, and one which captured the presence of any significant 

overdispersion. Because we were computing these metrics for both univariate and bivariate 
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distributions of swales, we ended up with a 44-tuple to represent each solution, giving us a state 

space with a theoretical max of 44! (or 2.7 e54), although because one can never have a distribution 

at a radius which is both clumped and overdispersed at the same time, the maximum is actually 

22! (or 1.1 e21). While large, this is still a great deal smaller than our original 324! state space. 

 

4.5 Strategy Detection Approach 

We used linear regression to help us discover which of the strategies the learners adopted 

more prominently helped them to improve infiltration (because no matter where they place the 

swales some infiltration is bound to happen, although some arrangements are superior to others). 

In order to get more detailed picture of which patterns at which radii would increase the infiltration, 

we used linear multiple regression to find the relationship between the patterns at different radii 

and the infiltration. By doing so we identified the strategies or explicit type of arrangements that 

would support increase in infiltration with respect to the data generated by participants during the 

experimental trials. 

   Regression analysis is a statistical process of estimating the relationship among the 

variables. It helps understand how the typical value of the dependent variable changes when any 

one of the independent variables are varied while others are held fixed assuming that the 

independent variables do not possess any multi-collinearity. Multi-collinearity is present among 

the independent variables when the independent variables are correlated with each other. As we 

noted above, in explaining why we abandoned our density-based state-space reduction approach, 

multi-collinearity is not desirable as it reduces the precision of parameter estimates and thus makes 

it difficult to draw conclusions from the model [41]. 
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The result of regression is an estimation function of independent variables called the 

regression function. These regression functions can be used to understand which among the 

independent variables are related to the dependent variables and to explore the forms of these 

relationships. Among many forms of linear regressions are parametric, in that the regression 

function defined in terms of unknown parameters that are estimated from the data (𝑏𝑖). Multiple 

regression is a type of linear regression that has multiple independent variables and one outcome 

variable [42]. 

Multiple linear regression is basically a model represented by: 

𝑦 = 𝑏0 + 𝑥1𝑏1+ 𝑥2𝑏2+............................................+𝑥𝑘𝑏𝑘 

Equation VIII: Multiple Linear Regression 

 

The equation represents the model specified by the data, 

Where y= outcome variable or the dependent variable 

 𝑥1,𝑥2,..........................𝑥𝑘= independent variables 

 𝑏1,𝑏2,..........................𝑏𝑘= coefficients of the independent variables 

 

We used multiple linear regression to validate the value of the spatial strategies we 

identified. Linear regression is extensively used to provide descriptions of the relationship between 

variables, for screening or selecting variables which explain a significant amount of variation in 

the outcome variables and also for prediction [41]. We wanted to know if these identified strategies 

had a linear relationship with the outcome metrics of infiltration and the cost rewards and if so 

which arrangements better explain the variation in infiltration. It is important for us to be able to 
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consider strategies combinatorially because we know that in this spatial problem space, certain 

strategies often necessarily co-exist (for example, attempts to over-disperse swales at smaller radii 

are also likely to increase the clumpiness of swale placements when they are considered at larger 

radii). 

  We utilized multiple linear regression in two different ways: first to confirm whether or 

not the strategies we pre-identified as likely to have an impact on the outcome variables which 

would be evident through the linear relationship, and secondly to allow us to identify the strategies 

which had a positive impact on the outcome metrics and which had a negative impact, as this could 

be determined by the signs on the parameters of the model. 

We performed regressions on 4 sets of data. First, each subset of solutions generated during 

each user interface condition (182 solutions in the paper condition, 205 in multimouse, and 211 in 

single mouse) then on the entire corpus of solutions generated during the experiments (598 

solutions). We first modeled the strategies used to good effect within each condition because 

we.expected the interface design to affect which strategies the participants explored. Differences 

in the regression parameters would indicate that the participants’ exploration of the strategy space 

was mediated by the interface design.  

Each of these regressions gave us a model describing the variables which affected the 

outcome variables and they could explain the variation in the outcome variables. Every term in the 

linear relationship would have a coefficient (𝑏𝑖) associated with it which indicates the slope, it 

estimates the average value of y changes by 𝑏𝑖 units for each 1 unit change in 𝑥𝑖 holding all other 

variables constant. These regression models are evaluated for accuracy by a metric called the 

coefficient of determination and described by the term  𝑅2. The 𝑅2  value reports the 

proportionality of total variation in y explained by all x variables taken together. The value is 
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between 0 and 1. A best fit would be described by the coefficient of determination to be 1. Another 

value called the adjusted coefficient of determination (Adjusted   𝑅2) reports the proportionality 

of variation in y explained by all x variables adjusted for the number x variables used. When 

dealing with multiple regression the Adj 𝑅2  is a better metric to measure the goodness of fit to the 

model. Besides these measures which tell us the strength and efficiency of the model, the 

significance of individual variable can be explained by the t-tests or the P-values of the individual 

slopes  𝑏𝑖.  

In order to find the model that fits the data well we used stepwise regression. The stepwise 

regression starts from one model and proceeds in a greedy fashion, only including those 

independent variables in the model that are significant. The significance of each variable is 

calculated at each step deciding either to include or exclude the variable from the model. We used 

the Akaike information criterion that gives the measure of the statistical model for a given set of 

data for selecting the variables for the model [43].  

Now, one might argue that a better approach would have been to run regression on the full 

problem space (of size 324!), which would have entailed generating all possible maps, running the 

simulation on them to obtain the infiltration values, and performing the Ripley’s analysis to 

generate their 44-tuple strategy description for the regression. Technically possible, but time-

consuming, as each run of the simulation takes about 1 minute on a normal computer. Because the 

effective strategies are highly dependent on the underlying geography of the maps, this approach 

would also not be very scalable, as the vision for the methods we devise here would be to allow 

educators to construct their own maps to better match a neighborhood familiar to the learners. A 

simple change in block size would completely alter the efficacy of different spatial strategies. 
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Alternatively, one could also propose to reverse-engineer the strategy space (recall this is 

smaller, of size 22!), to construct Cartesian arrangements of swales that would produce a given 

strategy tuple, so that the simulation could be run on the swale arrangement to produce the 

infiltration value. While technically feasible, the fact is that there are many possible ways to create 

a map to match a given strategy tuple, and so great care would be needed in reverse-engineering 

the strategies to produce swale coordinates so that this process does not inadvertently produce 

systematic nature in the candidate set of maps that would skew the results of the regression. 

Perhaps the best argument for using the experimental data, though, is the fact that because there 

are so many possible maps that are fairly equivalent to one another in terms of their influence on 

infiltration, a multiple linear regression on the entire strategy space would have produced an 

equation with an unwieldy number of influential terms, many of which would likely reflect 

strategies never even attempted by users. We are more interested in examining the portion of the 

strategy space actually explored by learners, not in exploring the strategy space itself. Put in 

educational terms, we are interested in examining the strategies within the learners’ “Zone of 

Proximal Development” [44] – meaning, the space of strategies within reach of their current 

(novice-level) understanding of the problem. For all of these reasons, we decided to use learner-

generated solutions to help us flag potentially beneficial spatial strategies. 
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5 Results  

5.1 Regression Results: Identifying Differences in Effective Spatial Strategies across Interfaces 

Regression identified the patterns that efficiently explained the relationships between 

arrangements and the outcome metrics of infiltration. We regressed both the univariate and 

bivariate spatial metrics for the whole map against the infiltration measure. For the regression 

results to make more sense we held the random column under each radius as a comparative 

“strategy.” So the coefficients we would get from the regression would express how the clumped 

and overdispersed strategies at a particular radii compared against instances where the swales were 

effectively placed randomly.  We regressed this separately for all conditions, and separately for 

paper, multi mouse, and single mouse against infiltration, in each case we got different models 

indicating differences in the significant spatial strategies at play. 

The coefficients can be interpreted as comparisons against a random placement at a given 

radius; to a certain extent, this random placement may be regarded as an absence of a spatially-

sensitive strategy at that level of scale. So a positive coefficient for the clumped pattern at radius 

X, would mean that it had more of a positive influence than the random placement at radius X and 

a negative coefficient at radius Y would mean it had a negative influence than the random 

placement at radius Y on the infiltration. The same logic applies to coefficients for the 

overdispersion strategies. We identified the strategies with positive coefficients as “good 

strategies” and strategies with negative coefficients as “bad strategies,” because the positive 

coefficients terms add up to give a better infiltration whereas the negative coefficient terms tend 

to reduce infiltration. 
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The tables below indicate the coefficients for the paper trials, followed by the multi-mouse, 

and the single mouse trials. The table only shows the coefficients that are significant for the model. 

Each variables’ significance is indicated by the pValues column shown. 

 

Significant Variables Estimate tStat pValue 

clumped Univariate 1 1090.3 2.16 3.19E-02 

overdispersed Univariate 1 2740.8 5.34 3.03E-07 

clumped Univariate 2 -1044.8 -1.58 1.15E-01 

clumped Univariate 4 3632.7 3.71 2.82E-04 

clumped Univariate 6 -1817.2 -2.06 4.10E-02 

clumped Univariate 8 2985.7 5.12 8.43E-07 

clumped Bivariate 1 3520.7 6.65 3.95E-10 

clumped Bivariate 2 3671.1 6.21 3.94E-09 

overdispersed Bivariate 4 1403.8 2.79 5.79E-03 

clumped Bivariate 7 4231.4 9.72 5.60E-18 

overdispersed Bivariate 10 -1632.8 -1.76 7.88E-02 

overdispersed Bivariate 11 3555.8 3.97 1.05E-04 

 

Table III: The coefficients of the significant variables for the paper trials 
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Significant Variables Estimate tStat pValue 

overdispersed Univariate 1 2907.5 5.07 9.39E-07 

overdispersed Univariate 2 1827.2 3.21 1.55E-03 

clumped Univariate 3 1968.4 3.69 2.95E-04 

clumped Univariate 8 961.47 1.44 1.50E-01 

clumped Univariate 11 1511.7 2.24 2.59E-02 

Overdispersed Univariate 11 -2471.2 -3.51 5.54E-04 

overdispersed Bivariate 1 2267.5 3.49 5.93E-04 

clumped Bivariate 2 2498.4 2.96 3.44E-03 

overdispersed Bivariate 3 1127.7 1.90 5.85E-02 

overdispersed Bivariate 5 2235 4.38 1.90E-05 

clumped Bivariate 6 4951 4.02 8.14E-05 

clumped Bivariate 7 2753.2 3.14 1.96E-03 

clumped Bivariate 10 -1929.4 -3.38 8.87E-04 

 

Table IV: The coefficients of the significant variables for the multi-mouse trials 
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Significant Variables Estimate tStat pValue 

clumped Univariate 1 1200.5 3.92 1.22E-04 

overdispersed Univariate 1 1264.6 2.52 1.26E-02 

overdispersed Univariate 2 1880.6 3.00 3.05E-03 

overdispersed Univariate 6 7406.9 5.46 1.46E-07 

clumped Univariate 7 1248 2.92 3.90E-03 

overdispersed Univariate 7 -5193.4 -2.79 5.79E-03 

clumped Univariate 10 -2365 -2.79 5.76E-03 

clumped Univariate 11 3691.4 4.61 7.25E-06 

overdispersed Bivariate 1 2694.5 5.49 1.28E-07 

clumped Bivariate 2 2334.3 3.17 1.78E-03 

overdispersed Bivariate 2 2450 4.60 7.84E-06 

clumped Bivariate 4 1978.6 2.00 4.69E-02 

overdispersed Bivariate 4 -1157.5 -2.52 1.25E-02 

clumped Bivariate 6 2770.2 4.41 1.72E-05 

overdispersed Bivariate 6 1402.5 2.51 1.28E-02 

clumped Bivariate 7 1455.1 2.39 1.76E-02 

overdispersed Bivariate 7 2435 3.55 4.94E-04 

clumped Bivariate 8 -1015.2 -1.64 1.03E-01 

overdispersed Bivariate 8 -1685.5 -2.37 1.88E-02 

clumped Bivariate 9 2262.2 5.01 1.25E-06 

overdispersed Bivariate 9 1367.1 1.99 4.79E-02 

overdispersed Bivariate 10 2670.2 4.64 6.29E-06 

 

Table V: the coefficients of the significant variables for the single mouse trials 

 

It can be hard to compare these 3 tables, so we also created a table that just visualizes the polarity 

and magnitude of the coefficients for the three conditions: 

 



49 

 

 

 

 
radius paper - infiltration multi mouse - infiltration single mouse - infiltration 
 o-u o-b c-u c-b o-u o-b c-u c-b o-u o-b c-u c-b 

1 2740.8   1090.3 3520.7 2907.5 2267.5     1264.6 2694.5 1200.5   

2 
    

-
1044.8 3671.1 1827.2     2498.4 1880.6 2450  2334.3 

3         1127.7 1968.4         

4 
  1403.8 3632.7           

-
1157.5  1978.6 

5         2235          

6 
   

-
1817.2        4951 7406.9 1402.5  2770.2 

7 
     4231.4      2753.2 

-
5193.4 2435 1248 1455.1 

8 
   2985.7      961.47     

-
1685.5  

-
1015.2 

9                 1367.1  2262.2 

10 
  

-
1632.8         

-
1929.4   2670.2 -2365   

11 
  3555.8     

-
2471.2   1511.7       3691.4   

 

Table VI:Coefficients of the three regression models. Each cell indicates a different strategy at a 

different radius: so, for example, we can see that the Overdispersed Univariate (o-u) strategy at 

radius 1 was a “good” strategy regardless of condition 

 

Table VI shows the coefficients for each of the three regression models, using coloration to indicate 

degree of positive (green) or negative (red) of each strategy’s impact on infiltration. Here c-u 

indicates clumped univariate, c-b indicates clumped bivariate, o-u indicates overdispersed 

univariate, o-b indicates overdispersed bivariate Note that while there are some commonalities (for 

example, overdispersed-univariate was found to be effective at radius 1 for all three models) there 

are still a fair number of disagreements across the models. Note also that in the single mouse case, 

users discovered an interesting boundary where univariate overdispersion went from being 

effective at radius 6 to being negative at radius 7 (this contrast likely arises because blocks are of 

size 6x6 – apparently, participants in the single-mouse case discovered that overdispersed patterns 

which spanned blocks were not as effective as overdispersed patterns within blocks). 
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The models obtained from regression had a fairly good fit to the data, their 

𝑅2 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑛𝑑 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑  𝑅2 values are indicated in the table below. 

 

Conditions Paper Multi-mouse Single mouse 

Rsq 0.86 0.81 0.90 

adjusted Rsq 0.85 0.80 0.89 

F-statistic 87.3 62.6 77.3 

pValue 2.09E-65 1.44E-61 1.81E-81 

 

Table VII: Goodness of fit for the models 

 

The models were able to mine the solutions for each interface with a fairly good coefficient 

of determination for each model. We were able to identify that the spatial strategies that bubbled 

up as being effective were different for the different interfaces. This variation in significant 

variables across the different interfaces suggested that the interface did have an effect in shaping 

the strategies used by the learners. Mind you, this does not necessarily speak to the overall 

effectiveness of one interface over another at producing effective strategies – on average, 

participants in this within-subject trial obtained an infiltration of 6115.0 gallons when using the 

paper condition, 6229.8 gallons when using the multimouse condition, and 5226.7 when using the 

single mouse condition. None of the differences in infiltration were statistically significant. What 

this model regression is telling us, though, is that while the participants may have attained similar 

levels of performance when using each interface, the way they went about obtaining those 

outcomes was possibly affected by the interface condition. In other words, their exploration of the 

strategy space was likely affected. The next section will investigate this claim further. 
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5.2 Solution Discovery: Comparing and Tracking Learner’s Use of Spatial Strategies 

While the models constructed by individually regressing the paper, multi-mouse, and single 

mouse trials could suggest whether there were differences in which strategies were more or less 

prominent in producing results, this by itself does not count as evidence – it could be the case that 

the differences in the models were artifacts of the data and not indicative of differences in the 

influence of the interface on spatial reasoning. We needed a mechanism to compare the strategies 

across interface designs more transparently. 

 

 

Significant Variables Estimate tStat pValue 

clumped Univariate 1 1256.3 4.54 6.65E-06 

overdispersed Univariate 1 2866.2 8.88 8.33E-18 

overdispersed Univariate 2 977.01 2.60 9.62E-03 

clumped Univariate 3 1050.5 3.29 1.07E-03 

clumped Univariate 8 1332.5 3.12 1.87E-03 

overdispersion Univariate 10 -1921.2 -3.19 1.50E-03 

clumped Univariate 11 1211 3.00 2.77E-03 

overdispersed Bivariate 1 2635.2 8.22 1.28E-15 

clumped Bivariate 2 2809.5 6.28 6.49E-10 

overdispersed Bivariate 3 541.62 1.67 9.53E-02 

clumped Bivariate 4 1119.7 1.89 5.92E-02 

overdispersed 5 Bivariate 726.19 2.21 2.76E-02 

clumped Bivariate 6 1691.7 2.95 3.31E-03 

overdispersed Bivariate 6 1565.1 4.50 8.36E-06 

clumped Bivariate 7 3488.8 8.86 9.66E-18 

clumped Bivariate 9 1002.1 2.22 2.68E-02 

clumped Bivariate 10 -1390.3 -3.22 1.37E-03 

overdispersed Bivariate 10 891.09 2.96 3.24E-03 

 

Table VIII: The coefficients of the significant variables for all the trials 

 



52 

 

 

For this purpose, we regressed all the trials, irrespective of the interface that they were 

attempted in. The regression model would give us the significant variables which are found to be 

more generally effective at producing positive infiltration, and we could then use these parameters 

to compare across the conditions. The parameters of the model obtained from the regression are 

tabulated below. The model had a coefficient of determination (𝑅2) value to be 0.802 (p< 

0.05).  This model fairly good fit for the data at hand. 

 

 

 o-u o-b c-u c-b 

1 2866.2 2635.2 1256.3   

2 977.01     2809.5 

3   541.62    

4      1119.7 

5   726.19 1050.5   

6   1565.1  1691.7 

7      3488.8 

8    1332.5   

9     1002.1 

10 -1921.2 891.09  -1390.3 

11     1211   
 

Table IX: An alternate representation of the coefficients in Table VII above 

 

Table IX. is an alternate representation of the coefficients in Table VIII above highlighting their 

magnitude and polarity. False coloring indicates the degree of positive (green) or negative (red) 

impact each strategy had on infiltration. 

We used this model to examine the learners’ exploration mechanism in the problem space. This 

model allowed us to ask if the different interface designs might affect things like: 
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 The total number of good spatial strategies used in the different conditions (i.e., are some 

of the interfaces more likely to encourage the use of good strategies than others?),  

 How the participants went about exploring the space of strategies identified as good 

strategies, as measured by trial-to-trial changes in the applications of good strategies  

 If participants were more likely to explore good strategies or to exploit good strategies 

(measured by the number of unique strategies participants tested within a condition – i.e., 

strategies used only once. Exploitation would show fewer unique strategies)  

 How long it took participants to discover good strategies (in terms of the number of trials 

it took before a strategy was employed)  

Let’s examine each of these in turn.  

 paper multi-mouse single mouse 

TOTAL 572 676 530 

AVERAGE PER GROUP  
(STDEV) 

19.07 

(19.63) 
22.53 

(20.58) 
17.67 

(19.16) 

AVERAGE PER TRIAL 

(STDEV) 
2.95 

(2.63) 
3.25 

(2.89) 
2.40 

(2.35) 
    

 

Table X: The total number of good strategies, by condition 

 

We compared the total number of good strategies across the interface trials, and it seemed that, in 

the multi-mouse condition, participants employed slightly more total good strategies, followed by 

the paper condition, with the single-mouse condition showing the smallest total number of good 

strategies used, although we found that none of these differences were significant (see Table X). 
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 paper multi-mouse single mouse 

AVERAGE 1.52 1.17 0.75 

STDEV 1.56 1.10 0.68 

 

Table XI: The average delta in number of good strategies used, trial-to-trial. 

 

We compared the average of trial to trial (delta) changes in specific good strategies used. We found 

that in the paper condition, participants showed more change in specific ”good” strategies they 

employed from one trial to the next, followed by the multi-mouse condition, and with the single-

mouse condition showing the smallest amount of change in the strategies used. This difference 

was significant according to a within-subject ANOVA (F=4.43, p =0.0162). A post-hoc 

Bonferroni-Holm correction revealed that the only significant pairwise difference was between the 

paper and the single mouse conditions. A higher trial-to-trial delta in good strategies employed 

indicates that a given trial is less similar to the trial that preceded it. Because we are only tracking 

the change in the application of strategies known to positively impact the outcome, the presence 

of a higher delta indicates that the participants are more active in exploring the space of good 

solutions, an activity that is more likely to yield a meaningfully different outcomes. It can be seen 

as a marker of productive exploration of the strategy space (which is different from exploring the 

problem space: with an open-ended problem space, wide exploration can all too easily be non-

productive). Thus, participants explored the strategy space significantly more effectively in the 

paper condition than in the single mouse condition. The fact that the strategy exploration of the 

participants was middling for the multi-mouse condition suggests that distributed control, 
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regardless of whether it is accomplished with a TUI or with mice, does seem to promote more 

strategy space exploration.  

 

 

 

 paper multi-mouse single mouse 

AVERAGE UNIQUE STRATEGIES, PER GROUP 5.30 5.83 4.03 

STDEV 4.40 4.56 3.39 

AVERAGE UNIQUE STRATEGIES, PER TRIAL 1.01 0.94 0.61 

STDEV 0.93 0.88 0.48 

 

Table XII: The number of unique good strategies tested by groups 

 

The interpretation that the interface condition seems to affect strategy exploration also seems to 

be supported when we examine the number of unique strategies (i.e., good strategies tested only 

once), using this as a proxy for exploration (as opposed to exploitation). In the multi-mouse 

condition, when summed across all of their trials participants employed more unique good 

strategies (5.83), which is the count of strategies used once and only once across all trials in the 

condition. This is followed by the paper condition (5.30) with the single-mouse condition showing 

the smallest total number of unique strategies used (4.03). This difference was significant 

according to a within-subject ANOVA (F=3.81, p =0.0278). A post-hoc Bonferroni-Holm 

correction revealed that the only significant pairwise difference was between the multi and the 

single mouse conditions. This suggests that participants were most likely to return to previously-

used strategies in the single-mouse condition, which again reinforces the idea that participants 

were not exploring the strategy space as much in the single mouse condition as they were in the 

multi-mouse condition. One possible explanation for this marker of a lack of exploration is the 

lack of multi-user control - it can be hard to make meaningful change to a proposed solution when 
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only one person is working on doing so, as individuals may be more prone to prematurely 

committing to a strategy, and thus more likely to explore variations around that strategy rather than 

exploring the strategy space more broadly. When one breaks down the unique use of good 

strategies on a per-trial basis, however, the differences become even more apparent. (This actually 

might be a more fair comparison, since the speed of use of the interfaces differed, as seen in the 

differences in the number of trials participants could complete in each condition). Although in the 

multi-mouse condition, participants employed more unique good strategies in total, when the 

number of unique strategies is averaged by trial, we see that the paper condition averages the 

largest number of unique good strategies per trial (1.01), with multi-mouse not far behind (0.94), 

and the single mouse condition showing once again the smallest average of unique strategies used 

(0.61). This difference was significant according to a within-subject ANOVA (F=4.67, p 

=0.01316). A post-hoc Bonferroni-Holm correction revealed that there were two significant 

pairwise differences, between the paper and the single mouse conditions, and between the multi 

and the single mouse conditions. This suggests that participants explored the solution space more 

in the paper and multi-mouse control conditions, and did so more efficiently, trying out an average 

of 1.04 and 0.94 new unique strategies in each trial, respectively. The much lower ratio of 0.61 

new unique strategies per trial in the single mouse case further suggests that participants did not 

explore as broadly in that condition. 

 We also analyzed the data to determine the order of discovery for the good strategies. We wanted 

to observe how the interface designs influenced this discovery process. By “discovery” we refer 

to how many trials were needed before a group employed a given strategy – a strategy used during 

trial 1 would have a discovery order of 1, and a strategy never used until the third trial would have 

a discovery order of 3. To obtain these numbers, we first converted each trial into a binary 16-
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tuple indicating the presence or absence of each of the 16 significantly “good” strategies 

highlighted by the regression model. Then we multiplied each tuple by the order of that trial within 

it’s condition – so if a given trial was the fourth attempted, any 1s in the 16-tuple would be 

converted to 4s.  Then, for each of the 3 conditions within the 30 experiments, we created another 

16-tuple that recorded the earliest occurrence of each of the 16 strategies. 

 
Group 

# 

Trial 

# 

c-

u 

r1 

c-

u 

r3 

c-

u 

r8 

c-u 

r11 

od-

u 

r1 

od-

u 

r2 

c-

b 

r2 

c-

b 

r4 

c-

b 

r6 

c-

b 

r7 

c-

b 

r9 

o-

b 

r1 

o-

b 

r3 

o-

b 

r5 

o-

b 

r6 

o-b 

r10 

9 1                 

9 2  2 2              

9 3 3 3 3 3             

9 4 4 4 4 4             

9 5 5 5 5 5         5 5   

9 6 6 6 6 6       6  6 6   

9 7 7 7 7 7       7  7 7   

9 8 8 8 8 8       8  8 8   

9 9 9 9 9 9       9  9 9   

First 

Appearance: 

 3 2 2 3       6  5 5   

 

Table XIII: Illustration of Group 9’s exploration of the solution space 

 

Table XIII is an illustration of how for Group 9’s exploration of the solution space proceeded in 

the multimouse condition, and how we distilled the order of their strategy. They uncovered the 

clumped univariate strategies fairly early during their 9-trial exploration, and took a bit longer to 

uncover the clumped bivariate strategy at radius 9 and the overdispersed bivariate strategies at 

radii 3 and 5. 
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The following table was constructed with the average of the sums of these trials. 

 

 

 

Conditions paper multimouse single mouse 

Strategy 

appearance 

count 

159 175 128 

Average first  

appearance of 

strategies 

2.77 2.82 3.70 

STDEV first  

appearance of 

strategies 

2.16 2.21 2.59 

 

Table XIV: Summary of the appearance of good strategies (as identified by the multi-linear 

regression model) in trials generated in the three conditions 

 

The table suggests that the interface designs had some impact on the order of discovery of 

the good strategies. Moreover, in the paper and multi-mouse interface the learners were found to 

be discovering the good strategies faster than single mouse trials. 

 

 

Order Discovery Sum of Squares Df Mean Square F Sig. 

Between Groups 74.931 2 37.465 7.05 0.001 

Within Groups 2439.115 459 5.314   

Total 2514.045 461    

 

Table XV: ANOVA results for order of discovery of good strategies 
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Order 

Discovery 

(I) 

condition 

(J) 

condition 

Mean 

Difference 

(I-J) 

Std. 

Error 

Sig. 95% 

Confidence 

Interval 
 

 

      Lower 

Bound 

Upper 

Bound 

Tukey 

HSD 

paper multi -0.044 0.253 0.984 -0.64 0.55 

  single -.922* 0.274 0.002* -1.57 -0.28 

 multi paper 0.044 0.253 0.984 -0.55 0.64 

  single -.878* 0.268 0.003* -1.51 -0.25 

 single paper .922* 0.274 0.002* 0.28 1.57 

  multi .878* 0.268 0.003* 0.25 1.51 

 

Table XVI: Post-hoc tests for the order discovery of good strategies 

 

An analysis of variance (ANOVA) on these scores again yielded significant variation among 

conditions, F (2, 259) = 7.05, p < 0.05. A post hoc Tukey test showed that the paper, and multi-

mouse conditions differed significantly from the single mouse condition at p < 0.05; indicating 

that the interface designs were influencing the strategy discovery patterns. 
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6 Conclusion & Future Work 

 

This paper showcases one of the first attempts at devising metrics to track spatial reasoning 

and sets the stage for studying how that skill is acquired. There are whole classes of problems 

involving complex systems and spatial reasoning that are appearing in national educational 

standards, but which are not currently instructionally supported, owing to a lack of teaching tools 

and a lack of assessment approaches. Until these problems can be addressed, these standards are 

nothing more than empty mandates. Our approach has contributed by devising a mechanism to 

analyze such problems and give feedback to the designers about the effectiveness of the interfaces. 

These analytic procedures could be adapted to problems involving spatial reasoning even outside 

urban planning and environmental science, like in analyzing road accidents, disease outbursts, etc. 

This paper exemplifies how known statistical tools from different domains can be used together to 

address an ill-structured problem, the innovation here was to put them together to analyze the 

situation. 

The results we uncovered here provide evidence that user interface design can in fact impact 

how learners explore spatial problem spaces. The recommendation to designers seems to be that if 

one wants to promote more and earlier exploration (as opposed to exploitation) of spatial strategies, 

providing an interface that allows multiple users to all contribute to the spatial pattern is a good 

approach. This work also enables a number of other analyses to be performed (which we have not 

yet attempted): examining if learners “get stuck” exploring patterns  at certain radii (which would 

indicate that they might need guidance to help them consider incorporating new spatial scales), if 

learners struggle to perceive certain types of spatial patterns (an initial examination of the data, 

not reported on here, suggests that learners might take longer to realize that overdispersion is  a 

strategy that can be employed), if certain types of explorations of the strategy space (for example, 
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more systematically combining good strategies) is more effective at discovering good outcomes, 

and, ultimately, if any of these observable patterns of behavior result in a greater understanding of 

spatial phenomena (for which we would need to conduct another experiment where we interviewed 

participants before and after their use of the software).  

Through this work we were able to reduce the solution space of a complex spatial problem, 

while maintaining the spatial features of the data intact. This was crucial for our task as we wanted 

to study which spatial patterns were effective in this problem space, and how learners went about 

discovering and applying those spatial patterns. In future work we wish to follow up on this nascent 

exploration of the model space underpinning spatial reasoning in this domain, and to use our 

findings to help guide learners to more productively and methodically explore spatial problem 

spaces. We see great potential in this, as it is too often the case that learners can get “lost” exploring 

open-ended problems, which could result in them not being able to get adequate exposure to 

comparing and contrasting effective strategies.  As we further refine our model of the spatial 

reasoning learners may exhibit in this domain, we would be able to devise software-based 

interventions (termed “scaffolding” in the education literature) to guide the learner towards better 

explorations even in a complex solution space environment.
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