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SUMMARY

We consider an American put option under the Constant Elasticity of Variance (CEV)

process. This corresponds to a free boundary problem for a partial differential equation (PDE).

We show that this free boundary satisfies a nonlinear integral equation, and analyze it in the

limit of small ρ = 2r/σ2, where r is the interest rate and σ is the volatility. We find that the

free boundary behaves differently for five ranges of time to expiry. We then analyze option

price P (S, t), as a function of the asset price S and time to expiry t. We obtain the asymptotic

expansion of P as ρ → 0, first via an integral equation formulation, and then using the PDE

satisfied by P , and analyzing it by perturbation theory and matched asymptotic expansions.
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CHAPTER 1

INTRODUCTION

Over the last thirty years, the rapid growth of financial derivatives has led practitioners and

academics to develop more sophisticated models to match market behavior. The pricing and

hedging of options has its origins in the Nobel prize winning work of Black, Scholes, and Merton

(1), who assume that the price of an underlying asset S(t) follows a geometric Brownian motion

(GBM) with constant volatility. We let C(S, t) be the price of a European call option at time t

for an asset with initial price S, strike K, and expiry T with a payoff of max(S −K, 0). Then

the Black-Scholes-Merton (BSM) theory leads to the well known formula

C(S, t;σ,K) = SN(d1)−Ke−r(T−t)N(d2) (1.1)

where N(x) = 1√
2π

∫ x
−∞ e

−z2/2 dz is the cumulative normal distribution function and

d1 =
1

σ
√
T − t

[
S

K
+

(
r +

1

2
σ2

)
(T − t)

]
, d2 = d1 − σ

√
T − t. (1.2)

Here r is the risk-free interest rate and σ is the constant volatility. The formula in 1.1 provides

not only the price of the option but also a method for replicating the option in terms of the

underlying asset and bonds. The parameters in 1.1 are all observable in the market except

for the volatility σ, which must be estimated in some fashion. A natural approach would be

1
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to use an estimate of the standard deviation based upon ex-post continuously compounded

stock returns, measured over a specific sample period in the past with a specific frequency (e.g.,

daily). This estimate is known as the realized volatility. However, such an estimate may not be

good enough to price options across all strikes K and expirations T .

A very useful aspect of exchange traded options is that the prices are listed for the public

and quoted in the markets. Let CMarket(K,T ) be the observed market price of a call option

with expiry T and strike K. If we solve the following inverse problem for σ(K,T ) to determine

what the market implies for the value of the volatility

C(S, t;σ,K) = CMarket, (1.3)

then we can think of σ(K,T ) = σimplied(K,T ) as the implied volatility. Another closely related

concept is that of the term structure of volatility, which refers to how implied volatility differs

for related options with different maturities. These two combined generate an implied volatility

surface, where the implied volatility is plotted as a function of the strike price K and time t,

as illustrated in Figure 1. Frequently, options are quoted in implied volatility directly. BSM

theory predicts that the volatility surface is constant. However, since the crash of 1987 and the

Long Term Capital Management (LTCM) demise in 1998, the market volatility has increased

dramatically and the implied volatility surface is not constant, but instead has a “smile” and/or

a skew. The in-the-money (ITM), for which K < S for calls or K > S for puts, and/or out of

the money (OTM), for which K > S for calls or K < S for puts, options trade at higher implied
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Figure 1. Implied Volatility Surface of S & P call options in Oct 2006. The function is
σ(K,T ) = .1581− .2777 log(K/100)− 0.50/

√
T − .5011 log(K/100)2 + .1103 log(K/100)/

√
T +

.5909 log(K/100)2/
√
T , where σ is the volatility that depends on strike price K and final time

T .

volatilities than the at-the-money (ATM) option, for which K = S, which is also observable

in Figure 1. In the financial world, traders and risk managers need to be able to better hedge

volatility risk in an options portfolio, and BSM is deficient because changing implied volatility

with a fixed strike essentially means that a different model is being applied for each strike. This

means that the implied volatility also varies in a systematic fashion as the asset price changes,

since asset price varies with strike. There is sufficient empirical evidence (2) to suggest that in

many cases the assumption of a constant volatility is not consistent with the observed markets.

Due to the deficiency of the BSM assumption, pricing the options in a more realistic manner

requires that we relax the constant volatility assumption. There have been various ideas as to
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how to modify and extend the basic Black-Scholes framework, to better model the volatility. An

early model that provided an alternative to GBM is the Constant Elasticity of Variance (CEV)

diffusion model that was introduced, a few years after the seminal work by Black, Scholes,

and Merton, in the context of European options. In this model, the local volatility is now a

deterministic function of the underlying asset σ(S, t) = δSβ and the asset price is described by

the following risk-neutral stochastic partial differential equation (SDE)

dS = rS dt+ δSβ+1 dW (1.4)

where β is the constant of elasticity parameter for the local volatility σ, r is the risk-free

interest rate, and W is a standard Brownian motion. There are several reasons why the CEV

model has received attention. First, it is consistent with the observation made by Black in (3)

that volatility changes are inversely related to stock returns, often referred to as the leverage

effect. Moreover, unlike the Black-Scholes model, the CEV model is potentially consistent with

capturing the observed implied volatility skew for both equity and index options (2). As such,

the CEV model is potentially an improvement over the original GBM model. It has been shown

that under a standard GBM assumption, a financial institution would be exposed to significant

pricing and hedging errors in comparison to the errors for the CEV model, which are much

smaller (2).

The CEV model is derived using the same no arbitrage arguments as the BSM model, but

it incorporates a nonlinear state-dependent (cf. (1.4)) volatility function. The model was first
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introduced by Cox and Ross (4) for −1 ≤ β < 0, where they established the exact solution

to the European option problem under a CEV Process in terms of an integral of a modified

Bessel function. Later Emanuel and Macbeth (5) extended the model for β > 0. For β = 0, we

recover our GBM model. A fundamental property for the CEV model, which differs from BSM,

is the potential absorption of the process at the lower boundary. That is, the case of S = 0

(bankruptcy or default) occurs with positive probability. This feature of the model becomes

attractive for equities in the case where bankruptcy is more often than not a recurring event

(e.g., financial services or automobile industries). However, it fails to satisfy the positivity

assumption (S > 0) of the underlying asset needed for the hedging and pricing of the realized

variance (6). The pricing of variance swaps by replication using a log contract under the CEV

process was studied in (7), and this is a major topic in the finance industry, since here a

classical hedging argument can be made that relates the variance swap to the log contract of

equity options. However, we do not consider this topic in the thesis, but only wish to make the

reader aware that such pricing methods also exist.

For a more exotic type option, Davydov and Linetsky (2) and Lo, et al. (8) provided

analytical formulas for barrier options under the CEV process. A barrier option is a path

dependent option in which the existence of the option depends on whether the underlying

asset price hits a critical value, termed the barrier, during the lifespan of the option. If the

price reaches this barrier prior to expiry, the option becomes worthless. Barrier options are

studied for their flexibility in tailoring portfolio returns, while lowering the cost of the option

premiums. In (8), spectral expansion methods were used to reduce the pricing problem to
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a simple computation of the roots of a confluent hypergeometric function. More recently,

approximate formulas for the barrier option prices for small volatility have been derived using

asymptotic methods (9) and shown to provide good approximations to the actual solution over

the entire space-time domain. In general, the CEV model continues to be popular among

practitioners due to the existence of asymptotic formulas to price European options while

finding a good agreement between theoretical and observed smiles.

In this thesis, we deal with the CEV process in the case β = −1/2 for the American put

option without any barriers. We analyze only put options, since by put-call parity, results for

a call option are readily obtained. Because American options may be exercised anytime prior

to the expiration dates, additional difficulties are presented in our analysis because we now

to have to locate the optimal exercise boundary. Hence the American option problem can be

thought of as a free boundary value problem involving a partial differential equation, and these

can only rarely be solved exactly. For some historical perspective, free boundary problems

(better known as Stefan problems, after Jožef Stefan) were first developed in the late 1800s by

physicists to help study problems in ice formation (10). They are a class of boundary value

problems in partial differential equations (PDE) in which a phase boundary evolves over time,

and the solution to the Stefan Problem involves solving for the phase boundary in addition

to solving the full PDE. As far as we know, there exists little or no analytic work for these

types of free boundary problems in the valuation of American options under a CEV process.

Indeed, we are unaware of a closed-form solution to the American option for even the original

Black-Scholes-Merton model. The closest we have to a solution of that form is presented in
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(11), where the author employs a highly original approach using homotopy analysis methods.

The solution is presented in terms of a convergent infinite series of double integrals that uses

the solution of the corresponding European option as an initial guess. However, the author

mentions the long duration of time it takes for the computation of the aforementioned infinite

series to reach a convergent numerical solution. This does not match our notion of a closed-form

solution (analytical representation of the solution by a bounded number of “nice, well-behaved”

functions) (12), nor would this formula be very efficient in pricing options in a real time market

environment. As a result, we would like to obtain robust approximation formulas for our CEV

model which would not only be readily accessible for usage and implementation in the financial

markets, but would also stand on its own right as a mathematical result. We initially present

some exact and asymptotic solutions for the free boundary over all times up to the expiry T .

Then we extend our results to the general option pricing problem over the entire (S, t) domain,

where S is the asset price and t(< T ) is time. Throughout, we employ various asymptotic

techniques, including the method of matched asymptotic expansions, singular perturbation and

boundary layer theory, and in particular the ray method of geometrical optics (13), which

was first developed in the study of high frequency wave propagation problems. Recently such

methods have also been applied to other option pricing problems in Addison, et al. (14), Evans,

et al. (15), Fouque, et al. (16), Howison (17), Hu and Knessl (9), Knessl (18) and Widdicks, et

al. (19).



CHAPTER 2

ASYMPTOTICS OF FREE BOUNDARY VIA INTEGRAL EQUATIONS

2.1 Problem Formulation and Results

We examine a complete market model in which we assume that the asset follows a one

dimensional CEV process (4) where the local volatility is a deterministic function of the un-

derlying asset. The original CEV model has the possibility of default for β < 0 since the

process can be absorbed at 0 with positive probability. We assume that β = −1/2, and derive

asymptotic formulas for the free boundary for all times to expiry.

To examine the behavior of the free boundary under different scaling regimes for the time

to expiry, we look at the limit of small ρ = 2r/σ2, where r is the interest rate, and σ is

the volatility. This limit has a small interest rate and/or large volatility, and is of particular

relevance to the financial status of the current economy. The main result in this section is the

derivation of a nonlinear integral equation that is satisfied by the free boundary, from which

we shall analyze its asymptotic structure for the different ranges of time. Then we extend our

analysis by providing results for the option price over all ranges of the space-time domain, both

from integral equations and from the underlying PDE by using singular perturbation theory in

sections 3 and 4. Asymptotic and singular perturbation methods have been employed for the

American put option, by Knessl (18), (20) and Kuske et al. (21). In (18), analytic results in

various limits were derived for both the free boundary and the option price, and the moving

8
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boundary was analyzed for both small and large times to expiry. We shall show that the CEV

model has a much richer asymptotic structure than the BSM.

We let P (S, T0) denote the price of an American put option for an asset with price S at

some time T0 prior to expiry TF . We note that we could just as well have chosen the American

call option, but by put-call parity, having a put price allows us to price the call. We assume

that the dynamics of the price of the underlying asset S is governed by the following stochastic

differential equation

dS = µS dt+ σ
√
S dWt. (2.1)

where Wt is a standard Brownian motion, σ is the volatility of the underlying asset, and µ = r

is the risk-free interest rate. Introducing the new variables

t =
σ2

2
(TF − T0), ρ =

2r

σ2
, (2.2)

and using Ito’s Lemma and some arbitrage-free arguments, we find that P satisfies the following

boundary value problem

Pt = SPSS + ρSPS − ρP ; t > 0, S > α(t) (2.3)

P (S, 0) = max(K − S, 0) (2.4)

P (α(t), t) = K − α(t), PS(α(t), t) = −1, P (∞, t) = 0, (2.5)
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where α(t) is the free boundary in the new time variable. We also have P (S, t) = K − S for

0 < S < α(t), and α(0) = K. For S ≤ α(t) the option should be exercised, and for S > α(t) it

should be held.

We convert 2.3 - 2.5 into an integral equation by first making a change in coordinates,

letting

P (S, t) = K − S + P̃ (V, t), V = S − α(t) (2.6)

where V ≥ 0. Then P̃ satisfies the PDE

P̃t − α′(t)P̃V = [V + α(t)]P̃V V + ρ[V + α(t)]P̃V − ρK − ρP̃ ; V, t > 0 (2.7)

with the initial and boundary conditions

P̃ (V, 0) = V, P̃ (0, t) = P̃V (0, t) = 0. (2.8)

We introduce the Laplace transform

Q(θ, t) =

∫ ∞
0

e−θV P̃ (V, t) dV. (2.9)

Using 2.9 in 2.7 and 2.8 then yields

Qt + (θ2 + ρθ)Qθ = [α′(t)θ + (θ2 + ρθ)α(t)− (2θ + 2ρ)]Q− ρK

θ
(2.10)
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with the initial condition Q(θ, 0) = 1/θ2. Using the method of characteristics, (the character-

istics are c = θe−ρt/(θ + ρ) where c is a constant) it can be shown that the only acceptable

solution to 2.10 is

Q(θ, t) =
Kρ

θ2
eα(t)θ

∫ ∞
θ/ρ

1

z + 1
exp

[
−ρzα

(
t+ ρ−1 log

(
θ + ρ

θ

z

z + 1

))]
dz. (2.11)

We note that the most general solution to 2.11 corresponds to replacing the upper limit on the

integral by the arbitrary function f(c) where c indexes the family of characteristics. But we

must take f(c) =∞ in order for the integral to decay as θ →∞, which must happen to offset

the exponentially growing factor eα(t)θ in 2.11. The next result readily follows, by taking the

Laplace inversion of 2.11.

Theorem 1. The option price P (S, t) for the CEV model has the integral representation

P (S, t) = K − S +
1

2πi

∫
Br
eθVQ(θ, t) dθ, (2.12)

where <(θ) > 0 on the Bromwich contour, and Q(θ, t) is given by 2.11.

Moreover, after setting t = 0 and using α(0) = K in 2.11, it follows that α(t; ρ) satisfies

the nonlinear integral equation (IE):

e−Kθ

Kρ
=

∫ ∞
θ/ρ

1

z + 1
exp

[
−ρzα

(
ρ−1 log

(
θ + ρ

θ

z

z + 1

))]
dz. (2.13)
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In the next section we use asymptotic methods to analyze this IE for five different scales of

time t, in the limit of small ρ. We let ρ = e−λ so that λ = − log ρ → ∞. The final results for

the free boundary α(t; ρ) are listed below, and we sketch the derivations in section 3.

(i) t = ω/λ = O(λ−1), 0 < ω < K:

α(t; ρ) = (
√
ω−
√
K)2+

log λ

λ

ω −
√
Kω

2
+

1

λ

√
Kω − ω

2
log

(
4πK2ω

K −
√
Kω

)
+o(λ−1), (2.14)

(ii) t = K/λ+O(λ−2), λ2t− λK = λ(ω −K) = Λ:

α(t; ρ) ∼ 1

λ2
F(Λ), (2.15)

where F(·) satisfies the nonlinear IE

e−Kν

K
=

∫ ∞
0

1

ξ
exp

[
−ξF

(
−νK2 − 1

ξ

)]
dξ, −∞ < ν <∞. (2.16)

For Λ→ ±∞, we have

F(Λ) ∼ Λ2

4K
+

Λ

4
log(−Λ)− Λ

4
log(8πK3), Λ→ −∞ (2.17)

F(Λ) ∼ Λe−γ exp

[
− 1

K
exp

(
Λ

K

)]
, Λ→ +∞ (2.18)

where γ is the Euler constant.
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(iii) t = ω/λ = O(λ−1), K < ω <∞:

α(t; ρ) ∼ ω −K
λ

e−γ exp

(
− 1

K
ρK/ω−1

)
, (2.19)

(iv) t = O(1), 0 < t <∞:

α(t; ρ) ∼ te−γ exp

[
−
(

1

2
+

1

ρK

)
e−K/t

]
, (2.20)

(v) t = v/ρ = O(ρ−1), v > 0:

α(t; ρ) ∼ 1

ρ
e−γ exp

(
1

ev − 1

)
(1− e−v) exp

(
− 1

ρK

)
. (2.21)

We note that in four of the five cases the expression for α(t; ρ) is completely explicit, and only

in case (ii) must we solve a nonlinear IE, which is somewhat simpler than the one in 2.13. We can

easily compute P (S, t) as t→∞, which corresponds to the perpetual American option, where

the problem reduces to solving an ordinary differential equation. Setting P (S,∞) = P∞(S)

and using α(∞) to denote the limiting value of the free boundary, we obtain from 2.3- 2.5

P∞(S) = Keρα(∞)

∫ ∞
1

1

z2
e−zρS dz, (2.22)

where α(∞) satisfies

Kρ

∫ ∞
1

1

z
e−ρα(∞)z dz = e−ρα(∞). (2.23)
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For ρ→ 0 we have

α(∞) =
1

ρ
e−γ exp

(
− 1

ρK

)
[1 +O(ρ)], (2.24)

which is exponentially small.

2.2 Analysis for t = ω/λ, 0 < ω < K

We first examine 2.13 on the t = O(λ−1) scale, for small ρ. Recalling that λ = − log ρ, we

let

θ = λβ, z =
λ(β + x)

ρ
, α(t; ρ) ∼ α0(ω; ρ) (2.25)

for ω = (− log ρ)t = O(1). Then 2.13 can be approximated by

eλ

K
=

∫ ∞
0

1

β + x
eλΦ(x;β,ρ)[1 +O(e−λ)] dx, (2.26)

where Φ(x;β, ρ) = Kβ − (β + x)α0( x
β(x+β) ; ρ). For large λ and fixed β, we evaluate the right

hand side of 2.26 by an implicit form of the Laplace method, assuming for now that there is a

saddle point where

∂Φ

∂x
= −α0

(
x

β(x+ β)

)
− 1

x+ β
α′0

(
x

β(x+ β)

)
= 0. (2.27)

Let us denote x = x∗(β) as the solution to 2.27. It follows that at x = x∗, Φ ∼ 1 so that

1 = Kβ − (β + x∗)α0

(
x∗

β(x∗ + β)

)
. (2.28)
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Now let ω = x∗
β(x∗+β) . Then from 2.27 we have β =

α′0(ω)
ωα′0(ω)−α0(ω)

which we use to eliminate β

in 2.28 to obtain the ODE

[1− α′0(ω)][ωα′0(ω)− α0(ω)] = Kα′0(ω). (2.29)

Dividing 2.29 by 1− α′0(ω), we recognize this as the Clairaut equation. The solutions consist

of a one-parameter family of lines and the singular solution

α0(ω) = (
√
K −

√
ω)2 (2.30)

which is the envelope of this family. The linear solutions α0(ω) = ωC − KC
1−C must be rejected,

since these lead to α0(0) 6= K. The above analysis applies only for 0 < ω < K, since the

solution 2.30 vanishes as ω approaches K. Hence we expect different asymptotics for ω ≈ K.

We next analyze some higher order terms in the expansion of α0. We evaluate 2.26 by

using the Laplace method, which gives

eλ

K
=

1

β + x∗

√
2π

−λΦxx(x∗;β, ρ)
eλΦ(x∗;β,ρ)[1 +O(λ−1)], (2.31)

and expand α0 as

α0(ω; ρ) = α0(ω) +
log λ

λ
α1(ω) +

1

λ
α2(ω) + o(λ−1). (2.32)
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In order to balance the two sides of 2.31, we need α1 to cancel the
√

1/λ factor. Hence,

1√
λ

exp

[
−(β + x∗)(log λ) α1

(
x∗

β(x∗ + β)

)]
= 1. (2.33)

Writing 2.33 in terms of ω we obtain

α1(ω) =
1

2
(ω −

√
Kω). (2.34)

To find the second order term α2, we balance the O(1) terms in 2.31, so that

1

K
=

1

β + x∗

√
2π

−Φxx
exp

[
−(β + x∗)α2

(
x∗

β(x∗ + β)

)]
. (2.35)

It can be shown that Φxx(x∗;β, ρ) ∼ −1
2K

1
2β

3
2x
− 3

2
∗ (x∗ + β)−

3
2 and then

α2(ω) =

√
Kω − ω

2
log

(
4πK2ω

K −
√
Kω

)
. (2.36)

With 2.30, 2.32, 2.34, and 2.36 we have established 2.14.

2.3 Analysis for t = ω/λ, ω ≈ K

We return to 2.13 and introduce the scaling

θ = λβ, β =
1

K
+
ν

λ
, ω = λt = K +

Λ

λ
(2.37)
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with

α(t; ρ) =
1

λ2
F(Λ; ρ) =

1

λ2
F
(
λ2

(
t− K

λ

)
; ρ

)
. (2.38)

Then we have e−θK = ρe−Kν . By setting z = (θ + y)/ρ in 2.13 this equation becomes

1

K
e−Kν =

∫ ∞
0

1

θ + y + ρ
exp

[
−(θ + y)α

(
1

θ
− 1

θ + y
+O(ρ); ρ

)]
dy. (2.39)

We use 2.37 and 2.38, scale y as y = λ2ξ and note that ρ = e−λ is exponentially small, thus

obtaining

λ2α

(
1

θ
− 1

θ + y
+O(e−λ); ρ

)
= λ2α

(
K

λ
− 1

λ2

(
νK2 +

1

ξ

)
+ o(λ−2); ρ

)
∼ F

(
−νK2 − 1

ξ

)
(2.40)

where F(Λ) is the leading term in an expansion of F(Λ; ρ). Then scaling y = λ2ξ in 2.39 and

letting ρ → 0 (λ → ∞) we obtain the limiting IE in 2.16. It does not seem possible to solve

2.16 explicitly for F(Λ). But we can infer the behavior as Λ → −∞ (ν → ∞) by evaluating

the integral in 2.16 by an implicit Laplace type expansion, similarly to what we did in section
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2.2. This will verify the asymptotic matching between the ω-scale (for ω < K) and the Λ-scale,

and lead to 2.17. Now consider the limit Λ→ +∞. For ν < 0, we rewrite 2.16 as

eK|ν|

K
=

∫ ∞
|ν|K2

1

η
exp

[
−1

η
F(|ν|K2 − η)

]
dη

+

∫ 1

0

1

u

{
exp

[
−1

u

F(|ν|K2(1− u))

|ν|K2

]
− exp

[
−1

u

F(|ν|K2)

|ν|K2

]}
du

+

∫ ∞
F(|ν|K2)

|ν|K2

e−v

v
dv.

(2.41)

Here we broke up the integral over (0,∞) into the two ranges (0, |ν|K2) and (|ν|K2,∞) and

made some elementary substitutions. Now, for Λ→ −∞ we have F(Λ) ∼ Λ2

4K so that the first

integral in the right hand side of 2.41 will vanish as ν → −∞. If F(Λ) → 0 as Λ → +∞ the

second integral in 2.41 will also vanish, and the third may be approximated by using

∫ ∞
ε

e−v

v
dv = − log ε− γ +O(ε), ε→ 0+. (2.42)

Hence 2.41 can be replaced by the asymptotic relation

eK|ν|

K
∼ − log

[
F(|ν|K2)

|ν|K2

]
− γ (2.43)

which upon exponentiation leads to the asymptotic result given in 2.18, for F(Λ) as Λ→∞.
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2.4 Analysis for t = ω/λ, K < ω < ∞

In the remaining time ranges, α(t; ρ) will be exponentially small as ρ = e−λ → 0, and our

analysis of 2.13 will rely heavily on the asymptotic form in 2.42. We let z = Z/ρ in 2.13 to

obtain

e−Kθ

Kρ
=

∫ ∞
θ

1

Z + ρ
exp

[
−Zα

(
ρ−1 log

(
θ + ρ

θ

Z

Z + ρ

))]
dZ. (2.44)

Now we scale Z = λz∗ and θ = λθ∗, let α(t; ρ) = α̃(λt; ρ) and note that in sections 3.1 and

3.2 we have already characterized α̃(λt; ρ) for λt = ω < K and ω ∼ K. We also simplify the

argument of α(·) in 2.44 using

α

(
1

ρ

[
log
(

1 +
ρ

θ

)
− log

(
1 +

ρ

Z

)])
= α

(
1

θ
− 1

Z
+O(ρ)

)
= α̃

(
1

θ∗
− 1

Z∗
+O(e−λλ)

)
.

(2.45)

When Z = θ we have z∗ = θ∗ and we rewrite the integral in 2.44 by splitting the range of

integration into z∗ ∈ (θ∗, θ∗/[1−Kθ∗]) and z∗ ∈ (θ∗/[1−Kθ∗],∞), thus obtaining

e−Kλθ∗

Kρ
∼

(∫ θ∗
1−Kθ∗

θ∗

+

∫ ∞
θ∗

1−Kθ∗

)(
1

z∗
exp

[
−λz∗α̃

(
1

θ∗
− 1

z∗

)])
dz∗. (2.46)

In the first range α̃(ω) ∼ (
√
K −

√
ω)2 and the first integral will be o(1) as λ → ∞, since

θ−1
∗ − z−1

∗ ≤ K when z∗ ≤ θ∗/[1 −Kθ∗]. In the second integral α̃ will be exponentially small
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and the main contribution will come from very large values of z∗, where roughly z∗ = O(α̃−1).

Then we write α̃(θ−1
∗ − z−1

∗ ) ∼ α̃(θ−1
∗ ) and using 2.42 we conclude that

e−Kλθ∗

Kρ
∼
∫ ∞

θ∗
1−Kθ∗

1

z∗
exp

[
−λz∗α̃

(
1

θ∗

)]
dz∗ ∼ − log

[
λα̃

(
1

θ∗

)]
− γ − log

[
θ∗

1−Kθ∗

]
, (2.47)

with an error that is o(1) as λ → ∞. Then exponentiating 2.47 and replacing θ∗ by ω−1 we

obtain the asymptotic result in 2.19.

For ω → K we note that ρω/K−1 = ρ−1e−K/t = ρ−1 exp [−λK/(K + Λ/λ)]

= ρ−1 exp
[
−λ+ Λ/K +O(λ−1)

]
∼ exp (Λ/K) and (ω − K)/λ = Λ/λ2, which can be used

to verify the asymptotic matching between the Λ-scale and the ω-scale for ω > K, in the

intermediate limit where ω ↓ K and Λ→∞.

2.5 Analysis for t = O(1), 0 < t < ∞

Next we consider times t = O(1). We scale z = θw/ρ. Since we again expect α(t; ρ) to be

very small we assume a “WKB-type” ansatz of the form

α(t; ρ) ∼ g(t) exp

[
−1

ρ
f(t)

]
. (2.48)

Expanding α(t; ρ) in 2.13 for fixed θ and ρ→ 0, and noting that

1

ρ

[
log
(

1 +
ρ

θ

)
− log

(
1 +

ρ

θw

)]
=

1

θ
− 1

θw
− 1

2

ρ

θ2
+O

(
ρ2,

ρ

w2

)
, (2.49)
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we have

−θwα
(

1

ρ

[
log
(

1 +
ρ

θ

)
− log

(
1 +

ρ

θw

)])
= −θwg

(
1

θ

)
exp

[
−1

ρ
f

(
1

θ

)
+

1

2θ2
f ′
(

1

θ

)
+O(ρ)

]

Here we also used f(θ−1 − (θw)−1) ∼ f(θ−1), since w will be scaled to be exponentially large.

Then setting ε = θg
(

1
θ

)
exp

[
−1
ρf
(

1
θ

)]
exp

[
1

2θ2 f
′ (1
θ

)]
, scaling w = ε−1u and using 2.42, 2.13

asymptotically becomes

e−Kθ

Kρ
=

1

ρ
f

(
1

θ

)
− γ − log

[
θg

(
1

θ

)]
− 1

2θ2
f ′
(

1

θ

)
+ o(1). (2.50)

From the O(ρ−1) terms in 2.50 we conclude that f (1/θ) = K−1e−Kθ and then the O(1) terms

determine g(·) from

θg

(
1

θ

)
= e−γ exp

[
− 1

2θ2
f ′
(

1

θ

)]
.

The above along with 2.48 establishes the asymptotic result in 2.20. The asymptotic matching

between 2.19 and 2.20 is immediate, since ρK/ω−1 = ρ−1e−K/t, and (ω −K)/λ ∼ ω/λ = t as

ω →∞.

2.6 Analysis for t = v/ρ = O(ρ−1), v > 0

We assume that time to expiry for the option is large, with t = v/ρ = O(ρ−1). On this time

scale we assume that

α(t; ρ) ∼ 1

ρ
exp

(
− 1

ρK

)
A(v), (2.51)
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where A(·) will be determined from 2.13. After scaling θ = ρW , 2.13 becomes

e−KρW

Kρ
∼
∫ ∞
W

1

z + 1
exp

[
−ze−

1
ρKA

(
log

[
W + 1

W

z

z + 1

])]
dz. (2.52)

The major contribution to the integral in 2.52 will once more come from large values of z, so

we approximate

A

(
log

[
W + 1

W

z

z + 1

])
∼ A

(
log

[
W + 1

W

])
, (2.53)

and then using 2.53 in 2.52 along with 2.42 leads to

e−KρW

Kρ
∼ − log

{
e
− 1
ρKA

(
log

[
W + 1

W

])}
− γ − log(W + 1) (2.54)

=
1

Kρ
− γ − log

{
(W + 1)A

(
log

[
W + 1

W

])}
+ o(1). (2.55)

Expanding e−KρW = 1−KρW +O(ρ2) we conclude that

A

(
log

[
W + 1

W

])
= e−γ

1

W + 1
eW (2.56)

which determines the function A(·) and establishes 2.21.

Finally we verify the asymptotic matching between 2.20 and 2.21. For v → 0 we have

(ev − 1)−1 = v−1 − 1/2 + O(v) and 1− e−v ∼ v = ρt. For t → ∞ we have e−K/t = 1−K/t +

O(t−2) = 1− (Kρ)/v +O(ρ2) so that −(1/2 + 1/(ρK))e−K/t ∼ −v−1 + 1/2 and the matching

follows. As v →∞ we have A(v)→ e−γ and thus the expansion in 2.51 agrees with the small

ρ expansion of α(∞; ρ), as given in 2.24.



CHAPTER 3

ASYMPTOTICS OF OPTION PRICE VIA INTEGRAL EQUATIONS

Thus far we have given asymptotic results for the free boundary α(t) for the CEV model

for 5 ranges of time. We next give analogous asymptotic results for the option price P (S, t).

We shall again consider separately the 5 time ranges, but now within each time range it may

be necessary to analyze several ranges of S.

Our approach will be to use the representation in 2.11 - 2.13. Then we shall use the

results for α(t) in 2.14 - 2.21 to asymptotically evaluate the integrals in 2.11 and 2.12. We

shall begin by deriving an alternate representation to 2.12 (with 2.11), by using the integral

equation for α(t) in 2.13.

3.1 Alternate representations

Since 2.13 holds for all θ > 0 we can set

θ =
ρU

eρt(U + ρ)− U
(3.1)

and then 2.13 holds for U > 0 with

1

Kρ
=

∫ ∞
U

eρt(U+ρ)−U

1

z + 1
exp

(
ρUK

(U + ρ)eρt − U

)
exp

[
−ρzα

(
1

ρ
log

(
U + ρ

U

z

z + 1

))]
dz. (3.2)

23
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Next we split the range of integration [θ/ρ,∞) for Q in 2.11 into the subintervals

[
θ

(θ + ρ)eρt − θ
,∞
)

and

[
θ

(θ + ρ)eρt − θ
,
θ

ρ

]
. (3.3)

We thus have

P (S, t) = K − S +Q1 −Q2, (3.4)

where

Q1 =
1

2πi

∫
Br

Kρ

θ2
eSθ

(∫ ∞
θ

(θ+ρ)eρt−θ

1

z + 1
exp

[
−ρzα

(
t+ ρ−1 log

(
θ + ρ

θ

z

z + 1

))]
dz

)
dθ,

Q2 =
1

2πi

∫
Br

Kρ

θ2
eSθ

(∫ θ
ρ

θ
(θ+ρ)eρt−θ

1

z + 1
exp

[
−ρzα

(
t+ ρ−1 log

(
θ + ρ

θ

z

z + 1

))]
dz

)
dθ.

(3.5)

Applying 3.2 with U replaced by θ we can evaluate Q1 explicitly as

Q1 =
1

2πi

∫
Br

eSθ

θ2
exp

[
− ρKθ

(θ + ρ)eρt − θ

]
dθ. (3.6)

We note that θ0 = −(ρeρt)/(eρt − 1) is an essential singularity of the integrand in 3.6, so we

may rewrite 3.6 as

Q1 =
1

2πi

∫
Br

eSθ

θ2
exp

[
− ρKθ

(eρt − 1)(θ − θ0)

]
dθ. (3.7)
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Letting θ = θ0 + ξ, we obtain

Q1 =
1

2πi

∫
Br

eSθ0

(θ0 + ξ)2
eA/ξ dξ, where A = − ρKθ0

eρt − 1
=

ρ2Keρt

(eρt − 1)2
> 0, (3.8)

where now <(ξ) > −θ0 on the Bromwich contour Br. The contour integral in 3.8 may be

evaluated as

Q1 = S exp

(
− ρK

eρt − 1

)
+ exp

(
− ρK

eρt − 1

)√
A

∫ S

0

I1(2
√
AV )(S − V )√

V
eθ0V dV, (3.9)

where I1(·) represents the modified Bessel function of first kind.

Asymptotic expansions for Q1, are readily obtained using the saddle point method or sin-

gularity analysis, applied to 3.6. To obtain expansions for Q2, however, will require the

asymptotic results for α(t) in 2.14 - 2.21. We shall show that for the ranges t = O(λ−1), Q2

will be asymptotically important only near the free boundary. For the time range t = O(1)

with S > 0, Q2 will be smaller than Q1 by a factor of ρ, but the two are comparable for large

space/time scales S = O(ρ−1), t = O(ρ−1). But for t = O(1) and t = O(ρ−1), Q1 and Q2 will

again be comparable for values of S close to the free boundary.

3.2 Analysis for t = ω/λ = O(λ−1)

We shall analyze separately Q1 and Q2 in 3.6 and 3.5 for the time range t = ω/λ = O(λ−1).

We shall derive various asymptotic approximations for these two functions, and then obtain

P (S, t) from 3.4. We will see that the behavior of Q2 depends on whether ω < K, ω ∼ K, or

ω > K, while that of Q1 depends on whether S < K, S ∼ K, or S > K.
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Consider first Q1 in 3.6. The asymptotics we will obtain will be in powers of λ−1, and thus

ρ = e−λ will correspond to an exponentially small correction. We thus write

ρKθ

(θ + ρ)eρt − θ
=

Kθ

θt+ 1
+O(ρ) ∼ λKθ

θω + λ
(3.10)

and approximate the integrand in 3.6. Then scaling θ → λθ we obtain

Q1 ∼
1

λ

1

2πi

∫
Br

exp

[
λ

(
Sθ − Kθ

θω + 1

)]
1

θ2
dθ, (3.11)

with an error that is roughly O(e−λ). To evaluate the integral in 3.11 for λ→∞ we note that

there is a double pole at θ = 0 and saddle(s) where

∂

∂θ

(
Sθ − Kθ

θω + 1

)
= 0 (3.12)

so that there is a saddle point at

θ = θ∗ =
1

ω

(√
K

S
− 1

)
. (3.13)

The saddle at θ = −(
√
K/S + 1)/ω will play no role in the asymptotics. By shifting the

Bromwich contour Br in 3.13 which has <(θ) > 0 to the vertical line <(θ) = θ∗ and noting
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that for S < K the saddle lies to the right of the pole, we obtain, via a standard saddle point

calculation,

Q1 ∼
λ−3/2

√
2π

1

(θ∗)2

eλφ(θ∗)√
−φ′′(θ∗)

, S < K (3.14)

where

φ(θ∗) = Sθ∗ − Kθ∗

1 + ωθ∗
= −(

√
S −
√
K)2

ω
(3.15)

and then

φ′′(θ∗) =
2Kω

(1 + ωθ∗)3
=

2ωS3/2

√
K

. (3.16)

In terms of S and ω 3.14 becomes

Q1 ∼
λ−3/2

2
√
π

(SK)1/4ω3/2

(
√
S −
√
K)2

exp

[
−λ
ω

(
√
S −
√
K)2

]
, S < K. (3.17)

When S > K the saddle at θ = θ∗ is to the left of the pole and the residue at θ = 0 is precisely

S −K. Thus when S > K the difference Q1 − (S −K) is again asymptotically given by the

formula in 3.17.

When S ∼ K the saddle point and pole are close to one another and the expansion in 3.17

no longer holds. We thus analyze two other limits of 3.11, namely S − K = O(λ−1/2) with

ω > 0, and then S −K = O(λ−1) with ω = O(λ−1) (hence t = O(λ−2)). For the first we set

S = K +
ζ√
λ
, θ =

θ′√
λ

(3.18)



28

in 3.11 and expand φ(θ) = φ(θ′/
√
λ) for small θ which leads to

Q1 ∼
1√
λ

1

2πi

∫
Br′

eζθ
′+Kω(θ′)2 1

(θ′)2
dθ′, (3.19)

where now <(θ′) > 0 on Br′. The integral in 3.19 may be recognized as a parabolic cylinder

function of order −1, and an alternate expression for 3.18 is

Q1 ∼
1√
λπ

[
√
ωK exp

(
− ζ2

4ωK

)
− ζ

2

∫ ∞
ζ√
ωK

e−
u2

4 du

]
, S −K = O(λ−1/2). (3.20)

Finally, when S −K = O(λ−1) and ω = O(λ−1) we set

S = K +
V

λ
, ω =

t̃

λ
(3.21)

in 3.11 and obtain the limiting result

λQ1 →
1

2πi

∫
Br

1

θ2
eV θeKt̃θ

2
dθ, λ→∞, (3.22)

since then

λ

[
Sθ − Kθ

1 + θω

]
=
λKθ2ω

1 + θω
+ θV =

Kθ2t̃

1 + θt̃/λ
+ θV. (3.23)
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The expression in the right side of 3.22 is essentially the same as that in 3.19, and thus on

the (V, t̃) scale we have

Q1 ∼
1

λ

[√
Kt̃√
π

exp

(
− V 2

4Kt̃

)
+

V√
π

∫ ∞
− V

2
√
Kt̃

e−ξ
2
dξ

]
, (3.24)

This concludes our analysis of Q1 and we note that thus far the free boundary α(t) played no

role. It will arise when we expand Q2. Also, for Q1, there is no change in the asymptotics when

ω passes through the critical value K.

We will show below that as long as we are not close to the free boundary α(t), Q2 is

asymptotically small compared to Q1, so that P (S, t)− (K − S) ∼ Q1. Thus we have

(i) α(t) < S < K:

P (S, t) ∼ K − S +
λ−3/2

2
√
π

(SK)1/4ω3/2

(
√
S −
√
K)2

exp

[
−λ
ω

(
√
S −
√
K)2

]
(3.25)

(ii) S > K:

P (S, t) ∼ λ−3/2

2
√
π

(SK)1/4ω3/2

(
√
S −
√
K)2

exp

[
−λ
ω

(
√
S −
√
K)2

]
(3.26)

(iii) S −K = O(λ−1/2), ω > 0:

P (S, t) ∼ 1√
λ

[√
ωK√
π

exp

(
− ζ2

4ωK

)
− ζ

2

1√
π

∫ ∞
ζ√
ωK

e−
u2

4 du

]
(3.27)
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(iv) S −K = O(λ−1), ω = O(λ−1):

P (S, t) ∼ 1

λ

[√
Kt̃√
π

exp

(
− V 2

4Kt̃

)
+

V√
π

∫ ∞
− V

2
√
Kt̃

e−ξ
2
dξ

]
. (3.28)

The analysis of Q2 and of Q1 near the free boundary will differ accordingly as ω < K, ω ∼

K, ω > K. We first consider ω < K. We have already shown that α(t) ∼ (
√
K −

√
ω)2 in this

time range. Thus 3.25 holds in the range (
√
K −

√
ω)2 < S < K. We set t = ω/λ in Q2, use

the approximation in 3.5, and scale z = u/ρ to obtain

Q2 ∼
Kρ

2πi

∫
Br

eSθ

θ2

{∫ θ

θλ
λ+θω

1

u
exp

[
−uα

(
ω

λ
+

1

θ
− 1

u
+O(e−λ)

)]
du

}
dθ. (3.29)

Here we also used

log

(
θ + ρ

θ

z

z + 1

)
= log

(
θ + ρ

θ

u

u+ ρ

)
=

1

θ
− 1

u
+O(ρ). (3.30)

For S > 0 we know that α is O(1), and the region of integration in the u-integral will be small

for λ → ∞, since θλ/(λ + θω) ∼ θ. This shows that Q2 = o(ρ) or Q2 = o(e−λ). But from

3.17 we know that (roughly) Q1 = O
(
eλφ(θ∗)

)
and φ(θ∗) = −(

√
S −
√
K)2/ω > −1. Thus for

S > α(t) ∼ (
√
K −

√
ω)2 ≡ α

(0)
∗ (ω) we have Q1 � Q2. However, when S ∼ α

(0)
∗ (ω) we have

φ(θ∗) ∼ −(

√
α

(0)
∗ (ω)−

√
K)2/ω = −1 and then we must evaluate Q2 more carefully.
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We introduce the spatial scale S − α(t) = O(λ−1) and scale θ and u in 3.29 to be O(λ).

Thus we set

S − α(t) =
v

λ
, θ = λθ1, u = λu1. (3.31)

It is important to note that in the definition of v in 3.31, α(t) = α(t; ρ) represents the exact free

boundary. For t = ω/λ and ω < K we write α(t; ρ) = α∗(ω;λ) where a three-term asymptotic

approximation to α∗ is given by 2.14. With the scaling in 3.31, Q2 in 3.5 becomes (again

using 3.10)

Q2 ∼
Kρ

λ

1

2πi

∫
Br

eλθ1S

θ2
1

{∫ θ1

θ1
1+ωθ1

1

u1
exp

[
−λu1α∗

(
ω +

1

θ1
− 1

u1

)]
du1

}
dθ1. (3.32)

For λ → ∞ we evaluate the integral over u1 in 3.32 by the Laplace method, as the main

contribution will come from the lower limit, where u1 ≈ θ1/(1 +ωθ1). We thus introduce u2 by

u2 = λ(θ1 − u1) or u1 = θ1 −
u2

λ
(3.33)

and note that

λθ1S − λu1α∗

(
ω +

1

θ1
− 1

u1

)
= λθ1S − (λθ1 − u2)α∗

(
ω +

1

θ1
− 1

θ1 − u2
λ

)
= λθ1

[
S − α∗(ω) + α′∗(ω)

u2

λ
+O(λ−2)

]
+ u2α∗(ω)

= θ1v + u2[α∗(ω) + θ1α
′
∗(ω)] + o(1).

(3.34)
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With the approximation in 3.34, the limiting form for Q2 in 3.32 is

Q2 ∼
Kρ

λ2

1

2πi

∫
Br

eθ1v

θ3
1

{∫ ∞
0

exp

[(
α∗(ω) +

α′∗(ω)

θ1

)
u2

]
du2

}
dθ1. (3.35)

Here <(θ1) > 0 on Br and we must also choose the Bromwich contour so that <(α∗(ω) +

α′∗(ω)/θ1) < 0. This is possible since α∗(ω) ∼ (
√
K −

√
ω)2 so that α′∗(ω) < 0. Then the

integral over u2 in 3.35 converges and we have

Q2 ∼
Kρ

λ2

1

2πi

∫
Br

eθ1v

θ2
1

1

α′∗(ω) + θ1α∗(ω)
dθ1

=
Kρ

λ2

[
v

α′∗(ω)
− α∗(ω)

(α′∗(ω))2

]
,

(3.36)

as only the residue at θ1 = 0 contributes.

For S−α(t) = O(λ−1) the expansion of Q1 can be obtained simply by setting S = α(t)+v/λ

in 3.25, expanding for λ → ∞ and also using the three term approximation for α(t) in 2.14;

this yields

Q1 ∼
Kρ

λ2

α∗(ω)

(α′∗(ω))2
exp

(
−α
′
∗(ω)

α∗(ω)
v

)
. (3.37)

Combining 3.36 and 3.37 we have thus shown that for S = α(t) +O(λ−1) and ω < K

P (S, t) ∼ K − S +
Kρ

λ2

[
α∗

(α′∗)
2

(
e−

α′∗
α∗
v − 1

)
+

v

α′∗

]
. (3.38)
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We next examine the case ω ∼ K, recalling that the free boundary behaves (cf.(19)) as

α(t) ∼ F(Λ)/λ2 when ω −K = Λ/λ = O(λ−1). The approximations in 3.25, 3.26 and 3.27

for P (S, t) still hold, and we may replace ω by K + Λ/λ and further simplify, to get

(i) α(t) < S < K:

P (S, t) ∼ K − S +
λ−3/2

2
√
π

S1/4K7/4

(
√
S −
√
K)2

exp

[(
Λ

K2
− λ

K

)
(
√
S −
√
K)2

]
(3.39)

(ii) S > K:

P (S, t) ∼ λ−3/2

2
√
π

S1/4K7/4

(
√
S −
√
K)2

exp

[(
Λ

K2
− λ

K

)
(
√
S −
√
K)2

]
(3.40)

(iii) S −K = O(λ−1/2):

P (S, t) ∼ 1√
λπ

[
K exp

(
− ζ2

4K2

)
− ζ

2

∫ ∞
ζ
K

e−
u2

4 du

]
. (3.41)

We can again easily show that for S > 0, Q2 is negligible compared to Q1. But, for

S = O(λ−2) these two functions become asymptotically of the same order. To this end, we

proceed to evaluate Q1 and Q2 by scaling

S =
R

λ2
. (3.42)



34

To find Q1, we use 3.42 and set θ = λΦ in 3.11, and for ω = K + Λ/λ we obtain

Q1 ∼
e−λ

λ2

eΛ/K

2πi

∫
Br

eRΦ

Φ2
exp

(
1

ΦK

)
dΦ (3.43)

where we use the fact that

λKθ

θω + 1
=

λ2ΦK

λΦK + ΛΦ + 1
= λ− Λ

K
− 1

KΦ
+O(λ−1). (3.44)

The contour integral in 3.44 is a Bessel function, so that

Q1 ∼
e−λ

λ2
eΛ/K

√
KR I1

(
2
√
R√
K

)
. (3.45)

For Q2, we may use the approximation in 3.29 and introduce the scaling

S =
R

λ2
, θ = λ2φ, u = λ2η, α(ω) ∼ 1

λ2
F(Λ) =

1

λ2
F
{
λ2

(
t− K

λ

)}
. (3.46)

Then we note that

uα

(
ω

λ
+

1

θ
− 1

u

)
= λ2ηα

(
K

λ
+

Λ

λ2
+

1

λ2φ
− 1

λ2η

)
∼ ηF

(
Λ +

1

φ
− 1

η

)
. (3.47)
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Also, when u = θ we have η = φ and when u = θλ/(λ+θω) we have η = φ/(λφK+φΛ+1) ≈ 0.

Thus for ω = K +O(λ−1), 3.29 becomes

Q2 ∼
e−λ

λ2

K

2πi

∫
Br

eRφ

φ2

{∫ φ

0

1

η
exp

[
−ηF

(
Λ +

1

φ
− 1

η

)]
dη

}
dφ. (3.48)

To summarize, on the scale S = R/λ2 and ω = K +O(λ−1), we have obtained

P (S, t) ∼ K − S +
e−λ

λ2
eΛ/K

√
KR I1

(
2
√
R√
K

)

− e−λ

λ2

K

2πi

∫
Br

eRφ

φ2

{∫ φ

0

1

η
exp

[
−ηF

(
Λ +

1

φ
− 1

η

)]
dη

}
dφ,

(3.49)

which expresses P (S, t) in terms of the solution F(Λ) of the integral equation in 2.16.

Next we consider the case where t = ω/λ for ω > K. On this scale, the expansions in 3.25

and 3.26 still hold for 0 < S < K and S > K respectively, and the free boundary α(t) is

exponentially small in ρ, as given by 2.19. For S > 0, we again have Q1 � Q2 and only for

S near the free boundary α(t) are Q1 and Q2 of comparable magnitude. Once more we shall

separately analyze Q1 and Q2 in 3.11 and 3.5. It will be necessary to analyze several spatial

scales, specifically S = O(λ−1), S = O(λ−2), and S = O(α(t)).

For S = O(λ−1) we can obtain the expansion of Q1 as a limiting case of 3.17, by setting

S = S̃/λ and expanding for λ→∞, since Q1 does not experience a transition. We thus obtain

Q1 ∼
λ−7/4S̃1/4

2
√
πK3/4

ω3/2 exp

(
−λK

ω

)
exp

(
2
√
λ
√
S̃K

ω

)
e−S̃/ω. (3.50)
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For Q2, we scale z = W/ρ and the integral in 3.5 becomes, in the limit as ρ→ 0,

Q2 ∼
Kρ

2πi

∫
Br

eSθ

θ2

∫ θ

θ
1+θt

1

W + ρ
exp

[
−Wα

(
t+

1

θ
− 1

W
+O(ρ)

)]
dW dθ. (3.51)

With the further scaling

S =
S̃

λ
, θ = θ̃λ, W = λU (3.52)

and setting α(t) = α̃(λt) = α̃(ω), so that

α

(
t+

1

θ
− 1

W

)
= α̃

(
ω +

1

θ̃
− 1

U

)
, (3.53)

we obtain

Q2 ∼
Kρ

λ

1

2πi

∫
Br

eS̃θ̃

θ̃2

∫ θ̃

θ̃
1+θ̃ω

1

U
exp

[
−λUα̃

(
ω +

1

θ̃
− 1

U

)]
dU dθ̃. (3.54)

We rewrite 3.54 by splitting the range of integration into U ∈ (θ̃/[1 + θ̃ω], θ̃/[1 + θ̃(ω −K)])

and U ∈ (θ̃/[1 + θ̃(ω −K)], θ̃), thus obtaining

Q2 ∼
Kρ

λ

1

2πi

∫
Br

eS̃θ̃

θ̃2

∫ θ̃
1+θ̃(ω−K)

θ̃
1+θ̃ω

+

∫ θ̃

θ̃
1+θ̃(ω−K)

( 1

U
exp

[
−λUα̃

(
ω +

1

θ̃
− 1

U

)]
dU

)
dθ̃.

(3.55)

We note that in the first range the integral will be o(1) as λ → ∞, since ω + θ̃−1 + U−1 < K

whenever θ̃ ≤ θ̃/[1 + θ̃(ω − K)], and thus α̃(ω) ∼ (
√
K −

√
ω)2 may be used to approximate
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the integrand. In the second integral α̃ will be exponentially small, and we may approximate

exp(−λUα̃) ∼ 1. Hence we obtain

Q2 ∼
Kρ

λ

1

2πi

∫
Br

eS̃θ̃

θ̃2

∫ θ̃

θ̃
1+θ̃(ω−K)

1

U
dU dθ̃

=
Kρ

λ

1

2πi

∫
Br

eS̃θ̃

θ̃2
log
[
1 + θ̃(ω −K)

]
dθ̃.

(3.56)

Putting 3.50 and 3.56 together, we hence obtain

P (S̃, ω) ∼ K − S̃

λ
+
λ−7/4S̃1/4

2
√
πK3/4

ω3/2 exp

(
−λK

ω

)
exp

(
2
√
λ
√
S̃K

ω

)
e−S/ω

− e−λ

λ

K

2πi

∫
Br

eθ̃S̃

θ̃2
log[1 + θ̃(ω −K)] dθ̃, S =

S̃

λ
= O(λ−1). (3.57)

Note that for ω > K and S̃ > 0 we have P (S, t) − (K − S) ∼ Q1, as the integral in 3.57 is

roughly of order O(e−λ) while roughly Q1 = O(exp(−λK/ω)).

For the case where S = O(λ−2), we scale

θ = − 1

ω
+ U (3.58)

in 3.11 to obtain

Q1 ∼
1

2πi
exp

(
−λS
ω
− λK

ω

)∫
Br

eλSUeλK/(ω
2U)

(U − 1
ω )2

dU. (3.59)
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After further scaling

S =
R

λ2
, U = λν (3.60)

we obtain

Q1 ∼
1

λ2
exp

(
−Kλ

ω

)
1

2πi

∫
Br

eRνeK/(ω
2ν)

ν2
dν. (3.61)

Evaluating the contour integral in 3.61 as a modified Bessel function, we obtain

Q1 ∼ exp

(
−Kλ

ω

)
1

λ2
ω

√
R√
K

I1

(
2

√
KR

ω2

)
, S =

R

λ2
= O(λ−2). (3.62)

Note that if ω = K + Λ/λ, then 3.62 agrees with 3.45, so that the latter is a special case of

3.62.

Now we proceed to analyze Q2 for S = O(λ−2). On this scale Q2 does not experience a

transition and the result can be obtained by simply expanding 3.56 for S = S̃/λ → 0. By

expanding the integrand in 3.56 for θ large we obtain

Q2 ∼
Kρ

λ2
R[log(ω −K)−R logR+ log λ+ 1− γ]. (3.63)

Combining 3.62 and 3.63, we obtain on the S = O(λ−2) scale

P (S, t) ∼ K − S + exp

(
−Kλ

ω

)
1

λ2
ω

√
R√
K

I1

(
2

√
KR

ω2

)

− Kρ

λ2
R[log(ω −K)−R logR+ log λ+ 1− γ], S =

R

λ2
= O(λ−2). (3.64)
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Note that for R > 0 we still have P (S, t) − (K − S) ∼ Q1 as Q1 � Q2. But when S (and

hence R) becomes exponentially small, of the order of α(t) in 2.19, Q1 and Q2 will become of

comparable magnitude.

Finally we need to analyze near the free boundary α(t), where S = O(α). We return to

2.12 and 2.13 and scale z → z/ρ to obtain

P (S, t)− (K − S) =
Kρ

2πi

∫
Br

eSθ

θ2

∫ ∞
θ

1

z + ρ
exp

[
−zα

(
t+

1

ρ
log

(
θ + ρ

θ

z

z + ρ

))]
dz dθ.

(3.65)

In 3.65 we expand the argument α for small ρ using

α

[
t+

1

ρ
log

(
θ + ρ

θ

z

z + ρ

)]
= α

(
t+

1

θ
− 1

z
+O

( ρ
θ2
,
ρ

z2

))
(3.66)

Then we scale S to be small, with S = O(α), and scale θ and z to be large, with θ = O(α−1)

and z = O(α−1). Thus we introduce (U, θ′, z′) where

S = α(t)(U + 1), θ =
θ′

α(t)
, z =

z′

α(t)
. (3.67)

Then using the asymptotic relation α(t + 1/θ − 1/z + O(ρ)) ∼ α(t) we obtain from 3.66 and

3.67

P (S, t)− (K − S) ∼ αρK 1

2πi

∫
Br

e(U+1)θ′

(θ′)2

(∫ ∞
θ′

e−z
′

z′
dz′

)
dθ′. (3.68)
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By setting z′ = θ′W we can explicitly evaluate the integral in 3.68 as

P (S, t)− (K − S) ∼ αρK 1

2πi

∫
Br

e(U+1)θ′

(θ′)2

(∫ ∞
1

e−θ
′W

W
dW

)
dθ′

= αρK

∫ ∞
1

1

W

[
1

2πi

∫
Br

e(U+1−W )θ′

(θ′)2
dθ′

]
dW

= αρK

∫ ∞
1

U + 1−W
W

1{U+1>W} dW

= αρK

∫ U+1

1

(
U + 1

W
− 1

)
dW

= αρK[(U + 1) log(U + 1)− U ].

(3.69)

Here 1{·} is the indicator function.

To summarize, on the scale t = ω/λ = O(λ−1), ω > K, and S = O(α), we have obtained

3.69, which in terms of S becomes

P (S, t) ∼ K − S + ρKS logS − ρKS logα− ρKS + αρK, (3.70)

where α(t) is now asymptotically given by 2.19.

3.3 Analysis for t = O(1)

We next consider the time scale t = O(1). In this regime, the expansions in 3.25 and 3.26

are no longer valid, and we will need to consider the two spatial scales S = O(1) and S = O(α).
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For t = O(1) and S = O(1), we re-consider Q1 in 3.6, expand the integrand for ρ→ 0, and

keep the leading two terms to obtain

Q1 =
1

2πi

∫
Br

eSθ

θ2
exp

(
− Kθ

1 + tθ

)
dθ + ρ

Kt

2πi

∫
Br

eSθ

θ2

1 + tθ
2

(1 + tθ)2
exp

(
− Kθ

1 + tθ

)
dθ +O(ρ2),

(3.71)

For t = O(1) the free boundary α is exponentially small, as given by 2.20, and thus in the

integrand for Q2 in 3.5 we may approximate exp(−ρzα) ∼ 1 to obtain

Q2 ∼
Kρ

2πi

∫
Br

eSθ

θ2

[
log

(
θ

ρ
+ 1

)
− log

(
θ

(θ + ρ)eρt − θ
+ 1

)]
dθ. (3.72)

Using the relation

log

(
θ

ρ
+ 1

)
− log

(
θ

(θ + ρ)eρt − θ
+ 1

)
= log(1 + tθ) +O(ρ), (3.73)

we obtain the leading term for Q2 as

Q2 ∼
Kρ

2πi

∫
Br

eSθ

θ2
log(1 + tθ) dθ. (3.74)

We note that Q2 = O(ρ) and is thus comparable to the correction term in 3.71.
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To summarize, by using 3.71 and 3.74 in 3.4, we have obtained for S, t > 0

P (S, t) ∼ K − S +
1

2πi

∫
Br

eSθ

θ2
exp

(
− Kθ

1 + tθ

)
dθ

+ ρ
Kt

2πi

∫
Br

eSθ

θ2

1 + tθ
2

(1 + tθ)2
exp

(
− Kθ

1 + tθ

)
dθ

− ρ K
2πi

∫
Br

eSθ

θ2
log(1 + tθ) dθ.

(3.75)

The expansion in 3.75 ceases to be valid for small values of S, since the last terms behave

as O(ρS logS) and if S is sufficiently small this becomes comparable to the O(1) leading term

in 3.75. For S = O(α) we again set S = α(U + 1) where now α(t) is given asymptotically by

2.20, and a calculation completely analogous to 3.69 shows that 3.69 and 3.70 remain valid

as long as we use 2.20 to compute α(t).

3.4 Analysis for t = v/ρ = O(ρ−1)

For the large time behavior of P (S, t), on the scale t = v/ρ = O(ρ−1), there are two spatial

scales to consider, namely S = O(ρ−1) and S = O(α). For the former, we scale

t =
v

ρ
, S =

Ω

ρ
, θ = ρθ̂ (3.76)
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and use 3.76 in 3.6 to obtain

Q1 =
1

ρ

1

2πi

∫
Br

eΩθ̂

θ̂2
exp

[
− ρKθ̂

(θ̂ + 1)ev − θ̂

]
dθ̂

=
1

ρ

1

2πi

∫
Br

eΩθ̂

θ̂2

[
1− ρKθ̂

(θ̂ + 1)ev − θ̂
+O(ρ2)

]
dθ̂

=
1

ρ

1

2πi

∫
Br

eΩθ̂

θ̂2
dθ̂ − 1

2πi

∫
Br

eΩθ̂

θ̂2

Kθ̂

(θ̂ + 1)ev − θ̂
dθ̂ +O(ρ)

=
Ω

ρ
− K

2πi

∫
Br

eΩθ̂

θ̂

1

(θ̂ + 1)ev − θ̂
dθ̂ +O(ρ)

=
Ω

ρ
−Ke−v +Ke−v exp

(
− Ω

1− e−v

)
+O(ρ).

(3.77)

For Q2, we use the scaling in 3.76 in the integral in 3.5. The free boundary α is still expo-

nentially small, as given in 2.21, and thus in the integrand for Q2 we may again approximate

exp(−ρzα) ∼ 1 to obtain

Q2 ∼
K

2πi

∫
Br

eΩθ̂

θ̂2

[
log(θ̂ + 1)− log

(
θ̂

(θ̂ + 1)ev − θ̂
+ 1

)]
dθ̂

=
K

2πi

∫
Br

eΩθ̂

θ̂2
log

[
(θ̂ + 1)ev − θ̂

ev

]
dθ̂

=
K

2πi

∫
Br

eΩθ̂

θ̂2
log[(θ̂ + 1)− θ̂e−v] dθ̂.

(3.78)

To summarize, by using 3.77 and 3.78 in 3.4, we have obtained on the scale S = Ω/ρ, t =

v/ρ for ρ small,

P (S, t) ∼ K −Ke−v +Ke−v exp

(
− Ω

1− e−v

)
− K

2πi

∫
Br

eΩθ̂

θ̂2
log[(θ̂ + 1)− θ̂e−v] dθ̂. (3.79)
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Note that for S, t = O(ρ−1), both Q1 − Ω/ρ and Q2 are O(1), and so is P (S, t). On the

large/space time scales S, t = O(ρ−1) the relation P (S, t) ∼ K − S no longer holds.

The expansion in 3.79 ceases to be valid for small values of Ω. For S = O(α) (thus

Ω = O(ρα)) we once more set S = α(U + 1) where now α(t) is given asymptotically in 2.21,

and an argument analogous to that for the time scales t = O(λ−1) with ω > K and t = O(1)

shows that 3.69 and 3.70 remain valid as long as 2.21 is used to asymptotically compute

α(t) = α(v/ρ).



CHAPTER 4

PERTURBATION METHODS

We next re-examine the free boundary α(t) and option price P (S, t), by using singular

perturbation methods to analyze the basic boundary value problem, which we repeat below:

Pt = SPSS + ρSPS − ρP ; t > 0, S > α(t) (4.1)

P (S, 0) = max(K − S, 0), P (∞, t) = 0 (4.2)

P (α(t), t) = K − α(t), PS(α(t), t) = −1. (4.3)

We shall analyze 4.1 - 4.3 for increasing ranges of time t, starting with t = O(λ−1) =

O
(
[log(1/ρ)]−1

)
and ending with the large time scale t = O(ρ−1). Within each time range it

will be necessary to analyze several different ranges of S, including boundary layers near the

free boundary where S ∼ α(t).

4.1 Analysis for t = ω/λ, for 0 < ω < K

On this time scale, we make a change of variables

P (S, t) = K − S + P̃ (S, ω), (4.4)

45
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where P̃ (S, ω) satisfies the following boundary value problem

λP̃ω = S ˜PSS + e−λSP̃S − e−λP̃ − e−λK (4.5)

P̃ (S, 0) = max(S −K, 0). (4.6)

We shall consider the boundary conditions in 4.3 later.

For S > α(t), we employ the ray method (13) by assuming an expansion of the form

P̃ (S, ω) ∼ λνL(S, ω)eλφ(S,ω). (4.7)

We make the assumption that −1 < φ < 0, so that P̃ � e−λ, the inhomogeneous term (= −ρK)

in 4.5 will be negligible, and, up to an exponentially small error, 4.5 becomes λP̃ω ∼ SP̃SS .

Moreover, ν is a constant that will be determined by appropriate matching conditions. Using

4.7 in 4.5, we obtain the eikonal equation for φ

φω = φ2
SS (4.8)

and the transport equation for L

Lω = 2SφSLS + SφSSL. (4.9)
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We shall consider two solutions to 4.8, corresponding to two different ray families. The first

family corresponds to rays that start from ω = 0, and the corresponding solution must satisfy

the boundary condition in 4.6. Then φ(S, 0) = 0 and L(S, 0) = max(S − K, 0), with ν = 0.

The rays from ω = 0 are vertical lines and they lead to the asymptotic solution P̃I

P̃I(S, ω) ∼ max(S −K, 0). (4.10)

The second ray family corresponds to rays that start at the point (S, ω) = (K, 0). These rays

are given by

bω2 = (
√
K −

√
S)2, (4.11)

where the parameter b indexes the family. They lead to the solution

φ(S, ω) = −(
√
K −

√
S)2

ω
. (4.12)

Using 4.12 in 4.9, we find that the most general solution to 4.9 is

L(S, ω) = f

(
(
√
S −
√
K)2

ω2

)
S1/4

√
ω

(4.13)

where f(·) will be determined later by asymptotic matching conditions. Superimposing the

solutions for the two ray families, we have thus shown that

P̃ (S, ω) ∼ S −K + λνf

(
(
√
S −
√
K)2

ω2

)
S1/4

√
ω
eλφ(S,ω), S > K (4.14)
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and

P̃ (S, ω) ∼ λνf

(
(
√
S −
√
K)2

ω2

)
S1/4

√
ω
eλφ(S,ω), S < K. (4.15)

We next determine f(·) and ν, by considering another scale, near the “corner” (S, ω) =

(K, 0). We consider the scaling

ω =
t̃

λ
, S = K +

V

λ
, P̃ (S, ω) ∼ 1

λ
P∗(V, t̃). (4.16)

To leading order, 4.5 and 4.6 yield

∂P∗

∂t̃
= K

∂2P∗
∂V 2

(4.17)

P∗(V, 0) = max(V, 0). (4.18)

This is a standard heat equation, whose solution is given by

P∗(V, t̃) =
1√

4πKt̃

∫ ∞
0

exp

[
−(V − V ′)2

4Kt̃

]
V ′ dV ′. (4.19)

By setting

V ′ = V + 2
√
Kt̃ ξ (4.20)

we can rewrite 4.19 as

P∗(V, t̃) =
V√
π

∫ ∞
− V

2
√
Kt̃

e−ξ
2
dξ +

√
Kt̃√
π

exp

[
− V 2

4Kt̃

]
. (4.21)
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We match the expansion on the (V, t̃) scale to the ray expansion 4.15 for S < K. The matching

to 4.14 for S > K will then be automatically satisfied. We thus consider an intermediate limit

where S → K, ω → 0, but with V → −∞, t̃ → ∞. Expanding 4.15 for (S, ω) → (K, 0) and

setting S = K + V/λ yields

P̃ (S, ω) ∼ λνf
(

V 2

4Kt̃2

)
K1/4

(
λ

t̃

)1/2

exp

(
− V 2

4Kt̃

)
. (4.22)

For (V, t̃)→ (−∞,∞), 4.21 shows that

1

λ
P∗(V, t̃) ∼

1

4λ
e−

V 2

4Kt̃

(
2
√
Kt̃

V

)3
V√
π
. (4.23)

By comparing 4.22 to 4.23, we determine ν and f(·) as

ν = −3

2
, f(z) =

1

z

K1/4

2
√
π
. (4.24)

Hence our final expansions for P = P̃ +K − S are for ω > 0

P (S, t) ∼ K − S +
λ−3/2(SK)1/4

2
√
π

ω3/2

(
√
S −
√
K)2

exp

[
−λ
ω

(
√
S −
√
K)2

]
, S < K (4.25)

and

P (S, t) ∼ λ−3/2

2
√
π

(SK)1/4ω3/2

(
√
S −
√
K)2

exp

[
−λ
ω

(
√
S −
√
K)2

]
, S > K. (4.26)
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For ω = O(λ−1) (thus t = O(λ−2)) and S − K = O(λ−1) we must use 4.16 and 4.21.

The above analysis does not apply in the case where S = K, since 4.25 and 4.26 develop

singularities there. For ω > 0 we construct a transition layer of thickness O(λ−1/2). As such,

we scale

S = K +
ζ√
λ
, P (S, t) ∼ 1√

λ
P(ζ, ω), (4.27)

and to leading order the PDE in 4.1 becomes

Pω = KPζζ . (4.28)

The initial condition becomes P(ζ, 0) = −ζ for ζ < 0, with P(ζ, 0) = 0 for ζ > 0. We can

construct a solution that matches to 4.25 as S ↑ K and to 4.26 as S ↓ K by using the similarity

variable u = ζ/
√
ωK. We thus set

P(ζ, ω) = ζf0

(
ζ√
ωK

)
= ζf0(u) (4.29)

which leads to the second order ODE

f ′′0 (u) +
2

u
f ′0(u) +

2

u
f ′0(u) = 0. (4.30)

Solving 4.30 for f0(·), we obtain

f0(u) = C

∫ ∞
u

1

u2
e−

u2

4 du, ζ > 0, (4.31)
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and this can be continued to the range ζ < 0. The constant C is fixed by matching 4.31 to

4.25 in the intermediate limit ζ →∞ and S → K. By expanding 4.25 for S → K we conclude

that

P ∼ 2K
3
2ω

3
2

√
πζ2

exp

(
− ζ2

4ωK

)
. (4.32)

By expanding 4.31 for ζ →∞ we see that 4.32 holds provided that C = 1/
√
π. We thus have

P(ζ, ω) =
ζ√
π

∫ ∞
ς√
ωK

1

u2
e−

u2

4 du, ζ > 0, (4.33)

and hence, after integrating by parts, the expansion for P for S−K = O(λ−1/2) can be written

as

P (S, t) ∼ 1√
λ

1√
π

[
√
ωKe−

ζ2

4ωK − ζ

2

∫ ∞
ζ√
ωK

e−
u2

4 du

]
, (4.34)

and this applies for all ζ.

The ray expansion for S < K does not satisfy the boundary conditions in 4.3 at the free

boundary. Hence we construct a boundary layer correction to it. In this layer we use the scaling

α(t) = α∗(ω), S − α(t) =
v

λ
, P (S, t) ∼ K − S +

ρ

λ2
P0(v, ω). (4.35)

To leading order we obtain from 4.5

0 = α∗(ω)P0,vv + α′∗(ω)P0,v −K. (4.36)
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Here we used ∂S ∼ λ∂v and ∂ω ∼ λα′∗(ω)∂v and we note that the forcing term −ρK = −e−λK

now appears in 4.36, whereas this was negligible in the ray expansions. From 4.3 and 4.4 we

obtain the boundary conditions

P0(0, ω) = P0,v(0, ω) = 0. (4.37)

The solution to 4.36 and 4.37 is

P0(v, ω) =
Kv

α′∗(ω)
+

{
exp

[
−α′∗(ω)v

α∗(ω)

]
− 1

}
α∗(ω)K

(α′∗(ω))2
. (4.38)

For v →∞ and α′∗(ω) < 0 we obtain from 4.38

ρ

λ2
P0 ∼

ρ

λ2

α∗(ω)K

(α′∗(ω))2
exp

[
−α′∗(ω)v

α∗(ω)

]
. (4.39)

By matching (ρ/λ2)P0 for v →∞ to the expansion of P̃ (S, ω) for S > K, with S = α∗(ω)+v/λ,

we conclude that 4.39 must agree with

λ−3/2(α∗(ω)K)1/4

2
√
π

ω3/2

(
√
α∗(ω)−

√
K)2

exp

[
−λ
ω

(√
α∗(ω) +

v

λ
−
√
K

)2
]
. (4.40)

Using
√
α∗(ω) + u/λ =

√
α∗(ω) + (1/2)λ−1v/

√
α∗(ω) + O(λ−2) we compare the exponential

orders of magnitude of 4.39 and 4.40 to conclude that

ρ = e−λ ∼ exp

[
−λ
ω

(
√
α∗(ω)−

√
K)2

]
(4.41)
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so that (for ω < K)

α∗(ω) ∼ (
√
K −

√
ω)2. (4.42)

This is consistent up to leading order with the asymptotic approximation for the free boundary

α(t) on the t = ω/λ scale for ω < K in 2.14. Moreover, 4.42 is consistent with

α′∗(ω)

α∗(ω)
v ∼ 1

ω

√
α∗(ω)−

√
K

α∗(ω)
u, (4.43)

so that the functional dependence on v is asymptotically the same in 4.39 and 4.40. By refining

the matching between 4.39 and 4.40 we obtain a three term approximation of the form

α∗(ω) = α
(0)
∗ (ω) +

log λ

λ
α

(1)
∗ (ω) +

1

λ
α

(2)
∗ (ω) + o

(
1

λ

)
, (4.44)

where α
(0)
∗ is as in 4.42 and α

(1)
∗ and α

(2)
∗ are determined successively by substituting 4.44 in

both 4.39 and 4.40 and matching like order terms in λ. By doing this, we obtain

α
(1)
∗ (ω) =

1

2
(ω −

√
Kω) (4.45)

and

α
(2)
∗ (ω) =

1

2

√
Kω − ω

2
log

[
4πK2ω

K −
√
Kω

]
. (4.46)
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To summarize, for S − α(t) = v/λ = O(λ−1) we have obtained

P (S, t) ∼ K − S +
ρ

λ2

[
Kv

√
ω

√
ω −
√
K

+Kω

{
exp

(
v

√
ω(
√
K −

√
ω)

)
− 1

}]
. (4.47)

This concludes the analysis of the time scale t = O(λ−1).

4.2 Analysis for t = K/λ + O(λ−2), or ω = K + O(λ−1)

We next consider the ranges where ω ≈ K (or t ≈ K/λ). As ω ↑ K the expansion in 4.44

breaks down since the leading term has a double zero at ω = K while the second term has

a simple zero. When ω − K = O(λ−1) all of the three terms in 4.44 become of comparable

magnitude, which suggests that the appropriate scaling is ω −K = O(λ−1) and that the free

boundary should then be scaled as α = O(λ−2). We thus introduce the scaling

t =
K

λ
+

Λ

λ2
, ω = K +

Λ

λ
(4.48)

and then set

α(t) ∼ F(Λ)

λ2
, S =

R

λ2
=
F(Λ) +W

λ2
, P (S, t) ∼ K − S +

ρ

λ2
Q̃(W,Λ). (4.49)

We note that, as was the case when ω < K and S < K, P (S, t) ∼ K − S with a correction

term that is O(ρ/λ2) = O(e−λ/λ2). The ray expansions in 4.25 and 4.26 remain valid for any

ω > 0, and we shall see that only the boundary layer near S = α(t) breaks down (cf. 4.47) as

ω ↑ K.
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Using 4.49 in 4.1 we obtain to leading order the following PDE for Q̃

Q̃Λ −F ′(Λ)Q̃W = [W + F(Λ)]Q̃WW −K, (4.50)

with the boundary conditions

Q̃(0,Λ) = Q̃W (0,Λ) = 0. (4.51)

We introduce the Laplace transform

Q(φ,Λ) =

∫ ∞
0

e−WφQ̃(W,Λ) dW, (4.52)

and apply 4.52 to 4.50 and 4.51 to obtain

QΛ + φ2Qφ = [φF ′(Λ) + φ2F(Λ)− 2φ]Q− K

φ
. (4.53)

Since 4.53 is a first order PDE, we employ the method of characteristics, and obtain the

characteristic equations as

Λ̇ = 1, φ̇ = φ2 (4.54)

whose solution is given by

φ =
1

c− u
, Λ = u. (4.55)
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Here u measures how far we are along a particular characteristic and c indexes the family of

curves. Using 4.55 in 4.53, we rewrite the PDE in terms of u and c, and obtain

d

du
Q =

(
F ′(u)

c− u
+

1

(c− u)2
F(u)− 2

c− u

)
Q−K(c− u). (4.56)

After rewriting this as an exact differential

d

du

[
exp

(
−F(u)

c− u

)
1

(c− u)2
Q

]
= − K

c− u
exp

(
−F(u)

c− u

)
, (4.57)

we solve 4.57 for Q to obtain

Q = (c− u)2 exp

(
F(u)

c− u

)∫ h(c)

u

K

c− η
exp

(
−F(η)

c− η

)
dη, (4.58)

where h(c) is an arbitrary function. From 4.55, we obtain c = Λ + 1/φ. Hence using the

original variables (φ,Λ) in 4.58, we finally obtain, after the change of variables η → c− 1/η,

Q(φ,Λ) =
K

φ2
eφF(Λ)

∫ (c−h(c))−1

φ

1

η
exp

[
−ηF

(
Λ +

1

φ
− 1

η

)]
dη. (4.59)

To have acceptable behavior as φ→∞ we must choose h(c) = c so that

Q(φ,Λ) =
K

φ2
eφF(Λ)

∫ ∞
φ

1

η
exp

[
−ηF

(
Λ +

1

φ
− 1

η

)]
dη. (4.60)
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Inverting the Laplace transform in 4.52 using

Q̃(W,Λ) =
1

2πi

∫
Br
eWφQ(φ,Λ) dφ (4.61)

and 4.59, and setting R = W + F(Λ) (recall that S = R/λ2), we obtain

Q̃(R,Λ) =
K

2πi

∫
Br

eRφ

φ2

{∫ ∞
φ

1

η
exp

[
−ηF

(
Λ +

1

φ
− 1

η

)]
dη

}
dφ, (4.62)

where we now view Q̃ as a function of R rather than W . After the shift η → φ + η, 4.62

becomes

Q̃(R,Λ) =
K

2πi

∫
Br

eRφ

φ2

{∫ ∞
0

1

φ+ η
exp

[
−(φ+ η)F

(
Λ +

1

φ
− 1

φ+ η

)]
dη

}
dφ. (4.63)

It remains to determine the function F(Λ). To this end we shall use an asymptotic matching

argument to characterize F as the solution of an integral equation. We first note that by setting

ω = K + Λ/λ in 4.44 and expanding for λ→∞, we conclude that

F(Λ) ∼ Λ2

4K
+

Λ

4
log(−Λ)− Λ

4
log(8πK3), Λ→ −∞, (4.64)

which is the asymptotic matching condition for the free boundary. This will ensure that the

expansion 4.44 matches to F(Λ)/λ2 in the intermediate limit where ω ↑ K and Λ = λ(ω−K)→

−∞.
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We shall apply asymptotic matching to the difference P (S, t)− (K − S) in the limit where

R → ∞ and Λ → −∞, with ω ↑ K and S → 0. In the transform domain this will correspond

to the limit Λ→ −∞ and φ→ 0+ with Λ + 1/φ fixed. By recalling that 4.25 can be written as

P (S, t)− (K −S) = P̃ (S, ω), and setting S = R/λ2 and ω = K + Λ/λ2, in the matching region

we have

P̃ (S, ω) ∼ e−λ

λ2
eΛ/KR

1/4K3/4

2
√
π

exp

(
2
√
R√
K

)
(4.65)

and thus

Q̃(R,Λ) ∼ eΛ/KR
1/4K3/4

2
√
π

exp

(
2
√
R√
K

)
, R→∞, Λ→ −∞. (4.66)

Next we apply a Tauberian-like argument to obtain the analogous matching condition in

the (φ,Λ) variables. If a function g(R) has as R→∞ the sub-exponential behavior

g(R) ∼ CeA
√
RRB, R→∞ (4.67)

with A > 0 and B, C are constants, its Laplace transform ĝ(φ) behaves as

ĝ(φ) =

∫ ∞
0

e−φRg(R) dR ∼ C
√
πA1+2B

4Bφ2B+ 3
2

exp

(
A2

4φ

)
, φ→ 0+. (4.68)

This can be seen, for example, by using 4.67 in ĝ(φ) =
∫∞

0 e−φRg(R) dR and evaluating the

resulting integral for φ→ 0+ by the Laplace method. Applying this argument to 4.66 with

A =
2√
K
, B =

1

4
, C =

eΛ/KK3/4

2
√
π

(4.69)
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we conclude that

Q(φ,Λ) ∼ 1

φ2
exp

(
1

K

(
Λ +

1

φ

))
, (4.70)

for Λ→ −∞, φ→ 0+ with Λ + 1/φ fixed. Using 4.63 we see that in this limit

e
1
K

(Λ+ 1
φ

) ∼ K
∫ ∞

0

1

φ+ η
exp

[
−(φ+ η)F

(
Λ +

1

φ
− 1

φ+ η

)]
dη. (4.71)

Expression 4.71 can be further simplified by writing the integral over 0 < η < ∞ as an

integral over −φ < η < ∞, minus an integral over −φ < η < 0. Thus the right side of 4.71

becomes, after some elementary substitutions,

K

∫ ∞
0

1

η
exp

[
−ηF

(
Λ +

1

φ
− 1

η

)]
dη −K

∫ φ

0

1

η
exp

[
−ηF

(
Λ +

1

φ
− 1

η

)]
dη. (4.72)

But, for φ → 0+ and Λ + 1/φ = O(1) the argument of F(·) in the second integral is negative

and large, so that 4.64 can be used to show that this integral is negligible compared to the

first integral in 4.72. Thus from 4.71 and 4.72 we conclude that F(·) must satisfy the integral

equation

1

K
e
Z
K =

∫ ∞
0

1

η
exp

[
−ηF

(
Z − 1

η

)]
dη, −∞ < Z <∞. (4.73)

Note that if we set η = ξ, Z = −νK2, then 4.73 is consistent with the result in 2.16.
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Using 4.73 and 4.72 in 4.63 we thus summarize our results on the scale S = R/λ2 = O(λ−2)

and ω −K = Λ/λ = O(λ−1), as

P (S, t) ∼ K − S +
e−λ

λ2

1

2πi

∫
Br

1

φ2
exp

(
Rφ+

1

Kφ
+

Λ

K

)
dφ

− e−λ

λ2

K

2πi

∫
Br

eRφ

φ2

{∫ φ

0

1

η
exp

[
−ηF

(
Λ +

1

φ
− 1

η

)]
dη

}
dφ

(4.74)

with F(·) satisfying 4.73. The first integral in 4.74 may be evaluated explicitly as a Bessel

function, using

1

2πi

∫
Br

1

φ2
exp

(
Rφ+

1

Kφ
+

Λ

K

)
dφ = eΛ/K

√
KR I1

(
2
√
R√
K

)
. (4.75)

Finally, we can use 4.74 to verify the asymptotic matching, now for a fixed Λ, between the

ray expansion in 4.25 and the expansion in 4.74. By setting ω = K + Λ/λ in 4.25, expanding

first for λ → ∞ and then for S → 0, we again obtain 4.65. For R → ∞ with Λ = O(1) the

second integral in 4.74 is again negligible and the first integral can be expanded using 4.75

and the formula

I1(z) ∼ 1√
2πz

ez, z →∞. (4.76)

This verifies the matching for S → 0 and λ2S = R→∞ with Λ fixed, i.e, the matching in the

spatial variables on the present time scale.
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4.3 Analysis for t = ω/λ, for K < ω < ∞

Next we consider t = ω/λ = O(1/λ) with now ω > K. We shall see that in this time range

the free boundary α(t) will become exponentially small in ρ as ρ → 0. We also note that for

Λ→∞ we can evaluate asymptotically the integral in 4.73 to show that

1

λ2
F(Λ) ∼ 1

λ2
Λe−γ exp

[
− 1

K
eΛ/K

]
, Λ→∞, (4.77)

and this will yield an asymptotic matching condition for the free boundary on the present time

scale. The rapid, double exponential, decay of F(Λ) also suggests that, for ω > K, α(t) will

become very small (in ρ).

For the time range K < ω < ∞ it will be necessary to analyze several spatial scales,

specifically S = O(1), S = O(λ−1), S = O(λ−2), and S = O(α(t)). Asymptotic matching

arguments relating the last two scales will be used to ultimately derive an equation for α(t) =

α(ω/λ).

When S = O(1) the ray expansions in 4.25 and 4.26 still apply, as does the transition layer

for S −K = O(λ−1/2) in 4.34. We recall that the ray expansion in 4.7 does not account for

the inhomogeneous term (= −ρK = −e−λK) in 4.5, since φ(S, ω) = −(
√
S −
√
K)2/ω > −1.

In fact the inhomogeneous term would not affect higher order correction terms to 4.7, which

would involve powers of λ−1. However, for sufficiently small S the forcing term in 4.5 will

become important, and must be considered to determine α(t).
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We thus consider the scale S = O(λ−1), set S = S̃/λ and write the solution as

P (S, t) = K − S + P̄ (S̃, ω). (4.78)

Using 4.78 in 4.5 we find that

λP̄ω = λS̃P̄S̃S̃ + e−λ(S̃P̄S̃ − P̄ )−Ke−λ. (4.79)

Now we write

P̄ (S̃, ω) = P̄ hom(S̃, ω) + P̄ part(S̃, ω) (4.80)

where hom/part denote homogeneous and particular solutions to the PDE in 4.79, which

asymptotically satisfy

P̄ hom
ω = S̃P̄ hom

S̃S̃
+O

(
e−λ

λ
P̄ hom

)
(4.81)

and

P̄ part
ω = S̃P̄ part

S̃S̃
−Ke−λ

λ
+O

(
e−λ

λ
P̄ part

)
. (4.82)

The analysis of 4.81 can again be done by using the ray method, but this will be the same as

simply expanding 4.25 for S → 0, so that

P̄ hom(S̃, ω) ∼ λ−7/4S̃1/4

2
√
πK3/4

ω3/2 exp

(
−λK

ω

)
exp

(
2
√
λ
√
S̃K

ω

)
e−S̃/ω. (4.83)
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From 4.82 we scale the particular solution to be O(e−λ/λ) so we set

P̄ part(S̃, ω) ∼ e−λ

λ
H(S̃, ω) (4.84)

where H will satisfy

Hω = S̃HS̃S̃ −K; S̃ > 0, ω > K. (4.85)

To solve 4.85 we need to impose initial and boundary conditions, or use asymptotic matching

to the previous time range. We shall see that the two arguments lead to identical solutions for

H. First we argue that P̄ in 4.80 should vanish as S̃ → 0, since it must vanish at the free

boundary and the latter will be asymptotically small. Then, by 4.83, P̄ hom = 0 at S̃ = 0 so

that P̄ part must also vanish and hence

H(0, ω) = 0, ω > K. (4.86)

Since the particular solution did not play a role in the time range ω ∼ K, we also argue that

H(S̃,K) = 0, S̃ > 0. (4.87)

With 4.86 and 4.87 the solution to 4.85 is uniquely determined.

We solve 4.85 using a Laplace transform over the spatial variable S̃, setting

Ĥ(θ̃, ω) =

∫ ∞
0

e−θ̃S̃H(S̃, ω) dS̃. (4.88)
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Using 4.88 along with 4.86 in 4.85 leads to

Ĥω + θ̃2Hθ̃ + 2θ̃Ĥ = −K
θ̃
, ω > K. (4.89)

Using the method of characteristics we find that the most general solution to 4.89 is

Ĥ(θ̃, ω) =
K

θ̃2

[
log

(
1

θ̃

)
+ f

(
ω +

1

θ̃

)]
(4.90)

where f(·) is an arbitrary function. Then the boundary condition given in 4.87 implies that

Ĥ(θ̃, K) = 0 so that f(z) = − log(z −K) and hence

Ĥ(θ̃, ω) = −K
θ̃2

log[1 + θ̃(ω −K)]. (4.91)

Then inverting the transform and combining 4.84 with 4.83 we have, for S = S̃/λ = O(λ−1),

P (S, t) ∼ K − S̃

λ
+
λ−7/4S̃1/4

2
√
πK3/4

ω3/2 exp

(
−λK

ω

)
exp

(
2
√
λ
√
S̃K

ω

)
e−S/ω

− e−λ

λ

Kρ

2πi

∫
Br

eθ̃S̃

θ̃2
log[1 + θ̃(ω −K)] dθ̃. (4.92)

Here <(θ̃) > 0 on the Bromwich contour Br.

Next we give an alternate argument for solving 4.85. We asymptotically match the ex-

pansion on the (S̃, ω) scale to that on the (R,Λ) scale, in an intermediate limit that has
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S̃ → 0, ω → K with R = λS̃ →∞,Λ→∞. On the (R,Λ) scale the expansion for P − (K − S)

follows from 4.74 and 4.75. As R→∞

e−λ

λ2
eΛ/K

√
KR I1

(
2
√
R√
K

)
=
e−λ

λ2
eΛ/K

√
λKS̃ I1

(
2
√
λS̃√
K

)

∼ e−λeΛ/K 1

2
√
π
λ−7/4S̃1/4K3/4 exp

(
2
√
λS̃√
K

)
(4.93)

so that the first integral in 4.74 will match to the ray expansion, or to P̄ hom, in 4.83. Thus

the second integral in 4.74 must match to P̄ part so that as S̃ → 0, ω → K

H(S̃, ω) ∼ − 1

λ

Kρ

2πi

∫
Br

eRφ

φ2

{∫ φ

0

1

η
exp

[
−ηF

(
Λ +

1

φ
− 1

η

)]
dη

}
dφ (4.94)

where the right side of 4.94 is to be expanded as R→∞ with Λ→∞.

Now consider the inner integral in 4.94 for φ→ 0. We break up the integration range [0, φ]

into [0, φ/(1 + Λφ)] and [φ/(1 + Λφ), φ]. In the first subinterval Λ + 1/φ− 1/η < 0 and we can

use the approximation in 4.64 to show that the integral over the first range is negligible. In

the second range we will typically have Λ + 1/φ− 1/η large and positive, and then 4.77 shows

that F(·) will be exponentially small. Hence we have

∫ φ

0

1

η
exp

[
−ηF

(
Λ +

1

φ
− 1

η

)]
dη ∼

∫ φ

φ
1+Λφ

1

η
exp

[
−ηF

(
Λ +

1

φ
− 1

η

)]
dη

∼
∫ φ

φ
1+Λφ

dη

η
= log(1 + Λφ). (4.95)
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Using 4.95 in 4.94, scaling φ = θ̃/λ and recalling that Λ/λ = ω −K, 4.94 becomes

H(S̃, ω) ∼ −Kρ
2πi

∫
Br

eθ̃S̃

θ̃2
log[1 + θ̃(ω −K)] dθ̃; S̃ → 0, ω → K. (4.96)

Thus we must solve 4.85 subject to 4.96, but the right side of 4.96 is an exact solution to

4.85 and is thus the solution we seek. This shows that the same answer is obtained whether we

invoke the matching condition in 4.96 or the boundary/initial condition in 4.86 and 4.87.

Next we consider the scale S = O(λ−2) and as before we let S = R/λ2. We shall again

decompose P (S, t) − (K − S) = P̌ (R,ω) into a homogeneous solution P̌ hom and a particular

solution P̌ part. The latter can be obtained as a limiting case of P̄ part, for S̃ → 0. Letting S̃ → 0

in the integral in 4.92 corresponds to expanding the integrand for θ̃ →∞, so that

H(S̃, ω) = −Kρ
2πi

∫
Br

eθ̃S̃

θ̃2

[
log θ̃ + log(ω −K) +O

(
1

θ̃

)]
= −K[−S̃ log S̃ + S̃(1− γ) + S̃ log(ω −K) +O(S̃2)]

= −K
λ
R

[
1− γ + log(ω −K)− log

(
R

λ

)]
+O

(
R2

λ2

)
,

(4.97)

where γ is the Euler constant.

The expansion of P̌ hom can no longer be obtained by the ray method. Let us set

P̌ hom(R,ω) = exp

(
−λK

ω

)
λ−2G(R,ω). (4.98)
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Then if 4.98 as R→∞ is to asymptotically match to 4.83 as S̃ → 0 we must have

G(R,ω) ∼ R1/4K−3/4

2
√
π

ω3/2 exp

(
2

ω

√
KR

)
, R→∞. (4.99)

Using 4.98 we see that ∂ωP̌
hom(R,ω) ∼ λKω−2P̌ hom(R,ω) and hence on the (R,ω) scale

4.5 becomes to leading order

K

ω
G = RGRR. (4.100)

Note that again for ω > K, exp(−λK/ω)� e−λ = ρ so the forcing term in 4.5 does not appear

to leading order. Its effect we have already estimated by 4.97.

In 4.100 the time variable ω appears only as a parameter, and this differential equation can

be easily transformed into a Bessel equation, by setting

R =
ω2

K
θ, V = 2

√
θ, G =

V

2
G∗(V ). (4.101)

Using 4.101 in 4.100 we obtain

V 2G∗V V + V G∗V − (V 2 + 1)G∗ = 0 (4.102)
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which is a modified Bessel equation of order 1. We again expect that the free boundary will

be small and G must vanish when R hits the free boundary, so that G(0, ω) = 0 and thus

V G∗(V )→ 0 as V → 0. The solution to 4.102 is thus

G∗(V ) = C(ω)I1(V ) (4.103)

and hence

G(R,ω) = C(ω)
1

ω

√
RK I1

(
2

ω

√
RK

)
, (4.104)

where C(·) is an arbitrary multiplicative function of ω. Using 4.76 to expand 4.104 for R→∞

and imposing the matching condition in 4.99 we obtain

C(ω) = ω2K−1. (4.105)

To summarize, for S = R/λ2 = O(λ−2) we have obtained

P (S, t) ∼ K − R

λ2
+ exp

(
−λK

ω

)
1

λ2
ω

√
R

K
I1

(
2

ω

√
KR

)
(4.106)

− Ke−λ

λ2
R[1− γ + log(ω −K)− logR+ log λ]. (4.107)
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Since ω > K the term proportional to the Bessel function dominates the last term for all R > 0.

But as R→ 0 we use the fact that I1(z) ∼ z
2 as z → 0 to approximate 4.106 and we obtain

P (S, t)− (K − S) ∼ exp

(
−λK

ω

)
S −Ke−λS[1− γ + log(ω −K)− logS − log λ], (4.108)

which holds for S = O(λ−2), and for convenience we wrote the answer in terms of S rather

than R.

Up to now we have discussed the scales S = O(1), S = O(λ−1) and S = O(λ−2), but have

not determined the free boundary α(t). To this end we consider S = O(α) and introduce the

variable U via

S = α(U + 1), P (S, t) = K − S + Ṕ (U, ω). (4.109)

Then from 4.5 we obtain

λṔω − 2
α′

α
UṔU =

1

α
(U + 1)ṔUU + e−λ(U + 1)ṔU − e−λṔ − e−λK. (4.110)

Since this expansion must hold when S is very small, we must satisfy both of the boundary

conditions in 4.3 at the free boundary, which corresponds to U = 0. Thus,

Ṕ (0, ω) = ṔU (0, ω) = 0. (4.111)
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Expecting α to be very small for ρ = e−λ → 0 and ω > K, we replace 4.110 by the asymptotic

relation

1

α
(U + 1)ṔUU ∼ e−λK, (4.112)

as clearly the second derivative term, which contains the large factor α−1, must be balanced by

the forcing term in 4.110.

Solving 4.112 subject to 4.111 leads to

Ṕ ∼ e−λαK[(U + 1) log(U + 1)− U ] (4.113)

so that for S = O(α)

P (S, t) ∼ K − S + e−λαK[(U + 1) log(U + 1)− U ]. (4.114)

Finally we asymptotically match 4.114 as U →∞ to 4.106 as R→ 0, by comparing 4.108 to

4.114. Recalling that U + 1 = S/α and U ∼ U + 1 for large U we thus have

e−λK[−S logα− S] ∼ exp

(
−λK

ω

)
S −Ke−λS[1− γ + log(ω −K)− log λ]. (4.115)

Here we matched the difference P − (K − S) and note that the terms proportional to S logS

matched automatically. Dividing 4.115 by S, this relation yields

exp

(
λ− λK

ω

)
∼ K[− logα+ log(ω −K)− log λ− γ] (4.116)



71

and since e−λ = ρ we exponentiate 4.116 to obtain

α ∼ ω −K
λ

e−γ exp

[
− 1

K
exp

(
λ− λK

ω

)]
=
ω −K
λ

e−γ exp

[
− 1

K
ρK/ω−1

]
,

(4.117)

which shows that α is indeed exponentially small for ω > K. Note that 4.117 is also consistent

with the balance we argued in 4.110. To summarize, for S = α(U + 1) we have obtained

P (S, t) ∼ K − S +K(ω −K)e−γ
e−λ

λ
exp

(
− 1

K
ρK/ω−1

)
[(U + 1) log(U + 1)− U ]. (4.118)

We shall proceed to analyze the larger time ranges t = O(1) and t = O(ρ−1), where once

again the free boundary α will be exponentially small, and the analysis for S = O(α) will

be essentially the same as that here. Finally we note that by setting ω = K + Λ/λ we have

ρK/ω−1 = exp(−λ(K − ω)/ω) ∼ exp(Λ/K) so that 4.117 as ω → K agrees with the right side

of 4.77, and hence the expressions for α(t) on the Λ and ω > K time scales asymptotically

match.

4.4 Analysis for t = O(1)

We next consider the time range where t = O(1). On this scale, the ray expansions in 4.25

and 4.26 no longer hold. It will be necessary to consider two spatial scales, namely S = O(1),

and S = O(α), where asymptotic arguments relating these two scales will once more be used

to derive an equation for α(t). We shall see that the free boundary will again be exponentially

small, but 4.117 is no longer valid.
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For t = O(1), S = O(1), we assume a regular perturbation expansion for P (S, t) of the form

P (S, t) = K − S + P̀ (S, t), P̀ = P0(S, t) + ρP1(S, t) +O(ρ2). (4.119)

Applying this to 4.1, the PDE becomes to leading order

P0,t = SP0,SS (4.120)

with the initial and boundary conditions given by

P0(0, t) = 0, P0(S, 0) = max(S −K, 0). (4.121)

We will see that P0 cannot satisfy the BC P0,S(0, t) = 0, since we will have a boundary layer

where S = O(α). The initial condition in 4.121 is equivalent to asymptotically matching 4.119

to the ray expansions on the ω time scale.

We once more introduce a Laplace transform over the spatial variable S, setting

P̂0(θ, t) =

∫ ∞
0

e−SθP0(S, t) dS. (4.122)

Using 4.122 along with the boundary condition at S = 0 in 4.121 in 4.120 leads to

P̂0,t + θ2P̂0,θ = 2θP̂0 (4.123)
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with the initial condition

P̂0(θ, 0) =
1

θ2
e−Kθ. (4.124)

Using the method of characteristics we find a most general solution to 4.124 as

P̂0(θ, t) =
1

θ2
g

(
t+

1

θ

)
, (4.125)

which, after applying the initial condition 4.124, we determine g(·) and then obtain

P̂0(θ, t) =
1

θ2
exp

(
− Kθ

tθ + 1

)
. (4.126)

We observe from 4.126 that P̂0 = O(θ−2) as θ → ∞ so that P0 will vanish at S = 0 but its

derivative will not.

We next obtain the correction term P1 in 4.119, as the O(ρ) term will become important

in our matching condition for the free boundary. From 4.1 and 4.119 we find that the PDE

for the correction term P1 is given by

P1,t = SP1,SS + SP0,S − P0 −K (4.127)

with the initial and boundary conditions

P1(0, t) = 0, P1(S, 0) = 0. (4.128)
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Using a Laplace transform in 4.127, with P̂1(θ, t) =
∫∞

0 e−θSP1(S, t) dS, along with 4.128 and

4.126, we obtain

P̂1,t + θ2P̂1,θ + 2θP̂ =
K

θ(θt+ 1)2
exp

(
− Kθ

θt+ 1

)
− K

θ
. (4.129)

Using the method of characteristics, we find that the most general solution of 4.129 is

P̂1(θ, t) = − K

2(1 + tθ)2θ2
exp

(
− Kθ

θt+ 1

)
− K

θ2
log θ +

1

θ2
P̂

(
t+

1

θ

)
, (4.130)

and after using P̂1(θ, 0) = 0 we determine the function P̂ and obtain

P̂1(θ, t) =
Kt
(
1 + tθ

2

)
(1 + θt)2θ

exp

(
− Kθ

θt+ 1

)
− K

θ2
log(1 + θt). (4.131)

By combining 4.126 and 4.127 with 4.119 and inverting the transform, the expansion for P

on this time scale t = O(1) is given by

P (S, t) ∼ K − S +
1

2πi

∫
Br

eSθ

θ2
exp

(
− Kθ

tθ + 1

)
dθ

+ ρ
Kt

2πi

∫
Br

eSθ

θ

(
1 + tθ

2

)
(1 + θt)2

exp

(
− Kθ

θt+ 1

)
dθ − ρ K

2πi

∫
Br

log(1 + θt)

θ2
eSθ dθ. (4.132)

Here <(θ) > 0 on the Bromwich contour.
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We need to determine the free boundary α(t) for times t = O(1). As we did when t = ω/λ

with ω > K, we consider the spatial scale S = O(α) and again set S/α = U + 1. The analysis

leading up to 4.114 still applies and we obtain

P (S, t)− (K − S) ∼ e−λαK
[
S

α
log

(
S

α

)
− S

α
+ 1

]
= ρKS logS − ρKS logα− ρKS + ρKα.

(4.133)

To obtain an expression for α(t) we match 4.132 and 4.133 in an intermediate limit where

S → 0 and U + 1 = S/α → ∞. To expand 4.132 for S → 0 we expand the integrands for

θ →∞ to asymptotically invert the transform, and this yields, for P − (K − S),

Se−K/t +
1

2
ρKSe−K/t − ρK[−S logS + S log t+ (1− γ)S] +O(S2, ρS2). (4.134)

Now we compare 4.134 to the right hand side of 4.133. We note that the S logS terms agree,

and then divide S and note that ρKα/S is negligible in the matching region. We thus obtain

−ρK logα ∼
(

1 +
ρK

2

)
e−K/t − ρK(log t− γ) (4.135)

which upon exponentiation gives

α(t) ∼ te−γ exp

(
− 1

ρK
e−K/t

)
exp

(
−1

2
e−K/t

)
. (4.136)
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Note that 4.136 is consistent with the result of the free boundary α(t; ρ) given in 2.20. Finally

we note that as t → 0, 4.136 matches to 4.117 as ω → ∞, since (ω −K)/λ ∼ ω/λ = t and

ρK/ω = exp(K/t).

4.5 Analysis for t = v/ρ = O(ρ−1), v > 0

Finally we assume the time to expiry for the option is large, with the scaling t = v/ρ =

O(ρ−1). Once again, there are two natural scales for the asset price S, namely S = O(ρ−1) and

S = O(α). For the latter scale we shall employ the result of 4.113, since it still holds in this

time range, as α will be exponentially small.

With the scaling

t =
v

ρ
, S =

Ω

ρ
, P (S, t) = K + P(Ω, v) = K + P0(Ω, v) +O(ρ), (4.137)

the PDE in 4.1 becomes

P0,v = ΩP0,ΩΩ + ΩP0,Ω − P0 −K. (4.138)

The boundary condition P (α(t), t) = K − α(t) implies to leading order that

P0(0, v) = 0 (4.139)

since α will be exponentially small. For Ω > 0, Ω/ρ−K < 0 so we use the initial condition

P0(Ω, 0) = −K. (4.140)
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We shall see that the above is equivalent to asymptotically matching the present scale, for

v → 0, Ω→ 0, to the results in section 7.4 on the (S, t) scale, for t→∞, S →∞.

We introduce the Laplace transform over the spatial variable Ω, setting

P̂(θ̂, v) =

∫ ∞
0

e−Ωθ̂P0(Ω, v) dΩ. (4.141)

Applying 4.141 along with 4.139 to 4.138, we obtain the first order PDE

P̂v + (θ̂2 + θ̂)P̂θ̂ = −2(θ̂ + 1)P̂ − K

θ̂
(4.142)

and from 4.140 we have the initial condition

P̂(θ̂, 0) = −K
θ̂
. (4.143)

Using the method of characteristics, we find the most general solution for P̂ as

P̂(θ̂, v) = −K log(θ̂ + 1)

θ̂2
+ e−2v 1

(θ̂ + 1)2
h

{
v − log

(
θ̂

θ̂ + 1

)}
, (4.144)

where h(·) is an arbitrary function. We determine h(·) by applying the condition in 4.143 to

4.144, and hence h(·) becomes

h(ξ) = Ke2ξ

[
ξ − 1

eξ − 1
− log(eξ − 1)

]
(4.145)
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and thus

P̂(θ̂, v) = −K

[
e−v

θ̂
+

e−v − 1

(θ̂ + 1)ev − θ̂

]
− K

θ̂2
log(θ̂ + 1− θ̂e−v). (4.146)

Then inverting the Laplace transform leads to the final result, for S, t = O(ρ−1),

P (S, t) ∼ K −Ke−v +Ke−v exp

(
− Ω

1− e−v

)
− K

2πi

∫
Br

eΩθ̂

θ̂2
log(θ̂ + 1− θ̂e−v) dθ̂. (4.147)

By expanding the result in 4.132 on the (S, t) scale, for S → ∞ and t → ∞ with θ scaled as

θ = ρθ̃ leads to

K − S +
1

2πi

∫
Br

eSθ

θ2

[
1− Kθ

θt+ 1
+O(θ2)

]
dθ +

ρKt

2πi

∫
Br

1 + tθ
2

(1 + θt)2

eSθ

θ
dθ

− ρK

2πi

∫
Br

eSθ

θ2
log(1 + θt) dθ

= K +
K

2πi

∫
Br

eΩθ̃

θ̃

[
− 1

θ̃v + 1
+
v(1 + vθ̃

2 )

(1 + vθ̃)2

]
dθ̃ − K

2πi

∫
Br

eΩθ̃

θ̃2
log(1 + θ̃v) dθ̃

= Kv +Ke−Ω/v −Ke−Ω/v

(
Ω

2
+ v

)
− K

2πi

∫
Br

eΩθ̃

θ̃2
log(1 + θ̃v) dθ̃

(4.148)

and the above agrees with the expansion of 4.147 as (Ω, v) → (0, 0), with Ω/v fixed and θ̂

scaled to be O(Ω−1). This asymptotic matching argument can be used instead of the initial

condition 4.140.
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Lastly, we need to derive an asymptotic formula for the free boundary α. We will accomplish

this by asymptotically matching 4.147 to the free boundary result in 4.113 in the intermediate

limit where Ω→ 0 and U + 1 = Ω/(αρ)→∞. We rewrite 4.113 in terms of Ω to get

P ∼ e−λαK
[

Ω

ρα
log

(
Ω

ρα

)
− Ω

ρα
+ 1

]
+K − Ω

ρ

= KΩ log Ω−KΩ log(ρα)−KΩ + e−λαK +K − Ω

ρ
.

(4.149)

Here α is now viewed as a function of the large time scale v = ρt.

We next expand 4.147 for a fixed v and Ω→ 0, which leads to

K − KΩ

ev − 1
−KΩ log(1− e−v) +KΩ log Ω−KΩ(1− γ) +O(Ω2). (4.150)

By comparing 4.149 and 4.150 we see that −KΩ log(ρα) must balance the term −Ω/ρ in

4.149. Hence α must again be exponentially small and we set

ρα ∼ exp

(
− 1

ρK

)
H(v). (4.151)

Then matching 4.149 and 4.150 yields

−KΩ log[H(v)]−KΩ ∼ − KΩ

ev − 1
−KΩ log(1− e−v)−KΩ(1− γ) (4.152)

so that

log[H(v)] ∼ 1

ev − 1
+ log(1− e−v)− γ. (4.153)
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Exponentiating the above we have thus obtained

α ∼ 1

ρ
exp

(
− 1

ρK

)
exp

(
1

ev − 1

)
(1− e−v)e−γ . (4.154)

The expansion of P (S, t) on the scale t = O(ρ−1) and S = O(α) is then given by

P (S, t) ∼ K + exp

(
− 1

ρK

)
exp

(
1

ev − 1

)
(1− e−v)e−γ

×
{
−1

ρ
(U + 1) +K[(U + 1) log(U + 1)− U ]

}
.

(4.155)

We now let v →∞ in our results on the two spatial scales. Assuming that P (S, t)→ P∞(S)

we have thus obtained the expansions

P∞(S) ∼ K − K

2πi

∫
Br

eΩθ̂

θ̂2
log(1 + θ̂) dθ̂

= K

∫ ∞
1

e−ξΩ

ξ2
dξ, Ω > 0,

(4.156)

for S = O(ρ−1), and for S = O(α∞),

P∞(S) ∼ K + exp

(
− 1

ρK

)
e−γ

{
−1

ρ
(U∗ + 1) +K(U∗ + 1) log(U∗ + 1)− U∗

}
(4.157)

where

U∗ + 1 =
S

α∞
=

Ω

ρα∞
, α∞ ∼ exp

(
− 1

ρK

)
1

ρ
e−γ . (4.158)

These expressions agree with the exact results for the perpetual option in 2.22- 2.24.



CHAPTER 5

DISCUSSION AND EXTENSIONS

To summarize, we have given several asymptotic formulas for a free boundary problem in

an options pricing model. In contrast to the Black-Scholes model in the same asymptotic limit,

the free boundary α(t) moves from S = K to S ≈ 0 on logarithmically small time scales

where t = O((log(1/ρ))−1). For the BS model this movement occurs on logarithmically large

time scales, with t = O(log(1/ρ)). Note however that the basic expression in 2.14, where the

boundary decreases from S = K to S = 0, is similar to the corresponding one for the BS model

(see (14), (9)). For times where the free boundary approaches zero, the behavior of the CEV

model is much different from the BS model, as for the former α(t) becomes exponentially small

(see 2.19 - 2.21) while for BS α(t) becomes only O(ρ) as ρ → 0. This implies that for the

CEV model it is advantageous to exercise the option only on short time to expiry scales. If

such times are O(1) or O(ρ−1) then the put option should be exercised only if the stock price

S is very small.

The present model, where S is governed by 2.1 is sometimes called the square root process

and a more general CEV model corresponds to the SDE dS = rS dt + σSβ+1dW . Here β is

known as the elasticity of the local volatility σ, where σ(S, t) = δSβ, so that β = 0 for BS and

β = −1/2 for the model here. It seems that the integral equation approach here works only

for these two special cases. Using our asymptotic results for α(t) in 2.11 and by expanding

the integrals in 2.11 and 2.12 we are able to obtain asymptotic results for the option value
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P (S, t) for ρ → 0. Our results show that for each of the five time ranges we obtain different

expansions for P (S, t) for several ranges of S. Furthermore, we verify these expansions directly

by using singular perturbation theory to analyze 2.3 - 2.5 for ρ→ 0, and subsequently reconcile

our results with the IE approach; the perturbation method should extend to general elasticity

factors β.

We comment that while here we took ρ→ 0, the behavior of α(t; ρ) for t→ 0 with ρ = O(1)

is essentially contained in formula 2.14. Then we would replace ω by λt and use (
√
ω−
√
K)2 ∼

K − 2
√
Kω and

√
Kω − ω ∼

√
Kω. In this limit, however, the BS and CEV models behave

similarly.

It is not immediately clear (at least to us) whether the CEV model call option leads to

an interesting problem. For the American call option under the BS model, early exercise is

never advantageous. An important difference between the European CEV (β = −1/2) and BS

models is that the Green’s function for the BS model is a proper probability distribution that

integrates to one. In contrast the Green’s function for the CEV model is deficient in mass, due

to partial absorption at S = 0. For the put option analyzed here the basic PDE 2.3 does not

apply near S = 0, since α > 0. However, for a call option the partial absorption of the process

may have to be considered.

We have not at this point done numerical studies to compare with the asymptotic re-

sults (i.e., determine how small ρ must be). However, since α(t) is exponentially small for

t > K/ log (1/ρ) it may become difficult to locate the free boundary by purely numerical meth-

ods, for small values of ρ. Knowing asymptotic properties of the type here may aid in the



83

development of, e.g, multi-scale numerical methods, in addition to providing qualitative infor-

mation on the optimal exercise boundary.

Finally we would like to point out that the methods employed here could be applied to more

complicated, exotic type American options under the CEV process. Such problems lead to even

more interesting asymptotic results for both the option price and the free boundary. Barrier

and lookback options would be a natural starting point. Dai and Kwok in (22) provided some

analytical results for the option price for a knock-in American option under the Black-Scholes

framework.
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