
Local Nonlinear Sensitivity to Nonigorable Selection

by

Weihua Gao
BS, JiLin Institute of Technology, Changchun, China, 1998
MS, University of Illinois at Chicago, Chicago, Illinois, 2004

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Public Health Sciences

in the Graduate College of the
University of Illinois at Chicago, 2018

Chicago, Illinois

Defense Committee:
Hui Xie, PhD, Associate Professor of Biostatistics, UIC, Advisor and Chair
Michael Berbaum, PhD, IHRP Methodology Research Core Director, UIC
Hua Yun Chen, PhD, Professor of Biostatistics, UIC
Robin Mermelstein, PhD, Professor of Psychology and IHRP Director, UIC
Donald Hedeker, PhD, Professor of Biostatistics, U of Chicago



Dedicated to my parents, husband Baodong, and kids Gloria and Grace

iii



ACKNOWLEDGMENT

First, I would like to express my sincere gratitude to my advisor Dr. Hui Xie for introducing

me into the field of missing-data analysis, for his continuous support of my Ph.D study, and

for his patience, motivation, and immense knowledge. His guidance helped me enormously. My

research reported in this work was also supported by Dr. Xie’s grant (statistical qualification

of the impact of missing data in EMA studies (R01CA178061, H. Xie, PI)), funded by the

National Cancer Institute of the National Institutes of Health.

I am grateful to my committee members: Dr. Michael Berbaum, Dr. Hua Yun Chen,

Dr. Donald Hedeker, and Dr. Robin Mermelstein. Their thoughtful suggestions motivated

great improvement on my dissertation. Particularly, I would like to thank Dr. Mermelstein for

providing me with great datasets in Application section (NIH-funded longitudinal study of the

natural history of smoking among adolescents (PO1CA098262, R. Mermelstein, PI)).

I also want to acknowledge the faculty and staff members of the Epidemiology and Bio-

statistics Division in School of Public Health for their great support during my studying at

UIC.

Lastly, I am grateful to my parents, my husband, and my kids for their constant encourage-

ment and emotional support in my life. I am also grateful to other family members and friends

who have supported me along the way.

iv



Contribution of Authors

Chapter 1 is a literature review that places my dissertation question in the context of the

larger field and highlights the significance of my research question. Chapter 2 represents a series

of my own unpublished work directed at answering the question of what is nonlinear sensitivity

index for selection when only the outcome is subject to selective observation. Partial of Chapter

3 and 4 represent a published manuscript for which I was the primary author and major driver of

the research. My advisor, Dr. Hui Xie contributed to the writing of the manuscript. Chapter

5 represents my synthesis of the research presented in this dissertation and my overarching

conclusions. The future directions of this field and this research question are discussed.

v



TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Methods for Missing Data . . . . . . . . . . . . . . . . . . . . . 2
1.2 Missing Data Mechanism . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Nonignorable Modeling . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1 Global Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 Local Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 15
1.4.3 An index Approach to Local Sensitivity to Nonignorability . . 17

2 NONLINEAR SENSITIVITY INDEX FOR MISSINGNESS IN
THE OUTCOME ONLY . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1 Selection Model and Linear Local Sensitivity Analysis . . . . . 26
2.2 Nonlinear Sensitivity Index Development . . . . . . . . . . . . 28
2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Univariate Normal Data . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.1 Univariate Normal Data . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.2 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . 43

3 NONLINEAR SENSITIVITY INDEX FOR MISSINGNESS IN
BOTH THE OUTCOME AND COVARIATES . . . . . . . . . . . . 49
3.1 Motivation: An EMA Study on Adolescent Smoking Behaviors 49
3.2 Selection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Linear and Nonlinear Sensitivity Index Development . . . . . 52
3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.1 Simple Linear Regression with Both Outcome and Covariates

Following a Normal Distribution . . . . . . . . . . . . . . . . . 63
3.4.2 Simple Linear Regression with a Normally Distributed Out-

come and a Bernoulli Distributed Covariate . . . . . . . . . . . 67
3.5 Index Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5.1 Y-dependent Nonignorability . . . . . . . . . . . . . . . . . . . . 69
3.5.2 Y-and-X-dependent Nonignorability . . . . . . . . . . . . . . . . 70
3.6 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.1 Simple Linear Regression with Both Outcome and Covariates

Following Normal Distribution . . . . . . . . . . . . . . . . . . . 72

vi



TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3.6.2 Simple Linear Regression with a Normally Distributed Out-
come and a Bernoulli Distributed Covariate . . . . . . . . . . . 79

4 APPLICATONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1 Example 1: Crossover in a Clinical Trial of Multiple Sclerosis 84
4.2 Example 2: Nonresponses in EMA Studies . . . . . . . . . . . . 88
4.2.1 Analysis 1: Considering Social as Mediator . . . . . . . . . . . 91
4.2.2 Analysis 2: Considering Comp as Mediator . . . . . . . . . . . 98

5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

vii



LIST OF TABLES

TABLE PAGE
I A SIMULATION STUDY OF THE ACCURACY OF ISNI TO

APPROXIMATE MLE OF THE MEAN µ CHANGES LOCALLY
FOR UNIVARIATE NORAML DATA . . . . . . . . . . . . . . . . . . 43

II A SIMULATION STUDY OF THE ACCURACY OF ISNI TO
APPROXIMATE MLE OF THE VARIANCE σ2 CHANGES LO-
CALLY FOR UNIVARIATE NORAML DATA . . . . . . . . . . . . . 44

III A SIMULATION STUDY OF THE ACCURACY OF ISNI TO
APPROXIMATE MLE OF THE INTERCEPT β0 CHANGES LO-
CALLY FOR SIMPLE LINEAR REGRESSION MODEL . . . . . . 47

IV A SIMULATION STUDY OF THE ACCURACY OF ISNI TO
APPROXIMATE MLE OF THE SLOPE β1 CHANGES LOCALLY
FOR SIMPLE LINEAR REGRESSION MODEL . . . . . . . . . . . 48

V AN APPLICATION OF NISNI TO SIMULATED DATA FOR
SIMPLE LINEAR REGRESSION WITH BOTH OUTCOME AND
COVARIATES FOLLOWING NORMAL DISTRIBUTION FOR Y-
DEPENDENT-ONLY NONIGNORABLE NONRESPONSE . . . . . 75

VI AN APPLICATION OF NISNI TO SIMULATED DATA FOR
SIMPLE LINEAR REGRESSION WITH BOTH OUTCOME AND
COVARIATES FOLLOWING NORMAL DISTRIBUTION FOR Y-
AND-X-DEPENDENT NONIGNORABLE NONRESPONSE . . . . 78

VII AN APPLICATION OF NISNI TO SIMULATED DATA FOR
SIMPLE LINEAR REGRESSION WITH NORMAL DISTRIBUTED
OUTCOME AND A BERNOULLI COVARIATE FOR Y-DEPENDENT-
ONLY NONIGNORABLE NONRESPONSE . . . . . . . . . . . . . . 80

VIII AN APPLICATION OF NISNI TO SIMULATED DATA FOR
SIMPLE LINEAR REGRESSION WITH NORMAL DISTRIBUTED
OUTCOME AND A BERNOULLI COVARIATE FOR Y-AND-X-
DEPENDENT NONIGNORABLE NONRESPONSE . . . . . . . . . 82

IX THE AD25 VALUES IN THE TREATMENT ARM IN THE MS
CLINICAL TRIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

X SENSITIVITY ANALYSIS IN THE MS DATA . . . . . . . . . . . 87
XI NISNI ANALYSIS OF SOCIAL ISOLATION AND MOOD RE-

LATIONSHIP USING EMA DATA ASSUMING Y-DEPENDENT-
ONLY NONIGNORABLE NONRESPONSE . . . . . . . . . . . . . . 93

XII NISNI ANALYSIS OF SOCIAL ISOLATION AND MOOD RELA-
TIONSHIP USING EMA DATA ASSUMING Y-AND-X-DEPENDENT
NONIGNORABLE NONRESPONSE . . . . . . . . . . . . . . . . . . 93

viii



LIST OF TABLES (Continued)

TABLE PAGE

XIII NISNI ANALYSIS OF SMOKING-MOOD RELATIONSHIP WITH
SOCIAL ISOLATION AS A COVARIATE USING EMA DATA AS-
SUMING Y-DEPENDENT-ONLY NONIGNORABLE NONRESPONSE 97

XIV NISNI ANALYSIS OF SMOKING-MOOD RELATIONSHIP WITH
SOCIAL ISOLATION AS A COVARIATE USING EMA DATA AS-
SUMING Y-AND-X-DEPENDENT NONIGNORABLE NONRESPONSE 97

XV NISNI ANALYSIS OF COMPANIONSHIP AND MOOD RELA-
TIONSHIP USING EMA DATA ASSUMING Y-DEPENDENT-ONLY
NONIGNORABLE NONRESPONSE . . . . . . . . . . . . . . . . . . 99

XVI NISNI ANALYSIS OF COMPANIONSHIP AND MOOD RELA-
TIONSHIP USING EMA DATA ASSUMING Y-AND-X-DEPENDENT
NONIGNORABLE NONRESPONSE . . . . . . . . . . . . . . . . . . 99

XVII NISNI ANALYSIS OF SMOKING-MOOD RELATIONSHIP WITH
COMPANIONSHIP AS A COVARIATE USING EMA DATA AS-
SUMING Y-DEPENDENT-ONLY NONIGNORABLE NONRESPONSE 101

XVIII NISNI ANALYSIS OF SMOKING-MOOD RELATIONSHIP WITH
COMPANIONSHIP AS A COVARIATE USING EMA DATA AS-
SUMING Y-AND-X-DEPENDENT NONIGNORABLE NONRESPONSE 102

ix



LIST OF FIGURES

FIGURE PAGE
1 ISNI approximation to mean and variance estimates for univariate

normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2 ISNI approximation to β0 and β1 estimates for simple linear regres-

sion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3 ISNI approximation to β1 estimates for simple linear regression model

with both missing continuous outcome and covariates for Y-dependent-
only nonignorable nonresponse . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 ISNI approximation to β1 estimates for simple linear regression model
with both outcome and covariates following normal distribution for Y-
and-X-dependent nonignorable nonresponse . . . . . . . . . . . . . . . . . 77

5 ISNI approximation to β1 estimates for simple linear regression model
with normal distributed outcome and a Bernoulli distributed covariate
for Y-dependent-only Nonignorable Nonresponse . . . . . . . . . . . . . . 81

6 ISNI approximation to β1 estimates for simple linear regression model
with normal distributed outcome and a bernoulli distributed covariate
for Y-and-X-dependent nonignorable nonresponse . . . . . . . . . . . . . 83

x



LIST OF ABBREVIATIONS

AT As-Treated

EM Expectation-Maximization

EMA Ecological Momentary Assessment

GAM Generalized Additive Model

GEE Generalized Estimating Equation

IPCW Inverse Probablity of Censoring Weighted

IQR Inter-Quantile Range

ISNI Index of Sensitivity to Nonignorablity

ISNIL Index of Sensitivity to Nonignorablity in Linear

form

ISNIQ Index of Sensitivity to Nonignorablity in Quadratic

form

MI Multiple Imputation

MCAR Missing Completely At Random

MAR Missing At Random

MNAR Missing Not At Random

ML Maximum Likelihood

xi



LIST OF ABBREVIATIONS (Continued)

MLE Maximum Likelihood Estimate

MS Multiple Sclerosis

NCI National Cancer Institute

NISNI Nonlinear Index of Sensitivity to Nonignorablity

SD Standard Deviation

RS Regression Spline

xii



CHAPTER 1

INTRODUCTION

It is common for incomplete data to be encountered in many types of research, such as

surveys, clinical trials, market data, and especially in longitudinal studies. In observational

studies, missing data can arise because respondents refuse to answer a question owing to privacy

issues, respondents taking the survey do not understand the question, or respondents do not

have enough time to complete the questionnaire. In a randomized clinical trial, missing data can

arise when lab measurements are very difficult to obtain. Patients drop out from the treatment

due to side effects during the trial. Furthermore missing data can cause serious problems.

Researchers may not have enough data to perform the analysis and may lose power to obtain

statistically significant results. The results may be misleading and biased. Missing data really

challenge researchers’ ability to draw valid and conclusive inferences. Below are two illustrative

examples that will be used later in this paper.

Example 1: Uncontrolled crossover in clinical trials. Randomized clinical trials are the

gold standard in evaluating treatment effectiveness. However, patient noncompliance such as

dropout, non-response, or self-switching treatment arms after randomization can ruin random-

ization, such that the resulting data are not random samples of the population of interest.

This example is a randomized clinical trial in multiple sclerosis (1). In this subset of the data,

14 subjects were randomized to a placebo control and 11 to treatment with azathioprine and

methylprednisolone. The study is interested in whether the test treatment reduces levels of

1
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AD25, an assay of immune function defined as the antibody-dependent cellular cytotoxicity at

an effector:target ratio of 25:1. The complication arises because there were 3 patients who were

switched from treatment to placebo. There were no crossovers from placebo to treatment arm

because subjects were not allowed to switch to active treatment. Because of the crossover, the

outcome for those crossovers under the originally assigned treatment arms are missing. If these

crossovers are systematically different from the remaining subjects, the observed data would

be a biased representation of population of interest and consequently can introduce bias to the

analysis.

Example 2: Non-responses in Ecological Momentary Assessment (EMA) studies. As a

real-time data capturing method, it has become increasingly important in health studies. In

particular, EMA has become a new and vital approach to understanding health-related behav-

iors, e.g., in smoking and cancer research, as detailed by (2). They wrote“The National Cancer

Institute (NCI) has designated the topic of real-time data capture as an important and inno-

vative research area.” It also discussed “the state of the science of real-time data capture and

its application to health and cancer research.” By sending prompts to mobile devices held by

study participants and asking them to provide answers to various survey questions in real-time,

EMA studies can provide more accurate data. Like in other studies involving human subjects,

missing data due to non-response is common in EMA studies.

1.1 Methods for Missing Data

Missing data inevitably occurs in the majority of studies despite efforts to minimize miss-

ingness through design and data collection stages. Researchers have to decide how to deal with
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it. There are several general methods to handle missing data. (3) summarized four methods

to handle missing data. The first method is the simplest approach called complete case anal-

ysis, which is also known as listwise deletion. This method excludes missing cases and only

analyzes the complete cases. In other words, the inference drawn is based on the subjects with

the observed data. This method usually leads to biased estimates and loses power, especially

when having a large amount of missing data. If the observed data is a random sample from the

full data with a small portion of missingness, unbiased parameters might be achieved. But the

analysis still has potential loss of precision.

The second method is weighting, extended from complete case analysis. This approach

adapts sampling method in survey data and involves an estimate of the probability of complete-

ness. Therefore the weight is inversely proportional to their probability of selection multiplied

by the probability of completeness. The estimate of population mean is expressed as

n∑
i=1

(πip̂i)
−1yi/

n∑
i=1

(πip̂i)
−1

where yi is observed data, πi is the known probability of selection into the sample, and p̂i is

the probability of completeness. This method can reduce estimates’ bias from the complete

case analysis. But the computation of variance using this method is not straight-forward and

is intensive.

The third method is imputation. Obviously imputation means filling in the missing data

by a value generated using different imputation approaches. After conducting imputation, the
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“new” data will be analyzed as if they were not missing. Imputations can be single imputation

and multiple imputation. The following imputation methods are single imputation methods.

Hot deck imputation was used quite widely in the Census Bureau as far back as 60 years

ago. Another earlier imputation approach is called mean imputation. The average of the

completed data is filled in the missing data. A relatively more advanced imputation is regression

imputation. Using regression model to predict the missing data based on the other observed

variables. And then the missing data is filled by the predicted value. All these imputation

approaches have a common characteristics in that the imputation increases the sample size and

reduces the variance. The single imputation methods do not take into account of uncertainty

created by missing data. To solve this problem, Multiple Imputation (MI) was developed by (4).

Its procedure firstly generates a set of imputed datasets with choice of imputation mechanisms

according to the missing data pattern. Then standard statistical methods are used to analyze

each of the imputed datasets. Lastly, the estimates of parameters of interest are averaged across

multiple imputed datasets except the standard error, which is calculated based on combination

of the within variance of each imputed dataset and the variance between the imputed datasets.

Thus MI incorporates missing-data uncertainty.

The last method Rubin described is a model-based procedure called likelihood-based pro-

cedure. This approach models the observed data, draws inferences based on likelihood, and

estimates the parameters of interest by maximizing likelihood. The estimates of variance by

this procedure will consider missingness in the data. To take into account the effect of missing

data, one could generate a likelihood including a model of the missing data mechanism besides
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the model for observed data. Therefore this method has an advantage of flexibility. If models

are correctly specified, the inferences drawn based on the model are more efficient compared

to the methods mentioned above. (5) defined a full model including both the distributions of

data and missing-data mechanism. The distribution of missing-data mechanism is actually the

conditional distribution of the missing-data indicator (G) conditioning on the data (Y), f
G|Y
γ (g),

where Y = (Ymis, Yobs) and Yobs denotes the observed data and Ymis denotes the missing data,

G is a completeness indicator (1 represents the datum was observed and 0 represents the datum

was missing), and γ is a vector of unknown parameters in distribution of missing-data mecha-

nism. Then the density of the full model is described as joint densities of the distribution of Y

and the conditional distribution of G on Y. That is

f(Yobs, Ymis, G|θ, γ) = f(Yobs, Ymis|θ)f(G|Yobs, Ymis, γ)

Where θ is a vector of the parameters of interest. To obtain complete likelihood (LC), Ymiss

should be integrated out from the joint density of (Y,G) as follows

f(Yobs, G|θ, γ) =

∫
f(Yobs, Ymis|θ)f(G|Yobs, Ymis, γ)dYmis

Thus the complete likelihood of (θ, γ) is any function of θ and γ proportional to the above

equation, which is

LC(θ, γ|Y
obs, G) ∼ f(Yobs, G|θ, γ)
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The model based on the complete likelihood is called a selection model (6). The selection

model includes two parts: a complete-data model (f(Yobs|θ) and a missing-data mechanism

model (f(G|Yobs, γ)). We will focus on the selection model in this paper.

1.2 Missing Data Mechanism

A data analyst often faces challenges in modeling the missing-data mechanism, as usually

little information is provided for the missing-data. Knowing types of the missing data mecha-

nisms is very important and necessary to help the statistician determine whether the analysis

can ignore the missing-data mechanism. (5) has clearly described three missing data mecha-

nisms. The first missing data mechanism is called Missing Completely At Random (MCAR) if

missingness does not depend on the data values, missing or observed. Formally, MCAR holds

when f
G|Y
γ (g) = fGγ (g) for all Y = (Yobs, Ymis) and γ. For example, in a clinical trial, data

on birthweight is missing because the process of transfering these data to a central server is

interrupted, which does not relate to any characteristic of the child. The second missing data

mechanism is called Missing At Random (MAR) if missingness only depends on the observed

data values. Formally, MAR holds when f
G|Y
γ (g) = f

G|Yobs

γ (g) for all Ymis and γ. For example,

data on birthweight are missing due to observed characteristics, such as child gender, mother’s

smoking status and so on. The last missing data mechanism is called Missing Not At Ran-

dom (MNAR) if missingness depends on the missing data values. Formally, MNAR hold when

f
G|Y
γ (g) = f

G|Yobs,Ymis

γ (g) for all Ymis and γ. For example, participants failed to complete the

asthma symptom severity rating because of their severe asthma symptoms. Missingness with

the MNAR mechaism is called nonignorable missingness.
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1.3 Nonignorable Modeling

To avoiding estimating parameters in the missing-data mechanism model, many standard

analyses on the available data need to invoke the strong and untestable assumption of ignorable

selection in the sense of ignoring the missing observation and deriving a simple likelihood (LI),

which is LI(θ|Y
obs) = f(Yobs|θ). It is intended as an approximation to the truth. Very often this

occurs when the observed data is selective and thus unrepresentative of the underlying popula-

tion. For instance, frequently we can only have or use a subset of a random sample because at

least one element of ideal data is unobserved for some study units either due to sample design or

uncontrollable behaviors of study units. In all these situations, the observed data can be consid-

ered as a selective subset of a random sample from the underlying population. In the previous

section, three missing data mechanisms were defined. The sufficient condition of ignoraility for

modeling the missing-data mechanism is the data with MCAR or MAR mechanism and the

parameters of interest in the completed-data model and the parameters in the completeness

indicator model (f
G|Y
γ (g)) are distinct. Therefore the statistician can draw a conclusion based

on a subsample of completed cases with unbiased estimates. The inference can be addressed

based on maximizing a likelihood of the observed-data model or Bayesian analysis. For the

ignorability situation, the inferences of θ based on this LI will be the same as the ones based

on LC because LI is proportional to LC. Thus the inferences drawn from LI are valid. When

ignorability is questionable, in other words, the missing data is MNAR, the inference of θ from

LC is different from LI. Standard statistical procedures ignoring this selective feature likely

lead to biased parameter estimates and invalid statistical inference. A particularly challenging
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case is when the selection mechanism depends on the unobserved data. That is, selection is

nonignorable where the probability of data elements being missing depends on the unobserved

components of data matrix conditioning on the observed data (7). Thus LC should be used for

drawing inferences of θ for these circumstances.

A variety of popular models, including selection models, shared parameter models, and

pattern-mixture models were developed to investigate nonignorable missingness. (8) discussed

the selection models and pattern-mixture models for handling drop-out mechanism in longitu-

dinal data. The selection model combines a model for the ideal complete data with a model

that models the drop-out mechanism with a set of binary missing data indicators. Even though

the selection models allow the statistician to directly use LC to make inference, there exist

well-known difficulties in using LC to make inference. If the parameter γ1 in the drop-out

mechanism model associated with unobserved data are unidentifiable with flat likelihood, the

joint estimation of θ and γ1 is impossible, in the sense that unique ML estimates are not avail-

able, or weakly identified. To increase the model identifiability often requires the existence of

instrumental variables or complementary data. However, clean and strong instrumental vari-

ables are often hard to identify or useful complementary data containing such instruments are

often expensive to collect. Even when the model is identifiable, the inference can be highly

sensitive to untestable distributional assumptions in (9), (10), and (11). The pattern-mixture

models extend the selection models by stratifying the missing data into different patterns and

then constructing a corresponding complete-data model within strata. In the pattern-mixture

model framework, subjects in the same strata share the same pattern of missing data. The



9

complete data model is estimated for each pattern and then the pattern-specific estimates are

averaged into an overall result. The pattern-mixture model faces the same problems as the se-

lection models because some parameters in the model cannot be estimated from data owing to

missing (unobserved) data within the pattern. But one can impose some assumptions regarding

the inestimable parameters, which are referred to “identifying restrictions”. The shared param-

eter models in (12), (13), and (14) usually fit longitudinal data with nonignorable dropout.

The shared paramter model shares a vector of random effects (bi) between the complete data

model and the missing data mechanism model. In the model, the data Yi and the missing data

mechanism indicator Gi are assumed to be conditionally independent of each other, given bi.

This allows us to essentially eliminate the density for the Ymis. Maximum likelihood can be

computationally difficult. Based on previous work, (15) proposed a stochastic EM algorithm

to obtain the parameters estimates in the shared parameter model. These approaches require

strict and untestable assumptions.

1.4 Sensitivity Analysis

1.4.1 Global Sensitivity Analysis

As discussed above, it is hard to verify that missingness and the unobserved values are

unrelated. In general it is impossible to judge the validity of the assumption that missing

data can be adequately predicted from the observed data alone. Consequently it is crucial to

assess the reliability and validity of empirical findings in the presence of potentially selectively

observed data. Existing research has shown that missing data analysis should not depend

solely on a single unverifiable assumption about the missing data process; instead it is an



10

important component of analysis to assess whether the conclusions from the standard analysis

hold over a range of plausible missing data mechanisms in (8), (3), and (16). The recent book

by the Panel on the Handling of Missing Data in Clinical Trials formed by the Division of

Behavioral and Social Sciences and Education of National Research Council on behalf of the

U.S. Food and Drug Administration (17) points out that “Sensitivity analyses should be part of

the primary reporting of findings from clinical trials. Examining sensitivity to the assumptions

about the missing data mechanism should be a mandatory component of reporting” and “The

treatment of missing data in clinical trials, being a crucial issue, should have a higher priority

for sponsors of statistical research, such as the National Institutes of Health and the National

Science Foundation”. Although the guidelines above are primarily for regulating the analysis

and reporting of clinical trial data, they have important implications for handling missing data

issues in general and for the need to develop missing data methods suitable in broader settings.

Evaluating the sensitivity of standard analysis assuming ignorable selection typically involves

augmenting the outcome model with a selection model that describes how the ideal data are

selected for observation. One can then examine the change in statistical inferences at models

with different magnitude of nonignorablity parameters. If the inference varies substantially over

the plausible range of nonignorability parameters, the inference based solely on the ignorability

assumption (MLE obtained from LI) is considered questionable. Otherwise, the analysis based

on LI assuming MAR mechanism is considered trustworthy.

(18) and (19) present sensitivity analysis in the context of selection models for semi-

parametric inference. Their first paper presented a method based on an augmented inverse
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probability of censoring weighted (IPCW) estimator for making inferences about parameters

β of a model for the conditional mean of longitudinal outcomes (Yi) with nonignorable miss-

ingness under the condition that missing data probability can be modeled and the parameter

is Consistent and Asymptotically Normal. Having Yi = (Yi1, ..., YiT )
T is a (Tx1) vector of the

outcomes measured at time t and Xi is a (T X P) matrix of covariates for the ith subject and

β = (β1, ..., βP) is a (1xP) vector of parameters, where i = 1, ..., N, t = 1, ...T, and p = 1, ...,

P, they proposed the following estimating equation for estimating β with repeated outcomes

and nonignorable nonresponse:

N∑
i=1

[
I(Ri = 1)

π̂(1)
d(Xi;β)Yi − g(Xi;β) +Ai

]
= 0,

where

Ai =
∑
r 6=1

{
I(Ri = r) −

I(Ri = 1)

π̂i(1)
π̂i(r)

}
φr(W(r)i)

In the above equation, Ri is the vector of response patterns for subject i, R1 = 1 indicates fully

observed across all timepoints for ith subject; “d(Xi;β) is a (P X T) matrix of fixed functions

of Xi and β”(18); g(Xi;β) is the mean vector of Yi where g(.) is a smooth function of β; π̂(1) is

the estimated “probability of observing the complete outcome vector Y”; π̂(r) is the estimated

probability of response pattern Ri = r; φr(W(r)i) is an arbitrary, investigator-chosen vector

function of the observed data at the time this subject dropped out. “Subjects with incomplete

observations contribute to the estimation of β via the term Ai”(18) noted. Since their estimator

is viewed as an extension of generalized estimating equation (GEE) estimators for nonignorable
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missing outcomes. It has the following advantages: (1) not requiring “full specification of a

parametric likelihood”(18); (2) not requiring numerical integration; (3) robust consistency of

estimate to model misspecification even in the presence of nonignorable missingness. Due to

the common problem of unidentifiability in selection models, the authors performed sensitivity

analysis regarding the nonresponse model parameter τ, which is equivalent to γ1 in our setting.

By varying τ within a sort of acceptable values, they evaluate the inference by the change of

parameter β. The disadvantage of this approach is the difficulty in handling complex missing

data patterns.

Their first paper (18) assumed a logistic regression model for the nonresponse probability,

but they assumed a semi-parametric model for the nonresponse probability in their second

paper (19). They modeled the nonresponse probability by modeling time to dropout using

a Cox proportional hazards model. They proposed two models for the conditional hazard of

dropouts. The first model assumed a hazard function of time to drop out Q

λQ(t|V̄(T), Y) = λ0(t|V̄(t))exp(α0Y)

In the equation above, V̄(T) is the history of all other variables that would be recorded through

time t in the absence of dropout; α0 is a scalar parameter. When α0 6= 0, then drop-out is

nonignorable; and λ0(t|V̄(t)) is an unrestricted positive function of t giving the process V̄(t).

Due to the curse of dimensionality in moderate sample sizes, they proposed a second model

λQ(t|V̄(T), Y) = λ0(t)exp[γ
′
0W(t)]exp(α0Y)
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In this model, they imposed the restriction on λ0(t|V̄(t)) to λ0(t)exp(γ
′
0W(t)), where λ0(t)

is an unspecified baseline hazard function; W(t) = w(t, V(t)), w(.) is a known function that

maps (t, V(t)) to Rq; γ0 is an unknown parameter vector. In this setting, the parameters are

jointly identified. Then they performed sensitivity analysis regarding the nonresponse model

parameter α0, which is equivalent of γ1 in our setting. By varying α0 within a sort of acceptable

values, they evaluate the inference by the change of the parameter β.

(20) proposed a multivariate regression pattern-mixture model for analyzing longitudinal

data with continuous variables Y(1) and Y(2) when values of Y(2) are nonignorable miss-

ing. Having a sample of N independent observations, y = (y1, · · · , yp)T , and covariates x =

(x1, · · · , xq)T , where x is fully observed, Y(1) = (Y1, · · · , Yp1)T are observed for all cases; Y(2) =

(Yp1+1, · · · , Yp)T are observed for n0 cases and missing for n1 = n−n0 cases. They also defined

missingness indicator variable m with m = 0 if Y(2) is observed and m = 1 if Y(2) is missing.

The proposed model is

(m|x) ∼ind Bernoulli(p(x|π)), where log(p(x|π)/(1− p(x|π))) = πTx

(y|x,m = k) ∼ind Np(B
(k)x, Σ(k))
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There exists two patterns, k = 0, 1. The parameters of the model are the (q x 1) vector

π and φ(k) = (B(k), (k)). The parameters φ(1) are clearly underidentified, Little assumed a

missingness mechanism such that

Pr(m = 1|y(1), y(2), x) = f(Cy(1) +Λy(2), x)

Where f is an arbitrary unspecified function, C and Λ are known matrices and Λ is full rank

matrix. When Λ is unknown, they performed sensitivity analysis for a range of plausible choices

of Λ.

(21) presented the sensitivity analysis under nonignorable dropout in reparameterizing the

pattern-mixture model. They also consider a multivariate regression pattern-mixture model.

Based on the (20) methods, Daniels and Hogan rewrote the pattern-mixture model in terms of

between-pattern location and scale changes. In this way, sensitivity analyses were reduced to a

series of complete-data problems. Assuming dropout is monotone, the missingness pattern in-

dicator is ui ∈ 1, · · · , K, where K denotes completeness and π(k) = pr(ui = k). They introduced

two unidentified components δ and C, such that

δ(k) = µ(k) − µ(k+1) and C(k) = (Σ(k))(1/2)(Σ(k+1))−1/2

For k = 1, · · · , K − 1. Therefore their sensitivity analyses of posterior inferences about the

difference in treatment arm means were conducted upon the varied combinations of δ(k), C(k)

under differences between unobserved data within a pattern and patterns with more complete
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data, such as starting with MAR and then moving to nonignorable mechanisms. The normal-

mixture pattern-mixture model has an attractive feature that the marginal distribution of the

observed data is fixed or nearly fixed when evaluating unidentified δ and C in a wide range of

nonignorable missing data mechanisms

1.4.2 Local Sensitivity Analysis

The above sensitivity analyses are called global sensitivity analysis. There is an increasing

interest in local sensitivity approximation of selection bias due to nonignorability. The local

sensitivity analysis is derivative-based, varied one at a time by a small amount around a fixed

point, and calculates the effect of individual perturbations on the output. Usually the fixed

point is at ignorability. If the results of analysis of sensitivity to ignorability has little influence

on the parameter estimates of the inferences of interest, one can directly report the results

obtained by LI under the assumption of ignorablity, instead of using LC, which might have

unidentifiability and untestable issues.

(22) proposed local sensitivity in the neighborhood of the MAR model. In their approach,

the complete data Y and a latent variable Z each follows a normal linear model and their error

terms are correlated with correlation coefficient ρ. The relationship of Y and Z is that Y is

observed if Z > 0. Then they introduced a nonignorability parameter θ which is a convenient

reparameterization of ρ in this way

θ =
ρ

(1− ρ2)1/2



16

Based on the derived likelihood for nonignorable selection model, the statistic T of the interested

inferences is derived

T(θ) = T(0) +Aη

Here A is the sensitivity multiplier calculated from data; η(θ) is the single log-odds parameter

related to θ. Then they examined sensitivity of various inferences for small changes of θ around

the ignorable model (θ = 0).

(23) extended the approach to surround the MAR model in the neighborhood of Kullback-

Leibler divergence (N). For some small ε0, the neighborhood is defined as

N = {gYZ : D(gYZ, fYZ) <
1

2
ε20}

where gYZ is the actual joint distribution of Y and Z, fYZ is the joint distribution of Y and Z

under the assumption of ignorability, and D(f1, f2) is the Kullback-Leibler divergence

D(f1, f2) =

∫
log

(
f1
f2

)
f1dydz = Ef1

{
log

(
f1
f2

)}

Then they compare the inference for models in the neighborhood N with that for a ignor-

ability model. They proved that the sensitivity multiplier A is the upper bound for all models

in the neighborhood N constrained by the single parameter η(θ). Here η(θ) is a sensitivity

parameter and η2(θ) is defined as the variance of the log odds of selection models with respect

to the outcome.
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(24) proposed sensitivity analysis based on a local influence approach (25) when the subjects

drop out nonrandomly in the longitudinal data under a normal distribution. Their proposed

method is different from other local sensitivity analysis in the way that they assign a pertur-

bation around the MAR model to the nonignorability parameter for each subject (γ1i) within

the linear predictor of the selection model and measure sensitivity on likelihood displacement

instead of estimates of parameter of interest, which is defined as:

LD(γ1i) = 2[lnLC(β̂(0), γ̂0(0); 0) − lnLC(β̂(γ1i), γ̂0(γ1i);γ1i)]

Here LC(β̂(0), γ̂0(0); 0) corresponds to an MAR dropout model (γ1i = (0, · · · , 0) ′) and

LC(β̂(γ1i), γ̂0(γ1i);γ1i) corresponds to an NMAR dropout model with small perturbation around

MAR. With their method, they can identify subjects with high influence on the nonrandom

dropout model.

1.4.3 An index Approach to Local Sensitivity to Nonignorability

(6) extended the approach of (22) and proposed an Index of Sensitivity to Nonignorablity

(ISNI) evaluated at the MLE of the parameter estimates under the assumption of ignorabil-

ity. They derived a general expression for ISNI based on Taylor-series approximation to the

nonignorable likelihood with a general parametric complete data model jointly with a general

parametric selection model. In their selection model, there is a single nonignorability param-

eter, named γ1, which is linking the outcome yi to the completeness indicator that takes the

value 1 for observed and 0 for missing. Unlike η in (22), the nonignorability parameter γ1
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is the regression coefficient in the missing-data model. The ISNI is the first derivative of the

parameter estimates (θ) with respect to γ1 in the following equation:

ISNI = −
(
∇2Lθ,θ

)−1
∇2Lθ,γ1 ,

Where θ is a vector of parameters of interest and ∇ is derivative. The ISNI is actually the

product of the estimated variance-covariance matrix of θ under MAR and the orthogonality of

θ and γ1. Compared with other sensitivity analyses mentioned above, ISNI analysis provides a

closed-form formula for the sensitivity. The main advantage of this approach is that computing

ISNI does not need to estimate a nonignorable model. Hence the ISNI could be used as prelim-

inary screening for sensitivity to nonignorability. If the ratio of ISNI to the standard error of a

parameter of interest is greater than 1, the model is potentially nonignorable. It is necessary to

obtain more information to model the missing-data mechanism and use LC to draw inferences.

After the (6) work on the ISNI, there has been a tremendous amount of work done in

developing ISNI to use in the other types of data. (26) applied the approach of (6) to the problem

of measuring sensitivity of the As-treated (AT) to nonignorable crossover in randomized trials

and extended their ISNI formula to allow the nonignorable missing-data mechanism to vary

across groups of subjects. Instead of one nonignorability parameter (γ1) in (6), they proposed

two nonignorability parameters: γ1c if subject i is randomized to control and γ1t if subject
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i is randomized to test. The probability of accepting the randomization arm depends on the

outcomes in the following way:

P(Gi = a|R, Yci, Yti) =


h(γ0c + γ1cyci), if γi = c

h(γ0t + γ1tyti), if γi = t

Where Gi = a indicates subject i accepts randomized therapy; otherwise subject i switches

from randomized therapy. Using this extended ISNI approach, one can evaluate whether the AT

estimate of the difference between treatment and control is sensitive to nonignorable crossover.

(27) applied ISNI to survival data with nonignorable censoring. They assumed a scaled

beta model for the censoring process to take into account of the dependence of censoring time

on survival time in addition to assuming a parametric model for the survival time. Then they

assessed the sensitivity of traditional model-based analyses to nonignorability using ISNI.

(28) applied ISNI to measure the sensitivity of MAR estimates to small departures from

ignorability for multivariate normal outcomes. (29) extended the work of (28) to apply the

ISNI methodology to handle the generalized linear mixed model for longitudinal data subject

to nonignorable dropouts and to measure the sensitivity of inferences in the neighborhood of

MAR. (28) used a multivariate normal model for the outcomes of interest and a regression model

with logit or probit link for missingness probabilities. They allowed missingness probabilities
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to depend on the current values of predictors (xij), the previous outcome observation (yi,j−1),

and the current outcome (yij) in the following way:

P(Gij = 1|Xij, Yi, Gi,j−1 = 1) = h(xijγ01 + yi,j−1γ02 + yijγ1)

Where Gij = 1 indicates the subject i completes the observation at j timepoint, j = 2, · · · ,mi

and h is a link function. The computation involves estimating a mixed-effect model and a

selection model for the drop-out, together with some simple arithmetic calculations. (29) had

the same setup as (28) for the drop-out model. For the model of the outcomes of interest,

(29) modeled the distribution of the outcomes in the form of the exponential family. In the

derivation the ISNI process, (29) used the score function and the information matrix to derive

the terms in the general formula of ISNI (6). Due to the lack of closed forms for calculating the

conditional expectations of the score function and the information matrix, they used the method

of Gaussian quadrature to approximate these conditional expectations. (28) and (29) assumed

monotonic missingness, thus their derived ISNIs do not extend to intermittent missingness data.

The above ISNI applications have been applied to a parametric form for the mean struc-

ture in the outcome model. (30) relaxed the parametric assumption in the outcome model and

investigated the usage of ISNI methodology to evaluate the potential effects of nonignorable

missing data mechanism on the generalized additive models (GAM) estimates in the neighbor-

hood of the MAR model. The GAM allows nonparametric functional forms for all or some of

the predictors in outcomes models. This is useful when the relationship of the outcome and
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a covariate is not well understood. The backfitting algorithm is often used to estimate GAMs

in complete data, but it has not been adapted to handle the nonignorable missing data. The

alternative Regression Spline (RS) method can be used to handle the nonignorable missing

data, as it is a widely used method for performing nonparametric curve estimation. Thus (30)

adopted the GAM + RS approach to model the complete outcome in the nonignorable selection

model. That is

g(µYi ) = ηi ≈ XTi β+

Q∑
q=1

WT
iqφq

where µYi is the mean of the outcome, XTi β is a parametric component,

Q∑
q=1

WT
iqφq is a non-

parametric component, WT
iq = [1, Tq, · · · , T rq, (Tq − τq1)r+, · · · , (Tq − τqKq)r+], and φq is the cor-

responding vector of coefficient parameters. They modeled the missingness mechanism with a

logistic regression model. With these specifications, they applied ISNI to evaluate the effect of

nonignorable missing on the estimation of GAMs.

The application of ISNI we reviewed above have all used logit or probit link functions to

model the missingness mechanism. (31) proposed an extended ISNI with a generalized logistic

model for the missingness mechanism. The generalized logistic model relaxes the assumption

of a known link function by embedding the logistic model within “two families of power trans-

formations to model symmetric and asymmetric departures from the logistic model in binary

regression” (32). The logistic model is a special case in the families. The common link functions

included in the families are logit, complementary log-log (cloglog), linear, and approximated

probit and arcsine. (31) proposed the extended ISNI: multiplication of ISNI by an F factor.
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The F factor is “the average over the dropouts of their individual nonignorability factors” Fi

For a family of symmetric link functions

Fi =


1− 1

4λ
2η̂20i, if | 12λη̂0i| < 1

0, otherwise

For a family of asymmetric link functions

Fi =


h(η̂0i)(1+ λe

η̂0i)/eη̂0i , if λeη̂0i > −1

0, otherwise

Where λ is a scalar. When λ = 1 it indicates a logistic model for both symmetric and

asymmetric families. When λ = 0, it indicates a linear model for symmetric family and a

cloglog model for asymmetric family. η̂0i = γ̂T0iSi, S is the vector of fully observed dropout

predictors. “The extended ISNI analysis allows the degree of nonignorability to vary among

subjects” by allowing “individual nonignorability parameters to vary only subject to the one-

parameter extension of the logistic model”(31). (31) conducted sensitivity analysis over a

plausible range of λ, which should include “commonly used link functions as well as the MLE

of λ assuming MAR”(31), to test dependence of the link function to nonignorability.

(33) further investigated relaxing a missing data model from parametric functional forms to

a semi-parametric approach: a generalized additive missing data model in addition to relaxing
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the linear relationship with non-linear relationship of missingness predictors and the missingness

indicator (30).

The above reviewed papers for ISNI methods assumed monotone pattern of missingness.

But non-monotone pattern of missigness (intermittent missingness) often plagues panel data.

(34) and (35) extended the ISNI method to nonignorable non-monotone missingness in panel

data or longitudinal clinical trials for various types of outcome models, such as the marginal

multivariate Gaussian model, generalized linear mixed model, and panel tobit model. Now the

missingness indicator Gij at time j for subject i in the missing-data model denoted as

Gij =



0, if subject i is observed at time j

1, if subject i is intermittent missing at visit j

2, if subject i drops out at visit j

They employed a multinomial logit model for non-monotone missingness indicator Gij given the

missingness status at the previous visits, which depended on the covariates, the prior observed

outcomes and the potentially unobserved current outcome using a Markov model of order q:

P
uv1···vq
ij =

φ
uv1···vq
ij

2∑
U=0

φ
Uv1···vq
ij

φ
uv1···vq
ij = exp(γ

uv1···vq
0 sij + γ

uv1···vq
1 yij)
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Where u is an index of the status of missingness 0, 1, 2, v1 · · · vq are index of status happen in

history of missingness through Gi,j−1, · · · , Gi,j−q with 0 as observed and 1 as unobserved, and

Sij is a vector of fully observed predictors for missinginess including the previous and current

values of predictors and the previous observed outcome.

Due to the model’s constraints: 1) Gij = 2 implied Git = 2 for t > j; 2) φ
2gi(j)
ij = 0 when

Gij−1 = 1; 3) φ
0gi(j)
ij = 1 for gij−1 = 0 or 1 as the response probabilities must sum to 1, the

nonignorable parameter γ1 expanded to a vector of unconstrained parameters (γ10, γ20, γ11).

The first digit represented current missing status (1=intermittent missing, 2=dropout) and the

second digit represented previous missing status (0=observed, 1=unobserved). Three elements

of γ1 perturbed from 0 to 1 formed a hypercube in space. Under this circumstance, (34) and

(35) considered the maximum sensitivity in this hypercube for the ISNI. The computation

of the ISNI for nonignorable non-monotone missingness did not have closed form and needed

numerical evaluations with respecting to the missing data.

In this thesis, our approach builds on earlier work developing ISNI. We extend the local

sensitivity analysis of likelihood-based estimates with missing data to allow for nonlinear im-

pact of nonignorable selection mechanism. We develop formule and algorithms for computing

the nonlinear impact of nonignorability. The resulting nonlinear local sensitivity index can pro-

vide substantial improvement in some important situations, such as when estimating the error

variances or when both the covariates and outcome are subject to missingness. This approach

extends the linear local sensitivity index (6). At the same time it maintains computational

feasibility as it avoids fitting any complicated nonignorable selection models. Our approach can
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be used as a screening method to tell whether we need to collect additional data and perform

arduous work of nonignorable modeling.

The rest of the thesis is organized as follows: In Chapter 2 we develop general nonlinear

sensitivity index for selection when only the outcome is subject to selective observation. Then

we illustrate it in specific situations: univariate normal data and the simple linear regression

model. Last we conduct simulation studies for these two special situations and compared the

selection bias between our proposed nonlinear sensitivity index and linear sensitivity index (6).

In Chapter 3, with the same process as in Chapter 2, we develop a general nonlinear sensitivity

index for nonignorable selection when both the outcome and covariates are subject to selective

observation and illustrated it in specific situations: simple linear regression with both the

continuous outcome and covariates and simple linear regression with the continuous outcome

and the binary covariates. Then we conclude this chapter with simulation studies for these two

special situations. Chapter 4 applies our methodology to two real examples mentioned in the

beginning of Chapter 1 (Introduction). We conclude with a discussion in Chapter 5.



CHAPTER 2

NONLINEAR SENSITIVITY INDEX FOR MISSINGNESS IN THE

OUTCOME ONLY

2.1 Selection Model and Linear Local Sensitivity Analysis

We first describe the joint selection model that consists of the following two components:

First is a outcome model. Let the outcome Y have a density function fθ(y|x) for independent

subjects i = 1, · · · , N from the population of interest, where X is a vector of fully-observed

predictors of Y. For illustrative purposes, here we consider models for cross-sectional ideal

outcomes, though our methods are general and can be extended to more complex models. The

outcome Yi is independently drawn from the exponential family that includes normal, binomial,

Poisson and Gamma distributions as special cases.

Second is missing data model. As indicated in the Introduction, selection models are com-

monly used to capture the nonignorable missing data. Let the missing indicator G have a

density function of hγ(s, y) with the value 1 for subjects who are observed and 0 for subjects

who are missing or unobserved, where s is a set of fully-observed predictors for the missing-data

mechanism model. We model the probability of Y being observed as follows:

Prob(Gi = 1|yi, si) = h(γ
T
0si + γ1yi)

Where h(·) is the specified monotonic link function, e.g., the logit or probit.

26
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We assume Yi is independent of Si conditioning on Xi, which means Si is not used for

predicting Yi, but only used to predict the probability of missingness. Let θ be a p x 1 vector of

unknown parameters with parameter space ωθ being an open subset of Rp, and let γ = (γ0, γ1)

be a q x 1 vector of pre-specified nonignorability parameters with parameter space ωγ being

an open subset of Rq.

The log likelihood of the joint model is

L(θ, γ0, γ1) =∑
i:gi=1

ln fθ(y
obs
i |xi)+

∑
i:gi=1

lnh(γ0si+γ1y
obs
i )+

∑
i:gi=0

ln

∫
fθ(y

mis
i |xi)[1−h(γ0si+γ1y

mis
i )]dymisi

(2.1)

Observed data provide little information for distinguishing between different missingness

mechanisms, and the model is usually unidentifiable; even when the model is identified, the

inference obtained from the model is highly sensitive to the strong model assumptions that are

untestable with the observed data in (36), (8), (18), and (19). Thus an alternative and more

prudent approach is to perform a sensitivity analysis on the above nonignorable model over a

plausible range of values for γ1 in a neighborhood of the MAR model from (22), (23), (24), and

(6). When γ1 is 0, the missing-data mechanism is MAR, and the model is the ignorable model.

For the sensitivity analysis, we must first obtain MLE(θ̂(γ1), γ̂0(γ1)) by maximizing L over

(θ, γ0) for any value of γ1, and then compare inferences for the range of γ1 values. Usually we
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are interested in estimating θ. We will evaluate how θ̂(γ1) departs from θ̂(0) when γ1 changes

from zero. By a Taylor-series approximation, we have

θ̂(γ1) ≈ θ̂(0) +
∂θ̂(γ1)

∂γ1

∣∣∣∣∣
γ1=0

× γ1

The MAR estimate θ̂(0) can be obtained from standard software. ∂θ̂(γ1)

∂γT1

∣∣∣
γ1=0

measures the

changing rate of θ̂(γ1) as a function of γ1, which is referred to as the Index of Local Sensitivity

to NonIgnorability (ISNI).

(6) derived the linear Index of Sensitivity to NonIgnorability (ISNI), which is the first

derivative of θ̂ with respective to γ1, evaluated at the MAR model, i.e. γ1 = 0 as follows

ISNI = ∂θ̂(γ1)
∂γ1

∣∣∣
γ1=0

= −
(
∇2Lθ,θ

)−1
∇2Lθ,γ1

The ISNI derived by (6) is the combination of the estimated variance-covariance matrix of

θ̂ in an ignorable model and a measure of the orthogonality of θ and γ1. The computation of

this index is easy and intuitive; it does not require evaluation of complicated integrals or fitting

any joint selection models. Thus, it permits simple and fast evaluation of ^θ(γ1). ISNI formulas

have been developed for a range of problems with missing outcomes in (26), (28), (29), (37),

(31), (30), (33), (35), (34), (27), (38), and (39).

2.2 Nonlinear Sensitivity Index Development

Although the linear sensitivity index measures are adequate for a range of important appli-

cations previously studied, there is a need to develop more accurate simple index measures that
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can more faithfully capture the sensitivity in general situations. For example, when estimating

the error variances, or when both the covariates and outcome are subject to missingness, the

selection bias can take a highly nonlinear form such that we must develop nonlinear sensitiv-

ity index measures. More generally, standard deviations can be important for quality control,

measuring risk in finance, and consequently is an important estimate. The development of ISNI

so far assumes that only the outcome Y is subject to missingness while the covariates X are

fully observed. However, a common problem in EMA studies is the simultaneous missingness in

both the outcome variable and important covariates that would be collected concurrently during

those nonresponded prompts. The current ISNI formulas are not computable in this situation

because they require known covariate values. Furthermore, the impact of nonignorability takes

a highly nonlinear shape around the MAR model, and consequently, the current linear ISNI

loses its effectiveness. Therefore, there is a need to generalize ISNI to make it applicable and

effective to a much broader range of studies. Our main strategy is to employ a second-order

Taylor-series expansion of the MLEs of model parameters as a function of γ1 as follows

θ̂(γ1) ≈ θ̂(0) +
∂θ̂(γ1)

∂γT1

∣∣∣∣∣
γ1=0

× γ1 +
∂2θ̂(γ1)

∂γ21

∣∣∣∣∣
γ1=0

×
γ21
2
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The following steps show the detailed derivation of Index of Sensitivity to NonIgnorability in

Quadratic form (ISNIQ) Given a fixed γ1, MLE estimates θ̂(γ1) and γ̂0(γ1) satisfy the following

condition

∂L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT )T
= 0

Taking the first derivative of both sides with respect to γ1 we have

∂2L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂γ1

+
∂2L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂(θT , γT0 )

∂(θ̂T , γ̂0
T )T

∂γ1
= 0

Therefore for any value of γ1, the first derivative of the (θ̂(γ1), γ̂0(γ1)) with respect to γ1

is as follows

∂(θ̂T , γ̂0
T )T

∂γ1
= −

[
∂2L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂(θT , γT0 )

]−1
∂2L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂γ1

We call the first derivative of the (θ̂(γ1), γ̂0(γ1)) with respect to γ1 as Index of Sensitivity

to NonIgnorability in Linear form (ISNIL).

Next, we take the second derivative of the (θ̂(γ1), γ̂0(γ1)) with respect to γ1. We then have

∂

∂γ1


∂θ̂(γ1)
∂γ1

∂γ̂0(γ1)
∂γ1

 =A−1 ∂

∂γ1

[
∂2L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂(θT , γT0 )

]
A−1∂

2L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂γ1

−A−1 ∂

∂γ1

[
∂2L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂γ1

]
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Where A−1 =
[
∂2L(θ̂(γ1),γ̂0(γ1),γ1)

∂(θT ,γT0 )
T∂(θT ,γT0 )

]−1

∂

∂γ1

[
∂2L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂(θT , γT0 )

]
=
∂3L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂(θT , γT0 )∂γ1

+

nθ∑
j=1

∂3L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂(θT , γT0 )∂θj

∂θ̂j(γ1)

∂γ1

+

nγ0∑
k=1

∂3L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂(θT , γT0 )∂γ0k

∂γ̂0k(γ1)

∂γ1

And

∂

∂γ1

[
∂2L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂γ1

]
=
∂3L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂(θT , γT0 )∂γ1

∂(θ̂T , γ̂0
T )T

∂γ1
+
∂3L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )
T∂γ21

We call the second derivative of the (θ̂(γ1), γ̂0(γ1)) with respect to γ1 an Index of Sensitivity

to NonIgnorability in Quadratic form (ISNIQ).
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Then we rewrite the above equation as follows

ISNIQ =

 ∇2Lθ,θ ∇2Lθ,γ0

∇2Lγ0,θ ∇2Lγ0,γ0


−1


 ∇3Lθ,θ,γ1 ∇3Lθ,γ0,γ1

∇3Lγ0,θ,γ1 ∇3Lγ0,γ0,γ1

+

nθ∑
j=1

 ∇3Lθ,θ,θj ∇3Lθ,γ0,θj

∇3Lγ0,θ,θj ∇3Lγ0,γ0,θj

 ISNI(θ̂j)+
nγ0∑
k=1

 ∇3Lθ,θ,γ0k ∇3Lθ,γ0,γ0k

∇3Lγ0,θ,γ0k ∇3Lγ0,γ0,γ0k

 ISNI(γ̂0k)

 ∇2Lθ,θ ∇2Lθ,γ0

∇2Lγ0,θ ∇2Lγ0,γ0


−1 ∇2Lθ,γ1

∇2Lγ0,γ1



−

 ∇2Lθ,θ ∇2Lθ,γ0

∇2Lγ0,θ ∇2Lγ0,γ0


−1


 ∇3Lθ,γ1,γ1

∇3Lγ0,γ1,γ1

+

 ∇3Lθ,θ,γ1 ∇3Lθ,γ0,γ1

∇3Lγ0,θ,γ1 ∇3Lγ0,γ0,γ1


 ISNI

 θ̂

γ̂0



=−

 ∇2Lθ,θ ∇2Lθ,γ0

∇2Lγ0,θ ∇2Lγ0,γ0


−1 2

 ∇3Lθ,θ,γ1 ∇3Lθ,γ0,γ1

∇3Lγ0,θ,γ1 ∇3Lγ0,γ0,γ1

+

nθ∑
j=1

 ∇3Lθ,θ,θj ∇3Lθ,γ0,θj

∇3Lγ0,θ,θj ∇3Lγ0,γ0,θj

 ISNI(θ̂j)+
nγ0∑
k=1

 ∇3Lθ,θ,γ0k ∇3Lθ,γ0,γ0k

∇3Lγ0,θ,γ0k ∇3Lγ0,γ0,γ0k

 ISNI(γ̂0k)
 ISNI

 θ̂

γ̂0



−

 ∇2Lθ,θ ∇2Lθ,γ0

∇2Lγ0,θ ∇2Lγ0,γ0


−1 ∇3Lθ,γ1,γ1

∇3Lγ0,γ1,γ1


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When only the sensitivity of θ̂ is of interest and noting that ∇2Lθ,γ0 = 0, ∇3Lθ,γ0,θj = 0,

∇3Lγ0,γ0,θj = 0, ∇3Lθ,θ,γ0k = 0 and ∇3Lθ,γ0,γ0k = 0, we have

ISNIQ(θ̂) =
∂2 ^θ(γ1)

∂γ21
=−∇2L−1θ,θ

2∇3Lθ,θ,γ1 + nθ∑
j=1

∇3Lθ,θ,θjISNI(θ̂j)

 ISNI(θ̂)
− 2∇2L−1θ,θ∇

3Lθ,γ0,γ1ISNI(γ̂0) −∇
2L−1θ,θ∇

3Lθ,γ1,γ1

Note that the terms in the formula above are all evaluated under the MAR model (i.e.,

γ1 = 0) with no need to fit any nonignorable models.

2.3 Examples

2.3.1 Univariate Normal Data

Now we consider ISNIQ of θ̂ for a special case of univariate normal model. Let Yi ∼iid

N(µ, σ2), i = 1, , N with the binary indicator variable Gi (1 indicates Yi observed; 0 indicates

Yi missed). The selection model is simply as follows

Prob(Gi = 1|yi) = h(γ0 + γ1yi) =
exp(γ0 + γ1yi)

1+ exp(γ0 + γ1yi)
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The log likelihood for the above joint selection model is

L(µ, σ2, γ0, γ1) =

N∑
i=1

{
gi

[
−
1

2
ln((2πσ2)e

−
(yi−µ)

2

2σ2 ) + ln
exp(γ0 + γ1yi)

1+ exp(γ0 + γ1yi)

]

+(1− gi)ln
∫
(2πσ2)−

1
2 e

−
(ymisi −µ)2

2σ2 [ 1
1+exp(γ0+γ1y

mis
i )

]dymisi

}

Under MAR mechanism, the usual observed-data MLEs estimates of (µ, σ2) are

µ̂(0) =

N∑
i=1

giyi

N∑
i=1

gi

σ̂2(0) =

N∑
i=1

gi(yi − µ̂(0))
2

N∑
i=1

gi

By the derived formula of linear ISNI (ISNIL) above, we obtain ISNIL for the outcome

model parameters (µ, σ2) as follows

ISNIL(µ̂) = −Nm
N σ

2

ISNIL(σ̂2) = 0
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By the derived formula of nonlinear ISNI (ISNIQ) above, we obtain ISNIQ for the outcome

model parameters (µ, σ2) as follows

ISNIQ(µ̂) = 0

ISNIQ(σ̂2) = 2NoNm
N2

(σ2)2

Where N is the total number of complete subjects, No is the number of observed subjects,

and Nm is the number of missing subjects.

The nonlinear ISNI of the mean parameter estimate (µ̂) is zero. It indicates the linear

approximation (ISNIL) is sufficient for the mean parameter estimate. But the nonlinear ISNI

of the variance parameter (σ̂2) is a non-zero value. Obviously, the linear approximation is inad-

equate for the variance estimate. It indicates that the selection bias for σ̂2 is highly nonlinear

with quadratic form. Consequently, the sensitivity of the variance estimate is affected by the

fraction of data missing. When the fraction of data missing is 0.5, the sensitivity is maximum.

This is likely due to the fact that when the missing data proportion is larger than 0.5, a large

part of impact is from ignorable missingness instead of nonignorability, and consequently, the

sensitivity to nonignorable missingness is reduced.
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The following steps show the detailed derivation:

∇2L−1θ,θ =


∂2L
∂µ∂µ

∂2L
∂µ∂σ2

∂2L
∂σ2∂µ

∂2L
∂σ2∂σ2



−1

=


−
(
σ̂2

No

)
0

0 − 2(σ̂2)2

No



∇3Lθ,θ,γ1 =−

N∑
i=1

(1− gi)hi(.)

 ∂2

∂µ∂µE(y
mis
i ) ∂2

∂µ∂σ2
E(ymisi )

∂2

∂σ2∂µ
E(ymisi ) ∂2

∂σ2∂σ2
E(ymisi )




=

 0 0

0 0



∇3Lθ,γ0,γ1 =−

N∑
i=1

(1− gi)hi(.)[1− hi(.)]si

 ∂
∂µE(y

mis
i )

∂
∂σ2
E(ymisi )




=


−

N∑
i=1

{(1− gi)hi(.)[1− hi(.)]}

0



=


−NoN2m

N2

0


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∇3Lθ,γ1,γ1 =−

N∑
i=1

{
(1− gi)

[
hi(.)[1− 2hi(.)]

∂

∂θ
Var(ymisi |xi) + hi(.)[1− hi(.)]

∂

∂θ
E2(ymisi |xi)

]}

=


−

N∑
i=1

(1− gi)2hi(.)[1− hi(.)]µ

−

N∑
i=1

(1− gi)hi(.)[1− 2hi(.)]



=


−2µ̂NoN

2
m

N2

NmNo(No−Nm)
N2



∇3Lθ,θ,µ =


∂3L

∂µ∂µ∂µ
∂3L

∂µ∂σ2∂µ

∂3L
∂σ2∂µ∂µ

∂3L
∂σ2∂σ2∂µ



=


0 No

(σ̂2)2

No
(σ̂2)2

0



∇3Lθ,θ,σ2 =


∂3L

∂µ∂µ∂σ2
∂3L

∂µ∂σ2∂σ2

∂3L
∂σ2∂µ∂σ2

∂3L
∂σ2∂σ2∂σ2



=


No

(σ̂2)2
0

0 0



ISNI(µ̂) = −
Nm

N
σ̂2

ISNI(σ̂) =0

ISNI(γ̂0) = − µ̂
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2.3.2 Simple Linear Regression

Now we consider ISNIQ of θ̂ for a special case of linear regression model with normal errors,

we have Y = β0+β1X+ ε, where ε ∼ N(0, σ2) we have β = (β0, β1) and θ = (β, σ2). The other

setups are the same as univariate normal model.

The log likelihood for the above joint selection model is

L(β0, β1, σ
2, γ0, γ1) =

N∑
i=1

{
gi

[
−
1

2
ln(2πσ2exp

−(yi − x
′
iβ)

2

2σ2
) + ln

exp(γ0 + γ1yi)

1+ exp(γ0 + γ1yi)

]
+(1− gi)ln

∫
(2πσ2)−

1
2 exp(−

(ymisi −x′iβ)
2

2σ2
) 1
1+exp(γ0+γ1y

mis
i )

dymisi

}

By the derived formula of linear ISNI (ISNIL) above, we obtain ISNIL for the outcome

model parameters (β0, β1, σ
2) as follows

ISNIL(β̂0) = −

[
Nm
N + Nm

N

∑No
i=1 xoi
Sxoxo

(x̄o − x̄m)

]
σ2

ISNIL(β̂1) =

[
Nm
N

Sxoxo
No

(x̄o − x̄m)

]
σ2

ISNIL(σ̂2) = 0
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By the derived formula of nonlinear ISNI (ISNIQ) above, we obtain ISNIQ for the outcome

model parameters (β0, β1, σ
2) as follows

ISNIQ(β̂0) =
2β̂1σ̂

2N2m(x̄o−x̄m)
N2

− ISNIQ(β̂1)x̄o

ISNIQ(β̂1) =
−2β̂1σ̂

2NoNm(
∑
x2mi−Nm(x̄x̄m−x̄x̄o+x̄ox̄m))

N2sxoxo

ISNIQ(σ̂2) = 2NoNm
N2

(σ2)2
[
1+ Nm(x̄m−x̄o)2

sxoxo

]

Where sxoxo =

No∑
i=1

(xi − x̄o)
2; xo and xm are the vectors of predictors for subjects with

observed y and missing y, respectively; No and Nm are the numbers of observed subjects and

missing subjects, respectively.
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The following steps show the detailed derivation:

∇2L−1θy,θy = −σ2


1
n0

+
x̄20
sxoxo

− x̄o
sxoxo

0

− x̄o
sxoxo

1
sxoxo

0

0 0 2σ2

n0


∇3Lθy,θy,γ1 = 0

∇3Lθy,θy,β0 =


0 0 No

(σ2)2

0 0 Nox̄0
(σ2)2

No
(σ2)2

Nox̄0
(σ2)2

0



∇3Lθy,θy,β1 =


0 0 Nox̄0

(σ2)2

0 0
∑
i x
2
io

(σ2)2

Nox̄0
(σ2)2

∑
i x
2
io

(σ2)2
0



∇3Lθy,γ0,γ1 =


−No(Nm)2

N2

−No(Nm)2

N2
x̄o

0


ISNI(γ̂0) = −β0 − β1x̄o

∇3Lθy,γ1,γ1 =


− 2No(Nm)2

N2
(β0 + β1x̄o)

− 2No(Nm)2

N2
(β0x̄0 + β1x̄

2
0) −

2NoNm(Nm−No)
N2

σ2xβ1

NoNm(No−Nm)
N2


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2.4 Simulation Studies

2.4.1 Univariate Normal Data

To further illustrate the nonlinear sensitivity index method and demonstrate the superiority

of nonlinear ISNIs, we perform the simulation study for univariate normal data. The ideal data

Yi is simulated from standard normal distribution, where µ = 0, σ = 1 and i = 1, · · · , 100.

The response behavior follows a logistic regression model: logit(pi) = γ0 + γ1yi, where p is

probability of y observed, γ0 = 0, 1, 2, or 3, and γ1 = −1,−0.5, 0.5, or 1. The values of γ0

and γ1 are varied so that the resulting datasets have varying amount of missingness ranging

from ∼5% to ∼50% and varying degrees of nonignorable missingness varying from -1 to 1. We

compute the ISNI-based approximate sensitivity curves as

µ̂ISNIL(γ1) = µ̂(0) + ISNIL ∗ γ1

µ̂ISNIQ(γ1) = µ̂(0) + ISNIL ∗ γ1 +
ISNIQ

2
γ21

σ̂2
ISNIL

(γ1) = σ̂2(0) + ISNIL ∗ γ1

σ̂2
ISNIQ

(γ1) = σ̂2(0) + ISNIL ∗ γ1 +
ISNIQ

2
γ21

The comparison shows that the non-linear ISNI is as good as the linear ISNI for mean

estimate. For variance estimate, the use of the higher-order ISNI improves the approximation

by capturing the curvature of the sensitivity curve around the MAR model.

We then repeat the simulation 100 times and present the pooled analysis in Table I and

Table II. We further vary the parameter settings γ0 and γ1. The variation of model parameters
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Figure 1: ISNI approximation to mean and variance estimates for univariate normal

give us a range of missing proportions as shown in Table I and Table II. Accuracy of ISNI

approximation can be evaluated by

|µ̂ISNI(γ1)− µ̂(γ1)| and |σ̂2
ISNI

(γ1)− σ̂2(γ1)| The overall performance is measured by the aver-

age approximation error over the 100 simulated datasets. The results shows that the nonlinear

sensitivity substantially improve the selection bias approximation, as the linear approximation

cannot capture the local sensitivity.

Figure 1 shows the analysis based on one simulated dataset with γ0 = 0 and γ1 = −1 and

the proportion of missingness being 0.51. The solid curve shows the exact sensitivity curves of

mean: µ̂(γ1) and variance: σ̂2(γ1), which were computed by maximizing the log-likelihood of
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TABLE I: A SIMULATION STUDY OF THE ACCURACY OF ISNI TO APPROXIMATE
MLE OF THE MEAN µ CHANGES LOCALLY FOR UNIVARIATE NORAML DATA

Average Approximation Error
γ0 γ1 Prop M µ̂(0) µ̂(γ1) µ̂(γ1) µ̂(γ1) µ̂(γ1) µ̂(γ1)

(ISNIL) (ISNIQ) (ISNIL) (ISNIQ)

0 -1 49.48% -0.432 -0.022 -0.012 -0.012 0.01 0.006
0 -0.5 49.84% -0.26 -0.028 -0.023 -0.023 0.005 0.003
0 0.5 50.16% 0.237 0.003 -0.002 -0.002 0.005 0.005
0 1 50.52% 0.417 0.011 0.002 0.002 0.009 0.011
1 -1 29.95% -0.272 -0.021 -0.012 -0.012 0.009 0.005
1 -0.5 26.95% -0.143 -0.014 -0.011 -0.011 0.002 0.002
1 0.5 27.47% 0.115 -0.016 -0.018 -0.018 0.002 0.001
1 1 30.11% 0.25 0.002 -0.007 -0.007 0.009 0.005
2 -1 14.8% -0.142 -0.011 -0.005 -0.005 0.005 0.003
2 -0.5 12.41% -0.072 -0.012 -0.011 -0.011 0.001 0.001
2 0.5 12.36% 0.049 -0.011 -0.012 -0.012 0.001 0
2 1 15.25% 0.121 -0.014 -0.019 -0.019 0.005 0.003
3 -1 6.68% -0.073 -0.011 -0.009 -0.009 0.002 0.001
3 -0.5 5.25% -0.038 -0.012 -0.012 -0.012 0 0
3 0.5 5% 0.013 -0.012 -0.013 -0.013 0 0
3 1 6.59% 0.052 -0.009 -0.011 -0.011 0.002 0.001

the joint nonignorable selection models for a range of γ1. This is computationally intensive and

is not required in ISNI analyses. The broken line and dotted line represent the approximation

using linear ISNI and non-linear ISNI (quadratic term), respectively.

2.4.2 Simple Linear Regression

Following the same process above, we perform the simulation study for simple linear re-

gression. The ideal outcomes are simulated from a simple linear regression model: Yi ∼

N(β0 + β1xi, σ
2
y), where β0 = 0, β1 = 1, σ2y = 1 and i = 1, · · · , 100 and the covariate

xi ∼ N(µx, σ
2
x), where µx = 0 and σx = 1. The response behavior follows a logistic regres-

sion model: logit(p) = γ0 + γ1yi, where p is probability of y observed, γ0 = 0, 1, 2, or 3, and
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TABLE II: A SIMULATION STUDY OF THE ACCURACY OF ISNI TO APPROXIMATE
MLE OF THE VARIANCE σ2 CHANGES LOCALLY FOR UNIVARIATE NORAML DATA

Average Approximation Error
γ0 γ1 Prop M σ̂2(0) σ̂2(γ1) σ̂2(γ1) σ̂2(γ1) σ̂2(γ1) σ̂2(γ1)

(ISNIL) (ISNIQ) (ISNIL) (ISNIQ)

0 -1 49.48% 0.848 1.007 0.848 1.033 0.159 0.026
0 -0.5 49.84% 0.952 0.989 0.952 1.01 0.037 0.021
0 0.5 50.16% 0.953 0.99 0.953 1.012 0.037 0.022
0 1 50.52% 0.82 0.97 0.82 0.993 0.151 0.023
1 -1 29.95% 0.868 0.997 0.868 1.03 0.129 0.033
1 -0.5 26.95% 0.972 1.004 0.972 1.02 0.032 0.016
1 0.5 27.47% 0.967 0.999 0.967 1.015 0.032 0.016
1 1 30.11% 0.857 0.983 0.857 1.015 0.125 0.032
2 -1 14.8% 0.922 1.005 0.922 1.031 0.083 0.026
2 -0.5 12.41% 0.983 0.997 0.983 1.01 0.014 0.013
2 0.5 12.36% 0.983 0.997 0.983 1.01 0.014 0.013
2 1 15.25% 0.918 1.002 0.918 1.029 0.085 0.027
3 -1 6.68% 0.964 1.005 0.964 1.023 0.041 0.017
3 -0.5 5.25% 0.997 0.999 0.997 1.01 0.004 0.011
3 0.5 5% 0.999 1 0.999 1.011 0.004 0.011
3 1 6.59% 0.957 0.998 0.957 1.015 0.04 0.017

γ1 = −1,−0.5, 0.5, or 1. The values of γ0 and γ1 are varied so that the resulting datasets have

varying amount of missingness ranging from ∼5% to ∼50% and varying degrees of nonignorable

missingness. Figure 2 shows the analysis based on one simulated dataset with γ0 = 0 and

γ1 = −1, with the proportion of missingness being 0.48. The solid curve shows the exact sensi-

tivity curves of β̂0(γ1) and β̂1(γ1), which were computed by maximizing the the log-likelihood

of the joint nonignorable selection models for a range of values for γ1. The broken line and
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dotted line represent the approximation using linear ISNI and non-linear ISNI (quadratic term),

respectively. We compute the ISNI-based approximate sensitivity curves as

β̂0
ISNIL

(γ1) = β̂0(0) + ISNIL ∗ γ1

β̂0
ISNIQ

(γ1) = β̂0(0) + ISNIL ∗ γ1 +
ISNIQ

2
γ21

β̂1
ISNIL

(γ1) = β̂1(0) + ISNIL ∗ γ1

β̂1
ISNIQ

(γ1) = β̂1(0) + ISNIL ∗ γ1 +
ISNIQ

2
γ21

The comparison shows that the existing linear ISNI computes the tangent of the sensitivity

curve at MAR as expected. Furthermore, the use of the higher-order ISNI improves the ap-

proximation by capturing the curvature of the sensitivity curve around the MAR model, and

the broken curve follows the exact sensitivity curve closer than the linear approximation.

We then repeat the simulation 100 times and present the pooled analysis in Table III and

Table IV. The results show that the nonlinear sensitivity substantially improves the selection

bias approximation, as the linear approximation cannot capture the local sensitivity.
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Figure 2: ISNI approximation to β0 and β1 estimates for simple linear regression model
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TABLE III: A SIMULATION STUDY OF THE ACCURACY OF ISNI TO APPROXIMATE
MLE OF THE INTERCEPT β0 CHANGES LOCALLY FOR SIMPLE LINEAR REGRES-
SION MODEL

Average Approximation Error

γ0 γ1 Prop M β̂0(0) β̂0(γ1) β̂0(γ1) β̂0(γ1) β̂0(γ0) β̂0(γ1)
(ISNIL) (ISNIQ) (ISNIL) (ISNIQ)

0 -0.5 50.88% -0.226 0.007 0.035 0.005 0.028 0.003
0 0.5 49.12% 0.24 0.018 -0.006 0.019 0.024 0
0 1 49.46% 0.411 0.021 -0.103 0.037 0.125 0.006
1 -1 33.22% -0.259 0.007 0.08 0.009 0.073 0.003
1 -0.5 29.49% -0.129 0.005 0.014 0.005 0.01 0
1 0.5 28.61% 0.146 0.016 0.007 0.016 0.009 0.003
1 1 32.01% 0.272 0.014 -0.051 0.011 0.065 0.008
2 -1 18.85% -0.145 0.008 0.04 0.015 0.032 0.006
2 -0.5 13.96% -0.049 0.016 0.019 0.017 0.002 0
2 0.5 14.03% 0.075 0.009 0.006 0.008 0.003 0.001
2 1 18.37% 0.162 0.013 -0.018 0.006 0.031 0.018
3 -1 9.08% -0.066 0.011 0.022 0.015 0.011 0.004
3 -0.5 5.83% -0.014 0.014 0.015 0.014 0.001 0
3 0.5 6.2% 0.041 0.011 0.01 0.011 0.001 0
3 1 9.51% 0.09 0.01 -0.004 0.005 0.014 0.008
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TABLE IV: A SIMULATION STUDY OF THE ACCURACY OF ISNI TO APPROXIMATE
MLE OF THE SLOPE β1 CHANGES LOCALLY FOR SIMPLE LINEAR REGRESSION
MODEL

Average Approximation Error

γ0 γ1 Prop M β̂1(0) β̂1(γ1) β̂1(γ1) β̂1(γ1) β̂1(γ1) β̂1(γ1)
(ISNIL) (ISNIQ) (ISNIL) (ISNIQ)

0 -1 50.54% 0.843 0.989 1.207 0.955 0.218 0.039
0 -0.5 50.88% 0.942 0.997 1.062 0.993 0.065 0.007
0 0.5 49.12% 0.953 1.007 1.063 1.004 0.056 0.001
0 1 49.46% 0.868 1.006 1.198 0.974 0.193 0.009
1 -1 33.22% 0.866 0.984 1.103 0.982 0.119 0.015
1 -0.5 29.49% 0.95 0.988 1.012 0.988 0.025 0.001
1 0.5 28.61% 0.96 1.001 1.024 1.002 0.023 0.005
1 1 32.01% 0.881 0.999 1.106 0.999 0.106 0.006
2 -1 18.85% 0.912 0.993 1.049 1.002 0.056 0.009
2 -0.5 13.96% 0.982 1.001 1.007 1.002 0.007 0
2 0.5 14.03% 0.978 1.008 1.016 1.01 0.007 0.001
2 1 18.37% 0.918 1.006 1.058 1.016 0.052 0.019
3 -1 9.08% 0.943 0.995 1.015 1.003 0.02 0.012
3 -0.5 5.83% 0.988 0.998 0.999 0.998 0.001 0
3 0.5 6.2% 0.985 1.002 1.004 1.002 0.002 0
3 1 9.51% 0.939 1.002 1.026 1.011 0.024 0.008



CHAPTER 3

NONLINEAR SENSITIVITY INDEX FOR MISSINGNESS IN BOTH

THE OUTCOME AND COVARIATES

(Previously published as Gao, W., Hedeker, D., Mermelstein, R., Xie, H. (2016). A scalable approach

to measuring the impact of nonignorable nonresponse with an EMA application. Statistics in Medicine.

DOI: 10.1002/sim.7078.)

3.1 Motivation: An EMA Study on Adolescent Smoking Behaviors

In the previous chapter, we had developed ISNI under the condition that only the outcome

Y is subject to missingness while the covariates X are fully observed. This chapter develops

nonlinear sensitivity indices for selective missingness in both the outcome and covariates, which

is motivated by the data collected in the EMA study as described in Example 2 in the In-

troduction. One important study aim in the aforementioned EMA study is to investigate the

mood-link relationship for adolescents, and regression models are commonly employed for this

purpose. In these regression models, the covariates in X may include other control variables

for the purpose of studying mediation or controlling for confounding in addition to the main

independent variable smoking. The collected EMA data has the more complex missing data

pattern that when study participants do not respond to the random prompts, the answers to

the questions regarding mood (the outcome Y) and some covariates in X are simultaneously

missing. The simultaneous missingness in both the outcome variable and important covariates

49
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that would be collected concurrently during those nonresponded prompts is a common problem

in EMA studies. Standard analysis ignores these missing prompts and analyzes the resulting

data as if these random prompts were never sent out. It can be important to know the credibil-

ity of such standard analysis by examining how the standard inference could be affected if the

missing random prompts are systematically different from the responded prompts. Note that

such data is not restricted to EMA data only, but can happen to other kinds of studies when

there exists unit nonresponses to group of questions in the survey. This raises new statistical

and computational challenges. The current ISNI formulas are not computable in this situation

because they require known covariate values. More importantly, as will be shown below, the im-

pact of nonignorability takes a highly nonlinear form around the MAR model and consequently

requires the development of new nonlinear sensitivity indices. In this chapter, we extend the

local sensitivity analysis to allow for the missing data pattern of simultaneous missingness in

outcomes and covariates and to capture the more complex nonlinear impact of nonignorability.

3.2 Selection Model

In order to permit simultaneous missingness in response Y and some covariates in X in

evaluating the impact of nonrandom nonresponse, we expand the selection model as described

in Chapter 2 to include an covariate model for missing covariates. We rewrite the covariates

in the response model as (X,W), where W denotes fully-observed covariates and X denotes the

covariates subject to concurrent missingness with Y. We consider here models for cross-sectional

data, although our index approach is general and can be extended to more complex models.
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The joint selection model for missingness in both the outcome and covariates consists of the

following three components:

First is outcome model. Let the outcome Y have a density function fθy(Y|X,W) for indepen-

dent subjects i = 1, · · · , N from the population of interest. The outcome Yi is independently

drawn from the exponential family that includes normal, binomial, Poisson and Gamma distri-

butions as special cases.

Second is covariate model. If X consists of a single covariate, a generalized linear model

can be used for fθx(X|W) depending on the nature of the covariate. If X consists of multiple

covariates (X1, X2, · · ·Xp), we can consider using a product conditional model where fθx(X|W) =

fθx1 (X1|W)fθx2 (X2|W,X1) · · · fθxp (Xp|W,X1, · · · , Xp−1). In the product conditional model, each

of fθxj (Xj|W, X̃j), j = 1, · · · , p can be modeled using a generalized linear model, where X̃j =

(X1, · · ·Xj−1) when j > 1 and X̃j is null when j = 1. Xi can be continuous or categorical

variables.

Last is missing data model. To investigate the potential impact of nonignorable prompt

nonresponse, we further assume the following model for describing the prompt response behavior

for subject i:

P(Gi = 1|yi, xi) = h(γT0si + γ
T
1xxi + γ1yyi),

Where Gi = 1(0) if subject’s outcome is observed (subject’s outcome is missing or unobserved),

h(·) is the specified monotonic link function, e.g., the logit or probit, si includes a set of observed
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predictors for prompt response, and γ1 = (γ1x, γ1y)
T is a vector of nonignorability parameters

that associate the probability of missingness with the outcome and the covariates that were

concurrently missing. When the nonignorability parameter γ1(i.e., γ1x, γ1y departs from zero,

the prompt nonresponse depends on the potentially unobserved mood outcome (e.g. mood)

and covariate values. Consequently, the observed mood outcomes become a selective subset of

the orginal planned outcomes and cause selection bias in the MAR estimates of the outcome

model parameters. The general missing data model includes the following two special cases:

Special Case 1:

Y-dependent-only Nonignorability, where γT1x = 0, and P(Gi = 1) = h(γ
T
0si + γ1yyi).

Special Case 2:

X-dependent-only Nonignorability, where γ1y = 0, and P(Gi = 1) = h(γ
T
0si + γ

T
1xxi) .

3.3 Linear and Nonlinear Sensitivity Index Development

The log likelihood for the above joint model is

L(θy, θx, γ0, γ1) =
∑
i:gi=1

ln fθy (yi|xi, wi) +
∑
i:gi=1

ln fθx (xi|wi) +
∑
i:gi=1

ln fγ(gi|si, yi, xi) +∑
i:gi=0

ln

(∫
ΩYi

∫
ΩX1i

· · ·
∫
ΩXPi

fγ(gi|si, yi, xi)fθy (yi|xi, wi)fθx (xi|wi)dyi, dx1i · · ·dxPi
)

(3.1)

Where i = 1, · · · , N, ΩY is the sample space of Y and ΩXj is the sample space of Xj, j =

1, · · · , P. fθy(yi|xi, wi), fθx(xi|wi) and fγ(gi|si, yi, xi) denote the density function for the out-

come, covariates and prompt response behaviors, respectively.
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As compared with the likelihood in Equation 2.1 which involves missingness only in the

outcome, the missing data problem in EMA data becomes considerably more difficult to handle

because of simultaneous missingness in both the outcome and covariates. The high-dimensional

missing data problem caused by more complex missing data patterns and reasons can increase

further if we consider more complex longitudinal data analysis. For example, in an EMA

study that has on average 40 planned observations per subject and a nonresponse rate of

25%, this will lead to a minimum of an additional 10-dimension integration per subject on

average beyond the integrals with respect to missing covariates and/or random effects! These

difficult issues hinder the use of principled methods in EMA studies to quantify the impact of

nonrandom missingness, and call for methods scalable to these new types of data. Besides the

aforementioned computational challenge, the impact of nonignorability takes a highly nonlinear

shape around the MAR model, and thus, the current linear ISNI approach loses its effectiveness.

Consequently, there is a need to generalize nonlinear ISNI to make it applicable in EMA studies.

Upon the log-likelihood defined in Equation 3.1, we have θ̂(γ1) =
(
θ̂y(γ1), θ̂x(γ1), γ̂0(γ1)

)
be the MLEs, given γ1 and θ̂k(γ1) be the kth element of θ̂(γ1). By approximating the log-

likelihood with a Taylor series expansion of the MLEs of the model parameters as a function of

γ1, we have the following:

θ̂k(γ1)

TaylorExpansion︷︸︸︷
≈ θ̂k(0) + γT1

ISNIL︷ ︸︸ ︷
∂θ̂k(γ1)

∂γ1

∣∣∣∣∣
γ1=0

+
1

2
γT1

ISNIQ︷ ︸︸ ︷
∂2θ̂k(γ1)

∂γ1γ
T
1

∣∣∣∣∣
γ1=0

γ1 (3.2)
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We follow two steps to develop the nonlinear sensitivity indices 1) extending linear ISNI; 2)

developing measures of higher-order sensitivity.

First, we extend the linear ISNI (ISNIL) to account for missing linear covariates. For each

fixed value of γ1, the conditional estimates θ̂y(γ1), θ̂x(γ1), and γ̂0(γ1) satisfy the following

condition

∂L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T

= 0,

Where L(θy, θx, γ0, γ1) is the log likelihood for the selection model as defined in Equation 3.1.

Taking the first derivative of both sides of the above equation with respect to γ1 and noting

that θ̂y(γ1), θ̂x(γ1), and γ̂0(γ1) are implicit functions of γ1, we have

∂2L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂γT1

+
∂2L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂(θTy, θ

T
x , γ

T
0 )

∂(θ̂Ty(γ1), θ̂
T
x(γ1), γ̂

T
0 (γ1))

T

∂γT1
= 0

Thus, for any γ1 value, we have

∂(θ̂Ty(γ1), θ̂
T
x(γ1), γ̂

T
0 (γ1))

T

∂γT1
= −

[
∂2L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂(θTy, θ

T
x , γ

T
0 )

]−1
∂2L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

T

∂(θTy, θ
T
x , γ

T
0 )
T∂γT1

(3.3)
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In our local sensitivity analysis, the primary interest is to investigate the sensitivity around

the standard MAR model, i.e. γ1. This local sensitivity can be captured by the derivatives at

this point. In particular, we define the first order derivative evaluated at γ1 as ISNIL

ISNIL =


∂θ̂y(γ

T
1 )

∂γ1

∂θ̂x(γ
T
1 )

∂γ1

∂γ̂0(γ
T
1 )

∂γ1


γ1=0

= −


∇2Lθy,θy ∇2Lθy,θx ∇2Lθy,γ0

∇2Lθx,θy ∇2Lθx,θx ∇2Lθx,γ0

∇2Lγ0,θy ∇2Lγ0,θx ∇2Lγ0,γ0



−1 
∇2Lθy,γ1y ∇2Lθy,γ1x

∇2Lθx,γ1y ∇2Lθx,γ1x

∇2Lγ0,γ1y ∇2Lγ0,γ1x

 ,

Where for arguments a, b, ∇2La,b =
∂2L(θ̂y(γ1),θ̂x(γ1),γ̂0(γ1),γ1)

∂a∂b

∣∣∣
θ̂y(0),θ̂x(0),γ̂0(0),0

. Under MAR

and the case Y and X are missing simultaneously, we have ∇2Lθy,θx = 0,∇2Lθy,γ0 = 0, and

∇2Lθx,γ0 = 0, and thus the ISNIL for θ̂y, the parameter estimates of primary interest, is

∂θ̂y(γ1)

∂γT1

∣∣∣∣∣
γ1=0

= −
[
∇2L−1θy,θy∇

2Lθy,γ1y ,∇
2L−1θy,θy∇

2Lθy,γ1x

]
=
[
ISNILy(θ̂y), ISNILx(θ̂y)

]
,

where

∇2Lθy,θy =
∑
i:gi=1

∂ ln fθy(y
obs
i |xobsi , wi)

∂θy∂θTy

∣∣∣∣∣∣
γ1=0

,

∇2Lθy,γ1y = −
∑
i:gi=0

hi · Exmisi |wi

(
∂E(ymisi |xmisi , wi)

∂θy

)∣∣∣∣∣∣
γ1=0

,

∇2Lθy,γ1x = −
∑
i:gi=0

hi ·
∂E(xmisi |wi)

∂θy

∣∣∣∣∣∣
γ1=0

= 0
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hi = Prob(Gi = 1) denoting the probability of being observed under the MAR model. The

superscript obs (mis) indicates that the corresponding data element is observed (or missing).

Therefore we have

ISNILy(θ̂y) = ∇2L−1θy,θy∇
2Lθy,γ1y ,

ISNILx(θ̂y) = ∇2L−1θy,θy∇
2Lθy,γ1x = 0

As shown above, the first-order sensitivity consists of two components: ISNILy and ISNILx,

which correspond to the sensitivity attributable to outcome-dependent nonignorability (i.e. with

respect to γ1y) and that attributable to covariates-dependent nonignorability (i.e. with respect

to γ1x), respectively. By the results that ISNILx(θ̂y) = 0, as the expected values of missing

covariates given the observed covariate values are independent of θy under MAR, it follows

from (40) that in the case of unit nonresponse, there is no selection bias on the MAR estimates

of the outcome models if the selection only depends on missing covariates, and selection bias in

the MAR estimates of the outcome model only occurs when the nonresponse depends on the

missing outcome values.

Next, we develop measures of higher-order sensitivity. The current linear ISNI approach

loses its effectiveness when the impact of nonignorability takes a highly nonlinear shape around

the MAR model in the situation of missingness in both of the outcome and covariates. Thus,

there is a need to generalize nonlinear ISNI (ISNIQ) to make it applicable to this kind of
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situation. For notational simplicity, we rewrite γ1 = (γ1x, γ1y) = (γ11, γ12, · · · , γ1P, γ1y). We

let γ1p and γ1q denote two generic elements in the γ1 vector. Taking the second derivative of

Equation 3.3 with respect to γ1, we have

∂2
(
θ̂Ty(γ1), θ̂

T
x(γ1), γ̂

T
0 (γ1)

)T
∂γ1p∂γ1q

=[
∂2L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂(θTy, θ

T
x , γ

T
0 )

]−1
∂

∂γ1q

[
∂2L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂(θTy, θ

T
x , γ

T
0 )

]

·

[
∂2L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂(θTy, θ

T
x , γ

T
0 )

]−1 [
∂2L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂(θTy, θ

T
x , γ

T
0 )

]

−

[
∂2L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂(θTy, θ

T
x , γ

T
0 )

]−1
∂

∂γ1q

[
∂2L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
xγ
T
0 )
T∂γ1p

]
, (3.4)

Where

∂

∂γ1q

[
∂2L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂(θTy, θ

T
x , γ

T
0 )

]
=

∂3L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂(θTy, θ

T
x , γ

T
0 )∂γ1q

+

nθy∑
j=1

∂3L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂(θTy, θ

T
x , γ

T
0 )∂θ

j
y

∂θ̂
j
y(γ1)

∂γ1q

+

nθx∑
j=1

∂3L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂(θTy, θ

T
x , γ

T
0 )∂θ

j
x

∂θ̂
j
x(γ1)

∂γ1q
+

nγ0∑
j=1

∂3L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂(θTy, θ

T
x , γ

T
0 )∂γ

j
0

∂γ̂
j
0(γ1)

∂γ1q
,

nθy , nθx and nγ0 are the length of θy, θx and γ0 respectively, θ̂jy, θ̂
j
x and γ̂j0 are the jth

element of θ̂y, θ̂x and γ̂0, respectively, and
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∂

∂γ1q

[
∂2L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂γ1p

]
=

∂3L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂(θTy, θ

T
x , γ

T
0 )∂γ1p

∂(θTy, θ
T
x , γ

T
0 )
T

∂γ1q
+
∂3L(θ̂y(γ1), θ̂x(γ1), γ̂0(γ1), γ1)

∂(θTy, θ
T
x , γ

T
0 )
T∂γ1pγ1q

We call the second derivative of the (θ̂y(γ1), θ̂x(γ1), γ̂0(γ1)) evaluated at the MAR model,

i.e., γ1 = 0 as Index of Sensitivity to NonIgnorability in Quadratic form (ISNIQ). The form is

as below
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ISNIQpq =


∂2θ̂y(γ1)

∂γ1pγ1q

∂2θ̂x(γ1)
∂γ1pγ1q

∂2γ̂0(γ1)
∂γ1p,γ1q


γ1=0

= −


∇2Lθy,θy ∇2Lθy,θx ∇2Lθy,γ0

∇2Lθx,θy ∇2Lθx,θx ∇2Lθx,γ0

∇2Lγ0,θy ∇2Lγ0,θx ∇2Lγ0,γ0



−1


∇3Lθy,θy,γ1q ∇3Lθy,θx,γ1q ∇3Lθy,γ0,γ1q

∇3Lθx,θy,γ1q ∇3Lθx,θx,γ1q ∇3Lθx,γ0,γ1q

∇3Lγ0,θy,γ1q ∇3Lγ0,θx,γ1q ∇3Lγ0,γ0,γ1q

+

nθy∑
j=1


∇3L

θy,θy,θ
j
y
∇3L

θy,θx,θ
j
y
∇3L

θy,γ0,θ
j
y

∇3L
θx,θy,θ

j
y
∇3L

θx,θx,θ
j
y
∇3L

θx,γ0,θ
j
y

∇3L
γ0,θy,θ

j
y
∇3L

γ0,θx,θ
j
y
∇3L

γ0,γ0,θ
j
y

 ISNILm(θ̂jy)+

nθx∑
j=1


∇3L

θy,θy,θ
j
x
∇3L

θy,θx,θ
j
x
∇3L

θy,γ0,θ
j
x

∇3L
θx,θy,θ

j
x
∇3L

θx,θx,θ
j
x
∇3L

θx,γ0,θ
j
x

∇3L
γ0,θy,θ

j
x
∇3L

γ0,θx,θ
j
x
∇3L

γ0,γ0,θ
j
x

 ISNILm(θ̂jx)

+

nγ0∑
j=1


∇3L

θy,θy,γ
j
0

∇3L
θy,θx,γ

j
0

∇3L
θy,γ0,γ

j
0

∇3L
θx,θy,γ

j
0

∇3L
θx,θx,γ

j
0

∇3L
θx,γ0,γ

j
0

∇3L
γ0,θy,γ

j
0

∇3L
γ0,θx,γ

j
0

∇3L
γ0,γ0,γ

j
0

 ISNILm(γ̂j0)

 ISNILk




θ̂y

θ̂x

γ̂0





−


∇2Lθy,θy ∇2Lθy,θx ∇2Lθy,γ0

∇2Lθx,θy ∇2Lθx,θx ∇2Lθx,γ0

∇2Lγ0,θy ∇2Lγ0,θx ∇2Lγ0,γ0



−1

·




∇3Lθy,γ1p,γ1q

∇3Lθx,γ1p,γ1q

∇3Lγ0,γ1p,γ1q

 +


∇3Lθy,θy,γ1p ∇3Lθy,θx,γ1p ∇3Lθy,γ0,γ1p

∇3Lθx,θy,γ1p ∇3Lθx,θx,γ1p ∇3Lθx,γ0,γ1p

∇3Lγ0,θy,γ1p ∇3Lγ0,θx,γ1p ∇3Lγ0,γ0,γ1p

 ISNILm




θ̂y

θ̂x

γ̂0







All the terms in the right hand side of the above equation are evaluated using the readily-

available MAR estimates. Under the MAR and that Y and X are subject to simultaneously

missingness, we further have ∇2Lθy,γ0 = 0, ∇2Lθx,γ0 = 0, ∇2Lθy,θx = 0, ∇3L
θy,γ0,θ

j
y

= 0,

∇3L
γ0,γ0,θ

j
y
= 0, ∇3L

θy,θx,θ
j
y
= 0, ∇3L

θx,θx,θ
j
y
= 0, ∇3L

θx,γ0,θ
j
y
= 0, ∇3L

θy,γ0,θ
j
x
= 0, ∇3L

γ0,γ0,θ
j
x
=

0, ∇3L
θy,θx,θ

j
x

= 0, ∇3L
θy,θy,θ

j
x

= 0, ∇3L
θx,γ0,θ

j
x

= 0, ∇3L
θx,θx,γ

j
0

= 0, ∇3L
θy,γ0,γ

j
0

= 0,
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∇3L
θy,θx,γ

j
0
= 0, ∇3L

θy,θy,γ
j
0
= 0, ∇3L

θx,γ0,γ
j
0
= 0. Thus we have ISNIQ for the outcome

model parameter θ̂y, the parameter of primary interest, as

ISNIQpq(θ̂y) =
∂2θ̂y(γ1)

∂γ1pγ1q

∣∣∣∣∣
γ1=0

= −∇2L−1θy,θy∇
3Lθy,θy,γ1qISNILk(θ̂y) −∇2L−1θy,θy∇

3Lθy,θy,γ1pISNILm(θ̂y)

−∇2L−1θy,θy(
nθy∑
j=1

∇3Lθy,θy,θyjISNILm(θ̂yj))ISNILk(θ̂y)

−∇2L−1θy,θy∇
3Lθy,θx,γ1qISNILk(θ̂x) −∇2L−1θy,θy∇

3Lθy,θx,γ1pISNILm(θ̂x)

−∇2L−1θy,θy∇
3Lθy,γ0,γ1qISNILk(γ̂0) −∇2L−1θy,θy∇

3Lθy,γ0,γ1pISNILm(γ̂0)

−∇2L−1θy,θy∇
3Lθy,γ1p,γ1q

Where for arguments a, b, c,∇3La,b,c = ∂3L(θ̂y(γ1),θ̂x(γ1),γ̂0(γ1),γ1)
∂a∂b∂c

∣∣∣
θ̂y(0),θ̂x(0),γ̂0(0),0

, ISNILp(u) =

∂u
∂γ1p

and ISNILq(u) =
∂u
∂γ1q

for the argument u, and θ̂jy denotes the jth element of θ̂.

As shown above, ISNIQ(θ̂y) is a sum of terms, where each term is generally a product of

three components, with the first component evaluating the inverse Fisher information matrix

for the outcome model, the second component capturing the orthogonality among θy, γ1 and

the other model parameters, and the last component assessing the first-order sensitivity of the

other model parameters with respect to γ1. All three components in each term are evaluated
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under the MAR model that simplifies computation considerably. According to the above general

result, we have

ISNIQyy(θ̂y) =
∂2θ̂y(γ1)

∂γ21y

∣∣∣∣∣
γ1=0

= −2∇2L−1θy,θy∇
3Lθy,θy,γ1yISNILy(θ̂y)

−∇2L−1θy,θy(
nθy∑
j=1

∇3L
θy,θy,θ

j
y
ISNILy(θ̂

j
y))ISNILy(θ̂y)

−2∇2L−1θy,θy∇
3Lθy,θx,γ1yISNILy(θ̂x)

−2∇2L−1θy,θy∇
3Lθy,γ0,γ1yISNILy(γ̂0)

−∇2L−1θy,θy∇
3Lθy,γ1y,γ1y

ISNIQyq(θ̂y) =
∂2θ̂y(γ1)

∂γ1yγ1q

∣∣∣∣∣
γ1=0

= −∇2L−1θy,θy∇
3Lθy,θx,γ1yISNILq(θ̂x)

−∇2L−1θy,θy∇
3Lθy,γ0,γ1yISNILq(γ̂0)

−∇2L−1θy,θy∇
3Lθy,γ1y,γ1q , for γ1q ∈ γ1x = (γ11, · · · , γ1P)

ISNIQpq(θ̂y) =
∂2θ̂y(γ1)

∂γ1p∂γ1q

∣∣∣∣∣
γ1=0

= 0, for γ1p ∈ γ1x = (γ11, · · · , γ1P) and γ1q ∈ γ1x = (γ11, · · · , γ1P)

As shown above, ISNIQpq(θ̂y)=0 when γ1p, γ1q ∈ γ1x for the same reason as that for the

result of ISNILx=0.
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Assuming that we have the logit link for missing data model, the following steps show the

detailed derivation for the individual terms in ISNIL and ISNIQ.

∇2Lθy,θy =
∑
i:gi=1

∂2 ln fθy(y
obs
i |xobsi , wi)

∂θy∂θTy

∣∣∣∣∣∣
γ1=0

∇2Lθx,θx =
∑
i:gi=1

∂2 ln fθx(x
obs
i |wi)

∂θx∂θTx

∣∣∣∣∣∣
γ1=0

∇2Lθy,θx = 0

∇2Lθy,γ0 = 0

∇2Lθx,γ0 = 0

∇2Lθy,γ1y = −
∑
i:gi=0

hi
∂

∂θy
Exi|wi(E(y

mis
i |xmisi , wi))

∣∣∣∣∣∣
γ1=0

∇2Lθx,γ1y = −
∑
i:gi=0

hi
∂

∂θx
Exi|wi(E(y

mis
i |xmisi , wi))

∣∣∣∣∣∣
γ1=0

∇2Lγ0,γ0 =
∂2

∂γ0∂γ
T
0

N∑
i=1

ln fγ(gi|yi, xi, si)

∣∣∣∣∣
γ1=0

∇2Lγ0,γ1y = −

∑
i:gi=1

(hi(1− hi))yisi +
∑
i:gi=0

(hi(1− hi))E(xi,yi)|wi(y
mis
i |xmisi , wi)si)


γ1=0

∇2Lθx,γ1q = −
∑
i:gi=0

hi
∂

∂θx
Exiq|wi(x

mis
iq |wi)

∣∣∣∣∣∣
γ1=0

∇2Lγ0,γ1q = −

∑
i:gi=1

(hi(1− hi))xisi +
∑
i:gi=0

(hi(1− hi))Exiq|wi(x
mis
iq |wi)si)


γ1=0

∇3Lθy,θy,γ1y = −
∑
i:gi=0

hi
∂2

∂θy∂θTy
E(xi,yi)|wi(y

mis
i |xmisi , wi)

∣∣∣∣∣∣
γ1=0
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∇3L
θy,θy,θ

j
y

=
∑
i:gi=1

∂3 ln fθy(y
obs
i |xobsi , wi)

∂θy∂θTy∂θ
j
y

∣∣∣∣∣∣
γ1=0

∇3Lθy,θx,γ1y = −
∑
i:gi=0

hi
∂2

∂θy∂θTx
E(xi,yi)|wi(y

mis
i |xmisi , wi)

∣∣∣∣∣∣
γ1=0

∇3Lθy,γ0,γ1y = −
∑
i:gi=0

(1− hi)hi ·
∂

∂θy
E(xi,yi)|wi(y

mis
i |xmisi , wi) · sTi

∣∣∣∣∣∣
γ1=0

∇3Lθy,γ1y,γ1y = −
∑
i:gi=0

∂

∂θy

[
hi(1− hi)E

2(ymisi |wi) + hi(1− 2hi)var(y
mis
i |wi)

]
γ1=0

∇3Lθy,γ1y,γ1q = −
∑
i:gi=0

∂

∂θy

[
hi(1− hi)E(y

mis
i |wi)E(x

mis
iq |wi) + hi(1− 2hi)Cov(y

mis
i , xmisiq |wi)

]
γ1=0

3.4 Examples

3.4.1 Simple Linear Regression with Both Outcome and Covariates Following a

Normal Distribution

To illustrate the extended linear ISNI, we consider an example where the outcome model is

Yi ∼ N(β0+β1xi, σ
2), i = 1, · · · , N, the covariate xi ∼ N(µx, σ

2
x) and the prompt response model

logit(P(Gi = 1)) = γ0 + γ1xxi + γ1yyi. Using the general formula for ISNIL and ISNIQ above,

we can derive linear ISNI (ISNIL) for the parameter estimates of primary interest as follows

[
ISNILx(β̂0), ISNILy(β̂0)

]
=

[
0,−σ̂2(0)

Nm

N

]
,

[
ISNILx(β̂1), ISNILy(β̂1)

]
= [0, 0] ,



64

And for the nonlinear components (ISNIQ) we have for γ1 = (γ1x, γ1y)

ISNIQ(β̂0) =

 0 −σ̂2(0)NoNm
N2

Noσ̂2x(0)
sxoxo

x̄o

−σ̂2(0)NoNm
N2

Noσ̂2x(0)
sxoxo

x̄o −2β̂1(0)σ̂
2(0)NoNm

N2
Noσ̂2x(0)
sxoxo

x̄o



ISNIQ(β̂1) =

 0 σ̂2(0)NoNm
N2

Noσ̂2x(0)
sxoxo

σ̂2(0)NoNm
N2

Noσ̂2x(0)
sxoxo

2β̂1(0)σ̂
2(0)NoNm

N2
Noσ̂2x(0)
sxoxo



Where sxoxo =
∑
i:gi=1

(xi − x̄o)
2 and β̂1(0), σ̂

2(0), and σ̂2x(0) are the MAR estimates of β1,

σ2 and σ2x, Nm is the number of missing observations and No = N−Nm.

All these entries in the ISNIQ matrices are evaluated using the MAR estimates only. When

Y and X are subject to concurrent missingness, the MAR slope parameter β̂1(0) has no first-

order sensitivity (i.e. both ISNILx(β̂1(0)) and ISNILy(β̂1(0)) are zeros) whereas the ISNIQ

matrix for β̂1(0) has non-zero entries, indicating the importance of examining the higher order

sensitivity.
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The following steps show the detailed derivation of individual terms in ISNIL and ISNIQ.

∇2L−1θy,θy = −σ2


1
No

+
x̄20
sxoxo

− x̄o
sxoxo

0

− x̄o
sxoxo

1
sxoxo

0

0 0 2σ2

No


∇3Lθy,θy,γ1y = 0

∇3Lθy,θy,β0 =


0 0 No

(σ2)2

0 0 Nox̄o
(σ2)2

No
(σ2)2

Nox̄o
(σ2)2

0


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∇3Lθy,θy,β1 =


0 0 Nox̄o

(σ2)2

0 0
∑
i x
2
io

(σ2)2

Nox̄o
(σ2)2

∑
i x
2
io

(σ2)2
0



∇3Lθy,θx,γ1y =


0 0

−NoNm
N 0

0 0



ISNILy(θ̂x) =

 −Nm
N σ

2
xβ1

0



ISNILx(θ̂x) =

 −Nm
N σ

2
x

0



∇3Lθy,γ0,γ1y =


−No(Nm)2

N2

−No(Nm)2

N2
x̄o

0


ISNILy(γ̂0) = −β0 − β1x̄o

ISNILx(γ̂0) = −x̄o

∇3Lθy,γ1y,γ1y =


− 2No(Nm)2

N2
(β0 + β1x̄o)

− 2No(Nm)2

N2
(β0x̄o + β1x̄

2
o) −

2NoNm(Nm−No)
N2

σ2xβ1

NoNm(No−Nm)
n2



∇3Lθy,γ1y,γ1x =


−No(Nm)2

N2
x̄o

−No(Nm)2

N2
x̄2o −

NoNm(Nm−No)
N2

σ2x

0

 ,
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Where the model parameters in the above are replaced with MLEs under MAR when com-

puting NISNIs.

3.4.2 Simple Linear Regression with a Normally Distributed Outcome and a Bernoulli

Distributed Covariate

We consider another example where the outcome model is Yi ∼ N(β0+β1xi, σ
2), i = 1, · · · , N,

the covariate xi is binary data following with Bernoulli distribution X ∼ B(1, p) and p =

exp(αX)
1+exp(αX) . To preserve simplicity, we have logit(P(X = 1)) = α0. Therefore p = exp(α0)

1+exp(α0)
. The

prompt response model logit(P(Gi = 1)) = γ0 + γ1xxi + γ1yyi. Using the general formula of

ISNIL and ISNIQ above, we can derive linear components (ISNIL) as following

[
ISNILx(β̂0), ISNILy(β̂0)

]
=

[
0,−σ̂2(0)

Nm

N

]
,

[
ISNILx(β̂1), ISNILy(β̂1)

]
= [0, 0] ,

And nonlinear components (ISNIQ) as following with γ1 = (γ1x, γ1y)

ISNIQ(β̂0) =

 0 −σ̂2(0)NoNm
N2

Noσ̂2x(0)
sxoxo

p̂

−σ̂2(0)NoNm
N2

Noσ̂2x(0)
sxoxo

p̂ −2β̂1(0)σ̂
2(0)NoNm

N2
Noσ̂2x(0)
sxoxo

p̂



ISNIQ(β̂1) =

 0 σ̂2(0)NoNm
N2

Noσ̂2x(0)
sxoxo

σ̂2(0)NoNm
N2

Noσ̂2x(0)
sxoxo

2β̂1(0)σ̂
2(0)NoNm

N2
Noσ̂2x(0)
sxoxo



Where sxoxo =
∑
i:gi=1

(xi − p̂)
2 and β̂1(0), σ̂

2(0), and σ̂2x(0) are the MAR estimates of β1,

σ2 and σ2x, Nm is the number of missing observations and No = N−Nm.
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The following steps show the detailed derivation:

∇2L−1θy,θy = −σ2


1
No

+ p̂2

sxoxo
− p̂
sxoxo

0

− p̂
sxoxo

1
sxoxo

0

0 0 2σ2

No



∇2Lθy,γ1y =


−NoNm

N

−NoNm
N p̂

0


∇3Lθy,θy,γ1y = 0

∇3Lθy,θy,β0 =


0 0 No

(σ2)2

0 0 Nop̂
(σ2)2

No
(σ2)2

Nop̂
(σ2)2

0



∇3Lθy,θy,β1 =


0 0 Nop̂

(σ2)2

0 0
∑No
i x2io
(σ2)2

Nop̂
(σ2)2

∑No
i x2io
(σ2)2

0



∇3Lθy,θx,γ1y =


0

−NoNm
N σ̂x

2

0


ISNILy(θ̂x) = −β̂1

Nm

N

ISNILx(θ̂x) = −
Nm

N

∇3Lθy,γ0,γ1y =


−NoN2m

N2

−NoN2m
N2

p̂

0


ISNILy(γ̂0) = −β0 − β1p̂

ISNILx(γ̂0) = −p̂
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∇3Lθy,γ1y,γ1y =


− 2NoN2m

N2
(β̂0 + β̂1p̂)

− 2NoN2m
N2

(β̂0p̂+ β̂1p̂
2) − 2NoNm(Nm−No)

N2
σ̂x
2β̂1

NoNm(No−Nm)
N2



∇3Lθy,γ1y,γ1x =


−NoN2m

N2
p̂

−NoN2m
N2

p̂2 − NoNm(Nm−No)
N2

σ̂2x

0

 ,

Where σ̂2x =
exp(α̂0)

(1+exp(α̂0))2
, p̂ = exp(α̂0)

1+exp(α̂0)
and sxoxo =

∑
i:gi=1

(xi − p̂)
2

3.5 Index Calibration

3.5.1 Y-dependent Nonignorability

The ISNI value depends on the scale of the outcome Y and the scale of the covariates in X

when they are continuous because in this case, the magnitude of γ1 = 1 depends on the scale

of Y and X. As a result, scale-free index calibration can facilitate the use and interpretation of

the index. We first consider approaches to calibrating the sensitivity index in the simpler case

of Y-dependent nonignorability where γ1 = (γ1y), which effectively sets γ1x = 0. One approach

is to evaluate changes in parameter estimates for a magnitude of nonignorability, where one-SD

change in Y is associated with an odds ratio of e1 = 2.7 in the probability of being observed, i.e.,

when γ1 = ± 1
σY

, which can be considered as one standardized magnitude of nonignorability.

Alternatively, we can compute the minimum magnitude of nonignorability that is needed for

the selection bias to be equal to one standard error and evaluate whether such nonignorability
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is feasible. Specifically, note that for θj (the jth element of θ) we have θ̂j(γ1) − θ̂j(0) ≈

γ1ISNILy(θ̂j) +
γ21
2 ISNIQyy(θ̂j).

From the above equation, we compute the smallest value of γ1, denoted as γ̃1, that causes

the right hand side of the above equation to be same as one standard error. To put the γ̃1

value in the scale of standardized magnitude of nonignorability defined above, we define a

sensitivity transformation c statistic as c = |γ̃1 ∗ σY |. The c statistic informs us that in order

for selection bias to be as large as the sampling error, the magnitude of nonignorability needs

to be at least as large as that with which 1
cSD change in Y is associated with an odds ratio

of 2.7 in the probability of being observed. Note that when the c statistic is large, it means

that only extreme nonignorability can make the selection bias as large as the sampling error,

and consequently, nonignorability is of less concern. When the c statistic is small, modest

nonignorability can cause selection bias to be as large as the sampling error, and consequently,

nonignorability is of concern. Following (6), we suggest using c = 1 as a general cutoff value

for important sensitivity. Note that when the ISNIQ=0, we have c =
∣∣∣S.E.∗σYISNI

∣∣∣ which reduces to

the c statistics defined in (6) for the case of linear ISNI only.

3.5.2 Y-and-X-dependent Nonignorability

We next consider the situation of y-and-x-dependent nonignorability where γ1 = (γ11, · · ·γ1P, γ1y).

For continuous outcome and covariates, one can hypothetically standardize these continuous

variables to all have a SD of one, and consider the missing data model Prob(Gi = 1) =

h(sTi γ0 + (y∗i , x
∗
i )
Tγ∗1), where (x∗i , y

∗
i ) = ( x1iσx1

, · · · , xPiσxP
, yiσY ). Extending the idea for the above

univariate nonignorability case to the multi-dimensional situation, we can examine the changes
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in the parameter estimates when we perturb γ∗1 from the point of zero to points on the hyperball

of radius one, which is equivalent to a magnitude of nonignorability such that ‖γ∗1‖ = 1, where

‖·‖ is the Euclidean distance of the perturbation from the point zero. It is readily seen that

‖γ∗1‖ =
√
γ211σ

2
x1

+ · · ·+ γ21Pσ2xP + γ
2
1yσ

2
y

Where in the right-hand side of the above equation, the outcome and covariates are all on

the original scales. We could consider a particular perturbation point in the unit hyperball

with additional inputs given from subject experts. In the absence of such external inputs, we

recommend considering the range (maximum - minimum) of changes in estimates achievable in

the hyperball as

range

γT1
ISNIL︷ ︸︸ ︷

∂θ̂j(γ1)

∂γ1

∣∣∣∣∣
γ1=0

+
1

2
γT1

ISNIQ︷ ︸︸ ︷
∂2θ̂j(γ1)

∂γ1γ
T
1

∣∣∣∣∣
γ1=0

γ1

 , subject to
√
γ211σ

2
x1

+ · · ·+ γ21Pσ2xP + γ
2
1yσ

2
y = 1

Note that by setting γ1x = (γ11, · · · , γ1P) = 0 this evaluation reduces to the special case of

the univariate Y-dependent nonignorability. Unlike the univariate case, the multidimensional

case considers a broader range of configuration of nonignorability, and reasons for nonignorable

nonresponse with the cumulative magnitude of nonignorability roughly comparable to that

in the univariate case. Except in the simpler univariate nonignorability case and some other

simple cases where close-form solutions for obtaining the range are available, obtaining the

range, in general, requires a numerical search procedure (e.g. using optimization procedures
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implementing the Lagrange multipliers method). Finally, we define the c value as the minimum

value of ‖γ∗1‖ for which the maximal absolute change in the parameter estimate θ̂j is the same

as its standard error.

3.6 Simulation Studies

3.6.1 Simple Linear Regression with Both Outcome and Covariates Following Normal

Distribution

To illustrate the use of the nonlinear ISNI and demonstrate its superiority, we perform

another simulation study for simple linear regression. The ideal outcomes are simulated from

a simple linear regression model: Yi ∼ N(β0 + β1xi, σ
2
y) where β0 = 0, β1 = 1, σ2y = 1, the

covariate xi ∼ N(µx, σ
2
x), where µx = 0, σx = 1, and i = 1, · · · , 1000. The response behavior

follows a logistic regression model: logit(µGij) = γ0 + γ1yyi + γ1xxi, where the binary indicator

G = 1 (responded) and G = 0 (non-responded with x and y both missing). The values of γ0 and

γ1 = (γ1x, γ1y) are varied so that the resulting datasets have varying amounts of missingness,

varying degrees, and types of nonignorable missingness.

We first consider Y-dependent-only nonignorable missingness, generating twelve random

samples with γ1x = 0, γ0 = 1, 2, or 5, γ1y = 1, 0.5, 0.5, or 1. Figure 3 shows the analysis based

on one simulated dataset with γ0 = 1 and γ1y = 1 with the proportion of missingness being

33.8%. The solid curve shows the exact sensitivity curves of β̂1(γ1y), which were computed

by maximizing the the log-likelihood of the joint nonignorable selection models for a range of
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values for γ1y with γ1x fixed at zero. This is computationally intensive and is not required in

ISNI analysis. We compute the ISNI-based approximate sensitivity curves as

β̂1
ISNIL

(γ1y) = β̂1(0) + ISNILy ∗ γ1y

β̂1
ISNIQ

(γ1y) = β̂1(0) + ISNILy ∗ γ1y +
ISNIQyy

2
γ21y (3.5)

Figure 3 demonstrates the superiority of the higher-order ISNI approximation (broken line)

over the first-order ISNI approximation (dotted line). In Figure 3, the first-order ISNIL ap-

proximation, as the tangent line of the exact sensitivity curve at MAR, is flat, even though

the estimates on the exact sensitivity curve (the solid line) vary substantially around the MAR

model. Clearly, in this case, it is necessary to compute the higher order ISNI to adequately

capture the sensitivity of estimates to nonignorability.

We summarize the simulation results in Table V. The computation of ISNI-adjusted esti-

mates only requires knowing ISNILy and ISNIQyy. The columns “ ∆β̂1
∆γ1y

” and “∆
2β̂1
∆γ21y

” in Table V

present the numerically evaluated first- and second- derivatives at the MAR model using the

values obtained from the exact sensitivity curve. In the simulated dataset, the numerically

evaluated derivatives (e.g., 5e-16 and 0.292, respectively) are very close to the ISNIL and IS-

NIQ values (e.g. 0 and 0.290, respectively), which demonstrates that ISNIL and ISNIQ indeed

calculate the first and second derivatives of the sensitivity curves at the ignorable model, but

without the need to fit any nonignorable models.
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We next consider the outcome-and-covariate-dependent nonignorable nonresponse, gener-

ating twenty-four random datasets with γ0 = 1, 2 or 5, and (a) γ1x =
√
0.5 or −

√
0.5, γ1y =

√
0.5 or −

√
0.5 or (b) γ1x =

√
0.25 or −

√
0.25, γ1y =

√
0.25 or −

√
0.25. In (a) and (b), we

have ‖γ1‖ = 1 and 0.5, respectively, the same as that in the above Y−dependent-only case. We

use the following equations to compute the ISNI-adjusted estimates.

β̂1
ISNIL

(γ1) = β̂1(0) + ISNILT ∗ γ1,

β̂1
ISNIQ

(γ1) = β̂1(0) + ISNILT ∗ γ1 + γT1
ISNIQ

2
γ1 (3.6)

Where γ1 = (γ1x, γ1y).

Figure 4 plots the two ISNI-based approximate sensitivity surfaces: the circles represent

the values of β̂1
ISNIQ

for the grid of γ1 values, and the values of β̂1
ISNIL

fall on the flat

plane formed by the dotted line. The surface formed by the solid lines in Figure 4 plots the

exact sensitivity surface, β̂1(γ1), which was computed by maximizing the the log-likelihood

in Equation 3.1 for the joint nonignorable selection models at a grid of values for (γ1x, γ1y).

Because ISNIL are zeros, the first-order ISNI sensitivity surface becomes a flat plane at the

MAR estimate, and cannot capture the sensitivity of estimates around MAR model. It is clear

that the surface formed by β̂1
ISNIQ

provides much better approximation to the sensitivity

surface of β̂1(γ1) than that using β̂1
ISNIL

.
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We then summarize the simulation results in Table VI. In the simulated dataset, the

numerically evaluated derivatives are (−5e−06, 7e−05) and

 −2e− 03 0.192

0.192 0.318

, respectively,

and are very close to the ISNIL and ISNIQ values, demonstrating again that ISNIL and ISNIQ

indeed calculate the first and second derivatives of the sensitivity surface at the ignorable model,

but without the need to fit any nonignorable models. Similar to the result for the Y-dependent-

only nonignorability, the generalized NISNI method significantly improves upon the linear ISNI

method and provides adequate and fast evaluation of the local sensitivity of MAR estimates to

nonignorability.

TABLE V: AN APPLICATION OF NISNI TO SIMULATED DATA FOR SIMPLE LIN-
EAR REGRESSION WITH BOTH OUTCOME AND COVARIATES FOLLOWING NOR-
MAL DISTRIBUTION FOR Y-DEPENDENT-ONLY NONIGNORABLE NONRESPONSE

γ0 γ1y Prop M β̂1(0)(S.E.)
∆β̂1
∆γ1y

∆2β̂1
∆γ2
1y

ISNIL ISNIQ c

1 1 33.8% 0.81 (0.04) 5e-16 0.292 0 0.290 0.59
0.5 29.5% 0.94 (0.04) -2e-15 0.398 0 0.394 0.60
-1 31.0% 0.91 (0.04) 5e-16 0.328 0 0.325 0.60

-0.5 29.8% 0.97 (0.04) -1e-15 0.408 0 0.406 0.61
2 1 17.4% 0.88 (0.03) -1e-4 0.220 0 0.219 0.70

0.5 14.2% 0.98 (0.04) -6e-16 0.240 0 0.236 0.76
-1 18.1% 0.95 (0.04) -8e-5 0.260 0 0.254 0.69

-0.5 13.8% 0.94 (0.03) 4e-5 0.207 0 0.201 0.77
5 1 1.2% 0.96 (0.03) -1e-15 0.025 0 0.020 2.54

0.5 1.1% 0.99 (0.03) -1e-16 0.020 0 0.018 2.67
-1 1.7% 0.95 (0.03) 8e-5 0.038 0 0.029 2.08

-0.5 0.4% 1.05 (0.03) -3e-15 0.025 0 0.010 5.65
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Figure 3: ISNI approximation to β1 estimates for simple linear regression model with both
missing continuous outcome and covariates for Y-dependent-only nonignorable nonresponse
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Figure 4: ISNI approximation to β1 estimates for simple linear regression model with both out-
come and covariates following normal distribution for Y-and-X-dependent nonignorable nonre-
sponse
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TABLE VI: AN APPLICATION OF NISNI TO SIMULATED DATA FOR SIMPLE LIN-
EAR REGRESSION WITH BOTH OUTCOME AND COVARIATES FOLLOWING NOR-
MAL DISTRIBUTION FOR Y-AND-X-DEPENDENT NONIGNORABLE NONRESPONSE

γ0 γ1y γ1x Prop M β̂1(0)(S.E.)
∆β̂1
∆γ1y

∆2β̂1
∆γ2
1y

ISNIL ISNIQ c

1
√
0.5

√
0.5 31.4% 0.82 (0.04) (-5e-06, 7e-05) (0.318, 0.192, -2e-03) (0, 0) (0.320, 0.194, 0) 0.52√

0.25
√
0.25 31.6% 0.90 (0.04) (-6e-06, -5e-06) (0.384, 0.211, -4e-04) (0, 0) (0.384, 0.212, 0) 0.50

−
√
0.5 −

√
0.5 32.7% 0.89 (0.04) (-5e-05, 4e-05) (0.406, 0.224, -2e-03) (0, 0) (0.404, 0.225, 0) 0.49

−
√
0.25 −

√
0.25 28.2% 0.93 (0.04) (-2e-05, 5e-06) (0.345, 0.185, -8e-04) (0, 0) (0.348, 0.185, 0) 0.51√

0.5 −
√
0.5 28.9% 0.98 (0.04) (2e-05, -2e-05) (0.364, 0.183, -4e-04) (0, 0) (0.364, 0.184, 0) 0.52√

0.25 −
√
0.25 27.9% 1.02 (0.04) (2e-05, -1e-05) (0.399, 0.196, -2e-03) (0, 0) (0.401, 0.197, 0) 0.52

−
√
0.5

√
0.5 28.8% 0.99 (0.04) (6e-06, -1e-05) (0.389, 0.195, -1e-03) (0, 0) (0.389, 0.196, 0) 0.51

−
√
0.25

√
0.25 28.3% 1.05 (0.04) (4e-16, -4e-06) (0.405, 0.192, -5e-04) (0, 0) (0.405, 0.192, 0) 0.52

2
√
0.5

√
0.5 21.4% 0.95 (0.04) (-8e-06, 1e-15) (0.297, 0.158, 3e-04) (0, 0) (0.299, 0.157, 0) 0.56√

0.25
√
0.25 15.1% 0.94 (0.04) (2e-15, 2e-15) (0.243, 0.131, -2e-04) (0, 0) (0.242, 0.129, 0) 0.62

−
√
0.5 −

√
0.5 18.3% 0.91 (0.04) (2e-05, -1e-05) (0.276, 0.153, -3e-03) (0, 0) (0.275, 0.152, 0) 0.57

−
√
0.25 −

√
0.25 16.4% 0.97 (0.04) (-3e-06, -1e-05) (0.233, 0.119, -2e-03) (0, 0) (0.233, 0.119, 0) 0.61√

0.5 −
√
0.5 14.2% 0.99 (0.03) (-9e-06, 5e-06) (0.227, 0.112, -1e-04) (0, 0) (0.225, 0.113, 0) 0.64√

0.25 −
√
0.25 12.8% 0.96 (0.04) (-8e-06, -1e-05) (0.211, 0.110, -4e-05) (0, 0) (0.211, 0.109, 0) 0.67

−
√
0.5

√
0.5 14.1% 1.02 (0.03) (1e-05, 1e-05) (0.243, 0.119, -2e-03) (0, 0) (0.244, 0.119, 0) 0.65

−
√
0.25

√
0.25 13.3% 0.96 (0.03) (4e-06, -6e-06) (0.210, 0.108, -1e-03) (0, 0) (0.209, 0.109, 0) 0.65

5
√
0.5

√
0.5 1.6% 0.98 (0.03) (-6e-06, 5e-06) (0.032, 0.016, 2e-03) (0, 0) (0.027, 0.014, 0) 2.10√

0.25
√
0.25 1.2% 1.00 (0.03) (1e-06, 6e-06) (0.025, 0.011, 3e-04) (0, 0) (0.018, 0.009, 0) 2.52

−
√
0.5 −

√
0.5 2.6% 0.97 (0.03) (-4e-06, -3e-06) (0.049, 0.025, -6e-04) (0, 0) (0.045, 0.023, 0) 1.64

−
√
0.25 −

√
0.25 0.6% 1.03 (0.03) (-5e-05, -1e-06) (0.016, 0.007, -3e-03) (0, 0) (0.008, 0.004, 0) 3.79√

0.5 −
√
0.5 0.5% 1.05 (0.03) (-1e-05, 4e-06) (0.011, 0.005, 3e-03) (0, 0) (0.006, 0.003, 0) 4.02√

0.25 −
√
0.25 0.6% 0.98 (0.03) (-6e-15, -6e-15) (0.005, 0.004, -4e-03) (0, 0) (0.007, 0.004, 0) 3.98

−
√
0.5

√
0.5 0.7% 1.07 (0.03) (-8e-06, e-05) (0.020, 0.008, -1e-03) (0, 0) (0.011, 0.005, 0) 3.57

−
√
0.25

√
0.25 0.6% 1.02 (0.03) (5e-15, 5e-15) (0.004, 0.002, 2e-03) (0, 0) (0.007, 0.003, 0) 3.98
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3.6.2 Simple Linear Regression with a Normally Distributed Outcome and a Bernoulli

Distributed Covariate

Following the same process above, we perform a simulation study for simple linear regression

with a normally distributed outcome and a Bernoulli distributed covariate. The ideal outcomes

are simulated from a simple linear regression model: Yi ∼ N(β0+β1xi, σ
2
y) where β0 = 0, β1 = 1,

σ2y = 1, the covariate xi ∼ B(1, p), where p = 1/(1+exp(−α0)) and α0 = 1, and i = 1, · · · , 1000.

The response behavior follows a logistic regression model: logit(µGij) = γ0+γ1yyi+γ1xxi, where

the binary indicator G = 1 (responded) and G = 0 (nonresponded with x and y both missing).

γ0 = 0, 1, 2, or 3, γ1 = −1,−0.5, 0.5, or 1. The values of γ0 and γ1 are varied so that the

resulting datasets have varying amount of missingness ranging from ∼5% to ∼50% and varying

degrees of nonignorable missingness.

We use the equation defined in Equation (Equation 3.5) to compute the ISNI-based approx-

imate sensitivity curves for Y dependent-only Nonignorable Nonresponse. Figure 5 shows the

analysis based on one simulated dataset with γ0 = 0 and γ1 = −1 and with the proportion of

missingness being 0.48. We use the equations defined in Equation (Equation 3.6) to compute

the ISNI-adjusted estimates for Y-and-X-dependent Nonignorable Nonresponse. Figure 6 plots

the two ISNI-based approximate sensitivity surfaces with γ0 = 0 and γ1 = (
√
0.5,
√
0.5) and

with the proportion of missingness being 0.36.

We then summarize the simulation results in Table VII for Y dependent-only Nonignorable

Nonresponse and Table VIII for Y-and-X-dependent Nonignorable Nonresponse. Again, they

demonstrate that the generalized NISNI method significantly improves upon the linear ISNI
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method and provides adequate and fast evaluation of the local sensitivity of MAR estimates to

nonignorability.

TABLE VII: AN APPLICATION OF NISNI TO SIMULATED DATA FOR SIMPLE LIN-
EAR REGRESSION WITH NORMAL DISTRIBUTED OUTCOME AND A BERNOULLI
COVARIATE FOR Y-DEPENDENT-ONLY NONIGNORABLE NONRESPONSE

γ0 γ1y Prop M β̂1(0)(S.E.)
∆β̂1
∆γ1y

∆2β̂1
∆γ2
1y

ISNIL ISNIQ c

1 1 21.1% 0.97 (0.08) 0.0033 0.288 0 0.300 0.68
0.5 22.7% 0.94 (0.09) 0.0032 0.329 0 0.342 0.73
-1 44.5% 0.85 (0.09) 0.0007 0.388 0 0.395 0.62

-0.5 34.4% 1.01 (0.09) 0.0027 0.474 0 0.493 0.65
2 1 10.1% 0.88 (0.08) 0.0023 0.156 0 0.161 0.99

0.5 11.2% 0.95 (0.08) 0.0029 0.195 0 0.202 0.95
-1 26.4% 0.92 (0.08) 0.0022 0.337 0 0.348 0.65

-0.5 19.8% 0.98 (0.08) 0.0026 0.302 0 0.316 0.72
5 1 0.5% 0.99 (0.07) 0.0002 0.010 0 0.011 3.93

0.5 0.5% 1.00 (0.07) 0.0002 0.011 0 0.011 3.91
-1 3.0% 0.99 (0.07) 0.0010 0.058 0 0.059 1.62

-0.5 1.5% 1.01 (0.07) 0.0006 0.031 0 0.031 2.32

Table V, Table VI, Table VII, and Table VIII summarize the simulation results for all

simulated datasets for both outcome and covariates following normal distributions and for out-

come following a normal distribution and covariate following a Bernoulli distribution. The

variation in the response model parameters gives us a range of missing proportions. As shown

in these tables, the larger the missing data proportion, the smaller the c statistic, indicating

larger sensitivity to nonignorable nonresponse when the amount of missing data increases. Fur-
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Figure 5: ISNI approximation to β1 estimates for simple linear regression model with normal
distributed outcome and a Bernoulli distributed covariate for Y-dependent-only Nonignorable
Nonresponse
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TABLE VIII: AN APPLICATION OF NISNI TO SIMULATED DATA FOR SIMPLE LIN-
EAR REGRESSION WITH NORMAL DISTRIBUTED OUTCOME AND A BERNOULLI
COVARIATE FOR Y-AND-X-DEPENDENT NONIGNORABLE NONRESPONSE

γ0 γ1y γ1x Prop M β̂1(0)(S.E.)
∆β̂1
∆γ1y

∆2β̂1
∆γ2
1y

ISNIL ISNIQ c

1
√
0.5

√
0.5 15.9% 0.90 (0.09) (2e-04, 2e-04) (0.252, 0.140, 0.000) (0, 0) (0.252, 0.141, 0) 0.62√

0.25
√
0.25 17.7% 0.91 (0.09) (3e-04, 2e-04) (0.276, 0.152, 0.000) (0, 0) (0.277, 0.153, 0) 0.60

−
√
0.5 −

√
0.5 48.7% 0.80 (0.09) (-7e-05, 2e-04) (0.419, 0.258, 0.002) (0, 0) (0.413, 0.257, 0) 0.49

−
√
0.25 −

√
0.25 43.1% 0.92 (0.09) (7e-05, -2e-05) (0.493, 0.268, -0.002) (0, 0) (0.496, 0.269, 0) 0.47√

0.5 −
√
0.5 30.6% 1.06 (0.08) (2e-04, 2e-04) (0.422, 0.199, 0.000) (0, 0) (0.424, 0.200, 0) 0.48√

0.25 −
√
0.25 30.1% 1.00 (0.09) (2e-04, 2e-04) (0.415, 0.208, 0.000) (0, 0) (0.417, 0.209, 0) 0.50

−
√
0.5

√
0.5 29.6% 1.00 (0.09) (2e-04, 2e-04) (0.423, 0.212, -0.003) (0, 0) (0.426, 0.213, 0) 0.50

−
√
0.25

√
0.25 30.0% 1.00 (0.09) (2e-04, 1e-04) (0.434, 0.216, 0.000) (0, 0) (0.434, 0.217, 0) 0.50

2
√
0.5

√
0.5 7.7% 0.90 (0.08) (2e-04, 1e-04) (0.132, 0.074, 0.001) (0, 0) (0.133, 0.074, 0) 0.81√

0.25
√
0.25 8.7% 0.94 (0.08) (2e-04, 1e-04) (0.158, 0.084, 0.000) (0, 0) (0.159, 0.084, 0) 0.76

−
√
0.5 −

√
0.5 29.8% 0.92 (0.08) (2e-04, 1e-04) (0.398, 0.216, -0.001) (0, 0) (0.399, 0.217, 0) 0.49

−
√
0.25 −

√
0.25 26.0% 0.95 (0.08) (2e-04, 1e-04) (0.376, 0.198, 0.000) (0, 0) (0.377, 0.199, 0) 0.50√

0.5 −
√
0.5 15.0% 0.96 (0.08) (2e-04, 2e-04) (0.248, 0.129, 0.000) (0, 0) (0.248, 0.113, 0) 0.61√

0.25 −
√
0.25 14.1% 0.98 (0.08) (2e-04, 2e-04) (0.251, 0.128, 0.000) (0, 0) (0.251, 0.128, 0) 0.61

−
√
0.5

√
0.5 15.1% 0.99 (0.08) (2e-04, 1e-04) (0.254, 0.128, -0.001) (0, 0) (0.253, 0.128, 0) 0.60

−
√
0.25

√
0.25 14.8% 1.00 (0.08) (2e-04, 2e-04) (0.253, 0.126, 0.000) (0, 0) (0.254, 0.126, 0) 0.61

5
√
0.5

√
0.5 0.3% 1.00 (0.07) (1e-06, -4e-06) (0.006, 0.003, 0.000) (0, 0) (0.006, 0.003, 0) 3.63√

0.25
√
0.25 0.5% 1.00 (0.07) (3e-05, 9e-06) (0.010, 0.005, 0.000) (0, 0) (0.011, 0.005, 0) 2.81

−
√
0.5 −

√
0.5 3.3% 0.99 (0.07) (8e-05, 6e-05) (0.064, 0.033, 0.000) (0, 0) (0.065, 0.033, 0) 1.12

−
√
0.25 −

√
0.25 2.2% 1.00 (0.07) (5e-05, 3e-05) (0.046, 0.023, 0.000) (0, 0) (0.045, 0.022, 0) 1.36√

0.5 −
√
0.5 0.6% 1.00 (0.07) (1e-05, 1e-05) (0.012, 0.006, 0.000) (0, 0) (0.013, 0.006, 0) 2.57√

0.25 −
√
0.25 0.7% 1.00 (0.07) (4e-05, 2e-05) (0.014, 0.008, 0.000) (0, 0) (0.015, 0.007, 0) 2.38

−
√
0.5

√
0.5 1.0% 1.02 (0.07) (3e-05, 3e-05) (0.022, 0.010, 0.0003) (0, 0) (0.021, 0.010, 0) 1.99

−
√
0.25

√
0.25 1.1% 1.01 (0.07) (4e-05, 3e-05) (0.023, 0.012, 0.000) (0, 0) (0.023, 0.012, 0) 1.90
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Figure 6: ISNI approximation to β1 estimates for simple linear regression model with normal
distributed outcome and a bernoulli distributed covariate for Y-and-X-dependent nonignorable
nonresponse

thermore, the c statistic tends to be smaller for Y-and-X-dependent nonignorability than for

Y-dependent-only nonignorability. This is expected because Y−and−X−dependent nonignora-

bility includes Y−dependently-only nonignorability as a special case and has the potential to

identify larger sensitivity for a broader configurations of nonignorable nonresponse. Finally,

within either type of nonignorable nonresponse, the value of NISNI or c statistic is not related

to the γ1 value because the sensitivity analysis should not be expected to inform the magnitude

of nonignorability.



CHAPTER 4

APPLICATONS

(Previously published as Gao, W., Hedeker, D., Mermelstein, R., Xie, H. (2016). A scalable approach

to measuring the impact of nonignorable nonresponse with an EMA application. Statistics in Medicine.

DOI: 10.1002/sim.7078.)

4.1 Example 1: Crossover in a Clinical Trial of Multiple Sclerosis

The primary endpoint for this multiple sclerosis (MS) trial is AD25, an assay of immune

function defined as the antibody-dependent cellular cytotoxicity at an effector:target ratio of

25:1. There were no crossovers from placebo to treatment arm because subjects were not allowed

to switch to active treatment. However, as shown in Table IX, there were 3 out of 11 subjects

randomized to the treatment arm who later self-switched to the placebo arm. Because these

3 crossovers may differ from the others in their AD25 values, the remaining 8 subjects form a

potentially biased representation of the original group randomized to the treatment arm. For

illustrative purposes, in the analysis below we focus on the analysis of data from the treatment

group only.

Models of the nonlinear ISNI (NISNI) formula as described in Section 2.3.1 are applied to

evaluate the potential impact of nonignorable selective crossovers on the estimation of the AD25

distribution in the treatment arm, with results presented in TTable X. The distributional fea-

84
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tures considered in the analysis include mean, variance, inter-quartile range (IQR) and the tail

percentiles. The rationale for considering measures other than the mean parameter is obvious.

In clinical trials, researchers may also be interested in understanding the treatment effect on the

spread of the outcome, in addition to the center of the distribution. Furthermore, investigators

may be interested in percentile comparisons (e.g., as a way to investigate treatment effect het-

erogeneity). Therefore, it is practically relevant to investigate the impact of nonignorability on

the broader set of distributional parameters, which is the aim of our ISNI analysis. As shown

in Table X, ISNIQ is zero for µ̂(0), the MAR estimate of the AD25 mean in the treatment arm.

As a result, both the linear ISNI and nonlinear ISNI analyses have a c statistic of 1.3, which

is slightly above 1. Although the higher-order nonlinear index does not affect the sensitivity

assessment of the mean as compared with the linear index, it does affect the estimates of the

variance σ̂(0). Specifically, the linear index ISNIL( σ̂(0)) = 0 and consequently c = 1, suggesting

no local sensitivity for the variance MAR estimate when using the linear index alone. However,

in fact, there is a significant nonlinear component because ISNIQ(σ̂(0)) = 25188 with c = 1.6,

a substantial difference from c = 1 when using the linear index alone. The c statistic of 1.6

exceeds the cutoff value of 1 for important selection bias relative to the size of sampling error.

Furthermore, the c value could fall below 1 in a different sample (e.g. with a larger sample size

and thus a smaller standard error) while as shown in Section 2.3.1, the c statistic will always

be 1 if using the linear index alone and thus won’t be able to detect sensitivity when it exists.

The nonlinear impact of nonignorability can also occur in respect to other higher-order

distributional features aside from the mean. The examples of these features include percentiles
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Qα and IQR, which in the univariate normal case are µ+pασ and 1.35σ, respectively, where α is

the tail probability and pα is the α-percentile for the standard normal distribution. The NISNI

values for these parameters can be computed as follows. Define a continuously differentiable

scalar function f(θ). According to the chain rule of differentiation, we have

ISNIL(f(θ̂)) =
∂f(θ̂)

∂θ

∂θT

∂γ1
= f′(θ̂).ISNIL(θ̂),

ISNIQ(f(θ̂)) = f′′(θ̂).ISNIL2(θ̂) + f′(θ̂).ISNIQ(θ̂),

Where f′(.) and f′′(.) denote the first and second derivatives of the function f(.), respectively.

Consider a special case where f(θ) = αTθ, i.e. a linear combination of model parameters where

α is a vector of constant. Then we have

ISNIL(αT θ̂) = αT ISNIL(θ̂),

ISNIQ(αT θ̂) = αT ISNIQ(θ̂),

Applying the above results to Qα and IQR, which are functions of the model parameter

θ, we obtain their ISNIL and ISNIQ values as listed in Table X. We note again that when

using the linear ISNI alone, we either cannot detect sensitivity (c = 1 for IQR) or considerably

underestimate the sensitivity (c = 2.24 for using ISNIL alone .vs. c = 1.3 for additionally using

ISNIQ for Q97.5).



87

TABLE IX: THE AD25 VALUES IN THE TREATMENT ARM IN THE MS CLINICAL
TRIAL

Subjid 1 2 3 4 5 6 7 8 9 10 11
AD25 2 3 3 3 21 25 27 49 * * *

TABLE X: SENSITIVITY ANALYSIS IN THE MS DATA

Parameter MAR Est SE ISNIL ISNIQ Linear Correction Nonlinear Correction

Est (γ1 = ± 1
σy

) c Est (γ1 = ± 1
σy

) c

µ 16.65 5.61 -68.72 0 [12.30, 20.95] 1.30 [12.30, 20.95] 1.30
σ2 251.98 126.00 0 25188.55 251.98 ∞ [251.98, 301.96] 1.58
Q97.5 47.77 9.71 -68.72 1555.44 [43.34, 52.1] 2.24 [46.53, 55.19] 1.31
IQR 21.42 5.34 0 1071.35 21.42 ∞ [21.42, 23.56] 2.50
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4.2 Example 2: Nonresponses in EMA Studies

Our application considers the nonresponse issue in Ecological Momentary Assessment (EMA)

studies. As a real-time data capturing method, EMA has become increasingly important in

health studies (2). By sending prompts to mobile devices held by study participants and asking

them to provide answers to various survey questions in real-time, EMA studies can provide

more accurate data. An ideal EMA study collects data for all planned measurements. How-

ever, like most studies involving human subjects, missing data are ubiquitous and unavoidable.

For example, in (41), the studying question is “Are moods just prior to smoking different than

moods during random background times?” There can be a moderate amount of nonresponses

to the random prompts on study participants’ handheld computers (smart phones). One can

never be certain that these nonresponses are random. It may be suspected that subjects do not

respond to the random prompts when their moods are worse, and thus, the observed moods

from answered random prompts are a biased representation of random background moods. An

important feature of the EMA data is the more complex missing data pattern, where response

and covariates are subject to simultaneous missingness. The impact of nonignorable missingness

is often non-monotonic with concurrent missingness in response and covariates, which cannot

be captured by the first-order local linear index developed in Chapter 2. Therefore, we apply

our new nonlinear index method developed in Chapter 3 to quantify the potential bias from

such missing data in EMA studies.

According to (41), “data comes from a longitudinal study of the natural history of smoking

among adolescents” (PO1CA098262, PI R. Mermelstein). The Electronic Diary study involved
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sampling novice smokers as 9th and 10th graders; 461 adolescents (55.1% female) were recruited

as part of the larger study (total N of 1263) and completed the baseline assessment for this

study. Data collection occurred via hand-held palmtop computers. (41) has described “Each

data collection wave included 7 consecutive days of monitoring. Each random prompt was

date- and time-stamped and recorded whether the interview was completed, missed, delayed,

or disbanded. The random interviews asked about mood, activity, location, companionship,

presence of other smokers, and other behaviors. In addition to the random prompts, participants

were trained to event record smoking episodes. The smoke and nonsmoking interviews included

the same questions as the random prompts, and in addition, asked about specific smoking-

related items (e.g. how much smoked, how the cigarette was obtained). Thus, we will be able

to compare the subjective and objective contexts surrounding the smoke and random times.

The smoking-mood relationship has been well studied among adults, in particular those

trying to stop smoking, but much less is known about how mood is associated with smoking

among adolescents. Understanding more about the mood-smoking relationship in adolescents

can help to identify who is most at risk for smoking escalation and developing nicotine depen-

dency, as well as providing insights into intervention development. Therefore, we will conduct

an analysis to investigate the smoking-mood relationship among adolescents. As compared

with more traditional data collection methods, “EMA provides an excellent window into the

lives of adolescents”(41). In smoking-related studies, “EMA captures subtle variations in mood

as they occur, and can do so more accurately than other measurement modalities” (41) and

(42). “With the use of random assessments that are independent from the occurrence of specific
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events, such as smoking, EMA can provide useful comparison information about background

moods, and allow us to address several critical questions about mood-smoking relationships

among adolescents, including the following: Does smoking help to regulate mood and how?

Are moods just prior to smoking different than moods during random background times? In

addition, identifying potential moderator variables may also help in the prediction of smoking

escalation among relatively novice smokers”(41).

In this section, we apply the NISNI method developed here to quantify the impact of

nonignorable prompt nonresponses in EMA data analysis, and to more reliably address these

questions concerning the mood-smoking relationship by accounting for the impact of potential

nonignorable prompt nonresponse. In the application, we focus on the cross-sectional data from

the first collection occasion of the EMA data. About 3% of the observations in the subsample

are smoking events with the rest of the subsample coming from random prompts. About 20%

of these random prompts were not answered.

In the EMA data, the outcome Mood is the negative mood prior to prompt signal or

smoking event, with a higher value meaning a worse mood. Mood is the average of a subject’s

evaluation of the following five items before the prompt signal: I felt sad, I felt stressed, I

felt angry, I felt frustrated, and I felt irritable, where each of the five items is on a rating

scale from 1 to 10. As a result, its average value is considered a nearly continuous value. The

primary covariate is smoking status (1=smoking event vs 0=random prompts). There are two

mediators/confounders we are interested in. The first is Social, which denotes a measurement
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for social isolation prior to prompt signal or smoking event and is the average of a subject’s

evaluation of the following three items before the prompt signal: I felt ignored, I felt left out, I

felt lonely, where each item is on a rating scale from 1 to 10 with a higher value meaning worse. It

takes nearly continuous values. The second is Comp, which denotes dichotomous measurement

of companionship prior to prompt signal or smoking event. It is coded as 0=alone and 1=alone-

others nearby/with others. Our analysis scheme is firstly to conduct simple linear regression

model to examine whether the mediator affects mood in random prompts, and then to conduct

multiple linear regression models to examine the mood-smoking relationship in young adults

after controlling the mediator in the model.

4.2.1 Analysis 1: Considering Social as Mediator

The simple linear regression model to examine whether the social isolation affects mood in

random prompts is as following

Moodi = (Intercept, Social)Ti β+ εi,

Missing data arises because of nonresponses to the random prompts, which leads to the mood

outcome being missing, as well as Social associated with the missed random prompts. They

are missing simultaneously. However, if mood affects adolescents’ compliance with answering

data collection prompts, then our conclusions about the mood-social isolation relationship may

be biased. Thus, evaluating and controlling for the potential bias from such missing data is

extremely important in EMA studies. To investigate the potential impact of nonignorable
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nonresponse, we assume the following prompt nonresponse model: logitP(Gi = 1) = γ0 +

γ1x ∗ sociali + γ1ymoodi, for the mood-social isolation model. We assume the Social follows

univariate normal distribution.

We first conducted the MAR analysis and then conducted both linear and nonlinear ISNI

analyses, assuming Mood-dependent-only nonignorability by fixing γ1x = 0 in the above prompt

nonresponse model. The MAR analysis results for the mood-social isolation regression model

are summarized in Table XI and show that social isolation is associated with higher negative

mood at random background times, and this relationship is statistically significant with a p-

value < .0001. These MAR estimates are potentially biased with nonignorable nonresponse

to random prompts. One can use ISNI analysis to conveniently gauge the sensitivity of these

MAR estimates to nonignorable nonresponse, which avoids fitting any complicated nonignorable

models and only requires readily-available MAR estimates. We apply our new proposed NISNI

method to the EMA data. The results on both the ISNIL and ISNIQ values, as well as the

calibrated range of parameter changes and c statistics are reported in Table XI. The c statistic

for the Social using ISNIQ is 0.96, while it is ∞ when using the ISNIL alone. So the c statistic

values indicate that the linear ISNI analysis is unable to detect any impact of nonignorability on

the coefficient of the covariate Social, whereas there are, in fact, significant changes in parameter

estimates relative to sampling error. In this case, it is critical to use nonlinear indices to measure

the impact of nonignorability properly.

We further conduct nonlinear ISNI analysis that permits Mood-and-Social-dependent non-

ignorability where the nonresponse probabilities are allowed to depend on both mood and
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social isolation, with results reported in Table XII. As compared with results assuming Mood-

dependently-only nonignorability, the c statistics are somewhat smaller. Despite numerical dif-

ferences in the calibrated range of parameter changes and the c values, the sensitivity analysis

results remain qualitatively unchanged with respect to the type of nonignorability (Mood-and-

Social-dependency .vs. Mood-dependency-only).

TABLE XI: NISNI ANALYSIS OF SOCIAL ISOLATION AND MOOD RELATIONSHIP US-
ING EMA DATA ASSUMING Y-DEPENDENT-ONLY NONIGNORABLE NONRESPONSE

Parameter MAR Est SE ISNILy ISNIQyy Linear Correction Nonlinear Correction

Est (γ1y = ± 1
σy

) c Est (γ1y = ± 1
σy

) c

Intercept 1.461 0.148 -0.648 -1.780 [1.068, 1.861] 0.599 [0.740, 1.579] 0.479
Social 0.747 0.049 0 0.732 0.747 ∞ [0.747, 0.886] 0.960

TABLE XII: NISNI ANALYSIS OF SOCIAL ISOLATION AND MOOD RELATIONSHIP US-
ING EMA DATA ASSUMING Y-AND-X-DEPENDENT NONIGNORABLE NONRESPONSE

Parameter MAR Est SE ISNIL ISNIQ Linear Correction Nonlinear Correction

Est (γ1y = ± 1
σy

) c Est (γ1y = ‖γ∗1‖) c

Intercept 1.461 0.148 (-0.648, 0) (-1.779, -1.191, 0) [1.061, 1.861] 0.599 [0.654, 1.779] 0.475
Social 0.747 0.049 ( 0, 0) (0.732, 0.490 0) 0.747 ∞ [0.708, 0.926] 0.525
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Next we investigate the mood-smoking relationship in young adults with the covariate Social

in the model. This covariate can be a mediator to mediate the mood-smoking relationship or be

a confounder to confounding contextual variable that simultaneously affects mood and smoking

behavior but not in the mood-smoking causal pathway. The following linear regression models

for the ideal outcome are considered:

Moodi = (Intercept, SmkEvent, Social)Ti β+ εi

Where SmkEvent denotes a variable indicating whether the observation is from a random

prompt(=0) or a smoking event(=1). Upon this analysis, we will examine wheter moods prior to

smoking are different than the moods during random prompts. For this purpose, the regression

coefficient for SmkEvent compares the mood outcome prior to smoking with that at random

background times controlling Social in the model.

To investigate the potential impact of nonignorable nonresponse, we assume the following

prompt nonresponse model: logitP(Gi = 1) = siγ0 + γ1x ∗ sociali + γ1ymoodi, where si =

(Intercept, SmkEvent)i. The ideal data on the covariate Social is assumed to have a simple

linear regression model, which is Sociali = (Intercept, SmkEvent)Ti δ+ ei.

We first conducted the MAR analysis and then conducted both linear and nonlinear ISNI

analyses, assuming Mood-dependently-only nonignorability by fixing γ1x = 0 in the above

prompt nonresponse model. The MAR analysis results for the Mood outcome regression model

are summarized in Table XIII and show that smoking is indeed associated with higher negative
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mood just prior to smoking as compared with that at random background times, and this

smoking-mood relationship is statistically significant after controlling for social isolation with a

p-value of 0.02. The MAR analysis also shows the statistically significant association between

the outcome Mood and the covariate Social. These MAR estimates are potentially biased with

nonignorable nonresponse to random prompts. The results on both the ISNIL and ISNIQ

values, as well as the calibrated range of parameter changes and c statistics in Table XIII,

are used to gauge the sensitivity of these MAR estimates to nonignorable nonresponse, which

avoids fitting any complicated nonignorable models and only requires readily-available MAR

estimates. The column “Est(γ1y = ± 1
σy
)” presents the approximate range of the estimates

when γ1y = ± 1
σy

. This examines the range of MLE estimates for a moderate nonignorability

such that one standard deviation change in Y (i.e. mood) is associated with an odds ratio of

prompt response being e1 = 2.7 or e−1 = 0.37. With this moderate nonignorability, the range

of possible MLE coefficient estimates for SmkEvent is (0.862, 1.362), with the left endpoint

of the sensitivity interval having a p-value of 0.07. The c statistics are 1.93 under both the

ISNIL and ISNIQ, suggesting that the potential impact of nonignorable nonresponse on the

estimate is small relative to its sampling error. The overall conclusion here is that for the MAR

estimate of the SmkEvent parameter, strong nonignorability is needed to have selection bias

due to nonignorable nonresponse to be comparable to sampling error although the strength of

statistical evidence for the mood-smoking relationship could be somewhat reduced in that the

p-value could increase from 0.02 to 0.07 for moderate nonignorability. The c statistic for the

intercept parameter in the Mood outcome model using ISNIQ (=0.86) is noticeably smaller than
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that using ISNIL (=1.04), suggesting larger sensitivity detected when permitting the nonlinear

impact of nonignorable nonresponse. The sensitivity of the intercept parameter in the Mood

outcome regression model is understandable as it measures the conditional mean of mood

from the random prompts, which is likely subject to sensitivity to selective missingness. The

most significant difference between the linear and nonlinear ISNI analysis is for the parameter

estimate of Social. The c statistic using ISNIQ is 0.96 while it is∞ when using the ISNIL alone,

indicating that the linear ISNI analysis is unable to detect any impact of nonignorability on the

coefficient of the covariate Social, whereas there are, in fact, significant changes in parameter

estimates relative to sampling error. Again, it is critical to use nonlinear indices to properly

measure the impact of nonignorability.

We further conduct a nonlinear ISNI analysis that permits Mood-and-Social-dependent

nonignorability where the nonresponse probabilities are allowed to depend on both mood and

social isolation, with results reported in Table XIV. As compared with results assuming Mood-

dependently-only nonignorability, the c statistics are somewhat smaller. Despite numerical

differences in the calibrated range of parameter changes and the c values, the sensitivity analysis

results remain qualitatively unchanged with respect to the type of nonignorability (Mood-and-

Social-dependency .vs. Mood-dependency-only ).
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TABLE XIII: NISNI ANALYSIS OF SMOKING-MOOD RELATIONSHIP WITH SOCIAL
ISOLATION AS A COVARIATE USING EMA DATA ASSUMING Y-DEPENDENT-ONLY
NONIGNORABLE NONRESPONSE

Parameter MAR Est SE ISNILy ISNIQyy Linear Correction Nonlinear Correction

Est (γ1y = ± 1
σY

) c Est (γ1y = ± 1
σY

) c

Intercept 0.342 0.518 -1.324 -1.728 [-0.156, 0.840] 1.04 [-0.279, 0.718] 0.86
SmkEvent 1.112 0.481 0.666 0.003 [0.862, 1.362] 1.93 [0.862, 1.363] 1.93

Social 0.750 0.049 0 0.709 0.750 ∞ [0.750, 0.810] 0.96

TABLE XIV: NISNI ANALYSIS OF SMOKING-MOOD RELATIONSHIP WITH SOCIAL
ISOLATION AS A COVARIATE USING EMA DATA ASSUMING Y-AND-X-DEPENDENT
NONIGNORABLE NONRESPONSE

Parameter MAR Est SE ISNIL ISNIQ Linear Correction Nonlinear Correction

Est (γ1y = ± 1
σY

) c Est (
∥∥γ∗1∥∥ = 1) c

Intercept 0.342 0.518 (-1.324, 0) (-1.728, -1.018, 0) [-0.156, 0.840] 1.04 [-0.289, 0.741] 0.85
SmkEvent 1.112 0.481 (0.666, 0) ( 0.003, 0.001, 0) [0.862, 1.362] 1.93 [ 0.862, 1.363] 1.93

Social 0.750 0.049 (0, 0) ( 0.709, 0.474, 0) 0.750 ∞ [ 0.738, 0.823] 0.88
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4.2.2 Analysis 2: Considering Comp as Mediator

The simple linear regression model to examine whether the companionship status affects

mood in random prompts is as following

Moodi = (Intercept, Comp)Ti β+ εi,

We assume the following prompt nonresponse model:

logitP(Gi = 1) = γ0 + γ1x ∗ compi + γ1ymoodi,

For the mood-companionship model. We also assume that Comp follows a bernoulli distribu-

tion.

Table XV summarized Comp-Mood relationship in random prompts assuming Y-Dependent-

only nonignorable nonresponse. The MAR analysis results for the mood-companionship re-

gression model showed that the companionship is not statistically significant associated with

negative mood at random with a p-value of 0.79. The c statistic for the Comp using ISNIQ

is 2.11, while it is ∞ when using the ISNIL alone. Hence, the c statistic values indicate that

the linear ISNI analysis is unable to detect any impact of nonignorability on the coefficient of

the covariate Comp. In this case, it is critical to use nonlinear indices to measure properly

the impact of nonignorability. Table XVI summarized the Comp-Mood relationship in random

prompts assuming Y-and-X Dependent nonignorable nonresponse. As compared with results

assuming Mood-dependently-only nonignorability, the c statistics are somewhat smaller. De-
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spite numerical differences in the calibrated range of parameter changes and the c values, the

sensitivity analysis results remain qualitatively unchanged with respect to the type of nonig-

norability (Mood-and-Comp-dependency vs. Mood-dependency-only).

TABLE XV: NISNI ANALYSIS OF COMPANIONSHIP AND MOOD RELATIONSHIP US-
ING EMA DATA ASSUMING Y-DEPENDENT-ONLY NONIGNORABLE NONRESPONSE

Parameter MAR Est SE ISNILy ISNIQyy Linear Correction Nonlinear Correction
Est (γ1y = ±1) c Est (γ1y = ±1) c

Intercept 3.229 0.215 -1.098 -0.081 [2.131, 4.327] 0.196 [2.090, 4.286] 0.194
Companionship 0.069 0.254 0 0.114 0.069 ∞ [0.069, 0.126] 2.111

TABLE XVI: NISNI ANALYSIS OF COMPANIONSHIP AND MOOD RELATIONSHIP US-
ING EMA DATA ASSUMING Y-AND-X-DEPENDENT NONIGNORABLE NONRESPONSE

Parameter MAR Est SE ISNIL ISNIQ Linear Correction Nonlinear Correction
Est (γ1y = ±1) c Est (γ1y = ‖γ∗1‖) c

Intercept 3.229 0.215 (-1.098, 0) (-0.081, -0.591, 0) [2.131, 4.327] 0.196 [ 2.641, 3.802] 0.406
Companionship 0.069 0.254 ( 0, 0) (0.114, 0.829, 0) 0.069 ∞ [-0.121, 0.272] 1.117
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Next we will investigate the mood-smoking relationship in young adults with the covariates

Comp in the model. The following linear regression models for the ideal outcome are considered:

Moodi = (Intercept, SmkEvent, Comp)Ti β+ εi

The regression coefficient for SmkEvent compares the mood outcome prior to smoking with

that at random background times controlling Comp in the model. To investigate the potential

impact of nonignorable nonresponse, we assume the following prompt nonresponse model:

logitP(Gi = 1) = siγ0 + γ1xcompi + γ1ymoodi

where si = (Intercept, SmkEvent)i and a logistic regression model for the ideal data on the

covariate Comp is assumed as logit(Compi = 1) = (Intercept, SmkEvent)Ti δ+ ei.

Table XVII summarized smoking-mood relationship with companionship as an covariate

assuming Y-dependent-only nonignorable nonresponse by fixing γ1x = 0 in the above prompt

nonresponse model. The MAR analysis results show that companionship is not statistically

significantly associated with higher negative mood at random background times with a p-value

of 0.072. The c statistic for the Comp using ISNIQ is 3.33, while it is ∞ when using the ISNIL

alone. Thus, the c statistic values indicate that the linear ISNI analysis is unable to detect any

impact of nonignorability on the coefficient of the covariate Comp, whereas there are, in fact,

significant changes in parameter estimates relative to the sampling error. Table XVIII summa-
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rized the smoking-mood relationship with companionship as an covariate, assuming Y-and-X-

dependent nonignorable nonresponse in the above prompt nonresponse model. As compared

with results assuming Mood−dependently-only nonignorability, the c statistics are somewhat

smaller. However, the sensitivity analysis results remain qualitatively unchanged with respect

to the type of nonignorability (Mood-and-Social-dependency vs. Mood-dependency-only).

TABLE XVII: NISNI ANALYSIS OF SMOKING-MOOD RELATIONSHIP WITH COM-
PANIONSHIP AS A COVARIATE USING EMA DATA ASSUMING Y-DEPENDENT-ONLY
NONIGNORABLE NONRESPONSE

Parameter MAR Est SE ISNILy ISNIQyy Linear Correction Nonlinear Correction

Est (γ1y = ±1) c Est (γ1y = ±1) c

Intercept 2.175 0.676 -2.203 0.031 [-0.027, 4.378] 0.31 [-0.012, 4.393] 0.31
SmkEvent 1.123 0.623 1.101 0.002 [0.022, 3.000] 0.57 [0.022, 2.225] 0.57

Companionship -0.028 0.251 0 -0.045 -0.028 ∞ [-0.051, -0.028] 3.33
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TABLE XVIII: NISNI ANALYSIS OF SMOKING-MOOD RELATIONSHIP WITH COMPAN-
IONSHIP AS A COVARIATE USING EMA DATA ASSUMING Y-AND-X-DEPENDENT
NONIGNORABLE NONRESPONSE

Parameter MAR Est SE ISNIL ISNIQ Linear Correction Nonlinear Correction

Est (γ1y = ±1) c Est (γ1y = ‖γ∗1‖) c

Intercept 2.175 0.676 (-2.203, 0) 0.031 [-0.027, 4.378] 0.31 [1.094, 3.264] 0.635
SmkEvent 1.123 0.623 (1.101, 0) 0.002 [0.022, 3.000] 0.57 [0.601, 1.348] 1.192

Companionship -0.028 0.251 (0, 0) -0.045 -0.028 ∞ [-0.056, -0.028] 1.663



CHAPTER 5

DISCUSSION

An untestable ignorable missingness assumption is often used in reality. Assessing the im-

pact of nonignorability in standard analyses results is necessary so that researchers can judge

when such nonignorable missingness may be a concern and require attention. Prior research has

focused on the linear sensitivity index to measure the sensitivity to nonignorability. It demon-

strates their usefulness in a range of important statistical applications. In this work, we relax

this linearity assumption and developed more general nonlinear sensitivity index measures:

1) nonlinear sensitivity idex for missingness in the outcome only, and 2) nonlinear sensitiv-

ity index for missingness in both the outcome and covariates. In 2), we also developed a more

complex nonignorability missing model, depending on the outcome only and depending on both

the outcome and the covariates. These nonlinear index measures maintain the computational

simplicity of the linear sensitivity index measures and avoid fitting complicated nonignorable

models and thus are well suited for use in big data and data-rich environment nowadays. We

identify situations where nonlinear sensitivity indices are most useful and can lead to quali-

tatively different conclusions regarding the impact of nonignorability on the MAR estimates.

The proposed nonlinear sensitivity measures can effectively detect the impact of nonignora-

bility comparing to the linear index measures in some important situations. These situations

include when the parameters of interest are concerned with finer distributional features such as

variance and tail percentiles, as well as when the outcome and covariates in a regression model

103
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are subject to simultaneous missingness (e.g. EMA studies).

In practical applications, our sensitivity index methods can be useful in the following ways.

First, the investigators can use the indices to incorporate sensitivity analysis results into the

primary reporting. Our sensitivity index methods can be used as a computationally feasible

tool for this purpose. Tables in our application chapters provide examples of how our sensitiv-

ity analysis results can be incorporated into the primary reporting and be used to evaluate the

impact of nonignorability on the parameter estimates relative to sampling errors. Second, our

sensitivity index methods can be used for informing more efficient efforts to collect additional

data. An investigator may choose to collect additional data to better understand the missing

data mechanism and then explore the use of the information regarding the missing data mech-

anism provided by the additional data. These efforts would undoubtedly require additional

resources and time in collecting data, as well as constructing and fitting more complicated

models. If an investigator chooses this option, our method can be useful for quickly screening

datasets in which the impact of nonignorable missingness is important, before deciding to in-

vest a great deal of effort and valuable resources to collect additional data and perform arduous

modeling. Our developed NISNI method not only can apply to modern electronic data captur-

ing methods, such as the EMA methods, but also can be applied in the more traditional types

of data to quantify the potential impact of nonignorability.

One potential complexity of applying the proposed index method occurs when the outcome

does not follow Gaussian distribution. We need to further develop the closed-form formulas
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for other data distributions. The other limitation of our work is that we restrict our analysis

to the cross-sectional data. The analysis does not exploit intensive longitudinal information

within the multiple measurements period. It is natural to extend the methodology presented

here to the longitudinal setting, which will involve the joint longitudinal modeling and analysis

of the outcome and covariates that are subject to missingness. This involves substantially more

modeling and computational work, which we plan to present elsewhere.
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Appendix A

R CODE FOR ISNI ANALYSIS FOR EMA DATA WITH BOTH

OUTCOME AND COVARIATES FOLLOWING NORMAL

DISTRIBUTION

l i b r a r y ( Rsolnp )

### Apply to r e a l data (EMA) Simple Linear r e g r e s s i o n###

### f o r Both Outcome and Covar iates Fol lowing Normal D i s t r i bu t i on ###

## Read in the func t i on .

source ( ’C:\\ Users\\gaowh\\Documents\\Thes i s 2013 \\Thes i s gao \\ n i s n i R program\\ ni sn ig lm .R’ )

#read ema data

ema = read . csv (”C:\\ Users\\gaowh\\Documents\\Thes i s 2013 \\Hui Papers\\EMA data\\emabase . csv ” ,

header = TRUE)

#check miss ing data

sapply (ema , func t i on (x ) sum( i s . na (x ) ) )

###only analyze non−smoking su b j e c t s###

ema2 = ema [ ema$smoking==1,]

attach (ema2)

## compute i s n i l and i s n i q

sim . i s n i <− glm (mood˜ s o c i s o )

out<− summary( sim . i s n i )

c o e f <− cbind ( round ( o u t $ c o e f f i c i e n t s [ , 1 ] , 3 ) , round ( o u t $ c o e f f i c i e n t s [ , 2 ] , 3 ) )

## get the r e s i d u a l var iance

i g . sigma2 <− summary( sim . i s n i ) $ d i s p e r s i o n ∗( l ength (mood [ g==1])− l ength ( co e f ( sim . i s n i ) ) ) / l ength (mood [ g==1])

## v e r i f y with e x p l i c i t formula

n=length (mood)
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Appendix A (Continued)

nm= sum( i s . na (mood ) )

no=length (mood)−nm

xobar=mean( soc i s o , na . rm=T)

sigma . x2=(sd ( soc i s o , na . rm=T))ˆ2

sxoxo= sum (( s o c i s o [ g==1]−xobar )ˆ2)

sd . y = sq r t ( i g . sigma2 )

sd . x=sq r t ( sigma . x2 )

#####################################################

### For Y−Dependent−only Nonignorable Nonresponse ###

#####################################################

i s n i l . beta1 = 0

i s n i q . beta1 = round (2∗ i g . sigma2 ∗ ( ( noˆ2∗nm)/nˆ2)∗ sigma . x2∗sim . i s n i $ c o e f [ 2 ]∗ ( 1 / sxoxo ) , 3)

i s n i l . beta0 = round(− i g . sigma2 ∗(nm/n ) , 3)

i s n i q . beta0 = round(− i s n i q . beta1∗xobar , 3)

i s n i l <−rbind ( i s n i l . beta0 , i s n i l . beta1 )

i sn iq <−rbind ( i s n i q . beta0 , i s n i q . beta1 )

i s n i <−cbind ( i s n i l , i s n i q )

#c a l c u l a t e c a l i b r a t e d e s t imate s

quad<− f unc t i on ( se , i s n i l , i sn i q , sdy ){

i f ( i s n i q !=0){

i f ( i sn i q >0){

z <− matrix ( c(−se , i s n i l , 0 . 5∗ i s n i q ) , nco l =1)

} e l s e

{

z <− matrix ( c(−se , i s n i l , abs (0 . 5∗ i s n i q ) ) , nco l =1)

}

root<−po lyroot ( z )

mini<−min( c (Re( abs ( root [ 1 ] ) ) , Re( abs ( root [ 2 ] ) ) ) )

} e l s e

{

mini<−abs ( se / i s n i l )

}

res<− round ( abs ( mini∗sdy ) , 3 )

}

c . l . beta0<−quad ( co e f [ 1 , 2 ] , i s n i l . beta0 , 0 , i g . sigma2 )

c . q . beta0<−quad ( co e f [ 1 , 2 ] , i s n i l . beta0 , i s n i q . beta0 , i g . sigma2 )
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Appendix A (Continued)

c . l . beta1<−quad ( co e f [ 2 , 2 ] , i s n i l . beta1 , 0 , i g . sigma2 )

c . q . beta1<−quad ( co e f [ 2 , 2 ] , i s n i l . beta1 , i s n i q . beta1 , i g . sigma2 )

gamma1l=round (1/ sd . y , 3 )

gamma1u=−round (1/ sd . y , 3 )

gamma1 <− seq (gamma1u , gamma1l , 0 . 018)

beta0 . i s n i l l = min ( round ( sim . i s n i $ c o e f [ 1 ] + i s n i l . beta0∗gamma1 , 3 ) )

beta0 . i s n i l u = max( round ( sim . i s n i $ c o e f [ 1 ] + i s n i l . beta0∗gamma1 , 3 ) )

beta0 . i s n i q l = min ( round ( sim . i s n i $ c o e f [ 1 ] + i s n i l . beta0∗gamma1 + ( i s n i q . beta0 /2)∗(gamma1ˆ2) , 3 ) )

beta0 . i s n i qu = max( round ( sim . i s n i $ c o e f [ 1 ] + i s n i l . beta0∗gamma1 + ( i s n i q . beta0 /2)∗(gamma1ˆ2) , 3 ) )

r . beta0 . l<− paste0 (” (” , round ( beta0 . i s n i l l , 3 ) , ” , ” , beta0 . i s n i l u , ” ) ” )

r . beta0 . q<− paste0 (” (” , round ( beta0 . i s n i q l , 3 ) , ” , ” , beta0 . i sn iqu , ” ) ” )

beta1 . i s n i l l = min ( round ( sim . i s n i $ c o e f [ 2 ] + i s n i l . beta1∗gamma1 , 3 ) )

beta1 . i s n i l u = max( sim . i s n i $ c o e f [ 2 ] + i s n i l . beta1∗gamma1 , 3 )

beta1 . i s n i q l = min ( round ( sim . i s n i $ c o e f [ 2 ] + i s n i l . beta1∗gamma1 + ( i s n i q . beta1 /2)∗(gamma1ˆ2) , 3 ) )

beta1 . i s n i qu = max( round ( sim . i s n i $ c o e f [ 2 ] + i s n i l . beta1∗gamma1 + ( i s n i q . beta1 /2)∗(gamma1ˆ2) , 3 ) )

r . beta1 . l<− paste0 (” (” , round ( beta1 . i s n i l l , 3 ) , ” , ” , beta1 . i s n i l u , ” ) ” )

r . beta1 . q<− paste0 (” (” , round ( beta1 . i s n i q l , 3 ) , ” , ” , beta1 . i sn iqu , ” ) ” )

i s n i . beta0 <− cbind ( i s n i l . beta0 , i s n i q . beta0 , r . beta0 . l , c . l . beta0 , r . beta0 . q , c . q . beta0 )

i s n i . beta1 <− cbind ( i s n i l . beta1 , i s n i q . beta1 , r . beta1 . l , c . l . beta1 , r . beta1 . q , c . q . beta1 )

i s n i . beta <− rbind ( i s n i . beta0 , i s n i . beta1 )

i s n i . nn . ydep<− cbind ( coef , i s n i . beta )

colnames ( i s n i . nn . ydep ) <− c (”MAR Est ” , ”SE” , ”ISNILy ” , ”ISNILyy ” , ” Linear Cor rec t i on range ” ,

” Linear Cor r e c t i on c ” , ”NonLinear Cor rec t i on range ” , ”NonLinear Cor r e c t i on c ”)

i s n i . nn . ydep

######################################################

### For Y−and−X−Dependent Nonignorable Nonresponse ###

######################################################

i s n i l x . beta0 = 0

i s n i l y . beta0 = − i g . sigma2 ∗(nm/n)

i s n i l x . beta1 = 0
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Appendix A (Continued)

i s n i l y . beta1 = 0

i sn iqxx . beta1 = 0

i sn iqxy . beta1 = ig . sigma2 ∗ ( ( no∗nm)/n ˆ2)∗ ( ( no∗ sigma . x2 )/ sxoxo )

i sn i qyy . beta1 = 2∗ sim . i s n i $ c o e f [ 2 ] ∗ i g . sigma2 ∗ ( ( no∗nm)/n ˆ2)∗ ( ( no∗ sigma . x2 )/ sxoxo )

i sn i qxx . beta0 = 0

i sn iqxy . beta0 = − i s n i qxy . beta1∗xobar

i sn i qyy . beta0 = − i s n i qyy . beta1∗xobar

i s n i l 0 <−paste0 (” (” , round ( i s n i l y . beta0 , 3 ) , ” , ” , i s n i l x . beta0 , ” ) ” )

i s n i l 1 <−paste0 (” (” , round ( i s n i l y . beta1 , 3 ) , ” , ” , i s n i l x . beta1 , ” ) ” )

i sn iq0 <−paste0 (” (” , round ( i sn i qyy . beta0 , 3) , ” , ” , round ( i sn i qxy . beta0 , 3) , ” , ” , i sn i qxx . beta0 , ” ) ” )

i sn iq1 <−paste0 (” (” , round ( i sn i qyy . beta1 , 3) , ” , ” , round ( i sn i qxy . beta1 , 3) , ” , ” , i sn i qxx . beta1 , ” ) ” )

#c a l c u l a t e c a l i b r a t e d e s t imate s

#minimum value o f range

fnbeta0 . l . min=func t i on (x )

{

i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ]

}

fnbeta0 . q . min=funct i on (x )

{

i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ] +

(1/2 )∗ ( ( x [ 1 ] ∗ i s n i qxx . beta0 + x [ 2 ] ∗ i s n i qxy . beta0 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta0 + x [ 2 ] ∗ i s n i qyy . beta0 )∗x [ 2 ] )

}

fnbeta1 . l . min=func t i on (x )

{

i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ]

}

fnbeta1 . q . min=funct i on (x )

{

i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ] +

(1/2 )∗ ( ( x [ 1 ] ∗ i s n i qxx . beta1 + x [ 2 ] ∗ i s n i qxy . beta1 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta1 + x [ 2 ] ∗ i s n i qyy . beta1 )∗x [ 2 ] )

}

#maximum value o f range

fnbeta0 . l . max=funct i on (x )
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{

−( i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ] )

}

fnbeta0 . q . max=func t i on (x )

{

−( i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta0 + x [ 2 ] ∗ i s n i qxy . beta0 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta0 + x [ 2 ] ∗ i s n i qyy . beta0 )∗x [ 2 ] ) )

}

fnbeta1 . l . max=funct i on (x )

{

−( i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ] )

}

fnbeta1 . q . max=funct i on (x )

{

−( i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta1 + x [ 2 ] ∗ i s n i qxy . beta1 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta1 + x [ 2 ] ∗ i s n i qyy . beta1 )∗x [ 2 ] ) )

}

eqn1=func t i on (x){

z1=sq r t (x [ 1 ] ˆ 2∗ sigma . x2 + x [ 2 ] ˆ 2∗ i g . sigma2 )

return ( c ( z1 ) )

}

x0 = c ( 0 . 5 , 0 . 5 )

beta0 . l . gamma1 . min=solnp ( x0 , fun = fnbeta0 . l . min , eqfun = eqn1 , eqB =1)

beta0 . q . gamma1 . min=solnp ( x0 , fun = fnbeta0 . q . min , eqfun = eqn1 , eqB =1)

beta1 . l . gamma1 . min=solnp ( x0 , fun = fnbeta1 . l . min , eqfun = eqn1 , eqB =1)

beta1 . q . gamma1 . min=solnp ( x0 , fun = fnbeta1 . q . min , eqfun = eqn1 , eqB =1)

beta0 . l . gamma1 . max=solnp ( x0 , fun = fnbeta0 . l . max , eqfun = eqn1 , eqB =1)

beta0 . q . gamma1 . max=solnp ( x0 , fun = fnbeta0 . q . max , eqfun = eqn1 , eqB =1)

beta1 . l . gamma1 . max=solnp ( x0 , fun = fnbeta1 . l . max , eqfun = eqn1 , eqB =1)

beta1 . q . gamma1 . max=solnp ( x0 , fun = fnbeta1 . q . max , eqfun = eqn1 , eqB =1)

r . beta0 . l . l=coe f [1 ,1 ]+ round ( t a i l ( beta0 . l . gamma1 . min$values , n=1) ,3)

r . beta0 . l . u=coe f [1 ,1 ]+ round(− t a i l ( beta0 . l . gamma1 . max$values , n=1) ,3)
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r . beta1 . l . l=coe f [2 ,1 ]+ round ( t a i l ( beta1 . l . gamma1 . min$values , n=1) ,3)

r . beta1 . l . u=coe f [2 ,1 ]+ round(− t a i l ( beta1 . l . gamma1 . max$values , n=1) ,3)

r . beta0 . q . l=coe f [1 ,1 ]+ round ( t a i l ( beta0 . q . gamma1 . min$values , n=1) ,3)

r . beta0 . q . u=coe f [1 ,1 ]+ round(− t a i l ( beta0 . q . gamma1 . max$values , n=1) ,3)

r . beta1 . q . l=coe f [2 ,1 ]+ round ( t a i l ( beta1 . q . gamma1 . min$values , n=1) ,3)

r . beta1 . q . u=coe f [2 ,1 ]+ round(− t a i l ( beta1 . q . gamma1 . max$values , n=1) ,3)

r . beta0 . l<− paste0 (” (” , r . beta0 . l . l , ” , ” , r . beta0 . l . u , ” ) ” )

r . beta0 . q<− paste0 (” (” , r . beta0 . q . l , ” , ” , r . beta0 . q . u , ” ) ” )

r . beta1 . l<− paste0 (” (” , r . beta1 . l . l , ” , ” , r . beta1 . l . u , ” ) ” )

r . beta1 . q<− paste0 (” (” , r . beta1 . q . l , ” , ” , r . beta1 . q . u , ” ) ” )

#c s t a t i s t i c s

fnbeta0 . q . c=func t i on (x )

{

−( i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta0 + x [ 2 ] ∗ i s n i qxy . beta0 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta0 + x [ 2 ] ∗ i s n i qyy . beta0 )∗x [ 2 ] ) )

}

fnbeta1 . q . c=func t i on (x )

{

−( i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta1 + x [ 2 ] ∗ i s n i qxy . beta1 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta1 + x [ 2 ] ∗ i s n i qyy . beta1 )∗x [ 2 ] ) )

}

eqnc=func t i on (x){

z1=sq r t (x [ 1 ] ˆ 2∗ sigma . x2 + x [ 2 ] ˆ 2∗ i g . sigma2 )

return ( c ( z1 ) )

}

x0 = c ( 0 . 5 , 0 . 5 )
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# der ive c s t a t i s t i c s f o r beta0

c . b0=seq (0 , 1 , by=0.001)

range . beta0=rep (0 , l ength ( c . b0 ) )

f o r ( i in 1 : l ength ( c . b0 ) )

{

range . beta0 [ i ]=round(− t a i l ( so lnp ( x0 , fun = fnbeta0 . q . c , eqfun = eqnc , eqB =c . b0 [ i ] ) $values , n=1) , 3)

}

c . beta0 . range = cbind ( range . beta0 , c . b0 )

c . beta0 . qx = subset ( c . beta0 . range , range . beta0==coe f [ 1 , 2 ] )

c . beta0 . q = min ( c . beta0 . qx [ , 2 ] )

# der i v e c s t a t i s t i c s f o r beta1

c . b1=seq (0 , 3 , by=0.005)

range . beta1=rep (0 , l ength ( c . b1 ) )

f o r ( i in 1 : l ength ( c . b1 ) )

{

range . beta1 [ i ]=round(− t a i l ( so lnp ( x0 , fun = fnbeta1 . q . c , eqfun = eqnc , eqB =c . b1 [ i ] ) $values , n=1) , 3)

}

c . beta1 . range = cbind ( range . beta1 , c . b1 )

c . beta1 . qx = subset ( c . beta1 . range , range . beta1==coe f [ 2 , 2 ] )

c . beta1 . q = min ( c . beta1 . qx [ , 2 ] )

i s n i l <−rbind ( i s n i l 0 , i s n i l 1 )

i sn iq <−rbind ( i sn iq0 , i s n i q 1 )

range . l<−rbind ( r . beta0 . l , r . beta1 . l )

c . l=rbind ( c . l . beta0 , c . l . beta1 )

range . q<−rbind ( r . beta0 . q , r . beta1 . q )

c . q<−rbind ( c . beta0 . q , c . beta1 . q )

i s n i . nn . yxdep<−cbind ( coef , i s n i l , i sn i q , range . l , c . l , range . q , c . q )

colnames ( i s n i . nn . yxdep ) <− c (”MAR Est ” , ”SE” , ”ISNILy ” , ”ISNILyy ” , ” Linear Cor rec t i on range ” ,

” Linear Cor r e c t i on c ” , ”NonLinear Cor rec t i on range ” , ”NonLinear Cor r e c t i on c ”)

i s n i . nn . yxdep
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R CODE FOR ISNI ANALYSIS FOR EMA DATA WITH NORMAL

DISTRIBUTED OUTCOME AND A BERNOULLI DISTRIBUTED

COVARIATE

l i b r a r y ( Rsolnp )

############################################################################

############ Apply to r e a l data (EMA) − Simple Linear r e g r e s s i o n ###########

#### f o r Normal D i s t r ibuted Outcome And Bernou l l i D i s t r ibuted Covar iate ####

############################################################################

## Read in the func t i on .

source ( ’C:\\ Users\\gaowh\\Documents\\Thes i s 2013 \\Thes i s gao \\ n i s n i R program\\ ni sn ig lm .R’ )

#read ema data

ema = read . csv (”C:\\ Users\\gaowh\\Documents\\Thes i s 2013 \\Hui Papers\\EMA data\\emabase . csv ” ,

header = TRUE)

#check miss ing data

sapply (ema , func t i on (x ) sum( i s . na (x ) ) )

###only analyze non−smoking su b j e c t s###

ema2 = ema [ ema$smoking==1,]

attach (ema2)

# r e c a t e g o r i z e comp

rcomp <− i f e l s e (comp == 1 , 0 , 1)

## compute i s n i l and i s n i q

sim . i s n i <− glm (mood˜rcomp )

out<− summary( sim . i s n i )

c o e f <− cbind ( round ( o u t $ c o e f f i c i e n t s [ , 1 ] , 3 ) , round ( o u t $ c o e f f i c i e n t s [ , 2 ] , 3 ) )
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## get the r e s i d u a l var iance

i g . sigma2 <− round (summary( sim . i s n i ) $d i s p e r s i o n ∗( l ength (mood [ g==1])− l ength ( co e f ( sim . i s n i ) ) ) /

l ength (mood [ g==1]) ,3)

## v e r i f y with e x p l i c i t formula

n=length (mood)

nm= sum( i s . na (mood ) )

no=length (mood)−nm

xobar=mean( rcomp , na . rm=T)

sigma . x2=(sd ( rcomp , na . rm=T))ˆ2

sxoxo= sum (( rcomp [ g==1]−xobar )ˆ2)

sd . y = sq r t ( i g . sigma2 )

#####################################################

### For Y−Dependent−only Nonignorable Nonresponse ###

#####################################################

i s n i l . beta1 = 0

i s n i q . beta1 = round (2∗ i g . sigma2 ∗ ( ( noˆ2∗nm)/nˆ2)∗ sigma . x2∗sim . i s n i $ c o e f [ 2 ]∗ ( 1 / sxoxo ) , 3 )

i s n i l . beta0 = round(− i g . sigma2 ∗(nm/n ) , 3 )

i s n i q . beta0 = round(− i s n i q . beta1∗xobar , 3 )

i s n i l <−rbind ( i s n i l . beta0 , i s n i l . beta1 )

i sn iq <−rbind ( i s n i q . beta0 , i s n i q . beta1 )

i s n i <−cbind ( i s n i l , i s n i q )

quad<− f unc t i on ( se , i s n i l , i s n i q ){

i f ( i s n i q !=0){

i f ( i sn i q >0){

z <− matrix ( c(−se , i s n i l , 0 . 5∗ i s n i q ) , nco l =1)

} e l s e

{

z <− matrix ( c(−se , i s n i l , abs (0 . 5∗ i s n i q ) ) , nco l =1)

}

root<−po lyroot ( z )

mini<−min( c (Re( abs ( root [ 1 ] ) ) , Re( abs ( root [ 2 ] ) ) ) )

} e l s e

{
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mini<−abs ( se / i s n i l )

}

res<− round ( abs ( mini ) , 3 )

}

c . l . beta0<−quad ( co e f [ 1 , 2 ] , i s n i l . beta0 , 0 )

c . q . beta0<−quad ( co e f [ 1 , 2 ] , i s n i l . beta0 , i s n i q . beta0 )

c . l . beta1<−quad ( co e f [ 2 , 2 ] , i s n i l . beta1 , 0 )

c . q . beta1<−quad ( co e f [ 2 , 2 ] , i s n i l . beta1 , i s n i q . beta1 )

#c a l c u l a t e c a l i b r a t e d e s t imate s

gamma1l=1

gamma1u=−1

gamma1 <− seq (gamma1u , gamma1l , 0 . 01 )

beta0 . i s n i l l = min ( round ( sim . i s n i $ c o e f [ 1 ] + i s n i l . beta0∗gamma1 , 3 ) )

beta0 . i s n i l u = max( round ( sim . i s n i $ c o e f [ 1 ] + i s n i l . beta0∗gamma1 , 3 ) )

beta0 . i s n i q l = min ( round ( sim . i s n i $ c o e f [ 1 ] + i s n i l . beta0∗gamma1 + ( i s n i q . beta0 /2)∗(gamma1ˆ2) , 3 ) )

beta0 . i s n i qu = max( round ( sim . i s n i $ c o e f [ 1 ] + i s n i l . beta0∗gamma1 + ( i s n i q . beta0 /2)∗(gamma1ˆ2) , 3 ) )

r . beta0 . l<− paste0 (” (” , round ( beta0 . i s n i l l , 3 ) , ” , ” , beta0 . i s n i l u , ” ) ” )

r . beta0 . q<− paste0 (” (” , round ( beta0 . i s n i q l , 3 ) , ” , ” , beta0 . i sn iqu , ” ) ” )

beta1 . i s n i l l = min ( round ( sim . i s n i $ c o e f [ 2 ] + i s n i l . beta1∗gamma1 , 3 ) )

beta1 . i s n i l u = max( sim . i s n i $ c o e f [ 2 ] + i s n i l . beta1∗gamma1 , 3 )

beta1 . i s n i q l = min ( round ( sim . i s n i $ c o e f [ 2 ] + i s n i l . beta1∗gamma1 + ( i s n i q . beta1 /2)∗(gamma1ˆ2) , 3 ) )

beta1 . i s n i qu = max( round ( sim . i s n i $ c o e f [ 2 ] + i s n i l . beta1∗gamma1 + ( i s n i q . beta1 /2)∗(gamma1ˆ2) , 3 ) )

r . beta1 . l<− paste0 (” (” , round ( beta1 . i s n i l l , 3 ) , ” , ” , beta1 . i s n i l u , ” ) ” )

r . beta1 . q<− paste0 (” (” , round ( beta1 . i s n i q l , 3 ) , ” , ” , beta1 . i sn iqu , ” ) ” )

i s n i . beta0 <− cbind ( i s n i l . beta0 , i s n i q . beta0 , r . beta0 . l , c . l . beta0 , r . beta0 . q , c . q . beta0 )

i s n i . beta1 <− cbind ( i s n i l . beta1 , i s n i q . beta1 , r . beta1 . l , c . l . beta1 , r . beta1 . q , c . q . beta1 )

i s n i . beta <− rbind ( i s n i . beta0 , i s n i . beta1 )

i s n i . nb . ydep<− cbind ( coef , i s n i . beta )

colnames ( i s n i . nb . ydep ) <− c (”MAR Est ” , ”SE” , ”ISNILy ” , ”ISNILyy ” , ” Linear Cor rec t i on range ” ,

” Linear Cor r e c t i on c ” , ”NonLinear Cor rec t i on range ” , ”NonLinear Cor r e c t i on c ”)

i s n i . nb . ydep

######################################################

### For Y−and−X−Dependent Nonignorable Nonresponse ###
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######################################################

i s n i l x . beta0 = 0

i s n i l y . beta0 = − i g . sigma2 ∗(nm/n)

i s n i l x . beta1 = 0

i s n i l y . beta1 = 0

i sn iqxx . beta1 = 0

i sn iqxy . beta1 = ig . sigma2 ∗ ( ( no∗nm)/n ˆ2)∗ ( ( no∗ sigma . x2 )/ sxoxo )

i sn i qyy . beta1 = 2∗ sim . i s n i $ c o e f [ 2 ] ∗ i g . sigma2 ∗ ( ( no∗nm)/n ˆ2)∗ ( ( no∗ sigma . x2 )/ sxoxo )

i sn i qxx . beta0 = 0

i sn iqxy . beta0 = − i s n i qxy . beta1∗xobar

i sn i qyy . beta0 = − i s n i qyy . beta1∗xobar

i s n i l 0 <−paste0 (” (” , round ( i s n i l y . beta0 , 3 ) , ” , ” , i s n i l x . beta0 , ” ) ” )

i s n i l 1 <−paste0 (” (” , round ( i s n i l y . beta1 , 3 ) , ” , ” , i s n i l x . beta1 , ” ) ” )

i sn iq0 <−paste0 (” (” , round ( i sn i qyy . beta0 , 3) , ” , ” , round ( i sn i qxy . beta0 , 3) , ” , ” , i sn i qxx . beta0 , ” ) ” )

i sn iq1 <−paste0 (” (” , round ( i sn i qyy . beta1 , 3) , ” , ” , round ( i sn i qxy . beta1 , 3) , ” , ” , i sn i qxx . beta1 , ” ) ” )

#c a l c u l a t e c a l i b r a t e d e s t imate s

#minimum value o f range

fnbeta0 . l . min=func t i on (x )

{

i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ]

}

fnbeta0 . q . min=funct i on (x )

{

i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ] +

(1/2 )∗ ( ( x [ 1 ] ∗ i s n i qxx . beta0 + x [ 2 ] ∗ i s n i qxy . beta0 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta0 + x [ 2 ] ∗ i s n i qyy . beta0 )∗x [ 2 ] )

}

fnbeta1 . l . min=func t i on (x )

{

i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ]

}

fnbeta1 . q . min=funct i on (x )

{

i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ] +
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(1/2 )∗ ( ( x [ 1 ] ∗ i s n i qxx . beta1 + x [ 2 ] ∗ i s n i qxy . beta1 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta1 + x [ 2 ] ∗ i s n i qyy . beta1 )∗x [ 2 ] )

}

#maximum value o f range

fnbeta0 . l . max=funct i on (x )

{

−( i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ] )

}

fnbeta0 . q . max=func t i on (x )

{

−( i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta0 + x [ 2 ] ∗ i s n i qxy . beta0 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta0 + x [ 2 ] ∗ i s n i qyy . beta0 )∗x [ 2 ] ) )

}

fnbeta1 . l . max=funct i on (x )

{

−( i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ] )

}

fnbeta1 . q . max=funct i on (x )

{

−( i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta1 + x [ 2 ] ∗ i s n i qxy . beta1 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta1 + x [ 2 ] ∗ i s n i qyy . beta1 )∗x [ 2 ] ) )

}

eqn1=func t i on (x){

z1=sq r t (x [ 1 ] ˆ 2 + x [ 2 ] ˆ 2∗ i g . sigma2 )

return ( c ( z1 ) )

}

x0 = c (0 ,0 )

beta0 . l . gamma1 . min=solnp ( x0 , fun = fnbeta0 . l . min , eqfun = eqn1 , eqB =1)

beta0 . q . gamma1 . min=solnp ( x0 , fun = fnbeta0 . q . min , eqfun = eqn1 , eqB =1)

beta1 . l . gamma1 . min=solnp ( x0 , fun = fnbeta1 . l . min , eqfun = eqn1 , eqB =1)

beta1 . q . gamma1 . min=solnp ( x0 , fun = fnbeta1 . q . min , eqfun = eqn1 , eqB =1)

beta0 . l . gamma1 . max=solnp ( x0 , fun = fnbeta0 . l . max , eqfun = eqn1 , eqB =1)

beta0 . q . gamma1 . max=solnp ( x0 , fun = fnbeta0 . q . max , eqfun = eqn1 , eqB =1)
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beta1 . l . gamma1 . max=solnp ( x0 , fun = fnbeta1 . l . max , eqfun = eqn1 , eqB =1)

beta1 . q . gamma1 . max=solnp ( x0 , fun = fnbeta1 . q . max , eqfun = eqn1 , eqB =1)

r . beta0 . l . l=coe f [1 ,1 ]+ round ( t a i l ( beta0 . l . gamma1 . min$values , n=1) ,3)

r . beta0 . l . u=coe f [1 ,1 ]+ round(− t a i l ( beta0 . l . gamma1 . max$values , n=1) ,3)

r . beta1 . l . l=coe f [2 ,1 ]+ round ( t a i l ( beta1 . l . gamma1 . min$values , n=1) ,3)

r . beta1 . l . u=coe f [2 ,1 ]+ round(− t a i l ( beta1 . l . gamma1 . max$values , n=1) ,3)

r . beta0 . q . l=coe f [1 ,1 ]+ round ( t a i l ( beta0 . q . gamma1 . min$values , n=1) ,3)

r . beta0 . q . u=coe f [1 ,1 ]+ round(− t a i l ( beta0 . q . gamma1 . max$values , n=1) ,3)

r . beta1 . q . l=coe f [2 ,1 ]+ round ( t a i l ( beta1 . q . gamma1 . min$values , n=1) ,3)

r . beta1 . q . u=coe f [2 ,1 ]+ round(− t a i l ( beta1 . q . gamma1 . max$values , n=1) ,3)

r . beta0 . l<− paste0 (” (” , r . beta0 . l . l , ” , ” , r . beta0 . l . u , ” ) ” )

r . beta0 . q<− paste0 (” (” , r . beta0 . q . l , ” , ” , r . beta0 . q . u , ” ) ” )

r . beta1 . l<− paste0 (” (” , r . beta1 . l . l , ” , ” , r . beta1 . l . u , ” ) ” )

r . beta1 . q<− paste0 (” (” , r . beta1 . q . l , ” , ” , r . beta1 . q . u , ” ) ” )

#c s t a t i s t i c s

fnbeta0 . q . c=func t i on (x )

{

−( i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta0 + x [ 2 ] ∗ i s n i qxy . beta0 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta0 + x [ 2 ] ∗ i s n i qyy . beta0 )∗x [ 2 ] ) )

}

fnbeta1 . q . c=func t i on (x )

{

−( i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta1 + x [ 2 ] ∗ i s n i qxy . beta1 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta1 + x [ 2 ] ∗ i s n i qyy . beta1 )∗x [ 2 ] ) )

}

eqnc=func t i on (x){

z1=sq r t (x [ 1 ] ˆ 2 + x [ 2 ] ˆ 2∗ i g . sigma2 )

return ( c ( z1 ) )
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}

x0 = c (0 ,0 )

# der i v e c s t a t i s t i c s f o r beta0

c . b0=seq (0 , 1 , by=0.001)

range . beta0=rep (0 , l ength ( c . b0 ) )

f o r ( i in 1 : l ength ( c . b0 ) )

{

range . beta0 [ i ]=round(− t a i l ( so lnp ( x0 , fun = fnbeta0 . q . c , eqfun = eqnc , eqB =c . b0 [ i ] ) $values , n=1) , 3)

}

c . beta0 . range = cbind ( range . beta0 , c . b0 )

c . beta0 . qx = subset ( c . beta0 . range , range . beta0==coe f [ 1 , 2 ] )

c . beta0 . q = min ( c . beta0 . qx [ , 2 ] )

# der i v e c s t a t i s t i c s f o r beta1

c . b1=seq (0 , 1 . 5 , by=0.001)

range . beta1=rep (0 , l ength ( c . b1 ) )

f o r ( i in 1 : l ength ( c . b1 ) )

{

range . beta1 [ i ]=round(− t a i l ( so lnp ( x0 , fun = fnbeta1 . q . c , eqfun = eqnc , eqB =c . b1 [ i ] ) $values , n=1) , 3)

}

c . beta1 . range = cbind ( range . beta1 , c . b1 )

c . beta1 . qx = subset ( c . beta1 . range , range . beta1==coe f [ 2 , 2 ] )

c . beta1 . q = min ( c . beta1 . qx [ , 2 ] )

i s n i l <−rbind ( i s n i l 0 , i s n i l 1 )

i sn iq <−rbind ( i sn iq0 , i s n i q 1 )

range . l<−rbind ( r . beta0 . l , r . beta1 . l )

c . l<−rbind ( c . l . beta0 , c . l . beta1 )

range . q<−rbind ( r . beta0 . q , r . beta1 . q )

c . q<−rbind ( c . beta0 . q , c . beta1 . q )

i s n i . nb . yxdep<−cbind ( coef , i s n i l , i sn i q , range . l , c . l , range . q , c . q )

colnames ( i s n i . nb . yxdep ) <− c (”MAR Est ” , ”SE” , ”ISNILy ” , ”ISNILyy ” , ” Linear Cor rec t i on range ” ,

” Linear Cor r e c t i on c ” , ”NonLinear Cor rec t i on range ” , ”NonLinear Cor r e c t i on c ”)

i s n i . nb . yxdep
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##################################################################################

########################### Mult ip le Linear Regress ion ##########################

##################################################################################

sim . i s n i <− glm (mood˜smoking + rcomp )

out<− summary( sim . i s n i )

c o e f <− cbind ( round ( o u t $ c o e f f i c i e n t s [ , 1 ] , 3 ) , round ( o u t $ c o e f f i c i e n t s [ , 2 ] , 3 ) )

## get the r e s i d u a l var iance

i g . sigma2 <− round (summary( sim . i s n i ) $ d i s p e r s i o n ∗( l ength (mood [ g==1])− l ength ( co e f ( sim . i s n i ) ) ) /

l ength (mood [ g==1]) ,3)

#use func t i on to obta in i s n i l and i s n i q

i s n i <− ni sn ig lm ( dep=mood , indep . ymodel=rcomp , indep . d i s t=”binomial ” , cov . ymodel=smoking ,

indep . xmodel=smoking , indep . gmodel=smoking )

i sn i 2 <−do . c a l l (” cbind ” , i s n i )

i s n i l <− i s n i 2 [ , 1 ]

i s n i q . yy<− i s n i 2 [ , 2 ]

i s n i q . xy<− i s n i 2 [ , 3 ]

##################################################################################

### For Y−Dependent Only Nonignorable Nonresponse ###

##################################################################################

i s n i l . beta0 <− i s n i l [ 1 ]

i s n i l . beta1 <− i s n i l [ 2 ]

i s n i l . beta2 <− i s n i l [ 3 ]

i s n i q . yy . beta0 <− i s n i q . yy [ 1 ]

i s n i q . yy . beta1 <− i s n i q . yy [ 2 ]

i s n i q . yy . beta2 <− i s n i q . yy [ 3 ]

quad<− f unc t i on ( se , i s n i l , i s n i q . yy ){

i f ( i s n i q . yy !=0){

i f ( i s n i q . yy>0){

z <− matrix ( c(−se , i s n i l , 0 . 5∗ i s n i q . yy ) , nco l =1)

} e l s e

{

z <− matrix ( c(−se , i s n i l , abs (0 . 5∗ i s n i q . yy ) ) , nco l =1)
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}

root<−po lyroot ( z )

mini<−min( c (Re( abs ( root [ 1 ] ) ) , Re( abs ( root [ 2 ] ) ) ) )

} e l s e

{

mini<−abs ( se / i s n i l )

}

res<− round ( abs ( mini ) , 3 )

}

c . l . beta0<−quad ( co e f [ 1 , 2 ] , i s n i l . beta0 , 0 )

c . q . beta0<−quad ( co e f [ 1 , 2 ] , i s n i l . beta0 , i s n i q . yy . beta0 )

c . l . beta1<−quad ( co e f [ 2 , 2 ] , i s n i l . beta1 , 0 )

c . q . beta1<−quad ( co e f [ 2 , 2 ] , i s n i l . beta1 , i s n i q . yy . beta1 )

c . l . beta2<−quad ( co e f [ 3 , 2 ] , i s n i l . beta2 , 0 )

c . q . beta2<−quad ( co e f [ 3 , 2 ] , i s n i l . beta2 , i s n i q . yy . beta2 )

#c a l c u l a t e c a l i b r a t e d e s t imate s

gamma1l=1

gamma1u=−1

gamma1 <− seq (gamma1u , gamma1l , 0 . 01 )

beta0 . i s n i l l = min ( round ( sim . i s n i $ c o e f [ 1 ] + i s n i l . beta0∗gamma1 , 3 ) )

beta0 . i s n i l u = max( round ( sim . i s n i $ c o e f [ 1 ] + i s n i l . beta0∗gamma1 , 3 ) )

beta0 . i s n i q . yyl = min ( round ( sim . i s n i $ c o e f [ 1 ] + i s n i l . beta0∗gamma1 + ( i s n i q . yy . beta0 /2)∗(gamma1ˆ2) , 3 ) )

beta0 . i s n i q . yyu = max( round ( sim . i s n i $ c o e f [ 1 ] + i s n i l . beta0∗gamma1 + ( i s n i q . yy . beta0 /2)∗(gamma1ˆ2) , 3 ) )

r . beta0 . l<− paste0 (” (” , round ( beta0 . i s n i l l , 3 ) , ” , ” , beta0 . i s n i l u , ” ) ” )

r . beta0 . q<− paste0 (” (” , round ( beta0 . i s n i q . yyl , 3 ) , ” , ” , beta0 . i s n i q . yyu , ” ) ” )

beta1 . i s n i l l = min ( round ( sim . i s n i $ c o e f [ 2 ] + i s n i l . beta1∗gamma1 , 3 ) )

beta1 . i s n i l u = max( sim . i s n i $ c o e f [ 2 ] + i s n i l . beta1∗gamma1 , 3 )

beta1 . i s n i q . yyl = min ( round ( sim . i s n i $ c o e f [ 2 ] + i s n i l . beta1∗gamma1 + ( i s n i q . yy . beta1 /2)∗(gamma1ˆ2) , 3 ) )

beta1 . i s n i q . yyu = max( round ( sim . i s n i $ c o e f [ 2 ] + i s n i l . beta1∗gamma1 + ( i s n i q . yy . beta1 /2)∗(gamma1ˆ2) , 3 ) )

r . beta1 . l<− paste0 (” (” , round ( beta1 . i s n i l l , 3 ) , ” , ” , beta1 . i s n i l u , ” ) ” )

r . beta1 . q<− paste0 (” (” , round ( beta1 . i s n i q . yyl , 3 ) , ” , ” , beta1 . i s n i q . yyu , ” ) ” )

beta2 . i s n i l l = min ( round ( sim . i s n i $ c o e f [ 3 ] + i s n i l . beta2∗gamma1 , 3 ) )

beta2 . i s n i l u = max( sim . i s n i $ c o e f [ 3 ] + i s n i l . beta2∗gamma1 , 3 )



123

Appendix B (Continued)

beta2 . i s n i q . yyl = min ( round ( sim . i s n i $ c o e f [ 3 ] + i s n i l . beta2∗gamma1 + ( i s n i q . yy . beta2 /2)∗(gamma1ˆ2) , 3 ) )

beta2 . i s n i q . yyu = max( round ( sim . i s n i $ c o e f [ 3 ] + i s n i l . beta2∗gamma1 + ( i s n i q . yy . beta2 /2)∗(gamma1ˆ2) , 3 ) )

r . beta2 . l<− paste0 (” (” , round ( beta2 . i s n i l l , 3 ) , ” , ” , beta2 . i s n i l u , ” ) ” )

r . beta2 . q<− paste0 (” (” , round ( beta2 . i s n i q . yyl , 3 ) , ” , ” , beta2 . i s n i q . yyu , ” ) ” )

i s n i . beta0 <− cbind ( i s n i l . beta0 , i s n i q . yy . beta0 , r . beta0 . l , c . l . beta0 , r . beta0 . q , c . q . beta0 )

i s n i . beta1 <− cbind ( i s n i l . beta1 , i s n i q . yy . beta1 , r . beta1 . l , c . l . beta1 , r . beta1 . q , c . q . beta1 )

i s n i . beta2 <− cbind ( i s n i l . beta2 , i s n i q . yy . beta2 , r . beta2 . l , c . l . beta2 , r . beta2 . q , c . q . beta2 )

i s n i . beta <− rbind ( i s n i . beta0 , i s n i . beta1 , i s n i . beta2 )

i s n i . nb . ydep . mult<− cbind ( coef , i s n i . beta )

colnames ( i s n i . nb . ydep . mult ) <− c (”MAR Est ” , ”SE” , ”ISNILy ” , ”ISNILyy ” , ” Linear Cor rec t i on range ” ,

” Linear Cor r e c t i on c ” , ”NonLinear Cor rec t i on range ” ,

”NonLinear Cor r e c t i on c ”)

i s n i . nb . ydep . mult

##################################################################################

### For Y−and−X−Dependent Nonignorable Nonresponse ###

##################################################################################

i s n i l x . beta0 = 0

i s n i l y . beta0 = i s n i l [ 1 ]

i s n i l x . beta1 = 0

i s n i l y . beta1 = i s n i l [ 2 ]

i s n i l x . beta2 = 0

i s n i l y . beta2 = i s n i l [ 3 ]

i sn i qxx . beta0 = 0

i sn iqxy . beta0 = i s n i q . xy [ 1 ]

i sn i qyy . beta0 = i s n i q . yy [ 1 ]

i sn i qxx . beta1 = 0

i sn iqxy . beta1 = i s n i q . xy [ 2 ]

i sn i qyy . beta1 = i s n i q . yy [ 2 ]

i sn i qxx . beta2 = 0

i sn iqxy . beta2 = i s n i q . xy [ 3 ]

i sn i qyy . beta2 = i s n i q . yy [ 3 ]

i s n i l 0 <−paste0 (” (” , round ( i s n i l y . beta0 , 3 ) , ” , ” , i s n i l x . beta0 , ” ) ” )

i s n i l 1 <−paste0 (” (” , round ( i s n i l y . beta1 , 3 ) , ” , ” , i s n i l x . beta1 , ” ) ” )
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i s n i l 2 <−paste0 (” (” , round ( i s n i l y . beta2 , 3 ) , ” , ” , i s n i l x . beta2 , ” ) ” )

i sn iq0 <−paste0 (” (” , round ( i sn i qyy . beta0 , 3) , ” , ” , round ( i sn i qxy . beta0 , 3) , ” , ” , i sn i qxx . beta0 , ” ) ” )

i sn iq1 <−paste0 (” (” , round ( i sn i qyy . beta1 , 3) , ” , ” , round ( i sn i qxy . beta1 , 3) , ” , ” , i sn i qxx . beta1 , ” ) ” )

i sn iq2 <−paste0 (” (” , round ( i sn i qyy . beta2 , 3) , ” , ” , round ( i sn i qxy . beta2 , 3) , ” , ” , i sn i qxx . beta2 , ” ) ” )

#c a l c u l a t e c a l i b r a t e d e s t imate s

#minimum value o f range

fnbeta0 . l . min=func t i on (x )

{

i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ]

}

fnbeta0 . q . min=funct i on (x )

{

i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta0 + x [ 2 ] ∗ i s n i qxy . beta0 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta0 + x [ 2 ] ∗ i s n i qyy . beta0 )∗x [ 2 ] )

}

fnbeta1 . l . min=func t i on (x )

{

i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ]

}

fnbeta1 . q . min=funct i on (x )

{

i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta1 + x [ 2 ] ∗ i s n i qxy . beta1 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta1 + x [ 2 ] ∗ i s n i qyy . beta1 )∗x [ 2 ] )

}

fnbeta2 . l . min=func t i on (x )

{

i s n i l x . beta2∗x [ 1 ] + i s n i l y . beta2∗x [ 2 ]

}

fnbeta2 . q . min=funct i on (x )

{

i s n i l x . beta2∗x [ 1 ] + i s n i l y . beta2∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta2 + x [ 2 ] ∗ i s n i qxy . beta2 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta2 + x [ 2 ] ∗ i s n i qyy . beta2 )∗x [ 2 ] )

}
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#maximum value o f range

fnbeta0 . l . max=funct i on (x )

{

−( i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ] )

}

fnbeta0 . q . max=func t i on (x )

{

−( i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta0 + x [ 2 ] ∗ i s n i qxy . beta0 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta0 + x [ 2 ] ∗ i s n i qyy . beta0 )∗x [ 2 ] ) )

}

fnbeta1 . l . max=funct i on (x )

{

−( i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ] )

}

fnbeta1 . q . max=funct i on (x )

{

−( i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta1 + x [ 2 ] ∗ i s n i qxy . beta1 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta1 + x [ 2 ] ∗ i s n i qyy . beta1 )∗x [ 2 ] ) )

}

fnbeta2 . l . max=funct i on (x )

{

−( i s n i l x . beta2∗x [ 1 ] + i s n i l y . beta2∗x [ 2 ] )

}

fnbeta1 . q . max=funct i on (x )

{

−( i s n i l x . beta2∗x [ 1 ] + i s n i l y . beta2∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta2 + x [ 2 ] ∗ i s n i qxy . beta2 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta2 + x [ 2 ] ∗ i s n i qyy . beta2 )∗x [ 2 ] ) )

}

eqn1=func t i on (x){

z1=sq r t (x [ 1 ] ˆ 2 + x [ 2 ] ˆ 2∗ i g . sigma2 )

return ( c ( z1 ) )

}

x0 = c (0 ,0 )

beta0 . l . gamma1 . min=solnp ( x0 , fun = fnbeta0 . l . min , eqfun = eqn1 , eqB =1)
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beta0 . q . gamma1 . min=solnp ( x0 , fun = fnbeta0 . q . min , eqfun = eqn1 , eqB =1)

beta1 . l . gamma1 . min=solnp ( x0 , fun = fnbeta1 . l . min , eqfun = eqn1 , eqB =1)

beta1 . q . gamma1 . min=solnp ( x0 , fun = fnbeta1 . q . min , eqfun = eqn1 , eqB =1)

beta2 . l . gamma1 . min=solnp ( x0 , fun = fnbeta2 . l . min , eqfun = eqn1 , eqB =1)

beta2 . q . gamma1 . min=solnp ( x0 , fun = fnbeta2 . q . min , eqfun = eqn1 , eqB =1)

beta0 . l . gamma1 . max=solnp ( x0 , fun = fnbeta0 . l . max , eqfun = eqn1 , eqB =1)

beta0 . q . gamma1 . max=solnp ( x0 , fun = fnbeta0 . q . max , eqfun = eqn1 , eqB =1)

beta1 . l . gamma1 . max=solnp ( x0 , fun = fnbeta1 . l . max , eqfun = eqn1 , eqB =1)

beta1 . q . gamma1 . max=solnp ( x0 , fun = fnbeta1 . q . max , eqfun = eqn1 , eqB =1)

beta2 . l . gamma1 . max=solnp ( x0 , fun = fnbeta2 . l . max , eqfun = eqn1 , eqB =1)

beta2 . q . gamma1 . max=solnp ( x0 , fun = fnbeta2 . q . max , eqfun = eqn1 , eqB =1)

r . beta0 . l . l=coe f [1 ,1 ]+ round ( t a i l ( beta0 . l . gamma1 . min$values , n=1) ,3)

r . beta0 . l . u=coe f [1 ,1 ]+ round(− t a i l ( beta0 . l . gamma1 . max$values , n=1) ,3)

r . beta1 . l . l=coe f [2 ,1 ]+ round ( t a i l ( beta1 . l . gamma1 . min$values , n=1) ,3)

r . beta1 . l . u=coe f [2 ,1 ]+ round(− t a i l ( beta1 . l . gamma1 . max$values , n=1) ,3)

r . beta2 . l . l=coe f [3 ,1 ]+ round ( t a i l ( beta2 . l . gamma1 . min$values , n=1) ,3)

r . beta2 . l . u=coe f [3 ,1 ]+ round(− t a i l ( beta2 . l . gamma1 . max$values , n=1) ,3)

r . beta0 . q . l=coe f [1 ,1 ]+ round ( t a i l ( beta0 . q . gamma1 . min$values , n=1) ,3)

r . beta0 . q . u=coe f [1 ,1 ]+ round(− t a i l ( beta0 . q . gamma1 . max$values , n=1) ,3)

r . beta1 . q . l=coe f [2 ,1 ]+ round ( t a i l ( beta1 . q . gamma1 . min$values , n=1) ,3)

r . beta1 . q . u=coe f [2 ,1 ]+ round(− t a i l ( beta1 . q . gamma1 . max$values , n=1) ,3)

r . beta2 . q . l=coe f [3 ,1 ]+ round ( t a i l ( beta2 . q . gamma1 . min$values , n=1) ,3)

r . beta2 . q . u=coe f [3 ,1 ]+ round(− t a i l ( beta2 . q . gamma1 . max$values , n=1) ,3)

r . beta0 . l<− paste0 (” (” , r . beta0 . l . l , ” , ” , r . beta0 . l . u , ” ) ” )

r . beta0 . q<− paste0 (” (” , r . beta0 . q . l , ” , ” , r . beta0 . q . u , ” ) ” )

r . beta1 . l<− paste0 (” (” , r . beta1 . l . l , ” , ” , r . beta1 . l . u , ” ) ” )

r . beta1 . q<− paste0 (” (” , r . beta1 . q . l , ” , ” , r . beta1 . q . u , ” ) ” )

r . beta2 . l<− paste0 (” (” , r . beta2 . l . l , ” , ” , r . beta2 . l . u , ” ) ” )
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r . beta2 . q<− paste0 (” (” , r . beta2 . q . l , ” , ” , r . beta2 . q . u , ” ) ” )

#c s t a t i s t i c s

fnbeta0 . q . c=func t i on (x )

{

−( i s n i l x . beta0∗x [ 1 ] + i s n i l y . beta0∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta0 + x [ 2 ] ∗ i s n i qxy . beta0 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta0 + x [ 2 ] ∗ i s n i qyy . beta0 )∗x [ 2 ] ) )

}

fnbeta1 . q . c=func t i on (x )

{

−( i s n i l x . beta1∗x [ 1 ] + i s n i l y . beta1∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta1 + x [ 2 ] ∗ i s n i qxy . beta1 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta1 + x [ 2 ] ∗ i s n i qyy . beta1 )∗x [ 2 ] ) )

}

fnbeta2 . q . c=func t i on (x )

{

−( i s n i l x . beta2∗x [ 1 ] + i s n i l y . beta2∗x [ 2 ] +

(1/2)∗ ( ( x [ 1 ] ∗ i s n i qxx . beta2 + x [ 2 ] ∗ i s n i qxy . beta2 )∗x [ 1 ] +

(x [ 1 ] ∗ i s n i qxy . beta2 + x [ 2 ] ∗ i s n i qyy . beta2 )∗x [ 2 ] ) )

}

eqnc=func t i on (x){

z1=sq r t (x [ 1 ] ˆ 2 + x [ 2 ] ˆ 2∗ i g . sigma2 )

return ( c ( z1 ) )

}

x0 = c (0 ,0 )

# der i v e c s t a t i s t i c s f o r beta0

c . b0=seq (0 , 1 , by=0.001)

range . beta0=rep (0 , l ength ( c . b0 ) )

f o r ( i in 1 : l ength ( c . b0 ) )

{

range . beta0 [ i ]=round(− t a i l ( so lnp ( x0 , fun = fnbeta0 . q . c , eqfun = eqnc , eqB =c . b0 [ i ] ) $values , n=1) , 3)

}
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c . beta0 . range = cbind ( range . beta0 , c . b0 )

c . beta0 . qx = subset ( c . beta0 . range , range . beta0==coe f [ 1 , 2 ] )

c . beta0 . q = min ( c . beta0 . qx [ , 2 ] )

# der i v e c s t a t i s t i c s f o r beta1

c . b1=seq (0 , 2 , by=0.001)

range . beta1=rep (0 , l ength ( c . b1 ) )

f o r ( i in 1 : l ength ( c . b1 ) )

{

range . beta1 [ i ]=round(− t a i l ( so lnp ( x0 , fun = fnbeta1 . q . c , eqfun = eqnc , eqB =c . b1 [ i ] ) $values , n=1) , 3)

}

c . beta1 . range = cbind ( range . beta1 , c . b1 )

c . beta1 . qx = subset ( c . beta1 . range , range . beta1==coe f [ 2 , 2 ] )

c . beta1 . q = min ( c . beta1 . qx [ , 2 ] )

# der i v e c s t a t i s t i c s f o r beta2

c . b2=seq (0 , 2 , by=0.001)

range . beta2=rep (0 , l ength ( c . b2 ) )

f o r ( i in 1 : l ength ( c . b2 ) )

{

range . beta2 [ i ]=round(− t a i l ( so lnp ( x0 , fun = fnbeta2 . q . c , eqfun = eqnc , eqB =c . b2 [ i ] ) $values , n=1) , 3)

}

c . beta2 . range = cbind ( range . beta2 , c . b2 )

c . beta2 . qx = subset ( c . beta2 . range , range . beta2==coe f [ 2 , 2 ] )

c . beta2 . q = min ( c . beta2 . qx [ , 2 ] )

i s n i l <−rbind ( i s n i l 0 , i s n i l 1 , i s n i l 2 )

i sn iq <−rbind ( i sn iq0 , i sn iq1 , i s n i q 2 )

range . l<−rbind ( r . beta0 . l , r . beta1 . l , r . beta2 . l )

c . l=rbind ( c . l . beta0 , c . l . beta1 , c . l . beta2 )

range . q<−rbind ( r . beta0 . q , r . beta1 . q , r . beta2 . q )

c . q<−rbind ( c . beta0 . q , c . beta1 . q , c . beta2 . q )

i s n i . nb . yxdep . mult<−cbind ( coef , i s n i l , i sn i q , range . l , c . l , range . q , c . q )

colnames ( i s n i . nb . yxdep . mult ) <− c (”MAR Est ” , ”SE” , ”ISNILy ” , ”ISNILyy ” , ” Linear Cor rec t i on range ” ,

” Linear Cor r e c t i on c ” , ”NonLinear Cor rec t i on range ” ,

”NonLinear Cor r e c t i on c ”)

i s n i . nb . yxdep . mult
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R CODE FOR NISNIGLM FUNCTION USED IN THE ABOVE

EXAMPLES

## Function to c a l c u l a t e Nonl inear ISNI , the index o f s e n s i t i v i t y to

## non igno rab i l i t y , in a g e n e r a l i z e d l i n e a r model f o r d i s t r i b u t i o n s o f Gaussian .

## The datase t needs to inc lude g v a r a i b l e ( i n d i c a t o r o f observed data ( g=1) and miss ing data ( g=0))

nisnig lm<−f unc t i on ( dep , indep . ymodel , indep . d i s t=”gauss ian ” , cov . ymodel=NULL, indep . xmodel=NULL,

indep . gmodel=NULL){

#dep : outcome v a r a i b l e y , vec tor

#indep . d i s t : covar ia te ’ s d i s t r i b u t i o n , gauss ian or b inormia l d i s t r i b u t i o n

#indep . ymodel : indepedent v a r i a b l e x f o r y model , vector , having simutanuous miss ing data as y

#cov . ymodel : f u l l y observed c o v a r i a t e s w, vec tor or matrix or n u l l

#indep . xmodel : c o v a r i a t e s f o r x model , vec tor or matrix or n u l l

#indep . gmodel : c o v a r i a t e s f o r g model ( miss ing data model ) , vec tor or matrix or nu l l

############################

# Set up needed parameters #

############################

y <− dep

yo <− y [ g==1]

sdy <− sd ( yo )

x . s i n g l e <− indep . ymodel

xo . s i n g l e <− x . s i n g l e [ g==1]

d i s t . int<−charmatch ( indep . d i s t , c (” gauss ian ” ,” binomial ” ) )

i f ( i s . n u l l ( cov . ymodel)==TRUE){

cov . ymodel <− cov . ymodel

} e l s e

{

cov . ymodel <− as . matrix ( cov . ymodel )

cov . o . ymodel <− cov . ymodel [ g==1,]

}

sdx <− sd ( xo . s i n g l e )
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i f ( i s . n u l l ( indep . xmodel)==TRUE){

indep . xmodel <− indep . xmodel

} e l s e

{

indep . xmodel <− as . matrix ( indep . xmodel )

indep . o . xmodel <− indep . xmodel [ g==1,]

}

indep . gmodel <− indep . gmodel

##############

# Run xmodel #

##############

i f ( i s . n u l l ( indep . xmodel)==TRUE){

indep . o . xmodel <− rep (1 , l ength ( yo ) )

data . xmodel<− data . frame ( xo . s i ng l e , indep . o . xmodel )

xmodel<−switch ( d i s t . int ,

lm( xo . s i n g l e ˜ . , data . xmodel ) ,

glm ( xo . s i n g l e ˜ . , data . xmodel , fami ly=binomial ) ,

stop (” Inva l i d fami ly type ”)

)

co e f . xmodel<− summary( xmodel ) $coe f [ , 1 ]

x f i t <−switch ( d i s t . int ,

p r ed i c t ( xmodel ) ,

exp ( co e f . xmodel )/(1+exp ( coe f . xmodel ) ) ,

stop (” Inva l i d data ”)

)

# Pred ic t miss ing data f o r xmodel #

xnew <− rep (1 , l ength (y ) − l ength ( yo ) )

expected .xm <−switch ( d i s t . int ,

c o e f . xmodel∗xnew ,

#exp ( coe f . xmodel )/(1+exp ( co e f . xmodel ) )∗xnew ,

exp ( coe f . xmodel∗xnew)/(1+exp ( coe f . xmodel∗xnew ) ) ,

stop (” Inva l i d data ”)

)

xm. s i n g l e <−expected .xm

xm. s i n g l e <−switch ( d i s t . int ,

xm. s i n g l e ,
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rbinom ( length (xm. s i n g l e ) , 1 , xm. s i n g l e ) ,

stop (” Inva l i d data ”)

)

x . s i n g l e [ g==0]<−xm. s i n g l e

} e l s e

{

data . xmodel<− data . frame ( xo . s i ng l e , indep . o . xmodel )

xmodel<−switch ( d i s t . int ,

lm( xo . s i n g l e ˜ . , data . xmodel ) ,

glm ( xo . s i n g l e ˜ . , data . xmodel , fami ly=binomial ) ,

stop (” Inva l i d fami ly type ”)

)

co e f . xmodel<− summary( xmodel ) $coe f [ , 1 ]

x f i t <−pr ed i c t ( xmodel )

# Pred ic t miss ing data f o r xmodel #

xnew <− data . frame ( indep . o . xmodel=indep . xmodel [ g==0 ,])

colnames (xnew)<− names ( co e f . xmodel ) [ 2 : l ength ( co e f . xmodel ) ]

expected .xm<−switch ( d i s t . int ,

p r ed i c t ( xmodel , xnew ) ,

p r ed i c t ( xmodel , xnew , type=”response ”) ,

stop (” Inva l i d fami ly type ”)

)

xm. s i n g l e <− expected .xm

x . s i n g l e [ g==0]<−xm. s i n g l e

}

##############

# Run ymodel #

##############

i f ( i s . n u l l ( cov . ymodel)==TRUE){

data . ymodel<− data . frame ( yo , xo . s i n g l e )

ymodel<−lm( yo ˜ . , data . ymodel )

c o e f . ymodel<−summary( ymodel ) $coe f [ , 1 ]

y f i t <−pr ed i c t ( ymodel )

# Pred ic t miss ing data f o r ymodel
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ynew <− data . frame ( xo . s i n g l e=xm. s i n g l e )

expected .ym<−pr ed i c t ( ymodel , ynew)

y [ g==0]<−expected .ym

ym<−y [ g==0]

} e l s e

{

data . ymodel<− data . frame ( yo , cov . o . ymodel , xo . s i n g l e )

ymodel<−lm( yo ˜ . , data . ymodel )

c o e f . ymodel<−summary( ymodel ) $coe f [ , 1 ]

y f i t <−pr ed i c t ( ymodel )

# Pred ic t miss ing data f o r ymodel

ynew <− data . frame ( cov . o . ymodel=cov . ymodel [ g==0 ,] , xo . s i n g l e=xm. s i n g l e )

colnames (ynew)<− names ( co e f . ymodel ) [ 2 : l ength ( co e f . ymodel ) ]

expected .ym<−pr ed i c t ( ymodel , ynew)

y [ g==0]<−expected .ym

ym<−y [ g==0]

}

cc<−rep (1 , l ength (y ) )

#####################################################################

# Obtain est imated probab l i ty o f miss ing data by miss ing data model #

#####################################################################

i f ( i s . n u l l ( indep . gmodel)==TRUE){

ho<−l ength ( yo )/ l ength (y )

hm<−ho

} e l s e

{

gmodel<−glm ( g˜ indep . gmodel , fami ly=binomial , maxit=50)

ho<−gmode l$ f i t t ed . va lues [ g==1]

hm<−gmode l$ f i t t ed . va lues [ g==0]

}

ccm<−hm∗ cc [ g==0]

####################################################################

# c a l c u l a t i n g l i n e a r i s n i l . y f o r X and Y are miss ing simutaunously #

####################################################################
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x . ymodel <− as . matrix ( cbind ( rep (1 , l ength (y ) ) , cov . ymodel , x . s i n g l e ) )

xo . ymodel <− x . ymodel [ g==1,]

xm. ymodel <− x . ymodel [ g==0,]

xxo . ymodel <− t ( xo . ymodel)%∗%xo . ymodel

tnorm . ymodel <− sum( c ( yo−y f i t )ˆ2)/ length ( yo )

se . y <− tnorm . ymodel ˆ0 .5∗ diag ( s o l v e ( xxo . ymodel ) ) ˆ 0 . 5

nabla yy <− t ( sq r t ( cc [ g==1])∗xo . ymodel)%∗%( sq r t ( cc [ g==1])∗xo . ymodel )

nabla yr1y <− t (xm. ymodel)%∗%ccm

i s n i l . y <− −1∗tnorm . ymodel∗ s o l v e ( nabla yy , nabla yr1y )

nabla yy <− s o l v e ( t ( sq r t ( cc [ g==1])∗xo . ymodel)%∗%( sq r t ( cc [ g==1])∗xo . ymodel )/ tnorm . ymodel )

nabla yr1y <− t (xm. ymodel)%∗%ccm

i s n i l . y <− −1∗nabla yy%∗%nabla yr1y

###############################################

# c a l c u l a t i n g l i n e a r i s n i l . x f o r X i s miss ing #

###############################################

x . xmodel <− as . matrix ( cbind ( rep (1 , l ength (y ) ) , indep . xmodel ) )

xo . xmodel <− x . xmodel [ g==1,]

xm. xmodel <− x . xmodel [ g==0,]

xxo . xmodel <− t ( xo . xmodel)%∗%xo . xmodel

tnorm . xmodel <− sum( c ( xo . s i ng l e −x f i t )ˆ2)/ length ( xo . s i n g l e )

se . x <− tnorm . xmodel ˆ0 .5∗ diag ( s o l v e ( xxo . xmodel ) ) ˆ 0 . 5

beta . x . ymodel <− co e f . ymodel [ l ength ( co e f . ymodel ) ]

nabla xx <− t ( sq r t ( cc [ g==1])∗xo . xmodel)%∗%( sq r t ( cc [ g==1])∗xo . xmodel )

nabla xr1y <− beta . x . ymodel∗ t (xm. xmodel)%∗%ccm

i s n i l . x <− −1∗tnorm . xmodel∗ s o l v e ( nabla xx , nabla xr1y )

###########################################################

# c a l c u l a t i n g l i n e a r i s n i l . x . x f o r X i s miss ing depending x #

###########################################################

nabla xr1x <− t (xm. xmodel)%∗%ccm

i s n i l . x . x <− −1∗tnorm . xmodel∗ s o l v e ( nabla xx , nabla xr1x )

###############################

# c a l c u l a t i n g l i n e a r i s n i l . r0 #

###############################
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i f ( i s . n u l l ( indep . gmodel)==TRUE){

cco . gmodel <− ho∗(1−ho )∗ cc [ g==1]

ccm . gmodel <− hm∗(1−hm)∗ cc [ g==0]

nabla . r0r0 <− t ( sq r t ( cco . gmodel))%∗% sqr t ( cco . gmodel ) + t ( sq r t (ccm . gmodel))%∗% sqr t (ccm . gmodel )

nabla . r0r1 <− t ( y [ g==1])%∗%cco . gmodel+t (y [ g==0])%∗%ccm . gmodel

} e l s e

{

cco . gmodel <− ho∗(1−ho )

ccm . gmodel <− hm∗(1−hm)

x . gmodel <− as . matrix ( cbind ( rep (1 , l ength (y ) ) , indep . gmodel ) )

xo . gmodel <− x . gmodel [ g==1,]

xm. gmodel <− x . gmodel [ g==0,]

nabla . r0r0 <−t ( sq r t ( cco . gmodel )∗xo . gmodel)%∗%

( sq r t ( cco . gmodel )∗xo . gmodel)+ t ( sq r t (ccm . gmodel )∗xm. gmodel)%∗%

( sq r t (ccm . gmodel )∗xm. gmodel )

nabla . r0r1 <− t ( xo . gmodel)%∗%(cco . gmodel∗y [ g==1])+t (xm. gmodel)%∗%(ccm . gmodel∗y [ g==0])

}

i s n i l . r0 <− −1∗ s o l v e ( nabla . r0r0 , nabla . r0r1 )

#################################

# c a l c u l a t i n g l i n e a r i s n i l . r0 . x #

#################################

i f ( i s . n u l l ( indep . gmodel)==TRUE){

cco . gmodel <− ho∗(1−ho )∗ cc [ g==1]

ccm . gmodel <− hm∗(1−hm)∗ cc [ g==0]

nabla . r0r0 <−t ( sq r t ( cco . gmodel))%∗% sqr t ( cco . gmodel ) + t ( sq r t (ccm . gmodel))%∗%

sqr t (ccm . gmodel )

nabla . r0r1 . x <− t ( x . s i n g l e [ g==1])%∗%cco . gmodel+t (x . s i n g l e [ g==0])%∗%ccm . gmodel

} e l s e

{

cco . gmodel <− ho∗(1−ho )

ccm . gmodel <− hm∗(1−hm)

x . gmodel <− as . matrix ( cbind ( rep (1 , l ength (y ) ) , indep . gmodel ) )

xo . gmodel <− x . gmodel [ g==1,]

xm. gmodel <− x . gmodel [ g==0,]

nabla . r0r0 <− t ( sq r t ( cco . gmodel )∗xo . gmodel)%∗%

( sq r t ( cco . gmodel )∗xo . gmodel)+ t ( sq r t (ccm . gmodel )∗xm. gmodel)%∗%

( sq r t (ccm . gmodel )∗xm. gmodel )

nabla . r0r1 . x <− t ( xo . gmodel)%∗%(cco . gmodel∗x . s i n g l e [ g==1])+t (xm. gmodel)%∗%

(ccm . gmodel∗x . s i n g l e [ g==0])
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}

i s n i l . r0 . x <− −1∗ s o l v e ( nabla . r0r0 , nabla . r0r1 . x )

##########################

# ca l cua t i ng nabla yxr1y #

##########################

nabla yxr1y <− matrix (0 , l ength ( co e f . ymodel ) , l ength ( co e f . xmodel ) )

i f ( i s . n u l l ( indep . xmodel)==TRUE){

nabla yxr1y [ l ength ( co e f . ymodel ) ] <− sum(hm∗xm. xmodel )

} e l s e

{

nabla yxr1y [ l ength ( co e f . ymodel ) , ] <− colSums (hm∗xm. xmodel )

}

nabla yxr1y <− −nabla yxr1y

###########################

# ca l cua t i ng nab la yr0r1y #

###########################

# hm2=(1−2∗hm)∗hm

hm2=(1−hm)∗hm

ccm2=hm2∗ cc [ g==0]

i f ( i s . n u l l ( indep . gmodel)==TRUE){

nabla yr0r1y<− −t (xm. ymodel)%∗%ccm2

} e l s e

{

nabla yr0r1y <− −t (hm2∗xm. ymodel)%∗%xm. gmodel

}

############################

# ca l cua t i ng nabla yr1yr1y #

############################

hm1 . yr1yr1y <− 2∗(1−hm)∗hm

hm2 . yr1yr1y <− 2∗(1−2∗hm)∗hm

ccm2 . yr1yr1y <− hm2 . yr1yr1y∗ cc [ g==0]

nabla yr1yr1y . 1 <− t (xm. ymodel)%∗%(hm1 . yr1yr1y∗ym)

nabla yr1yr1y . 2 x <− as . vec tor ( c ( rep (0 , l ength ( co e f . ymodel ) −1) , c o e f . ymodel

[ l ength ( co e f . ymodel ) ]∗ tnorm . xmodel ) )
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nabla yr1yr1y . 2 <− matrix ( rep ( nabla yr1yr1y . 2 x , l ength (xm. ymodel [ , 1 ] ) ) , l ength ( co e f . ymodel ) )

%∗%ccm2 . yr1yr1y

nabla yr1yr1y <− − ( nabla yr1yr1y . 1 + nabla yr1yr1y . 2 )

#########################

# ca l cua t i ng nabla yyyj #

#########################

yyy<− f unc t i on ( j ){

xo . ymodel . j=xo . ymodel [ , j ]

nab la yyyj .11= matrix (0 , l ength ( co e f . ymodel ) , l ength ( co e f . ymodel ) )

nab la yyyj .12= t ( xo . ymodel)%∗%xo . ymodel . j

nab la yyyj .21= t ( xo . ymodel . j )%∗%xo . ymodel

#nabla yyyj .22=2( t ( yo)%∗%xo . ymodel . j − t ( xo . ymodel . j )%∗%xo . ymodel%∗%coe f )

nab la yyyj .22=0

nabla yyyj . x=cbind ( rbind ( nab la yyyj . 11 , nab la yyyj . 2 1 ) , rbind ( nab la yyyj . 12 , nab la yyyj . 2 2 ) )

nab la yyyj=i s n i l . y [ j ]∗ nabla yyyj . x

return ( nab la yyyj )

}

j=length ( co e f . ymodel )

nabla yyy . x<−vector (” l i s t ” , l ength=j )

f o r ( i in 1 : j ){

nabla yyy . x [ [ i ]]<−yyy ( i )

}

nabla yyy<−Reduce ( ’+ ’ , nabla yyy . x)%∗% append ( i s n i l . y , 0 , l ength ( co e f . ymodel ) )

nabla yyy2<− as . vec tor ( nabla yyy [ 1 : l ength ( co e f . ymodel ) ] )

############################

# ca l cua t i ng nabla yr1yr1x #

############################

hm3 <− (1−hm)∗hm

ccm3 <− hm3∗ cc [ g==0]

hm4 <− (1−2∗hm)∗hm

ccm4 <− hm4∗ cc [ g==0]

nabla yr1yr1x . 1 <− −t (hm3∗xm. ymodel)%∗%(x . s i n g l e [ g==0])

nabla yr1yr1x . 2 <− matrix ( c ( rep (0 , l ength (xm. ymodel [ 1 , ] ) −1 ) , −sum(ccm4∗tnorm . xmodel ) ) ,

l ength (xm. ymodel [ 1 , ] ) )

nabla yr1yr1x <− nabla yr1yr1x . 1 + nabla yr1yr1x . 2
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nabla yy . inv<− −1∗nabla yy

i s n i q . yy<− −nabla yy . inv%∗%

( nabla yyy2 + 2∗ nabla yxr1y%∗%i s n i l . x + 2∗ nabla yr0r1y%∗%i s n i l . r0 + nabla yr1yr1y )

i s n i q . yx<− −nabla yy . inv%∗%

( nabla yxr1y%∗%i s n i l . x . x + nabla yr0r1y%∗%i s n i l . r0 . x + nabla yr1yr1x )

l i s t 1 . func<− l i s t ( i s n i l . y , i s n i q . yy , i s n i q . yx )

names ( l i s t 1 . func)=c (” i s n i l . y ” , ” i s n i q . yy ” , ” i s n i q . yx ”)

return ( l i s t 1 . func )

}
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