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SUMMARY

Recognition of human features is a very important topic in Computer Vision and Arti-

ficial Intelligence research. Researchers have examined many common features including

human motion, human form (faces, hands...), human speech, etc. In our research, we

focus on two types of features: human motion and form (especially faces).

In our work for human motion recognition, we employ a novel method - RISq (Recog-

nition by Indexing and Sequencing) [1][2], which was developed by Ben-Arie for the

recognition of general vector sequences. These kinds of sequences are widely found in

various pattern recognition problems, e.g. Gesture Recognition [3], Speech Recognition

[4], etc. Hidden Markov Model (HMM) [5] is commonly used to solve these problems.

We compare RISq with HMM and demonstrate that RISq is better than HMM in many

aspects. First of all, the training of RISq requires only one example from each model and

is much simpler and faster than the training of HMM, which needs large training sets and

a long complex training procedure. Secondly, unlike HMM, usually a few sparse samples

from a test sequence are sufficient for RISq to achieve robust recognition while HMM

needs the whole sequence. This makes RISq essentially much less sensitive to missing

vectors in a test sequence. Lastly as our experiments demonstrate, RISq outperforms

HMM when dealing with a large number of models and high vector dimensions. Also

RISq exhibits better noise robustness, shorter computation time, higher selectivity ratio,

ix



SUMMARY (Continued)

etc. For additional evaluation in real applications, we compare RISq and HMM in the

task of human gesture recognition.

Gesture Recognition has recently received increasing interest from both the research

community and the industry. Within the last few years, inertial sensors started to play

a more and more important role in gesture recognition. Manufacturers are integrating

inertial sensors into more and more products for various purposes. Among those products,

two most famous ones are the Nitendo Wii and Apple iPhone. Rudimentary systems for

gesture recognition have been developed recently based on those products or other lab

prototypes. However, those systems usually rely only on accelerometers and the raw

acceleration data used for recognition results in deteriorating performance when gestures

are performed in different accelerations. In our research, we incorporate gyroscopes to

overcome this drawback. We use an Inertial Measurement Unit (IMU) equipped with

accelerometers and gyroscopes to sense the motion of the operator’s hand. The IMU is

calibrated with a Nonlinear Data-Fitting method. Gesture trajectories are reconstructed

from inertial sensor measurements using the Inertial Navigation System (INS) theory.

We also develop a novel method, named Zero Velocity Linear Compensation (ZVLC), to

improve the trajectory reconstruction accuracy. Experimental results show that ZVLC

provides more accurate reconstruction than the widely used Zero Velocity Compensation

(ZVC) method. At the recognition stage, RISq is applied to recognize the trajectories

x



SUMMARY (Continued)

and achieves a recognition rate at 92%. HMM is also tested and only achieves 83%

recognition rate.

In the third part of this research, we develop a novel method for 3D human head

reconstruction and view-invariant recognition from single 2D images. We employ a de-

terministic Shape From Shading (SFS) method with initial conditions estimated by Hy-

brid Principal Component Analysis (HPCA). Our HPCA algorithm provides good initial

estimates of 3D range mapping for the SFS optimization and yields much improved 3D

head reconstruction. This part also describes a novel method in SFS handling of variable

and unknown surface albedo. The problem of varying albedo received in the past only

unsatisfactory solutions by prevalent SFS methods. In our experiments, we reconstruct

3D head range images from 2D images in different views. The 3D reconstructions are

then used to recognize stored models of persons. Given a picture of a person from one

direction, our SFS method enables one to identify the person by a picture taken from an

entirely different direction. Empirical results show that our HPCA based SFS method

provides 3D head reconstructions that notably improve the accuracy compared to other

approaches. 3D reconstructions derived from images of 40 persons are tested against 80

3D head models and a recognition rate of over 90% is achieved. This part of the work

already yielded two journal papers and two conference papers.

xi



CHAPTER 1

INTRODUCTION

Recognition of human features is an important topic in Computer Vision and Artifi-

cial Intelligence research. Researchers have examined various human features including

motion, form (faces, hands...), speech, etc. Our research focuses on two of them: human

motion and form (especially faces). In this work, we present novel contributions in three

aspects:

1. Comparison between RISq (Recognition by Indexing and Sequencing) [1][2] and

HMM (Hidden Markov Model)

2. Human Gesture Recognition

3. 3D Face Reconstruction and Recognition

The gesture recognition we develop employs RISq (Recognition by Indexing and Se-

quencing) for recognition. RISq is a novel method invented by Ben-Arie for recognizing

general vector sequences, which are commonly seen in various pattern recognition prob-

lems, e.g. recognition of gestures [3], speech [4], and human activities [6]. Researchers

usually employ Hidden Markov Model (HMM) [5] to solve this kind of problems. Al-

though HMM is quite successful in many areas including those mentioned above, it also

has serious drawbacks. In this chapter, we compare RISq to HMM from both theoret-

1
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ical and experimental perspectives. The experimental comparison includes tests of the

following variables:

1. recognition rate vs. number of test samples

2. recognition rate vs. number of models

3. recognition rate vs. vector dimension

4. recognition rate vs. noise

5. missing vector test

6. computation time

7. selectivity ratio

The data used in the experiments is synthetic stochastic data. For further comparison,

we will use real data derived from human gestures and compare the performance of both

methods in recognizing those gestures.

Gesture Recognition is a topic that recently received increasing attention from both

the research community and the industry with the introduction of inertial sensors into

this area. Manufacturers are integrating inertial sensors into more and more products for

various purposes, one of which is to implement gesture recognition for various functions.

Among those products, two of the most famous ones are Nitendo Wii and Apple iPhone.

Few gesture recognition systems have been developed with these products or with other

lab prototypes. However, these applications usually rely only on the accelerometers and
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the raw acceleration data for recognition, which results in deteriorating performance

when gestures are performed in different acceleration. We incorporate another inertial

sensor - gyroscopes - to overcome this drawback. We use an Inertial Measurement Unit

(IMU) equipped with accelerometers and gyroscopes to sense the motion of the oper-

ator’s hand. The IMU is calibrated with the help of Nonlinear Data-Fitting method.

Gesture trajectories are reconstructed from inertial sensor measurements using the In-

ertial Navigation System (INS) theory. We also develop a novel method, Zero Velocity

Linear Compensation (ZVLC), to improve the trajectory reconstruction accuracy. The

reconstructed trajectories are recognized by the RISq method.

In the third part of this report, we propose a novel method for 3D head reconstruction

and view-invariant recognition from single 2D images. We have published two journal

papers [7][8] about this work and two other conference papers [9][10]. In this work,

we employ a deterministic Shape From Shading (SFS) method with initial conditions

estimated by Hybrid Principal Component Analysis (HPCA). Our HPCA algorithm pro-

vides good initial estimates of 3D range mapping for the SFS optimization and yields

much improved 3D head reconstruction. This chapter also describes a novel method in

SFS handling of variable and unknown surface albedo, a problem with unsatisfactory

solutions by prevalent SFS methods. In the experiments, we reconstruct 3D head range

images from 2D single images in different views. The 3D reconstructions are then used
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to recognize stored models of persons. This enables one to recognize faces in wide range

of views having only a single 2D picture of the person from another view.



CHAPTER 2

RECOGNITION BY INDEXING AND SEQUENCING AND THE

COMPARISON TO HIDDEN MARKOV MODEL

2.1 Introduction

In this chapter, we compare the most popular sequence recognition method, HMM

(Hidden Markov Model) [5], to a novel method called RISq (Recognition by Indexing

and Sequencing) [1][2]. HMM is widely used in recognition of vector sequences. Such

sequences have many applications in speech recognition [5] [11] [12] [13], computer vision

[14] [15] [16] [17] [18], bioinfomatrics [19] [20] [21], Finance [22], etc. However, HMM has

also quite a few disadvantages. Some of these disadvantages that hamper HMM are [5]

[23]:

1. HMM usually needs a lot of data for training. Therefore, it is suitable only for

recognition of sequences which have many training examples.

2. HMM is not suitable for tasks that require fast adaptation to different training data,

e.g. adaptation to different speakers in speech recognition.

3. The training of HMM involves EM optimization and a lot of computation.

5
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4. Every model sequence must be represented by a separate HMM. Thus, in the recog-

nition phase, all the models need to be evaluated for each input sequence. This

slows down the recognition process, especially if there are many models.

5. HMM requires the user to define the beginning and the end of each test sequence

to be recognized. This is not suitable for many applications such as ours where the

test sequence is part of a continuous stream of signals.

As a comparison, the RISq (Recognition by Indexing and Sequencing) method pro-

posed by Ben-Arie in [1][2] is free of these unfavorable drawbacks. RISq is a general-

purpose method for classification of vector sequences. The author applied RISq for

Human Activity Recognition in [1]. In RISq, the model vector sequences are saved in

a hash table. Each vector in a model is stored into a bin, of which multidimensional

address is equal to the vector value. This bin stores the information on the model’s ID

and the frame timing of the vector in the model’s sequence. At the recognition stage,

vectors in the test sequence are used as indices to index into the hash table. Votes are

calculated based upon multidimensional Mahalanobis distances between the test vector

and the models’ vectors. Each test vector yields a vote vector for every model in the

database. The overall vote for each model is obtained by finding the optimal matching

between the test sequence and each of the model sequences using dynamic program-

ming with sequencing constraints. The model with the highest vote is recognized as the

winning model.
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RISq is substantially different from HMM and presents several advantages over HMM.

First, A robust recognition can be achieved with RISq when training is performed with

only one example sequence per class. On the contrary, HMM might need tens of se-

quences or even more. Second, the training process for RISq is as simple as converting

vectors of the model sequences into entries in a hash table. The computation involved

is much smaller than that in training a HMM model. Another advantage of RISq is the

tremendous flexibility it provides in sampling sequences. There are no strict requirements

either on the number of sampled vectors or on the vector intervals of the test sequence.

Only a set of sparsely sampled representative observations are necessary for recognition.

The organization of the model database also results in tremendous reduction of recogni-

tion time, since all the models are stored in the same hash table and examined at one

voting action in parallel. Lastly, RISq also outperforms HMM in terms of recognition

rate, computation time, robustness, etc as later shown in this chapter.

The rest of this chapter is arranged as follows: in Section 2.2, we describe some fun-

damentals about HMM; in Section 2.3, we describe the theory behind RISq; Section 2.4

presents the experimental comparison results between RISq and HMM.

2.2 Hidden Markov Model

This section briefly describes HMM. Figure 1 shows a HMM example [24]. Basically

a HMM consists of states and observations. States are hidden but observations can be

perceived and measured. A state either transits to another state or stays on the same
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state. Meanwhile the observation might also change as a reflection of the state change.

The most important concepts for HMM are defined as follows:

Figure 1. A HMM example

1. State qt at time instant t. qt = Si where 1 ≤ i ≤ N and N is the number of possible

states of a HMM.

2. Observation Ot at time instant t. Ot = vj where 1 ≤ j ≤ M and M is the number

of possible observation symbols of a HMM.

3. The initial state distribution π = {πi} where

πi = P (q1 = Si), 1 ≤ i ≤ N (2.1)

πi is the probability of the first state q1 being Si.
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4. The state transition probability A = {aij} where

aij = P (qt+1 = Sj|qt = Si) (2.2)

aij is the probability of the state changing from Si to Sj.

5. The observation symbol probability distribution at state Si, B = {bi(k)} where

bi(k) = P (Ot = vk|qt = Si), 1 ≤ i ≤ N, 1 ≤ k ≤M (2.3)

i.e. bi(k) is the probability of observing vk when the state is Si.

A HMM λ can be represented by the parameters defined above, i.e.

λ = {A,B, π} (2.4)

Given an observation sequence O = O1, O2, ..., Ot, ...OT , three basic but complicated

problems need to be solved:

1. How do we calculate P (O|λ), the probability of observing the sequence O given the

model λ? Once the probabilities are calculated for every model, the sequence O is

then determined as belonging to the model with the highest probability.

2. How do we calculate a HMM λ = {A,B, π} to maximize the probability P (O|λ)?

Solving this problem is essentially to train a HMM model.
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3. For an observation sequence O and a HMM λ, what state sequence Q = q1q2...qT is

optimal in a meaningful sense (i.e. best ”explains” the observations)?

We will only describe the procedures to solve Problem 1 and 2, which are compared to

RISq later. Problem 1 is often handled using the Forward-Backward Procedure described

below. A new concept - forward variable αt(i) - needs to be introduced for the convenience

of explaining the Forward-Backward Procedure.

αt(i) = P (O1, O2, ..., Ot, qt = Si|λ) (2.5)

at(i) is the probability of observing the partial sequence O1, O2, ..., Ot and having state

Si at time instant t given the HMM model λ. The Forward-Backward Procedure now

can be stated as follows:

1. Initialization:

α1(i) = πibi(O1), 1 ≤ i ≤ N. (2.6)

2. Induction:

at+1(j) = [
N∑
i=1

αt(i)aij]bj(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (2.7)
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3. Termination:

P (O|λ) =
N∑
i=1

αT (i) (2.8)

The steps above solve problem 1. As for problem 2, it is harder to resolve. As a

matter of fact, it is the most difficult one among these 3 problems. Problem 2 is often

handled by iteratively reestimate the model parameters {A,B, λ}. Before we go into the

details of solving problem 2, three new variables need to be defined.

1. The first variable is called the backward variable βt(i)

βt(i) = P (Ot+1Ot+2...OT |qt = Si, λ) (2.9)

βt(i) denotes the probability of the partial observation sequence from time t+ 1 to

T being Ot+1 to OT , given state Si at time t and the model λ.

2. The second variable is

γt(i) = P (qt = Si|O, λ) (2.10)

which is the probability of the state at time t being Si, given the observation se-

quence O and the model λ.
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3. The third variable is

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ) (2.11)

ξt(i, j) is the probability of the states at time t and t+1 being Si and Sj respectively,

given the observation sequence O and the model λ.

γt(i) and ξt(i, j) can be further expressed as

γt(i) =
αt(i)βt(i)

P (O|λ)
=

αt(i)βt(i)
N∑
i=1

αt(i)βt(i)

(2.12)

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)

=
αt(i)aijbj(Ot+1)βt+1(j)

N∑
i=1

N∑
j=1

αt(i)aijbj(Ot+1)βt+1(j)

(2.13)
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Now the procedure for the reestimation of the model parameters can be stated as follows:

πi = γ1(i) (2.14)

aij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

(2.15)

bj(k) =

T∑
t=1

γt(j)|s.t.Ot=vk

T∑
t=1

γt(j)

(2.16)

where πi, aij, bj(k) are the reestimated HMM parameters. The iterations are stopped

when the stopping criteria is reached. For further details on HMM, readers could refer

to the excellent description in [5].

As we can see from above, the training of HMM and the recognition using HMM are

complicated and computationally demanding. As a comparison, the training of RISq is

very easy as we will show next in this chapter. The recognition using RISq is also less

complicated but yield better recognition results.

2.3 Recognition by Indexing and Sequencing

In this section, we describe the theoretical foundation of RISq (Recognition by Index-

ing and Sequencing).
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RISq could be used for the recognition of general vector sequences. Suppose for a

certain pattern recognition problem, the model sequences are {Yj = xj1 ,xj2 , · · · ,xjq ; j ∈

[1, J ]} where J is the number of models in the database. Also the test sequence is

{Yt = xt1 ,xt2 , · · · ,xtq}. The problem of recognition can be formulated as a Maximum

Likelihood Sequence Estimation (MLSE) problem. In order to solve this problem, the

following two assumptions are made:

1. The random differences between the subvectors xt and xj can be described as mul-

tivariate zero mean Gaussian distribution.

2. These variations are conditionally independent from sample to sample.

Thus the likelihood function for the sequence P (Yt|Yj) can be written as

P (Yt|Yj) = P (xt1 ,xt2 , · · · ,xtq |xj1 ,xj2 , · · · ,xjq)

=

q∏
i=1

e[
−1
2
(xti−xji

)TC−1
x (xti−xji

)]

(2π)
N
2 |Cx|

1
2

(2.17)

where Cx is the covariance matrix of the distribution of the training set for xj, N is the

dimension of the vectors xj (also xt), and q is the number of vectors in the sequence.

Using the log-likelihood function we get

logP (Yt|Yj) =

q∑
i=1

[
−1

2
(xti − xji)

TC−1
x (xti − xji)]− qG (2.18)
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where G is the logarithm of the denominator in Equation 2.17 given by

G = log [(2π)
N
2 |Cx|

1
2 ] (2.19)

The most likely sequence Ω is found by the maximum likelihood approach,

Ω = argmax
j

(

q∑
i=1

[
−1

2
(xti − xji)

TC−1
x (xti − xji)]) (2.20)

2.3.1 Indexing, Voting and Sequencing

Finding the most likely model can now be solved by an indexing-based voting ap-

proach. In such voting, a model j will accumulate an incremental vote of

−1

2
(xti − xji)

TC−1
x (xti − xji)−G (2.21)

for each test vector xti . This process is repeated by voting for all the vectors xti in the

test sequence. In our method, we even simplify this voting further by voting only on a

few representative test vectors which are sparsely sampled from the test sequence and

robust recognition is still achieved. In the remainder of this section, we describe the three

major components of RISq: indexing, voting and sequencing.

2.3.1.1 Multidimensional Indexing and Voting

In RISq, the models are saved in a hash table. The vectors in the models are quantized

into multidimensional bins to form indices into the hash table. The model information
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stored in the hash table contains a pair of values which denote the model number {j; j ∈

[1, J ]} and the time instant {t; t ∈ [0, Tj − 1]} of the vector within the model sequence,

where J is the number of models in the database and Tj represents the number of vectors

in model j. This information is stored at the bin whose address corresponds to the vector

that pertains to the model j at the particular instant t. The hash table is updated using

the vectors from each model. In the hash table, every entry may include a set of different

models which pertain to the same vector. This arrangement of the hash table is quite

efficient for storage since it includes all the models in the same table and also enables

robust recognition.

Our recognition scheme consists of two stages: The first stage involves voting for the

vectors in the test sequence. The second stage calculates the final vote using dynamic

programming, which is described in next section.

In the first stage, we index into the hash table. The voting scheme employs J 1D

arrays Vjk(t), j ∈ [1, J ], where each array corresponds to a different model and to k that

is the frame number of the test sequence. One may have several items in the same hash

table bin that correspond to the same index, such items may correspond to different

models and/or may pertain to different time instants.

In order to tolerate slight variations that may exist in sequences from the same model,

it is necessary to consider also the neighboring bins of the indices derived from the

vectors of test sequence. Suppose the vectors have 4 dimensions and bki = (qk1 , q
k
2 , q

k
3 , q

k
4)
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denotes the quantized bin for the vector at time instant k, and let b′i = (q′1, q
′
2, q

′
3, q

′
4)

denote a neighboring bin in the hash table. We define f(b, c, d, e) as a mapping function

from a bin’s offset b, c, d, e to the f range [0,−∞). The mapping function is chosen to

be a logarithm of a 4D Gaussian (assuming uncorrelated covariance matrix Cx) which

conforms with our assumed model in Equation 2.17,

f(b, c, d, e) = log[e
−1
2
[(

b−b0
σb

)2+(
c−c0
σc

)2+(
d−d0
σd

)2+(
e−e0
σe

)2]
] (2.22)

where σb, σc, σd, σe denote the scale of the Gaussian along the respective axes, (b0, c0, d0, e0)

represent the center of the function. σb, σc, σd, σe are determined by experiments. In the

voting process, a model j with time instant t receives a vote from the test vector bki

according to

V= (f(|qk1 − q′1|, |qk2 − q′2|, |qk3 − q′3|, |qk4 − q′4|)) (2.23)

This voting mechanism is illustrated in Figure 2. As shown, there could be several items

in the same hash table bin (same index). These items may pertain to different models

and/or different time instants. Each vector in the test sequence yields a vote vector for

each model in the database. This vote vector is a temporal depiction of the log-likelihood

that the indexed vector belongs to the model. After the voting, the individual vote vectors

of the test vectors have to be optimally combined with sequencing constraints.
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{m(2, 1), m(10, 1), m(25, 2), ...
     ... m(5, J), m(20, J)}    
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Model 1
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Figure 2. A voting example. The current vector indexes to the center square,
which has been indexed by certain models at certain specific time instants. The

resulting votes are described in the right side of the figure.
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2.3.1.2 Optimal Sequencing Based on Dynamic Programming

The process of indexing the test vectors results in J (Total number of models) vote

vectors for each of the p sample vectors in the input sequence Yt. These vote vectors

have to be sequenced optimally to obtain the maximum vote of the input sequence for

each model and the input sequence is recognized as the model receiving the highest vote.

In this section, we describe the optimal technique based on dynamic programming to

integrate the vote vectors of the input sequence, subject to the sequencing constraints.

For convenience, vectors in a test sequence Yt is represented as

t(n) ;n ∈ [1, p] (2.24)

where p is the number of vectors in Yt. In order to find the vote of the input sequence

for a particular model, we consider the vote vectors of all the test vectors corresponding

to that model. Each entry in the vote vector is score of match between the test vector

t(n) and m(r, j) {r ∈ [1, q]} referred to as vector pair matching score {t(n),m(r, j)}.

Now, the problem of finding the vote for each model can be phrased as finding the sum

of a sequence of vector pair matching scores . . . {t(n),m(r, j)} . . . {t(a),m(b, j)} . . . such

that (n ̸= a) and if (n < a) then (r ≤ b) or if (n > a) then (r ≥ b)

To find such a sequence of matching scores between vector pairs, we associate a cell

comprising of four variables, as illustrated in Figure 3, to each matching vector pair of

vote vectors in consideration. The description of the various variables are as follows,
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N = n stores the location of the test vector t(n) in the input sequence Yt, R = r stores

the location of the matching model vector m(r, j) in the model sequence Yj, W (nrj)

stores the matching score of the test vector and model vector that are related to the

cell, O(nrj) is the sum of partial sequences of matching vector pair scores, indicating the

highest sum of vector matching scores of a partial vector pair sequence that ends with

the cell related matching vector pair.

Figure 3. Structure of cell corresponding to each matching vector pair
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Cells of matching vector pairs corresponding to a certain model are constructed into

an array of cells A{j}. A{j} holds all the required information for obtaining the vote

of the input sequence for a particular model Yj. This construction procedure has to be

repeated for each model sequence Yj {j; j ∈ [1, J ]}.

As already mentioned, our sequencing technique is based on the principle of Dynamic

Programming (DP), which states that any partial sequence of matching vector pairs with

an optimal score includes only sub-partial sequences that are also optimal. It means that

any pair that precedes the last pair of any optimal-partial sequence of vector pairs, is

also an ending of an optimal-partial sequence of vector pairs. It implies that a DP-based

algorithm has to gradually build partial sequences that each ends with a terminal vector

pair by searching backwards and finding the preceding pair that contributes the most to

the aggregate sum of matching scores that pertains to that terminal vector pair. Since the

algorithm has to find for each pair only one preceding pair that maximizes the aggregate

score, DP significantly reduces the computations required. The sequencing requirements

further reduce the search space.

Figure 4 illustrates the various steps involved in this process. The basic idea in the

approach is to process each cell of the array A{j} and find the highest sum of pair-

matching scores of a partial sequence that ends with matching pair {t(n),m(r, j)} that

pertains to that particular cell. A variable pointer1 holds the information of the current

cell that is being processed and is initialized to the address of the first cell of array
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Figure 4. Flow diagram depicting the dynamic programming based sequencing
technique
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A{j} and is subsequently incremented to process subsequent cells. Thus pointer1 holds

the current cell whose partial vector sequence is being optimized. The procedure is

repeated until all the cells have been considered. In order to find the sum of matching

scores of a partial sequence that ends with matching pair {t(n),m(r, j)}, cells with test

vector locations less than n and model vector location less than or equal to r have to

be considered for constituting the preceding matching vector pair of the optimal partial

sequence. During the process of consideration, cells generated due to matching vector

pairs of t(n − 1) are considered before pairs of t(n − 2) and so on until the null vector

t(0) is reached. While considering vector pairs with the test vector t(n− 1), only vector

pairs that pertain to cells with R greater than 0 as lower bound and R less than r as

the higher bound are considered. But for pairs with subsequent test vectors the range

could be even narrower with the lower bound tending towards r. This saves considerable

computations as the number of cells considered in finding highest sum of matching scores

of partial sequence that ends with matching pair {t(n),m(r, j)}. Eligible vector pairs

are checked for giving a higher sum of scores of partial sequence of matching vector pairs

if they would be the preceding matching vector pair of the optimal sequence ending with

matching pair {t(n),m(r, j)}. If they yield a higher score of partial sequence of matching

vector pairs, then the resulting score is updated in O(nrj).

The above process is repeated for all arrays A{j} {j; j ∈ [1, J ]} for the entire model

set. The cell among all the cells of the entire set having the highest sum of matching score
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O(nrj) is selected as the highest sequence matching score and the input is recognized as

most similar to the winning model Yj.

2.4 Comparison between RISq and HMM

In this section, RISq and HMM are compared in various aspects using synthetic

stochastic data. The reason we use synthetic stochastic data is that it allows us to create

all kinds of data needed for various comparisons. We use the HMM code developed by

Daniel DeMenthon and Marc Vuilleumier [25] in our experiment.

In these experiments, we use a random number generator to generate a set of vector

sequences and each one of the sequences Yj is used as a model for RISq. As for HMM,

more than one training sequences are needed for each model. To obtain the additional

training sequences, we add random Gaussian noise to the sequence Yj to generate another

39 new sequences. The SNR (Signal to Noise Ratio) is controlled at 20dB. The original

sequence Yj and the 39 new sequences are then used to train and obtain a HMM model.

Similarly, test sequences for both RISq and HMM are generated by adding Gaussian

noise to the sequence Yj. The SNRs of the test sequences varies between 10dB to 20dB

in our experiments.

2.4.1 Recognition Rate vs. Number of Test Samples

The first part of the comparison demonstrates an important feature of RISq, that is

RISq could achieve robust recognition with only a few sparse samples. The parameters

for the experiments conducted in this section are shown in Table I and further explained
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as follows. 3 models are used. Each model sequence has 50 vectors and every vector

has 2 dimensions. 100 test sequences are generated from each model sequence by adding

Gaussian noise to the model sequence. A total of 300 test sequences are generated and

then tested.

Experiment results are shown in Table II and Figure 5. As we can see, the recognition

rate of RISq increases as more samples are used for test. Noticeably, 100% recognition

rate is achieved when 13 or more samples (out of the total 50 vectors) are used. On the

other hand, HMM uses all 50 vectors for recognition and achieves a lower recognition

rate at 95.6%. The difference here is not as obvious as it will be in other comparisons

detailed later in this chapter. However, readers should keep in mind that RISq uses much

less samples than what HMM uses for test but still achieves higher accuracy. As later

can be seen in other experiments, RISq can reach 100% recognition rate with even less

test samples when the vector dimensions are increased.

TABLE I

PARAMETERS FOR TESTS IN Table II

Number of models 3

Number of vectors in a sequence 50

Vector dimension 2

SNR (dB) 20



26

TABLE II

RECOGNITION RATES vs. NUMBER OF TEST SAMPLES FOR RISq

Number of sam-
ples used for test

2 3 4 5 6 7 8 9 10 13 14

RISq Recognition
Rate (%)

56.3 60.3 77.3 87.7 87 92 97.7 97 96 100 100

2.4.2 Recognition Rate vs. Number of Models

The second experiment compares the recognition rates of RISq and HMM when the

number of models are varied between 3 and 50. Similar parameters from Table I are used

except the vector dimension is increased from 2 to 5. Detailed parameters are listed in

Table III. The experiment results are shown in Table IV and Figure 6. As we can see, the

performance of HMM deteriorates significantly when the number of models increases. On

the other hand, the performance of RISq only deteriorates slightly, especially in the case

when 10 test samples are used. In that case, RISq still achieves almost 100% recognition

rate with 50 models while HMM only reaches 81.6%. As can be seen, a large number of

models adversely affect both methods. However, this effect could be alleviated in RISq

by simply increasing the number of test samples.
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Figure 5. RISq recognition rate vs. number of test samples

TABLE III

PARAMETERS FOR TESTS IN Table IV, Table XI AND Table XII

Number of vectors in a sequence 50

Vector dimension 5

Number of training sequences (50 vectors each) for HMM 40

Number of test sequences (50 vectors each) for each model 100

SNR (dB) 20
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TABLE IV

RECOGNITION RATES vs. NUMBER OF MODELS

Number of models 3 10 20 50

RISq (uses 6 test samples) 100 97.7 97.6 94.0

RISq (uses 10 test samples) 100 100 99.9 99.8

HMM (uses all 50 test samples) 97.7 97.4 91.9 81.6
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Figure 6. RISq/HMM recognition rate vs. number of models
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2.4.3 Recognition Rate vs. Vector Dimension

In the experiments described in this section, the vector dimension is varied and the

recognition rates of RISq and HMM are compared. Parameters for the experiments are

shown in Table V. Results are shown in Table VI and Figure 7. As shown, RISq always

achieves 100% recognition rate when 13 out of 50 vectors are used for test no matter

the vector dimension is 2, 5 or 15. When 6 samples are used, the recognition rate of

RISq also reaches 100% when the vectors have 5 or 15 dimensions. As for HMM, the

recognition rate also improves as the vector dimension increases. However, HMM never

achieves 100% recognition rate. RISq outperforms HMM in this comparison as well.

TABLE V

PARAMETERS FOR VECTOR DIMENSION TESTS IN Table VI

Number of models 3

Number of vectors in a sequence 50

Number of training sequences (50 vectors each) for HMM 40

Number of test sequences (50 vectors each) for each model 100

SNR (dB) 20
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TABLE VI

RECOGNITION RATES vs. VECTOR DIMENSION

Vector Dimension 2 5 15

RISq (use 6 test samples) 87 100 100

RISq (use 13 test samples) 100 100 100

HMM (use all 50 test samples) 95.7 97.7 97.0
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Figure 7. RISq/HMM recognition rate vs. vector dimension
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2.4.4 Recognition Rate vs. Noise

In this section, the recognition rates of RISq and HMM are compared when different

levels of noise are present. Experiment parameters are shown in Table VII. The results

are shown in Table VIII and Figure 8. As can be observed, RISqs with different numbers

of test samples all outperform HMMs. Even in a very noisy scenario when SNR=12dB,

RISq still achieves a recognition rate of 88% when using all 50 available vectors. On the

other hand, the recognition rate of HMM is only 32.3%. These results indicate that RISq

is much more robust to the noise than HMM.

TABLE VII

PARAMETERS FOR TESTS IN Table VIII

Number of models 3

Vector dimension 5

Number of vectors in a sequence 50

Number of training sequences (50 vectors each) for HMM 40

Number of test sequences (50 vectors each) from each model 100

2.4.5 Missing Vector Test

In this section, we test the performance of RISq and HMM when certain vectors are

missing. Experiment parameters are listed in Table IX. RISq either uses 6 samples for
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TABLE VIII

RECOGNITION RATES vs. SNR

SNR (dB) 20 15 12 10

RISq (use 6 test samples) 100 64.7 48.3 36.3

RISq (use 13 test samples) 100 89.3 53.3 37.0

RISq (use 25 test samples) 100 98.67 66.7 40.7

RISq (use 50 test samples) 100 100 88.0 45.7

HMM (use all 50 test samples) 97.7 47 32.3 26.3
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Figure 8. RISq/HMM recognition rate vs. SNR
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test (when there’re at least 6 remaining vectors) or all available remaining vectors (when

there’re less than 6 vectors remaining). The results are shown in Table X and Figure 9.

As we can observe, the recognition rate of RISq stays at 100% until 44 out of the 50

vectors are missing. When more vectors are missing, the performance of RISq starts to

deteriorate slightly.

With regards to HMM, the recognition rate drops to unacceptable levels when more

than 44 out of the 50 vectors are missing. RISq also surpasses HMM in this aspect.

TABLE IX

PARAMETERS FOR TESTS IN Table X

Number of models 3

Number of vectors in a se-
quence

50

Vector dimension 5

Number of training sequences
(50 vectors each) for HMM

40

Number of test sequences (50
vectors each) from each model

100

Number of test samples for
RISq

Minimum(6, number
of remaining vectors)

SNR (dB) 20



34

TABLE X

RECOGNITION RATES vs. NUMBER OF MISSING VECTORS

Number of
missing vector

0 5 16 25 44 45 46

RISq 100 100 100 100 100 99.3 98.9

HMM 97.7 95.7 90 88.7 74.7 54.4 72.7

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Number of Missing Vectors

R
ec

og
ni

tio
n 

ra
te

 

 
RISq
HMM

Figure 9. RISq/HMM recognition rate vs. number of missing vectors
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2.4.6 Computation Time

We also compare the CPU time for recognition using RISq and HMM. The experiment

parameters in Table III are used. The average CPU time for recognizing a sequence is

shown in Table XI. From the results, we can see that RISq is also much more efficient

and faster than HMM in terms of computation time.

TABLE XI

COMPUTATION TIME

Number of models 20 50

RISq (ms) 22.8 73.2

HMM (ms) 82.0 301.1

2.4.7 Selectivity Ratio

In the last comparison, we compare the Selectivity Ratios of both methods. The

Selectivity Ratio of RISq is defined as the ratio between the highest matching score and

the second highest matching score. For HMM, it’s defined as the ratio between the

highest probability and the second highest probability. In the experiments, 3 models are

used and the other parameters are identical to those in Table III. The results are shown

in Table XII. As can be seen from the table, the Selectivity Ratio of RISq are about



36

100 times higher than that of HMM when SNR is 20dB. When the SNR turns 15dB, the

Selectivity Ratio of RISq drops to 4.69 but still remains higher than that of HMM. In a

word, RISq is better than HMM in terms of Selectivity Ratio as well.

TABLE XII

SELECTIVITY RATIO TEST RESULTS

SNR (dB) 20 15

RISq 319.8 4.69

HMM 3.1 1.62
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2.4.8 Comparison Summary

From the description and comparison above, we could see that RISq is superior to

HMM in the following aspects:

1. It is much easier to train RISq models than to train HMM models. RISq requires

only one example from each class for training and the training is as simple as

indexing into a hash table and saving vector attributes into corresponding bins.

2. RISq only needs a few sparse samples to achieve robust recognition. That allows

RISq to maintain high recognition rate even when most of the vectors are missing.

HMM performs much worse under this kind of condition.

3. HMM’s recognition rate degrades notably as the number of models increases. RISq

is more immune to this change. When the number of models is high, RISq achieves

much higher recognition rate than HMM.

4. When enough test samples are used, RISq always achieves higher recognition rate

than HMM regardless of the vector dimension.

5. RISq is much more robust to noise than HMM.

6. RISq is more efficient and selective than HMM.



CHAPTER 3

GESTURE RECOGNITION

In the following few chapters, we present our work on Gesture Recognition. The goal

of our work is to recognize hand gestures using an inertial system. We develop here a

novel method, called Zero Velocity Linear Compensation (ZVLC), for improving gesture

trajectory reconstruction accuracy. We also employ the novel RISq method described in

last chapter to achieve robust recognition of the reconstructed gestures.

Gesture recognition has been an important topic in the Human Machine Interface

(HMI) research since it has applications in many areas, such as communication with the

deaf, communication with robot assistants [26][27], control of machines (home electronics,

appliances [28], handheld devices [29], etc), human vehicle interaction [30], etc. Many

solutions have been proposed for gesture recognition. The most popular ones are methods

based on Computer Vision, or on Magnetic Sensing or on inertial sensors.

3.1 Computer Vision based Approaches

Computer Vision contributes the largest number of papers to gesture recognition.

Among the methods used in those papers, HMM is the most popular one. Lee and Kim

[31] proposed an HMM model to classify the gestures by a combination of all the states

from all trained gesture models. However, this method doesn’t work well with complex

background. Yoon et al. [32] developed a HMM classifier to recognize gestures depict-

38
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ing alphanumeric characters and graphic elements (circle, triangle, etc). The program

localized and tracked the hand in the incoming video and used features such as hand

location, angle and velocity. Bauer and Karl-Friedrich [33] split the signs in the Ameri-

can Sign Language into subunits and employed HMM to model the subunits other than

the signs directly. Markers and colored gloves were used. The feature vector for HMM

included information of hand locations, distance, marker distances, colored glove area

size, etc. Ramamoorthy et al. integrated static shape recognition, Kalman-filter-based

hand tracking, and HMM to recognize single-handed hand gestures in [34]. Kelly et al.

[35] also employed HMM to recognize 8 gestures from American Sign Language (ASL).

Features used included hand position relative to eyes, hand direction, hands distance,

etc. Liu et al. [36] studied the effects of different HMM model structures and training

algorithms on a gesture recognition system, which recognized the letters from A to Z.

Elmezain et al. [37][38] developed a gesture recognition system for Arabic numbers (0-9)

in stereo color image sequences using HMM. Orientations of gesture trajectories were

quantized and used as features for HMM. The same authors employed a different method

- Conditional Random Fields - for the recognition in [39]. Other works that employed

HMM includes [40] and [41].

In addition to HMM, researchers also investigated other methods to recognize ges-

tures from videos. Holte and Moeslund [42] used both a range camera and a regular

camera to recognize gestures. Motion primitives were identified from the images and a
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probabilistic Edit Distance classifier was employed to identify 4 gestures. Rajko et al.

[43] applied semantic network model (SNM), a generalization of HMM to recognize 6

mouse/pen gestures. The unit vector in the direction of mouse/pen movement was used

in the recognition. Wong and Cipolla [44] proposed a method to recognize gestures by

first converting a portion of a video into a motion gradient orientation image and then

classifying it into one of the 9 gestures by a sparse Bayesian classifier. Bhuyan et al.

[45] proposed for gesture recognition a 10 dimensional feature vector, which consists of

gesture trajectory length, hand orientations, maximum/minimum velocities, etc. Suk et

al. [46] employed Dynamic Bayesian Network to recognize 10 gestures. Features used

included hand motion direction code, hand-hand positional relation, hand-face positional

relation, etc. There are some other methods that have been examined for gesture recog-

nition. These methods include Finite-State Machine (FSM) [47][48][49], Condensation

Algorithm [50], Hidden Conditional Random Fields [51], Latent-Dynamic Discriminative

Models [52], Neural Network [53], SVM [53], Continuous Dynamic Programming [54],

Volume Motion Template [55], etc.

3.2 Magnetic Sensing based Approaches

As mentioned earlier, magnetic sensing based methods are also commonly seen for

gesture capture and recognition. Magnetic sensors has been used in motion capture for

a long time [56][57][58]. Ma et al. developed a magnetic hand motion tracking system in

[59]. Permanent magnets were fixed on nails and tracked by magnetic sensors installed
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on a wristband. A hand geometric model was employed to compute the hand postures.

Kevin et al. [60] developed a gesture recognition system using a pair of CyberGloves

and three magnetic trackers. The CyberGloves measured 18 hand-joint angles and the

magnetic trackers determined 3-D hand positions. The system utilized the condensation

algorithm and used 48-D feature vectors to classify directional movement and static

hand shape gestures. Corradini and Cohen [61] developed a gesture recognition system

using a 6 DOF tracker device based on magnetic fields and a Recurrent artificial neural

networks (RNNs) as the recognizer. Pirkl et al. [62] used a pair of sender and receiver

based on magnetic resonant coupling to study Tai Chi moves. The magnetic receiver and

the sender were placed on the chest and the arm of a tester respectively. The system

calculated variables indicating sender to receiver distance, receiver rotation angles, etc

and passed the variables to a recognition program based on Decision Tree. Bobick and

Wilson described a few gesture recognition experiments in [63] and one of those used a

magnetic spatial position and orientation sensor. Dynamic programming was employed

for recognition.

3.3 Inertial Sensor based Approaches

Despite the popularity of the methods based on Computer Vision and Magnetic Sens-

ing, these methods have few drawbacks. Visual approaches suffer from occlusion, varied

illumination and cluttered background. The performance of this kind of methods largely

depends on the performance of the preprocessing stage, which segments, localizes, and
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tracks the hands and arms (sometimes even face and eyes are necessary). In some cases,

the gesture performer has to wear colored gloves and short-sleeve shirt with simple tex-

ture. Furthermore, the gesture performer has to stay within the view of the camera and

most of the systems are view dependent. As for magnetic sensing, any electric motors

or just ferromagnetic and metallic objects close to the sensors will affect the electro-

magnetic fields and the measurements. This renders the magnetic tracking useless in

cockpits, cars and industrial environments. Also the accuracy diminishes as the gesture

performer moves away from the emitter.

As a comparison, the methods using inertial sensors are not affected by the surround-

ings, which are more suitable than the Computer Vision-based recognition in complex,

cluttered environments. Moreover, inertial measurements are not affected by external

signal jamming or magnetic fields. Inertial measurement units can be used as totally

self-contained input devices [64]. These advantages have shifted more and more attention

towards the inertial sensing approach. Inertial sensors are now being used in electronic

products such as Nitendo Wii, Apple iPhone, BlackBerry phones, etc. The manufacturers

rely on the inertial sensors and employ simple motion recognition techniques to achieve

effective interaction between the products and the users.

Even before the introduction of integrated inertial sensors by the consumer electronics

industry, researchers have been using these powerful devices. For example, Sakaguchi

et al. used accelerometers and gyroscopes to calculate the angular velocity and the
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angular displacement of a human arm model [65]. However, the authors did not examine

their method on real human arms and non-circular motion. Heinz et al. discussed the

possibility of using accelerometer and gyroscope data to automatically analyze Wing

Tsun movements in [66]. Features calculated from sensor data and derivatives were

studied and discussed. However, gesture trajectory and recognition were not investigated.

Benbasat et al. [67] looked at the gesture recognition problem from a different angle and

found a set of atomic gestures according to the acceleration curve characteristics. The

gestures were recognized after their atomic gestures were identified. Sama et al. proposed

to use a glove equipped with accelerometers, gyroscopes and bend sensors to control the

movement of an animated glove [68]. However, the translation and rotation of the glove

has not yet been implemented when the paper was published. Reifinger et al. developed

a system to control the translation and rotation of objects in augmented reality with

the help of a 2-axis accelerometer and a single axis gyroscope [69]. Pandit et al. also

used a pair of gloves with built-in accelerometers to convert hand gestures into computer

commands [70], e.g. copy, paste, scroll, etc. Bang et al. [71] developed a pen-shape input

device for capturing characters written in the air by the operator. The device relied on

both accelerometers and gyroscopes to reconstruct the pen trajectory. Gabayan et al.

also developed a gesture recognition system to recognize arabic numbers drawn by an

operator holding an Inertial Measurement Unit (IMU) [3] with a 3-axis accelerometer

and a 2-axis gyroscope. Zhang et al. [72] developed a system to control the operation
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of handheld devices by recognizing gestures like swaying and drawing Arabic numbers.

Ouchi et al. [28] at Toshiba developed the MagicWand based on accelerometers to control

a few home appliances by recognizing simple gestures like circle, arrow, and so on. In

[73][74], authors use the acceleration and trajectory direction as features and employed

HMM to recognize gestures corresponding to graphical elements (square, circle, etc) or

directional movements. In [75], Dong et al. performed Discrete Cosine Transform (DCT)

on the acceleration data to extract features for HMM. Gestures depicting number 0-4

were examined. In addition to the methods described above, other techniques including

Dynimic TimeWarping (DTW) [76] and Maximum Entropy Models [77] were investigated

by researchers as well.

As mentioned earlier in this chapter, in last few years inertial sensors started to emerge

in the consumer electronics products. As can be seen from Figure 10, the application

of MEMS (Micro-electro-mechanical systems, including inertial sensors) sensors in con-

sumer and mobile electronics has been growing steadily in last few years and expects

faster growing in the coming years [78]. Among these applications, two of the most fa-

mous ones are the Nitendo Wii gaming system and the Apple iPhone, which employs an

accelerometer to detect the device’s orientation. Researchers used the inertial sensors on

these products and developed several gesture recognition systems. Liu et al. developed

such a system based on the Wii remote [79]. In their experiments, an operator held a Wii

remote and performed different gestures. Acceleration data from the 3-axis accelerometer
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on the Wii remote were transmitted to a PC via Bluetooth connection. Dynamic Time

Warping (DTW) was employed to recognize the gestures. Other researchers also devel-

oped gesture recognition systems based on the Wii remote. The methods used include

HMM [80][81][82][83][28], DTW [84], SVM [28] and K-Nearest Neighbors [85]. Besides

the Wii remote, other handheld devices with built-in inertial sensors were also investi-

gated. Jang and Park [29] developed on a PDA a gesture recognition program based

on state machine. Different gestures were used to control the sound or scrolling, or to

switch between application windows. Agrawal et al. [86] planned to develop the Nokia

N95 cell phone into a gesture performing tool. The user held the cell phone and wrote

in the air. The authors planned to reconstruct what the user writes using data from the

built-in 3-axis accelerometer. The recognition was not completed when the paper was

published. Kauppila et al. also proposed a gesture recognition system using a series 60

cell phone [87]. He et al. [88] processed the acceleration data from a cell phone with

Wavelet packet decomposition and FFT. SVM was employed to recognize the cell phone

user’s gestures in order to control the cell phone operations. In [89], simple gestures like

writing Arabic numbers were classified using data from accelerometers in a cell phone

to operate the phone, e.g. speed dialing, navigation, delete message, etc. These gesture

recognition systems based on the Wii remote and the cell phones use only accelerometers,

which limits the performance in terms of speed-invariance, pose-invariance, etc. As well

known, accelerometer reading varies under different acceleration/deceleration. Therefore,
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the recognition deteriorates significantly when gestures are performed in different accel-

eration/deceleration. Moreover, accelerometer reading also varies from pose to pose due

to the influence of the earth gravity. Depending on the accelerometer pose, the gravity

has different components on the axes of a 3-axis accelerometer even if the accelerometer

stays stationary. So the recognition rate of the systems above also depends greatly on

the way the user is holding the device.

Figure 10. Consumer and mobile MEMS market by application. (Source: iSuppli)
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3.4 Our Approach

In order to overcome these drawbacks, we propose to reconstruct the trajectory of

the handheld device and recognize the gesture by recognizing its trajectory. We use

both accelerometers and gyroscopes, which allows us to reconstruct the trajectory more

accurately than using only accelerometers. We also propose a method we developed

recently, called Zero Velocity Linear Compensation (ZVLC), for improving trajectory

reconstruction accuracy. Another major difference of our work from other works is that

we employ for the recognition the novel method that we described in previous chapter -

RISq (Recognition by Indexing and Sequencing) [1].

In the following chapters, we present our work on Gesture Recognition using an In-

ertial Measurement Unit (IMU). In Chapter 4, we describe the Inertial Measurement

Unit (IMU) and the calibration process. In Chapter 5, we present the methods we de-

veloped for trajectory reconstruction. In Chapter 6, we describe our RISq-based gesture

recognition method and present the results.



CHAPTER 4

INERTIAL MEASUREMENT UNIT FOR GESTURE

RECONSTRUCTION

In this chapter, we briefly describe the IMU we use in our work and the calibration

process based on Nonlinear Data-Fitting. An inertial measurement unit, or IMU, is an

electronic device that calculates a craft’s velocity, orientation, and gravitational forces,

using a combination of accelerometers and gyroscopes [90]. IMUs are typically used

to maneuver aircraft, including UAVs, among many others, and spacecraft, including

shuttles, satellites and landers.

4.1 CHR-6d Inertial Measurement Unit

The IMU that we use is the low-cost entry-level CHR-6d from CH Robotics [91]. The

CHR-6d, shown in Figure 11, is a complete 6-axis Inertial Measurement Unit (IMU), with

3 axes of angular acceleration measurements, and 3 axes of acceleration measurements.

The specifications of the onboard inertial sensors are listed in Table XIII.

The CHR-6d includes a ARM Cortex processor running at 64M Hz. All sensor chan-

nels are oversampled and decimated to provide 16-bit resolution. A Parks-McClellan

window low-pass FIR filter is then applied to remove additional noise. The corner fre-

quency of the filter can be adjusted in 10 Hz increments from 10 Hz to 140 Hz for each

channel independently. The number of taps used in each filter can also be adjusted from

48
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Figure 11. CHR-6d Inertial Measurement Unit

8, 13, 32, and 64 taps. The filter can also be disabled if preferred. Communication is

performed over a simple TTL UART interface at 115200 Baud [92].

TABLE XIII

CHR-6d ONBOARD SENSOR SPECIFICATIONS
Sensor Part Number Measurement Range

Accelerometer ADXL335 ±3g

Pitch/roll rate gyroscope LPR510AL ±100deg/s

Yaw rate gyroscope LY510ALH ±100deg/s

4.2 Nonlinear Data-Fitting based Calibration

The 16-bit measurements from the sensors are unsigned positive numbers. As shown

in Table XIII, the accelerometer measures up to ±3g and the gyroscopes measure up
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to ±100 deg/s. In order to convert the positive 16-bit numbers into positive/nagative

acceleration or angular acceleration, biases have to be subtracted and scaling factors have

to be multiplied. The biases and scaling factors recommended by the IMU manufacturer

usually need to be adjusted for a particular IMU. Therefore, a calibration to find these

parameters becomes necessary.

For gyroscopes, the calibration is straightforward. The bias of a gyroscope is the

output when it is stationary. The scaling factors recommended by the IMU manufacturer

are used for the gyroscopes.

For accelerometers, the calibration becomes non-trivial due to the gravity influence.

A stationary 3-axis accelerometer yields readings corresponding to the gravity component

on each axis. Suppose Ax, Ay, and Az are the 16-bit accelerometer outputs for axis x,

y and z respectively. kx, ky and kz are the scaling factors. bx, by, and bz are the biases.

When an 3-axis accelerometer sits still, we have

√
(kx(Ax − bx))2 + (ky(Ay − by))2 + (kz(Az − bz))2 = g (4.1)

where g is the gravity. So the accelerometer reading is a mixture of the bias and the

gravity component. To obtain the biases and scaling factors, we turn to the nonlinear
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data-fitting method. We formulate the problem into a Nonlinear Least-Squares Curve

Fitting problems of the form

min
x

∥f(X)∥22 = min
x

(f1(X)2 + f2(X)2 + . . .+ fn(X)2) (4.2)

where

fi(X) =
√

(kx(Axi − bx))2 + (ky(Ayi − by))2 + (kz(Azi − bz))2 − g; i ∈ [1, n]

X = [kx, bx, ky, by, kz, bz]

We measure the accelerometer outputs at a few different poses when the IMU stays

stationary. The number of poses should not be smaller than the number of biases and

scaling factors, which is 6. The readings are substituted into Equation 4.2. Gauss-Newton

algorithm is used to find the solution. The resulting biases and scaling factors are applied

to the 16-bit measurements. Figure 12 shows an example of the result after applying the

biases and scaling factors.
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Figure 12. Outputs of accelerometers and gyroscopes when writing digit 2 in the
air. The 3 figures on the left hand side show the linear acceleration data for x, y,
and z axis. The 3 figures on the right hand side show the angular acceleration

data.



CHAPTER 5

3D GESTURE TRAJECTORY RECONSTRUCTION

In this chapter, we describe the methods for reconstructing gesture trajectories, in-

cluding a novel method we developed, Zero Velocity Linear Compensation (ZVLC), for

improving trajectory reconstruction accuracy. As later shown in this chapter, ZVLC

yields better reconstruction results than other methods.

After the sensor measurements are obtained, we can now calculate the trajectory of the

IMU using the Inertial Navigation System (INS) theory [93][94]. An Inertial Navigation

System (INS) is a navigation aid that uses a computer, motion sensors (accelerometers)

and rotation sensors (gyroscopes) to continuously calculate the position, orientation,

and velocity (direction and speed of movement) of a moving object without the need for

external references [95]. The calculation involves two coordinate systems - the navigation

coordinate system n and the body coordinate system b, which are shown in Figure 13.

The origin of the navigation coordinate system n is the starting point of the trajectory.

Xn, Yn, and Zn are the 3 axes. Zn is parallel to the gravity. The body coordinate system

b is a right-handed coordinate system on the moving object. If the moving object is an

aircraft, b is usually defined as Figure 13 shows. Xb is along the longitudinal axis. Yb is

to the right along the lateral axis. Zb is along the vertical axis. In our case, our moving

object is the IMU. The body coordinate system b on the IMU is defined to be the same
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as the one on an aircraft as demonstrated in Figure 13. All the measurements from the

IMU sensors are based on b.

Next we will discuss how the trajectory is calculated. Table XIV shows the nomencla-

ture used on aircrafts [93]. We use this nomenclature as well. In addition to the variables

in Table XIV, the following is a list of other important variables that will be used in

calculating the trajectory. Pn = [Pnx, Pny, Pnz]
T - position of the origin of b in n

TABLE XIV

AIRCRAFT NOMENCLATURE
X-axis Y-axis Z-axis

Longitudinal axis Lateral axis Vertical axis
Roll axis Pitch axis Yaw axis

Velocity components u v w
Angular accelerations Roll rate p Pitch rate q Yaw rate r
Euler angles Roll angle ϕ Pitch angle θ Heading angle ψ
Accelerations Ax Ay Az

(also the position of the IMU).

Vn = [u, v,w]T - velocity of the origin of b in n (also the velocity of the IMU).

An = [Anx, Any, Anz]
T - acceleration of the origin of b in n (also the acceleration of

the IMU).
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Figure 13. Navigation Coordinate System n and Body Coordinate System b
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Ab = [Abx, Aby, Abz]
T - acceleration measurements from the IMU accelerometers

(based on b).

ωb = [p, q, r]T - angular acceleration measurements from the IMU gyroscopes (based

on b).

[ϕ, θ, ψ] - roll, pitch, and yaw angles of the IMU in n. The definitions of roll, pitch,

and yaw are illustrated in Figure 14 [96]. Figure 13 further shows the positive directions

of these three angles [97].

Figure 14. Yaw, pitch and roll
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According to the INS theory, we have the following equations

Ṗn = Vn (5.1)

V̇n = An (5.2)

An = Cn
bAb −G (5.3)

ψ̇ =
q sinϕ+ r cosϕ

cos θ
(5.4)

θ̇ = q cosϕ− r sinϕ (5.5)

ϕ̇ = p+ (q sinϕ+ r cosϕ) tan θ (5.6)

where

Cn
b =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ



=


cosψ cos θ − sinψ cosψ sin θ

cos θ sinψ cosψ sinψ sin θ

− sin θ 0 cos θ




1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ
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=


cosψ cos θ − sinψ cosϕ+ cosψ sin θ sinϕ sinψ sinϕ+ cosψ sin θ cosϕ

sinψ cos θ cosψ cosϕ+ sinψ sin θ sinϕ − cosψ sinϕ+ sinψ sin θ cosϕ

− sin θ cos θ sinϕ cos θ cosϕ



G = (0, 0, g)T = (0, 0, 9.8)T

To calculate the trajectory, i.e. position Pn, we perform integrations on Equation 5.1

through Equation 5.6 as follows:

Pn(i+ 1) = Pn(i) +
Vn(i+ 1) +Vn(i)

2
× t(i) (5.7)

Vn(i+ 1) = Vn(i) +
An(i+ 1) +An(i)

2
× t(i) (5.8)

ψ(i+ 1) = ψ(i) +
ψ̇(i+ 1) + ψ̇(i)

2
× t(i) (5.9)

θ(i+ 1) = θ(i) +
θ̇(i+ 1) + θ̇(i)

2
× t(i) (5.10)

ϕ(i+ 1) = ϕ(i) +
ϕ̇(i+ 1) + ϕ̇(i)

2
× t(i) (5.11)

where t(i) is the time elapsed between time instant i and i+ 1.

As seen from above, as many as three steps of integrations are involved in this process.

A small error on ψ̇, θ̇, and ϕ̇ will cause the final error on position Pn to grow exponen-

tially after all these integrations. Fortunately, this problem could be overcome using our

method, Zero Velocity Linear Compensation (ZVLC), as described later in this chapter.
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5.1 Initial Pose Calculation

The iterative process in Equation 5.7 through Equation 5.11 needs initial values for

the yaw, pitch and roll angles (ψ, θ, ϕ). This section will describe how we obtain the

initial values for these 3 angles.

The initial yaw angle ψ(0) can’t be determined using only the accelerometers and

gyroscopes. Therefore, we assume the initial yaw to be zero, i.e.

ψ(0) = 0

With regard to the initial pitch θ(0), it could be calculated as

θ(0) = arctan(
Abx(0)√

A2
by(0) + A2

bz(0)
) (5.12)

if the IMU stays stationary at the beginning of a gesture [98]. Abx(0), Aby(0) and Abz(0)

are the measured acceleration from x, y, z axis in b at time instance 0.

As for the initial roll ϕ(0), it could be derived from Equation 5.3. We expand Equa-

tion 5.3 here for convenience of discussion.

An =


cosψ cos θ − sinψ cosϕ+ cosψ sin θ sinϕ sinψ sinϕ+ cosψ sin θ cosϕ

sinψ cos θ cosψ cosϕ+ sinψ sin θ sinϕ − cosψ sinϕ+ sinψ sin θ cosϕ

− sin θ cos θ sinϕ cos θ cosϕ
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∗


Abx

Aby

Abz

−


0

0

g


Since the initial yaw ψ(0) is zero, we have

sinψ(0) = 0, cosψ(0) = 1

Also if the IMU is held still at the beginning of a gesture, the acceleration An in n is

zero. So Equation 5.3 could be written as

0 =


cos θ(0) sin θ(0) sinϕ(0) sin θ(0) cosϕ(0)

0 cosϕ(0) − sinϕ(0)

− sin θ(0) cos θ(0) sinϕ(0) cos θ(0) cosϕ(0)




Abx(0)

Aby(0)

Abz(0)

−


0

0

g




cos θ(0) sin θ(0) sinϕ(0) sin θ(0) cosϕ(0)

0 cosϕ(0) − sinϕ(0)

− sin θ(0) cos θ(0) sinϕ(0) cos θ(0) cosϕ(0)




Abx(0)

Aby(0)

Abz(0)

 =


0

0

g
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which could be expressed as

Abx(0) cos θ(0) + Aby(0) sin θ(0) sinϕ(0) + Abz(0) sin θ(0) cosϕ(0) = 0 (5.13)

Aby(0) cosϕ(0)− Abz(0) sinϕ(0) = 0 (5.14)

−Abx(0) sin θ(0) + Aby(0) cos θ(0) sinϕ(0) + Abz(0) cos θ(0) cosϕ(0) = g (5.15)

We could pick either Equation 5.13 or Equation 5.14 to solve for the initial roll ϕ(0). For

simplicity, we pick Equation 5.14, which could be written as

Aby(0) cosϕ(0) = Abz(0) sinϕ(0) (5.16)

tanϕ(0) =
Aby(0)

Abz(0)
(5.17)

ϕ(0) = arctan(
Aby(0)

Abz(0)
) (5.18)

5.2 Zero Velocity Linear Compensation

In this section, we describe our novel method, Zero Velocity Linear Compensation

(ZVLC), for reducing trajectory reconstruction error. As described earlier, the process

to reconstruct the trajectory involves 3 integration steps, which causes the reconstruc-

tion error to grow out of control quickly given any error on the sensor measurements.

The biases and scaling factors obtained in Section 4.2 can’t be perfectly accurate due to

temperature drift, sensor errors (Package Alignment Error, Inter-axis Alignment Error,

Cross-Axis Sensitivity [99][100]), etc. Any deviation from the real biases and scaling fac-
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tors will cause inaccurate measurements of the accelerations and angular accelerations,

therefore inaccurate trajectories. Examples of this kind of trajectories are demonstrated

in Figure 15 and Figure 16. Those two figures show reconstructed trajectories from our

experiments. In these experiments, a subject draws digits 0 to 9 in the air. Trajectories

for every digit are calculated using 3 different methods and shown in Figure 15 and Fig-

ure 16. The first trajectory is the reconstruction result using unprocessed acceleration

and angular acceleration data. The other two trajectories are results of applying Zero

Velocity Compensation (ZVC) and Zero Velocity Linear Compensation (ZVLC), which

will be explained later in this section. As we can see, the reconstructions using unpro-

cessed sensor data are not satisfactory, especially those for digits 1, 4, 5, 7, and 9. The

reconstructed digit 4 is not even close to the correct trajectory.

5.2.1 Zero Velocity Compensation

In order to improve the accuracy of the reconstructed trajectories, researchers have

developed many methods. One method to correct the errors is to add additional sensors

[101], e.g. GPS or optical sensors. Another method is to rely on known information

at certain time instances to correct the errors. Coordinates, orientations, and velocities

are commonly used for this purpose [102]. For instance, Zero Velocity Updates (ZUPT)

method [102] uses velocities. When the IMU stops at certain time instances, ZUPT

will update the calculated velocities at those instances to zeros although the original

calculated velocities might not be zeros. In [103], Frank proposes a more complicated
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Figure 15. Reconstructed trajectories for digit 1-6. 3 trajectories for every digit
are reconstruction results using unprocessed sensor data, ZVC and ZVLC

respectively.
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Figure 16. Reconstructed trajectories for digit 7, 8, 9 and 0. 3 trajectories for
every digit are reconstruction results using unprocessed sensor data, ZVC and

ZVLC respectively.
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velocity updating scheme in which velocities are updated on every time instance on the

trajectory. The method is named Zero Velocity Compensation (ZVC) in [71]. ZVC

requires the beginning and ending velocities on a trajectory to be both zeros. The details

of ZVC are illustrated in Figure 17 [71]. For the acceleration An(k) for k1 ≤ k ≤ k2,

the compensated acceleration is [71]

Ãn(k) = An(k)−
Vn(k2)− Vn(k1)

(k2 − k1)Ts
(5.19)

The second term on the right hand side of Equation 5.19 could be considered as a constant

acceleration error in the navigation coordinate system n.

We implement ZVC in our trajectory reconstruction experiment. The subject is re-

quire to stop the IMU at the beginning and the end of gestures to satisfy the requirements

of ZVC. The reconstruction results are shown in Figure 15 and Figure 16 - the second

figure for each digit is the result of applying ZVC. As can be seen, most ZVC results are

better than those from using unprocessed acceleration data. This is especially obvious

for digit 4 and 5. However, the reconstructions are still not accurate enough for some of

the digits, e.g. digit 1, 4, 7 and 9. This indicates that it’s not accurate enough to model

the acceleration error as a constant term in this case.
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Figure 17. Zero Velocity Compensation
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5.2.2 Zero Velocity Linear Compensation

In order to achieve better results, we propose a new method, which models the error

as a linear term, i.e.

Aerr = c× t = c(k − k1)Ts (5.20)

where c is the coefficient and t is the time. We name our method Zero Velocity Linear

Compensation (ZVLC). To determine the linear factor c in Equation 5.20, we first repeat

one of the equations in Figure 17.

V̂n(k) =


0 for k ≤ k1

Vn(k)− Vn(k1) for k > k1

V̂n(k) is the velocity error caused by the acceleration error. At the end of the trajectory

(time instance k2), the velocity error is

Verr(k2) = V̂n(k2) = Vn(k2)− Vn(k1) (5.21)

Also

V̇err = Aerr = c× t

Verr = 0.5c× t2 + d

(5.22)
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Since Verr(0) = 0,

0.5c× 02 + d = 0 → d = 0

So

Verr = 0.5c× t2

Verr(k2) = 0.5c(k2 − k1)
2T 2

s (5.23)

Considering both Equation 5.21 and Equation 5.23, we have

0.5c(k2 − k1)
2T 2

s = Vn(k2)− Vn(k1)

c =
2(Vn(k2)− Vn(k1))

(k2 − k1)2T 2
s

(5.24)

Aerr = c× t

=
2(Vn(k2)− Vn(k1))

(k2 − k1)2T 2
s

(k − k1)Ts

=
2(Vn(k2)− Vn(k1))

(k2 − k1)2Ts
(k − k1)
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Therefore, the compensated acceleration and velocity are

Ãn(k) = An(k)− Aerr

= An(k)−
2(Vn(k2)− Vn(k1))

(k2 − k1)2Ts
(k − k1) (5.25)

Ṽn(k) = Vn(k)− Verr

= Vn(k)−
1

2
c× t2

= Vn(k)−
1

2

2(Vn(k2)− Vn(k1))

(k2 − k1)2T 2
s

(k − k1)
2T 2

s

= Vn(k)−
(Vn(k2)− Vn(k1))

(k2 − k1)2
(k − k1)

2 (5.26)

The results of applying ZVLC are shown in Figure 15 and Figure 16 - the third

trajectory for each digit is the reconstruction result after applying ZVLC. As can be

observed, ZVLC reconstructs digit 1, 7, and 9 accurately while the ZVC reconstructions

are not accurate at all. The ZVLC reconstructions for digit 4 and 6 are also much more

improved from the ZVC reconstructions. For the remaining digits, ZVLC reconstructions

show improvements over ZVC reconstructions as well.



CHAPTER 6

GESTURE RECOGNITION BY INDEXING AND SEQUENCING

In this chapter, we describe a novel Gesture Recognition method based on RISq and

present the recognition results.

After the trajectories are reconstructed by applying ZVLC, we apply RISq (Recogni-

tion by Indexing and Sequencing), as described in Chapter 2, to recognize the trajectories.

In our experiment, the subject holds the IMU and draws digits 0 to 9 in the air. These

gestures are used for training. Next, subjects are asked to repeat the gestures in the

recognition phase. We use the projections of the 3D trajectories on a certain plane for

recognition since humans tend to write on a virtual plane when writing in the air. In our

experiments, we require the subject to try to write in the x− z plane. The IMU is held

in a certain way so that the subject could write in this plane. The direction α at each

point along this 2D projection is used as the feature for RISq. We use the four-quadrant

inverse tangent as shown in Equation 6.1 and Figure 18.

αi = arctan 2(zi+1 − zi, xi+1 − xi) (6.1)

where αi ∈ (−π, π].
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Figure 18. Four-quadrant inverse tangent

Next we describe how RISq is applied to recognize the 2D projections. Suppose

we have a test sequence {Yt = xt1 ,xt2 , · · · ,xtq} and a set of model sequences {Yj =

xj1 ,xj2 , · · · ,xjq ; j ∈ [1, J ]} where J is the number of models in the database. According

to Equation 2.20, the vote for the test sequence Yt is

Ω = argmax
j

(

q∑
i=1

[−1

2
(xti − xji)

TC−1
x (xti − xji)])

= argmax
j

(

q∑
i=1

[− 1

2δ
(αti − αji)

2]) (6.2)
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where δ is the variance of the direction α. α falls into the range of (−π, π] and is dis-

continuous at π (also −π). In order to overcome this discontinuity problem, we calculate

another two votes by adding 2π to αti or subtracting 2π from αti , i.e.

v1i = − 1

2δ
(αti − αji)

2

v2i = − 1

2δ
((αti + 2π)− αji)

2

v3i = − 1

2δ
((αti − 2π)− αji)

2

We pick the maximum vote vi

vi = max(v1i, v2i, v3i)

So Equation 6.2 changes into

Ω = argmax
j

(

q∑
i=1

vi) (6.3)

The model with the highest vote Ω is classified as the winning model.

6.1 Experiments

We pick digits 0 to 9 as the gestures and the gesture shapes are designed for high

recognition rates and convenience of writing. Figure 19 and Figure 20 show more recon-
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structed gesture trajectories by applying ZVLC. As can be seen, the trajectories look

smooth and reasonably accurate.

Figure 19. Examples of reconstructed trajectories (by ZVLC)

6.1.1 Recognition by Indexing and Sequencing

We apply RISq to recognize the trajectories. For every digit, we use one trajectory

for training and another 19 trajectories for testing. RISq achieves 92% recognition rate.

6.1.2 Recognition by Hidden Markov Model

In order to compare RISq with HMM, we also apply HMM to recognize the same

trajectories. For every model, 10 sequences are used to train a HMM model and the

other 10 sequences are used for testing. The number of states are varied to find the

highest recognition rate. The results are shown in Table XV. As can be seen from the
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Figure 20. More examples of reconstructed trajectories (by ZVLC)

table, HMM reaches the highest recognition rate of 83% when 18 hidden states are used,

which is much lower than the 92% recognition rate achieved by RISq in the previous

section.

TABLE XV

HMM TEST RESULTS
Number of States 2 4 6 8 10 12 14 16 18 20 25 30

Recognition Rate 56 70 74 77 78 76 75 76 83 76 75 75



CHAPTER 7

VIEW INVARIANT HEAD RECOGNITION BY HYBRID PRINCIPAL

COMPONENT ANALYSIS BASED RECONSTRUCTION

In this chapter, we propose a novel method for 3D head reconstruction and view-

invariant recognition from single 2D images. The method described in this chapter was

published in two journal papers [7][8] and two other conference papers [9][10]. In this

work, We employ a deterministic Shape From Shading (SFS) method with initial condi-

tions estimated by Hybrid Principal Component Analysis (HPCA). Our HPCA algorithm

provides good initial estimates of 3D range mapping for the SFS optimization and yields

much improved 3D head reconstruction. The chapter also describes a novel method in

SFS handling of variable and unknown surface albedo, a problem with unsatisfactory

solutions by prevalent SFS methods. In the experiments, we reconstruct 3D head range

images from 2D single images in different views. The 3D reconstructions are then used

to recognize stored model persons. This enables one to recognize faces in wide range

of views. Empirical results show that our HPCA based SFS method provides 3D head

reconstructions that notably improve the accuracy compared to other approaches.

7.1 Introduction

3D face reconstruction from one or multiple 2D face images is an interesting topic

that receives a lot of attention. Blanz and Vetter proposed a morphable model for 3D

75



76

faces reconstruction using an analysis-by-synthesis approach in [104] and later developed

a face recognition method in [105], which is based on matching eigenvector coefficients.

This method is different from ours in this chapter, which matches 3D geometry for

recognition. Jiang et al. [106] used detected face features to determine coefficients for

synthesis from shape eigenvectors. Hu et al. [107] utilized a generic 3D face model and

detected face features to reconstruct 3D faces with the help of a Shape From Shading

(SFS) method and Radial Basis Functions (RBFs). The last two methods reconstruct

faces only from frontal face images. In addition, surface albedo was assumed constant in

[107], which led to inaccurate range on some feature points. Smith and Hancock [108] used

an image normalization algorithm to decouple surface normal directions from variable

surface albedo. Illumination cones and a Point Distribution Model were employed in a

geometric SFS method to refine estimated normals. However, the overall performance of

this method is determined by the accuracy of the normalization process. As we can see

from above, pose and variable albedo are major concerns in 3D face reconstruction. We

propose in this chapter a novel method for 3D head reconstruction by SFS which addresses

these concerns. Our method reconstructs facial range images from 2D face images in any

pose. Furthermore, our approach provides the capability to estimate variable surface

albedo. Such a capability is absent in most of the prevalent SFS methods.

Research on SFS has been conducted for decades. Ikeuchi and Horn [109] proposed

to recover shape information by minimizing a cost function. The stereographic plane was
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employed in their method to express orientations of surface patches. In [110], Horn and

Brooks applied the calculus of variations to solve SFS problems. Zheng and Chellappa

[111] proposed to estimate illumination direction, albedo, and surface shape by minimiz-

ing a cost function with a new smoothness constraint, which was aimed at decreasing

the gradient difference between the reconstructed intensity image and the input image.

Kimmel and Bruckstein proposed the Level Sets method in [112]. A Lambertian smooth

surface is recovered by numerically propagating an almost arbitrarily initialized surface

and tracking the level sets. Worthington and Hancock [113] replaced estimated normals

with the closest normalized vector on illumination cones to ensure accuracy of recovered

surface normals. Samaras and Metaxas [114] incorporated illumination constraints with

deformable models in resolving SFS problems. Crouzil et al. [115] developed a multires-

olution SFS method, in which cost functions were minimized by fuzing deterministic and

stochastic minimization approaches. During the examination of these SFS methods, we

find that surface albedo was assumed either constant or given. Assuming constant albedo

results in inaccurate reconstruction of surfaces with variable albedo as was demonstrated

by the experiments in [116].

Existing SFS methods almost always yield unsatisfactory results when applied to re-

alistic imagery when the initial estimation of the true surface is unavailable or inaccurate.

In experiments described in this chapter, we demonstrate that providing an good initial

estimation in SFS methods yields much better results. The Hybrid Principal Component
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Analysis algorithm provides good head surface estimations. These estimations serve as

initial conditions for our multiple-level optimization. The introduction of HPCA and the

multiple-level optimization combined with albedo estimation, are the innovative parts of

our approach.

The rest of the chapter is arranged as follows: The HPCA (Hybrid Principal Com-

ponent Analysis) algorithm is described in section 7.2; In section 7.3, we present results

from HPCA; Section 7.4 describes the SFS (Shape From Shading) method; 7.5 describes

the face recognition module based on Iterative Closest Point (ICP); Section 7.6 presents

SFS results and face recognition results; Section 7.7 concludes the chapter.

7.2 Hybrid Principle Component Analysis

In this section, we describe the HPCA algorithm. To perform the HPCA algorithm,

we need a set of M training images. Each image is a hybrid composed of a 2D [n ×m]

gray scale image and a corresponding [n × m] range image. These training images are

lexicographically reordered into M pairs of vectors, denoted by

{
−→
fi ,

−→ri } i = 1, 2, · · · ,M (7.1)
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where
−→
fi is the vector that represents the ith gray scale image and −→ri is the vector

that represents the corresponding range image. These two vectors are concatenated to

generate a 2nm dimensional hybrid vector
−→
hi ,

−→
hi =

(
−→
fi

T ,−→ri T
)T

(7.2)

The training set H for HPCA consists of all the M hybrid vectors
−→
hi . The mean vector

−→µh and covariance matrix Ch for H are calculated as follows

−→µh =
1

M

M∑
i=1

−→
hi (7.3)

Ch =
1

M

M∑
i=1

(
−→
hi −−→µh)(

−→
hi −−→µh)

T (7.4)

Next, the eigenvectors {−→vj ; j = 1, 2, · · · , ω} for Ch are computed. ω ≤ 2nm is the rank

of Ch. The first P eigenvectors, which correspond to the P largest eigenvalues, are taken

as the principal eigenvectors. Every eigenvector −→vj is then split into two sub-vectors with

nm dimensions each. We name the two sub-vectors as the top vector
−→
tj and the bottom

vector
−→
bj respectively, i.e.

−→vj =

(
−→
tj

T ,
−→
bj

T

)T −→
tj ∈ Rnm,

−→
bj ∈ Rnm (7.5)
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The vector set {−→tj } corresponds to the gray scale images while the set {
−→
bj } corresponds

to the range images. Similarly, the mean vector −→µh is split into two sub-vectors as well.

−→µh =

(
−→µf

T ,−→µr
T

)T

(7.6)

We also perform PCA on the set of range images {−→ri ; i = 1, 2, · · · ,M} and obtain

P principal eigenvectors {−→ej ; j = 1, 2, · · · , P} for the range image space Sr ∈ Rnm.

Obviously, The set {−→ej } for Sr would be different from the set {
−→
bj } for the hybrid space.

However, we can approximate {−→ej } with {
−→
bj } , i.e., we use {

−→
bj } as an estimation of

the principal eigenvectors for the range image space Sr. Similarly, we use {−→tj } as an

estimation of the principal eigenvectors of the gray scale image space Sg ∈ Rnm.

The underlying principle of HPCA (Hybrid Principal Component Analysis) is that a

range image −→r can be approximated by a linear combination of the set {
−→
bj } using the

projection coefficients obtained by projecting the corresponding gray scale image
−→
f onto

the set {−→tj } ∈ Sg, namely

−→
f = T

−→
d +−→µf (7.7)

=⇒
−→
d = (T TT )−1T T (

−→
f −−→µf ) (7.8)

=⇒ −→r = B
−→
d +−→µr (7.9)

where T = (
−→
t1

−→
t2 · · ·

−→
tω ), B = (

−→
b1

−→
b2 · · ·

−→
bω) and

−→
d is the coefficient vector.
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7.3 Experimental Results for Hybrid Principal Component Analysis

To achieve reconstruction of heads in different poses, we need a set of gray scale images

and corresponding range images taken in intervals of few degrees about the vertical axes

of the heads. For this purpose, we synthesize the gray scale images from a 3D head

model library provided by USF [117]. A few synthetic gray scale images are illustrated

in 7.3. These synthetic images still look realistic since the variable albedo is also taken

into account.

a b

Figure 21. (a) 3 pairs of training images (Top row - Range images; Bottom row -
Corresponding gray scale images); (b) A test image
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The library from USF includes 100 3D head models and corresponding texture maps.

We use 40 head models in the experiment. Every model is rotated about the vertical

axis from -90 to +90 degrees in a step size of 5 degrees. A gray scale image and a range

image are generated for every pose, which leads to 1480 hybrids for all 40 models. Few

pairs of training images are illustrated in 7.3 and Figure 22.

Figure 22. More examples of the training images (Top row - Range images;
Bottom row - Corresponding gray scale images)
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It is straightforward to obtain model range images while it is more difficult to obtain

model gray scale images. Here we need to make two assumptions:

1. Head surfaces exhibit Lambertian reflectance.

2. The light is perpendicular to the image plane.

With these two assumptions, the gray scale value at a point A can be calculated as

RA = ρα(
−→
l · −→n ) = u(

−→
l · −→n ) (7.10)

where ρ is the illuminant strength, α is the surface albedo, u is the composite albedo [111]

representing the product of ρ and α,
−→
l = (0, 0, 1)T represents the illuminant direction,

and −→n is the normalized surface normal at point A.

−→n =
1√

1 + p2 + q2
× (−p,−q, 1)T (7.11)

p and q are the surface derivatives along x and y axes respectively. Substitute Equa-

tion 7.11 into Equation 7.10, we get

RA =
ρα√

1 + p2 + q2
=

u√
1 + p2 + q2

(7.12)

illuminant strength ρ = 1 is used in our experiment. As for the surface albedo α, note

that there is a texture map for every model in the library from USF. We map the texture
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to the 3D model and take the normalized gray scale value at every point as its albedo.

The gray scale images for testing are obtained in a similar manner from 3D head models

which are not included in the training. A test image is shown in 7.3b. Two views of the

corresponding original range image are shown in Figure 23a and Figure 23d. The range

image reconstructed by HPCA is illustrated in Figure 23b and Figure 23e. As can be

observed, the reconstruction is close to the original range image except that it misses fine

details and adds spurious noise in the extremes. The noise results from the discontinuity

between the background and the face surfaces in the range images for training. However,

it’s later shown that the noise can be eliminated almost completely by the SFS (Shape

From Shading) method described in section 7.4.

7.4 Surface Reconstruction by Shape from Shading

7.4.1 Shape from Shading: Cost Function and the Minimization

Starting from the initial reconstruction provided by HPCA (Hybrid Principal Com-

ponent Analysis), we further improve the reconstruction using a SFS method. SFS is

usually modeled as an optimization problem [116], in which cost functions are minimized

subject to various constraints. Existing methods either try to estimate the surface height

directly [118], or to divide the problem into two subproblems[115] [113] . First, to com-

pute the surface’s gradient field and then to calculate surface height from the gradient

field. Our method belongs to the second category.
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a b c

d e f

Figure 23. (a)&(d) The original range image in the x-y and 3D view; (b)&(e) The
reconstructed range image from HPCA in the x-y and 3D view. This

reconstruction serves as the initial estimation for the optimization algorithm;
(c)&(f) The x-y and 3D view of the final reconstruction after applying the SFS

optimization

Henceforth, we refer to the estimated 3D surface as z(x, y), where z is the surface

height and x, y are lateral coordinates. The two components of the gradient field are

p(x, y) = ∂z(x, y)/∂x q(x, y) = ∂z(x, y)/∂y (7.13)
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We present the fundamental equation for SFS, Image Irradiance Equation [110], as

I(x, y) = R(
−→
l , p(x, y), q(x, y)) (7.14)

where R and I are the reflectance map and the input gray scale image respectively, and

−→
l is the illuminant direction. The cost function shown below is minimized to find the

gradient field in image domain Ω (Ω = {(x, y)}, 1 ≤ x ≤ m, 1 ≤ y ≤ n) for a n × m

image.

C1(p, q) =

∫∫
Ω

[R(
−→
l , p(x, y), q(x, y))− I(x, y)]2dxdy

=

∫∫
Ω

[
u(x, y)√

1 + p2(x, y) + q2(x, y)
− I(x, y)]2dxdy

(7.15)

where u(x, y) is the composite albedo. To get a well-posed solution, an integrability

constraint and a smoothness constraint are usually added [110] [115] and the augmented

cost function is given below.

C2(p, q) = C1(p, q) + λi

∫∫
Ω

[py(x, y)− qx(x, y)]
2dxdy

+ λs1

∫∫
Ω

[p2x(x, y) + p2y(x, y) + q2x(x, y)

+ q2y(x, y)]dxdy (7.16)
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where

px(x, y) = ∂p(x, y)/∂x (7.17)

py(x, y) = ∂p(x, y)/∂y (7.18)

qx(x, y) = ∂q(x, y)/∂x (7.19)

qy(x, y) = ∂q(x, y)/∂y (7.20)

λi is the integrability factor and λs1 is the smoothing factor. Both factors are set to

positive values. The second and the third terms on the right-hand side represent the

integrability constraint and the smoothness constraint respectively.

To handle the variable albedo of faces, we add to the cost function C2(p, q) a smooth-

ness constraint for the composite albedo u and estimate the gradient field and u simul-

taneously. The new constraint for the composite albedo u is inspired by the observation

that abrupt changes of albedo usually only occur on boundaries between special face

regions (e.g. lips, eyebrows, eyes or pigmentation). Other than that, the albedo usually

varies smoothly, especially on cheeks and foreheads. As a matter of fact, even albedo

inside some special regions, e.g. lips, doesn’t vary abruptly. As for illuminant strength,

in most cases it remains constant or varies smoothly on faces. Therefore, u should also



88

vary smoothly on most face regions. Hence, imposing a smoothness constraint on u is

justified almost everywhere. The cost function with the new constraint is

C = C2(p, q) + λs2

∫∫
Ω

[u2x(x, y) + u2y(x, y)]dxdy (7.21)

where λs2 is the smoothing factor for u.

Next we will convert the cost function into discrete form. Hereafter we will use

subscripts to indicate the coordinates of pixels. We apply either forward or backward

finite difference method in the conversion. Without loss of generality, we will discuss the

case where forward finite difference method is applied. According to the definition of

forward finite difference method, we have

px|(i,j) = p(i, j + 1)− p(i, j) = pi,j+1 − pi,j (7.22)

py|(i,j) = p(i+ 1, j)− p(i, j) = pi+1,j − pi,j (7.23)

Hence, Equation 7.21 changes into

C =
∑

(i,j)∈Φ

ci,j (7.24)
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where Φ is the discrete image domain and ci,j is the cost component for the pixel at (i, j)

given by:

ci,j = [
ui,j√

1 + p2i,j + q2i,j

− Ii,j]
2

+ λi[(pi+1,j − pi,j)− (qi,j+1 − qi,j)]
2

+ λs1[(pi+1,j − pi,j)
2 + (pi,j+1 − pi,j)

2

+ (qi+1,j − qi,j)
2 + (qi,j+1 − qi,j)

2]

+ λs2[(ui+1,j − ui,j)
2 + (ui,j+1 − ui,j)

2]

(7.25)

To minimize the cost function C with respect to (pi,j, qi,j, ui,j) at every pixel is very

difficult if the image is large. Therefore, we choose to split a large image into small

patches and run the optimization patch by patch. The process is illustrated in Figure 24.

In the figure, the big squares in solid lines represent the image. We use 10× 10 patches

in our experiment. Starting from the patch (the small square in solid lines in Figure 24a)

at the lower right corner of the image, a window is moved row-wise from right to left,

from bottom to top. The window is moved by 5 pixels every time so that the patch

in the window always has a half overlapping with any neighboring patch. As shown in

Figure 24b, the second patch (the small square in solid lines) overlaps with the first patch

(the small square in dash lines) at the lower right corner. When the left boundary of the
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image is reached, the window is moved upward by 5 pixels and rightward to the right

boundary of the image, as shown in Figure 24c. The patch (the small square in solid

lines) in the current window also overlaps with the patch (the small square in dash lines)

at the lower right corner. When the upper left corner is reached, the window is moved

in the other direction from left to right (as shown in Figure 24d), from top to bottom.

In this way, the window is moved back-and-forth between the two corners and the cost

on every patch is minimized. The iteration is stopped when the norm of the changes in

the gradient field between two iterations is smaller than a predefined threshold. In our

experiments, the convergence is usually achieved within 6 iterations.

a b c d

Figure 24. Patch-by-patch minimization

We assume that the gradients on the global boundary of an image are zero. When

the window is moved from the lower right corner to the upper left corner, the right and
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bottom boundary conditions of patches can be obtained from either the image boundary

conditions or from results of previous patches. That allows us to impose these two

boundary conditions during the optimization. As explained in Section 7.4.2, we apply

forward finite difference method in this case to simplify the calculation of the gradient

for the cost function. When the window is moved from the upper left corner to the lower

right corner, the left and top boundary conditions of patches are available instead. In

this case, these two boundary conditions are imposed and then backward finite difference

method is applied.

Direct minimization of the cost function is performed on those patches using Nonlinear

Polak-Ribière Conjugate Gradient method [119]. For every patch, we specify the initial

vector set for the optimization as

ν(0) = {ν(0)i,j } = {(p(0)i,j , q
(0)
i,j , u

(0)
i,j )(i,j)∈Φ} (7.26)

where the gradient field (p
(0)
i,j , q

(0)
i,j )(i,j)∈Φ is derived from the initial range image provided by

HPCA (Hybrid Principal Component Analysis) and u
(0)
i,j is set to zero, i.e. (u

(0)
i,j = 0)(i,j)∈Φ.

Beginning with ν(0) and an initial set of constraint factors (λi, λs1, λs2), the Nonlinear

Polak-Ribière Conjugate Gradient method is carried out to find a minimum of the cost

function and the corresponding vector set ν(1). Next, the set of constraint factors are

reduced by a factor of 2 and the optimization is repeated. After each iteration, the

constraint factors are reduced by half. The process is stopped when the constraint factors
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fall below predefined thresholds. After that, the factors are set to zero (no constraints are

imposed) and a final iteration of minimization is carried out on each pixel individually.

Removing constraints allows the gradient field and the composite albedo to vary more

freely to account for abrupt changes on the face.

Evidently, patches on faces have different smoothness. Another advantage of our

patch-by-patch method is that different initial constraint factors can be applied to handle

different smoothness. The smoothness can be roughly estimated from the range ξ and

the standard deviation σ of the gray scale values in a patch, which is taken from the

normalized input image. The smaller ξ and σ, the smoother the patch is. Therefore,

large factors are used if ξ and σ are small. On the other hand, smaller factors are used

if ξ and σ are large.

The Nonlinear Polak-Ribière Conjugate Gradient method is outlined as follows [119]:

1. g(0) = s(0) = −∇C(ν(0)) where ∇C(ν(0)) is the gradient of the cost function at the

vector set ν(0). Details on gradient calculation can be found in Section 7.4.2.

2. Perform line search to find a value γ(m) that minimizes C(ν(m)+γ(m)g(m)) using the

Secant method. ν(m) is the vector set at iteration m(m = 0, 1, 2, · · · )

3. ν(m+1) = ν(m) + γ(m)g(m)

4. s(m+1) = −∇C(ν(m+1))

5. δ(m+1) = max{ (s(m+1))T (s(m+1)−s(m))

(s(m))T s(m) , 0}

6. g(m+1) = s(m+1) + δ(m+1)g(m)
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The error minimization is stopped when ∥g(m+1)∥ falls below a predefined threshold.

After the gradient field is estimated, we calculate the final surface using the M-

estimators algorithm [120]. The reconstructed range image is further fed into a face

recognition program described in Section 7.5.

7.4.2 Cost Function Gradient Calculation

Here we demonstrate how to calculate the gradient of the cost function C in Equa-

tion 7.24 with respect to variables pi,j, qi,j, ui,j for (i, j) ∈ Φ. We limit our discussion here

to patches with the right and bottom boundary conditions imposed. Similar derivation

can be developed for patches when top and left boundary conditions are imposed. With-

out loss of generality, we will demonstrate the calculation of the derivative with respect

to pi,j. Due to the application of forward finite difference method, there are 4 different

cases for pixels in a N ×N patch.

1. For pixels (i, j) where i, j ̸= 1, N : from Equation 7.22 and Equation 7.23, we know

that pi,j is involved in the derivative approximation at and only at these 3 locations:

(i, j), (i− 1, j), (i, j − 1). For the latter two locations, we have

py|(i−1,j) = pi,j − pi−1,j

px|(i,j−1) = pi,j − pi,j−1

Hence,
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∂C

∂pi,j
=
∂ci,j
∂pi,j

+
∂ci−1,j

∂pi,j
+
∂ci,j−1

∂pi,j
(7.27)

2. For the pixel (1, 1):

∂C

∂p1,1
=
∂c1,1
∂p1,1

(7.28)

3. For pixels (i, j) where i = 1 and j ̸= 1, N :

∂C

∂pi,j
=
∂ci,j
∂pi,j

+
∂ci,j−1

∂pi,j
(7.29)

4. For pixels (i, j) where i ̸= 1, N and j = 1:

∂C

∂pi,j
=
∂ci,j
∂pi,j

+
∂ci−1,j

∂pi,j
(7.30)

Here we will explain why we use forward finite difference method when the right and

bottom boundary conditions are imposed. Let us take a look at a pixel (i, j) on the left

boundary of a patch. This pixel doesn’t have a neighboring pixel (i, j − 1) on the left.

As a result, derivatives along the horizontal direction can’t be calculated if backward

finite difference method is applied. However, forward finite difference method doesn’t

pose such a problem in this case and therefore is employed.

The calculation of
∂ci,j
∂pi,j

,
∂ci−1,j

∂pi,j
, and

∂ci,j−1

∂pi,j
is further demonstrated below.
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1). For pixel (i, j), we calculate
∂ci,j
∂pi,j

from Equation 7.25

∂ci,j
∂pi,j

= −2[
ui,j√

1 + p2i,j + q2i,j

− Ii,j]
ui,jpi,j√

(1 + p2i,j + q2i,j)
3

− 2λi[(pi+1,j − pi,j)− (qi,j+1 − qi,j)]

+ 2λs1[2pi,j − pi,j+1 − pi+1,j] (7.31)

∂ci,j
∂qi,j

= −2[
ui,j√

1 + p2i,j + q2i,j

− Ii,j]
ui,jqi,j√

(1 + p2i,j + q2i,j)
3

+ 2λi[(pi+1,j − pi,j)− (qi,j+1 − qi,j)]

+ 2λs1[2qi,j − qi,j+1 − qi+1,j] (7.32)

∂ci,j
∂ui,j

= 2[
ui,j√

1 + p2i,j + q2i,j

− Ii,j]
1√

1 + p2i,j + q2i,j

+ 2λs2[2ui,j − ui,j+1 − ui+1,j] (7.33)

2). For pixel (i− 1, j)

ci−1,j = [
ui−1,j√

1 + p2i−1,j + q2i−1,j

− Ii−1,j]
2

+ λi[(pi,j − pi−1,j)− (qi−1,j+1 − qi−1,j)]
2

+ λs1[(pi−1,j+1 − pi−1,j)
2 + (pi,j − pi−1,j)

2

+ (qi−1,j+1 − qi−1,j)
2 + (qi,j − qi−1,j)

2]

+ λs2[(ui−1,j+1 − ui−1,j)
2 + (ui,j − ui−1,j)

2] (7.34)
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So

∂ci−1,j

∂pi,j
= 2λi[(pi,j − pi−1,j)− (qi−1,j+1 − qi−1,j)]

+ 2λs1[pi,j − pi−1,j] (7.35)

∂ci−1,j

∂qi,j
= 2λs1[qi,j − qi−1,j] (7.36)

∂ci−1,j

∂ui,j
= 2λs2[ui,j − ui−1,j] (7.37)

3). For pixel (i, j − 1)

ci,j−1 = [
ui,j−1√

1 + p2i,j−1 + q2i,j−1

− Ii,j−1]
2

+ λi[(pi+1,j−1 − pi,j−1)− (qi,j − qi,j−1)]
2

+ λs1[(pi,j − pi,j−1)
2 + (pi+1,j−1 − pi,j−1)

2

+ (qi,j − qi,j−1)
2 + (qi+1,j−1 − qi,j−1)

2]

+ λs2[(ui,j − ui,j−1)
2 + (ui+1,j−1 − ui,j−1)

2] (7.38)
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So

∂ci,j−1

∂pi,j
= 2λs1[pi,j − pi,j−1] (7.39)

∂ci,j−1

∂qi,j
= −2λi[(pi+1,j−1 − pi,j−1)− (qi,j − qi,j−1)]

+ 2λs1[qi,j − qi,j−1] (7.40)

∂ci,j−1

∂ui,j
= 2λs2[ui,j − ui,j−1] (7.41)

Therefore, by adding Equation 7.31, Equation 7.35 and Equation 7.39 together, we

get

∂C

∂pi,j
=

∂ci,j
∂pi,j

+
∂ci−1,j

∂pi,j
+
∂ci,j−1

∂pi,j

= −2[
ui,j√

1 + p2i,j + q2i,j

− Ii,j]
ui,jpi,j√

(1 + p2i,j + q2i,j)
3

+ 2λi[−pi+1,j + 2pi,j + qi,j+1 − qi,j − pi−1,j

− qi−1,j+1 + qi−1,j]

+ 2λs1[4pi,j − pi,j+1 − pi+1,j − pi−1,j − pi,j−1]

(7.42)
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Similarly, Equation 7.32 + Equation 7.36 + Equation 7.40 leads to

∂C

∂qi,j
=

∂ci,j
∂qi,j

+
∂ci−1,j

∂qi,j
+
∂ci,j−1

∂qi,j

= −2[
ui,j√

1 + p2i,j + q2i,j

− Ii,j]
ui,jqi,j√

(1 + p2i,j + q2i,j)
3

+ 2λi[pi+1,j − pi,j − qi,j+1 + 2qi,j − pi+1,j−1

+ pi,j−1 − qi,j−1]

+ 2λs1[4qi,j − qi,j+1 − qi+1,j − qi−1,j − qi,j−1] (7.43)

Equation 7.33 + Equation 7.37 + Equation 7.41 leads to

∂C

∂ui,j
=

∂ci,j
∂ui,j

+
∂ci−1,j

∂ui,j
+
∂ci,j−1

∂ui,j

= 2[
ui,j√

1 + p2i,j + q2i,j

− Ii,j]
1√

1 + p2i,j + q2i,j

+ 2λs2[4ui,j − ui,j+1 − ui+1,j − ui−1,j − ui,j−1] (7.44)

The gradient of the cost function C now can be calculated as

∇C(ν) = (
∂C

∂p1,1
, · · · , ∂C

∂pn,m
,
∂C

∂q1,1
, · · · , ∂C

∂qn,m
,
∂C

∂u1,1
,

· · · , ∂C

∂un,m
)T (7.45)

for a n×m image.
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7.5 Recognition based on Iterative Closest Point Algorithm

The subject for the reconstructed range image is recognized by a recognition program

based on the Iterative Closest Point (ICP) algorithm [121] [122]. In this algorithm, two

3D point sets are registered by iteratively transforming one set and finding the geometric

transformation (translation and rotation) that minimizes the average minimal error. The

average minimal error is defined here as the average of the minimal distances of all the

control points in the first set with the second set. The steps in the ICP algorithm are

detailed as follows:

1. Select control points from the first point set

2. To each control point in the first set, find the closest point in the second set

3. Calculate the transformation that minimizes the average distance between the two

point sets

4. Transform the second point set

5. repeat step 1 to 4 until convergence is reached (i.e. the difference in the average

distances of two consecutive iterations is below a predefined threshold)

To find the model that best fits the test set, we match the reconstructed test range image

with every 3D model in a library. The average matching error is computed by summing

for every 3D point in the test range image its minimal distance with the transformed

model. The model with the lowest average matching error is considered as the matching

model.
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7.6 Experiments

For the test image in 7.3b, results after SFS (Shape From Shading) optimization

are shown in Figure 23c and Figure 23f. Compared to the HPCA results, we can see

that details on the face are improved and noise is reduced significantly. Two additional

examples are illustrated in Figure 26 and Figure 28 respectively. These two examples

are reconstructed from a frontal face image in Figure 25 and a profile image in Figure 27

respectively. We can observe from all these results that the reconstructions are very close

to the original range images. To further measure the reconstruction errors, we calculate

an error image re, which is the difference between the original range image ro and the

reconstructed range image rr. The overall error is measured as follows

e =
RMS(re)

MAX(ro)
(7.46)

where RMS(re) is the RMS (Root Mean Square) of the error image re and MAX(ro) is

the maximum of the original range image ro.

In our experiments, 40 profile images and 40 frontal face images are synthesized

from 40 new 3D head models that are not included in the training. Reconstructions are

performed and the errors are measured. We find out that the reconstruction errors are all
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Figure 25. A test image in the frontal view

less than 7%, which implies that the reconstructed range images are close to the original

images.

To further verify the reconstruction accuracy, we use the reconstructions in face recog-

nition experiments, in which the reconstructed range images are tested against 3D head

models, which include the 40 new models and those used in training. 73 out of 80 test im-

ages are recognized correctly. The recognition rate is 91%, which is satisfactory for such

a hard task, in which 2D images are tested against 3D models. The good performance

on recognition demonstrates the accuracy of our reconstruction method as well.
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a

d e f

b c

Figure 26. (a) The original range image; (b)The original range image in the x-y
view; (c) The reconstructed range image from HPCA. This reconstruction serves

as the initial estimation for the optimization algorithm; (d) The SFS
reconstruction; (e) The SFS reconstruction in the x-y view; (f) The

reconstruction error



103

Figure 27. A test image in the side view
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a

d e f

b c

Figure 28. (a) The original range image; (b)The original range image in the x-y
view; (c) The reconstructed range image from HPCA. This reconstruction serves

as the initial estimation for the optimization algorithm; (d) The SFS
reconstruction; (e) The SFS reconstruction in the x-y view; (f) The

reconstruction error



CHAPTER 8

CONCLUSIONS

In this report, we first compare the novel RISq method to HMM. Both methods are

used for the recognition of general vector sequences. Our comparison shows that RISq

performs better than HMM in many aspects. The training of RISq requires only one

example from each class and the training is much simpler than training HMM models.

Also a few sparse samples from a test sequence are usually sufficient for RISq to achieve

robust recognition while HMM needs the entire sequence. This makes RISq essentially

much less sensitive to missing vectors. Lastly, our experiments demonstrate that RISq

outperforms HMM in term of handling large sets of models or with many vectors di-

mensions. RISq is also better in noise robustness, computation time, selectivity ratio,

etc.

For human gesture recognition, we develop a novel system to recognize different hand

gestures. We use an Inertial Measurement Unit (IMU) equipped with accelerometers

and gyroscopes to sense the motion of the operator’s hand. The IMU is calibrated with

the help of Nonlinear Data-Fitting method. Gesture trajectories are reconstructed from

inertial sensor measurements using the Inertial Navigation System (INS) theory. We

develop a novel method named Zero Velocity Linear Compensation (ZVLC) to improve

trajectory reconstruction accuracy. Experimental results show that ZVLC provides more
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accurate reconstruction than the widely used method of Zero Velocity Compensation

(ZVC). At the recognition stage, the novel RISq method is employed to recognize the

reconstructed gesture trajectories and achieves a recognition rate of 92%.

In the third part of this thesis, we describe a novel method for 3D head reconstruction

and view-invariant recognition, which is based on Shape From Shading (SFS) combined

with Hybrid Principal Component Analysis (HPCA). Our novel HPCA algorithm pro-

vides good initial estimates of 3D range mapping for the SFS optimization and yields

much improved 3D head reconstruction. Additional contribution of our chapter is the

successful handling of variable and unknown surface albedo in SFS. Experimental results

show that our HPCA based SFS method provides accurate 3D head reconstructions and

high recognition rates. Our work could have many practical applications such as person

recognition from side views when only frontal views are available for modeling.
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