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SUMMARY 
 

In this thesis, we argued for an increase in the use of spatio-temporal analysis in 

educational research.  Though educational research frequently addresses questions that lend 

themselves well to spatial and spatio-temporal analyses (e.g. those involving differences across 

schools), the use of such analyses is almost non-existent in this field.  We argued that the dearth 

of usage is due to three challenges: complications of large datasets, complex statistical models, 

and model selection.   To overcome these challenges and therefore support this increase in usage 

of the analyses, we provided a three-part toolkit for educational researchers.  

 The first part of our toolkit was the introduction of a Bayesian linear spatio-temporal 

model which addressed the second challenge (complex statistical models), through incorporation 

of features familiar to educational researchers, such as the use of an ANOVA-based model 

structure.  This first part of our toolkit also addressed the first challenge (complications of large 

datasets) through use of Bayesian Ridge Regression and thin-plate splines, which we included to 

better accommodate spatial, temporal, and spatio-temporal variables.  The model also addressed 

this challenge through inclusion of marginal maximum likelihood estimation in our analyses, as 

the use of marginal maximum likelihood estimation, along with ridge regression, allowed for 

avoidance of the lengthy computational time often involved with Markov chain Monte Carlo 

sampling.  

The second part of our toolkit addressed the statistical side of spatio-temporal analysis, as 

well as the second challenge (complex statistical models), through demonstration of the ease of 

use of our model for data analysis using the Bayesian Ridge Regression software program.  This   
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software program utilizes a point-and-click interface, which is similar to statistical analysis 

programs that are commonly used in educational research, such as SPSS.  To demonstrate the 

ease of use of our model, we analyzed two educational datasets, one relatively large (n = 18,506) 

and one smaller (n = 2,729).  To further demonstrate the ease of application of the model and 

interpretation of the results, we also included sample posterior output, as well as a guide for how 

to run this particular model in the software program.  This output included the time needed to 

complete each analysis; the fast computational times (under 30 seconds) addressed the first 

challenge (complications of large datasets). The ease of interpreting the results also addressed the 

third challenge (model selection), in part through demonstration of the ease of determining 

significant variables through use of the 50% posterior credible intervals, which are provided in 

the posterior output.  Likewise, we also demonstrated the ease of determining the best 

combination of predictors to include in a model by using model fit indices [R2, the D(m) statistic, 

the Akaike information criterion, and the Bayesian information criterion], which are also 

provided in the posterior output.   

The third part of our toolkit addressed the descriptive side of spatio-temporal analysis 

through demonstration of techniques such as mapping.  This more descriptive side of the analysis 

is important because it emphasizes further exploration of spatial and spatio-temporal 

relationships.  We emphasized this exploration in part to caution researchers against conflating 

correlation and causation, especially when sensitive variables (e.g. race and ethnicity) are 

included in the analysis.   
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1. INTRODUCTION 

 

1.1       Background 

 Spatial analysis of data, or analysis that requires data that is linked to a geographical 

location or locations (Weeks, 2004), is by no means a recent development; evidence of it has 

been found in analysis of weather patterns dating back to 1686 (Cressie, 1991).  Snow (1855) 

used spatial analysis to find the root of the 1854 London cholera outbreak, as did Fisher in his 

agricultural field trials (Diggle, 2010).  Spatial data analysis continues to be used extensively in 

fields that emphasize analyzing differences across locations, such as ecology and geography.  In 

a similar vein, fields that commonly require observations across time, such as medicine, 

frequently utilize temporal analysis of data.  We see more and more application of spatio-

temporal analyses, or analyses that incorporate both spatial and temporal data, as well as 

increased development of statistical models capable of accurately representing spatio-temporal 

data.  This increased application and development is due in part to a growing recognition of the 

value of simultaneously modeling both spatial and temporal aspects of a dataset.  For example, 

the field of epidemiology frequently utilizes spatio-temporal analyses and models in applications 

such as disease mapping, where researchers attempt to predict the spread of disease across both 

geographical locations and time.   

 The arguments for including spatial, temporal, or spatio-temporal analyses have both 

methodological and statistical bases.  Cressie (1991) argued that all data inherently have some 

spatial and temporal aspects to them, and to leave out these variables is to risk drawing false 

conclusions about the nature of the relationships between independent and dependent variables.  

For example, rainfall data collected at stations that are close to each other are likely to be similar, 
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as are data collected at close points in time. Failure to factor these into the data is failure to 

account for these correlations during the analysis, allowing for possible misattribution of results.       

 As a methodological example of the importance of including spatial and temporal 

variables, consider that one purpose of social science research is to explain human behavior 

(Goodchild & Janelle, 2004).  To illustrate, consider a study where we analyze public 

transportation usage among Chicago residents.  If we do not account for variables such as place 

of residence or location of transportation, we risk creating what Robinson (1950) termed an 

ecological fallacy: drawing conclusions about the behavior of individuals based on findings from 

analyses conducted on populations.  We miss the possible discovery of patterns of behavior in 

certain parts of the city or among certain groups of people.  In addition, by not accounting for 

time we miss the opportunity to study this behavior longitudinally, or with repeated observations 

across time, rather than as a cross-section, or a single observation at a single point in time, thus 

missing a chance to strengthen our research design (Goodchild and Janelle, 2004).  Longitudinal 

studies allow researchers to look for consistency in findings and, to an extent, to create an 

argument for the ability to replicate studies with similar results (Haining, 1990).            

 We can extend the importance of including spatial and temporal variables to educational 

data.  Educational literature makes a strong case for the need to consider a student’s home 

environment and neighborhood effects (Wilson, 1987), or neighborhood characteristics (e.g. 

concentration of poverty and crime rates), in educational planning (Berliner, 2006; 

Bronfenbrenner, 1976).  Building off this concept of neighborhood effects, researchers have 

explored numerous variables at the neighborhood-level, including the quality of social 

relationships and crime rates (Sampson, Raudenbush, & Earls, 1997).  Savitz and Raudenbush 

(2009) extend this research further by creating a Bayesian model that allows for spatial 
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dependence, or the tendency for locations that are close to each other to have similar outcome 

values.  This spatial dependence is often inherent in neighborhood-level analyses1.  

 In the remainder of this chapter, we present the opportunities and challenges posed by the 

increasing use of spatio-temporal models in educational research.  We will illustrate the benefits 

through the use of an example from an analysis of Chicago Public Schools’ (CPS) data.  This is 

followed by a literature review covering current spatial and spatio-temporal statistical models.  

We also include a brief overview of ridge regression, a shrinkage estimation approach, which 

will eventually serve as an important part of our proposed spatio-temporal model for educational 

data.  We conclude with a brief look forward to the remainder of this thesis. 

 

1.1.1      An Illustration of the Benefits of Spatial Analysis 

In May 2013, the Chicago Board of Education decided to close 45 schools in the Chicago 

Public Schools (CPS) system, effective at the start of the 2013-2014 school year.  Per 

communications from CPS concerning the closings, factors considered in determining which 

schools to close included school enrollment size (Chicago Public Schools, n.d.). Schools with 

enrollments both below and above the district-set standard for "Ideal Performance Enrollment," 

as set forth in the Chicago Public Schools' Space Utilization Standards (Chicago Public Schools, 

                                                        
1 However, caution must be taken when considering neighborhoods as a unit of spatial 
analysis.  For one, there is not consensus on how to define the spatial boundaries of 
neighborhoods (Roberto, 2015), as well as on appropriate ways to measure neighborhoods, 
such as the use of city blocks (Sampson, 2008).  Sampson (2008) also references the 
ecological fallacy in questioning when (if ever) it is appropriate to draw conclusions about 
individual residents based on neighborhood-level findings.  Per Sampson (2008), the non-
experimental nature of much research on “neighborhood effects” casts serious doubts on 
whether causality can be inferred from research findings.  In the same vein, since much 
research on neighborhoods focuses on racial segregation and poverty, researchers must 
also consider the caution of Holland (2008) against treating race as a causal variable, in no 
small part because of the failure to consider other unobserved covariates that may actually 
account for observed effects.   
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2011), were targeted for closing.  Using school enrollment size as a main criterion may make less 

intuitive sense than using academic performance, particularly in the cases of schools with large 

enrollment, but the literature abounds with studies exploring the relationship between school 

enrollment size and student academic performance. The majority of these studies report a 

negative relationship between large school enrollment and student performance (Leithwood and 

Jantzi, 2009).  This holds true in elementary schools (Kuziemko, 2006) and secondary schools 

(Lee and Smith, 1993; Bloom, Thompson, and Unterman, 2010).   

Though only 45 of the over 600 CPS schools were closed, Radinsky and Waitoller (2013) 

estimated that upwards of 133 schools were impacted.  This increase was largely due to 

consolidations and the designation of some schools as “receivers” for displaced students.  As a 

result of their increased estimate of the number of schools impacted by the closings, the number 

of students impacted also increased substantially, from the roughly 30,000 cited by CPS to 

almost 47,500 (Radinsky & Waitoller, 2013). 

 Radinsky and Waitoller (2013) then delved deeper into the data to gain further insight 

into not only the schools that were closed, but also the students affected by the closings.  

Through their research, Radinsky and Waitoller determined that the overwhelming majority of 

the schools that were closed were located in neighborhoods in the West and South sides of the 

city of Chicago (“Looking Closer at Closings,” 2013).  In general, these West and South side 

neighborhoods tend to have disproportionally higher rates of both poverty and minority residents 

when compared with the rest of Chicago.  Not surprisingly, then, the authors found that 81% of 

the CPS students impacted by the school closings were African-American (Radinsky & Waitoller, 

2013).       
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 It was not necessary to use spatial analysis to determine that the majority of the CPS 

students impacted by the school closings were African-American.  What spatial analysis did 

allow for, however, was a demonstration that the closings were largely concentrated in certain 

West- and South-side neighborhoods in Chicago.  This demonstration opens the door for 

important policy-related conversations around segregation, both in the city and in CPS, and the 

ramifications of this segregation for educational access (“Looking Closer at Closings,” 2013). 

 The CPS example illustrates the impact of including spatial elements in research and 

invites conversations around not only the impact of city or neighborhood-level segregation in 

education, but also the spatial nature of segregation.  We can extend this conversation on 

segregation into the field of sociology, where recent work on the spatial nature of residential 

segregation (i.e. segregation in housing) is reflected in the research of Roberto (2015).  Roberto 

(2015) examined traditional sociological measures of segregation and determined that many 

either fail to account for spatial considerations such as geographic scale (i.e. the size of a 

segregated area or areas relative to a larger area, such as a city) and spatial proximity (i.e. what 

neighborhoods are next to each other, as well as measures of distance between neighborhoods or 

certain points within neighborhoods) or fail to do so adequately (e.g. do not consider the possible 

impact of rivers and other natural boundaries on segregation).  

Roberto (2015) addressed this inadequacy through development of a method that utilizes 

roads in a city and distance along these roads, since roads reflect the presence of boundaries (e.g. 

if a river is present, not all roads contain bridges over the river, thus creating a boundary), rather 

than Euclidean distance between points.  The use of roads, and acknowledgement of these spatial 

boundaries, also shifts the conceptualization of residential space away from census tracts, 

reflecting a more realistic view of the spatial boundaries observed in cities and experienced by 
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residents.  Roberto built on how segregation is experienced by residents through emphasis on the 

local effects of segregation; that is, demonstration that segregation is not an index that can be 

uniformly calculated across a city, but a construct that needs to be considered in terms of scale.  

For example, does segregation exist on a smaller geographic scale, as in neighborhoods such as 

Chinatown, or on a larger geographic scale, such as the West and South sides of Chicago? 

 This illustration from sociological research supports the argument for the need to increase 

the inclusion of spatial analysis in educational research.  Educational research often pursues 

research questions that lend well to spatial analysis, yet is largely devoid of such analyses.  Use 

cases from other social science disciplines provide a more accessible framework and starting 

point for extension into education, when compared with those from the natural sciences.  The 

work done by Roberto (2015) on defining spatial boundaries, for example, resonates in 

educational research on schools, where researchers are concerned with boundaries such as 

neighborhoods, aldermanic wards, and those used to determine enrollment for schools.  For 

example, an educational researcher might ask if and how school boundaries shifted with the 

introduction of new charter schools, and what the resident demographics look like within these 

boundaries.  This work on defining spatial boundaries also extends naturally into the city of 

Chicago, where the borders of the 77 neighborhoods are formed largely by roads (Sampson, 

2008).        

 

1.2       Problem Statement 

 Educational research focused on physical locations, such as school locations, is well-

suited to spatial analysis.  Of the different types of spatial data, which we will cover in more 

detail later in this thesis, these school locations are classified as “point” data, which can be easily 



7 
 

 

characterized using coordinates such as latitude and longitude (Banerjee & Fuentes, 2011).  Even 

research focused on broader locations, such as neighborhoods or cities, has the advantage of 

looking at areas that are likely to remain geographically fixed across time and have relatively 

stable boundaries.  Contrast this with environmental research studying rainfall amounts across 

places, where boundaries are more fluid and the locations of interest are likely to change over 

time.  It is worth noting that areas remaining geographically fixed across time does not imply 

spatial stationarity, wherein the mean and variance-covariance of the distribution are assumed 

to be invariant across all spatial locations (henceforth denoted by S) in the domain of interest 

(Cressie, 1991). 

 An advantage to incorporating spatio-temporal variables into educational research can be 

increased validity and accuracy of both findings and interpretation of results (Cressie, 1991).  As 

an example, Savitz and Raudenbush (2009) found that their Bayesian statistical model, which 

incorporated spatial dependence, was better able to predict future Chicago homicide rates from 

measures of collective efficacy [i.e. “social cohesion among neighbors” (p. 167)] than models 

that failed to account for this dependence.  As another example, think again of the concept of the 

ecological fallacy (Robinson, 1950), wherein findings based on aggregated data are assumed to 

be true for individuals and vice versa.  Now think of this in terms of research findings across a 

city-wide school system.  If school location-and perhaps covariates (predictor variables) related 

to neighborhood characteristics-are not included, we risk making generalizations that may be 

true in the bigger picture, but may also only be true for schools in certain parts of the city.  In 

addition, we miss exploring relationships between proximal and distal schools, and what 

neighborhood characteristics similarly performing schools (e.g. schools with similar average 

standardized test scores) may have in common (Alperin, 2008).  Likewise, if we do not look at 
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findings across multiple time points, we may assume that a one-time drop in performance is a 

sign of ongoing decline, rather than a fluke.  However, it is important to note that including 

spatial and temporal variables does not guarantee improved results; significance testing of these 

predictors is important to ensure that variables are intentionally included in models.  In addition, 

it is important to note that these models are largely intended to look at relationships between all 

predictors, rather than to establish causal relationships.  It would be irresponsible to draw causal 

inference about, for example, increased school enrollments in a particular neighborhood without 

exploring other relationships and contextual factors.         

 There are also challenges with using these models in educational research.  For one, 

while educational datasets vary widely in size, some can be large, both in terms of number of 

cases (subjects) and number of predictors (covariates), denoted p, often due to government 

mandates around data collection for accountability measures.  This issue of large datasets is 

compounded with spatio-temporal models, where each time period t of data collection adds 

another set of data points (cases by variables by time).  For a fully Bayesian approach to a 

Gaussian process (i.e. normally distributed) model, which is a standard model for spatial data, 

these large datasets can be computationally unwieldy due to the large-scale matrix inversions (i.e. 

specific algebraic computations) that need to be performed for each Markov chain Monte Carlo 

(MCMC) iteration, or sampling from a given probability distribution (Gelfand, Banerjee, & 

Finley, 2011; Hancock & Hutchinson, 2006).  These MCMC iterations are necessary in order to 

estimate the covariance function parameter for the model.  In the case of the Gaussian process 

model, the covariance function is of dimension n x n, where n is the sample size of the dataset.  

Given that the MCMC matrix inversions iterations occur on the order of n3 (Gelfand, Banerjee, 

& Finley, 2011; Hancock & Hutchinson, 2006), it is clear to see that parameter estimation using 
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a Gaussian process model would be extremely computationally intensive when used on an 

educational dataset with a sample size in the hundreds or thousands.   

However, with the growing availability of massive amounts of data, from a multitude of 

sources and with varying degrees of structure, has come increased interest in creating models 

capable of handling large datasets.  Hensman, Fusi, and Lawrence (2013) developed a model that 

employs stochastic variational inference (SVI), where a smaller number of variables are used as 

a proxy for the whole, and applies to both Gaussian (i.e. normal) and non-Gaussian models.  

Eidsvik, Finley, Banerjee, and Rue (2012) described a dimension-reducing, or low-rank, 

predictive process model that utilizes fixed, non-grid based representations of all spatial 

locations in S, known as “knots.”  This model also applies to both Gaussian and non-Gaussian 

models. 

Another challenge is the level of technical and statistical knowledge needed to perform 

these analyses.   Many spatial and spatio-temporal models are very complex and difficult to both 

understand and to use (Stroud, Müller, & Sansó, 2001).  For example, a number of these models 

utilize Bayesian inference; in education graduate programs, training on Bayesian inference is not 

nearly as common as training in frequentist methods (for a detailed description of Bayesian and 

frequentist inference, please see Section 1.3.1).  Finally, running these models often requires 

knowledge of coding-based statistical programs such as R or MATLAB. 

A third challenge is that of model selection, particularly in large datasets.  That is, when 

there are many variables of potential interest, how does a researcher decide which variables to 

include in the final model?  Even in a study that does not incorporate spatial analysis, it is easy to 

imagine a large number of background variables, such as student gender, age, and test scores.  

The addition of spatial locations creates more potential variables, especially when data is 
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collected over time.  As an illustration, consider a study where the researcher is interested in 

looking at the relationship between crime rates and the amount of green space in a neighborhood.  

In order to control for possible confounding variables, a large number of neighborhood-related 

variables, such as poverty rate and educational attainment, must be included.  In addition, a 

number of spatially relevant variables might be included.  For example, Tobler’s (1970) first law 

of geography states that, “everything is related to everything else, but near things are more 

related than distant things” (p. 236).2  Therefore, we might include a variable such as distance 

between neighborhoods, in order to examine whether high correlations exist among our variables 

between nearby neighborhoods.  This phenomenon is also known as spatial autocorrelation 

(Moran, 1950; Cliff & Ord, 1973).  Inclusion of distance between neighborhoods, though, also 

necessitates determination of how to measure distance [i.e. by using Euclidean distance or road 

distance, as done by Roberto (2015) in a study of segregation and spatial boundaries].  As one 

might imagine, it could take a great deal of time and iterations of analysis to determine the best 

combination of variables to model the relationship between crime and green space.   

We acknowledge that there are many methods for selecting which variables to include in 

a model.  Some of the more manual methods involve adding and removing variables based on 

statistical criteria.  In the case of the crime rate example, this approach would be particularly 

cumbersome and time-consuming.  Given the propensity for spatio-temporal datasets to contain 

large numbers of variables, we suggest using methods that allow for automatic variable selection 

and the use of multiple model fit indices.  

                                                        
2 However, researchers must be careful to not assume that close proximity guarantees a 
higher degree of relationship.  For example, while two schools may be physically close to 
each other, one may be a neighborhood school (students from the surrounding 
neighborhood) and the other selective enrollment (students from across the city).  
Therefore, even though the schools are located near each other, they may have very few 
similarities in terms of attributes such as student body composition. 
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1.3   Motivation for the Study 

In thinking about the motivation for the need for spatio-temporal analyses in educational 

research, we consider the following sample research questions, which incorporate spatial or 

temporal elements: 

1. Does proximity to a charter school have an impact on Illinois Standards Achievement 

Test (ISAT)/Prairie State Achievement Examination (PSAE) test scores in public 

schools? 

2. Is there a higher percentage of students with autism in schools in certain parts of the city 

of Chicago?  

3. For those students who were displaced by the 2013 school closings, is there a 

relationship between distance from their place of residence to their new school and the 

students’ reading and math achievement?  

4. Does residential proximity to pet coke storage piles in Chicago have an effect on student 

reading and math achievement? 

5. What factors had an impact on the likelihood of a CPS school being closed between 

2001 and 2006?  Do these factors differ for CPS schools closed in 2013?  Do these 

factors vary across the city of Chicago? 

 As evidenced by these sample research questions, inclusion of spatial and temporal 

variables can bring richness to educational studies, and providing an approach that alleviates the 

current obstacles to their use in education research may result in the greater adoption of these 

models.  Therefore, we seek to alleviate these obstacles through two approaches: 
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1. Presentation of a linear spatio-temporal model that is well-suited to analysis of large 

datasets.  

2. Presentation of a Bayesian approach to analyzing spatio-temporal data that is more 

accessible to the broader community of educational researchers. 

In their presentation of research into the Chicago Public Schools (CPS) school closings, 

Radinsky and Waitoller highlighted the advantages of both having large datasets in educational 

research and having the ability to quickly analyze and to report out on this data.  Radinsky and 

Waitoller stressed the latter in particular due to the importance of policymakers having access to 

research findings when making decisions (“Looking Closer at Closings,” 2013).  Based on this 

concern, among others, we focus on the presentation of a new model, rather than on spatial 

reasoning or spatial analysis tools such as geographic information systems (GIS) [for more 

coverage of these topics, see Goodchild (2008), Goodchild and Janelle (2010), and the National 

Research Council (2006)].  This focus on a new model, as well as a suggested new ridge 

regression-based approach for analyzing spatio-temporal data, ensure that this thesis both 

contributes to the educational research literature and presents clear and immediate practical 

applications.     

 

1.4      Research Goals 

 Based on our problem statement and, in particular, the challenges we noted therein, we 

propose the development of a Bayesian spline-based ridge regression model that can account for 

space and time effects, as well as the effects of other predictors.  Our proposed model addresses 

common problems with the analysis of large datasets, in particular those around the speed and 

feasibility of the analysis.  In addition, our proposed model also provides a useful tool for 
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allowing educational researchers to explore research questions with spatial dimensions (e.g. the 

relationship between whether a school was closed and its proximity to charter schools).  This 

model is meant to be used with spatial locations that are classified as “point” data, such as 

schools.  In addition, this model provides researchers with a method to analyze spatio-temporal 

data that is accurate and easy to use, in order to answer the question of whether spatial and 

spatio-temporal variables help to explain the dependent variable in the regression analysis.   

 As a supplement, we will also provide a guide for applying our model in Appendix B, 

thus making it more accessible for educational researchers.  This guide will provide both a brief 

overview of our model as well as steps for using the model in the Bayesian Ridge Regression 

software developed by Dr. George Karabatsos (2016). 

 

1.5       Review of Literature 

 The classical geostatistical, or spatial statistics, model is given by: 

𝑌(𝒔) = 𝜇(𝒔) + 𝑒(𝒔)                                                                (1.1) 

where μ(s) is the mean function and e(s) is the error (Zimmerman and Stein, 2010).  This model 

seems simple when compared with other statistical models, spatial or otherwise, but for early 

applications in mining, it was sufficient (Diggle, 2010).  This model would not be sufficient, 

however for an application such as disease mapping, for a number of reasons.  As both Diggle 

(2010) and Cressie (1991) note, new research questions and new discoveries necessitate 

development of better- suited spatial models.  These newer, more sophisticated models are better 

equipped to detect spatial dependence and to allow for hierarchical structures (i.e. breaking the 

model into linked sub-models to allow for greater flexibility in parameter estimation; Wikle, 
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2010), among many others.  In a nutshell, these more sophisticated models lend for confidence in 

the results of the analyses. 

 The literature on spatial, temporal, and spatio-temporal models is vast and covers a wide 

array of model approaches.  For the sake of this thesis, we will present a brief overview of model 

approaches while focusing more on linear regression models (i.e. models that aim to predict or to 

explain relationships between variables and that assume a linear relationship between the 

dependent variable[s] and predictor variable[s]), since this is the class of models likely to be 

most familiar to educational researchers and practitioners.  This overview draws extensively on 

existing guides on spatial modeling and statistics [see Cressie’s (1993) seminal book, Statistics 

for Spatial Data], temporal modeling and statistics [see Box and Jenkins’ (1976) seminal book, 

Time Series Analysis: Forecasting and Control, and Prado and West’s (2010) Time Series: 

Modeling, Computation, and Inference], spatio-temporal modeling and statistics [see The 

Handbook of Spatial Statistics (2010), edited by Gelfand, Diggle, Fuentes, and Guttorp] and the 

intersection of spatial and spatio-temporal data and the social sciences [see Haining (1990) and 

Goodchild and Janelle (2004)].    

   

1.5.1    Spatial Data Analysis 

As a broad, introductory overview, it is worth noting that there exist an abundance of 

spatial models utilizing both frequentist and Bayesian frameworks.  By a frequentist framework, 

we mean an approach that assumes that model parameters for a dataset (e.g. mean and variance-

covariance matrix) would be fixed upon repeated analysis of the data.  Prior information about 

the data is not taken into consideration, and inferences about the data are made based on rules for 

rejecting or failing to reject the null hypothesis (i.e. no relationship between variables).  In 
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contrast, a Bayesian framework assumes that model parameters are determined probabilistically 

through sampling, and therefore not fixed upon repeated analysis.  Prior information is taken into 

consideration, and inferences about the data are based on updating this prior distribution with the 

data from the sample, then using the resulting posterior distributions (Casella, 2008).  Of the 

references listed above, Cressie (1991) focused more on examples of frequentist models, while 

Gelfand, Diggle, Fuentes, and Guttorp (2010) also included Bayesian models.  Additional 

examples of frequentist models include the hierarchical spatial model of Royle and Berliner 

(1999).  Likewise, additional examples of Bayesian models include the spatial models of Wikle 

(2003); Banerjee, Gelfand, Finley, and Sang (2008); and Higdon, Swall, and Kern (1999). 

We mentioned earlier that educational research data involving schools would be 

classified as “point” data, which can be characterized using latitude and longitude (Banerjee & 

Fuentes, 2011).  It could be argued that this represents a best case scenario for spatial data 

analysis: by definition, spatial data analysis requires data that is linked to a geographical location 

or locations (Weeks, 2004), and with “point” data the geographic locations are included in the 

dataset in the form of latitude and longitude coordinates.  However, it is important to note that 

spatial analysis can extend beyond “point” data to larger geographical regions.  For example, a 

researcher interested in looking at academic performance of students from across the city of 

Chicago may use neighborhoods as the units of spatial analysis.  While a neighborhood cannot 

easily be characterized using a single latitude and longitude coordinate, it is still a spatial 

location capable of analysis.  Indeed, the book Spatially Integrated Social Science, edited by 

Goodchild and Janelle (2004), is divided into sections that recommend spatial analyses for 

different levels of spatial locations: “point” data, neighborhoods, and larger regions such as 

countries. 
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   Thus, planning for research involving spatial data includes careful consideration of the 

spatial locations and type or types of spatial data that will be collected.  Haining (1990, p. 39) 

offered the following considerations of spatial locations:  

1. Are the spatial locations of interest a series of points or a larger area? 

2. Do the spatial locations cover an entire area or are they clustered in certain parts? (e.g. 

if one wished to study rainfall amounts in a region, would the amounts be collected 

across the region or in certain locations within the region?) 

3. What boundaries, whether physical or symbolic, exist between spatial locations and 

how might these boundaries impact the findings? (e.g. boundaries between urban and 

rural areas) 

4. What relationships might exist between spatial locations?  What external factors may 

play into these relationships? 

Cressie (1991) urged consideration of whether the spatial process should be classified as 

continuous (or geostatistics), discrete, or as part of a point process.  The importance of 

identifying the type of spatial process rests largely in the question to be answered.  For example, 

continuous spatial processes are ideal when one seeks to predict or to infer values, while discrete 

spatial processes are better suited for explanation of phenomena (Gelfand, Diggle, Fuentes, & 

Guttorp, 2010).  Likewise, discrete spatial processes and spatial point processes are more 

analogous with temporal (time series) analysis due to the countable nature of discrete data and 

the ability to detect patterns (Cressie, 1991).  We now offer brief overviews of each of the three 

aforementioned types of spatial data processes.    

 Continuous spatial processes, or geostatistics, are those that allow for spatial locations 

that vary continuously across the larger, typically two- or three-dimensional spatial domain of 
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interest, denoted as D.  Cressie (1991) noted that the term “continuous spatial processes” is often 

used interchangeably with the term “geostatistics.”  The aims of these processes are prediction, 

often referred to as kriging (Matheron, 1963) in geostatistics, and inference across D (Gelfand, 

Diggle, Fuentes, & Guttorp, 2010).  Because it is unlikely that we sampled all spatial locations 

across D, we seek to predict or to infer values of the dependent variable(s) for unsampled 

locations.  An example of a continuous spatial process would be the monitoring of rainfall across 

the state of Oklahoma.  Here D is the state of Oklahoma and we can assume that rainfall data is 

collected at certain sites across the state.  Though we would not have rainfall data for all sites 

within D, we could use known values to make predictions for the unsampled sites.  An example 

from educational research would be looking at test scores from the Chicago Public Schools 

(CPS) district.  If a researcher treated the city of Chicago as the spatial domain of interest and 

had test scores from at least some CPS schools, the researcher could look at the spatial 

distribution of test score values across the city and then examine the characteristics of parts of 

the city with expected higher and lower test scores. 

 The domain of interest with discrete spatial processes, on the other hand, is only specific 

spatial locations.  Cressie (1991) referred to discrete spatial processes as lattice-based because of 

the finite and therefore easily countable number of spatial locations.  In addition, the use of 

specific spatial locations allows for representation of the sites on a map or grid, and thus also for 

relatively easy calculation of quantities such as distance between locations.  The aims of these 

processes are to detect spatial patterns (e.g. similar outcome values in neighboring sites) in order 

to facilitate an explanation for phenomenon and to smooth these discrete points to enhance 

visualization of the data (Gelfand, Diggle, Fuentes, & Guttorp, 2010).  An example of a discrete 

spatial process would be disease mapping in epidemiology.  One illustration of disease mapping 
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would be to analyze relative risk of brain cancer across the Chicago neighborhoods, given known 

numbers of occurrences of brain cancer and potentially background information about those with 

the disease.  This information could then be used to look for patterns across neighborhoods and 

possible explanations for these patterns.  An example from educational research would again be 

looking at schools with high percentages of students with autism, with an emphasis on looking at 

the number of these schools in each neighborhood.  The researcher could then look for patterns 

between the neighborhoods, such as whether close-by neighborhoods tend to have similar counts 

of schools with high percentages.  

 The final type, spatial point processes, is slightly more difficult to conceptualize than 

continuous and discrete spatial processes.  In spatial point processes, the focus is more on 

random events in a set, again occurring in a two- or three-dimensional spatial domain of interest, 

D.  Here the “point” refers to spatial locations, “process” refers to the model, and the “pattern” or 

“event” refers to the realization (Cressie, 1991; Gelfand, Diggle, Fuentes, & Guttorp, 2010). 

Spatial point processes can be defined in two ways: by the spatial locations of the realizations or 

mathematically based on counts of the realizations, which could then be represented by a 

Poisson point process, among others (Isham, 2010).  The aim of spatial point processes is to 

determine whether the events demonstrate complete spatial randomness or if there is evidence of 

clustering (i.e. spatial dependence).  Examples of spatial point processes include analyzing the 

locations of trees in a forest, earthquakes, and even lightning strikes.  As might be expected, 

these processes are particularly well-suited to spatio-temporal adaptation due to the relevance of 

knowing both the time and location of an event (Cressie, 1991).  An example from educational 

research would be looking at the CPS school closings.  In this example, the spatial locations 

would still be the schools, but the event would be the school closings.  The researcher could then 



19 
 

 

determine whether evidence exists of clustering within the closed schools, or whether the schools 

exhibit random distribution across the city.  

 

1.5.2    Temporal (time series) Data Analysis 

 One related concept with temporal, or time series, data analysis is a longitudinal research 

design.  In the longitudinal design instance, we think of measuring variables at different points in 

time, as the research is being conducted.  In a similar vein, we could also think of an 

electrocardiogram (EKG), measuring a person’s heart rate across a period of time.  However, 

time series analysis can also be used to look at future time periods, as with economic or 

meteorological forecasting. 

 Time series analysis, like spatial analysis, can also be continuous or discrete.  We can use 

the example of the EKG as an illustration of the difference between continuous and discrete time 

series analysis.  By nature, an EKG is a continuous measure: it measures a person’s heart rate 

across all time points within a given interval.  However, if a person’s pulse is read at certain time 

points within that interval, such as every minute, then it is a discrete measure.  It is worth noting 

that while time is often measured at equal intervals, especially in educational research, equal 

intervals are not required to perform the analyses.  The notation of the time series differs, 

however, depending on whether there are fixed intervals between time points, with: 

                          yt, t = 0, 1, …, T representing equally spaced intervals and                             (1.2) 

               yti, i = 1, 2, 3, … representing unequally spaced intervals (Prado & West, 2010)      (1.3) 

One important determination in selecting an appropriate model for analyzing time series 

data is whether the data can be classified as stationary or non-stationary.  For time series data to 

be classified as “stationary,” we assume that the probability distribution of the dependent 
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variable yt, which could be illustrated through use of the mean and variance (or variance-

covariance matrix) of yt, is the same across all time points (Prado & West, 2010).  If the 

distributions vary across temporal observations, the data is classified as “non-stationary” (Box & 

Jenkins, 1976).  Due to our use of a linear spatio-temporal model, we will focus on linear time 

series models for both stationary and non-stationary data.  

For stationary time series data, a common set of linear models is the autoregressive time 

series models (AR).  The AR accounts for expected correlations between the data at various time 

points, also known as temporal autocorrelation.  The AR is given by: 

                        𝑦𝑡 =  ∑ 𝜑𝑖𝑦𝑡−𝑖 + 𝑝
𝑖=1 𝜖𝑡                                                                          (1.4) 

where:      

                        -yt is a function of time points, 

                        -𝜑 is a constant parameter, 

                        -p is the order of the autoregression, and 

                        -𝜖𝑡represents error terms (Prado & West, 2010) 

The parameters 𝜑𝑖 can be used to determine the degree of temporal autocorrelation 

between these included time points by use of Yule-Walker equations (Box & Jenkins, 1976).  A 

description of these equations is outside of the scope of this thesis; therefore, we direct interested 

readers to Box and Jenkins (1976) for a more extensive overview.  The number of included time 

points (or temporal lag terms) included in the model is given by the order of the autoregression 

(AR), given by p [i.e. AR(p)], as noted above.  For example, a model that only includes t and one 

lag term, t1, would be classified as a first-order autoregressive model, or AR(1). In the case of 

AR(1), the model reduces to: 

                                             𝑦𝑡 =  𝜑1𝑦𝑡−1 + 𝜖𝑡                                                             (1.5) 



21 
 

 

reflecting that the model only includes t and the one lag term, t-1. 

Another common set of linear models is the autoregressive moving average models 

(ARMA), popularized by Box and Jenkins (1976).  The ARMA accounts for temporal 

autocorrelation in addition to correlations between the lag error terms (Prado & West, 2010).  

The ARMA is given by: 

                        𝑦𝑡 =  ∑ 𝜑𝑖𝑦𝑡−𝑖 + ∑ 𝜃𝑗𝜖𝑡−𝑗 + 𝜖𝑡 𝑞
𝑗=1

𝑝
𝑖=1                                                  (1.6) 

where:      

                        -yt is a function of time points, 

                        -𝜑 is a constant parameter, 

                        -p is the order of the autoregression,  

                        -q is the order of the correlated lag error terms, and 

                        -𝜖𝑡represents error terms (Prado & West, 2010) 

It is worth nothing that an ARMA that includes zero correlated error terms would reduce to an 

AR model, which assumes that error terms are uncorrelated (Prado & West, 2010).    

However, it is likely in many research scenarios, especially in education, that the mean 

and variance parameters do vary across time.  As such, there has been a rise in the development 

of time series models equipped to fit non-stationary data, where the probability distribution of 

the dependent variable yt varies across all time points (Box & Jenkins, 1976; Prado & West, 

2010).  Keeping with our focus on linear models, we will briefly highlight two models for non-

stationary data: the autoregressive integrated moving average (ARIMA) model (Box & Jenkins, 

1976) and dynamic linear models (DLMs) (West & Harrison, 1997).  The ARIMA model 

incorporates an integrating parameter, d, which is given by the number of parameter differences 

across temporal observations.  Per Box and Jenkins (1976), if the time series is integrated d times, 



22 
 

 

it will then be transformed into a stationary and therefore more easily interpretable process.  This 

is a complex process, though, and we primarily describe the ARIMA because the previously 

described ARMA model is a derivation of the ARIMA model when d = 0; that is, when the data 

are stationary. We will focus more on the second models, dynamic linear models (DLMs), due to 

their additional application in spatio-temporal modeling.  A DLM is an extension of the 

abovementioned AR and ARMA models that incorporates the parameter θt, which is a state 

vector of parameters at a given time t (Prado & West, 2010).  The inclusion of this state vector 

allows for observations of temporal variations for t = 0, 1, …, T.  In addition, due to the 

inclusion of this state vector, DLMs are also referred to as state-space models (SSMs).  We 

present a description of spatio-temporal DLMs, as well as illustration of a particular model, in 

the following section.   

 

1.5.3    Spatio-temporal Data Analysis 

To mirror the overview to the spatial data analysis section, there also exist an abundance 

of spatio-temporal models utilizing both frequentist and Bayesian frameworks.  Additional 

examples of frequentist models include the spatio-temporal model of Huang and Cressie (1996).  

Likewise, additional examples of Bayesian models include the spatio-temporal models of Wikle, 

Berliner, and Cressie (1998) and Savitz and Raudenbush (2009).    

 Spatio-temporal models are frequently developed through adapting or combining spatial 

analysis models and time series models.   For example, Gelfand, Kim, Sirmans, and Banerjee 

(2003) proposed a spatio-temporal analog to the temporal autoregressive moving average models 

(ARMA) via spatio-temporal models that allow for coefficients to vary across space or both 

space and time.  In one instance, Gelfand et al. (2003) modeled the time component by an 
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autoregressive model.  These models can also be developed through extensions of existing non-

spatial and non-temporal models, however.  For example, Karabatsos and Walker (2012) 

demonstrated how their Gaussian-process based, random partition Bayesian non-parametric 

regression model can easily be extended to account for spatio-temporal data.    

 The dynamic linear models (DLMs) mentioned in the previous section are now frequently 

used in spatio-temporal analysis, including the approach of Stroud, Müller, and Sansó (2001).  

DLMs are also used in the approach of Gelfand, Banerjee, and Gamerman (2005), which adapted 

dynamic models for both univariate and multivariate data and was updated by Finley, Banerjee, 

and Gelfand (2012) to utilize a predictive process approach, thus allowing the model to be better 

suited for use with large datasets.   

In the context of spatio-temporal analyses, DLMs are models that allow for non-

stationary spatio-temporal data, where parameters change over time and across spatial locations 

(Prado & West, 2010).  In general, these models assume continuous spatial data (S = s1, s2, … , 

sn) and discrete time data (t = 0, 1, …, T).  As mentioned previously, DLMs are also referred to 

as state-space models due to the inclusion of a vector of state parameters, or model parameters 

that capture the “state” of the outcome at an observation point.  In the spatial case, the state could 

be an observation at one particular spatial location s, while in the spatio-temporal case the state 

could be an observation at the same particular spatial location at point in time t (Gamerman, 

2010).  Spatio-temporal DLMs are also highly flexible and adaptable to fit the needs of the data, 

while running the gamut in terms of complexity.  For example, Stroud, Müller, and Sansó (2001) 

proposed a more complex linear model, assigning local-mixture weights, given by Gaussian and 

non-Gaussian weighting kernels (i.e. functions that assign a weight to a given data point based on 

its distance from a pre-determined point or parameter, such as the mean), to the spatial mean 
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function to allow for inclusion of prior information about these spatial functions.  The Stroud, 

Müller, and Sansó (2001) model is given by: 

                                                𝐘𝐭 =  𝐗𝐭𝛽𝑡 +  𝜀𝑡,               𝜀𝑡 ~ 𝑁(𝟎, 𝐕𝐭),                                     (1.7) 

𝛽𝑡 =  𝐆𝑡𝛽𝑡−1 +  𝜔𝑡,            𝜔𝑡 ~ 𝑁(𝟎, 𝐖𝐭), 

where: 

                                    -𝐘𝐭 = (𝑌(𝐱𝑡1), … , 𝑌(𝐱𝑡𝑛))′ are observations,  

                                    -𝐗𝐭 = [𝐟𝑗(𝐱1), … , 𝐟𝑗(𝐱𝑛)]′ is a time-dependent design matrix,  

                                    -𝝐𝑡 is a Gaussian noise process with variance-covariance matrix   

                                     Vt, 

                                    -𝛽𝑡 =  (𝛽𝑡1
′ , … , 𝛽𝑡𝐽

′ )′ is a vector at t, for all t = 1, … , T, 

                                   -Gt is an evolution matrix, with specifications dependent on the   

                                      number of temporal components, and  

                                   -𝝎𝒕is a Gaussian noise process with variance-covariance matrix  

                                      Wt, 

and the local-weighted mixture given by non-stationary spatial mean function S(x;β1), … , 

S(x;βT) given by: 

∑ 𝜋𝑗(𝐱)𝐟′
𝒋(𝐱)𝛽𝑗

𝐽

𝑗=1

, 

                                                                                                                                                    (1.8) 

where: 

                                    -J is the number of mixture components, 

                                    -𝜋𝑗(𝐱) is the weighting kernel, centered at the mean of the kernel, 

                                    -𝐟𝒋(x) is a vector of known functions, and 
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                                    -𝛽𝑗 is a vector of random parameters 

 

1.5.4    Assumptions of Spatial and Spatio-temporal Analyses 

 Before moving into the next section, we formally introduce two common assumptions 

made of data in spatial and spatio-temporal analyses (Cressie, 1991).  The first is that the data is 

stationary, which, as described earlier, is where model parameters (mean and variance-

covariance structures) are invariant across spatial locations (Cressie, 1991; Gneiting, 2002).  

However, models accounting for non-stationary data are becoming more common, though these 

models commonly assume a Gaussian process (normally distributed mean and variance-

covariance parameters) (Damian, Sampson, & Guttorp, 2001; Fuentes, 2002).  One such model 

for non-stationary data, developed by Gelfand, Kottas, and MacEachern (2005), utilizes a 

Bayesian nonparametric framework, meaning that the model accommodates mean and variance-

covariance parameters that are not normally distributed.  The Gelfand, Kottas, and MacEachern 

(2005) model allows for non-stationary data by incorporating Dirichlet process mixing, which 

means that the model generates a random distribution that allows for varying model parameters 

(mean and variance-covariance structures) across spatial locations.   

The second is that the data demonstrates isotropy, or that it is “direction invariant” 

(Haining, 1990, p. 33).  In other words, an assumption of isotropy means that relationships 

between spatial locations are the result of the distance between the locations, not the general 

direction of the locations in the larger spatial domain (Guan, Sherman, & Calvin, 2004).  This 

intuitively makes sense, as one would expect to see more of a certain variable in spatial locations 

that are closer to each other.   
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 In educational research, however, it is difficult to automatically assume that data meets 

these assumptions.  Given the wide range of background variables at play with spatial locations, 

it is unlikely that most educational data is stationary.  It is even more unlikely that the data is 

isotropic.  For example, schools that are geographically close to each other would intuitively 

show similar levels of performance on the dependent variable(s) in consideration.  However, 

these schools may be clustered in certain parts of the city, thus negating directional invariance.  

Therefore, we prefer spatial and spatio-temporal models that allow for non-stationary, 

anisotropic data.  We focus on those in the following sections on smoothing terms and knot 

selection.  

 

1.5.5   Smoothing Terms 

As mentioned earlier, a data analysis issue may arise when a dataset used in educational 

research is large.  This size issue is compounded when spatial locations are included and/or if 

observations are repeated at multiple time points.  To elaborate on a point made earlier in this 

thesis, large datasets are problematic in the matrix inversions performed during Markov chain 

Monte Carlo (MCMC) iterations (Gelfand, Banerjee, & Finley, 2011; Hancock & Hutchinson, 

2006).  More specifically, matrix inversions occur on the order of n3, where n is the number of 

data points.  With large datasets, the matrix inversions become computationally inefficient and 

the parameter estimates become unstable.  If extra dimensions are then added through spatial 

locations and observations across time, analysis becomes extremely cumbersome (Guhaniyogi, 

Finley, Banerjee, & Gelfand, 2011).  As noted earlier in this chapter, this problem is exacerbated 

in Gaussian process models.  
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One solution is to use low-rank or reduced-rank models (Wood, 2003), wherein the 

information for a particular variable is reduced to a smaller set.  One form of low-rank or 

reduced-rank modeling is the use of splines.  The basic model for splines is given by:  

                                                                   Yi = f(xi) + εi                                                                                          (1.9)      

where:  

                                    -Yi is the dependent variable, observed at location i,  

                                    -f represents the smoothing function,  

                                    -xi represents the predictors and covariates, including spatial and    

                                     temporal data, at location i, and  

                                    -εi represents the measurement error (Nychka, 2000; Wahba, 1990)  

Splines are essentially used to “smooth” the data that is included, with locations that may not be 

included or may be unobserved.  Nychka (2000) recommended using splines as a bridge of sorts 

between kernel-based approaches, such as that employed by Stroud, Müller, and Sansó (2001), 

and the more classical, lattice-based approaches of kriging (i.e. spatial interpolation; Matheron, 

1963).   

 As a derivation to this basic model, Nychka (2000) encouraged exploration of local 

smoothing, or smoothing functions that take into consideration that different areas of the spatial 

domain may require different smoothing functions (e.g. areas that are less densely populated).  

This concept of local smoothing recognizes growing research into non-stationary spatial 

processes, where model parameters are assumed to vary across locations.  This concept of 

utilizing different smoothing functions for different spatial areas was supported by Paciorek and 

Schervish (2004). 
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 The need for splines is clearly illustrated when we think about research involving 

monitoring rainfall amounts or plant growth across a region, where inferences about the entire 

region are drawn from data collected at observational sites that almost certainly do not cover the 

entire region.  The connection with educational research may not be as readily apparent, as we 

think of schools and other “point” sites as being observed.  However, in a dataset with many 

spatial locations, it may be computationally necessary to not include all locations.   

Thin-plate splines, introduced in Duchon (1977), among others, are commonly cited in 

the literature as being applicable for spatial data due to their low-dimensional (d; typically d = 2) 

nature; this echoes the often two-dimensional nature of spatial data, especially when represented 

by latitude and longitude.  We remind the reader that splines are smoothing functions, and 

therefore a thin-plate spline is a smoothing function that minimizes the following: 

1

𝑛
∑(𝑦𝑖 − 𝑓(𝑥1(𝑖), … , 𝑥𝑑(𝑖)))2 +  𝜆𝑱𝑚

𝑑 (𝑓)

𝑛

𝑖=1

 

                                                                                                                                                  (1.10) 

where: 

                                    -n is the sample size, 

                                    -𝑦𝑖 is the dependent variable, 

                                    -f represents the smoothing function 

                                    -𝑥1 through 𝑥𝐷 are the d predictor variables and covariates, 

                                    -𝜆 is the smoothing parameter, and 

                                    -𝑱𝑚
𝑑 (𝑓) represents the penalty function (Hancock &    

                                   Hutchinson, 2006; Wahba, 1990) 
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Thin-plate splines are particularly useful due to the inclusion of this penalty function, 

which penalizes for roughness or “wiggliness” of data, or where curvatures in the function lead 

to poor fit of the data.  This penalization capitalizes on the smoothing naturally afforded by the 

linear transformations and combinations inherent in this class of splines to smooth out these 

curvatures (Nychka, 2000; Wood, 2003).   In the case of two-dimensional data, such as spatial 

data, this penalty function is given by: 

               𝐽2(𝑓) =  ∬ (𝑓𝑥1𝑥1
2∞

−∞
+ 2𝑓𝑥1𝑥2

2 +  𝑓𝑥2𝑥2
2 ) 𝑑𝑥1 𝑑𝑥2 (Wahba, 1990)                (1.11) 

Another advantage to using thin-plate splines, is that, unlike cubic splines, thin-plate splines are 

“rotationally invariant,” a quality that is particularly appropriate for spatial data (Holmes and 

Mallick, 2003, p. 355).  Finally, these thin-plate splines can be univariate or multivariate; use of 

multivariate splines alleviates the “piecewise” nature of univariate splines (Hancock & 

Hutchinson, 2006, p. 1685).  Since the spatial data we are using in this research is typically 

represented by latitude and longitude, we could create interaction terms from univariate splines 

or use multivariate thin-plate splines.  With multivariate splines, our smoothing spline function 

would adjust to f(x,y).  

            However, Wood (2003) countered that thin-plate splines are computationally inefficient 

due to the number of parameters estimated being equal to n.  In addition, per the smoothing 

function, thin-plate splines are not particularly compatible with linear and generalized linear 

models.  As an alternative, Wood (2003) proposed a class of splines called thin-plate regression 

splines, which are also well-suited for use with latitude and longitude data.  Thin-plate regression 

splines differ from thin-plate splines by relying on eigenvectors and eigenvalues (essentially, 

characteristics of matrices and of algebraic transformations of matrices), rather than knots (i.e. a 

set of spatial locations, which could be all locations included in a dataset or a smaller subset of 
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locations), to determine the flexibility of the model.  This removes the issues of how to select 

knots and how to ensure they are relatively evenly spread across S.  Wood (2003) noted that thin-

plate regression splines require less computational time than thin-plate splines, thus making them 

better suited to large datasets.  This decrease in computational time is due to a reduction of 

parameters, particularly those not included in the “wiggliness” penalizing function.   Thin-plate 

regression splines are also more compatible with linear and generalized linear models. 

 Another alternative method is low-rank Penalized Basis (B) splines, otherwise known as 

P-splines, which can also accommodate large datasets (Lee & Durbán, 2011).  The authors 

develop this model to address a common lack of acknowledgement for the interaction of spatial 

and temporal variables in spatio-temporal smoothing models.  The penalization, which creates 

the smoothness of the spline, also addresses the important conceptual issue of anisotropy across 

spatial locations.  Lee and Durbán (2011) do this by developing a P-spline based model that 

allows for smoothing to vary for latitude, longitude, and time.  The model follows the general 

form: 

                                                                ŷ = f(x1, x2, xt)                                                           (1.12) 

where x1 and x2 are latitude and longitude, respectively, and xt is time.  Smoothing is provided in 

general by the use of a penalty term, P.  The model can be rewritten in a more familiar analysis 

of variance (ANOVA) form: 

                                    ŷ = f1(x1) + f2(x2) + f3(x3) + f1, 2(x1, x2) + f1, 2, 3(x1, x2, x3)                    (1.13) 

where time is now represented by x3 and f1, f2, and f3 are the respective smoothing functions for 

latitude, longitude, and time.  Per the ANOVA model, analysis can be performed on the main 

effects of latitude, longitude, and time independently, as well as the two-dimensional interaction 

of latitude and longitude and the three-dimensional interaction of latitude, longitude, and time.  
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The model also provides the flexibility to reduce the dimensions in the analysis, e.g. to look at all 

three main effects and the interaction of latitude and longitude while not exploring the interaction 

of latitude, longitude, and time. 

   

1.5.6   Knots and Knot Selection 

In low-rank or reduced-rank spatial models (Crainiceanu, Diggle, & Rowlingson, 2008; 

Stein, 2007; Wikle & Cressie, 1999) the information from all spatial locations is assumed to be 

captured in a smaller set, either of actual locations or of values derived from the actual locations.  

This smaller set of variables is more commonly called “knots,” which we will cover in this 

section.  As previously mentioned, knots are fixed, in the sense that the locations of the knots 

remain stationary during the analysis, and non-grid based representations of all spatial locations 

in S (Eidsvik, Finley, Banerjee, & Rue, 2012).  We start with a note that individual knots are 

frequently denoted by s*
j, as part of collection of S* total knots (Gelfand, Banerjee, & Finley, 

2011).   

A common issue with knot selection is determining the necessary value of S*.  Wood 

(2003) noted that one must take care with knot selection to ensure that selection does not result 

in completely uneven knot coverage across the spatial domain, whether that selection is fixed 

prior to running the analysis or automatically done through the analysis.  In terms of methods 

that involve fixing the number of knots prior to the analysis, one suggested method is to have a 

1:1 ratio of knots to spatial locations (Holmes & Mallick, 1998; Ramsay & Silverman, 2005).  

As can be imagined, however, this is not feasible for large datasets.  Another suggested method, 

based on kriging (Matheron, 1963), is to use lattices, or evenly spaced knots on a n x n grid 

(Cressie, 1991), with potential modifications such as constructing this grid and then randomly 
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placing new knots near existing knots (Diggle & Lophaven, 2006).  A solid overview of lattice 

and modified-lattice approaches is available in Gelfand, Banerjee, and Finley (2011).   

Another method is hierarchical Gaussian predictive process models, introduced in 

Banerjee, Gelfand, Finley, and Sang (2008) and updated in Finley, Sang, Banerjee, and Gelfand 

(2009) and Banerjee and Fuentes (2011), among others.  Hierarchical Gaussian predictive 

process models, which are meant specifically to address large datasets, utilize a fixed set of knots 

that may either be drawn directly from S or may be representative of actual spatial locations.    

These models, which can be used with both Gaussian and non-Gaussian data, allow for non-

stationarity of parameters through the predictive process parameter, which is derived through a 

linear transformation across all knots.  This method also avoids projecting the spatial location 

data onto a grid, as commonly occurs with unevenly spaced spatial location data (Finley, Sang, 

Banerjee, & Gelfand, 2009).  

In terms of methods that allow for automatic selection through the analysis, one 

suggested method utilizes stochastic search (i.e. selection based on probability), as done in 

modified form in Xia, Miranda, and Gelfand (2006).  This stochastic search process could also 

be updated through use of stochastic search variable selection (SSVS), as demonstrated by 

George and McCulloch (1997).  Likewise, Guhaniyogi, Finley, Banerjee, and Gelfand (2011) 

updated the hierarchical Gaussian predictive process models to allow for “adaptive knots,” which 

involves an initially fixed number of knots and a subsequent “averaging” across these knots.  

Through this method, knots are not fixed initially but instead allowed to move on the x-axis 

during the analysis, essentially allowing the data to tell the knots where they are best suited. 

  With continuous independent variables, Smith and Kohn (1997) recommended sorting 

the variable data and placing a knot at every nth value to ensure that the knots capture the local 
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flavor of the different areas in the spatial domain.  However, as can be imagined knot selection is 

particularly difficult with bivariate variables such as latitude and longitude.  One possible 

approach is to use clustering in knot selection and placement (Banerjee and Fuentes, 2011; 

Tibshirani, Walther, and Hastie, 2001). With bivariate variables, Kohn, Smith, and Chan (2001) 

suggested forming clusters of the bivariate variables and using the cluster centroids, or centers, 

as the knot locations.  

 

1.5.7   Shrinkage Estimation and Ridge Regression 

Shrinkage estimation is, essentially, a technique for improving model fit with a focus on 

the covariance matrix of the model.  Shrinkage estimation is particularly useful in cases where 

the covariance matrix is likely to be unstable, such as when model fit decreases when the model 

is applied to new datasets and when the sample size of the dataset is less than the number of 

predictors (Kwan, 2011).  In shrinkage estimation, we “shrink” the regression coefficients, or 

beta (β), or other model parameters toward a pre-defined value.  Possible pre-defined values can 

include zero as well as the mean value of each coefficient or parameter, since this value 

represents a best estimate of sorts as to the true parameter value (Hoff, 2013).   

One such shrinkage estimation methodology is ridge regression.  Hoerl (1962) suggested 

the use of ridge estimation as a means to account for this lack of covariance matrix stability 

sometimes seen in least squares estimation, a common regression methodology for fitting 

observed data to a proposed regression line (in the case of linear regression).  In a 1970 article, 

Hoerl and Kennard introduced the concept of ridge regression, wherein a shrinkage parameter, 

referred to as the ridge parameter, or λ, is used to shrink estimates of the regression, or beta (β), 

coefficients toward zero.  When the aforementioned pre-defined value is set to zero, ridge 
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regression aligns more with the Bayesian framework (“Ridge Regression,” 2015).  In ridge 

regression, this shrinkage parameter may be estimated using the Bayesian information criterion 

(BIC) (Fan & Tang, 2013), though Karabatsos (2015a) suggested maximization of the marginal 

likelihood instead to boost computational efficiency.  Karabatsos (2015a) demonstrated this 

efficiency through analysis of datasets ranging from three to over 15,000 predictors.  The 

computation time for the posterior estimates ranged from two-thousandths of a second in the case 

of p = 3 to roughly two minutes for p = 15,154. 

Ridge regression addresses three main concerns involving model variables: highly 

correlated predictors, classification of the dependent variable(s), and selection of predictors.  In 

terms of highly correlated predictors, Hoerl and Kennard (1970) extended the application of 

ridge estimation to regression in the case of datasets with non-orthogonal predictors, or 

predictors that are not independent of each other.  The property of ridge regression to shrink 

estimates of the β coefficients toward zero assists with correcting for highly correlated predictors, 

or multicollinearity.  This correction of multicollinearity also helps to reduce variance (Myers, 

1990).  This ability to handle datasets that feature highly correlated predictors is important in 

educational research, since educational datasets can be large and contain many predictor 

variables.  This issue is also particularly noteworthy with spatial models, where spatial 

autocorrelation (Moran, 1950; Cliff & Ord, 1973) may lead to highly correlated predictors 

between nearby spatial locations.  

In terms of classification of the dependent variable(s), it should be noted that ridge 

regression is useful in linear regression, most commonly with continuous dependent variables.  

Karabatsos (2015a), however, argued that application of ridge regression can be extended to 

models with binary dependent variables; that is, variables that are limited to two values, often 
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“present” or “not present,” which are typically coded as “0” or “1” in a dataset.  Drawing from 

the school closings research, an example of a binary dependent variable in an educational dataset 

is whether the school was closed (where “0” represents “not closed” and “1” represents “closed”).  

Finally, ridge regression is also effective in use with datasets with large numbers of 

predictors due to ridge regression allowing for automatic variable selection, by use of the scaled 

neighborhood criterion (SN) or the interquartile (50%) or 95% posterior credible intervals of 

the slope coefficients of the model (Li & Lin, 2010).  Per the SN, significant predictors are those 

with a marginal posterior probability of less than 0.5.  Per use of the 50% or 95% posterior 

credible intervals of the slope coefficients of the model, non-significant predictors are those with 

an interval of values close to or including zero.   Both methods are welcome news for use with 

educational datasets which, as previously mentioned, can contain large numbers of predictors.  

The issue of large numbers of predictors is also of concern in the case of spatio-temporal models, 

where variables are measured repeatedly over time.  In the case of spatial and spatio-temporal 

models, this automatic variable selection can also be extended to automatic selection of knots for 

the splines.    

In the final section of this chapter, we present an argument for the need for an expansion 

of spatio-temporal analysis in educational research.  We present advantages to including spatial 

and temporal variables, while also noting particular challenges with implementation of spatio-

temporal models.  We also lay the groundwork for presentation of our linear, ridge regression-

based spatio-temporal model, which we believe assists with alleviation of the noted challenges to 

implementation of other spatio-temporal models.  At the conclusion of this chapter, we present a 

framework for the remaining chapters of this thesis.      
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1.6       Problem Statement Revisited 

As mentioned previously, there are clear advantages in incorporating spatial and temporal 

variables into educational research.  These advantages fall into three primary domains: 

statistically, methodologically, and ease of application.  In terms of statistical advantage, one 

could argue that all data inherently have some spatial and temporal aspects to them, and 

excluding space and time-related variables can lead to false conclusions about the nature of the 

relationships between predictors and the dependent variable(s) (Cressie, 1991).  This argument is 

supported by the research of Savitz and Raudenbush (2009), who reported decreased expected 

mean squared errors of neighborhood means in models that incorporated spatial dependence in 

comparison to other models that did not account for spatial dependence.   

In terms of methodological advantage, accounting for spatial and temporal variables 

allows for greater consideration of context in educational research, where here “context” means 

latent, or not directly observable, factors that may also influence our findings.  In terms of space 

this context might include factors such as locations of schools, characteristics of the 

neighborhoods these schools are in, and possible patterns of findings between schools that are 

spatially near to each other (Alperin, 2008).  We ground this need for spatial context in the work 

of Wilson (1987) on neighborhood effects and the work done by researchers such as 

Bronfenbrenner (1976) and Berliner (2006) to push consideration of the influence of the 

student’s home environment on educational performance, among others.  In terms of time this 

context primarily refers to the ability to track results longitudinally, thus allowing the researcher 

to look for consistency or inconsistency of results over time (Haining, 1990) and ultimately 

strengthening the design of the study (Goodchild and Janelle, 2004).   
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Finally, in terms of an advantage in the ease of application, a fair amount of educational 

research focuses on locations such as schools as units of analyses.  A school can be represented 

spatially using latitude and longitude coordinate points, which lends to more straightforward 

spatial and spatio-temporal analyses over more broad locations such as neighborhoods and parks.  

As mentioned earlier, however, there is even an advantage when using broader areas such as 

neighborhoods as the spatial locations of interest, as these areas are less likely to change much 

over time in terms of location and geographical boundaries.  It is certainly easier to conceptualize 

spatial analysis utilizing neighborhoods as spatial locations rather than analysis using difficult to 

predict locations, such as hurricane trajectories.    

 However, there are also challenges that serve as obstacles to using spatio-temporal 

analyses in educational research.  These challenges fall into three primary domains: 

complications of large datasets, complex statistical models, and model selection.  In terms of the 

challenge of large datasets, we again note that educational datasets can be large, with large 

numbers of cases (subjects) and predictors.   This issue is compounded when one includes spatial 

and temporal variables, where each time period means another set of data points. We recall that 

parameter estimation in large datasets can be computationally intensive due to the matrix 

inversions performed during MCMC iterations (Gelfand, Banerjee, & Finley, 2011; Hancock & 

Hutchinson, 2006), and that this issue is worse with Gaussian models due to the n x n covariance 

matrix.  The challenge of working with large datasets is daunting enough, especially given a 

tendency in educational research to prefer models utilizing the normal distribution.  However, it 

becomes intimidating to think of then adding spatial location data, especially if data is collected 

over time, because each new temporal observation multiplies the number of data points. 
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The second challenge, complex statistical models, refers both to the level of skill and 

knowledge necessary to perform these analyses as well as ease of interpretation of the findings.   

As Stroud, Müller, and Sansó (2001) noted, spatial and spatio-temporal models tend to be very 

complex, often assuming a level of statistical and mathematical training far beyond that obtained 

by many educational researchers.  As such, these models are conceptually difficult, in terms of 

understanding how the models function, how to implement the analyses, and how to interpret the 

results.  The difficulty in implementing the analyses is compounded by the frequent need to 

utilize coding-based statistical programs, such as R, which can entail the need to write or to adapt 

programming code.  Many educational graduate programs emphasize more standard statistical 

programs that utilize “point and click” menu interfaces, such as Statistical Package for the Social 

Sciences (SPSS), leaving educational researchers with little to no formal training on more 

advanced programs.    

The final challenge, model selection, is particularly pronounced in large datasets due to 

the large number of variables of potential interest for the model.  Earlier in this chapter we 

provided an example of a study where a researcher is interested in looking at the relationship 

between crime rates and the amount of green space in a neighborhood.  To control for possible 

confounding variables, a large number of background variables, such as poverty rate and 

educational attainment, must be included.  However, given that there may be high correlations 

among the variables between nearby neighborhoods, the researcher should also include a number 

of spatially relevant variables.  Given the large number of variables, it could take a great deal of 

time, whether on the part of a computer or the researcher, to determine the best combination of 

variables to model the relationship between crime and green space.  We acknowledge that there 

are many methods for selecting which variables to include in a model.  As noted, some of these 
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methods can be more manual, and can involve a trial and error approach to fitting the model.  

This approach would be particularly cumbersome and time-consuming with a large dataset, such 

as that in the crime rate example.  Given the propensity for spatio-temporal datasets to contain 

large numbers of variables, we suggest the employment of methods that allow for automatic 

variable selection and believe that our model fits this criterion.  We also suggest the use of 

multiple model fit indices in order to determine the best combination of variables to include in 

our model. 

  

1.7      An Overview of the Rest of the Thesis                

In Chapter 2 we will present our Bayesian linear spatio-temporal model, developed for 

use with educational datasets, particularly the type of datasets developed by schools for annual 

reporting purposes (e.g. containing information about student demographics and student 

performance, among other variables).  The model is also developed for use with locations that 

can be characterized using latitude and longitude, such as schools.  We opt to use the Bayesian 

statistical framework, in part because of the utility of Bayesian statistics with complex statistical 

analyses, which we argue include spatio-temporal analyses (Cowles, Kass, & O’Hagan, 2009).  

Our linear model is an extension of the low-rank P-spline model introduced in Section 1.5.5.  

Our model could also be considered a type of a dynamic linear model (DLM) (introduced in 

Section 1.5.3) because it allows for model parameters to change over time and across spatial 

locations.  We capture the temporal elements through inclusion of a smoothing function f of 

autoregressive terms.  Because we utilize a discrete spatial process model (introduced in Section 

1.5.1), we focus on “point-based” spatial data, or spatial data represented by latitude and 

longitude (Banerjee & Fuentes, 2011); latitude and longitude are each represented by a 
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smoothing function f.  Other relevant predictors, such as test scores, are included and represented 

with smoothing function fz(z).  Through our linear model, we can identify the independent effects 

of each predictor (space, time, and other relevant predictors) as well as model the interactions of 

the predictors.  Finally, we use ridge regression, introduced in Section 1.6, to estimate model 

parameters, including the coefficients of our spline (smoothing) functions.           

In Chapter 3 we will demonstrate the utility of our model on two educational datasets, 

which we describe in Chapter 2. We do this by focusing on computational efficiency, or the time 

required to complete the analyses, and also the ease of implementing the model.  Finally, we 

analyze these datasets both with and without spatial and temporal variables, in order to determine 

whether model fit is improved through inclusion of these variables.  

In Chapter 3 we will also make a case for inclusion of spatio-temporal analysis in 

educational research.  We do so by framing use of our Bayesian model as a tool for educational 

research, as well as by presenting examples of educational research questions that lend to spatio-

temporal analysis.  Part of this framework will include a guide (in Appendix B) on how to run 

the analyses in Bayesian Ridge Regression software, developed by Dr. George Karabatsos (2016).  

It is our hope that this thesis will inspire readers who may be new to spatio-temporal analysis 

and/or Bayesian modeling to incorporate both into their research and data analysis.  We also 

present considerations to be mindful of when conducting spatial and spatio-temporal research, 

including taking caution against conflating correlation and causation.  

 Finally, in Chapter 4 we will conclude with an assessment of whether our model 

addresses the three noted challenges to using spatio-temporal analysis in educational research 

(complications of large datasets, complex statistical models, and model selection).  We also 

discuss any limitations to our model and possible next steps for future research. 
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2. METHODOLOGY 

2.1       Presentation of the Bayesian Spatio-Temporal Model 

As mentioned in Chapter 1, one challenge to incorporating spatio-temporal models into 

educational research is the complexity of many spatio-temporal models.  Given that most 

educational researchers are likely familiar with linear models, we propose a dynamic linear 

model (DLM) that adapts the spline-based analysis of variance (ANOVA) model developed by 

Lee and Durbán (2011).  The model follows the general form: 

                                 y = fst(s1, s2, xt) + ε, ε ~ N(0, σ2)                                                   (2.1)         

where s1 and s2 are latitude and longitude, xt represents a vector of  predictors at time t, and fst is 

the smoothing function for spatio-temporal interaction.  We represent the joint modeling of 

latitude (s1) and longitude (s2) via the vector s, as reflected in our expanded model (Equation 2.2).  

The use of this ANOVA-based model allows researchers to capture the interaction between the 

spatial and temporal variables.  In addition, Lee and Durbán (2011) noted that this model type, 

along with the use of smoothing functions, addresses the issue of anisotropy across spatial 

locations by allowing for smoothing to vary for latitude, longitude, and time.  In addition, the use 

of smoothing functions accounts for any predictor variables that have a non-linear relationship 

with the dependent variable (Karabatsos, 2015b).    

The model can be rewritten in a more familiar ANOVA form.  We update the model 

developed by Lee and Durbán (2011) (Equation 1.13) to include additional predictors and a 

specified error term: 

              y = ft(xt) + fz(z) + fs(s) + fst(s, xt) + fstz(s, xt, z) + ε, ε ~ N(0, σ2)    (2.2)           

where ft, fs, and fst are the respective smoothing functions for time, space, and the spatio-temporal 

interaction.  The parameter z represents a vector of non-spatial and non-temporal predictors, and 
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therefore fz(z) is the respective smoothing function.  We model the interaction of the spatio-

temporal variables and other predictors in the parameter fstz(s, xt, z).  The error term, ε, is 

assumed to be normally distributed, with a mean of zero and variance σ2.  As previously noted, 

the use of an ANOVA-based model allows for analysis on the main effects of time and non-

spatio-temporal predictors, the two-dimensional interaction of latitude and longitude, the three-

dimensional interaction of latitude, longitude, and time, and a final interaction between latitude, 

longitude, time, and additional model predictors. 

Since we use a linear model, we include splines as a way to account for any non-linear 

relationships between predictor variables and the dependent variable.  The use of splines also 

transforms these non-linear relationships into the linear relationships expected in a linear model.  

We elect to use splines over the perhaps more familiar polynomial functions (i.e. 𝛽1𝑥 + 𝛽2𝑥2 +

⋯ + 𝛽𝑞𝑥𝑞) because the use of local knots in the spline terms provides greater stability and less 

sensitivity to outliers than does the polynomial function (Magee, 1998). 

Based on the work of Nychka (2000) and Wood (2003) in support of thin-plate splines 

with spatial data, we will use thin-plate splines as the smoothing functions for our ANOVA-

based model. As noted, thin-plate splines can be univariate or multivariate, with multivariate 

splines alleviating the “piecewise” nature of univariate splines (Hancock & Hutchinson, 2006, p. 

1685).  We will utilize univariate splines in this research; however, due to the bivariate nature of 

spatial data represented by latitude and longitude, we will create interaction terms from the 

univariate latitude and longitude thin-plate splines.   

This use of thin-plate splines is, in part, due to the accommodation for the effect of each 

observed covariate value, including spatial location, which helps to prevent poor fit of the data.  

The use of thin-plate splines also allows for transformation of each linear regression coefficient, 
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𝛽𝑘, into a univariate or multivariate spline function, noted by 𝑓𝑘.  Per Green and Silverman 

(1994), this univariate thin-plate spline function is given by: 

        𝑓𝑘(𝑥𝑘) =  𝛽𝑘0𝑥𝑘 +  ∑ 𝛽𝑘𝑙
𝐿𝑘
𝑙=1 {(𝑥𝑘 −  𝑡𝑙)2log|𝑥𝑘 −  𝑡𝑙|}                            (2.3) 

where tl represents a knot of the spline and {(𝑥𝑘 − 𝑡𝑙)
2log|𝑥𝑘 − 𝑡𝑙|} represents a term that 

“transforms” non-linear relationships between the predictor variables and the dependent variable 

into linear relationships.  Since we will use univariate thin-plate splines for the temporal vector xt 

and the predictor vector z, we update the function given in Equation 2.3 for each parameter: 

                      𝑓𝒙𝑡 (𝒙𝒕) =  𝛽𝒙𝑡
𝑥𝑡 +  ∑ 𝛽𝒙𝑡𝑙

𝐿𝑘
𝑙=1 {(𝒙𝑡 −  𝑡𝑙)2log|𝒙𝑡 −  𝑡𝑙|}                          (2.4) 

 

                                 𝑓𝑧(𝒛) =  𝛽𝒛𝐳 +  ∑ 𝛽𝒛𝑙
𝐿𝑘
𝑙=1 {(𝒛 −  𝑡𝑙)

2log|𝒛 −  𝑡𝑙|}                          (2.5) 

One option for smoothing the spatial terms is to use a bivariate thin-plate spline function.  

The bivariate thin-plate spline function is given by: 

                                      𝑓𝑠(𝒔) = ∑ 𝛽𝒔𝑙
𝐿𝑘
𝑙=1 {|𝒔 −  𝒕𝑙|

2log|𝒔 −  𝒕𝑙|}                                         (2.6) 

where s again represents a vector of latitude and longitude, and |𝒔 −  𝒕𝑙| represents the  

Euclidean distance between s and the tl knot points.  Another option is to create an interaction 

term from the univariate latitude and longitude splines.  Therefore, it follows that the interaction 

terms in our model will represent the interactions of the univariate splines, as well as the possible 

interaction of the univariate splines with the one bivariate spline.  In a dataset with many 

predictors, especially with these predictors observed at multiple points in time, the large number 

of spline terms may result in multicollinearity.  We will further discuss this issue later in this 

section.   

 Given that linear models can be represented by 𝑦𝑖 =  𝐱𝑖
𝑇𝜷 + 𝜀𝑖, with 𝜀𝑖 ~ N(0, σ2), we 

can represent all of the thin-plate spline function terms, 𝑓𝑘, by a super vector 𝜷 and all of the 
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predictor variables by a super vector 𝐱𝑖
𝑇.  This super vector 𝐱𝑖

𝑇 also includes the {(𝑥𝑘 −

 𝑡𝑙)2log|𝑥𝑘 −  𝑡𝑙|} terms of the univariate thin-plate spline functions and the {|𝒔 −  𝒕𝑙|
2log|𝒔 −

 𝒕𝑙|} term of the bivariate thin-plate spline function.  The error term, 𝜀𝑖, is assumed to be 

normally distributed, with a mean of zero and variance σ2.  Therefore, our model can be seen as a 

very large version of a traditional linear regression model.  In addition, since our model uses a 

Bayesian statistical framework, the linear model can be rewritten as n(𝑦𝑖|𝐱𝑖
𝑇𝜷, σ2).  Per Bayes’ 

theorem, a prior probability distribution is assigned for a given model parameter, such as 𝜷.  

This prior probability distribution is updated with the observed dataset, resulting in a posterior 

probability distribution.  In Bayesian statistics, all statistical inference is based on this resulting 

posterior distribution.  For our Bayesian linear model, the prior distribution for our regression 

parameters, 𝜷, is given by 𝜷|𝜎2 ~ n𝑝(0, 𝜎2λ−1𝐈𝒑) and the prior distribution for σ2 is given by σ2  

~ IG(a, b) (where IG represents the inverse-gamma distribution).  Taken jointly, the prior 

distribution π(𝜷, 𝜎2) becomes n𝑝(𝜷|𝟎, 𝜎2λ−1𝐈𝒑)ig(𝜎2|𝑎, 𝑏) or, combined further as normal-

inverse gamma, nig(𝜷, 𝜎2|𝟎, λ−1𝐈𝒑, 𝑎, 𝑏).  Finally, for the purpose of statistical inference, we 

obtain the posterior parameter values through the following: 

π(𝜷, 𝜎2|𝒟𝑛) =  
∏ 𝑛(𝑦𝑖|𝐗𝜷, 𝜎2

)nig(𝜷, 𝜎2
|𝐦, λ−1𝐈𝒑, 𝑎, 𝑏)𝑛

𝑖=1

∬ ∏ n(𝐲|𝐗𝜷, 𝜎2
)nig(𝜷, 𝜎2

|𝐦, λ−1𝐈𝒑, 𝑎, 𝑏)d𝜷d𝜎2𝑛
𝑖=1

                                         (2.7) 

The marginal mean of 𝜷 in the above posterior distribution is given by: 

                                                 �̅�𝜆 = (𝐗𝐓𝐗 +  λ𝐈𝑝)
−1

𝐗𝐓𝐲                                             (2.8) 

where �̅�𝜆 is the ridge estimator used in ridge regression, further discussed later in this section, 

and (𝐗𝐓𝐗 +  λ𝐈𝑝) represents the posterior covariance matrix of 𝜷 (Karabatsos, 2015a). 

As mentioned earlier, a consequence of having a large number of spline terms is an 

increased risk of multicollinearity.  Under ordinary least-squares regression (OLS), this 
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multicollinearity would result in a non-positive definite matrix of �̂� variables.  These OLS 

estimates are thus poorly defined and unstable, with very large errors that approach infinity.  A 

perfect correlation between predictors would create a singular design matrix, and therefore a 

non-existent OLS estimate of �̂� (Karabatsos, 2015a).  In order to account for this 

multicollinearity, we elect to use the regularization method (Yeomans, 2015) of shrinkage 

estimation.  In shrinkage estimation, the regression coefficients or other model parameters 

“shrink” toward a pre-defined value; in the case of the particular shrinkage estimation technique 

we will employ, ridge regression, a prior distribution involving a penalty parameter is used to 

“shrink” insignificant parameters toward zero, though without equaling zero (Karabatsos, 2015a).    

 We select ridge regression over other shrinkage estimation techniques because of its 

utility with the following: highly correlated predictors (multicollinearity), linear regression 

models, and selection of predictors.  In addition, Nychka (2000) supports the use of ridge 

regression with spatial data, especially alongside thin-plate splines.  Highly correlated predictors 

are of particular concern in the case of datasets with spatial variables, where nearby locations can 

have similar values when compared to more distant locations (Tobler’s first law of geography).  

This concern is compounded when observations are repeated across time, as in spatio-temporal 

datasets.  As noted, if this multicollinearity is not accounted for, estimation of the β parameters 

can be inaccurate due to inflated mean-squared error (MSE).  Ridge regression addresses 

multicollinearity through use of a ridge or shrinkage parameter, λ.  In general, larger values of λ 

result in increased shrinkage of the estimated regression coefficients.  In addition, when λ = 0, 

the ridge regression estimate of the regression coefficients is equal to the OLS estimate, as OLS 

is a special case of ridge regression where λ → 0 (Karabatsos, 2015a)  
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 We will apply the Bayesian Ridge Regression (RR) model using marginal maximum 

likelihood (MML) to estimate the ridge parameter λ, as suggested by Karabatsos (2015a).  The 

use of MML allows for faster computation of the ridge parameter λ and faster parameter 

estimation through use of a singular value decomposition (s.v.d) of X.  Determination of the 

MML ridge estimate λ̂ will be accomplished by finding the positive-valued estimate that 

maximizes the following equation: 

log𝜋(𝒟𝑛|𝛌) = log|�̅�𝛌|
1

2 − log|𝐕𝛌|
1

2 + 𝑎log𝑏 − �̅�log�̅�λ + logΓ(�̅�) − logΓ(𝑎) −  
𝑛

2
log𝜋                           

                           = 
𝑞

2
logλ −  

1

2
∑ log𝑞

𝑘=1 (λ + 𝑑𝑘
2) + 𝑎log𝑏 −  �̅�log {𝑏 +  

1

2
(𝐲𝐓𝐲 −  ∑

�̂�𝑘
2𝑑𝑘

4

λ+ 𝑑𝑘
2)

𝒒
𝒌=𝟏 } +

                          logΓ(�̅�) −  logΓ(𝑎) −  
𝑛

2
log𝜋                                                              (2.9) 

which simplifies to: 

                     𝑞logλ −  ∑ log(𝜆 +  𝑑𝑘
2) − 𝑛log (𝐲T𝐲 −  ∑

�̂�𝑘
2𝑑𝑘

4

𝜆+ 𝑑𝑘
2

𝑞
𝑘=1 )𝑞

𝑘=1                   (2.10) 

Because the purpose of this paper is to develop linear models that are easier to understand and to 

utilize, we assign a normal inverse gamma prior [nig(β, σ2|0, λ−1𝐈𝑝, a, b)] to (β, σ2), which aligns 

the Bayesian RR model with the Bayesian normal linear model.  Once the s.v.d, including 

orthogonal matrices U and W, is incorporated, the prior distribution for the normal inverse 

gamma prior updates to nig(β, σ2|0, 𝐕λ, a, b).  As mentioned earlier, inclusion of the s.v.d allows 

for faster computational speeds due to its ability to avoid matrix inversion.  Karabatsos (2015a) 

demonstrated the faster computational time in determining the ridge estimate for the MML RR 

when compared to both of the other ridge regression models, as well as other models including 

LASSO and Elastic Net models, using datasets ranging from n (sample size) = 24 to 52,397 and p 

(number of predictors) = 3 to 15,154.  The MML RR model consistently outperformed all other 

models, regardless of dataset size and number of predictors, including in cases where p > n. 
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 In this study, we will analyze datasets, described in the next section, using the Bayesian 

Ridge Regression software (Karabatsos, 2016).  Using our spatio-temporal model, we can 

accommodate predictor variables related to spatial location and time as well as non-spatio-

temporal predictor variables of interest.  It is worth noting that the temporal variables in the 

model can include autoregressive lag terms; that is, we can include observations from a single 

time point t or from a given number of time points prior to t.  For example, if we wished to use 

trend data from a three year period, we would use t, t-1 (first lag term), and t-2 (second lag term).  

If we had not previously constructed these lag terms, we could do so using the “Modify Data Set” 

menu in the Bayesian Ridge Regression software (Karabatsos, 2016).  

 To begin the analysis, we will first select our model, in this case the “Fast Ridge 

Regression” model.  After indicating our dependent variable, we will determine which predictor 

variable(s) to include in our model.  We will then use the software to generate thin-plate spline 

terms for the included predictor variables; interaction terms can then be created from the 

univariate spline terms as needed. 

 In addition to applying the Bayesian Ridge Regression (RR) model using marginal 

maximum likelihood (MML) to estimate the ridge parameter λ, we will also use this model to 

obtain posterior parameter estimates.  For most of the model parameters, interpretation of the 

beta coefficients (slope parameters) is similar to that done in ordinary least-squares (OLS) 

regression, including inclusion of both standardized and unstandardized coefficients.  This 

includes the slope parameters for the constructed thin-plate spline terms, as we only interpret the 

linear regression term, 𝛽𝑘0𝑥𝑘, from the function in Equation 2.3.  The remainder of the function 

represents the control for non-linear effects and will not be immediately interpretable.    
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We will determine significant predictors using either the interquartile (50%) or 95% 

posterior credible interval.  We determine the 95% posterior credible interval based on an α 

(alpha) value of 0.05 and credible interval (1 – α)% (Levy, 2012).  In this case of the former, the 

posterior credible interval establishes 50% probability that the parameter value is included in a 

percentile range, here between the 25% and 75% percentiles.  In the case of the latter, the 

interval establishes 95% probability that the parameter value is included in a percentile range, 

here between the 2.5% and 97.5% percentiles.  A predictor is determined to be significant when 

the posterior credible interval does not include zero (Karabatsos, 2015a).  Because we are 

focusing particularly on large datasets, we apply the central limit theorem to establish that as the 

sample size approaches infinity, the probability distribution becomes the normal distribution.  

Thus, with large datasets we can assume an underlying normal distribution, which makes 

statistical inference more familiar and accessible.  Finally, due to the facility of selecting 

significant predictors; the ability of the model to accommodate large datasets and number of 

predictors; and the fast computational speeds, all spatial knots and knots used in the model 

smoothing function(s) (if they differ) will be included along with all other covariates.  This 

contributes to ease of spatio-temporal analysis by alleviating the need to select appropriate knots 

prior to the statistical analysis.  

We will also identify any outliers in the data using the standardized residual, which 

should be familiar to most educational researchers.  The standardized residuals focus on the 

observed values of the dependent variable and are given by: 

                                𝑧𝑖 =  
𝑦𝑖− E𝑛(𝑌𝑖|x𝑖)

√(Var𝑛|(𝑌𝑖|x𝑖))
                                                        (2.11) 

where E𝑛(𝑌𝑖|x𝑖) and Var𝑛|(𝑌𝑖|x𝑖) are the predicted mean and the predicted variance of the 

dependent variable, respectively.  Analyzing standardized residuals allows the researcher to 
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compare the observed dependent variable values to those predicted by the regression model.  

Residual values greater than three or less than negative three indicate that the observed value 

may be an outlier (Karabatsos, 2015b).  In this event that an observed value takes on a residual 

value greater than three or less than negative three, we will address the outlier(s) by adding 

predictors with “0” and “1” values into the model.  Here, a predictor with a “1” value indicates 

the presence of an outlier and serves to transform the outlying data point into a non-outlier 

(Xiong & Joseph, 2013).         

Finally, we will assess model fit using four methods: R2, the D(m) statistic, the Akaike 

information criterion (AIC), and the Bayesian information criterion (BIC).  The first method is 

more relevant when looking at a single statistical model, while the last three are more relevant 

for model selection between several models.  The R2 statistic, which should also be familiar to 

most educational researchers, represents the amount of variance in the dependent variable(s) that 

is accounted for by the predictor variable(s) in the model.  A larger R2 value represents a greater 

amount of variance accounted for by the predictor variable(s).  

The D(m) statistic (Gelfand & Ghosh, 1998) uses a Bayesian framework and is more 

relevant when comparing two or more models.  The D(m) statistic is given by: 

          𝐷(m) =  ∑ (𝑦𝑖 −  E𝑛[𝑌|𝑥𝑖, 𝑚])2 +  ∑ Var𝑛[𝑌|x𝑖 , 𝑚]𝑛
𝑖=1

𝑛
𝑖=1                  (2.11) 

where the term ∑ (𝑦𝑖 −  E𝑛[𝑌|𝑥𝑖, 𝑚])2𝑛
𝑖=1  assesses the fit of the model to the data and the term 

∑ Var𝑛[𝑌|x𝑖, 𝑚]𝑛
𝑖=1  promotes parsimony by penalizing for complexity.  This penalty term 

characteristic makes this statistic well-suited for use with spatio-temporal models, as illustrated 

in Gelfand and Ghosh (1998).  When ranking models, the model with the best fit to the data is 

that with the lowest D(m) value.   

 The AIC statistic (Akaike, 1973) is given by: 



50 
 

 

                                                              -2logL + 2p                                                                 (2.12) 

where -2logL is the information criterion (given as the log-likelihood) and 2p is the penalty term, 

with p representing the number of parameters in the model.  When ranking models, the model 

with the lowest AIC value is that considered to be closest to the true distribution, particularly for 

predicted samples from the distribution (Dziak, Coffman, Lanza, & Li, 2012). 

 The BIC statistic (Schwarz, 1978) is given by: 

                                                               -2logL + log(n)p                                                        (2.13) 

where -2logL is again the information criterion, log(n)p is the penalty term, with p again 

representing the number of parameters in the model.  When ranking models, the model with the 

lowest BIC value is that considered to be the true model (Dziak, Coffman, Lanza, & Li, 2012).     

In the context of our spatio-temporal model, we rank models using different 

combinations of predictor variables, including spatial and temporal variables, to assess which 

produces the best model fit.  For example, it may be that inclusion of spatial location only adds 

to model complexity, rather than the fit of the model to the data or to the ability of the model to 

best reflect the true distribution of the data.  We utilize multiple fit criteria when ranking models 

due to the affordances and limitations afforded by each; for example, the BIC penalizes more for 

model complexity than the AIC, leading to a possibility of underfitting with BIC and overfitting 

with AIC.  Therefore, using both AIC and BIC provides more information to consider when 

selecting the model.        

 

2.2    Description of the Datasets 

We will analyze two education-related datasets to both illustrate how our model functions, 

as well as to provide examples of spatio-temporal analysis in educational research.  The first 
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dataset (referred to as “CPS”) contains data on 554 schools in the Chicago Public Schools (CPS) 

District across eight years.  This set represents information aggregated from data available on the 

Illinois State Board of Education (ISBE) website.  Since the CPS dataset contains many rows of 

data (18,506) and a large number of potential predictor variables (20 +), we can use this dataset 

to test our model's capacity to accurately estimate posterior parameters from large datasets.  CPS 

(the district) includes both charter and public schools; however, the ISBE website, where we 

obtained information for this dataset, reports data for charter networks (e.g. Noble Street Charter) 

in aggregate (that is, results for all schools within the network are combined into a single value).   

For this reason, the schools in these charter networks are excluded from analysis.   

“CPS” contains the following school-level variables for grades 3, 4, 5, 6, 7, 8, and 11: 

percentage of students meeting or exceeding standards on the Illinois Standards Achievement 

Test (ISAT) and Prairie State Achievement Examination (PSAE) Math and Reading subject tests 

and enrollment.  The descriptive statistics for the ISAT/PSAE Math scores, ISAT/PSAE Reading 

scores, and enrollment are included in Table I.  With respect to the inclusion of examination 

results, we opt to include the subject-level examinations rather than the composite scores in order 

to provide higher granularity in the analysis.  The numbers for the ISAT/PSAE Reading and 

Math exams are the percentage of students meeting or exceeding set state standards on the ISAT 

or PSAE.  We will use the Math and Reading examination results, rather than the Writing and 

Science scores, because they are more consistently measured across grades each year.  We also 

include the 2011-2012 probation status for each school, which is determined in part by the 

number of students meeting or exceeding said set state standards on the ISAT or PSAE, as well 

as 2012-2013 space utilization status (whether a school was underutilized, overcrowded, or 

determined to be efficiently enrolled, per CPS standards) (Chicago Public Schools, 2011). 
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Table I   

DESCRIPTIVE STATISTICS FOR THE CPS DATASET 

Variable Mean Standard Deviation 

ISAT/PSAE Reading 63.47 19.55 

ISAT/PSAE Math 70.38 19.47 

Enrollment 629.35 366.43 

 

 

 

 

 

In addition, we added the latitude and longitude of each school as variables to capture the 

spatial component of the analysis.  This spatial component allows for the potential to explore 

prediction of performance based on the location of the school, as well as the potential to explore 

possible patterns or clustering in the data based on distance between schools (e.g. we would 

expect to find similar performance levels in schools that are located near each other).  The data 

also includes school year as a variable and includes the following eight academic years: 2005-

2006, 2006-2007, 2007-2008, 2008-2009, 2009-2010, 2010-2011, 2011-2012, and 2012-2013.  

All school-level variables are distinguished by year, allowing us to test the potential to capture 

temporal components of the model in analysis, including the temporal lag terms described in 

Section 2.1.  This temporal component provides us with the flexibility to make predictions and to 

explore trends in performance and enrollment over time, whether across all schools, across all 

schools in a neighborhood, or for a single school.  This temporal component also allows us to 

look for trends with schools that were closed by CPS for the 2013-2014 school year.  

The second dataset (referred to as “CPS Demo”) contains a cross-section of data from the 

CPS dataset (n = 2,729, thus allowing us to use this dataset to test our model's capacity to 
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accurately estimate posterior parameters from a smaller dataset).  This dataset contains the 

following data from the CPS dataset: 2011-2012 probation status, 2012-2013 space utilization 

status, and spatial variables (latitude, longitude, and latitude by longitude).  The CPS Demo 

dataset also contains enrollment numbers, Reading scores, Math scores, and school-level 

race/ethnicity data (from the CPS 2011-2012 Racial/Ethnic Report) for the 2011-2012 academic 

year.  The Racial/Ethnic Report includes counts and percentages of students identifying in the 

following categories: White, African-American, Native American, Asian/Pacific Islander 

(retired), Hispanic, Multi-Racial, Asian, Hawaiian/Pacific Islander, and Not Available (Chicago 

Public Schools, 2016).  In order to create a variable to represent the percentage of minority 

students in a particular school, we summed all of the categories except for “White” and divided 

by the total number of students in that school.  The descriptive statistics for the ISAT/PSAE 

Math scores, ISAT/PSAE Reading scores, enrollment numbers, and the racial composition 

variable are presented in Table II.  

 

 

 

 

Table II   

DESCRIPTIVE STATISTICS FOR THE CPS DEMO DATASET 

Variable Mean Standard Deviation 

ISAT/PSAE Reading (2011-2012) 67.85 18.74 

ISAT/PSAE Math (2011-2012) 76.10 17.56 

Enrollment (2011-2012) 589.07 362.05 

Percentage Minority (2011-2012) 91.13 16.70 
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2.3    Spatio-temporal Analysis for Educational Researchers 

Finally, we will make a case for increased use of spatio-temporal analysis in educational 

research.  We present our ANOVA-based spatio-temporal model as a tool for educational 

research that uses “point” data [location data characterized by using coordinates such as latitude 

and longitude (Banerjee & Fuentes, 2011)], such as school location, as well as a means for 

introducing educational researchers to research questions that lend well to spatio-temporal 

analysis.  We conclude with considerations to be mindful of when including spatio-temporal 

variables, particularly spatial variables.   

In Chapter 1, we introduced three challenges that serve as obstacles to using spatio-

temporal analyses in educational research.  These challenges are: complications of large datasets, 

complex statistical models, and model selection.  In Chapter 3 of this thesis, we will demonstrate 

how this thesis research addresses these challenges.  In particular, we will demonstrate this 

through analysis of the CPS and CPS Demo datasets; these analyses will also serve as case 

studies for how spatio-temporal analysis can be utilized in educational research.  As a reflection 

of the wide range in size of datasets used in educational research, we are careful to include both a 

large dataset (CPS) and a smaller dataset (CPS Demo).        

We address the complex statistical models challenge through use of an ANOVA-based 

model, since most educational researchers will be familiar with ANOVA models and analyses.  

We also address this challenge by using the Bayesian Ridge Regression software program 

(Karabatsos, 2016), which uses a menu-drive, point-and-click interface, to analyze our datasets.  

To illustrate use of our model in this software program, we will include a step-by-step 

instructional guide in Appendix B of this thesis. 
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We address the complications of large datasets and model selection challenges through 

analysis of these datasets.  In terms of complications of large datasets, we will demonstrate that 

by using Bayesian Ridge Regression and marginal maximum likelihood (MML), we avoid the 

lengthy computational time that can be involved with the matrix inversions performed during 

Markov chain Monte Carlo (MCMC) sampling.  In terms of model selection, we use either the 

interquartile (50%) or 95% posterior credible interval to determine significant variables.  We will 

also provide posterior output to illustrate how easy it is to interpret the analysis results, both in 

terms of variable slope parameters and in terms of determining significant predictors.  In addition, 

we will also use multiple model fit indices to determine the best combination of predictors to 

include in the model, based on different model fit criteria (e.g. parsimony). 

As part of seeing this thesis as a toolkit for educational researchers looking to begin 

incorporating spatio-temporal analysis into their research, we close by presenting considerations 

to be mindful of when including spatial and temporal variables.  In particular, we focus on the 

need to remember the distinction between correlation and causation, and how this distinction 

becomes particularly important in the context of spatio-temporal analysis.  To illustrate this, 

consider the research by Radinsky and Waitoller (2013) on the CPS school closings.  Radinsky 

and Waitoller discovered that African-American students were impacted by the school closings 

at much higher rates than other racial groups.  In addition, the majority of the schools that closed 

were located in the West and South sides of Chicago.  There are relationships between race, 

spatial location, and schools closing, but could a researcher attribute race and location as causes 

of the closings?  We draw from Holland (2008) and Sampson (2008) in arguing that taking a 

more descriptive approach is preferable to establishing causality, particularly with sensitive 

variables such as race.  The researcher needs to systematically consider the potential influence of 



56 
 

 

other effects and interactions, particularly those that may not have been included in the model, 

when interpreting any relationships discovered through statistical analysis.
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3. RESULTS 

3.1       An Overview of the Toolkit and Chapter 

 We structure Chapter 3 around the components of our toolkit for incorporation of spatio-

temporal analysis into educational research.  In this overview, we present the three components 

of our toolkit and what each corresponding section will entail.  In addition, we also refer back to 

the three challenges to using spatio-temporal analyses in educational research, which were 

introduced in Chapter 1: complications of large datasets, complex statistical models, and model 

selection.  We then map which section of this chapter addresses which of the three challenges.   

The first component of our toolkit is the Bayesian linear spatio-temporal model 

introduced in Chapter 2; we will provide a brief overview of the model to frame our subsequent 

analyses.  This model, in part, addresses the challenge of complex statistical models since it is an 

ANOVA-based linear model, which will be familiar to most educational researchers.  The 

second component of our toolkit, and therefore the second section of this chapter, is a 

demonstration of this model using an education-related dataset.  We will provide an overview of 

the datasets (introduced in Chapter 2), including descriptive statistics, as well as the results of 

our statistical analyses using our Bayesian linear spatio-temporal model.  In terms of our three 

challenges, the first and third challenges will be directly addressed through the results of our 

analyses.  To show how our model addresses the issue of lengthy computational times, we will 

present the time needed to complete each analysis.  Likewise, to address model selection issues, 

our results will include posterior output as well as output from multiple model fit indices: R2, the 

D(m) statistic, the Akaike information criterion (AIC), and the Bayesian information criterion 

(BIC).  To further address the challenge of complex statistical models, we will include an 

instructional guide for running our model in Appendix B. 
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 The final component and section pertains to considerations to keep in mind when 

including spatio-temporal variables, particularly spatial variables, in analyses.  An especially 

important consideration is that of taking care to not conflate causation and correlation.  As 

established in the previous chapter, there is much to be mindful of when implying causation, 

particularly in terms of variables such as race and ethnicity (including racial composition of a 

school’s student body, as well as racial composition of the area or neighborhood surrounding a 

school).  We explore non-causal methods for providing spatial analysis and insight into 

relationships. 

 

3.2       Overview of the Bayesian Spatio-Temporal Model 

We introduced our thin-plate-spline-based Bayesian linear model in Section 2.1 of 

Chapter 2.  In this section we offer an overview of the model in order to frame our subsequent 

analyses and reporting of results.  Our model is notated as:  

              y = ft(xt) + fz(z) + fs(s) + fst(s, xt) + fstz(s, xt, z) + ε, ε ~ N(0, σ2)    (3.1)           

We represent the joint modeling of latitude (s1) and longitude (s2) via the vector s, the modeling 

of predictors at time t via the vector xt, and the modeling of non-spatial and non-temporal 

predictors via the vector z.  We model the interaction of the spatio-temporal variables in the 

parameter (s, xt), and the interaction of the spatio-temporal variables and other predictors in the 

parameter (s, xt, z).  The error term, ε, is assumed to be normally distributed, with a mean of zero 

and variance σ2.  Our model can also be written in the more general linear representation: 

                              𝑦𝑖 =  𝐱𝑖
𝑇𝜷 +  𝜀𝑖, with 𝜀𝑖 ~ N(0, σ2)                                (3.2) 

and the Bayesian linear representation: 

                                                  n(𝑦𝑖|𝐱𝑖
𝑇𝜷, σ2)                                              (3.3) 
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where the super vector 𝜷 represents the thin-plate spline function terms, 𝑓𝑘, and super vector 

𝐱𝑖
𝑇represents the predictor variables.   

The smoothing (spline) functions are defined as the following: 

                              ft = vector of variables at time t 

                              fs = vector of spatial variables  

                              fz = vector of non-spatial and non-temporal variables 

                              fst = interaction of spatial and temporal variables  

                              fstz = interaction of spatial, temporal, and non-spatial, non-temporal variables  

The use of spline terms transforms non-linear relationships between predictor variables and the 

dependent variable into linear relationships (Karabatsos, 2015b), with the aim of improving 

model fit.  We use univariate thin-plate splines for the vector of temporal variables and the 

vector of non-spatial, non-temporal variables; we use the interactions of univariate splines to 

represent the spatial variables, as well as other interaction terms in our model.   

 As mentioned in Chapter 2, we employ the shrinkage estimation technique of ridge 

regression due to its facility with multicollinearity.  Multicollinearity becomes a concern in this 

research due to the number of data points and predictors in the dataset, as well as the repeated 

observations over time.  In addition, multicollinearity is a concern because of the large number 

of spline terms that can be created when applying our Bayesian linear model.  The use of 

ordinary least-squares regression (OLS) is not recommended in the presence of multicollinearity 

due to unstable or non-existent parameter estimates, along with errors approaching infinity 

(Karabatsos, 2015a).  To avoid this issue, we use a particular ridge regression technique known 

as Bayesian Ridge Regression (RR) using marginal maximum likelihood (MML) in our 
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statistical analyses (Karabatsos, 2015a).  The use of RR provides the added advantage of 

decreasing the computational time needed to complete the analyses.     

 

3.3     Demonstration of the Model   

In this section, we begin with an overview of our first dataset.  We then demonstrate use 

of our thin-plate-spline-based Bayesian linear model through a series of statistical analyses, 

comparing the results from Bayesian Ridge Regression and Bayesian regression.  We present the 

results of these analyses, with each analysis utilizing a different combination of predictor 

variables from the CPS dataset.  

For this research, we will analyze data on schools in the city of Chicago, particularly the 

Chicago Public Schools (CPS) district.  We offer more extensive detail on the datasets in Section 

2.2 of Chapter 2, but provide an overview to frame the analyses we report on in the next section.  

The particular focus of our first dataset, which we refer to as CPS, is on the 2013-2014 school 

closings.  CPS contains data on 554 schools, which were selected based on the following criteria: 

1. The school must have been open during the 2012-2013 school year. 

2. The school must not be a charter school [the Illinois State Board of Education 

(ISBE) website reports data for charter school networks in aggregate.  Therefore, 

no charter school data is included].   

The CPS dataset contains the following data on each of the 554 schools: percentage of 

students meeting or exceeding standards on the ISAT and PSAE Math and Reading subject tests 

(broken down by grade level), as well as enrollment.  The subject test scores and enrollment 

numbers for each school are captured for the 2005-2006, 2006-2007, 2007-2008, 2008-2009, 
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2009-2010, 2010-2011, and 2011-2012 academic years.  The descriptive statistics for the 

ISAT/PSAE Math scores, ISAT/PSAE Reading scores, and enrollment are presented in Table III.  

 

 

Table III   

DESCRIPTIVE STATISTICS FOR THE CPS DATASET 

Variable Mean Standard Deviation 

ISAT/PSAE Reading (across all years) 63.47 19.55 

ISAT/PSAE Math (across all years) 70.38 19.47 

Enrollment (across all years) 629.35 366.43 

 

 

 

 

 

The CPS dataset also includes variables that are CPS policy-related; we include these 

variables due to their stated relevance to the school closings.  The first variable, which we use as 

the dependent variable in our analyses, is whether the school was closed for the 2013-2014 

academic year (coded “0” for “not closed” and “1” for “closed”).  We also include whether the 

school was on probation during the 2011-2012 academic year (coded “0” for “not on probation” 

and “1” for “on probation”), as well as the space utilization status at the beginning of the 2012-

2013 academic year (coded “0” for “efficient use” and “1” for “underutilized or overcrowded”) 

(Chicago Public Schools, 2011).  The frequency data for each of the aforementioned variables is 

included in Table IV. 
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Table IV   

FREQUENCIES FOR PROBATION STATUS, SPACE UTILIZATION STATUS, AND 

SCHOOL CLOSURES 

 

School Status Number of Schools 

On probation during 2011-2012 academic 

year 

 

245/554 (44.22%) 

Either underutilized or overcrowded during 

2012-2013 academic year 

 

359/554 (64.80%) 

Closed for 2013-2014 academic year 45/554 (8.12%) 

 

 

 

 

 

Finally, since the schools represent finite, countable spatial data points, we incorporate a 

spatial element into our model through inclusion of the latitude and longitude points for each of 

the 554 schools.  In addition, temporal elements are represented through the inclusion of 

ISAT/PSAE Math scores, ISAT/PSAE Reading scores, and enrollment numbers for seven 

academic years, as well as the use of six temporal lag terms (2005-2006, 2006-2007, 2007-2008, 

2008-2009, 2009-2010, and 2010-2011).  We can model the spatio-temporal elements through 

creation of interaction terms between the spatial variable and a given temporal variable (e.g. the 

interaction of school location and enrollment numbers for a temporal lag period of one year). 

 

3.3.1     Baseline CPS Analysis (No Spatial Variables) 

 We framed our first analysis around the following question: was school enrollment a 

significant predictor of which schools were closed for the 2013-2014 year?  We focused on 

school enrollment due to the claim by the CPS district that space utilization (determined by 
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enrollment) was the main criterion used to determine which schools to close. We used whether 

the school was closed for the 2013-2014 academic year (binary coded “0” for “not closed” and 

“1” for “closed”) as our dependent variable (DV).  To reflect the CPS criterion, we included the 

space utilization status at the beginning of the 2012-2013 academic year (binary coded “0” for 

“efficient use” and “1” for “underutilized or overcrowded”) and enrollment numbers as predictor 

variables.  We also included whether the school was on probation during the 2011-2012 

academic year (binary coded “0” for “not on probation” and “1” for “on probation”), Reading 

scores, and Math scores as predictor variables in order to account for school-level academic 

performance.   

Prior to running the analysis, we constructed univariate thin-plate splines for each of the 

continuous predictor variables (i.e. Reading scores, Math scores, and enrollment numbers).  In 

constructing our thin-plate splines, we placed knots at 40 evenly spaced quantiles of the variable 

data.  The use of 40 knots is suggested as a default value by Ruppert (2002), regardless of sample 

size (though particularly for datasets with n > 150).  Given the size of our dataset (n = 18,506), 

we opted to use this default value.    

We ran this analysis, which intentionally does not incorporate spatial location or temporal 

lags, first in part to orient the reader to our model and to use of the Bayesian Ridge Regression 

software (Karabatsos, 2016).  In the remainder of this section, we present the results of our 

analysis.  We include posterior estimates of our predictors; since p = 121, however, we will not 

include all posterior output in this section.  The full posterior output, as generated by the 

Bayesian Ridge Regression software (Karabatsos, 2016), is included in Table XV, Appendix A, 

along with a guide for how to run the analysis in Appendix B.  As indicated in Chapter 2, we 

include the following model fit statistics: R2, the D(m) statistic, the Akaike information criterion 
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(AIC), and the Bayesian information criterion (BIC), as well as the number of outliers in the data.  

Finally, we also include the time needed to complete the computations.   

The posterior estimates are provided in Table V.  We include the 2011-2012 probation 

and 2012-2013 space use status variables, as well as selected Reading, Math, and enrollment 

knot estimates.  Per our analysis, a school being on probation in 2011-2012 was a significant 

predictor of the school closing in 2013-2014, when controlling for all other variables in the 

analysis.  We determined this because the PP1SD (the probability that the standardized beta 

coefficient falls within 1 standard deviation of 0) is less than .5 (.00) and the 50% posterior 

interval (shown in Table V between the 25% percentile and the 75% percentile) does not contain 

zero.  Therefore, based on the PP1SD and the 50% posterior interval, we conclude that 2011-

2012 probation status is a particularly strong predictor of a school closing.  Similarly, a school 

being classified as “underutilized” or “overcrowded” during the 2012-2013 school year was a 

significant predictor of the school closing, again when controlling for all other variables [PP1SD 

= .00; 50% posterior interval (0.027, 0.030)].  Based on these values, space use status is also a 

particularly strong predictor of a school closing. 

The percentage of students meeting or exceeding standards on the ISAT and PSAE 

Reading subject test was a significant predictor of a school closing in 2013-2014, though only for 

a particularly small range of percentages (roughly between 23% and 30.3% of students meeting 

or exceeding standards) [PP1SD = .372; 50% posterior interval (-0.136, -0.043)].  Likewise, the 

percentage of students meeting or exceeding standards on the ISAT and PSAE Math subject test 

was a significant predictor of a school closing in 2013-2014, though also only for a particularly 

small range of percentages (roughly between 25.6% and 35% and then 40.5% and 44% of  
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Table V   

POSTERIOR ESTIMATES FOR THE FIRST CPS ANALYSIS   

Predictor E[β|Data] SE[β|Data] PP1SD 2.5% 

percentile 

25% 

percentile 

75% 

percentile 

97.5% 

percentile 

Intercept 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

2011-2012 

Probation 

0.051 0.002 .000 0.047 0.050 0.053 0.056 

2012-2013 

Space Use 

Status 

0.029 0.002 .000 0.025 0.027 0.030 0.033 

Reading 

(Knot 1) 

-0.028 0.090 .660 -0.204 -0.088 0.033 0.149 

Reading 

(Knot 2) 

-0.089 0.069 .372 -0.224 -0.136 -0.043 0.046 

Reading 

(Knot 3) 

-0.004       0.089 .682 -0.179 -0.064 0.056 0.171 

Math 

(Knot 1) 

0.026 0.087 .661 -0.144 -0.032 0.085 0.196 

Math 

(Knot 2) 

-0.158 0.057 .036 -0.269 -0.196 -0.120 -0.047 

Math 

(Knot 3) 

-0.027 0.078 .654 -0.181 -0.080 0.026 0.127 

Enrollment 

(Knot 1) 

-0.393 0.088 .000 -0.565 -0.452 -0.333 -0.221 

Enrollment 

(Knot 2) 

0.320 0.097 .011 0.129 0.255 0.386 0.512 

Enrollment 

(Knot 3) 

0.228 0.105 .118 0.023 0.158 0.299 0.433 

Enrollment 

(Knot 39) 

-0.017 0.026 .583 -0.068 -0.034 0.000 0.033 

Enrollment 

(Knot 40) 

0.297 0.081 .004 0.138 0.242 0.351 0.455 
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students meeting or exceeding standards) [[PP1SD = .036; 50% posterior interval (-0.196, -

0.120)][PP1SD = .491; 50% posterior interval (0.026, 0.150)]].  More research is needed on any 

practical implications of the significance of the Reading and Math scores.  Finally, enrollment 

number was also a significant predictor, though only for certain ranges (below 320 and above 

4278) (all 50% posterior intervals do not include zero).  The practical implications of this 

significance seem more apparent, as the significance of both low and very high enrollment 

numbers seems to confirm the policy statement by CPS that enrollment was the main factor used 

to determine which schools to close.  

The model fit statistics, as well as computational time, are included in Table VI. 

 

 

 

 

Table VI   

MODEL FIT STATISTICS AND COMPUTATIONAL TIME FOR FIRST CPS ANALYSIS 

Model Fit Value 

R2 .15 

D(m) 2697.95 

AIC 4094.09 

BIC 4413.65 

Number of Outliers (z > 3.00) 514 (2.78%) 

Computational Time 0.54 seconds 

   

 

 

 

 

 Though the D(m), AIC, and BIC model fit statistics are presented here, the values will be 

interpreted in the next section as we compare our first and second models.  We can, however, 

interpret the R2 statistic, number of outliers, and computational time for this model.  Our R2 value 

of .15 indicates that only 15% of the variance in our school closing dependent variable is 
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accounted for by the predictor variables we included in this first model.  Therefore, we conclude 

that more variables, or a different combination of variables, should be included in a subsequent 

analysis.  Conversely, it is relatively impressive that we only observed 514 outliers (as 

determined by any Y value with a standardized residual greater than 3.00), or extreme data 

observations, out of 18,506 cases.  This lends support for the validity of our model.  Likewise, 

the computational time of 0.54 seconds for analysis of a dataset with n = 18,506 and p = 121 

lends great support for the use of ridge regression in our Bayesian linear model. 

 

 3.3.2     CPS Analysis with Spatial Variables 

For our second analysis, we utilized the same CPS dataset and the same dependent 

variable (whether the school was closed for the 2013-2014 year) as in our first analysis.  Since 

our goals are to both demonstrate the functionality of the model and to compare model 

performance, we also utilized the same base predictor variables (2012-2013 space utilization 

status, 2011-2012 probation status, enrollment numbers, Reading scores, and Math scores).  

However, we extended our model to include spatial locations (point data) in order to both 

demonstrate the utility of the model and to answer the following question: was the spatial 

location of the school a significant predictor of whether the school closed in 2013-2014?   

We again constructed univariate thin-plate splines for each of the continuous predictor 

variables (i.e. Reading scores, Math scores, and enrollment numbers), with knots at 40 evenly 

spaced quantiles.  To capture the spatial locations, we included the latitude and longitude 

coordinates (point data) of each school in our dataset.  We then created separate univariate thin-

plate splines for latitude and longitude, with knots at 10 evenly spaced quantiles.  We selected a 
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smaller number of initial splines since we then created latitude by longitude interaction terms 

from these splines, resulting in 100 latitude by longitude variables.    

   We now present the results of our analysis, including posterior estimates of our 

predictors.  Since p = 241, we again only include part of our posterior output.  We also include 

the R2, D(m), AIC, and BIC model fit statistics, with a comparison between the performance of 

our first model and that of the spatial model used in this analysis.  Finally, we again include the 

number of outliers in the data and the time needed to complete the computations.   

The posterior estimates are provided in Table VII.  We include the 2011-2012 probation 

and 2012-2013 space use status variables, as well as selected Reading, Math, enrollment, and 

spatial knot estimates.  As in our first analysis, a school being on probation in 2011-2012 was a 

significant predictor of the school closing in 2013-2014, when controlling for all other variables 

in the analysis [PP1SD = .000; 50% posterior interval (0.065, 0.069)].  In addition, space use 

status during 2012-2013 was again a significant predictor of the school closing [PP1SD = .000; 

50% posterior interval (0.025, 0.028)].  The strength of both probation status and space use status 

as predictors remained the same from the first analysis to the second, particularly in terms of 

PP1SD (.000 for both variables, across analyses). 

The percentage of students meeting or exceeding standards on the ISAT and PSAE 

Reading subject test continued to be a significant predictor of a school closing in 2013-2014, 

though only for a few small ranges (including between 23% and 30.3%, and then between 56.6% 

and 58% of students meeting or exceeding standards) [[PP1SD = .506; 50% posterior interval (-

0.197, -0.030)][PP1SD = .394; 50% posterior interval (0.283, 0.963)]].  Likewise, the  
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Table VII 

POSTERIOR ESTIMATES FOR THE SECOND CPS ANALYSIS 

Predictor E[β|Data] SE[β|Data] PP1SD 2.5% 

percentile 

25% 

percentile 

75% 

percentile 

97.5% 

percentile 

Intercept 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

2011-2012 

Probation 

0.067 0.003 .000 0.062 0.065 0.069 0.072 

2012-2013 

Space Use 

Status 

0.026 0.002 .000 0.022 0.025 0.028 0.031 

Reading 

(Knot 2) 

-0.113 0.124 .506 -0.356 -0.197 -0.030 0.129 

Math 

(Knot 2) 

-0.130 0.095 .348 -0.315 -0.193 -0.066 0.056 

Math 

(Knot 3) 

-0.169 0.159 .457 -0.481 -0.276 -0.061 0.144 

Enrollment 

(Knot 1) 

-1.006 0.190 .000 -1.379 -1.134 -0.877 -0.632 

Enrollment 

(Knot 2) 

0.747 0.260 .030 0.238 0.572 0.923 1.257 

Enrollment 

(Knot 3) 

0.936 0.423 .112 0.107 0.651 1.221 1.765 

Enrollment 

(Knot 4) 

-1.259 0.471 .047 -2.181 -1.576 -0.941 -0.336 

Enrollment 

(Knot 39) 

0.028 0.034 .536 -0.039 0.005 0.051 0.095 

Latitude 

(Knot 2) 

-1.185 0.482 .072 -2.130 -1.510 -0.860 -0.241 

Longitude 

(Knot 2) 

-0.454 0.530 .525 -1.492 -0.811 -0.097 0.584 

Lat*Long 

(Knot 4) 

-0.299 0.271 .441 -0.831 -0.482 -0.116 0.233 

Lat*Long 

(Knot 6) 

0.409 0.235 .227 -0.052 0.250 0.568 0.870 
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percentage of students meeting or exceeding standards on the ISAT and PSAE Math subject test 

was a significant predictor of a school closing in 2013-2014, with a slightly more expanded 

range (primarily between 25.6% and 47.5% of students meeting or exceeding standards) (50% 

posterior intervals do not include zero).  Again, we encourage more research on the practical 

implications of the significance of the Reading and Math scores.  Enrollment number also 

remained a significant predictor for values below 336.30 (excluding a small range between 285 

and 303) and between 1352 and 4278 (50% posterior intervals do not include zero).  The 

continued significance of both low and very high enrollment numbers again seems to confirm the 

CPS statement about the use of enrollment data in determining which schools to close.  

    Finally, spatial location was a significant predictor of a school closing, in terms of the 

main effects of both latitude and longitude as well as the interaction of latitude and longitude.  

Six of the 10 latitude terms were significant, based on 50% posterior intervals that did not 

include zero.  Likewise, six of the 10 longitude terms were significant, again based on the same 

criterion.  Of the latitude by longitude interaction terms, 76 of the 100 knots were significant, 

based on either a PP1SD < .50 or 50% posterior intervals that did not include zero.  We provide 

more detail on the practical implications of this significance in Section 3.4. 

 The model fit statistics, as well as computational time, are included in Table VIII.  We 

also include the results from the first analysis for comparison.  In terms of our current analysis, 

the R2 value of .27 indicates that 27% of the variance in our school closing dependent variable is 

accounted for by the predictor variables we included in this second model, which is a 12% 

increase over our first model.  This lends strong support for including the spatial location 

variables in our analysis.  Likewise, the lower D(m) (2697.95 vs. 2330.03), BIC (4413.65 vs. 
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2776.17), and AIC (4094.01 vs. 1502.69) values for our second model also lend support for 

including the spatial variables. 

 

 

 

 

Table VIII   

COMPARISON OF MODEL FIT STATISTICS AND COMPUTATIONAL TIME FOR THE 

FIRST AND SECOND CPS ANALYSES 

 

Model Fit Value-Analysis #1 Value-Analysis #2 

R2 .15 .27 

D(m) 2697.95 2330.03 

AIC 4094.01 1502.69 

BIC 4413.65 2776.17 

Number of Outliers (z > 3.00)  514 (2.78%) 407 (2.20%) 

Computational Time 0.54 seconds 1.33 seconds 

 

 

 

 

  

 In terms of overall model performance, we only observed 407 outliers, a decrease from 

our first model and again impressive for a dataset with n = 18,506.  This continues to lend 

support for the validity of our model, even with the added predictor variables.  Likewise, the 

computational time of 1.33 seconds for analysis with n = 18,506 and p = 241 lends great support 

for the use of ridge regression in our Bayesian linear model, including when the model is 

expanded to include spatial variables.     

  

3.3.3     CPS Analysis with Spatial/Spatio-Temporal Variables and Discussion 

 For our third and final analysis, we utilize the same CPS dataset and dependent variable 

(whether the school was closed for the 2013-2014 academic year) as in our previous two 

analyses.  In order to further demonstrate the functionality of the model and to compare model 
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performance, we use the same base predictor variables as well as the spatial location variables 

from the second analysis.  For this analysis, however, we extend our model to include both a 

temporal variable as well as a spatio-temporal variable.  For the temporal variable, we include 

the enrollment data from the 2010-2011 academic year (first temporal lag term, or t-1).  We 

selected enrollment data since this variable has shown the most significant relationship with the 

dependent variable across the previous analyses.  For the spatio-temporal variable, we created an 

interaction between the latitude by longitude interaction terms from the previous analysis and the 

2010-2011 enrollment variable.  The addition of these variables allows us to answer the question 

of whether time, as well as spatial location at a particular point in time, were significant 

predictors of whether a school was closed in 2013-2014. 

We again constructed univariate thin-plate splines for each of the continuous predictor 

variables (i.e. Reading scores, Math scores, and enrollment numbers), with knots at 40 evenly 

spaced quantiles.  We also included the separate univariate thin-plate splines for latitude and 

longitude, with knots at 10 evenly spaced quantiles, as well as the 100 latitude by longitude 

interaction variables.  For the new temporal variable, we constructed a univariate thin-plate 

spline for the 2010-2011 enrollment variable, with knots at seven evenly spaced quantiles.  We 

then constructed the interaction terms for latitude, longitude, and time, resulting in 700 latitude 

by longitude by time interaction variables.       

We now present the results of our analysis, including posterior estimates of our predictors.  

Since p = 948, we again only include part of our posterior output.  We also include the R2, D(m), 

AIC, and BIC model fit statistics, with a comparison between the performance of  the current 

spatio-temporal model and the models used in the two previous analyses.  Finally, we again 

include the number of outliers in the data and the time needed to complete the computations.   
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The posterior estimates are provided in Table IX.  We include the 2011-2012 probation 

and 2012-2013 space use status variables, as well as selected Reading, Math, enrollment, spatial, 

temporal, and spatio-temporal knot estimates.  As in our two previous analyses, a school being 

on probation in 2011-2012 was a significant predictor of the school closing in 2013-2014, when 

controlling for all other variables in the analysis [PP1SD = .000; 50% posterior interval (0.065, 

0.068)].  In addition, space use status during 2012-2013 was again a significant predictor of the 

school closing [PP1SD = .000; 50% posterior interval (0.023, 0.026)].  The strength of both the 

probation and space use status variables as a predictor of a school closing continued to remain 

the same as in the previous two analyses, particularly in terms of PP1SD (.000 across all 

analyses). 

The percentage of students meeting or exceeding standards on the ISAT and PSAE 

Reading subject test continued to be a significant predictor of a school closing, though again only 

for a few small ranges (including between 23% and 30.3%, and then between 56.6% and 58% of 

students meeting or exceeding standards) [[PP1SD = .258; 50% posterior interval (-0.157, -

0.065)][PP1SD = .519; 50% posterior interval (0.022, 0.167)]].  Likewise, the percentage of 

students meeting or exceeding standards on the ISAT and PSAE Math subject test was a 

significant predictor of a school closing in 2013-2014, though, as in the first analysis, only for a 

particular few small ranges (between 25.6% and 35% and then between 40.5% and 44% of 

students meeting or exceeding standards) [[PP1SD = .044; 50% posterior interval (-0.187, -

0.113)][PP1SD = .449; 50% posterior interval (0.038, 0.162).  As with the previous findings, we 

encourage more research on the practical implications of the continued significance of the 

Reading and Math scores.  Enrollment number also remained a significant predictor for values 

below 320, between 1352 and 1560, and above 4278 (50% posterior intervals do not include 
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Table IX   

POSTERIOR ESTIMATES FOR THE THIRD CPS ANALYSIS 

Predictor E[β|Data] SE[β|Data] PP1SD 2.5% 

percentile 

25% 

percentile 

75% 

percentile 

97.5% 

percentile 

Intercept 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

2011-2012 

Probation 

0.066 0.003 .000 0.061 0.065 0.068 0.071 

2012-2013 

Space Use 

Status 

0.024 0.002 .000 0.019 0.023 0.026 0.029 

Reading 

(Knot 2) 

-0.111 0.068 .258 -0.244 -0.157 -0.065 0.022 

Math 

(Knot 2) 

-0.150 0.055 .044 -0.258 -0.187 -0.113 -0.041 

Math 

(Knot 4) 

0.100 0.092 .449 -0.081 0.038 0.162 0.281 

Enrollment 

(Knot 1) 

-0.395 0.090 .000 -0.572 -0.456 -0.335 -0.219 

Enrollment 

(Knot 2) 

0.272 0.098 .039 0.079 0.205 0.338 0.465 

Enrollment 

(Knot 3) 

0.254 0.107 .083 0.045 0.182 0.326 0.463 

Enrollment 

(Knot 38) 

-0.044 0.059 .559 -0.160 -0.084 -0.004 0.071 

Latitude 

(Knot 1) 

-0.088 0.110 .542 -0.303 -0.162 -0.014 0.127 

Longitude 

(Knot 1) 

0.087 0.102 .527 -0.113 0.018 0.156 0.287 

Lat*Long 

(Knot 8) 

0.169 0.109 .284 -0.044 0.096 0.242 0.382 

Lat*Long 

(Knot 9) 

-0.137 0.109 .386 -0.351 -0.211 -0.064 0.077 

Enrollment 

2010 

(Knot 1) 

-0.002 0.119 .683 -0.236 -0.082 0.079 0.232 

Lat*Long* 

Time 

(Knot 23) 

-0.095 0.104 .508 -0.299 -0.165 -0.024 0.110 
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zero).  The significance of both low and very high enrollment numbers across all three analyses 

provides strong support for the use of enrollment data in determining which schools to close.  

Finally, spatial location was a significant predictor of a school closing, in terms of the 

main effects of both latitude and longitude as well as the interaction of latitude and longitude.  

Six of the 10 latitude terms were again significant, based on 50% posterior intervals that did not 

include zero.  Three of the 10 longitude terms were significant (down from six in the previous 

analysis), again based on 50% posterior intervals that did not include zero.  Of the latitude by 

longitude interaction terms, 25 of the 100 knots were significant (down from 76 in the previous 

analysis).  The temporal term (2010-2011 enrollment) was not itself a significant predictor; 

however, 165 of the 700 spatio-temporal terms created by the interaction of latitude, longitude, 

and 2010-2011 enrollment were significant.  As with the previous analysis, we will provide more 

detail on the practical implications of this significance in Section 3.4. 

 The model fit statistics, as well as computational time, are included in Table X.  We also 

include the results from the first two analyses for comparison.  

 

 

 

 

Table X   
 

COMPARISON OF MODEL FIT STATISTICS AND COMPUTATIONAL TIME FOR THE 

FIRST, SECOND, AND THIRD CPS ANALYSES 

 

Model Fit Value-Analysis #1 Value-Analysis #2 Value-Analysis #3 

R2 .15 .27 .27 

D(m) 2697.95 2330.03 2341.56 

AIC 4094.01 1502.69 1700.88 

BIC 4413.65 2776.17 3810.46 

Number of Outliers  514 (2.78%) 407 (2.20%) 420 (2.27%) 

Computational Time 0.54 seconds 1.33 seconds 12.04 seconds 
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 Our R2 value of .27 indicates that 27% of the variance in our dependent variable is 

accounted for by the predictor variables we included in this third model.  Therefore, unlike 

between the first and second analyses, there was no change in R2 value between the second and 

third analyses.  This indicates a need to consider additional predictor variables beyond the 

standardized test scores, enrollment, and the spatial, temporal, and spatio-temporal variables.  In 

addition, both the AIC and BIC values for our third model are higher than those for the second 

model (1700.88 vs. 1502.69 and 3810.46 vs. 2776.17, respectively), providing strong support for 

including the spatial variables but less support for the increased model complexity from adding 

the temporal and spatio-temporal variables (or, perhaps, the particular temporal period selected 

for this analysis).  We note a considerable divergence between the AIC and BIC values, 

particularly in the third model, which we believe is due to the BIC penalizing more for the 

additional model complexity.  Finally, we note that the D(m) statistic is slightly higher for the 

third model than the second model (2341.56 vs. 2330.03), which we suggest is due to number of 

covariates in the model (p = 948) and the nature of the D(m) statistic to penalize for complexity.  

 In terms of overall model performance, we observed 420 outliers, a decrease from the 

514 detected in our first model but a slight increase from the 407 detected in our second model.  

However, this is still impressive given the size of the dataset and the 707 additional covariates in 

the third model.  We conclude that this lends support for the validity of our spatio-temporal 

model.  Likewise, the computational time of 12.04 seconds for an analysis with n = 18,506 and p 

= 948 lends great support for the use of ridge regression in our Bayesian linear model, including 

when the model is expanded to include temporal and spatio-temporal variables.     
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3.3.4     Addressing Outliers 

 As noted previously, our analyses revealed 514, 407, and 420 outliers for our first, second, 

and third models, respectively.  We determined which values were outliers using a threshold of a 

standardized residual (z) lower than negative three or greater than positive three, or equivalent to 

three standard deviations above or below the mean and therefore an extreme data observation.  It 

is perhaps not surprising that most of the outliers were cases within schools that were closed 

prior to the 2013-2014 school year.  Per the criteria used by CPS, these schools largely 

represented the most extreme cases across the district, whether in terms of academic performance, 

enrollment numbers, or both.   

 In order to address these outliers in our dataset, we applied a technique developed by 

Xiong & Joseph (2013) to dummy code the outlier cases.  Per this technique, each case in the 

dataset was dummy coded as either “0” (not an outlier) or “1” (outlier), with a new variable 

created for each case.  We then ran the analysis again, but this time we included the newly 

created “outlier” (value of 1) dummy coded variables in our set of covariates.  We applied this 

technique to all three models and present the updated results in Table XI. 

 

 

 

 

Table XI 

COMPARISON OF MODEL FIT STATISTICS AND COMPUTATIONAL TIME FOR ALL 

THREE CPS ANALYSES (AFTER CORRECTION FOR OUTLIERS) 

 

Model Fit Value-Analysis #1 Value-Analysis #2 Value-Analysis #3 

R2 .39 .39 .41 

D(m) 1985.75 1975.43 1938.03 

AIC -1115.46 -1266.87 -1559.04 

BIC 2824.02 2242.25 2431.95 

Computational Time 5.97 seconds 6.05 seconds 24.37 seconds 
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 As shown in Table XI, accounting for the outliers greatly improved the model 

performance across all models.  The R2 value improved by more than twofold for the first model 

(from 0.15 to 0.39) and the D(m), AIC, and BIC values improved (decreased) for all models.  

These results support utilizing the Xiong & Joseph (2013) technique to account for outliers, 

particularly given that computation time remains below 30 seconds, even with p = 1368.   

 The decrease in D(m), AIC, and BIC values from the first model to the second and third 

supports the inclusion of spatial, temporal, and spatio-temporal variables in the model.  Per the 

D(m) and AIC values, the outlier-adjusted third (spatio-temporal) model provides the best fit to 

the dataset.  The BIC values support the outlier-adjusted second (spatial) model, most likely due 

to the added complexity in the third model.  Overall, the model performance and fast 

computational speeds continue to support the use of ridge regression in our Bayesian model. 

 

3.4     Considerations When Interpreting Spatial and Spatio-Temporal Analyses 

 The final part of our toolkit pertains to the interpretation of statistical analyses conducted 

using spatial and spatio-temporal variables.  How should an educational researcher interpret 

findings of statistical significance and evidence to support inclusion of spatial and spatio-

temporal variables, such as model fit indices (e.g. AIC and BIC)?  In terms of statistical analysis, 

the significant latitude by longitude interaction knots form a “smoothing” grid for discrete spatial 

data (introduced in Section 1.5.1).  Though our datasets utilize point data (represented by latitude 

and longitude), the grid serves to form a more condensed representation of these spread out 

points, thus better facilitating the regression analysis.   

In general, though, we argue that a researcher should avoid making causal claims about 

these spatial and spatio-temporal variables and should instead incorporate more work on 
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exploring correlations (relationships) between variables, including those established through 

statistical analyses and those discovered through digging deeper into the findings.  This 

exploration of relationships can include elements such as visualization of the data through maps, 

descriptive elements such as counts, and a more qualitative investigation of the spatial locations, 

which serves to uncover elements that may contribute to the research findings (e.g. a school may 

be in a neighborhood with low median resident income, which may impact resources available to 

the schools as well as to the students outside of school) (Sampson, 2008).  These elements could 

then be incorporated into subsequent statistical analyses. 

We illustrate these considerations with interpretations of our own analyses conducted in 

Sections 3.3.3 and 3.3.4 of this chapter.  In Section 3.3.3, we analyzed the academic performance 

and enrollment-related variables for 554 schools, while adding in spatial location as a predictor 

variable.  The results of this analysis, as shown in part in Table VII, indicate both that spatial 

location is a significant predictor of whether a school closed in 2013-2014 and that the inclusion 

of spatial location improves model fit (across multiple fit indices).  Likewise, in Section 3.3.4, 

we analyzed the same academic performance, enrollment, and spatial variables, while adding 

temporal and spatio-temporal elements.  The results of this final analysis, as shown in part in 

Table IX, indicate that spatial location and the spatio-temporal variable were significant 

predictors and that the inclusion of temporal and spatio-temporal variables improved model fit 

(per most fit indices). 

 Since spatial location was a significant predictor of a school closing, we begin with a 

visualization of the 45 CPS schools that were closed for the 2013-2014 school year.  In Figure 1, 

we present a map of the closed schools, created using the free and publicly available Google 

Fusion Tables program (2016).     
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Figure 1.  The 45 Chicago Public Schools schools that were closed prior to the start of the 2013-

2014 school year.3 

                                                        
3 There are 43 schools shown on the map because Roque du Duprey Elementary School and 
Von Humboldt Elementary School shared an address.  Likewise, Williams Middle Prep 
Academy and Williams Multiplex Elementary School also shared an address. 
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Examining the map reveals that most of the schools that closed were located in Chicago’s West 

and South sides.  On the surface, we could then infer a relationship between a school’s location 

in the West or South side of the city and likelihood of closing.  However, what additional 

information could we provide about these areas of Chicago and the various neighborhoods 

located within?  With this question, we are able to begin a more in-depth exploration of 

additional factors that may have contributed to a school being selected for closure.   

 As a first step, we recall the West and South sides of Chicago tend to have a higher 

percentage of minority residents than other areas of the city.  Per Chicago census data, the 

primary minority group in the West and South sides is African-Americans, who comprise as 

much as 85.8% to 100% of the population in some areas of the West and South sides (Frankel, 

2013).  Likewise, we revisit the research by Radinsky and Waitoller (2013) on the CPS school 

closings, which found that 81% of the students impacted by the school closings were African-

American.  Thus, we further explore our initial findings through an additional statistical analysis 

that incorporates racial composition of the student body as a covariate.   

For our follow-up analysis, we utilize the CPS Demo dataset described in Chapter 2.  We 

elected to only use data from 2011-2012 since the focus of this analysis is exploration of 

additional factors related to spatial location.  The CPS Demo dataset contains the following data 

from the CPS dataset: 2011-2012 probation status, 2012-2013 space utilization status, spatial 

variables (latitude, longitude, and latitude by longitude interaction terms), and 2011-2012 

enrollment numbers, Reading scores, and Math scores.  We also added race/ethnicity data from 

the CPS 2011-2012 Racial/Ethnic Report (Chicago Public Schools, 2016).  Though the 

Racial/Ethnic Report includes counts and percentages of students identifying in nine categories 

(listed in Chapter 2), for the sake of this analysis we summed the number of students identifying 
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in any category except for “White” and divided by the total number of students enrolled in order 

to create a 2011-2012 Percentage Minority variable.  The descriptive statistics for the 

ISAT/PSAE Math scores, ISAT/PSAE Reading scores, enrollment numbers, and percentage 

minority variable are presented in Table XII.  

 

 

 

 

Table XII 

DESCRIPTIVE STATISTICS FOR THE CPS DEMO DATASET 

Variable Mean Standard Deviation 

ISAT/PSAE Reading (2011-2012) 67.85 18.74 

ISAT/PSAE Math (2011-2012) 76.10 17.56 

Enrollment (2011-2012) 589.07 362.05 

Percentage Minority (2011-2012) 91.13 16.70 

 

 

 

 

 

3.4.1    Analysis of CPS Demo Dataset and Discussion 

 Prior to running the analysis, we again created univariate thin-plate splines for the 

continuous predictor variables (i.e. Reading scores, Math scores, enrollment numbers, and racial 

composition), using knots at 40 evenly spaced quantiles of the data.  We again also created 

univariate thin-plate splines for latitude and longitude, and then created a latitude by longitude 

interaction term from the two univariate splines. 

We now present the results of our analysis, including posterior estimates of our predictors.  

The results shown are post-application of the Xiong & Joseph (2013) technique to account for 71 
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outliers (z > 3).  Since p = 336, we again only include part of our posterior output, along with the 

R2, D(m), AIC, and BIC model fit statistics and the time needed to complete the computations.   

The posterior estimates are provided in Table XIII.  We include the 2011-2012 probation 

and 2012-2013 space use status variables, as well as selected Reading, Math, enrollment, spatial, 

and racial composition knot estimates.  Though we only considered data from the 2011-2012 

academic year, the results for this analysis are similar to those from the three CPS dataset 

analyses.  In this analysis, probation status, space use status, and very low and very high 

enrollment numbers were significant predictors of a school closing, which is consistent with the 

CPS analyses.  In addition, 28 of the 100 latitude by longitude interaction terms were significant 

predictors, which continues to support the relationship between spatial location and school 

closings. 

However, unlike in the CPS dataset analyses, the Reading and Math score variables were 

not significant predictors.  This indicates support for a more longitudinal analysis of the school 

closings, rather than the cross-sectional approach taken in this analysis (wherein we only 

analyzed scores from 2011-2012).  The racial composition variable was also not a significant 

predictor, an initially rather unexpected finding given the spatial locations of the closed schools.  

We will explore this finding further in the Section 3.4.2.   

 

 

 

 

 

 



84 
 

 

Table XIII 

POSTERIOR ESTIMATES FOR THE CPS DEMO ANALYSIS 

Predictor E[β|Data] SE[β|Data] PP1SD 2.5% 

percentile 

25% 

percentile 

75% 

percentile 

97.5% 

percentile 

Intercept 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

2011-2012 

Probation 

0.049 0.006 .000 0.038 0.045 0.053 0.060 

2012-2013 

Space Use 

Status 

0.012 0.005 .065 0.003 0.009 0.016 0.022 

2011-2012 

Minority 

(Knot 1) 

-0.005 0.021 .669 -0.047 -0.019 0.009 0.036 

Reading 

(Knot 1) 

0.003 0.020 .678 -0.037 -0.011 0.016 0.042 

Math 

(Knot 1) 

-0.000 0.020 .682 -0.040 -0.014 0.013 0.039 

Enrollment 

(Knot 1) 

-0.066 0.020 .011 -0.106 -0.080 -0.053 -0.027 

Enrollment 

(Knot 2) 

-0.035 0.021 .239 -0.076 -0.049 -0.021 0.005 

Enrollment 

(Knot 3) 

-0.020 0.021 .494 -0.061 -0.034 -0.006 0.021 

Enrollment 

(Knot 40) 

0.068 0.020 .008 0.029 0.055 0.082 0.107 

Latitude 

(Knot 1) 

-0.009 0.020 .640 -0.048 -0.022 0.005 0.031 

Longitude 

(Knot 1) 

0.004 0.020 .671 -0.035 -0.009 0.018 0.043 

Lat*Long 

(Knot 3) 

0.016 0.018 .517 -0.020 0.004 0.028 0.052 
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  Finally, in Table XIV we present model fit indices and computational time for both the 

second CPS dataset analysis (with outliers accounted for) and for the current analysis (with and 

without the percentage minority variable).  

 

 

 

 

Table XIV 

COMPARISON OF MODEL FIT STATISTICS AND COMPUTATIONAL TIME FOR THE 

SECOND CPS DATASET ANALYSIS AND CPS DEMO ANALYSIS 

 

Model Fit Initial Spatial 

Analysis  

Updated Spatial 

Analysis (With 

Race) 

Updated Spatial 

Analysis (Without 

Race) 

R2 0.39 0.46 0.45 

D(m) 1975.43 257.85 261.80 

AIC -1266.87 -472.29 -436.14 

BIC 2242.25 209.17 213.91 

Computational Time 6.05 seconds 7.29 seconds 7.91 seconds 

 

 

 

 

  

It is important to note that the second CPS dataset analysis contained n = 18,506 and p = 

648 (p = 241 when excluding the outlier dummy coded variables), while the current analysis 

contained n = 2,729 and p = 336.  The difference in n is due to the longitudinal nature of the CPS 

dataset, as compared to the cross-section analyzed in the CPS Demo dataset.  Given these, the 

D(m) and BIC model fit indices improve (decrease) considerably for the current analysis.  In 

addition, the amount of variance in our dependent variable accounted for by our model increased 

from 39% in the second CPS analysis to 46% in the current analysis.   

We also compared the model fit indices for two analyses run on the CPS Demo dataset: 

first with the racial composition variable (n = 2,729 and p = 336), and then with that variable 

excluded (n = 2,729 and p = 307).  As shown in Table XIV, the D(m) and BIC model fit indices 
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improve (decrease) when race is included.  In addition, R2 value increases slightly, from 45% to 

46%.  Therefore, even though our percentage minority variable was not a significant predictor of 

whether a school closed, the model fit indices and R2 value indicate that, at least when 

considering the 2011-2012 school year, there is definite value in including this variable in the 

model.      

  

3.4.2    Final Considerations 

The question of the relationship between a school’s racial composition and whether the 

school closed provides an excellent case for Sampson’s (2008) argument that researchers should 

utilize descriptive approaches as much as, if not more than, statistical analyses (such as 

regression), where results that indicate a relationship between variables could potentially be 

misinterpreted to imply causation.  In the same vein, relying on results of statistical analyses 

without incorporation of additional descriptive approaches, such as maps, can result in a failure 

to uncover unobserved variables that actually account for what we observe in our data. 

To this point, the results of the regression analysis indicate that while inclusion of the 

percentage minority variable improves model fit and the R2 value, the variable itself is not a 

significant predictor of whether a school was closed.  However, it is important to remember that 

the average percentage of minority students in the observed schools was 91.13%.  Indeed, 95.8% 

of the schools were “majority minority;” that is, more than 50% of the students in these schools 

identify with a racial/ethnic group other than White.  Furthermore, the racial composition of the 

student population at all of the 45 schools closed for 2013-2014 was at least 87% minority, and 

38/45 (84%) were at least 99% minority.  Therefore, it is possible that the skew of the data 

toward higher values may complicate the regression analysis.  It may be advisable to compare 
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analysis results with a combined racial variable, as done in this thesis, with an analysis that looks 

at individual racial/ethnic groups. 

It could also be, however, an illustration of Holland’s (2008) point that race itself is not 

often the actual variable of interest, and therefore should not be used as a causal variable.  Rather, 

what we attribute to race is often instead a product of other unobserved predictors that we have 

not included in our analysis and will not uncover without more (often qualitative) investigation.  

After all, though all of the schools that were closed had student populations composed of at least 

87% minority students, there were 400 schools (72.3% of the total) that matched this percentage 

and yet were not closed.      

Given this, we conclude with three maps, again created using the Google Fusion Tables 

program (2016), that hopefully inspire more questions and more exploration of the school 

closing data.  First, in Figures 2 and 3 we capture visualizations of spatio-temporal data through 

maps of schools that had enrollments lower than 3504 (in 2005-2006 and 2011-2012, 

respectively).  The juxtaposition of these maps demonstrates not only the increase in the number 

of schools with lower enrollments, but also where these schools tend to be located in Chicago 

(West and South sides).  Finally, in Figure 4 we present a map of those schools with 2011-2012 

racial/ethnic student body compositions of at least 50% White.  We present Figure 4 as a contrast 

to Figures 1, 2, and 3, as the schools with lower minority enrollments tend to be located in the 

North and East sides of the city.  It is our hope that the maps inspire researchers to explore these 

trends across different areas of Chicago and to delve deeper into what characteristics of these 

varying spatial locations may have also served as factors influencing which schools were closed. 

                                                        
4 We select 350 as our cut point due to its frequency as the upper bound of the significant 

enrollment knot points (for lower enrollment values) across many of the analyses performed in 

this thesis.   



88 
 

 

 

Figure 2.  CPS schools with enrollments under 350 students (2005-2006)    
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   Figure 3.  CPS schools with enrollments under 350 students (2011-2012)  
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Figure 4.  CPS schools with 2011-2012 student body racial/ethnic composition of at least 50% 

White
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4. CONCLUSIONS 

4.1       Summary and Contributions 

In this thesis, we argue for an increase in the use of spatio-temporal analysis in 

educational research and provide a toolkit for encouraging this increased use, particularly in 

research looking at fixed spatial locations (e.g. schools) that can be characterized by latitude and 

longitude coordinates (referred to as point data).  We argue that this analysis should be both 

statistical and more descriptive.  The first part of our toolkit addresses the statistical side of 

spatio-temporal analysis through introduction of our Bayesian linear spatio-temporal model.  Our 

Bayesian linear model incorporates thin-plate splines and ridge regression to better accommodate 

spatio-temporal variables.  Our model also uses a structure akin to that used in analysis of 

variance (ANOVA) models, in terms of inclusion of main effects and interaction terms.  This 

model is facilitated by use of the Bayesian Ridge Regression software program, developed by Dr. 

George Karabatsos (2016), which is the second part of our toolkit.  The third part of our toolkit 

addresses the more descriptive side of spatio-temporal analysis through identification and 

demonstration of techniques suggested by Sampson (2008), such as counts and visualization 

through mapping.  This part of our toolkit also emphasizes the use of these descriptive 

techniques to further explore spatial and spatio-temporal relationships, often through use of more 

qualitative methods.  This exploration is emphasized in part due to a need to caution researchers 

to avoid conflating correlation and causation, especially when sensitive variables such as race are 

implicated.  This third part of our toolkit is facilitated in part by the free and publicly available 

Google Fusion Tables program (2016), which allows users to generate maps from Excel 

spreadsheets.   
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However, we also note three challenges that serve as obstacles to using spatio-temporal 

analyses in educational research: complications of large datasets, complex statistical models, and 

model selection.  In this section, we note how we addressed each challenge individually.  In the 

next section, we will assess how well we addressed each challenge.  

 In Chapter 3 of this thesis, we addressed these challenges through analysis of two 

datasets, one relatively large (n = 18,506) and one smaller (n = 2,729).  We addressed the first 

challenge, complications of large datasets, through use of Bayesian Ridge Regression (RR) and 

marginal maximum likelihood (MML) in our statistical analyses, as the use of MML with RR 

allows researchers to avoid the lengthy computational time often involved with more traditional 

Markov chain Monte Carlo (MCMC) sampling.  We addressed the second challenge, complex 

statistical models, through use of an ANOVA-based model, which is familiar to most educational 

researchers, as well as through use of the menu-driven, point-and-click Bayesian Ridge 

Regression software program (Karabatsos, 2016) for our analyses.  Finally, we addressed the 

third challenge, model selection, through demonstration of the ease of determining significant 

variables by using the interquartile (50%) posterior credible intervals provided in the output 

produced by the Bayesian Ridge Regression software program (Karabatsos, 2016).  Likewise, we 

also demonstrated the ease of determining the best combination of predictors to include in a 

model by using the model fit indices [R2, the D(m) statistic, the Akaike information criterion 

(AIC), and the Bayesian information criterion (BIC)] also provided in the posterior output.   

The primary contribution of this thesis is addressing the dearth of spatial (in terms of 

geographic location) and spatio-temporal analyses in educational research.  Despite the fact that 

educational research explores research questions that lend well to these types of analyses, such as 

those using schools and neighborhoods as units of analyses, the inclusion of spatial and spatio-
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temporal variables is virtually non-existent in the literature.  In this thesis, we not only identify 

this need in educational research, but also identify potential roadblocks for researchers: the three 

challenges noted above.  Through creation of this Bayesian linear model, and demonstration of 

how it can be implemented in a more user-friendly software program, we hope to not only 

inspire researchers to learn more about spatial and spatio-temporal analysis, but to begin to 

incorporate it into their own research. 

 

4.2       Assessment of Contributions 

In this section, we assess how well we addressed each of the three challenges to 

incorporating spatial and spatio-temporal analyses.  We start with the first challenge, 

complications of large datasets.  As noted in the previous section, one issue with using MCMC 

sampling in analysis of large datasets is the lengthy amount of computational time needed.  We 

proposed to address this by using Bayesian Ridge Regression (RR) and marginal maximum 

likelihood (MML).  After running the analyses documented in Chapter 3, we conclude that the 

use of RR and MML adequately addresses this challenge.  We support this through the observed 

computational times (shown in Tables X, XI, and XIV in Chapter 3), including 0.54 seconds to 

analyze a dataset with p = 121 and n = 18,506.  The average computational time, including for 

analyses with over 500 covariates, was between six and seven seconds.  For the analysis with the 

highest number of covariates (p = 1368) and n = 18,506, the computational time was still under 

30 seconds (24.37 seconds).  In contrast, the computational time to run this same analysis using a 

binary probit linear model with MCMC sampling (20,000 iterations) is upwards of 34 hours.       

We assess the second challenge, complex statistical models, in two parts.  The first part is 

the model itself, which we conclude addresses the challenge due to it ultimately being a familiar 
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ANOVA-based linear model.  In ANOVA terms, the model parameters are a mix of main effects 

(e.g for predictors such as Reading scores) and interaction terms (e.g. for the latitude by 

longitude interaction term predictor variable).  Even the thin-plate spline terms, which may be a 

new concept for many educational researchers, are made more conceptually accessible while 

conducting the analysis due to how the spline terms are created in the software program.  The 

second part is, then, using the model for analysis.  We conclude that this addresses the challenge 

due to the use of the Bayesian Ridge Regression software (Karabatsos, 2016), which allows for a 

point-and-click experience similar to using SPSS (complete with a guide in the “Help” menu that 

provides step-by-step instructions on how to set up and run analyses).  This is in stark contrast to 

programs commonly used for spatial analysis, such as R, which are primarily coding-based.  The 

menu-driven set-up also simplifies creating the model by including options to create the thin-

plate spline terms and interaction terms.  In addition, the posterior output is presented in a format 

that is both easy to read and to interpret, including descriptions of how to determine significance.  

We model this by including partial output from our results in Tables V, VII, IX, and XIII in 

Chapter 3, both to provide readers with an idea of what the output looks like as well as how to 

interpret it.  For full illustration, we also include the posterior output from our first CPS analysis 

(Section 3.3.2) in Table XV, Appendix A. 

We assess the final challenge, model selection, similarly to the challenge of complex 

statistical models.  We conclude that we adequately address this challenge in part based on the 

consistency in parameter estimates across the three CPS analyses in Chapter 3 (i.e. significant 

predictors tended to largely remain the same across analyses), as well as that the ridge parameter, 

λ, is greater than zero for all analyses, indicating that the ridge regression is addressing 

multicollinearity in our dataset.  We also conclude that we adequately address model selection 
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based on the model fit indices provided in our analyses.  As with the previous challenge, the 

clear layout of the model fit indices [R2, the D(m) statistic, AIC, and BIC] in the posterior output 

greatly facilitates our ability to address this challenge (the model fit indices are included in the 

output provided in Table XV, Appendix A).  We model the availability of the model fit indices 

in Tables VI, VIII, X, XI, and XIV in Chapter 3.  Moreover, we are also able to model the utility 

of the various fit indices through our analyses, including comparing the results between models 

and the impact of the inclusion of various predictor variables on the model.  For example, though 

we did not find 2011-2012 school racial composition (“percentage minority”) to be a significant 

predictor of whether a school closed, the model fit indices improved when this variable was 

included in the analysis.  Therefore, we conclude that the model with the best fit to our dataset, 

and therefore the best to use for analysis, is the one including the percentage minority variable.    

Moreover, we conclude that this thesis serves as strong evidence for the inclusion of 

spatial and spatio-temporal analyses in educational research.  We demonstrate that use of our 

model mitigates the primary challenges to incorporating these analyses.  The model provides for 

a conceptually easy way to include spatial location as a variable, while also correcting for any 

multicollinearity between the variables, spatial or otherwise.  The model also allows for very fast 

analyses of datasets with many predictor variables and a large n, as is often the case with datasets 

that include spatial and temporal elements.    

Perhaps the strongest evidence is the analyses themselves.  We conducted three analyses 

on the same dataset in Chapter 3: one with no spatial or spatial-temporal variables, one with 

spatial variables, and one with spatial and spatio-temporal variables.  Spatial location was a 

significant predictor in both the second and third analyses, and the spatio-temporal terms were 

significant in the third analysis.  More compelling still is that despite the increase in model 
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complexity with the addition of these variables, almost all model fit indices indicated that the 

spatio-temporal model was the best fit for the dataset.  In terms of real-life application, this is 

particularly powerful in that it implies that one should not have a discussion about the CPS 

school closings without acknowledging the role of spatial location and trends across time.   

 

4.3       Recommendations for Future Work 

 Since we used the CPS school closings as our case study for this thesis, we hope 

researchers will continue to ask questions that dig deeper into the school closings and the impact 

felt by CPS students and their families.  For our primary analyses, we intentionally included only 

variables that were cited by the district as factors considered when deciding which schools to 

close.  This was, in part, to explore whether statistics would back stated policy.  This was also to 

give a relatively cut and dry baseline for starting to explore what relationships may exist between 

spatial location and school performance overall.  The statistical analyses, as well as the maps 

generated using Google Fusion Tables (2016), provided tremendous insight into overall trends 

with schools in various parts of Chicago.   

 The final analysis, which included a variable based on the racial/ethnic composition of a 

school’s student body, only scratches the surface of variables to include when further 

investigating the school closings (and CPS schools as a whole).  The model fit indices support 

the inclusion of a race-based variable, though we strongly support Holland’s (2008) argument 

that we must drill down to find other variables that may better explain our findings.  We also 

encourage researchers to look beyond demographic variables and to explore questions related to 

a school’s surroundings, such as whether proximity to a charter school or ample green space 

impacted the likelihood of a school closing.  Regardless of what variables a researcher elects to 
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include, we hope that this thesis will inspire researchers to explore the vast amounts of existing 

data available from CPS and ISBE, among others, and to explore this data using our model and 

free tools such as the Bayesian Ridge Regression software (Karabatsos, 2016) and Google Fusion 

Tables (2016). 

 We hope educational researchers will be inspired to ask what research questions they 

might have that would benefit from spatial and spatio-temporal analysis, and that they will feel 

confident to start incorporating these analyses into their research.  This thesis is meant to serve as 

a toolkit for introducing educational researchers to these types of analyses; this model makes 

spatial analysis (particularly of discrete spatial processes utilizing locations identified using 

latitude and longitude) accessible and hopefully instills a curiosity into other types of spatial 

analysis.  For example, there would be great merit in analyzing the spatial patterns of the closed 

CPS schools to determine whether spatial clustering exists.  Likewise, there would be merit in 

breaking down the CPS analysis by neighborhood and analyzing differences in counts of closed 

schools across neighborhoods.  This would lend well to further descriptive analyses as well.  

Both are outside of the capacity of this current model, but hopefully educational researchers will 

employ additional existing spatial analysis models or, better yet, continue to create new (and 

more accessible) models. 

In terms of the model and analysis, it would be interesting for a spatial statistician to 

compare the multicollinearity corrected for by ridge regression with techniques commonly used 

in spatial statistics to account for spatial autocorrelation, such as inclusion of a spatial covariance 

matrix.  Given that the ridge parameter values indicated correction for multicollinearity, this was 

outside of the scope of this dissertation.  However, it may be worthwhile to see if there is an 
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advantage to using ridge regression in conjunction with a technique specifically meant to account 

for spatial autocorrelation. 

In addition, more research could be done on knot selection using ridge regression, 

especially knot selection for spatial locations.  We opted to use 40 evenly spaced quantiles for 

many of our spline knots, as per Ruppert (2002).  In the case of spatial location, we used 10 for 

latitude and 10 for longitude, in order to have a more manageable number of latitude by 

longitude interaction terms to analyze.  The ridge regression analysis easily identified significant 

spatial locations and a map of the significant knots revealed a grid that quite adequately covered 

all spatial locations included in the dataset.  However, more investigation could be done on the 

smoothing done by the thin-plate splines for the spatial terms in particular.  While the literature 

strongly suggests the use of thin-plate splines for spatial data, it would be interesting to explore 

use of ridge regression with other types of splines.  In addition, it would also be interesting to 

redo the analyses conducted in this thesis using different numbers of spatial knots, in order to 

gauge the impact on both smoothing and model fit. 

Finally, an overarching motivation for this thesis was the desire to make a traditionally 

complex statistical analysis more broadly accessible.  As demonstrated in this thesis, there can be 

tremendous value in including spatial and spatio-temporal analyses in research, especially for 

educational researchers.  However, educational researchers are rarely trained in spatial or spatio-

temporal analysis.  The literature abounds with innovative and broadly useful statistical models; 

unfortunately, it often takes a statistician or extensive training in statistics to be able to fully 

comprehend the articles, let alone to use the models in their research.  We hope that additional 

work will be done to make learning about advanced statistics more accessible to researchers who 

are not statisticians, in order that these models may be more broadly understood and applied.  To 
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go along with this, we also hope for increased development of software programs such as 

Bayesian Ridge Regression (Karabatsos, 2016), which aim to make advanced statistical analyses 

accessible through use of a familiar point-and-click interface.  This increase in training on use of 

advanced statistics, coupled with more accessible platforms with which to implement these 

analyses, only stands to strengthen educational research.  
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APPENDICES 

 

APPENDIX A 

 

BAYESIAN RIDGE REGRESSION   (VERSION 20-JUNE-2015) (Copyright 2014, George 

Karabatsos) 

 

POSTERIOR DISTRIBUTION: DESCRIPTIVE STATISTICS 

 

Fast ridge regression 

 

y_i | x_i          ~  f(y|x_i), i = 1,...,n 

f(y|x)             =  normal(y | x'beta, sigma^2) 

beta | sigma^2     ~  Normal(0, sigma^2*(1/lambdahat)*I_p) 

sigma^2            ~  InverseGamma(eps, eps) 

lambdahat: Marginal Maximum Likelihood Estimate (MMLE) of lambda (penalty). 

Automatically, y is centered to have mean 0, and 

each predictor (x) variable is rescaled to have mean 0 and variance 1. 

______________________________________________________________________________

________________________ 

 

Dependent Variable (Y): 

Closed for 2013-2014 

 

Sample Size:      n = 18506 

 

The p = 121 covariates are listed in Posterior Summaries table. 

 

Censor indicators of Y (lower- & upper-bounds, resp.) 

< None > 

 

Observation Weight Variable: 

Each observation has weight 1 

______________________________________________________________________________

________________________ 

 

Working Directory:        

Data File:               CPS ISBE Data-Final 4-8-16-No Charter-Open in 2012 (No 2012 or 2013)-

Demo.DAT 

Model File:              Frr 6-19-2016 23h42m18s CPS ISBE.model 

Text Output File:        POSTERIOR SUMMARY Frr 6-19-2016 23h42m18s CPS ISBE.txt 

Coefficients File:       COEFFICIENTS Frr 6-19-2016 23h42m18s CPS ISBE.txt 

Coeff. Covariances File: COV COEFF Frr 6-19-2016 23h42m18s CPS ISBE.txt 

Residual File:           RESIDUALS Frr 6-19-2016 23h42m18s CPS ISBE.txt 

______________________________________________________________________________

________________________ 
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APPENDIX A (continued) 

============================ 

RESULTS OF THE DATA ANALYSIS 

============================ 

 

Posterior Predictive Model Fit Statistics and Penalty Estimates 

______________________________________________________________________________

______ 

 

                                                            Stat. 

Model posterior predictive SSE          D(m) =  2697.950 

Model SSE fit to data                 Gof(m) =  1345.852 

Penalty (predictive variance)           P(m) =  1352.098 

Proportion of variance explained,  R squared =     0.150 

Model log marginal likelihood                =  4251.434 

Model loglikelihood                          = -2006.159 

Model Deviance = -2*loglikelihood            =  4012.318 

Model d.f.  (effective # of parameters)      =    40.845 

BIC = Deviance + log(n)*d.f.                 =  4413.651 

AIC = Deviance + 2*d.f.                      =  4094.008 

GCV = mean[{(y - E[y|X])./(1-df/n)}.^2]      =     0.073 

Lambda (shrinkage penalty) estimate          =     4.648 

Coefficient prior variance v = 1/lambda      =     0.215 

Error variance sigma^2 (posterior mean)      =     0.073 

               sigma^2 (posterior s.d.)      =     0.001 

 

Standardized Residuals (z_i) of Dependent Variable Responses: 

 

      Min       5%      10%      25%      50%      75%      90%      95%      Max 

   -2.254   -0.920   -0.810   -0.549   -0.186    0.122    0.335    2.873    3.521 

 

1687 (9.1%) of all n = 18506 observations are outliers (with |z_i| > 2). 

______________________________________________________________________________

______ 

 

Computation Times: 

Initialization: 0.16117 seconds. 

Estimation algorithm: 0.30516 seconds. 

Total computation time: 0.54396 seconds. 

 

 

Column labels for the output table below: 

 

beta: Standardized Coefficients (posterior mean) 

        (based on y zero-mean centered, and X variables rescaled to mean 0 and variance 1). 

        If y is a vector of z-scores (with mean zero and variance 1), then beta gives the coefficients   



115 
 

 

APPENDIX A (continued) 

 

       on a correlation scale.  Furthermore, the beta coefficients strictly range from -1 to +1 

        when all of the X variables (columns) are uncorrelated. 

 

SD: Posterior standard deviation of standardized coefficient. 

 

PP1SD: Posterior probability that the standardized coefficient is within 1 standard deviation of 0. 

 

Intervals: The 50% posterior (interquartile) interval of beta is given by the 25% and 75% 

percentiles.  The 95% posterior interval of beta is given by the 2.5% and 97.5% percentiles. 

 

Significance: A covariate is a "significant" predictor when: zero lies outside the 50% interval,              

or when PP1SD < .50. 

 

 

Click the Posterior Summaries button in order to generate additional Love plots and/or box plots. 

 

 

 

 

 

TABLE XV 

 

MARGINAL POSTERIOR SUMMARY ESTIMATES 

 
Covariate ID beta SD PP1SD 25% 75% 2.50% 97.50% 

Intercept 0 0 0 1 0 0 0 0 

2011-2012 Probation 1 0.051 0.002 0 0.05 0.053 0.047 0.056 

2012-2013 Space Use Status 2 0.029 0.002 0 0.027 0.03 0.025 0.033 

TP:Reading0 3 -0.028 0.09 0.66 -0.088 0.033 -0.204 0.149 

TP:Reading23 4 -0.089 0.069 0.372 -0.136 -0.043 -0.224 0.046 

TP:Reading30.2577 5 -0.004 0.089 0.682 -0.064 0.056 -0.179 0.171 

TP:Reading34.3115 6 0.042 0.097 0.639 -0.023 0.108 -0.148 0.233 

TP:Reading37.5 7 0.016 0.101 0.677 -0.052 0.084 -0.182 0.213 

TP:Reading40 8 -0.016 0.102 0.677 -0.084 0.053 -0.216 0.185 

TP:Reading42.5 9 0.036 0.102 0.653 -0.033 0.105 -0.164 0.236 

TP:Reading45 10 0.044 0.104 0.64 -0.026 0.114 -0.159 0.248 

TP:Reading47 11 -0.005 0.106 0.682 -0.076 0.067 -0.212 0.203 

TP:Reading48.7 12 -0.048 0.107 0.636 -0.12 0.024 -0.257 0.161 

TP:Reading50 13 -0.075 0.107 0.574 -0.147 -0.002 -0.285 0.135 

TP:Reading52 14 -0.058 0.106 0.613 -0.13 0.013 -0.266 0.15 

TP:Reading53.7 15 0.009 0.106 0.681 -0.063 0.081 -0.2 0.217 

TP:Reading55 16 0.053 0.107 0.625 -0.019 0.126 -0.156 0.263 
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TP:Reading56.6038 17 0.096 0.106 0.512 0.024 0.167 -0.113 0.304 

TP:Reading58 18 0.039 0.106 0.651 -0.033 0.11 -0.17 0.247 

TP:Reading60 19 -0.028 0.107 0.666 -0.1 0.044 -0.238 0.182 

TP:Reading61 20 -0.053 0.108 0.627 -0.125 0.02 -0.264 0.158 

TP:Reading62.2 21 -0.044 0.108 0.644 -0.116 0.029 -0.255 0.167 

TP:Reading64 22 0.006 0.108 0.682 -0.067 0.078 -0.205 0.217 

TP:Reading65.1 23 0.035 0.107 0.658 -0.038 0.107 -0.176 0.245 

TP:Reading66.7 24 0.026 0.108 0.669 -0.047 0.099 -0.186 0.237 

TP:Reading68 25 -0.011 0.108 0.68 -0.084 0.062 -0.223 0.201 

TP:Reading69.2 26 -0.013 0.108 0.679 -0.085 0.06 -0.224 0.199 

TP:Reading71 27 -0.013 0.108 0.679 -0.086 0.061 -0.225 0.2 

TP:Reading72 28 0.015 0.109 0.678 -0.059 0.088 -0.198 0.227 

TP:Reading73.7 29 0.003 0.108 0.683 -0.07 0.076 -0.21 0.215 

TP:Reading75 30 -0.002 0.109 0.683 -0.075 0.071 -0.215 0.211 

TP:Reading76.5 31 -0.013 0.109 0.679 -0.086 0.06 -0.226 0.2 

TP:Reading78 32 -0.01 0.109 0.681 -0.084 0.063 -0.224 0.203 

TP:Reading79.5654 33 -0.001 0.109 0.683 -0.074 0.072 -0.214 0.212 

TP:Reading81 34 0.016 0.109 0.678 -0.058 0.089 -0.198 0.229 

TP:Reading82.8 35 0.023 0.109 0.671 -0.05 0.097 -0.19 0.237 

TP:Reading84.1 36 0.015 0.108 0.678 -0.058 0.088 -0.197 0.228 

TP:Reading86 37 0.003 0.107 0.683 -0.07 0.075 -0.207 0.213 

TP:Reading88 38 -0.003 0.105 0.682 -0.074 0.068 -0.21 0.204 

TP:Reading90.6885 39 -0.008 0.103 0.681 -0.078 0.061 -0.21 0.193 

TP:Reading93.5 40 -0.034 0.102 0.657 -0.102 0.035 -0.234 0.166 

TP:Reading97.3962 41 -0.046 0.107 0.64 -0.118 0.027 -0.255 0.164 

TP:Reading100 42 -0.015 0.104 0.678 -0.085 0.056 -0.219 0.19 

TP:Math0 43 0.026 0.087 0.661 -0.032 0.085 -0.144 0.196 

TP:Math25.6 44 -0.158 0.057 0.036 -0.196 -0.12 -0.269 -0.047 

TP:Math35 45 -0.027 0.078 0.654 -0.08 0.026 -0.181 0.127 

TP:Math40.5 46 0.088 0.092 0.491 0.026 0.15 -0.092 0.268 

TP:Math44 47 -0.007 0.096 0.681 -0.072 0.057 -0.195 0.18 

TP:Math47.5 48 -0.04 0.098 0.643 -0.106 0.026 -0.232 0.152 

TP:Math50 49 -0.022 0.1 0.671 -0.09 0.045 -0.219 0.174 

TP:Math52.6 50 0.006 0.1 0.682 -0.061 0.074 -0.191 0.203 

TP:Math55 51 0.02 0.102 0.673 -0.048 0.089 -0.179 0.22 

TP:Math57 52 0.01 0.103 0.681 -0.06 0.079 -0.192 0.211 

TP:Math59 53 0.002 0.103 0.683 -0.068 0.071 -0.2 0.204 

TP:Math61 54 -0.03 0.104 0.663 -0.1 0.04 -0.234 0.174 

TP:Math62.7 55 0.001 0.105 0.683 -0.069 0.072 -0.204 0.207 

TP:Math64.2 56 0.057 0.105 0.614 -0.014 0.128 -0.149 0.263 

TP:Math66 57 0.039 0.106 0.65 -0.032 0.11 -0.168 0.246 
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TP:Math67.7 58 -0.036 0.106 0.655 -0.108 0.035 -0.244 0.172 

TP:Math69 59 -0.048 0.107 0.635 -0.121 0.024 -0.259 0.162 

TP:Math70.5 60 -0.023 0.108 0.671 -0.096 0.049 -0.235 0.188 

TP:Math72 61 0.013 0.109 0.679 -0.061 0.087 -0.201 0.227 

TP:Math73 62 0.018 0.11 0.676 -0.056 0.092 -0.198 0.233 

TP:Math74.2 63 0.02 0.11 0.675 -0.054 0.095 -0.196 0.236 

TP:Math75.6 64 0.017 0.11 0.677 -0.058 0.091 -0.2 0.233 

TP:Math76.6 65 0.011 0.111 0.68 -0.063 0.086 -0.206 0.228 

TP:Math77.9 66 0.001 0.112 0.683 -0.075 0.076 -0.218 0.219 

TP:Math79 67 -0.006 0.112 0.682 -0.082 0.069 -0.226 0.214 

TP:Math80 68 -0.023 0.112 0.673 -0.099 0.053 -0.243 0.198 

TP:Math81 69 -0.009 0.112 0.681 -0.085 0.067 -0.229 0.212 

TP:Math82 70 -0.01 0.112 0.681 -0.085 0.066 -0.229 0.21 

TP:Math83.1 71 0.003 0.112 0.682 -0.072 0.079 -0.215 0.222 

TP:Math84.6 72 0.015 0.111 0.678 -0.06 0.09 -0.203 0.233 

TP:Math85.8654 73 0.019 0.111 0.676 -0.056 0.094 -0.199 0.237 

TP:Math87 74 0.011 0.111 0.68 -0.064 0.086 -0.207 0.229 

TP:Math88.2 75 0.001 0.111 0.683 -0.073 0.076 -0.216 0.219 

TP:Math90 76 -0.009 0.11 0.681 -0.083 0.066 -0.225 0.208 

TP:Math91 77 -0.012 0.11 0.68 -0.086 0.062 -0.227 0.203 

TP:Math93 78 -0.005 0.109 0.682 -0.078 0.068 -0.218 0.208 

TP:Math95 79 -0.019 0.108 0.675 -0.092 0.054 -0.231 0.193 

TP:Math97 80 -0.043 0.109 0.645 -0.116 0.03 -0.256 0.17 

TP:Math100 81 -0.04 0.103 0.648 -0.109 0.03 -0.241 0.162 

TP: Enrollment 34 82 -0.393 0.088 0 -0.452 -0.333 -0.565 -0.221 

TP: Enrollment 211 83 0.32 0.097 0.011 0.255 0.386 0.129 0.512 

TP: Enrollment 244 84 0.228 0.105 0.118 0.158 0.299 0.023 0.433 

TP: Enrollment 265 85 0.075 0.107 0.573 0.003 0.148 -0.135 0.286 

TP: Enrollment 285 86 0.101 0.108 0.501 0.028 0.174 -0.112 0.313 

TP: Enrollment 303 87 0.076 0.109 0.575 0.002 0.149 -0.138 0.29 

TP: Enrollment 320 88 0.045 0.109 0.643 -0.029 0.119 -0.169 0.259 

TP: Enrollment 336.2692 89 -0.033 0.109 0.66 -0.107 0.04 -0.248 0.181 

TP: Enrollment 355 90 -0.096 0.109 0.519 -0.169 -0.022 -0.31 0.118 

TP: Enrollment 369 91 -0.086 0.109 0.548 -0.159 -0.012 -0.299 0.128 

TP: Enrollment 386 92 -0.023 0.109 0.672 -0.096 0.051 -0.236 0.191 

TP: Enrollment 404 93 0.065 0.109 0.602 -0.009 0.138 -0.148 0.278 

TP: Enrollment 421 94 0 0.109 0.683 -0.074 0.073 -0.214 0.214 

TP: Enrollment 437 95 -0.067 0.109 0.598 -0.14 0.007 -0.28 0.147 

TP: Enrollment 452 96 -0.024 0.109 0.671 -0.098 0.05 -0.238 0.19 

TP: Enrollment 467 97 0.059 0.109 0.614 -0.014 0.133 -0.154 0.272 

TP: Enrollment 484 98 0.073 0.108 0.579 0.001 0.146 -0.138 0.285 
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TP: Enrollment 501 99 -0.031 0.108 0.663 -0.103 0.042 -0.242 0.181 

TP: Enrollment 519 100 -0.169 0.108 0.279 -0.242 -0.096 -0.38 0.042 

TP: Enrollment 536 101 -0.103 0.108 0.491 -0.176 -0.031 -0.315 0.108 

TP: Enrollment 551 102 0.011 0.107 0.68 -0.061 0.084 -0.199 0.222 

TP: Enrollment 568 103 0.109 0.107 0.472 0.036 0.181 -0.101 0.319 

TP: Enrollment 586 104 0.078 0.106 0.564 0.006 0.15 -0.131 0.287 

TP: Enrollment 603 105 0.016 0.106 0.677 -0.055 0.087 -0.191 0.223 

TP: Enrollment 624 106 -0.001 0.104 0.683 -0.072 0.069 -0.206 0.203 

TP: Enrollment 645 107 0.018 0.103 0.675 -0.051 0.088 -0.184 0.22 

TP: Enrollment 669 108 -0.003 0.103 0.682 -0.072 0.066 -0.204 0.198 

TP: Enrollment 690 109 -0.001 0.101 0.683 -0.069 0.068 -0.199 0.198 

TP: Enrollment 714 110 -0.047 0.099 0.63 -0.114 0.02 -0.24 0.146 

TP: Enrollment 748 111 0.023 0.093 0.668 -0.04 0.086 -0.16 0.206 

TP: Enrollment 787.6538 112 0.084 0.093 0.509 0.021 0.147 -0.098 0.266 

TP: Enrollment 824.1923 113 -0.055 0.088 0.595 -0.115 0.005 -0.228 0.118 

TP: Enrollment 877 114 0.003 0.086 0.682 -0.054 0.061 -0.165 0.171 

TP: Enrollment 924 115 -0.036 0.079 0.633 -0.09 0.017 -0.192 0.119 

TP: Enrollment 1004 116 0.015 0.069 0.671 -0.031 0.062 -0.119 0.15 

TP: Enrollment 1096.0385 117 0.022 0.059 0.65 -0.018 0.061 -0.093 0.137 

TP: Enrollment 1245 118 -0.02 0.061 0.657 -0.062 0.021 -0.141 0.1 

TP: Enrollment 1352 119 -0.009 0.058 0.676 -0.048 0.03 -0.123 0.104 

TP: Enrollment 1560 120 -0.017 0.026 0.583 -0.034 0 -0.068 0.033 

TP: Enrollment 4278 121 0.297 0.081 0.004 0.242 0.351 0.138 0.455 
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APPENDIX B 

 
Guide to Running the Bayesian Linear Spatio-Temporal Model in the Bayesian Ridge 

Regression Software (Karabatsos, 2016) 

 

Note: There are excellent instructions for general data analysis in the “Help” menu in the 

Bayesian Ridge Regression Software (Karabatsos, 2016).  The following instructions pertain to 

the specific model presented in this thesis. 

 

1. To import data into the software: 

a. Under the “File” menu, select “Import, save, and open data file,” to import the 

comma-delimited data file (.csv) into the software 

b. Once the data file is imported, the software will prompt the user to save the file as 

a data (.dat) file.  This new file can be opened directly into the software using the 

“Open data (.dat) file” option under the “File” menu 

 

2. To create univariate thin-plate splines: 

a. Under the “Modify Data Set” menu, select “Construct spline or weighted 

covariates” 

b. Then select “Univariate thin-plate (TP) splines” 

c. Click on the variable of interest and click “OK” 

d. Select the number of knots for the spline, based on a number of equally-spaced 

quantiles (for many of the variables in this thesis, we selected 40 quantiles).  Click 

“OK” 

e. The indicated number of spline variables are now added to the dataset, using the 

naming convention “TP: <variable name>” 

 

3. To create interaction terms (for all variables, including spline terms): 

a. Under the “Modify Data Set” menu, select “Construct interaction and/or 

polynomial covariates” 

b. Then select “Construct interaction terms” 

c. Click on the variables of interest (up to 50 at a time) and click “OK” 

d. The new interaction term(s) are now added to the dataset, using the naming 

convention “<variable 1>*<variable 2>” (e.g. latitude*longitude) 

e. To create a 3-way interaction (e.g. latitude*longitude*time), follow the above 

instructions to create the 2-way interaction (e.g. latitude*longitude)  

i. Then repeat to create interaction terms between the 2-way interaction and 

the third variable of interest (e.g. time) 

 

4. To run the analysis: 

a. Click on “Specify New Model” 

b. Select “Fast ridge regression” and click “OK” 

c. Select the dependent variable (the software allows for a single dependent 

variable) and click “OK” 

d. Select the independent variable(s) (referred to as covariates/predictor variables) 

and click “OK” 
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APPENDIX B (continued) 

 

e. The selected Dependent Variable and Covariate(s) are displayed on the right-hand 

side of the screen.  This is a quick way to double-check that the variables are 

correct prior to running the analysis 

f. After verifying that everything looks accurate, click on “Run Posterior Analysis” 

g. Depending on the number of variables included (and your computer), a small 

window may pop up with a notification that the analysis is running  

h. Once the analysis is complete, a Posterior Summary (as shown in Appendix A) 

pops up 

 

5. To detect outliers: 

a. The Posterior Summary provides information on how many outliers were detected, 

using the threshold of a standardized residual (z) greater than 2.  This information 

is located under “Standardized Residuals (z_i) of Dependent Variable Responses” 

b. An additional output file is generated titled “RESIDUALS Frr <name of dataset>.”  

This file indicates which of the individual cases were outliers 

 

6. To correct for outliers:   

a. Under the “Modify Data Set” menu, select “Basic Data Editing” 

b. Then select “Add Case (row) ID variable” 

c. To generate the dummy codes [per the Xiong & Joseph (2013) outlier correction 

method], select the “Modify Data Set” menu and then click on “Dummy/binary 

code variables” 

d. Then select “Dummy/binary code a categorical variable (positive integer valued) 

e. In the screen that says “What type of binary coding?” select “1 versus 0” 

f. Select “Case ID” as the categorical variable 

g. A dummy coded variable for each case is now added to the dataset 

h. Repeat the steps for running the analysis, but this time include the dummy coded 

variables for those cases that were determined to be outliers 

i. The newly generated Posterior Summary provides the results for the analysis, 

excluding the outlier variables    
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