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SUMMARY 

Energy efficiency improvement as well as carbon footprint reduction in modern manufacturing 

systems has been of high interests to both academia and industry in recent years. However, most 

existing research efforts in energy efficiency improvement only focus on either single machine 

or process level due to the complexity of modern manufacturing systems, and few literatures 

concentrating on the energy efficiency improvement for the typical manufacturing systems with 

multiple machines and buffers can be found. Therefore, there lacks a concrete understanding 

related to the potential of the energy efficiency improvement by real-time energy control strategy 

and the practicality of the integration of energy control module into the existing control systems. 

Generally, to improve the energy efficiency of manufacturing systems with multiple machines 

and buffers, the following steps are designed: a) identify the opportunities of energy control for 

each machine; b) decide the optimal state of each machine in the system; c) make decisions and 

execute actions; and d) repeat steps a), b) and c) for continuous improvement. Due to the 

infeasibility of validating energy control models in real manufacturing lines practically, lab 

based experiment becomes a useful tool in analyzing the performance of those models.  In this 

thesis, an experimental based method is proposed to study various strategies for energy 

efficiency improvement of complex manufacturing systems. A typical production line with 

multiple machines and buffers is established in both software testbed and hardware testbed, and a 

framework of real time energy control is also proposed and implemented in both testbeds. The 

objective of this thesis is to a) identify the potential of energy savings in modern manufacturing 

systems with multiple machines and buffers by energy control policy; b) examine the feasibility 

of the application of new energy control module under existing control systems; and c) provide a 
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generalized testbed framework with different functionality modules by using object-oriented 

programming which can be easily adjusted and fit into different systems for different research 

purposes. 
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1. INTRODUCTION 

In 2010, world primary energy production has increased by 145.4% compared to 1990. Fossil 

fuel, the largest source of energy production, accounts for about 81% of the total source supply 

around the world (see Figure 1) (Enerdata 2011; IEA 2011). It leads to a continuous depletion of 

natural resources and thus the prices of resources are irreversibly increasing. Among the 

worldwide energy consumption, the industrial sector is considered the largest contributor 

consuming about one-third of the global primary energy production and generating 38% of 

carbon dioxide emissions according to IEA statistics as shown in Figure 2 (IEA 2008). 

 

Source: (Enerdata 2011)  

Figure 1  Global Primary Energy Production and Consumption, 1990-2010 
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Source: (IEA 2008) 

Figure 2  Global Energy Consumption and CO2 Emissions by End-use Sector, 2005 

 

Source: (EIA 2011) 

Figure 3  U.S. Energy Consumption by End-use Sector, 2010 

For the United States, although its population is less than 5% of the whole population in the 

world, the energy consumption accounts for about 25% of worldwide volume (Park et al. 2009). 
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Similar to the distribution worldwide, about one-third of the energy consumed in the United 

States is attributed to the industrial sector (see Figure 3) (EIA 2011), among which the 

manufacturing is regarded as a major subsector whose energy consumption distribution is shown 

in Figure 4 (EIA 2006). 

 

Source: (EIA 2006) 

Figure 4  Manufacturing Energy Consumption Survey: Industrial Energy Uses by Sector 

Traditionally, the energy consumption of manufacturing systems has not been seriously 

considered a primary factor for decision making, compared to other factors, e.g., productivity 

and quality, for the sake of its relatively low contribution to the total operation cost (Galitsky and 

Worrell 2008). Therefore, most existing research efforts focus on the productivity analysis,  
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maintenance policy, quality improvement, throughput bottleneck identification, etc. (Lu et al. 

2011; L. Li et al. 2009; L. Li, Ambani, and Ni 2009; J. Li, Meerkov, and Zhang 2010). 

Recently, due to the rapid rise of energy price and increasing social pressure on the environment, 

more and more researchers have gradually realized the significance of reducing energy 

consumption of the manufacturing systems for the sake of the increasing energy demand as well 

as the projections for a huge shortage of fossil fuels in the foreseeable future. Generally the 

research on energy consumption is branching out in the following two directions: i) the discovery 

and development of new energy sources that do not emit or emit less greenhouse gases (GHG) 

and ii) the improvement of the energy efficiency under current energy modes. A great deal of 

effort has been made towards the new energy source techniques such as wind, solar, and tide 

energy. For a long term horizon, these endeavors are definitely worthwhile although many 

challenges are inevitable. At the same time, extensive studies that examine the energy efficiency 

for diverse end-use sectors of the U.S. industry have also been implemented (Worrell et al. 2009). 

The general consensus from these studies shows that energy efficiency improvement rate has 

typically been around 1% per year (Worrell et al. 2009). However, energy consumption still 

increases continuously from 67.84 quadrillion Btu in 1970 to approximate 99.74 quadrillion Btu 

in 2004 (Kankana 2008), and so the current improvement level of energy efficiency could not 

keep up with the increase in energy demand. Therefore, huge potentials as well as requirements 

exist to further improve energy efficiency and reduce energy consumption and GHG emission in 

a majority of industrial sectors. 
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Nevertheless, research with respect to the improvement of the energy efficiency of current 

energy modes is confined in the single machine system or specific process level (Dietmair and 

Verl 2009; Draganescu, Gheorghe, and Doicin 2003; Mouzon and Yildirim 2008). Although 

some initial analysis and exploration have been implemented from the perspective of a system 

level as shown in Figure 5 (Kanako 2011), the overall progress is still lagging far behind of 

single machine system. 

 

Source: (Kanako, 2011) 

Figure 5  Sample of Technical Methods of Energy Efficiency Improvement  
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The pivotal challenging obstacles are the unique characteristics of modern manufacturing 

systems with multiple machines and buffers, which can be summarized as follows: 

Firstly, throughput has been traditionally considered the first priority for the manufacturing 

enterprises. Therefore, most plants are reluctant to sacrifice original throughput for an energy 

saving purpose. Particularly the quantitative saving potentials are not known and therefore the 

tradeoff between energy cost savings and economic throughput sacrifice is difficult to be 

identified. 

Secondly, the properties and characteristics of modern manufacturing systems make the problem 

complicated. On one hand, high dynamics of a manufacturing system lead to non-availability of 

a lookup table from which the predetermined decisions can be selected; but in practice most 

decisions have to be made based on the real-time online data. On the other hand, high 

interconnection in modern manufacturing systems leads to closely interdependent machines 

within the system and thus the machine’s operation states, i.e., production, breakdown, blockage  

and starvation, are determined not only by the machine itself, but also by other machines and 

buffers. Therefore it is very difficult to map the states of machines within the system during the 

duration when energy control is implemented. 

Actually, energy analysis of industrial facilities has indicated that energy consumption for 

manufacturing processes merely accounts for a small percentage of total energy consumption. 

For instance, the total energy demand for physical operations performed in metal-cutting could 
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be quite small, as little as 10% to 20% compared to the other functions required in background 

for operating manufacturing equipment (Dahmus and Gutowski 2004). This suggests system-

level approaches for energy efficiency improvement are required to gain significant benefits. 

Unfortunately, to the best of our knowledge, such approaches have not yet attracted much 

attention due to the reasons summarized aforementioned. 

The research objective of this thesis is to establish an experiment-based framework to identify 

the potentials of energy savings for a typical manufacturing system with multiple machines and 

buffers by implementing energy control policy under the constraint of system throughput. A 

general simulation-based algorithm of energy control to find the optimal power state based on 

the operation state of the machines within the system is developed. A software testbed is 

established by using ProModel®, VBA in Excel, and C# .NET WinForms application to simulate 

all dynamic behaviors of modern manufacturing systems, e.g., mean time between failures 

(MTBF), mean time to repair (MTTR), system throughput, and energy consumption profile as 

well. The proposed algorithm is then applied to find the energy saving potentials by 

implementing energy control policy under the software environment. To further illustrate the 

huge potentials for system-level energy efficiency improvement, a hardware testbed is also 

established to represent a production line to perform real-time energy control, which leads to 

similar results as obtained in software testbed. At the same time, we also consider the flexibility 

of the testbed by utilizing object-oriented and modular programming and therefore the testbed 

can be easily adapted into different system layouts for further experimental purposes. 
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2. ALGORITHM AND SOFTWARE TESTBED 

2.1. Motivation 

A typical manufacturing system consists of multiple machines and buffers (see Figure 6). Each 

machine can be in multiple operation states, i.e., production, breakdown, blockage or starvation; 

and each buffer can be also in multiple states, depending on its capacity, i.e., 0, 1, 2, … , C, 

where C equals to the buffer capacity. Previous research showed that machine 

blockage/starvation times account for about 20% of the total scheduled operation time (Sun et al. 

2011). However, the majority of the existing commercialized Manufacturing Execution System 

(MES) does not include an energy management module. Accordingly, a huge amount of energy 

is wasted during those idle periods due to the lack of the effective decision-making tools. 

 

Figure 6  A Tandem Manufacturing System with n Machines and n-1 Buffers 

In this research, the basic idea is to implement energy control during the idle periods of the 

manufacturing systems, i.e., blockage or starvation. Considering the fact that the new type of 

motors equipped with multiple power adjustable drives becomes more and more popular, we 

could adjust the power level of a certain machine into a lower level when it is detected to be idle 
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by considering the constraint: the system throughput should not be compromised for energy 

control purpose. However, the analytical estimation of the opportunity window for energy 

control, i.e., the time length of blockage/starvation, is difficult because of the complexity of 

manufacturing systems. In this chapter, we introduce a simulation-based algorithm for 

production systems with multiple machines and buffers to accurately obtain the opportunity 

windows for energy control and calculate the most energy efficient state for the idle machines to 

be adjusted in the system and thus the energy saving potentials can be obtained. To validate this 

algorithm, a software based testbed is established by using ProModel®, ActiveX Automation 

Control, VBA in Excel and C# .NET WinForms application. The statistical result of energy 

saving potentials is obtained by running the simulation model for fifty replications. 

2.2. Model Algorithm 

2.2.1. Notations 

The notations are defined as follows (L. Li et al. 2012). 

i the index of the machine in system, i =1, 2,…, n 

k the index of replications that the simulation model run, k = 1, 2,…, K 

ikj  the index of the occurrences of blockage or starvation of a machine i during the k
th

 

replication,  1,  2, ,ik ikj J   

Mi the corresponding sequence of machine in system 

Bi the corresponding sequence of buffer in system 
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k

ijBLB
 

time that the j
th

 blockage of Mi begins in the k
th

 replication, i =1, 2,…, n, k = 1, 2,…, 

K, j = 1, 2,…, Jik 

k

ijBLE  time that the j
th

 blockage of Mi ends in the k
t
 replication, i = 1, 2,…, n, k = 1, 2,…, K, 

j = 1, 2,…, Jik 

k

ijSTB
 

time that the j
th

 starvation of Mi begins in the k
th

 replication, i = 1, 2,…, n, k = 1, 

2,…, K, j = 1, 2,…, Jik 

k

ijSTE  time that the j
th

 starvation of Mi ends in the k
th

 replication, i = 1, 2,…, n, k = 1, 2,…, 

K, j = 1, 2,…, Jik 

k

ijBL  time length of the j
th

 blockage of Mi in the k
th

 replication, it equals to 
k k

ij ijBLB BLE  

k

ijST
 

time length of the j
th

 starvation of Mi in the k
th

 replication, it equals to 
k k

ij ijSTB STE  

k

ijI  represents either 
k

ijBL  or 
k

ijST  

f

iP  power level of Mi when Mi  is ready to produce 

q

ijP  power level q of the j
th

 blockage or starvation for Mi, iq Q  

Qi set of different power levels for Mi 

fq

ij
T  transition time of the j

th
 blockage or starvation for Mi from 

f

iP  to 
q

ijP  

qf

ij
T  transition time of the j

th
 blockage or starvation for Mi from 

q

ijP  to 
f

iP  

fq

ij
P  average power per time unit of the j

th
 blockage or starvation for Mi during fq

ij
T  

qf

ij
P  average power per time unit of the j

th
 blockage or starvation for Mi during qf

ij
T  

fq

ij
E  transition energy of the j

th
 blockage or starvation for Mi from 

f

iP  to 
q

ijP , 

it equals to fq fq

ij ij
P T  

qf

ij
E  transition energy of the j

th
 blockage or starvation for Mi from 

q

ijP  to 
f

iP , 

it equals to qf qf

ij ij
P T  
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k

aE  total energy consumption during idle period when power adjustment policy is 

implemented in replication k 

kE  total energy consumption without executing the power adjustment policy in 

replication k 

TP throughput of the system 

kp  ratio of energy saving in replication k 

2.2.2. Selection of Optimal Energy Level 

In order to perform energy adjustment during a machine idle (blockage or starvation) period 

without influencing system throughput, the baseline model without adjusting machine power 

level when the machine is detected to be blocked or starved, is initially run to record the runtime 

parameters such as k

ijBLB  , k

ijBLE , k

ijSTB , k

ijSTE , TP, and energy consumption. After that, a 

control module including VBA in Excel and C# .NET WinForms application (see details in 

Chapter 2.3) is called to check the feasibility and profitability of different objective power levels 

by using (2.1) and (2.2) to see if the time length is long enough to perform adjustment and the 

energy saving can be achieved. 

 
k fq qf

ij ij ijI T T    (2.1) 

  f k q k fq qf fq qf

i ij ij ij ij ij ij ijP I P I T T E E         (2.2) 
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The qualitative analysis of feasibility check and profitability check according to (2.1) and (2.2) is 

shown in Figure 7. 

 

Figure 7  Feasibility Check and Profitability Check for Power Adjustment 

The horizontal axis represents the time length of the j
th

 blockage/starvation for Mi and the 

vertical axis represents the different power level of Mi.  %fq

ijT 50 ,  %fq

ijT 30 , and  %fq

ijT 10  

represent the time length to adjust power level from 
f

iP  to a specific power level 
q

ijP , that is, 

50%, 30%, and 10% of 
f

iP
 
for Mi  in j

th
 blockage or starvation. 
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If both (2.1) and (2.2) are satisfied, then the optimal power level 
*q

ijP  and relevant parameters can 

be identified by (2.3). Otherwise, keep the machine with the original power level 
f

iP . The flow 

chart describing the algorithm for the selection of an optimal energy level is shown in Figure 8. 

  
*

* arg min[ ]
q

ij

q fq qf q fq fq qf qf

ij ij ij ij ij ij ij ij ij
P

P I T T P T P T P          (2.3) 

2.2.3. Energy Saving Potentials 

The total energy consumption during idle period when power adjustment policy is implemented 

in replication k can be described as follows: 

 
* * * * * * *

[( ) ]k fq q f q fq fq q f q f

a ij ij ij ij ij ij ij ij

i j

E I T T P T P T P          (2.4) 

So the ratio of energy saving for k
th

 replication can be obtained by (2.5). 

 1
k

k a

k

E
p

E
   (2.5) 

Therefore the average energy saving potentials can be obtained by (2.6), 

 1 aE
p

E
   (2.6) 
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where 1

K
k

a

k
a

E

E
K




 and 1

K
k

k

E

E
K




. 

The 95% confidence interval can be obtained by (2.7), 

 

2

2

2

. .( )

. .( )

. .( )

a

E

E

a a

p

S
C I E E t

K

S
C I E E t

K

S
C I p p t

K








  




  



  


 (2.7) 

where C.I.(E), C.I.(Ea), and C.I.(p) represent the confidence interval of E, Ea, and p, respectively. 

ES ,
aES , and 

pS  are the sample standard deviation of E, Ea, and p obtained through K 

replications, respectively. 
2

t  represents the critical value for the Student's t-distribution under 

the   level of confidence. 
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Figure 8  Flow Chart of the Simulation Based Procedure 
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2.3. Software Testbed 

To apply the algorithm described in Chapter 2.2, a software testbed is established by mainly 

using ProModel®, a discrete event simulation software used for evaluating, planning or 

designing manufacturing, warehousing, logistics and other operational and strategic situations. 

The manufacturing system is established in the software by defining machine locations, process 

entities, sequential relations, and other parameters that describe system behaviors like MTBF, 

MTTR, system throughput, and power consumption. Figure 9 illustrates a snapshot of the 

manufacturing line layout created in ProModel®. 

 

Figure 9  Layout of Simulation Model 
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To realize the edition of large pieces of reusable codes by using ProModel®, ActiveX 

Automation Control is used to build customized user interfaces by ActiveX-enabled language. 

The functionalities including adding, revising, deleting model data, control ProModel®, and 

extracting output data can be realized outside of ProModel®.  In addition, VBA based Excel 

2010 spreadsheet (see Figure 10) is developed to handle relevant logic codes, processing codes 

and runtime action variables. The corresponding records are extracted and the relevant 

parameters are calculated and fed back into the simulation so that the energy adjustment scenario 

can be performed with the same machine reliability condition as the baseline. 

 

Figure 10  VBA Control Tool Based on Excel 2010 
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At the same time, C# .NET Windows Forms application (see Figure 11) is developed to generate 

the blockage and starvation runtime action codes for machines in the simulation model. Relevant 

parameters for different machines can be easily modified for different replications and thus the 

statistical results can be obtained easily. 

 

Figure 11  ProModel Assistant Designed in C# .NET 
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2.4. Case Study 

In order to validate the algorithm illustrated in Chapter 2.2 and realize the functionality of the 

software testbed described in Chapter 2.3, a section of an automotive production line with seven 

machines and five buffers is considered as shown in Figure 12. 

 

Figure 12  A Hybrid Production Line with Seven Machines and Five Buffers 

Real data from the plant, i.e., mean time between failures (MTBF), mean time to repair (MTTR), 

and machining cycle time of the seven machines are listed in TABLE I. The power consumption 

during operation and warm up time for each machine are also assumed. Buffer capacity and 

initial buffer contents of the five buffers are listed in TABLE II. Apart from that, we consider the 

discrete power adjustment configurations when computing the optimal power level. TABLE III 

shows five discrete adjustable power levels in our case. 
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TABLE I  

BASIC SETTINGS FOR MACHINES IN SOFTWARE TESTBED 

 MTBF (min) MTTR (min) Power (kW) 
Cycle Time 

(min) 

Warm up Time 

(min) 

M1 85 10.34 7.3 0.5 0.8 

M2 432.9 4.95 7.3 0.445 0.8 

M3 34.9 7.27 5 0.447 0.55 

M4 17.8 6.81 7.5 0.96 0.82 

M5 13.3 7.7 7.6 0.975 0.83 

M6 79.8 10.49 7.6 0.44 0.83 

M7 50.9 7.96 7.31 0.5 0.8 

TABLE II  

BUFFER CAPACITY AND INITIAL CONTENTS IN SOFTWARE TESTBED 

 Buffer 1 Buffer 2 Buffer 3 Buffer 4 Buffer 5 

Capacity 20 96 100 92 120 

Initial Contents 8 44 46 44 54 



21 

 

TABLE III  

ENERGY CONSUMPTION STATE FOR EACH MACHINE IN SOFTWARE TESTBED 

Energy Consumption State Production Shallow Sleep Medium Sleep Deep Sleep Off 

Power Level 100% 50% 30% 10% 0% 

Fifty replications of both the baseline and adjusted scenario are performed in this case study. For 

each pair of the baseline and adjusted scenario, the system reliability parameters are kept the 

same strictly. Figure 13 shows the machine status distribution for one certain replication. 

 

Figure 13  Results of Machine State for a Certain Replication 

The actual average machine status after 50 replications of simulation are captured and shown in 

TABLE IV. It can be observed that in an 8-hour shift, there is approximate 21% of the time 

during which energy is wasted without production in the system. 
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TABLE IV  

TIME LENGTH OF EACH STATE OF MACHINE IN SOFTWARE TESTBED 

 

Scheduled 

Operation Time 

(min) 

Unscheduled 

Downtime 

(min) 

Blockage/Starvation 

(min) 

Time Percentage of 

Energy Waste 

M1 480 70.6 41 10% 

M2 480 4.6 156 33% 

M3 480 79.7 100 25% 

M4 480 116.5 22 6% 

M5 480 171.7 15 5% 

M6 480 53.0 94 22% 

M7 480 51.4 111 25% 

Total 3360 547.7 539 Average: 21%  

The energy consumption is compared between the baseline model and the adjustment scenario. It 

can be observed from TABLE V that approximate 13.8% of the total energy can be conserved by 

adjusting machines’ power level when machines are blocked or starved according to the method 

addressed in Chapter 2.2. The benefits will be proportional to the seriousness of the blockage and 

starvation of the system, particularly for those machines with higher 
f

iP . 
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The throughput is also compared. It can be observed from TABLE VI that no throughput loss 

occurs when a power state adjustment is executed compared to the baseline scenario. 

TABLE V  

COMPARISON OF ENERGY CONSUMPTION BETWEEN BASELINE AND POWER 

ADJUSTMENT MODEL IN SOFTWARE TESTBED 

 
Original Energy 

Consumption 

Energy Consumption with 

Power Adjustment 

Energy Consumption 

Saving 

Energy 

Consumption 

(kWh) 

335 288 13.8% 

95% Confidence  

Interval 
(331, 339) (282, 294) (11.3%, 16.3%) 

TABLE VI  

COMPARISON OF THROUGHPUT BETWEEN BASELINE AND POWER ADJUSTMENT 

MODEL IN SOFTWARE TESTBED 

 
Original 

Throughput 

Throughput after 

Power Adjustment 

Throughput 636 634 

95% Confidence  

Interval 
(622, 650) (618, 650) 
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2.5. Conclusion 

In this chapter, a simulation-based method to find the optimal power state for the 

blockage/starvation machine in the manufacturing systems is proposed and a general software 

testbed is established under the ProModel® framework. A case study is implemented in the 

established testbed with the proposed method. Averagely, approximate 13.8% of energy saving 

is realized without impacting the system throughput. Furthermore, the functionality of the 

ProModel® is strengthened by jointly utilizing VBA based Excel 2010 spreadsheet, ActiveX 

Automation Control, and C# .NET WinForms application and so the further revision of the 

testbed can be easily implemented for other different research purposes. 
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3. HARDWARE TESTBED FOR ENERGY CONTROL 

3.1. Motivation and General Description 

The software testbed established in Chapter 2 can accurately simulate the reliability behaviors of 

manufacturing systems if the relevant data used in the model are from real world. However, the 

energy consumption profile cannot be represented as accurately as reliability behaviors in 

software environment even though real energy related data is available due to the functionality 

limitation of software, e.g., energy measurement and power fluctuation. After all, simulation is 

an ideal model. To make the results of our algorithm from software testbed more convincible and 

closer to real industrial environment, a hardware testbed using Direct Current (DC) motors and 

virtual buffers is established in this chapter. It can be treated as a bridge between the theoretical 

simulation models and the practical plant applications in energy control area. The effectiveness 

of the software testbed can be further validated by testing the same cases through the hardware 

testbed. 

Generally, the hardware testbed described in this chapter includes both hardware and 

programming platform. The hardware infrastructure consists of both mechanical and electrical 

resources. The programming platform is developed by three-tier client–server architecture. The 

design of the hardware testbed considers the flexibility. The object-oriented programming and 

parameterization of the programming platform secure the code reusability and simplicity of 

modification for layout rearrangements. It is convenient to fit for the validation of different 
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manufacturing lines and different research related to system-level energy and throughput 

analysis can be performed. 

3.2. Hardware Testbed Hierarchy 

The first step to develop a hardware testbed is to determine the general hierarchy. In our task, the 

hierarchy is designed in Figure 14. There exist three levels, i.e., programming platform, logic 

control, and hardware infrastructure. 

The lowest level functionality is hardware infrastructure consisting of mechanical executive 

components (seven DC motors) and electrical control modules (seven Jaguar controllers from 

Texas Instrument Inc.). Motors are controlled by the Jaguar controllers and the Jaguar controllers 

are communicated with the logic control level which plays an important role as it coordinates the 

discrete dynamics between the hardware infrastructure and programming platform. All machines 

and buffers are coordinated separately within logic control level. Machines are coordinated by 

both hardware communication and core processing unit, while buffers are only coordinated by 

core processing unit since there is not any real hardware to represent buffers. To perform 

complex analysis and to make decisions of runtime machine behaviors involving data and 

complex logic, programming platform is required to integrate system events and the information 

between different functional modules since logic control level cannot handle the whole system 

functionality of the hardware testbed alone. 
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Figure 14  Hardware Testbed Hierarchy 

3.3. Hardware Infrastructure 

After identifying the overall hierarchy, we focus on the hardware realization. The design of the 

hardware architecture is illustrated in Figure 15. Two power supplies support the whole system 

and the red lines show the power output distribution. Seven motors equipped with two types of 

chucks are used to represent seven machines. They are connected to the Jaguar controllers 
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directly through the black lines. The blue lines show the CAN network of Jaguar controllers 

connection to PC, which also means the connection to the medium level of logic control as 

explained in Chapter 3.2. 

 

Figure 15  Hardware Physical Connection 

3.3.1. Mechanical Resources 

The hardware infrastructure deployment is shown in Figure 16. Different components of the 

hardware are illustrated as below. 
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1
LEESON 1/2HP 1800RPM 56C Frame 24V DC TENV. 

2
Texas Instruments Stellaris® Brushed DC Motor Control Module with CAN (MDL-BDC24). 

3
Mastech Variable Regulated DC Power Supply 0-30V 0-20A. 

4
Grizzly Industrial®, Inc. 3" 3-Jaw Wood Chuck - 5/8" Unthreaded. 

5
Grizzly Industrial®, Inc. 5" 3-Jaw Wood Chuck - 5/8" Unthreaded. 

Figure 16  Hardware Infrastructure Deployment 
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Motor 

Low voltage permanent magnet DC motors are suitable for installations with lab-equipped DC 

power supply. Since the testbed is required to run 8-hours shifts over and over again, larger over-

sized brushes assuring longer brush life are necessary. The holes of the mounting flanges match 

the pitch of the lab table. Four Medium-Strength Steel Cap Screws fasten the motors, as shown 

in Figure 17, in case of the motor shocks. 

 

Figure 17  Motor Fastening 

Chuck 

To capture the motor energy in a real-time system with load, we install a heavy chuck on the 

motor shaft to represent a lathe or machining center. With the heavy load, we can measure the 
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voltage and current of the motor when it is in operation. According to the drawing of the motor 

shown in Figure 18 (LEESON 2010), we select two types of unthreaded micro 3-Jaw wood 

chucks with bore diameter of  5/8", which fits the motor shaft diameter of  5/8". Four 3" and 

three 5" chucks are installed on the seven motors as footnoted in Figure 16. 

 

Source: (LEESON 2010) 

Figure 18  Drawing of the Motor 

Soft-Tip Set Screw 

Because of the high rotating speed of the motor, the unthreaded hole without any fastening 

pieces may result in security concerns. However, the chucks do not have any key groove to 

match the 0.19SQ1.38 KEY. Therefore we find a unique set of screws with brass tips, which is 
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shown in Figure 19. The tip diameter of 4.8mm matches the 0.19SQ KEY, which is 4.826mm. 

Therefore the engineering tolerance/fitting is transition fits, and the chuck can be fastened. 

 

Figure 19  Chuck Fastening with Soft-tip Set Screws 
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3.3.2. Electrical Resources 

Motor Control Module 

In order to set the motor to a certain power level, a motor control module is applied to adjust the 

output voltage to the motor. We use Texas Instruments Stellaris® Brushed DC Motor Control 

Module with CAN (MDL-BDC24), also named as Jaguar. The Jaguar provides variable speed 

control for both 12 V and 24 V brushed DC motors at up to 40 A of continuous current, while 

adding a new RS232-based serial control input that also functions as a serial-to-CAN bridge. 

Following this way, we can use the PC COM port to control the Jaguar, instead of a 

microcontroller unit. Apart from that, Jaguar supports the simultaneous use of CAN for 

monitoring voltage and current, therefore no additional test instruments are required. Figure 20 

shows the sixth Jaguar connecting to the sixth motor. 

The Jaguar is fixed by a unique ribbed plastic anchors with a pan head combo drive screw (see 

Figure 21). 
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Figure 20  Jaguar Motor Control Module 

 

Figure 21  Jaguar Fixation 
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Power Supply 

The selection of the power supply should consider the peak current. After testing the current of 

each motor, the maximum value is 3.9 A, so seven machines require a total maximum current of: 

 . .3 9 7 27 3A   (3.1) 

We installed two Mastech Variable Regulated DC Power Supplies with a maximum of a 20 A 

current within 30 V voltage output respectively in parallel (see Figure 15 and Figure 16). Power 

supply 1 supports machine 1 through machine 4, while power supply 2 supports machine 5 

through machine 7, respectively. 

3.3.3. Connection between Mechanical and Electrical Resources 

Connect Jaguar to PC 

Connect the DB9-to-RJ12 adapter to the COM port of PC (TI 2012a). Then connect one end of 

the 6P6C cable to the adapter and the other end to the Jaguar’s CAN/RS232 connector (left of 

the LED) as shown in Figure 22.  
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1
DB9-to-RJ12 adapter 

2
PC COM port 

3
6P6C Cable 

Figure 22  Connect Jaguar to PC 

Connect Motor to Jaguar 

Connect the black lead of the motor to the green screw terminal of the Jaguar. Then connect the 

red lead of the motor to the white screw terminal of the Jaguar (see Figure 23). 



37 

 

 

1
Black lead of the motor 

2
Red lead of the motor 

3
Green screw terminal of the Jaguar 

4
White screw terminal of the Jaguar 

5
100Ω terminal resistor 

Figure 23  Connect Motor to Jaguar 

Connect Power Supply to Jaguar 

Connect the black lead of the power supply output to the black screw terminal of the Jaguar. 

Then connect the red lead of the power supply output to the red screw terminal of the Jaguar. In 

the meantime, the black and red screws are also parallel connecting to other Jaguars for power 

supply (see Figure 24). 
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1
Black lead of the power supply output 

2
Red lead of the power supply output 

3
Red screw terminal of the Jaguar 

4
Black screw terminal of the Jaguar 

5
Parallel connect the power supply to other Jaguars. 

Figure 24  Connect Power Supply to Jaguar 

Daisy Chain of Jaguar 

Controller Area Network (CAN) provides a powerful interface for controlling more than one 

Jaguar modules. The 6P6C socket can be used for daisy-chaining with standard cables. At the 

end of the CAN network, which is the Jaguar for Machine 7, it should be terminated with a 100Ω 
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resistor as shown in the fifth footnote of Figure 23. Each Jaguar on the CAN bus is accessed 

using an assigned ID number. We designate Jaguar ID 1 through Jaguar ID 7 to control Machine 

1 through Machine 7, as labeled and shown in Figure 15 and Figure 16, correspondingly. The 

CAN network topology for Jaguar daisy-chaining connection is shown in Figure 25. 

 

Source: (TI 2012b) 

Figure 25  CAN Network Topology 

3.4. Programming Platform 

Compared to the realization of hardware, the design of the programming platform is much more 

complicated so that it becomes the most challenging obstacle during the development of the 

hardware testbed. In this section, we elaborate the design process of the programming platform 

in detail. 
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3.4.1. Programming Architecture 

At the beginning, the programming architecture should be defined prior to everything else. The 

three-tier client–server architecture including presentation tier, business logic tier, and data tier is 

selected. The significance of choosing this architecture is that by breaking up the programming 

platform into three tiers, we only have to modify a specific tier, rather than have to rewrite the 

entire application over (Wikipedia contributors 2012b). The parametric configuration for 

different kinds of manufacturing lines is possible under this design. The programming 

architecture is designed as shown in Figure 26. 

The presentation tier consists of the main user interface which is a WinForms GUI Components 

designed in C# .NET. This tier is used mainly for the interaction between the internal data, 

complex logic, and the external user interface. 

The business logic tier is comprised of two primary units, core functional unit and hardware 

communication functional unit. The core unit coordinates the whole system by performing 

complex analysis and determining the decisions of runtime machine behaviors. It also 

communicates with 1) hardware unit to set the corresponding motor executive commands or get 

the real-time data from the motor, 2) data tier to retrieve or coordinate runtime data, and 3) 

presentation tier to present all the runtime information including machine energy status, buffer 

contents, system throughput, and system behaviors. The hardware unit communicates with 

hardware infrastructure of seven Jaguar controllers. 
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The data tier consists of configuration access and data access. For configuration access, there are 

three parts of configuration involving machine parameters, buffer parameters and system 

parameters. The data can be retrieved at the very beginning before the system is implemented. 

During the runtime of the system, the system behavior data like the beginning and ending time of 

blockage or starvation and real-time energy related data from the hardware can be stored. The 

Excel database can be accessed and exported at the end with all the runtime data obtained and 

analyzed from the core functional unit. 
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Figure 26  Programming Architecture 
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3.4.2. Develop Environment Considering Design Pattern 

After determining the system hierarchy, we need to identify the programming environment and 

the language we use. On one hand, from the perspective of motor controlling, we do the analysis 

as follows. 

Since the chip of the Jaguar controller is based on ARM (ARM is a 32-bit reduced instruction set 

computer) architecture and all other microcontrollers from Texas Instrument (TI) are based on 

ARM, so the official solution of motor controlling to realize the algorithm of Chapter 2 is to run 

the energy control model in an ARM embedded development environment in C++. However, 

due to the low clock frequency (50 MHz) and the architecture of this ARM MCU, it is not 

designed for large-scale scientific computing. So the official solution will not be a good choice. 

At the same time, considering the fact that TI provides an application program, bdc-comm, and 

relevant C++ source code to control the motor in either GUI mode or command line mode, we 

consider modifying and rebuilding this application program to fit our model by extracting the 

core voltage controlling API from the bdc-comm and translating it into a Component Object 

Model (COM) interface so that other high level language can easily call the API to realize the 

motor control. However, the workload of this idea is too heavy because 1) large capacity of code 

is required to be understood without any documentation (more than 20,000 lines); 2) a GNU (a 

Unix-like computer operating system) development environment needs to be established and 

FLTK (a cross-platform GUI library made with 3D graphics programming) based GUI library 
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requires to be understood; and 3) COM library establishment needs to be understood. All of these 

tasks consume even more time than the first idea. 

To bypass the complicated hardware controlling difficulties aforementioned, we consider using 

C# .NET to execute this console application externally in the background since the bdc-comm 

provides a command line console to control the motor with several simple commands. The input 

of the commands and the output of the real-time data can be redirected by 

System.Diagnostics.Process Class under .NET Framework for C#. Therefore, the motor 

controlling can be easily realized by calling the commands we want in the background. 

On the other hand, considering the coupling with different components, the generalization of the 

code, and the simplicity of modification for different system layout, three design patterns are 

required to be applied in the programming platform of hardware testbed: namely, prototype 

pattern, singleton pattern, and observer pattern. 

Prototype pattern is a pattern that specifies the kinds of objects to create a prototypical instance, 

and create new objects by copying this prototype (Wikipedia contributors 2012c). Since there are 

multiple machines and buffers in the system, we can develop two prototypes for one machine 

and one buffer, respectively. Other machines and buffers can be cloned from these prototypes. 

Therefore we only have to modify the machine or buffer prototypes to add parameters or 

functional modules. 
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Singleton pattern ensures that a class has only one instance, and provides a global point of access 

to it (Wikipedia contributors 2012d). For example, the control module for Jaguar should be a 

global object. The timing controller takes the responsibility of machine states decision-making 

and buffer-updating, which should also considered being a global object. 

The observer pattern is that, an object (called the subject) maintains a list of its dependents 

(called observers), and notifies them automatically of any state changes, usually by calling one of 

their methods. It is mainly used to implement distributed event handling systems (Wikipedia 

contributors 2012a). Especially within the interaction between the presentation tier and the 

business logic tier. When the machine or buffer is changing to a new status, the GUI should be 

notified to change the displayed data and status automatically at the same time. 

To realize these three patterns, C#, a simple, modern, general-purpose, and object-oriented 

programming language under the .NET Framework, which is helpful to shorten the development 

cycle, is selected under a WinForms-based application developed by Visual Studio 2010.  

In summary, our development environment is the language of C# under .NET Framework with 

the Integrated Development Environment (IDE) of Visual Studio 2010.  

3.4.3. Class Diagram 

Based on the language and coding environment selection in Chapter 3.4.2, we introduce the 

concrete code structure in this section in detail. As is known to all, within Object-Oriented 
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Programming, each class (module) is designed as independently as it could to reduce coupling. 

The relationship and communications of all classes declared in the system are shown in Figure 

27 and the functionality of each class is introduced as follows: 

Buffer.cs 

This is the prototype class of buffers. Instances are created to represent buffer objects. Build-in 

runtime parameters of ID, Capacity, InitialQty, and CurrentQty are declared to represent the 

buffer number, buffer capacity, buffer initial contents, and current contents, respectively. 

BufferParameters.cs 

This is a collection of static members of buffer instance, so the buffer data could be treated as 

global variables. A Buffer Type array is created for convenience so in future program 

"BufferParameters.B[i]" can be called for the traversal of all buffer parameters. 



47 

 

 

Figure 27  Class Diagram of Class Relationships and Communications 
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DelegateDeclaration.cs 

This is a collection of four global delegate declarations. Four update delegates are declared for 

updating GUI in multithreading environment. UpdateGUIHandler Delegate is used to update the 

machine states, power levels, progress bars of power, and information list view. 

UpdateBufferHandler Delegate is used to update the buffer contents and vertical progress bars of 

buffer indictor. UpdateThroughputHandler Delegate is used to update the throughput quantity 

and vertical progress bar of throughput indictor. UpdateSystemClockHandler Delegate is used to 

update the system progress bar, as well as the system clock on the right top corner of the user 

interface. 

ExponentialDistribution.cs 

This is a class for generating exponentially distributed numbers. These numbers are translated 

into minutes for representing the MTBF and MTTR parameters for machines. They are generated 

in the constructor of Machine Class to initialize the runtime parameters. 

ExportExcel.cs 

This is a class used for exporting runtime data after one shift of baseline and adjusted scenario is 

finished. Because of the large volume of IO requests, single cell value assigning will extremely 

slow down the system and freeze the application. So we use a two-dimension object array for 
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assigning values. Notice that Excel.Application.Visible should be turned off during the operation 

and turned on again after the operation, otherwise the Excel is likely to be frozen. 

JaguarController.cs 

This is a singleton pattern class that communicates with bdc-comm.exe to execute all Jaguar 

control commands. Bdc-comm.exe is a command line application developed by Texas 

Instruments to control and monitor the Jaguar. RedirectStandardInput Method in Process Class is 

called to input commands to the console of bdc-comm.exe in the background. 

Process.BeginOutputReadLine Method begins to asynchronously read output string on the 

redirected StandardOutput stream of the bdc-comm.exe once the Start Method is called by the 

button in MainWindow Form. Therefore the voltage and current could be obtained through the 

input of "stat vout2", and "stat cur", respectively. ExtractValue Method is called to analyze and 

extract the exact voltage or current after the string obtained from the StandardOutput stream. 

Machine.cs 

This is the prototype class of machines. Instances can be created to represent machine objects. 

Build-in runtime parameters are declared and different warm up times and cycle times are 

customized in the set of InitializeMachine Methods. In addition, in the constructor of this class, 

GenerateMTBFMTTR Method is called to generate random MTBF and MTTR, which is only 

executed on the instantiation of baseline. Note that the MTBF ArrayList is the beginning time 
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point of machine failure, while the MTTR ArrayList is the end time point of machine failure. 

Considering the warm up times, RecoveredTime ArrayList is also generated. 

Two important properties of UpstreamBuffer and DownstreamBuffer are declared in this class. 

They are Buffer Class instances. Once the UpstreamBuffer and DownstreamBuffer instance is 

assigned in the constructor, the manufacturing line relationship is determined. Take our case for 

example; both machine 4 and machine 5 will be assigned with the code of:  

UpstreamBuffer = BufferParameters.B3; 

DownstreamBuffer = BufferParameters.B4; 

Therefore the parallel relationship of machine 4 and machine 5 are determined. 

MachineEventArgs.cs 

This is a class for carrying machine runtime event arguments. In observer pattern, event 

argument is an important element which can pass the necessary data to the observer.  Without 

this class, code reusability decreases and sometimes it is difficult to pass the parameters to the 

event handler. 

MachineParameters.cs 

This is a collection of static members of machine instance, so that machine data could be visited 

and stored as global variables. A Machine Type array is created for convenience so in future 
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program "MachineParameters.M[i]" can be called for the traversal of all machine parameters. 

Apart from that, MBackup[i] array is also declared to backup and store the baseline machine 

runtime parameters including: MTBF, MTTR, beginning/ending time of blockage and starvation, 

as well as real-time voltage and current. A Reset Method is included to re-instantiate the same 

seven new machine instances after baseline is finished 

MainWindow.cs 

This is the main user interface to present the interaction of machine and buffer data, along with 

the system parameters. The design is shown in Figure 28. 

Meanwhile, this class includes batches of GUI updating methods, which can be called by the 

update Delegates declared in DelegateDeclaration Class when the machine or buffer status has 

changed. Multithreaded asynchronous invoke methods can be called for updating since the 

working thread is different from the main UI thread. Otherwise, the cross-thread operation 

exception will occur. 
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Figure 28  MainWindow Form User Interface 

Program.cs 

This is the main entry point for the programming platform. 

SystemClock.cs 

This is the global system clock generator. Each system clock tick moves forward the machine 

ClockTime one step (Details in Chapter 3.4.4). There are two kinds of clocks in this class. One is 

the real clock, with the time interval followed by SystemParameters.ClockRate. The other is the 

simulated clock generated by a for-loop. They are launched by Start Method and StartSim 

Method, respectively. 
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SystemMethods.cs 

This is some extra system level methods class. Three methods 1) 

AmendMTBFBlockageStarvationEndTime, 2) BackupData, and 3) ImportRuntimeData are 

included. Sometimes blockage and starvation last until simulation ends thus the BlockageEnd 

and StarvationEnd cannot be captured so the first method is used to make up these losses. The 

second method is used to retrieve data from machine instances to backup machine instances, 

including: MTBF, MTTR, RecoveredTime, BlockageBegin, BlockageEnd, StarvationBegin, 

StarvationEnd after the baseline is finished. The third method imports runtime data from the 

backup machine instances to the current reset machine instances in adjusted scenario. 

SystemParameters.cs 

Parameters other than machine parameters and buffer parameters are read from and stored into 

this class. The most important parameter is ClockRate, used to adjust the simulation or real-time 

speed of the testbed. A Reset Method is also included to clear throughput to zero after the 

baseline is finished. 

TimingController.cs 

This is the software core function unit for handling runtime logic. All runtime decisions will be 

determined in this class (Details in Chapter 3.4.5), such as when the machine is in failure, 

blockage, starvation, or operation. In addition, measuring and converting to obtain the energy 
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consumption is also executed in this class. After every step, this class will notify MainWindow 

Form to update the GUI presenting. 

UpdateData.cs 

This is a collection of delegated updating methods for different parts of control in MainWindow 

Class. 

VerticalProgressBar.cs 

This is a customized control to visualize the buffer and throughput content. ProgressBar Control 

is usually horizontally oriented. Here we reconfigure the process bar into a vertical one for better 

visualization. 

3.4.4. System Clock 

The challenging obstacle of programming platform of the hardware testbed is how we could 

control the timing and execute system behaviors at certain time points. According to our initial 

attempts, we used several timers to control the timing. For example, for machine 1, we 

designated timer1 for warm up time, timer2 for cycle time, timer3 for random failure time, 

timer4 for random repair time. For the power level transition time we also designated 

corresponding timers. Totally more than 15 timers were required for just one machine prototype. 

Considering multiple machines and other system timer requirements, a great number of timers 

are required. Therefore, a large amount of system resources are requested which occupies 
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unexpected memory consumption and reduces the system response speed. In addition, since each 

timer needs to create a new thread, therefore thread synchronization needs to be considered to 

prevent data conflict. As a result, the risk of testbed crash increases and the system robustness 

decreases. 

The solution we proposed here to circumvent the above challenge is to discretize the continuous 

time in real world into finite time slices. Every time slice is defined as a Simulation Step with 

length of 1000ms, which means the system clock ticks every 1,000ms. It can be used to represent 

a unit of simulation time period as shown in Figure 29. The red line corresponds with the 

simulation clock with the same pace of the real world time, namely, 1000ms per Simulation Step; 

the blue line represents 2,000ms per Simulation Step; and the green line denotes 500ms per 

Simulation Step respectively. 

From the systematic perspective, there are two clocks in our system. One is the simulation clock 

and the other is the real world clock. Each machine has their individual ClockStep properties, 

which steps followed by the simulation clock, in other word, each machine moves their clocks 

one step forward simultaneously by a traversal method when the simulation clock ticks. 

The total simulation time of an 8-hour shift is discretized into milliseconds: 

 , / , / , ,8h 3 600s h 1 000ms s 28 800 000ms    (3.2) 
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Figure 29  System Clock Compared with Real World Clock and Simulation Clock 

Therefore we could discretize the system into 28,800,000 discrete steps. For example, if the 

system is currently running at the time point of 3 hours 45 minutes, then the ClockStep for each 

machine should be: 

  , / , / , / / , ,3h 3 600s h 1 000ms s+45min 60s/h 1 000ms s 1step ms 13 500 000step      (3.3) 
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Thus, we can use one global timer to represent the real world clock. When the Timer.Elapsed 

Event occurs at every 1,000ms, it traverses the ClockStep properties of all seven machine 

instances. For example, the warm up time of machine 3 is 17,000ms and therefore when the real 

world clock ticks the 17
th

 second, the simulation clock also reaches 17,000ms. Thus, when the 

traversal method scans to machine 3, it detects that machine 3 has finished warm up and so the 

following system behaviors can be executed. 

The advantages of this solution are obvious: 1) save huge system resources and memory 

consumptions; 2) prevent multi-timer conflict to secure the system robustness; 3) record and 

reoccur MTBF, MTTR, blockage, and starvation time point easily; and 4) make sure that 

hardware testbed speed is adjustable as software simulation testbed. 

3.4.5. Runtime Logic 

Within the TimingController Class, the Run Method can handle all runtime logic. Figure 30 

shows the running logic flow chart for each ClockStep in Machine Class. Several critical time 

point designs are also demonstrated below. 

The corresponding code for this flow chart is as follows: 

public void Run() 

{ 

 if (IsStartupWarmedUp()) 
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 { 

  if (!Mach.IsStartupWarmedUp) 

  { 

   DoStartupWarmedUp(); 

  } 

 

  if (IsSimulationEnd()) 

  { 

   End(); 

  } 

  else 

  { 

   if (IsMTBF()) 

   { 

    DoMTBF(); 

   } 

   else 

   { 

    if (IsStarvation() || IsBlockage()) 

    { 

     if (IsStarvation()) 

     { 

      if (IsBaseline()) 

      { 

       DoStarvationBaseline(); 
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      } 

      else 

      { 

       DoStarvationAdjusted(); 

      } 

     } 

     if (IsBlockage()) 

     { 

      if (IsBaseline()) 

      { 

       DoBlockageBaseline(); 

      } 

      else 

      { 

       DoBlockageAdjusted(); 

      } 

     } 

    } 

    else 

    { 

     if (IsOperationPoint()) 

     { 

      DoOperation(); 

     } 

    } 
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   } 

  } 

 } 

 else 

 { 

  DoWarmingUp(); 

 } 

 

 Measuring(); 

  

UpdateSystemClock(); 

} 

 

We did not write any real codes in this Run Method, but put the corresponding handling methods 

in it. The reason is that we wish to keep the code clean and easy to understand, and separate each 

module independently. 
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Figure 30  Runtime Logic Flow Chart 
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Downtime 

In the constructor of Machine Class, random MTBF and MTTR time points are generated 

followed by an exponential distribution for each machine instance. These data are stored into two 

ArrayList Objects initially. 

Blockage and Starvation 

Since no more parts will be produced during the machine downtime, the upstream buffer keeps 

accumulating until it is full and the downstream buffer keeps dissipating until it is empty. And 

once the TimingController Class runs into a step which satisfies the blockage or starvation 

conditions, it prevents the next step of the certain machine from operating. At the same time, it 

notifies the UpdateGUI Delegate to present some information in the MainWindow Form. 

The identification of blockage and starvation is a little bit complicated. Take blockage for 

example: the IsBlocakge Method will first check whether the DownstreamBuffer is full. If it is 

full, then check whether the downstream machine is breakdown or blockage. Only two of these 

conditions are satisfied, this machine can be flagged as blockage. 

When this blockage machine recovers from blockage, as well as failure, it must double check 

whether the upstream machine is also blocked. If so, update the OperationPoint of the upstream 

machine. Otherwise, the upstream machine won’t wake up. 
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3.5. Case Study 

To verify the effectiveness of the hardware testbed proposed in previous sections and strengthen 

the results of Chapter 2, a case study with same reliability data as in Chapter 2 is implemented on 

our hardware testbed. Energy related parameters are measured through JaguarController Class 

according to the hardware testbed instead of previous plant-based power parameters as input to 

the case (see TABLE VII).  
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TABLE VII  

PARAMETERS FOR DIFFERENT ENERGY LEVELS IN HARDWARE TESTBED 

Energy Level Current (A) Voltage (V) Power (W) 

10% 1.64 2.35 3.854 

30% 2.86 7.05 20.163 

50% 3.43 11.72 40.200 

100% 2.83 23.35 66.080 

TABLE VIII  

BASIC SETTINGS FOR MACHINES IN HARDWARE TESTBED 

 
MTBF 

(Simulation Step) 

MTTR 

(Simulation Step) 

Cycle Time 

(Simulation Step) 

Warm up Time 

(Simulation Step) 

M1 5,100,000 620,400 30,000 33,000 

M2 25,974,000 297,000 27,000 33,000 

M3 2,094,000 436,200 27,000 17,000 

M4 1,068,000 408,600 58,000 33,000 

M5 798,000 462,000 59,000 33,000 

M6 4,788,000 629,400 26,000 33,000 

M7 3,054,000 477,600 30,000 33,000 
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As the same machine reliability parameters given in the case study of Chapter 2.4, we converted 

the MTBF, MTTR, Cycle Time, and Warm up Time into the unit of simulation step, as shown in 

TABLE VIII. Buffer parameters are the same as the parameters in TABLE II. 

The throughput is compared between baseline model and adjustment model.  It can be observed 

from TABLE IX that no throughput loss occurs when we execute power state adjustment 

compared to the baseline scenario.  

The energy consumption is compared between the adjustment scenario and the baseline model is 

described in TABLE X. It can be observed that averagely, approximate 12.6% of the total energy 

can be conserved by adjusting machines power level discretely when machines are blocked or 

starved, which is quite close to the simulation result in Chapter 2. 

TABLE IX and TABLE X both compared the results between software testbed demonstrated in 

Chapter 2 and hardware testbed in this chapter. It can be observed that the confidence interval of 

both throughput and energy saving potential of hardware testbed is within the confidence interval 

of the results of software testbed. 
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TABLE IX  

COMPARISON OF THROUGHPUT BETWEEN BASELINE AND POWER ADJUSTMENT 

MODEL IN HARDWARE TESTBED 

 
Throughput of 

Baseline Model 

Throughput of 

Power Adjustment 

Model 

Hardware 

Testbed 

Throughput 633 630 

95% Confidence  

Interval 
(616, 650) (614, 646) 

Software 

Testbed 

Throughput 636 634 

95% Confidence  

Interval 
(622, 650) (618, 650) 

TABLE X  

COMPARISON OF ENERGY CONSUMPTION BETWEEN BASELINE AND POWER 

ADJUSTMENT MODEL IN HARDWARE TESTBED 

 

Energy 

Consumption of 

Baseline Model 

Energy Consumption 

of Power Adjustment 

Model 

Energy Saving 

Potential in 

Hardware 

Testbed 

Energy Saving 

Potential in 

Software 

Testbed 

Electricity 

Consumed 

(kJ) 

11,110 9,706 12.6% 13.8% 

95% 

Confidence  

Interval 

(11,034, 11,186) (9,576, 9,836) (11.8%, 13.4%) (11.3%, 16.3%) 
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3.6. Conclusion 

In this chapter, a hardware testbed is developed. All the details of the design and development of 

the testbed including the testbed hierarchy, hardware infrastructure, and programming platform 

are elaborated. The design difficulties and challenging obstacles, as well as the corresponding 

solutions are also explained. A case study with same layout and reliability parameters as the one 

in Chapter 2 is implemented and a very close result is achieved. This indicates 1) the result of 

software testbed is convincible; and 2) the hardware testbed realizes the experimental analysis of 

real-time energy control potentials for sustainable manufacturing systems. 

Furthermore, the design of the hardware testbed considers the flexibility. The object-oriented 

programming and parameterization of the programming platform secures the code reusability 

and simplicity of modification for testbed rearrangements.  It is convenient to fit for the 

validation of different manufacturing layout and various cases in future research. 
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4. CONCLUSION AND FUTURE WORK 

In this thesis, a simulation-based algorithm to investigate the energy saving potentials for 

sustainable manufacturing systems by implementing energy control strategy during machine idle 

periods is developed. The experimental framework including both software and hardware 

testbeds are established. The feasibility of the implementation of the proposed algorithm in real 

hardware environment is also verified. The results of case study on both testbeds illustrate that 

approximately 13% energy saving potential can be achieved for a seven-machine and five-buffer 

hybrid system without compromising system throughput. The consistent results obtained from 

both testbeds also strengthen the credibility of the saving potential and the effectiveness of both 

testbeds. 

At the same time, the flexibility is fully considered during development stage by using object-

oriented programming and parameterization of the programming platform, which secures the 

generalization of the codes and simplicity of the structure. As a result, the revising, adding, and 

removing of individual module is easy to be handled and thus the developed testbed can be 

simply modified to adapt to different system layout or system parameters. Therefore, the future 

research on different fields for manufacturing systems can be performed without major 

retrofitting. 
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For the future study, analytical methods to obtain a reliable opportunity window estimation 

which can be utilized for energy control and the sensitivity analysis of the contribution of energy 

consumption of each machine to the entire system can be focused. 
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