
A Deep Learning Framework for Air Pollution Forecasting and Interpolation

BY

MARCO MIGLIONICO
B.S., Politecnico di Milano, Milan, Italy, 2017

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2019

Chicago, Illinois

Defense Committee:

Ouri Wolfson, Chair and Advisor

Jane Lin, Civil and Materials Engineering

Matteo Matteucci, Politecnico di Milano

ACKNOWLEDGMENTS

My sincere gratitude goes first of all to Prof. Ouri Wolfson and Prof. Jane Lin who en-

couraged me and helped me during this work we made, dedicating to me lot of their precious

time. Thanks to them I started my journey into Deep Learning, a field that one year ago was

completely new for me, but that now has become one of my biggest passion. Also, I want to

thank Prof. Matteo Matteucci that accepted to be the Politecnico advisor for this thesis.

I want to thank my mother, my father and my sister that everyday, despite the distance and

the time difference, have always found the time to send me a message, to call me (maybe too

many times, right mom?) and to encourage me to give my best during the easy and difficult

moments. If I am here right now, it is only thanks to them and I will be grateful for that for

the rest of my life.

I want to thank my best friends Paride and Simone, because no matter how far away we are,

our friendship is still the same or maybe even stronger. Thank you for being not just simple

friends, but also my main source of inspiration,discussion and improvement. We share the same

ambitions and the same dreams and I am sure we will reach them together.

Finally, I want to express my gratitude to the people that made my Chicago experience unfor-

gettable. Special mention to my favourite girls Miranda, Manuela, Isabel and Georgina that

have always found the time to listen to my problems, to understand me and to make me feel

loved in every single day of this experience.

MM

ii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Background . 2
1.2.1 Existing air pollutants forecasting methods 2
1.2.2 Existing air pollutants interpolation methods 3
1.2.3 Related works . 4
1.2.4 Useful definitions . 11
1.3 Research Objectives . 12
1.3.1 Scientific contributions . 13

2 DATA . 18
2.1 Data used in the study . 18
2.1.1 PM2.5 Data . 18
2.1.2 Meteorological Data . 22

3 FORECASTING EXPERIMENTAL METHODOLOGY 27
3.1 Introduction . 27
3.2 Time series forecasting problem 27
3.3 Long Short-Time Memory Neural Networks(LSTM) 28
3.4 Deep Bidirectional Long Short-Time Memory Neural Networks

(BDLSTM) . 40
3.4.1 Deep LSTM . 40
3.4.2 Bidirectional LSTM . 42
3.4.3 Deep Bidirectional LSTM . 45
3.4.4 Multiple Step Ahead Forecasting 47

4 EXISTING METHODS FOR COMPARISON 51
4.1 Multi Layer Perceptron(MLP) 51
4.2 General Regression Neural Network(GRNN) 55
4.3 Random Forest Regressor (RF) 57

5 INTERPOLATION BACKGROUND 60
5.1 Standard Techniques for Air Quality Inference 60
5.1.1 Inverse Distance Weighting Interpolation (IDW) 60
5.1.2 Gaussian Interpolation . 62
5.1.3 Kriging . 63
5.1.4 Land Use Regression . 64

iii

TABLE OF CONTENTS (continued)

CHAPTER PAGE

5.1.5 Dispersion Models . 66
5.1.5.1 Gaussian Plume . 66
5.2 Machine Learning Approaches for Air Quality Inference 68
5.3 Deep Learning Approaches for Air Quality Inference 68
5.3.1 U-Air: When Urban Air Quality Inference Meets Big Data . . 69
5.3.1.1 Setting . 69
5.3.1.2 Framework . 70
5.3.1.3 Features . 71
5.3.1.4 Co-Training . 72
5.3.1.5 Evaluation . 74

6 INTERPOLATION EXPERIMENTAL METHODOLOGY 76
6.1 Self-training vs Co-Training . 76
6.2 Interpolation Setup . 77
6.3 Features . 82
6.3.1 Haversine Distance . 86
6.4 Evaluation . 88

7 DATA PREPARATION . 90
7.1 Basic Data Preparation . 90
7.2 LSTM Data Preparation . 91

8 FORECASTING RESULTS AND DISCUSSION 92
8.1 Multiple Models Deep Bidirectional LSTM 92
8.2 Deep Bidirectional LSTM Single Model 98
8.3 Multi-Layer Perceptron . 100
8.4 Long Short-Term Memory Neural Network (LSTM) 102
8.5 Random Forest . 103
8.6 General Regression Neural Network 104
8.7 Persistence . 105
8.8 Multi Step Ahead Forecasting Results 107
8.9 Discussion . 109

9 INTERPOLATION RESULTS AND DISCUSSION 113
9.1 Inverse Distance Weighting Interpolation (IDW) Results . . . 113
9.2 Neural Network Results . 117
9.3 Co-Training Results . 120
9.4 Discussion . 122

10 CONCLUSION . 128
10.1 Limitations . 128
10.2 Conclusion . 129

iv

TABLE OF CONTENTS (continued)

CHAPTER PAGE

CITED LITERATURE . 131

VITA . 139

v

LIST OF TABLES

TABLE PAGE
I Features Statistics . 24
II RMSE BDLSTM Multiple Models 96
III Multiple Model vs Single Model . 99
IV RMSE MLP Station 1 . 100
V RMSE MLP Station 76 . 101
VI RMSE MLP Station 57 . 101
VII RMSE MLP Station 6005 . 102
VIII RMSE LSTM . 103
IX RMSE Random Forest . 103
X RMSE GRNN . 104
XI RMSE Persistence . 107
XII RMSE Multi Step Ahead . 108
XIII RMSE Final Comparison . 112
XIV IDW Interpolation Results . 114
XV Neural Network Results . 117
XVI Co-Training Results . 121

vi

LIST OF FIGURES

FIGURE PAGE
1 AQI Index Values, Levels and Colors 12
2 Station 1 Hourly Concentration . 19
3 Station 57 Hourly Concentration . 19
4 Station 76 Hourly Concentration . 20
5 Station 6005 Hourly Concentration 20
6 EPA Stations in Chicago . 21
7 Meteorological Data years 2013-2017 23
8 Correlation Between Features . 25
9 Correlation Between PM2.5 Measures and Wind Speed 26
10 LSTM unfolded in time . 29
11 Schematic view of the LSTM memory cell 31
12 Detailed view of the LSTM memory cell 33
13 Cell State vector . 34
14 Gate . 35
15 Forget Gate Input . 35
16 Input Gate . 37
17 Memory update . 38
18 LSTM Output . 39
19 Stacked LSTM . 41
20 Bidirectional RNN . 43
21 Unfolded Bidirectional LSTM . 44
22 Proposed Model . 47
23 Recursive Multi-Stage Prediction . 49
24 Multi Layer Perceptron . 52
25 Feed Forward Example . 53
26 General Regression Neural Network 56
27 Bagging . 58
28 Gaussian Plume . 67
29 U-Air interpolation setup . 70
30 Conditional Random Field . 73
31 U-Air Neural Network . 74
32 Chicago map with 1km x 1km grid and EPA stations 78
33 Interpolation Framework . 82
34 Land Use Data . 84
35 Traffic Regions . 86
36 Haversine Distance . 87
37 F1 Score . 88
38 Predicted vs Real Data . 97

vii

LIST OF FIGURES (continued)

FIGURE PAGE

39 Zoom of Predicted vs Real Data . 98
40 Predicted vs Real Data using Persistence 106
41 Multi Step Ahead Forecasting . 109
42 Result of Proposed Model . 111
43 Result of Persistence Model . 111
44 IDW Results . 115
45 IDW Pollution Level Interpolated Map 116
46 Self Training Pollution Level Interpolated Map 118
47 Self Training AQI Label Interpolated Map 119
48 Co-Training AQI Label Interpolated Map 122
49 Self-Training VS IDW Pollution Level Interpolated Maps 124
50 Self-Training VS Co-Training AQI Labels Interpolated Maps 125
51 AirNow Maps . 126

viii

LIST OF ABBREVIATIONS

UIC University of Illinois at Chicago

NO2 Nitrogen dioxide

PM2.5 Fine particulate matter 2.5

PM10 Fine particulate matter 10

CMAQ Community Multiscale AirQuality

WRF Weather Research and Forecasting

MLR Multiple Linear Regression

ARMA Autoregressive Moving Average

ARMA Autoregressive Moving Average

SVR Support Vector Regression

ANN Artificial Neural Network

BPNN Back Propagation Neural Network

MLP Multi-Layer Perceptron

RBF NN Radial Basis Function Neural Network

NFNN Neuro-Fuzzy Neural Network

GRNN General Regression Neural Network

RNN Recurrent Neural Network

ix

LIST OF ABBREVIATIONS (continued)

LSTM Long Short Term Memory Neural Network

LSTME Long Short Term Memory Neural Network Ex-

tended

BDLSTM Bidirectional Long Short Term Memory Neural

Network

CEC Constant Error Carrousel

DRNN Deep Recurrent Neural Network

GDBT Gradient Boosting Decision Tree

DFNN Deep Feed Forward Neural Network

TDNN Time Delay Neural Network

STDL Spatio Temporal Deep Learning Model

ARMA Autoregressive Moving Average

SBU-LSTM Undirectional and Bidirectional Long Short Term

Memory Neural Network

SB-LSTM Stacked Bidirectional Long Short Term Memory

Neural Network

CNN Convolutional Neural Network

IDW Inverse Distance Weighting

LUR Land Use Regression

x

LIST OF ABBREVIATIONS (continued)

EPA Environmental Protection Agency

AQS Air Quality System

AQI Air Quality Index

RMSE Root Mean Square Error

BPTT Backpropagation through time

RF Random Forest

xi

SUMMARY

Air pollution has been identified as the world’s largest single environmental health risks by

the World Health Organization. Protecting humans from the damage caused by air pollution, is

one of the major issues for the global community. To accomplish this task, real time air-quality

information is necessary, such as the concentration of PM2.5, PM10 and NO2.5.

In this Thesis we will address this problem by creating a new framework capable of predicting

and interpolating the PM2.5 concentration.

For this purpose we will create a deep learning model, that combine Recurrent and Feed Forward

Neural Network. In particular, we will use an LSTM in with a Bidirectional Training that

process the input sequence in both chronological and anti-chronological order using two separate

hidden layers. In this way, the network can take advantage of the 2 direction to better exploit

the context and learn new patterns.

We will then use the predicted value at each ground monitoring station as input for another

Neural Network model trained using a technique called ”Self-Training” for semi-supervised

learning and we will create interactive maps of the City of Chicago on a 1km X 1km square

grids with an hourly frequency.

Finally, we will compare our model with different baselines and we will propose some possible

extension of the proposed methodology.

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Air pollution causes millions of deaths every year and has been identified as the world’s

largest single environmental health risks by the World Health Organization. Protecting humans

from the damage caused by air pollution, is one of the major issues for the global community.

To accomplish this task, real time air-quality information is necessary, such as the concentration

of NO2, PM2.5 and PM10.

Air quality monitoring stations can measure the concentrations of pollutants at their locations.

The retrieved data highlight that air quality spatial variation is nonlinear and it is caused by

several factors such as traffic conditions, meteorology and surface land use. Nevertheless, the

extent of spatial coverage by these stations is limited, due to the high cost to build, operate,

and maintain.

To overcome this problem, the main objective will be to forecast air quality concentrations

throughout a city with high precision, using the air quality data measured by existing ground

monitoring stations and several data sources that are available or will be made available in

the future in a city. This research will concentrate on fine particles with a diameter that is in

general less than 2.5 micrometers or smaller (PM2.5), since recent studies have proved that this

pollutant lead to more than 800,000 premature deaths per year. For this reason, PM2.5 has

1

2

been ranked as the 13th leading cause of mortality worldwide.[1]

This pollutant has been recognized as the main cause of a variety of health problems and have

been associated with deaths from heart or lung disease. Several studies show that short-term

exposures (more than 24 hours) and long-term exposures (one or several years) have a strong

correlation to these effects. Some category of people that suffer of heart or lung diseases, but

also older adults when exposed to particle pollution, are more likely to visit hospitals, emergency

rooms, or in some serious cases, even die.[2]

1.2 Background

1.2.1 Existing air pollutants forecasting methods

In the past years, lot of researches have focused on finding new approach and improve

the existent methods to predict air pollutant concentrations. As a rule, the techniques for

forecasting air pollutant concentrations can be separated in two main categories [3]:

• Deterministic methods: these methods embrace statistical methods and meteoro-

logical principles to represent the dispersion, emanation, diffusion, transformation, and

elimination processes of pollutants based on atmospheric physics and chemical reactions.

These techniques can be considered model-based methods since their architecture are pre-

defined based on certain theoretical assumptions, and it is possible to calculate through

precise priori knowledge their parameters.

Example of these methods are Community Multiscale AirQuality (CMAQ) model [4],

Nested Air Quality Prediction Modeling System [5] and WRF Chem model [6].

3

• Statistical methods: these methods do not use complex theoretical techniques but em-

ploy statistical based techniques to forecast air quality.

The most broadly used strategies include multiple linear regression(MLR) [7], the au-

toregressive moving average(ARMA) [8],the support vector regression (SVR) [9] and the

artificial neural network (ANN) [10]. In particular, ANN methods have shown to be self-

adaptive and robust for the time series prediction task, thanks to its ability to perform

nonlinear mapping.

Recently, several efforts have been done in order to improve the prediction capability of ANN

techniques[3]. Typical examples include back propagation neural network (BPNN) [11], multi-

layer perceptron (MLP) [12] , radial basis function neural network (RBF NN) [13], neuro-fuzzy

neural network (NFNN) [14], general regression neural network (GRNN) [15], and recurrent

neural network (RNN) [16].

1.2.2 Existing air pollutants interpolation methods

Regarding more specifically the interpolation part (air quality inference), different ap-

proaches have been tested during the years. It is possible to divide them into four main

categories:

• The standard interpolation techniques (Inverse Distance Weighted Interpolation,

Kriging, Spatial Averaging, Gaussian Interpolation and Land Use Regression)

• The Dispersion Models (Gaussian Plume, Lagrangian and Eulerian Dispersion model)

4

• The Machine Learning Techniques for air quality inference(Support Vector Re-

gressor, Decision Tree, K-Nearest Neighbor, Nave Bayes and Random Forest)

• The Deep Learning air quality inference techniques (e.g. U-Air, ADAIN)

From now on we will use the term interpolation and air quality inference interchangeably to

indicate the process of deriving the pollution concentration of unknown locations, using both

standard and deep learning techniques.

1.2.3 Related works

Long Short Term Memory Neural Networks have been effectively employed in several stud-

ies involving time series forecasting, such as traffic flow prediction [17], wind power prediction

[18], human trajectory prediction [19].

LSTM was proposed for the first time by Hochreiter and Schmidhuber [20].In their work they

address the exploding gradient problem of the recurrent Neural Network by introducing a new

method called Long Short-Term Memory(LSTM). In this gradient-based method a constant

error flow within its constant error carrousel CEC is guaranteed by the internal architecture of

each memory cell, provided that the error flow trying to leak out of memory cells is cut off by

truncated backpropagation. The main idea of this kind of RNN is the presence of a memory

cell which can maintain its state over time.

Recently, Sak et al. (2016) [21] applied LSTM for pollution risk forecasting, but they didn’t

predict real-value concentrations of air pollutants since they only analyzed the pollution risk

ranking. Besides this method do not consider the spatial correlations between monitoring sta-

tions.

5

Fan et al. (2017) [22] proposed a spatiotemporal prediction method based on deep recur-

rent neural network (DRNN) and missing value processing algorithms. Three different missing

values fixing algorithms were implemented using missing interval and missing tag to create a

representation of the time series patterns. These methods were furtherly incorporated into deep

neural network framework composed by different LSTM layers and fully connected layers. In

their work to train and test their model they employed air quality and meteorological datasets

form the Jingjinji area in China. The baseline models used against the DRNN were gradient

boosting decision trees (GBDT) and Deep feed forward neural networks (DFNN). The results

show that the proposed DRNN framework outperforms both the baseline in term of RMSE.

Li et al. (2017) [3]in their work, applied an extended version of LSTM called Extended LSTM

(LSTME). It consisted in a model that intrinsically considers spatio-temporal correlations in

order to make air pollution forecasting. The layers of the Long short-term memory (LSTM)

network were employed to derive intrinsic useful features in an automatic way from historical

and auxiliary data, like time stamp and meteorological information. The data were merged

together to enhance the performance of the proposed methodology. Hourly PM2.5 (fine parti-

cles with a diameter that is in general less than 2.5 micrometers or smaller) concentration data

retrieved using twelve ground air quality monitoring stations in the city of Beijing from Jan-

uary 2014 to the end of May 2016 were employed to evaluate the performance of the proposed

LSTME methodology. Several techniques were used to perform the experiments. These tech-

niques include the time delay neural network model (TDNN), the spatiotemporal deep learning

model (STDL), the traditional LSTM, the autoregressive moving average model (ARMA) and

6

the support vector regression model(SVR). The final results showed that the LSTM extended

methodology outperformed the statistics-based techniques.

Reddy et al. (2017) [23] investigated the use of the LSTM recurrent neural network (RNN) as a

framework for forecasting in the future, based on time series data of pollution and meteorolog-

ical information in Beijing. Due to the sequence dependencies associated with large-scale and

longer time series datasets, RNNs, and in particular LSTM models, demonstrated to be well-

suited. The results demonstrated that the LSTM model produced equivalent accuracy when

forecasting future timesteps compared to the baseline support vector regression for a single

timestep.

Cui et al. (2018) [24] proposed a new model based on deep stacked unidirectional and bidirec-

tional LSTM neural network(SBU-LSTM) model to forecast network-wide traffic speed, which

considers forward and backward dependencies . The power of BI-LSTM is used in combination

with historical data to capture the temporal dependencies and the variablity in the spatial

features. The model was used to predict traffic speed on urban networks and freeway. The

proposed SBU-LSTM, when compared with other baseline and state of the arts models shows

better performance in term of predictions for the entire network.

Fan et al. (2017) [22] create a Deep Recurrent Neural Network (DRNN), based on LSTM, that

predict future air pollution concentrations in the area of Jingjinji (China) and at the same time

tackles the problem of missing values by implementing 3 different algorithms to fix the missing

values. They compared the performance of the model with Deep Forward Neural Networks

(MLP) and Gradient Boosting Decision Trees, showing that their model outperforms the base-

7

line. Besides, they applied inverse distance weight interpolation to create air pollution maps of

the study area.

Huang et al. (2018) [25] developed a Deep Neural Network model that combines CNN and

LSTM to predict the next hour concentration of PM2.5 using historical pollution data and

meteorological data like cumulated wind speed and cumulated hours of rain. They created a

framework that use the power of CNN to extract feature importance and the ability of LSTM to

solve long-term dependencies. In this work they use the historical data of the previous 24 hours

to predict the next hour concentration and they compare their results with different baselines

like SVM, Random Forest, Decision Tree, Multi-Layer Perceptron, CNN and LSTM.

Lin et al.(2018) [26] presented a new approach to forecast PM2.5 concentration. This new

approach is based on the combination between CNN and RNN.

Combining these two approaches, they created the GC-DCRNN based on diffusion convolution.

The main innovations of this model were the use of a graph based structure, that was built

using the similarity between different locations. This approach was possible due to the high

number of stations in different locations present in this work. The similarity measure used to

build the graph was based on the geographical features of each location within different buffers.

The experiment was set in Beijing and Los Angeles and the results were compared with other

baselines including the standard Linear Regression(LR), the Vector Autoregression(VAR) and

the Gradient Boosting Machines(GBM).

8

Regarding more specifically interpolation part we will start with the standard interpolation

techniques:

Wong et al(2004) [27] selected 4 different interpolation methods to interpolate O3 and PM10,.

All the methods we based on the same mathematical formulation and on weighted average. The

methods applied were Spatial Averaging, Nearest Neighbor, Inverse Distance Weighting (IDW)

and Universal Kriging. The results indicated that Kriging performed slightly better than the

other 3 methods.

Mercer et al. (2011) [28] compared Universal Kriging and Land Use Regression(LUR) to inter-

polate the values of gaseous oxides of nitrogen (NOx) in the city of Los Angeles. The results

show that Universal Kriging perform well or better than the analogous LUR models, evaluated

in terms of CV R squared.

Keler et al. (2014) [29] used inverse distance weighting interpolation to generate surfaces of

PM2.5 concentration . The interpolated results were based on the daily PM2.5 values. The goal

of this study was the possibility of detecting high PM2.5 hot-spots concentrations,that might

be dangerous for sensistive people.

Contreras et al. (2018) [30] after predicting the air pollutants values using a Land Use Regres-

sion model, interpolated the values using a new technique based on Inverse Distance Weighting

that takes into account also the wind direction, and compare the generated maps with the one

obtained from standard methods like IDW. The results show how the new methodology can

capture the pollution dispersion in a more accurate way with respect to the IDW.

For the dispersion models:

9

Arystanbekova et al. (2004) [31] applied Gaussian Plume to estimate local pollution level on a

grid map. In their work they read the inputs file form a GIS file and produce as output some

maps of pollutions levels.

Mok et al. (2008) [32] proposed a modified version of the Gaussian Plume to simulate the

dispersion of the air pollutants under non-homogeneous wind conditions. The setting of the ex-

periment was the city of Lisbon and the results were evaluated with the measured concentration

of sulphur dioxide showing good skills in modeling the dispersion and transport of air pollutants

under complex wind conditions. The results show a significant improvement compared to the

traditional Gaussian Plume.

Beelen et al. (2010) [33] compared the performance of Land Use Regression (LUR) and a dis-

persion model called URBIS in a Dutch urban area. URBIS used Gaussian Plume to calculate

the pollution levels near industrial sources and another model called CAR (Calculation of Air

pollution from Road traffic) to calculate the pollution level near roads. Some 1km x 1km grid

maps was created to monitor and model the dispersion of air pollutants. The URBIS model

performed better than LUR regression in term of R squared. On the calculation of the annual

average the two models showed very similar performance.

Van der Swaluw et al. (2017) [34] presented high resolution maps on a 1km x 1km grids to

model air quality in Netherlands. They applied the OPS model, a combination of Lagrangian

Trajectory model for long range transport and Gaussian Plume to calculate the concentration

maps. The model was compared with another dispersion model called Eulerian Model with

the same resolution. The results show similar performance between the two dispersion models,

10

even if the OPS model shows faster computational time.

For the deep learning approaches instead:

Zheng et al. (2013) [35] proposed a new methodology (U-Air) based on a co-training frame-

work to infer air quality information in a city using the data coming from a small number of

monitoring stations and several datasets like meteorological data, traffic information and point

of interest. The setting of the experiments was the city of Beijing and the results show that the

proposed co-training semi-supervised model based on Artificial Neural Networks (ANN) and

Conditional Random Field (CRF) outperform other techniques including Linear Interpolation,

Gaussian Interpolation and Decision Tree.

Chen et al. (2016) [36] infer air quality concentration applying an ensemble semi-supervised

technique. They generate multiple classifiers and they trained them using a co-training frame-

work. The dataset used include road-network features, traffic related features, check-in features,

POIs and other monitoring stations data. They first train multiple classifiers using bootstrap-

ping from the original dataset and assign a confidence label to unlabeled data. The examples

with the highest confidence are then added to the training data and the training process is

repeated. This process is repeated until all the examples have been classified. This technique

outperforms different methodology like Gaussian Interpolation, K- Nearest Neighbor, Nave

Bayes and Random Forest.

Finally, Cheng et al. (2018) [37] proposed a generic neural network approach called ADAIN,

based on the attention mechanism for urban air quality inference. In this work, they used both

recurrent and feed forward neural network to capture deep feature interactions. They leverage

11

the data from the ground monitoring stations and other urban data sources including meteo-

rological data, road networks and POIs. The model outperformed other standard interpolation

and machine learning techniques like K-Nearest Neighbor, Co-Training, Gaussian Interpolation,

Linear Interpolation and Support Vector Regressor.

1.2.4 Useful definitions

EPA [38]: ”The United States Environmental Protection Agency (EPA or sometimes U.S.

EPA) is an agency of the federal government of the United States which was created for the

purpose of protecting human health and the environment. The EPA AirData website provides

access to air quality data collected at outdoor monitors across the United States, Puerto Rico,

and the U. S. Virgin Islands. The data comes primarily from the AQS (Air Quality System)

database. AirData assists a wide range of people, from the concerned citizen who wants to

know how many unhealthy air quality days there were in his county last year to air quality

analysts in the regulatory, academic, and health research communities who need raw data”.

Air Quality Index [38]: ”The AQI is an index for reporting daily air quality. It tells how

clean or polluted the air is, and what associated health effects might be a concern for people.

The AQI focuses on health effects people may experience within a few hours or days after

breathing polluted air. The function used to convert from air pollutant concentration to AQI

varies by pollutants, and is different in different countries. Air quality index values are divided

into ranges, and each range is assigned a descriptor and a color code”. The United States

Environmental Protection Agency issued a standard table, that is presented in Figure 1

12

Figure 1: AQI Index Values, Levels and Colors

Feature [39]: ”In machine learning and pattern recognition, a feature is an individual

measurable property or characteristic of a phenomenon being observed. Choosing informative,

discriminating and independent features is a crucial step for effective algorithms in pattern

recognition, classification and regression. Features are usually numeric, but structural features

such as strings and graphs are used in syntactic pattern recognition. The concept of feature is

related to that of explanatory variable used in statistical techniques such as linear regression”.

1.3 Research Objectives

In this study we will focus on a particular class of RNN, the Long Short-Time Memory

Neural Networks to predict pollution concentrations in the city of Chicago. In fact, RNN can

13

handle arbitrary sequences of inputs and they also guarantee the capacity to learn temporal se-

quences. These characteristics seems to be particularly suited for handling the spatio-temporal

evolution of air pollutants distribution [40].

In addition, this study will:

1. incorporate various data sources, including the outdoor air quality data retrieved from

EPA(US Environmental Protection Agency) air monitoring stations from state, local and

tribal monitoring agencies across the United States. The other data source incorporated

will include historical meteorological data such as Wind direction, Wind Speed, Temper-

ature, Humidity and Pressure.

2. compare the proposed neural network approach with other techniques including the Multi-

Layer Perceptron, the General Regression Neural Network and the standard LSTM. The

results will be compared in term of RMSE

3. apply inverse distance weighting interpolation to obtain interactive pollution concentra-

tion maps of the city of Chicago with a temporal resolution of one hour, on a grid composed

of square cells of 1 km x 1 km.

1.3.1 Scientific contributions

In recent years deep learning methods have received lot of attention. Nevertheless, the po-

tential of deep learning methods in forecasting the air pollutants concentrations has not been

fully exploited yet for what concerns the predictive power of spatial-temporal data, the spatial

scale of the prediction area and the depth of the model architecture.

14

Theoretically speaking, a complex NN can represent any linear or nonlinear function. The

inherent nonlinear structure of NNs is useful for managing complex relations in problems of

diverse disciplines. NN models, present some important characteristics like recognizing com-

plex patterns or relationships in historical observations, learning from past data and forecasting

future values using the relationships found [41].

In this study we will propose a deep stacked bidirectional LSTM (SB-LSTM) neural network

architecture, which considers both forward and backward dependencies in time series data, to

predict pollution concentration at the ground monitoring stations.

This model was firstly proposed in [24] for network wide traffic speed prediction . In our

approach we will apply the stacked bidirectional and unidirectional LSTM to predict the air

pollution concentration in the city of Chicago. The topology of the network will have some

significant difference and will be adapted to our problem.

A special subclass of recurrent neural network (RNN) architecture is the LSTM. One of the

main problem of RNN is that they suffer the vanishing gradient point in handling time series.

By including memory cells in the hidden layer of RNN, LSTM cells can address this issue.

Thanks to its ability to learn from the past data and determine the relationship and effects

among time series, LSTM performs well in long time horizon prediction with respect to machine

learning techniques [42].

Most of the newly proposed LSTM-based prediction models have relatively shallow structures

with only one hidden layer to deal with time series data [40; 43]. Existing studies [44] have

demonstrated that deep LSTM with more tahn one hidden layer can reach higher levels of

15

representations of sequence data.

The main reason for stacking multiple LSTM is to allow for greater model complexity. In fact,

as in feedforward neural network stacking multiple layers is useful to create a hierarchical fea-

ture representation of the input data, the same principle can be applied for stacked LSTM. At

every time step an LSTM, receives the recurrent input. If the input is already the result from

an LSTM layer (or a feedforward layer) then the current LSTM can create a more complex

feature representation of the current input. Normally, the dataset fed to an LSTM model is

chronologically arranged, with the result that the information in the LSTMs is passed in a pos-

itive direction from the time step t -1 to the time step t along the chain-like structure. Thus,

the LSTM structure only makes use of the forward dependencies [24]. It is highly possible that

useful information is filtered out or not efficiently passed through the chain-like gated structure.

Therefore, it may be informative to consider backward dependencies, which pass information

in a negative direction, into consideration.

The idea of Bidirectional LSTM(BDLSTM) comes from bidirectional RNN [45], which use

2 different hidden layers to process the sequence of data in both directions(backward and

forward). BDLSTMs connect the two hidden layers to the same output layer. Bidirectional

networks have proved better performance than the unidirectional counterpart in several fields,

like speech recognition [44].

Based on our knowledge and on the review of the literature, there are no studies about the air

pollution analysis that make use of the backward dependency. For this reason, in our model we

introduce also the Bidirectional LSTM (BDLSTM), a special type of LSTM with the ability to

16

deal with both forward and backward dependencies.

The impact of the neural network hyperparameters, including the number of neurons, layers,

time lags (length of the time series input), the batch size and the dimension of weight matrices

in LSTM/BDLSTM layers will be further analyzed in the following sections.

After predicting the air pollution concentration at each station, we will create for each

hour an interactive visualization map of the air pollution with a spatial resolution of 1km x

1km, using an inverse distance weighting interpolation algorithm(IDW). The choice of this

interpolation method is based on the comparison between Inverse Distance Interpolation and

other interpolation techniques. Researchers discovered that the Inverse Distance Weighting

index is the closest to the medium sampling points pollution index and to the medium pollution

prediction index. [37]

These maps can be very useful to accurately identify high risk region based for sensible

people and calculate different risk level areas in a city.

The contributions of this study can be summarized in the following way:

1. A deep neural network composed of bidirectional LSTM to capture the long-term spatio-

temporal dependency in the concentration of air pollutants, and to forecast the air pol-

lutant concentration over a very short time period (from 1 to 4 hours) is presented;

2. our framework make use of both forward dependencies and backward dependencies;

3. auxiliary data, like weather conditions, are integrated into our deep learning framework

17

4. Our framework will be capable to interpolate the pollution concentrations over the whole

study region using an inverse distance weighted interpolation technique that will produce

air pollution map with a grid cell resolution of 1km x 1 km.

CHAPTER 2

DATA

2.1 Data used in the study

As previously stated, different data sources have been employed in this study.

In particular, we can categorize them as follows:

2.1.1 PM2.5 Data

The hourly ground measurements of PM2.5 from 4 monitoring stations in the urban area

of Chicago collected from September 2013 to September 2017 were retrieved from the US En-

vironmental Protection Agencys (EPA) Air Quality System. The hourly PM2.5 concentrations

at each monitoring site were used and expressed as micrograms per cubic meter (i.e., µg/m3).

The dataset contained 35520 records for each station. Besides, several missing values were

present. We decided to impute them using a linear interpolation technique.

The following plots shows the PM2.52.5 hourly concentration for each monitoring station during

the whole period considered:

18

19

Figure 2: Station 1 Hourly Concentration

Figure 3: Station 57 Hourly Concentration

20

Figure 4: Station 76 Hourly Concentration

Figure 5: Station 6005 Hourly Concentration

21

The following figure show the Chicago area considered for the experiment with the 4 EPA

monitoring stations:

Figure 6: EPA Stations in Chicago

22

2.1.2 Meteorological Data

Meteorological data for the same period (September 2013 to September 2017) were obtained

using Weather API on the OpenWeatherMap website. The dataset contained the hourly values

of Temperature, Humidity, Pressure, Wind direction, Wind Speed and Weather Description.

The data were preprocessed, in order to select the appropriate time period and to reduce the

dataset only for the city of Chicago. The dataset contained some missing values that were

imputed using a linear interpolation technique. One hot encoding was applied to the Weather

Description feature to convert the categorical values into numerical ones. The following plot

show the distribution of the different meteorological features across the time period considered,

that consist of 35520 timestamps.

23

Figure 7: Meteorological Data years 2013-2017

The following table shows the statistics for each feature considered:

24

TABLE I: Features Statistics

Feature Unit Range Mean #NA

PM2.5 ugm-3 [-7.4, 255.5] 9.86 6367

Temperature ◦C [-24.26, 34.56] 10.29 0

Humidity % [9, 100] 75.53 184

Pressure hpa [941, 1077 1019.58 0

Wind Direction ◦ [0, 360] 191.79 0

Wind Speed m/s [0, 25] 3.86 0

Finally, we can see the correlation between the different features considered with the fol-

lowing heatmap (Figure 10:

25

Figure 8: Correlation Between Features

From this last figure, we can notice that the variables that are more correlated to the

Sample Measurement are Wind Speed and Wind direction. Their negative correlation makes

lot of sense, since when the wind speed increases the value of the sample measurement decrease,

this because the wind play an important role in the pollution dispersion. This is even more

clear in the following jointplot:

26

Figure 9: Correlation Between PM2.5 Measures and Wind Speed

CHAPTER 3

FORECASTING EXPERIMENTAL METHODOLOGY

3.1 Introduction

The main objective is to spatially and temporally interpolate and predict the pollutant

concentrations at a fine scale and high precision. However, the methodology can be readily

extended to other pollutants and other cities.

For the prediction part, the proposed Deep Stacked Bidirectional LSTM will be compared with

other three approaches: the Multi-Layer Perceptron, the General Regression Neural Network

and the standard LSTM.

The precision of the exposure models will be evaluated using the root mean squared error.

The Deep Stacked Bidirectional LSTM, will be the new model on which we will build our re-

search.

3.2 Time series forecasting problem

Before going deep into the methodology applied in this study, it is important to define the

class of problem that we will deal with and to give some background knowledge about it.

It is possible to define a Time Series as a collection of data points ordered in time. It is also

common, to define a Time Series as a collection of points equally spaced in time.

A Time Series is composed of discrete-time data and it is frequently visualized through line

27

28

charts [46]. In this work the Time Series is represented by the PM 2.5 measures at each monitor

station, where each measure is separated by its successor by a fixed time, in this case every

hour.

Time series forecasting is a relevant field of machine learning that consists in the usage of

previously observed values to predict future values, in contrast to time series analysis that

models the time series to detect the main components like trends, seasonal pattern and relation

to external factors [47] .

3.3 Long Short-Time Memory Neural Networks(LSTM)

LSTM neural networks belong to the category of Recurrent neural networks(RNN). RNN

can store representations of recent input events, using their feedback connections, in form of

activations.

This category of neural networks is called recurrent since it contains feedback loops(recurrent

edges) and it uses the current input together with the previous states to predict the output at

the current time. In Figure 10 it is possible to observe the structure of a LSTM unfolded in

time:

29

Figure 10: LSTM unfolded in time

Usually recurrent neural networks are trained using Back-propagation through time (BPTT).

During Backpropagation, the error signals flowing backwards in time are multiplied and tend

to either vanish or blow up with Real-Time Recurrent Learning or the traditional Back-

Propagation Through Time, so they cant capture long-term dependencies.

The size of the weights influence in an exponential way the temporal evolution of the backpropa-

gated error. Oscillating weights may lead to blowing up gradients, while in the case of vanishing

gradients,a prohibitive amount of time is taken to learn how to bridge long time lags, or does

not work at all. Hochreiter and Schmidhuber [20] managed to overcome this obstacle with the

introduction of the Long Short Term Memory (LSTM) Neural Networks. This new model is

30

a type of Recurrent Neural Network architecture that allows learning long-term dependencies

and at the same time addresses the vanishing/exploding gradient problem. It is capable to

learn how to bridge time intervals without losing the short time lag capabilities, even in case

of noisy or long input sequences,

The error flow in LSTM is kept almost constant, with only some small linear modification,

thanks to an efficient implementation of the gradient descent algorithm, that allow the error

to flow in the memory cell of the LSTM, and the use of specific gate that regulate the flow

of information to keep or discard. This allow to have an error flow that is not exploding or

vanishing.

The main idea of this kind of RNN is that it is possible to maintain the memory state

over time thanks to the presence of a memory cell (interchangeably block). This memory state

is characterized by the presence of gating units which can regulate the flow of information in

memory and by the presence of the cell state vector, that is an explicit memory present in all

the LSTM cells in which the information about previous states flow or are modified based on

the value of the gating units [21] .

In Figure 11 a schematic view of the LSTM memory cell is presented:

31

Figure 11: Schematic view of the LSTM memory cell

Long Short-Term Memory (LSTM) is based on the gradient descent method and can trun-

cate the gradient where this does not do harm. The multiplicative gate units, work like a valve

that can decide how many information should pass and how many of them should be discarded.

The gatig units receive a value between 0 and 1. The value 0 means taht no information should

pass while the value 1 indicates that the entire flow of information should pass. All the values

in the middle between 0 and 1 indicate what is the quantity of information that should pass.

During the learning process, they learn to close and open to modify the constant error flow of

the cell state. The computation complexity of LSTM in term of space and time, is O(1) per

time step and per weight [21].

32

The standard LSTM RNN architecture is composed by 3 layers, in order : the input, recur-

rent(LSTM) and output layer. The input layer is the first layer in the model and it is connected

to the LSTM layer. The LSTM’s cell output is directly linked to the cell input units and to the

3 gates (input, output and forget gates) through the recurrent connections.

For a LSTM network with one cell, it is possible to calculate the total number of parameters

N, ignoring the bias with the following formula:

N = nc ∗ nc ∗ 4 + ni ∗ nc ∗ 4 + nc ∗ no + nc ∗ 3

where ni represents the number of input units, nc represents the number of memory cells and

no is the number of output units [48] .

A more detailed view is presented in Figure 12.

33

Figure 12: Detailed view of the LSTM memory cell

The memory of the LSTM is represented by the cell state vector. It experiences changes

through the forget gate, used to forget the old memory, and through the input gate, used to

add of new memory.

34

Figure 13: Cell State vector

Another component is the gate, a sigmoid layer followed by pointwise multiplication oper-

ator. The main function of the gates is to control the flow of information to/from the mem-

ory(highlighted above). They work like valves that can decide the amount of information that

can pass through them. They are controlled by a concatenation of the the current input with

the output from the previous time step and optionally the cell state vector.

35

Figure 14: Gate

The main functionality of the forget gate is to decide which information to throw away from

memory (delete old memory).

Figure 15: Forget Gate Input

36

This decision is made by the forget gate layer, a layer composed by a sigmoid activation

function. The forget gate works as follows:

By taking the values of ht-1 and xt, for each number in the cell state Ct1, it outputs a value in

the range between 0 and 1 . A value of 0 represents completely get rid of this, while a value of

1 represents completely keep this [49]

ft = σ(Wf ∗ [ht−1, xt] + bf)

The following step is to establish what data will be kept in the cell state. The process is

divided in two parts. In the first part, a sigmoid layer called input gate layer make the decision

on which values to update. In the second part, a list of new candidate values, Ct, is created

by an hyperbolic tangent (tanh) layer. The final step, consists in combining the previous two

parts to generate an update to the state. The input gate is used to decide what is the amount

of information from the current input that can be added to cell state. [49; 50]

37

Figure 16: Input Gate

This multiplicative input gate protect the memory contents stored from perturbation by

irrelevant inputs.

C̃t = tanh(Wc ∗ [ht−1, xt] + bC)

ft = σ(Wf ∗ [ht−1, xt] + bf)

Ct-1, that represents the old cell state is updated into the new cell state Ct.

The forget process instead, is done by multiplying the old state by ft, so that the network

can forget the information that are no longer necessary . Then it * C̃t is added.

38

This value is scaled by the amount that was decided in the previous step and represents the

new candidate values that will be used to update the cell state.

Let’s take as example the language model. This part corresponds to the moment in which

the information about the old subjects gender are dropped and the new information are added.

[49]

Ct = ft ∗ Ct−1 + it ∗ C̃t)

The two components, namely the new memory via the input gate and the old memory via

the forget gate are aggregated in the cell state vector.

Figure 17: Memory update

39

The last step is to determine what will be the output of the network. The output is derived

from the cell state, but with some modifications. A sigmoid layer is used to decide what parts

of the cell state will be the output. Then, an hyperbolic tangent will be applied to the cell

state,so that the values will be forced to be in the range [- 1, 1]. These values will be then

multiplied with the sigmoid gate output, so that only the a specific part of it will represent the

final output.

If we go back to the language model example we can see this process as follows: When

the network will see a subject, in the case that what is coming next is a verb, it will output

information about a verb. For instance, the output can be if the subject is plural or singular,

so that it will be possible to know how to conjugate the verb’s form in the case that a verb will

follow next.

Figure 18: LSTM Output

40

ht = ot ∗ tanh(Ct)

ot = σ(Wo ∗ [ht−1, xt] + bo)

3.4 Deep Bidirectional Long Short-Time Memory Neural Networks (BDLSTM)

The BDLSTM is the new model proposed in this study. We will proceed step by step, to

understand the reasoning behind this kind of network. Since this BDLSTM is an extension

of the classical LSTM, all the notions presented in the previous paragraph will apply to this

network.

3.4.1 Deep LSTM

By vertically stacking multiple LSTM layers, it is possible to create Deep Long Short Term

Memory Neural Networks (DLSTM), in which the input sequence of the next layer is represented

by the output sequence of the previous layer. Given sufficient data and by increasing the number

of parameters(more layers imply more parameters), Deep LSTM can significantly outperforms

the standard LSTM with a single layer.

41

Figure 19: Stacked LSTM

Note that by considering the LSTM RNNs as feed forward neural network unrolled in time,

it is already possible to recognize them as deep architectures. When the network is unrolled in

time, the model parameters are shared between each layer.

It is possible to notice that even if multiple non linear layers are applied to the input, only

a single nonlinear layer is used to process the features from a given time instant, before con-

tributing to the output. Therefore, the depth of deep LSTM can be seen in a different way.

When we feed the network with a new input at a specific time step, this input pass through

several LSTM layers and it is backpropagated through time. Another advantage of Deep LSTM

over the standard LSTM, is the fact that they can distribute the network parameters through

42

multiple layers, improving their usage for the network.

3.4.2 Bidirectional LSTM

The idea of Bidirectional LSTM comes from the possibility of processing the input sequence

in chronological and anti-chronological order using two separate hidden layers. The result is

then concatenated or averaged and fed forwarded into the same output layer. Bidirectional

RNNs show that they can outperform their unidirectional counterpart in many fields, including

speech recognition [51]. The main reason is that by processing the sequence in both way, they

can take advantage of the 2 direction to better exploit the context and learn new patterns.

The standard RNNs are usually time or order dependent, they process the input sequence

timestamps in chronological order. On the contrary the Bidirectional RNN consists of two

RNNs, one to process the data in chronological order and the other one to process the data in

an anti-chronological order and then merging the two representations. In this way, the BRNN

obtain a richer representation of may capture patterns that may have been missed by the regular

RNN.

A recent study by Cui et al. [24], applies a Bidirectional LSTM to forecast network wide

traffic speed and the results obtained outperformed the traditional LSTM models. Keeping

in mind the following considerations, we decided to undertake this direction and include the

Bidirectional LSTM in our model.

43

Figure 20: Bidirectional RNN

A BRNN architecture is presented in Figure 20. In general, the network calculates the 2

hidden sequences ~h and ~h (respectively forward and backward sequence). Then the forward

layer from t = 1 to T together with backward layer from t = are iterated. At this point the

output layer is updated and the output sequence y is computed:

~ht = H(W
x~h
xt +W~h~h

~ht+1 + b~h)

~ht = H(W
x ~h
xt +W ~h ~h

~ht+1 + b ~h
)

yt = W~hy
~ht +W ~hy

~ht + by

44

Combining BRNNs with LSTM gives bidirectional LSTM [52] The following picture shows

an unfolded version of a bidirectional LSTM:

Figure 21: Unfolded Bidirectional LSTM

The bidirectional LSTM is based on the same concept of the BRNN of using forward and

backward layers, in particular for both layers the standard LSTM update equations are used.

The BDLSTM layer generates an output vector, YT using this formula:

yt = σ(~ht, ~ht)

where σ function is used to combine the two output sequences. It can be a concatenating

function, a summation function, an average function or a multiplication function. Similar

to the LSTM layer, the final output of a BDLSTM layer can be represented by a vector,

YT = [yT−n,...,yT−1
], in which the last element, yT−1 is the predicted value for the next hour

45

[24].

In our work, we applied the Bidirectional LSTM in a slightly different way, with respect to

their traditional usage. In particular, we followed the idea of Bidirectional Training proposed

by Osogami et al (2017) [53].

The main difference between the Bidirectional Training and the traditional Bidirectional LSTM

is that the last one uses both the sequence of the future and the sequence of the past during

training. In our experiment instead, we still use the backward and forward model but only the

past input sequence, without using the future sequence, since it is our target that we want to

predict.

To summarize, we can say that our model uses backward and forward processing but only on

past values, while the Bidirectional LSTM does the same but also on future values.

3.4.3 Deep Bidirectional LSTM

Existing studies [54] have demonstrated that deep LSTM architectures with more than one

hidden layers can outperform the one with a single hidden layer by building an higher level of

representation from the data.

The deep LSTM architectures are networks with several stacked LSTM hidden layers, in which

the output of a LSTM hidden layer will be fed as the input into the subsequent LSTM hidden

layer [24].

As we mentioned in the previous paragraph, BDLSTM can use both forward and backward

dependencies.

Several combinations of hyperparameters (number of neurons, number of layers, batch size,

46

number of epochs) will be tested in the experiments. The optimal number of stacked BDLSTM

layer will be determined by a grid search technique, to find the optimal value that can maximize

the performance of our framework.

In theory, several studies show that the optimal value of stacked BDLSTM range from 2 to 5,

so we will test only this combination of stacked layers.

At the top of the stacked BDLSTM we will add on or more fully connected layers that are

appropriate for producing a higher-order feature representation [54].

Figure 22 represents the high-level structure of our deep neural network, since as mentioned

before, the optimal number of layers and neurons will be determined after repeated experiments.

47

Figure 22: Proposed Model

The neural network architecture was implemented in Python 3.6 environment using Keras

[55] (The Python Deep Learning Library) with Tensorflow [56] as backend.

3.4.4 Multiple Step Ahead Forecasting

The basic setup of Time Series Forecasting problems is to predict the next timestamp, that

in our study is the next hour.

48

There some specific domains, in which is important to forecast more than one single step in the

future. Examples are meteorological forecasting, financial forecasting and demand or supply

forecasting.

In the domain of air pollutants, it is also very important to forecast more than one step in the

future, to detect possible dangers for the subject at high risk but also to avoid people to be

exposed to hazardous level of pollution. For this reason, we believe that it is important for

our model to predict short term future concentration from 1 to 4 hours. In this way it will be

possible to give specific alarms and safety guideline depending on the entity of the pollution

event.

The approach chosen for the multiple step prediction is called Recursive Multi-stage prediction.

In this approach we predict the future pollutants concentration in a step by step manner.

We first start by predicting the Y value at the timestamp t + 1 using the previous n values

Xt+1−n, ..., Xt−1, Xt

where n represents the number of time lags. After predicting this value, we feed it in our

dataset, we aggregate it with the corresponding meteorological condition and we use it to make

the new prediction for the timestamp t+2. We will continue with this procedure until the Yt+h

has been calculated, where h represents the number of timestamps we want to predict in the

future [57].

The general framework is showed in the following picture:

49

Figure 23: Recursive Multi-Stage Prediction

The advantages of this approach, include the possibility of using a single model for each

station to make multiple step ahead predictions. Other methods like Independent Value Pre-

diction would instead require to build a separate model for each future timestamp we want

to predict and for each station. This will obviously be too expensive from a computational

point of view, because it will imply the creation of 16 different models (4 model for the 4 hours

prediction x 4 stations).

One of the main problems of the multi-step ahead forecasting is the so called Error Accumula-

50

tion that represent the propagation of each single prediction error in the following prediction.

This problem is unavoidable in this kind of recursive approach, so in general the error will

increase with the increase of the number of future timestamps we want to predict. For this

reason, we chose 4 hours as number of future predictions, since the results shows that this value

is a good tradeoff between accumulation error and accurate predictions.

CHAPTER 4

EXISTING METHODS FOR COMPARISON

The proposed methodology will be compared with different techniques. In particular in this

work we focused on other Neural Networks techniques that are typically applied in time series

forecasting problems.

4.1 Multi Layer Perceptron(MLP)

One of the most frequently adopted and most known type of neural network is the Multi

Layer Perceptron. Most of the times, there is only a single direction in which the information

are transmitted through the network : from input to output. Differently from what we can

observe in Recurrent Neural Networks, in this case, the output of each neuron can’t affect the

neuron itself, but only the neurons of the successive layers, since there are no loops.

All the layers,excluding the first (input) and the last(output), aren’t directly connected to the

environment. Sometimes, there are some debates in the literature about the fact of considering

the input layer (he first layer of the network) as a standalone layer in the network or not. The

main reason is that the main functionality of this layer is to transmit the information to the

successive layers, without executing any real processing operations over the input data. As we

can observe in the next paragraph, it is possible to generate decision boundaries with the form

of a semi-plane using only a simple perceptron with one input and a single layer.

It is possible to generate much more complex decision boundaries than a simple semi plane,

51

52

by adding additional layers. The effect of increasing the number of layers, is that each neuron

behave like normal perceptron for the outputs of the neurons of the the previous layer. In

this way the model is able to generate convex decision boundaries, generated by intersecting

several semi planes generated by the other neurons. Talking about computing power, several

studies demonstrate that stacking several layers with a linear activation function, don’t lead to

an increase of it, since applying a linear function over another linear function will result in a

new linear function. The real power of multilayer perceptron will be fully exploited by using

non-linear activation functions.

Figure 24: Multi Layer Perceptron

53

Each of its units forms a weighted sum of its inputs to which are added a constant. This

amount is then passed through a nonlinear function which is often called the activation function

[58]. Most units are interconnected in a manner ”feed forward” as in this figure:

Figure 25: Feed Forward Example

In the first layer, the d-dimensional input x is multiplied by the matrix of weights w as we

can see in the following formula:

bj =

d∑
i=0

w
(1)
ji xi j = 1, 2, ...n

54

The output of each neuron is then transformed, using an activation function, that typically

is non-linear. The most used one are sigmoid, hyperbolic tangent and the rectified linear unit.

oj = ϕ(bj) =
1

1 + exp(−bj)

In general,oj represent the output of a hidden unit after applying an activation function.

The hidden units have this name because differently from the input unit and the output unit

they don’t have a value specified by the problem or a target value that is used during the

training process of the network.

In the same way, each layer following the first hidden layer, give an output that is obtained

from the linear combination of the output of the previous layer and the new matrix of weights

of the new layer:

ak =
M∑
j=0

w
(2)
kj zj k = 1, 2, ...K

This transformation, is dependent on the new weights wkj . After the linear combination

described before between weights and output of the previous layer, an activation function is

applied.

It is possible to combine the previously described equation to obtain a new equation that is

capable to describe propagation through the network of the input. It is also possible to describe

how, from an input vector, the output vector is computed, given the weight matrices:

55

yk = g(

M∑
i=0

w
(2)
kj h(

d∑
i=0

w
(1)
ji xi))

4.2 General Regression Neural Network(GRNN)

The GRNN [59] falls into the category of Probabilistic Neural Networks. It is characterized

by four layers:

• Input

• Hidden

• Summation

• Output

The General Regression Neural Network is represented by the following figure:

56

Figure 26: General Regression Neural Network

The GRNN use the Normal Distribution as probability density function. The network makes

use of each training example, Xi, and utilize it as the normal distribution’s mean:

Y (x) =

∑n
k=1 Ykexp(

−D2
k

2σ2)∑n
k=1 exp(

−D2
k

2σ2)

D2
k = (X −Xk)

T ∗ (X −Xk)

To measure how good the prediction is represented by the the position of the training

sample, we use the distance, Dk, between the training example and the predicted value. The

57

value of exp(
−D2

k
2σ2) vary based on the distance Dk between training example and predictions. If

this distance is small, its value becomes big.

When the value of Dk is equal to zero, exp(
−D2

k
2σ2) becomes 1 and the training example

represent the point of evaluation.

For all the other training examples the distance is bigger.

On the contrary when the value of Di is big, the exp(
−D2

k
2σ2) becomes smaller. For this reason

all the other training examples give a small contribution to the prediction

Most of the contributions to the prediction is given by Yi ∗ exp(
−D2

k
2σ2), that is the biggest for the

jth training example. The only parameters that need to be set in this case, is the smoothness

parameter or standard deviation σ. To conclude we can say that the only parameter of the

network is the smoothness parameter. The search space of this parameter can be quite big

and most important application dependent, since different problems configurations may lead to

different optimal σ values [59].

4.3 Random Forest Regressor (RF)

Random Forest is an Ensemble method, that is based on a technique called Bagging or

Bootstrap Aggregation.

Lets suppose we have a dataset D. At each iteration a sample Di of the dataset is created using

sampling with replacement (bootstrap aggregation).

A classifier Ci is learned from Di. Each classifier makes a prediction on a new data X and the

final classifier C* will take the majority vote as final label. The basic way is to give to each

58

model the same weight, but we can also use different weights for each model.

Figure 27: Bagging

59

In case the prediction is a continuous value, we can take the final value by averaging the

results. In general it works good because it reduce the variance, the more classifier we have the

better it is.

The Random Forest Regressor is a particular case of the Random Forest in which the variable

we want to predict is a continuous variable. This methods is based on the Regression Tree

model, in particular at each node the data are split into daughter nodes, by using a splitting

criterion. The splitting criterion in the case of Regression is the residual sum of squares:

RSS =
∑
left

(yi − y∗L)2 +
∑
right

(yi − y∗R)2

where y∗R is the right node mean y value, while y∗L is the left node mean y value .

The predicted value at a node is the average response variable for all observations in the node.

CHAPTER 5

INTERPOLATION BACKGROUND

5.1 Standard Techniques for Air Quality Inference

In this section we will describe some of the most used Standard Techniques used for air

quality inference:

5.1.1 Inverse Distance Weighting Interpolation (IDW)

When we talk about interpolation some of the most common names that come to mind

are Inverse Distance Weighted Interpolation(IDW) and Kriging. In our study we selected the

first one has methodology to interpolate the pollutants concentration at each station after the

prediction stage.

IDW interpolation is a deterministic technique that can be used to interpolate a set of points

whose values are known [60].

The main assumption on which this technique is based is the following:

”things that are close to one another are more alike than those that are farther apart.”

More precisely, by using the weighted average of the neighborhood values of the unknown points,

which are known, it is possible to determine its value. The weights used to calculate the value of

the unknown set of points are inversely related to the distances between the sampled locations

and the prediction location.

60

61

This implies that the closest the known values are to the predicted location, the higher will

be their influence on the prediction with respect to the location located far away.

Inverse Distance Weighting Interpolation is based on the assumption that the local influence

of each measured point decrease with the distance. The points that are located closer to the

location we want to predict have grater weights. These weights are dependent on the distance,

since when the distance increase the weights diminish.

This is the main reason for which this technique is called Inverse Distance Weighting [61].

Given a point x based on samples uj = u (xj) for j = 1,2 N, we can find the interpolated

value u applying the IDW as interpolation function.

u(x) =


∑N
j=1 wj(x)uj∑N
j=1 wj(x)

if dist(x,xj) 6= 0 for each j

uj if dist(x,xj) = 0 for some j


with

wj(x) =
1

dist(x,xj)p

As defined by Shepard [62], wj is the IDW weighting function while xj is a known interpolated

point, x represents an arbitrary interpolated point, N represents the amount of known points

involved in the interpolation, dist represent the distance metric from the unknown point x to

the known point xj and p is the power parameter.

As we describe before an increase of distance from the interpolated points corresponds to a

weight decrease. The magnitude of the weights is used to assign difference influence, depending

62

on the distance from the interpolated point. The result of the interpolation is a Voronoi diagram

made by mosaic of tiles, that for large values of p have almost constant interpolated values.

When dealing with two dimensional data, the interpolated values are dominated by far away

points in case a power parameter p <= 2 is used [60]. A power values p greater or equal to 1

is typically used in Geostatistical Analysis.

In case, the power parameter p is equal to 2, the technique assume the name of inverse

distance squared weighting interpolation. Even if there is not a fixed rule to choose a value of p

over another one, the power parameter is usually set to 2 as default. As a general rule, we can

say that the parameter p can vary depending on the type of problem. A good way to decide its

value, can be to investigate the effect of changing p by examine the cross-validation statistics

and previewing the output.

5.1.2 Gaussian Interpolation

Gaussian interpolation is another interpolation technique based on a Gaussian distribution.

The parameter represent the average distance between two ground monitoring stations [35].

It can be defined as follow:

u(x)
∑

xif(x),

f(x) =
1

σ
√

2π
e
x2

σ2

63

5.1.3 Kriging

Kriging is an interpolation technique whose basic idea is to compute a function value in a

specific point using the weighted average of the known function’s values in the points neighbor-

hood. The interpolated values are the result of a Gaussian process governed by prior covariances.

[63] The method is very similar to regression analysis. Both the techniques, based on the covari-

ance assumption, try to obtain the best linear unbiased estimator. To prove the independence

of the error and the estimate, they use similar formulas that make use of the Gauss-Markov

theorem. Nevertheless, they are used in different scenarios: regression models use multiple

observations from a multivariate set of data, while kriging is used to estimate a single random

field realization. [64] Similarly to IDW, Kriging derive the prediction of unmeasured points by

giving a weight to the surrounding measured values:

u(x) =
∑

λiu(xi)

where:

• u(xi): the value registered at the ith location

• x: the prediction location

• N: the number of measured values

• λi: an unknown weight for the measured value at the ith location

The main difference is that between Inverse Distance Weighted Interpolation and Kriging

is that, in the first one the weight, λi is only based on the location’s prediction, while in

64

the second one, the weights are also based on the measured points spatial arrangement. The

quantification of the spatial autocorrelation is a prerequisite in the use of the weights. For

these reasons, in Kriging the weight,λi, depends on the distance to the prediction location, the

spatial relationships between the values measured around the location predicted and a fitted

model to the measured points.

5.1.4 Land Use Regression

Land Use Regression (LUR) is a technique that is often used to analyze air pollution in

specific areas. [65]

This algorithm is based on the main assumption that the pollutants concentrations at a specific

location is highly influenced by the environmental characteristics of the surrounding area. For

this reason, LUR model the dependency between the measured pollutant concentration at a

specific monitoring station and a set of explanatory variables like traffic data and land-use data.

By constructing multiple regression equations, it is possible to describe the relation between the

environmental variables and the monitoring locations. Typically, for each temporal resolution

(year, season, month, bi-week, week, day, semi-day) a separate model is created. [66]

The final equation resulting from the prediction variables can be used to predict the pollutants

level at any unmeasured locations.

Two main types of predictions can be done:

• Point location (e.g.: residential addresses)

• Grid

65

In the latter case, it is possible to create grid maps of the area considered in the study.

In general, a comprehensive study of the history and applications of Land Use Regression[66],

shows that the most important explanatory variables to estimate the air pollutants concentra-

tion are land cover, elevation, traffic and road type. In general traffic has been identified as one

of the most important factors.

LUR is typically evaluated using the coefficient of determination R2, a measure that is able

to capture the dependent variables variance explained by the independent ones. In the air

pollutants field, several studies show that the R2 ranged from 0.54 to 0.81. [66]

In the case of Land Use Regression a good performance can be reached for high temporal

resolution like yearly, monthly or weekly models. The daily and semi-daily models start to show

a decreasing in the performance of LUR models. For this reason, one of the main drawbacks of

this technique is that it is not applicable for higher temporal resolution (e.g.: hourly), since the

are not enough explanatory variables with the required resolution to calculate the pollutants

concentration of a grid cell.

For our study, LUR doesnt show any practical utility for the creation of hourly pollution map of

a city. Based on the previous considerations, this technique wont be considered for comparison.

66

5.1.5 Dispersion Models

Dispersion models combine several fields including geophysics, meteorology and chemistry

to model the transformation and transport of air pollutants in the atmosphere. This process is

mainly governed by the wind but also by the characteristics of the pollutants transported and

other processes such as chemical reactions and turbulence [67].

During the years, several approaches have been developed to model the dispersion of air pol-

lutants. Most of them are based on the Transport Equation. Assuming horizontal turbulence,

and incompressible fluid and neglecting the molecular diffusion, it is possible to express the

Transport Equation as follows:

∂c

∂t
= −v∆c+ Sc + ∆h(kh∆hc) +

∂

∂
Kz

∂c

∂z

The steady points, in case of the several interpolation methods is assumed to be the moni-

toring station on which the pollution values are available.

Where ∆h is the divergence operator, Kz is the vertical and kh is the horizontal eddy diffusivity

that describe the intensity of the turbulence. [67]

5.1.5.1 Gaussian Plume

The Transport Equation can be integrated analytically and by assuming a steady-state

point source at (0, 0, h) and a homogeneous, steady state flow, results into the Gaussian Plume

Distribution:

67

c(x, y, z) =
Q

2πσyσzu
exp

(
−y2

2σ2y

)
exp

(
−(z − h)2

2σ2z

)
+ exp

(
−(z + h)2

2σ2z

)

Looking at the Gaussian Plume Distribution, we can notice that Q is the source term, x is

the downwind, c is the time-averaged concentration in a specific point, z is the vertical direction,

y is the crosswind and u is the time-averaged wind speed at height h. The standard deviations

σz and σy describe the vertical mixing of the pollutant and the crosswind. [67]

Figure 28: Gaussian Plume

68

One of the main advantages of the Gaussian Plume is that it is very fast since it only

calculates a single equation, even if the turbulence parametrization and meteorological data

preprocessing can increase the computational complexity. This model shows poor performance

when the wind speed is low. [67]

5.2 Machine Learning Approaches for Air Quality Inference

Machine Learning techniques have been widely for air quality inference. In particular, the

problem is seen as a regression problem, in which the target to predict is a continuous value

that represent the level of pollution in a specific location. For this reason, most of machine

learning techniques that are typically used for regression problem can be used for this purpose.

In particular, the most used are Support Vector Regressor, Decision Tree, K-Nearest Neighbor,

Nave Bayes and Random Forest.

We wont go through the detailed description of each technique, since they are some standard

Machine Learning technique that are well known and widely used in every regression problem.

5.3 Deep Learning Approaches for Air Quality Inference

Recently, new approaches based on Deep Learning have been proposed to deal with the

problem of air quality inference. Neural Networks show great results in producing air pollution

maps with high temporal resolution and seem to outperform the standard techniques.

U-Air [35] is considered one of the milestones of the application of Deep Learning to Air Quality

Inference and for this reason it has been used for comparison for several study in this field.

69

5.3.1 U-Air: When Urban Air Quality Inference Meets Big Data

In the U-Air study [35], the main goal is to infer real time and fine-grained air quality infor-

mation (PM2.5, SO2, NO2 and PM10) in the city of Beijing using several data sources including

air monitoring stations data, traffic flow, meteorology, human mobility, point of interests (POIs)

and structure of road networks.

Using a semi-supervised learning techniques called co-training, the air quality of an unknown

location is inferred, thanks to the use of unlabeled data. To classify the air pollution levels

two different classifiers are used: a linear-chain conditional random field (CRF) for modelling

the temporal dependencies and an artificial neural network (ANN) that captures the spatial

dependencies. The key features of this work include the identification of the most relevant

features that contribute to air pollution and their incorporation into a data analytics model.

5.3.1.1 Setting

The setting of the experiment was divided into grid cells of 1km x 1 km based on the

assumption that the air quality inside a grid g is uniform. Each grid can be either labeled if

it already has an air monitoring station located inside or to be inferred (unlabeled) in case it

hasnt. The main assumption is that the air quality of a grid is highly influenced by neighbor

grids, in particular, the affecting region considered in the experiment consist of the 8 grids

around each cell.

70

Figure 29: U-Air interpolation setup

5.3.1.2 Framework

The U-Air framework is composed by two separate processes: offline learning and online

inference. These two parts generate 3 different data flows: preprocessing, inference and learning.

During the preprocessing data flow taxicabs trajectories are mapped on a map and used for

offline learning.

In the learning data flow, the features of the affecting regions are extracted from a variety of

data sources. The features can be divided into two categories, that include spatially (point

of interests and road length) and temporally related features (meteorological and trajectories

features). During this stage, the two different classifiers, linear-chain conditional random field

(CRF) and the artificial neural network (ANN), are trained using a co-training semi-supervised

71

approach.

Finally, during the inference data flow, the two classifiers are used to generate two probability

scores and the most possible class is selected as label. The inference is a temporal resolution of

1 hour.

5.3.1.3 Features

Meteorological Features: five features were identified, in particular humidity, pressure, tem-

perature, wind speed and weather.

Traffic Related Features: traffic is considered one of the main sources of pollution. For this

reason, using the taxi trajectories, 3 features were identified. The features included the expec-

tation of speed, the standard deviation of speed and the distribution of speeds.

Human Mobility Features: these features include the number of people arriving a leaving a grid

in the past hour. These features were extracted from the taxicabs drop off and pickup.

Road Network Features: these features were related to the structure of the road network. In

particular, for each grid 3 features were identified: the highway length , the road segments

length and the number of intersections.

POIs Related Features: Point of Interest related features were used to indicate the land use

and the traffic patters of a region. The features included the number of POIs in some category

(sports, parks, companies, entertainment) in a specific grid, the number of vacant places in a

grid (grid were further divided in sub-cells) and the change in the number of POIs.

72

5.3.1.4 Co-Training

The co-training framework is a semi-supervised learning technique in which the data are

described by two complementary feature sets. Ideally, given the class, these features sets are

conditionally independent. In U-Air two different classifiers were proposed: a linear-chain

conditional random field (CRF) as temporal classifier (TC) and the artificial neural network

(ANN) as spatial classifier (SC).

The two classifiers are trained separately using two disjoint features sets. The Temporal and

Spatial Classifiers are used for the inference of the unlabeled grids. The examples that are most

confidently classified, are then added to the training set and the process is repeated until there

are no more unlabeled grids. The final AQI of a grid is obtained by multiplying the probability

scores obtained from the two classifiers.

The Temporal Classifier (TC) is a linear chain Conditional Random Field (CRF). It is an

undirected probabilistic graphical model to parse sequential data. Typically, it is used for

language text, but in this case, it is used with the temporally related features.

73

Figure 30: Conditional Random Field

The Spatial Classifier (SC) is an artificial neural network (ANN) that makes use of the

spatially related features. The type of ANN used is the traditional Back-Propagation (BP)

neural network with one hidden layer. For the hidden and output layer a sigmoid function is

used.

74

Figure 31: U-Air Neural Network

5.3.1.5 Evaluation

U-Air was compared with other 5 baselines including Inverse Distance Weighted Interpola-

tion, Gaussian Interpolation, Classical Dispersion Model, Decision Tree and CRF-all/ ANN-all.

One station was removed from the grid and the remaining station were used to infer its air

quality. The AQI of that station was then used as ground truth. This process was repeated for

each grid containing a station every hour. The problem was viewed as a classification problem.

The AQI value were divided into range using the standard table and then converted into AQI

75

labels (Good, Moderate , Hazardous). The results were evaluated in term of Precision and

Recall. Overall, U-Air outperform the other techniques mentioned above.

CHAPTER 6

INTERPOLATION EXPERIMENTAL METHODOLOGY

In our study we proposed a new approach based on Neural Network with self-training able

to infer the Air Quality in a grid with a spatial resolution of 1km x 1km. Following what has

been done in other recent studies in the literature [35][33][34], we will apply the inference every

hour. In particular, in our case the inference will be performed after the prediction part done

by our Deep Bidirectional Neural Network. . In this way it is possible to create pollution maps

for the next n hours, where n is the number of future hours predicted by the Deep Bidirectional

LSTM.

6.1 Self-training vs Co-Training

The Co-Training methodology was proposed for the first time by Blum et Al. [68]. The

Co-training framework divide the features into disjointed set, in which each set should be able

to train a good classifier. The training process consists in training two separate classifiers on

each feature set and the predictions of one classifier are used to increase the size of the training

set of the other classifier. The main assumption on which Co-Training is based is that the two

feature sets are independent and they can be divided.

Self-Training instead is based on the following idea: the classifier is first trained on the labeled

data.The unlabeled data are then classified using the previously trained model and the most

confidently classified examples (labeled this time) are added to the training set. The process

76

77

is repeated in a loop, until a specific condition is met. In this way the classifier is gradually

refined and it use its own prediction to learn itself. [69].

6.2 Interpolation Setup

The region chosen for the experiment has been divided into disjointed grids (1km x 1km)

for a total of 791 cells. Given the following collection of grids:

G = G1 U G2 = {g1, g2, gn}

where g.Q (g ε G1) is known and g
′
.Q (g

′
ε G2) is unobserved, |G1| << |G2| and Q indicating

the label of a grid.

The grids containing a monitor station, are the one for which the label Q is known, while

the grid without monitor stations are the one for which the label Q is unknown. The grid with

an unknown label Q will be inferred thorough and interpolation technique, in a periodic interval

of one hour.

The label Q, will be the PM2.5 concentration expressed as micrograms per cubic meter (i.e.,

µg/m3). Figure 32 instead show, the entire map of the Chicago Urban Area, divided in grid of

1km x 1km, and containing the EPA stations. As we can notice one of the stations (Station 1)

is outside the boundaries of the city. In any case, since it is very close to the considered are we

decide to use it in out computations.

78

Figure 32: Chicago map with 1km x 1km grid and EPA stations

After creating the grid map of 1km x 1km we map the traffic data and land use data on

it. We then match them with the meteorological data and the PM2.5 data coming from the

monitoring stations.

We calculate the distance between each labeled and unlabeled cells, this create three different

features Distance from closest station, Distance from second closest station and Distance from

79

third closest station.

Differently from what has been done in the U-Air paper, where two different classifiers a CRF

and an ANN were trained using a co-training framework, we use a single model to model the

spatio-temporal dependences between the features. The model chosen is an Artificial Neural

Network that is trained into two different steps using a self-training approach, opposed to what

is done in the U-Air paper where 2 models are used following a co-training approach.

In the first step, we will train the Neural Network using only the 4 labeled cells. For every hour

and for every station, we will first remove a station and infer its value with the other 3 station

using as ground truth the pollution level of the grid containing the station we removed. In this

way we will have (4 stations x 24 hours) 96 instances per day.

Differently from what have been done in the U-Air experiment, where the predicted label for

each cell was only one of the 6 possible level of concern (Good, Moderate , Hazardous) of the

table provided by the United States Environmental Protection Agency, we decided to predict

not just the level of concern of each grid cell but also its specific pollution level of the cell

expressed as micrograms per cubic meter (i.e., g/m3).

In this way we were able to deal at the same time with a classification (6 label representing the

levels of concern) and regression (pollution level) problem using a single Neural Network.

In order to accomplish this goal, we created a modified version of the neural network model,

with two different branches at the end of the network, to be able to produce two different

outputs. The first output, a label representing one of the six level of concern, was obtained

using a Softmax activation function. The Softmax is a common activation function used in

80

Deep Learning models. The Softmax output can be compared to a categorical probability

distribution, that tells what is the probability of each category to be true. In our case, it

outputs 6 probabilities (one for each of the 6 class). The probability with the highest value was

used as label for the cell.

The second output, a continuous value representing the pollution level of the cell, was instead

obtained using a linear activation function. A linear activation function, simply output the

result of the layer as it is, without applying any non-linear function like ReLu or Softmax on

it.

We train the network using two different losses, a categorical cross-entropy for the classification

branch and the mse for the regression branch. ’Cross-Entropy loss, or log loss, measures the

performance of a classification model whose output is a probability value between 0 and 1’.

Categorical Cross Entropy is used for multiclass classification instead of the Binary Cross-

Entropy used for binary classification. The mse(mean squared error) instead is simply the

average squared difference between the estimated values and what is estimated.

We also give specific weights to each loss, in particular we assigned a weight of 0.4 to the

classification loss and 0.6 to the regression loss. We decided to do that because we think it was

more important to have more precise pollution level values.

The main reason why we decided to use two different branches instead of producing a single

output with a continuous value and then use the EPA table to convert the predicted value into

one of the six AQI labels, is that with our methodology we were able to output also the Softmax

probabilities that we then used for the self-training of the network. Without these probabilities,

81

it was not possible to apply this semi-supervised learning technique.

After this first step, we extracted the probabilities of each prediction (one for each of the six

class). We used a threshold of 0.99 for the probability and we gave a new label to all the

unlabeled cells that exceed this threshold. All the new labeled examples that were above or

equal to the threshold were added to the training set.

This process, known as Self-Training can be seen as a Pseudo-Labeling approach in which we

will increase the number of labeled cells, to improve the performance of our algorithm since we

only have few labeled cells (4) and lot of unlabeled cells (more than 700).

In the last step, we will retrain the neural network using the new labeled data added to the

training set in the previous step to obtain better results. At this point we will apply our

trained neural network to all the remaining unlabeled cells and we will produce some interactive

interpolated maps using the plotly library.

The general framework of the interpolation part, is presented in the following schema:

82

Figure 33: Interpolation Framework

6.3 Features

The PM2.5 data and the meteorological data (Humidity, Wind Speed, Pressure) are the

same features described in the section regarding the prediction part, so we wont go through a

83

detailed description of them in this section.

The Land Use Data were obtained from the US Data gov website [70] and mapped on a

map. For each 1km x 1km grid cell we calculate the percentage of each land use class that is

contained inside it.

In total eleven features were extracted: % of Agriculture Land, % of Commercial Land, %

of Industrial Land, % of Institutional Land, % of Non-Parcel Land,% of Open Space, % of

Transportation Land,% of Unclassified Land, % of Urbanized Land, % of Vacant Land, % of

Water.

These features were extracted by intersecting the grid containing the 1km x 1km cells and the

Land Use data. In particular for each grid cell we calculated the sum of each polygon belonging

to the same category (see Figure 34) and divide that value by the total area of the cell to

obtain the percentage value.

84

Figure 34: Land Use Data

The Traffic Data were retrieved from the Chicago Traffic Tracker [71]. By using the GPS

traces retrieved from the CTA buses, real time hourly traffic congestion on Chicago’ s arterial

streets was estimated by the Chicago Traffic Tracker. Two or three community areas with

similar traffic patters are typically grouped together to form a region . In total, the Chicago

Traffic Tracker created 29 regions to cover the entire city (with the exception of the OHare

85

airport area).

Each grid cell of 1km x 1km will be assigned to the corresponding traffic regions using a spatial

intersection.

From these data 2 features were extracted for each grid cell: the current speed that is used

to estimate the real-time estimated congestion level. Although expressed in miles per hour,

this value is more a reflection of the congestion level in the region than it is indicative of the

average raw speed vehicles are travelling within the region. For congestion advisory and traffic

maps this value is compared to a 0-9, 10-14, 15-19, 20-24, and 25 over scale to display heavy,

medium-heavy, medium, light and free flow conditions for the traffic region.

The second feature extracted is the bus count in a specific region during the last hour.

An example of a congestion estimate by region is presented in the following picture:

86

Figure 35: Traffic Regions

6.3.1 Haversine Distance

During the interpolation part, to properly calculate the distances between station and cells,

we used the Haversine Distance to compute the distance between two points on Earth.

Since the earths shape can be approximated to a sphere, with a circumference of about 40,000

km, it is not possible to calculate distance between two points on sphere using the traditional

87

Euclidean Distance (by considering the Earth as flat), because that will introduce errors in the

distance calculation.

The Haversine Distance use Latitude and Longitude to calculate the distance between two

points on a spherical shape. This formula uses the spherical law of cosines.

Figure 36: Haversine Distance

The Haversine formula is the following:

d = 2r arcsin(

√
sin2(

φ2 − φ1
2

) + cos(φ1)cos(φ2)sin2(
λ2 − λ1

2
))

where φ2 and φ1 are the Latitude of point 2 and Latitude of point 1, while λ2 and λ1 are

the Longitude of point 2 and Longitude of point 1.

88

6.4 Evaluation

The results of the experiment will be evaluated in term of Accuracy, Precision, Recall and

F1 score. F1 score is an evaluation metric obtained by the combination of precision and recall.

F1 Score is needed when you want to seek a balance between Precision and Recall. The formula

of the F1 score is:

Figure 37: F1 Score

We first conduct the first part of the training and the evaluation using only the 4 labeled

cell and comparing the result with the corresponding ground truth, by removing one station

and using the other 3 stations to infer its value. In total we will have 4 rows for each hour, that

correspond to the 4 possible triplets obtained by removing one station.

After this step, we apply the pseudo label procedure to obtain a better performance on the

unlabeled cell. We add the most confidently classified examples to our training-set and we

retrain the neural network with more labeled examples. We continue this iterative process

as long as there are unlabeled examples that satisfy the threshold condition of 0.99 and the

evaluation metrics continue to improve. In case the threshold condition is satisfied but the

89

evaluation metrics dont improve, we stop the training and use the model weights of the previous

iteration, since the model was starting to overfit. We evaluate again the previous metrics

(Accuracy, , F1 score) on the new data and at the end we will apply our trained model to label

all the other unlabeled cells.

CHAPTER 7

DATA PREPARATION

7.1 Basic Data Preparation

The hourly ground measurements of PM 2.5 from the 4 monitoring stations were retrieved

and combined with the hourly weather conditions data that consist of temperature, humidity,

pressure, wind speed, wind direction and weather description.

The weather description was in a string format, for example ‘light rain‘, ‘broken clouds‘,

‘sky is clear‘ and other weather conditions. To use these data, we apply a one hot encoding to

convert the categorical values in numerical value. Then we applied a linear interpolation to fill

the None values of Humidity and Sample Measurement.

We then divided the data in 4 different datasets, one for each station, since we used 4 Deep

Bidirectional LSTM neural networks.

Additionally, we added the PM2.5 measurement of the closest station to each dataset since

from our analysis the data of the closest station showed a high correlation with the data of the

current station considered. The data were split in training and test. In particular, an 80-20

holdout was used, with 80% of the dataset used for training and the remaining 20% for test. A

10% validation set was extracted by the training set and used to tune the hyperparameters.

90

91

7.2 LSTM Data Preparation

This stage involved the transformation of the dataset into a supervised learning problem

and the normalization of the data. The main objective of this study is to forecast the pollution

concentration of the next hour (or the next hours) using the data of the previous n hours where

n represents the number of lags used by our model. The choice of this number will be explained

in the result section.

By transforming the dataset into a supervised learning problem, the PM2.5 measurement

of the current timestamp will become the target that we want to predict while the previous

n-hours PM2.5 measurement and weather conditions will be used as predictor variables.

We then applied a scaling to normalize the data for our deep neural network model. The

main reason behind this normalization, should be searched in the necessity of having all the

values in the same range, so that when we fit the network on the input there won’t be very large

values that can slow down the convergence and the learning process. In the worst case, large

values can generate wrong results by preventing the network to effectively learn the problem.

[72].

The data were scaled in a range between 0 and 1 before training the model. This scaling

was inverted before the calculation of the RMSE to have consistent results (in the same range

of the original dataset).

CHAPTER 8

FORECASTING RESULTS AND DISCUSSION

We will now discuss more in detail the hyperparameter’s choice for the different type of

Neural Networks that we compared in this study.

Two different approaches were tested:

• One model for each ground monitoring station (4 models in total)

• One single model for all the 4 stations with multiple output, one output for each station

The two approaches tested, presented different pros and cons that we will analyze in the

following sections.

8.1 Multiple Models Deep Bidirectional LSTM

In this first approach we consider each ground station as independent from each other and

we created four different models, one for each monitoring station. Each model present different

characteristics, in terms of hyperparameters and results.

Different configurations were tested for the multiple models Bidirectional LSTM. Due to the

randomness in the weights initialization of the neural network, the model produced different

results at each run. To solve this issue, we first used a random seed to have reproducible results

and tune the model. For the final testing part we removed the random seed and we averaged

the results over 5 runs.

92

93

We also implemented an early stopping method with patience that allows us to train the

model for a big number of epochs (1000 in our experiment).

The early stopping method with patience, allows the training of the neural network to be

stopped, if after a fixed number of epochs(patience), no improvements in the loss value were

registered. The early stopping methods save the weights of the best model found and then use

them to make predictions.

A very important part of the implementation of this model consisted in the input data

preparation, for more details see Chapter 6.

We tried lot of different combinations of hyperparameters, including different number of

layers, neurons, activation functions and number of epochs.

After repeated experiment the best configuration found were the following:

Station 1

• 1 Bidirectional LSTM hidden layer with 5 neurons in each direction (10 in total)

• Dropout of 0.2

• 1 Bidirectional LSTM hidden layer with 3 neurons in each direction (6 in total)

• Dropout of 0.2

• 1 Fully Connected layer with 5 neurons

• 1 Fully Connected layer with 5 neurons

• 1 Fully Connected output layer with 1 neuron

94

Station 57

• 1 Bidirectional LSTM hidden layer with 20 neurons in each direction (40 in total)

• Dropout of 0.2

• 1 Bidirectional LSTM hidden layer with 10 neurons in each direction (20 in total)

• Dropout of 0.2

• 1 Fully Connected layer with 10 neurons

• 1 Fully Connected layer with 10 neurons

• 1 Fully Connected output layer with 1 neuron

Station 76

• 1 Bidirectional LSTM hidden layer with 12 neurons in each direction (24 in total)

• Dropout of 0.2

• 1 Bidirectional LSTM hidden layer with 7 neurons in each direction (14 in total)

• Dropout of 0.2

• 1 Fully Connected layer with 12 neurons

• 1 Fully Connected layer with 12 neurons

• 1 Fully Connected output layer with 1 neuron

Station 6005

• 1 Bidirectional LSTM hidden layer with 12 neurons in each direction (24 in total)

95

• Dropout of 0.2

• 1 Bidirectional LSTM hidden layer with 7 neurons in each direction (14 in total)

• Dropout of 0.2

• 1 Fully Connected layer with 12 neurons

• 1 Fully Connected layer with 12 neurons

• 1 Fully Connected output layer with 1 neuron

The choice of using this kind of configurations have been inspired by some other deep neu-

ral network configurations present in the literature and used in some application that were not

directly related to Time Series Forecasting.

In our deep neural network, we used a min-batch approach, in particular the batch size chosen

was 96, corresponding to 4 days. This number was chosen after repeated experiments with

different batch size. The optimizer used was the Nestorov Adam and the loss function chose

was the MSE.

The activation functions applied were tanh for the Bidirectional LSTM and linear for the

Fully Connected. We also applied a Dropout of with a rate of 0.2 to avoid overfitting.

One of the most important parameters to select was the number of lags, so the number of

previous timestamps to use in our model. The final number of lags used was 24, that means

that our model predicted the pollution concentration at a given timestamp for every input using

the previous 24 hours data.

96

The choice of the time lags is very important, in fact a small number of lags (for example

1) doesnt allow the neural network to exploit the power of the LSTM architecture. On the

contrary a big number can confuse the neural network since observation that are too far from

a temporal point of view are used. From our experiment 24 can reach a good compromise

between these two extremes.

The final RMSE of each station were the following:

TABLE II: RMSE BDLSTM Multiple Models

Best RMSE

Station 1 Station 76 Station 57 Station 6005

RMSE 2.928 3.422 4.009 3.291

By doing the average of the RMSE of each station we obtained an overall RMSE of 3.4155.

The following figure show the predicted pollutant concentration over the next hour and real

value data for station 1, used as test set to calculate the model performance :

97

Figure 38: Predicted vs Real Data

Since the number of data predicted is very high, it is not easy to visualize all of them in a

single plot.

For this reason, to better understand how the predicted values compare to the test values,

we can take a look to a zoomed view of the previous graph that is more readable and easy to

understand since only 100 timestamps are shown.

98

Figure 39: Zoom of Predicted vs Real Data

8.2 Deep Bidirectional LSTM Single Model

In the second approach proposed, we considered a single dataset for all the stations, with 4

additional columns representing the pollution concentration at each station.

The model used in this case, was different from the previous one, because the network was a

multi-input and multi-output model, in which each output represented the predicted concen-

tration of a specific station.

99

As in the previous approach, several network configurations were tested, and the best architec-

ture found was the following:

All Stations

• 1 Bidirectional LSTM hidden layer with 10 neurons in each direction (20 in total)

• Dropout of 0.2

• 1 Bidirectional LSTM hidden layer with 20 neurons in each direction (40 in total)

• Dropout of 0.2

• 1 Fully Connected layer with 20 neurons

• 1 Fully Connected layer with 20 neurons

• 1 Fully Connected output layer of 4 neurons

The final RMSE calculated over the 4 stations was 3.631.

The following table shows a comparison between the multiple stations model and the single

station model:

TABLE III: Multiple Model vs Single Model

Best RMSE

Station 1 Station 76 Station 57 Station 6005 Overall Result

Multiple models 2.928 3.422 4.009 3.291 3.412

Single model 3.145 3.687 4.13 3.558 3.631

100

8.3 Multi-Layer Perceptron

In this case we tested lot of different combinations of neurons and layers. We fixed the time

lags to 24 and we use all the other parameter used for the LSTM model.

The neural network was trained for 1000 epochs using the early stopping method.

The results of the experiments can be summarized in the following tables:

TABLE IV: RMSE MLP Station 1

Number of Neurons

Layers 5 10 20 50 100 200

1 layer 3.080 3.155 3.121 3.075 3.161 3.17

2 layers 3.076 3.256 3.113 3.151 3.074 3.096

3 layers 3.108 3.116 3.087 3.111 3.079 3.089

101

TABLE V: RMSE MLP Station 76

Number of Neurons

Layers 5 10 20 50 100 200

1 layer 3.798 3.842 3.837 3.895 3.671 3.673

2 layers 3.848 4.002 3.960 3.710 3.711 3.669

3 layers 3.768 3.746 3.745 3.685 3.669 3.644

TABLE VI: RMSE MLP Station 57

Number of Neurons

Layers 5 10 20 50 100 200

1 layer 4.054 4.034 4.051 4.043 4.014 4.023

2 layers 4.014 4.050 4.016 4.030 4.019 4.008

3 layers 4.012 4.028 4.008 4.033 4.010 4.008

102

TABLE VII: RMSE MLP Station 6005

Number of Neurons

Layers 5 10 20 50 100 200

1 layer 3.371 4.376 3.391 3.440 4.412 3.358

2 layers 3.418 3.543 3.462 3.515 3.347 3.508

3 layers 3.812 3.732 3.561 3.679 3.510 3.356

8.4 Long Short-Term Memory Neural Network (LSTM)

We tested different configurations of LSTM, in particular only some of them shows results

similar to the MLP but the majority of them are worse in term of RMSE.

The configuration tested for each station were the same in terms of number of neurons and

layers of the Bidirectional model but without the fully connected layers.

In this case the number of lags used was fixed to 24 as in our proposed method. All the other

hyperparameters used were identical to the Deep Stacked Bidirectional LSTM.

103

TABLE VIII: RMSE LSTM

Best RMSE

Station 1 Station 76 Station 57 Station 6005

RMSE 3.131 3.617 4.1 3.342

8.5 Random Forest

The Random Forest Algorithm was tested, using a window size of 24 like in the case of the

Multilayer Perceptron and 200 trees:

TABLE IX: RMSE Random Forest

Best RMSE

Station 1 Station 76 Station 57 Station 6005

RMSE 3.258 3.810 4.097 3.334

104

8.6 General Regression Neural Network

In this case the choice of parameters is much more limited with respected to the previous

example. In fact, General Regression Neural Networks have only one free parameter, the

smoothness.

The search for the smoothness parameter may vary depending on the application. In this study

we will choose a set of smoothing parameters and we will evaluate the results in term of RMSE.

This neural network falls into the category of probabilistic neural networks and its single-pass

learning so no backpropagation is required.

The following table show the results of this technique:

TABLE X: RMSE GRNN

Smoothness Parameter

0.1 1 1.5 2 5 10

Station 1 Nan Nan 5.1216 5.18 5.268 5.284

Station 76 Nan Nan 6.534 6.587 6.671 6.687

Station 6005 Nan Nan 5.616 5.623 5.634 5.645

Station 57 Nan Nan 6.553 5.768 5.784 5.892

105

8.7 Persistence

In Machine Learning, the most common baseline for supervised problems is the Zero Rule

algorithm.

In the case of classification, this algorithm predicts the majority class, while in the case of

regression the average outcome . In Time Series Forecasting problems this rule cannot be

applied because of the constraint of the time series dataset.

For this reason, the equivalent of the Zero Rule for Time Series Forecasting is the so called,

persistence model.

The persistence algorithm works in a very simple way. It predict the expected outcome of the

future time stamp (t+1), just by forwarding the previous value at time (t). It is basically a

shifting process of the previous time stamp value.

A persistence model looks like this:

106

Figure 40: Predicted vs Real Data using Persistence

It is possible to observe that the predicted values are exactly a version of the test values

shifted by 1 timestamp.

The RMSE of this model is shown in the following table:

107

TABLE XI: RMSE Persistence

Best RMSE

Station 1 Station 76 Station 57 Station 6005

RMSE 4.083 4.118 4.341 3.928

8.8 Multi Step Ahead Forecasting Results

For the multiple step ahead forecasting, we selected the best model configuration with

respect to the single hour prediction.

The number of timestamps to predict in the future has been set to 4 and the approach used

was the Recursive Multi-Stage Approach described at the end of section 3.4.4.

108

TABLE XII: RMSE Multi Step Ahead

Future Hours Predictions

1 hour 2 hours 3 hours 4 hours

Station 1 2.928 3.598 4.087 4.383

Station 76 3.422 4.797 5.696 6.345

Station 6005 3.291 4.154 4.859 5.469

Station 57 4.009 4.768 5.271 5.520

A common way to visualize the multi-step ahead forecasting, is to plot the results with a

padding equal to the number of future timestamps predicted.

For example we can plot the first timestamp prediction starting at time t + 1, and then for the

following N timestamps, where N represents the number of predicted steps in the future, we

plot the value of t+2, t+3 t+N.

Then we will plot the next prediction with a padding of N, so starting at timestamp t+N +1.

To better understand this concept, we can take a look at this figure, where we use a padding

of 4 to plot our predictions, since we were predicting 4 steps in the future:

109

Figure 41: Multi Step Ahead Forecasting

In the figure we can see an example of multi-step ahead forecasting for Station 1.

By looking at the plot we can notice that our model does a good job in predicting the future

direction of the prediction, since we can notice that the correct future direction is predicted for

almost all the predictions.

8.9 Discussion

The previous results show that the proposed method outperform the other methods in term

of RMSE. In particular, General Regression Neural Network seems to be not suitable for this

110

kind of problem since the RMSE never falls down 5.

The Multilayer Perceptron with a large window (24 time lags) that is usually used as state of the

art for autoregression problems, shows good predictive performance. Autoregression problems

are problems in which the future time stamp can be expressed as a function of a specific number

of previous (or lag) observations.

The proposed Deep Stacked Bidirectional LSTM shows a good predictive power reaching a

best RMSE for station 1, 76 and 6005. In particular, it seems it can follow the signal and has

predictive skills. If we zoom on a section of the plot of the results, we can notice that even

where there is a linear interpolation our model doesnt simply follow a straight line like in the

case of the persistence model but oscillate.

This is a sign that our model is not just predicting using the previous measurement value in

time but have learned some patterns from the data.

The model on the left represent what is predicted by our recurrent neural network while the one

on the right what is predicted by the persistence model in case of linearly interpolated values.

111

Figure 42: Result of Proposed Model Figure 43: Result of Persistence Model

In conclusion even if from the previous figures the model on the right seems to be better

because it follows the original values, this is not true because that model is simply following

a straight linear interpolation line, so the persistence model doesnt ignore them but it fol-

lows them. From our results we can conclude that our framework contradicts some statements

present in the literature :

”Time series benchmark problems found in the literature are often conceptually simpler

than many tasks already solved by LSTM. They often do not require RNNs at all, because all

relevant information about the next event is conveyed by a few recent events contained within a

small time window.” [73]

112

In this paper LSTMs are applied to 2 Time Series Forecasting problems and the final results

are compared with different neural network architectures. In this paper, the results show that

the Multilayer Perceptron (MLP) based on a large window size is capable to outperform the

LSTM model on some Time Series problems, that can be easily solved just by using few recent

data.

Our work instead shows that the Deep Bidirectional LSTM is not just able to follow the

general trend of the data, but it also outperforms the Multilayer Perceptron.

This table summarize all the results obtained:

TABLE XIII: RMSE Final Comparison

Best RMSE

Station 1 Station 76 Station 57 Station 6005

DBLSTM 2.928 3.422 4.009 3.291

LSTM 3.131 3.617 4.1 3.342

MLP 3.074 3.644 4.008 3.347

RF 3.258 3.810 4.097 3.334

Persistence 4.083 4.118 4.341 3.928

GRNN 5.126 6.534 6.553 5.616

CHAPTER 9

INTERPOLATION RESULTS AND DISCUSSION

The algorithms were tested on unseen data, in particular the test data were randomly

selected using a holdout method 80-20, where the testing data correspond to the 20% of the

total data available. In total 19277 instances were present in the test set.

9.1 Inverse Distance Weighting Interpolation (IDW) Results

For the Inverse Distance Weighting Interpolation, the only features used were the distances

and the pollution levels of the 1st, 2nd and 3rd closest stations. In this case the only parameter

is the value of the power parameter p. Different values of p were tested to see the effects of the

power parameter on the evaluation metrics.

113

114

TABLE XIV: IDW Interpolation Results

IDW

p = 1 p = 2 p = 3 p = 4

RMSE 4.976 5.178 5.378 5.490

Accuracy 0.80 0.79 0.78 0.78

Precision 0.80 0.79 0.79 0.78

Recall 0.80 0.79 0.79 0.78

F1 0.80 0.79 0.79 0.78

The results obtained from the IDW interpolation were also converted to AQI label using

the EPA table, so that it was possible to calculate also the Accuracy, Precision, Recall, F1 and

not only the RMSE.The results suggested that the best value for the power parameter in this

case is 1, with an RMSE of 4.976, an accuracy and F1 score 0.80.

The plot in Figure 44 show the difference between the inference of the IDW with different

values of p versus the original pollution value (in blue) over a period of 30 hours taken from

the shuffled test set. . On the x-axis we have the hours and y-axis the pollution values.

115

Figure 44: IDW Results

In Figure 45 we can see an example of a pollution map created after applying Inverse

Distance Weighted Interpolation on the 03.17.2017 at 21:00:00.

116

Figure 45: IDW Pollution Level Interpolated Map

The map has been created using the plotly library, in order to have interactive maps. This is

a great advantage since it is possible to produce these maps in few second just after the inference

part and to visualize them directly in python without the use of any additional software.

117

9.2 Neural Network Results

The neural network used was a single model that used both spatial and temporal features.

The model has 3 layers with Relu activation function, a Softmax on the output layer of the

classification branch to output the 6 classes probabilities and a Linear activation function on

the output layer of the regression branch to output the precise value of pollution. ”The Relu

(Rectified Linear Unit is one of the most commonly used activation function in Deep Learning

models. The function returns 0 if it receives any negative input, but for any positive value it

returns that value back. So it can be written as f(x)=max(0,x))”.

The results obtained over the 4 stations are the following:

TABLE XV: Neural Network Results

Neural Network Neural Network Self-Training

RMSE 4.372 4.246

Accuracy 0.83 0.88

Precision 0.83 0.88

Recall 0.84 0.88

F1 0.83 0.88

118

An example of Air Pollution map produced on the same day 03.17.2017 at 21:00:00 using

the Neural Network inference is presented in Figure 46.

Figure 46: Self Training Pollution Level Interpolated Map

119

Using the Self Training results we obtained also the following map(Figure 47) for the same

day with the AQI level of concern instead of the pollution values.

Figure 47: Self Training AQI Label Interpolated Map

120

9.3 Co-Training Results

The Co-Training algorithm used in the U-Air [35] paper was tested using the same models

and configuration presented. The only difference was in the type of data used, due to the

different setting of the experiment and data availability. We tryed to use the same approach

and divide the features into sets: the temporal features were feed into a CRF (Conditional

Random Field) and the spatial features were feed into a Neural Network.

We also proposed an optimized version of the Co-Training algorithm used an LSTM as temporal

classifier and an Artificial Neural Network as spatial classifier. The Artificial Neural Network

was used also in the U-Air study[35] but with a better hyperparameter optimization and network

structure (3 layers instead of 1), since in the U-Air experiment the Neural Network used has

only one hidden layer. In this way the comparison between the different methodology was as

fair as possible.

We also want to highlight that for the Co-Training algorithm we dont have the RMSE results,

since we used the same implementation of the original paper in which the problem is seen only

as a classification problem.

The results obtained are the following:

121

TABLE XVI: Co-Training Results

Co-Training (U-Air) Co-Training (Optimized)

Accuracy 0.82 0.86

Precision 0.82 0.85

Recall 0.82 0.86

F1 0.82 0.86

The map presented below show the interpolation map created using the Co-Training frame-

work. It is possible to notice that in this case only the 6 possible labels have been used, since

we dont have the precise level of pollution of each cell.

122

Figure 48: Co-Training AQI Label Interpolated Map

9.4 Discussion

The numerical results show that the proposed Neural Network model, with Self-Training

can produce better numerical results than the other baseline used for comparison. In particular,

the standard Inverse Distance Weighted interpolation doesnt give good performance, since the

123

interpolation is based just on the distance and on the pollution values.

The Co-Training algorithm presented in the U-Air paper was reproduced using the same network

structure described. The results are comparable to Neural Network model without Self-Training

and outperforms the IDW interpolation. By optimizing the hyperparameters and the network

structure of the Co-Training model it was possible to obtain better results.

A final comparison between our model and the optimized Co-training framework shows that our

model is able to outperform the other methodology. Besides our model give us the possibility

to predict both the level of concern and the precise pollution value of each cell, while this is not

possible using the Co-Training framework. This represent a great advantage since it is possible

to produce maps with much more details, since each cell has is own pollution value, inferred

using Land Use Characteristics, Traffic Patterns, Meteorological Data and the Pollution values.

A comparison of the maps produced by the different algorithm is presented below:

124

Figure 49: Self-Training VS IDW Pollution Level Interpolated Maps

From this comparison we can notice how the map produced by our model dont follow any

linear pattern like in the case of IDW interpolation. The two maps refer to the same day and

hour and they show big differences.

Even if it is not possible to compare the pollution level map between our methodology and the

co-training model, we will make a comparison based on the AQI labels. For this comparison we

can notice that the two maps are not so different, the main reason is that each label corresponds

to a wide range of pollution value, so it is not so common to have very different label for each

grid cell.

125

Figure 50: Self-Training VS Co-Training AQI Labels Interpolated Maps

Finally, we can compare the pollution map generated by our model with the map present

on the AirNow archive website [74]. Even if the two maps have a different spatial resolution,

since our model use a fine-grained resolution of 1km x 1km which is much smaller than the one

used by AirNow right now, we can still show a comparison to highlights the difference between

them and the advantages of our methodology.

In Figure 51 we can observe the map produced by the Air Now website on the same day

03.17.2017 of the other maps shown previously. As we can notice, the whole Chicago area has a

unique label (Moderate = yellow). The main reason is that AirNow, as explained before, use a

much bigger spatial resolution and dont consider most of the factors we used in our air quality

inference, like Traffic pattern, Land Use and Meteorological factors.

126

Figure 51: AirNow Maps

In conclusion, we believe that our model can provide good results in term of classification

metrics and RMSE. Besides it provides the possibility of creating very detailed maps of the city

of Chicago, with a much higher level of details and precision, with respected to the other models

127

presented in this study.The comparison with other baselines and the AirNow maps, shows the

advantages of the proposed methodology both for the numerical and visual results.

CHAPTER 10

CONCLUSION

10.1 Limitations

As we can see from the numerical results obtained and the visualization of the predicted

values in comparison with the real values, the model seems to do a very good job in predicting

the next hour concentration and in general in following the general pattern.

By looking at the multi-step head forecasting, we can also notice that our model does a good

job in predicting the future direction of the values. Nevertheless, the model is affected by some

limitations.

In particular, by observing the graph of the predicted vs real values Figure 38, we can notice

that even if the model is very good in reacting to smooth variations, on the contrary it cannot

react to fast nonlinear changes(spikes).

This is a very common limitations in time Time Series Forecasting models, because often the

future values are independent from previous values. In our case, these sudden variations can

be due to external factors, other than meteorological conditions. For this reason, our model

cannot take them into account.

A similar consideration can be done for the multi-step ahead forecasting where the unavoidable

propagation of the error in the future predictions, lead to results that get worse with the

increasing of future hours predicted.

128

129

Another limitation of this model is the computational complexity. In fact, using a different

Neural Network model for each station, require more training time, since we have to train 4

different neural networks instead of a single one.

Finally, the last limitation relates to the interpolation part. Even if the model outperform the

baseline in both classification and regression, the model doesn’t show a good performance for

the grid cell that are too far from the stations. Looking at the map we can notice that the part

on the right of the map is almost uniform. More monitoring stations could drastically improve

the results.

10.2 Conclusion

This study proposed a novel Bidirectional LSTM framework, to forecast and interpolate

short term air pollution concentration in a city.

Numerical results on the Chicago dataset showed that taking advantage of the combination

between meteorological data, pollution levels and the LSTM memory property our model was

able to outperform the baseline including the Multi-Layer Perceptron, that is one of the most

used techniques for this kind of task. In the future, we intend to improve this basic version of

the framework in different ways.

We will try to add new data to our framework, that in this moment are not available or dont

have the required temporal resolution, like satellite data and traffic data in order to improve

both the prediction and interpolation results.

This will also imply further research in the hyperparameter optimization, such as batch size

and number of LSTM cells, but also in finding the optimum time lags, that can help the model

130

to obtain a lower RMSE.

Finally, we can try to extend our model and try different techniques including CNN and the

Attention mechanism that can further improve the model performance.

CITED LITERATURE

1. Anderson, J. O., Thundiyil, J. G., and Stolbach, A.: Clearing the air: a review of the effects
of particulate matter air pollution on human health. Journal of Medical Toxicology,
8(2):166–175, 2012.

2. Jiang, X.-Q., Mei, X.-D., and Feng, D.: Air pollution and chronic airway diseases: what
should people know and do? Journal of thoracic disease, 8(1):E31, 2016.

3. Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C., and Chi, T.: Long short-term memory
neural network for air pollutant concentration predictions: Method development
and evaluation. Environmental Pollution, 231:997–1004, 2017.

4. Chen, J., Lu, J., Avise, J. C., DaMassa, J. A., Kleeman, M. J., and Kaduwela, A. P.:
Seasonal modeling of pm2. 5 in california’s san joaquin valley. Atmospheric
environment, 92:182–190, 2014.

5. Wang, Z., Maeda, T., Hayashi, M., Hsiao, L.-F., and Liu, K.-Y.: A nested air quality
prediction modeling system for urban and regional scales: Application for high-
ozone episode in taiwan. Water, Air, and Soil Pollution, 130(1-4):391–396, 2001.

6. Saide, P. E., Carmichael, G. R., Spak, S. N., Gallardo, L., Osses, A. E., Mena-Carrasco,
M. A., and Pagowski, M.: Forecasting urban pm10 and pm2. 5 pollution episodes
in very stable nocturnal conditions and complex terrain using wrf–chem co tracer
model. Atmospheric Environment, 45(16):2769–2780, 2011.

7. Li, C., Hsu, N. C., and Tsay, S.-C.: A study on the potential applications of satellite data
in air quality monitoring and forecasting. Atmospheric Environment, 45(22):3663–
3675, 2011.

8. Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M.: Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

9. Nieto, P. G., Combarro, E. F., del Coz Dı́az, J., and Montañés, E.: A svm-based regression
model to study the air quality at local scale in oviedo urban area (northern spain):
A case study. Applied Mathematics and Computation, 219(17):8923–8937, 2013.

131

132

CITED LITERATURE (continued)

10. Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., and Brasseur, O.: A neural net-
work forecast for daily average pm10 concentrations in belgium. Atmospheric
Environment, 39(18):3279–3289, 2005.

11. Kolehmainen, M., Martikainen, H., and Ruuskanen, J.: Neural networks and periodic
components used in air quality forecasting. Atmospheric Environment, 35(5):815–
825, 2001.

12. Paschalidou, A. K., Karakitsios, S., Kleanthous, S., and Kassomenos, P. A.: Forecasting
hourly pm 10 concentration in cyprus through artificial neural networks and multiple
regression models: implications to local environmental management. Environmental
Science and Pollution Research, 18(2):316–327, 2011.

13. Lu, W., Wang, W., Fan, H., Leung, A., Xu, Z., Lo, S., and Wong, J.: Prediction of pollutant
levels in causeway bay area of hong kong using an improved neural network model.
Journal of environmental engineering, 128(12):1146–1157, 2002.

14. Mishra, D. and Goyal, P.: Neuro-fuzzy approach to forecast no2 pollutants addressed to
air quality dispersion model over delhi, india. Aerosol Air Qual. Res, 16:166–174,
2016.

15. Antanasijević, D. Z., Pocajt, V. V., Povrenović, D. S., Ristić, M. D., and Perić-Grujić, A. A.:
Pm10 emission forecasting using artificial neural networks and genetic algorithm
input variable optimization. Science of the Total Environment, 443:511–519, 2013.

16. Feng, Y., Zhang, W., Sun, D., and Zhang, L.: Ozone concentration forecast method
based on genetic algorithm optimized back propagation neural networks and support
vector machine data classification. Atmospheric Environment, 45(11):1979–1985,
2011.

17. Lv, Y., Duan, Y., Kang, W., Li, Z., and Wang, F.-Y.: Traffic flow prediction with big
data: a deep learning approach. IEEE Transactions on Intelligent Transportation
Systems, 16(2):865–873, 2015.

18. Felder, M., Kaifel, A., and Graves, A.: Wind power prediction using mixture density
recurrent neural networks. In Poster Presentation gehalten auf der European Wind
Energy Conference, 2010.

133

CITED LITERATURE (continued)

19. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., and Savarese, S.: Social
lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 961–971, 2016.

20. Hochreiter, S. and Schmidhuber, J.: Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

21. Sak, H., Yang, G., Li, B., and Li, W.: Modeling dependence dynamics of air pollu-
tion: Pollution risk simulation and prediction of pm {2.5} levels. arXiv preprint
arXiv:1602.05349, 2016.

22. Fan, J., Li, Q., Hou, J., Feng, X., Karimian, H., and Lin, S.: A spatiotemporal pre-
diction framework for air pollution based on deep rnn. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 4:15, 2017.

23. Reddy, V., Yedavalli, P., Mohanty, S., and Nakhat, U.: Deep air: Forecasting air pollution
in beijing, china.

24. Cui, Z., Ke, R., and Wang, Y.: Deep bidirectional and unidirectional lstm recurrent neural
network for network-wide traffic speed prediction. arXiv preprint arXiv:1801.02143,
2018.

25. Huang, C.-J. and Kuo, P.-H.: A deep cnn-lstm model for particulate matter (pm2. 5)
forecasting in smart cities. Sensors, 18(7):2220, 2018.

26. Lin, Y., Mago, N., Gao, Y., Li, Y., Chiang, Y.-Y., Shahabi, C., and Ambite, J. L.: Exploit-
ing spatiotemporal patterns for accurate air quality forecasting using deep learning.
2018.

27. Wong, D. W., Yuan, L., and Perlin, S. A.: Comparison of spatial interpolation methods for
the estimation of air quality data. Journal of Exposure Science and Environmental
Epidemiology, 14(5):404, 2004.

28. Mercer, L. D., Szpiro, A. A., Sheppard, L., Lindström, J., Adar, S. D., Allen, R. W.,
Avol, E. L., Oron, A. P., Larson, T., Liu, L.-J. S., et al.: Comparing universal
kriging and land-use regression for predicting concentrations of gaseous oxides of
nitrogen (nox) for the multi-ethnic study of atherosclerosis and air pollution (mesa
air). Atmospheric Environment, 45(26):4412–4420, 2011.

134

CITED LITERATURE (continued)

29. Keler, A. and Krisp, J. M.: Spatio-temporal visualization of interpolated particulate matter
(pm2. 5) in beijing. GI Forum–Journal for Geographic Information Science, pages
464–474, 2015.

30. Contreras, L. and Ferri, C.: Wind-sensitive interpolation of urban air pollution forecasts.
Procedia Computer Science, 80:313–323, 2016.

31. Arystanbekova, N. K.: Application of gaussian plume models for air pollution simulation at
instantaneous emissions. Mathematics and Computers in Simulation, 67(4-5):451–
458, 2004.

32. Mok, K., Miranda, A., Leong, K., and Borrego, C.: A gaussian puff model with opti-
mal interpolation for air pollution modelling assessment. International journal of
environment and pollution, 35(1):111–137, 2008.

33. Beelen, R., Voogt, M., Duyzer, J., Zandveld, P., and Hoek, G.: Comparison of the per-
formances of land use regression modelling and dispersion modelling in estimating
small-scale variations in long-term air pollution concentrations in a dutch urban
area. Atmospheric Environment, 44(36):4614–4621, 2010.

34. van der Swaluw, E., de Vries, W., Vieno, M., Sauter, F., Aben, J., Velders, G., Kruit, R. W.,
Fagerli, H., and van Pul, A.: Modelling air quality and deposition at high resolution
in the netherlands with plume and grid models. In International Technical Meeting
on Air Pollution Modelling and its Application, pages 245–248. Springer, 2016.

35. Zheng, Y., Liu, F., and Hsieh, H.-P.: U-air: When urban air quality inference meets
big data. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1436–1444. ACM, 2013.

36. Chen, L., Cai, Y., Ding, Y., Lv, M., Yuan, C., and Chen, G.: Spatially fine-grained
urban air quality estimation using ensemble semi-supervised learning and pruning.
In Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, pages 1076–1087. ACM, 2016.

37. Chen, Y., Jiang, X., Wang, Y., and Zhuang, D.: Spatial characteristics of heavy metal
pollution and the potential ecological risk of a typical mining area: A case study in
china. Process Safety and Environmental Protection, 113:204–219, 2018.

38. Air quality. https://www3.epa.gov/airquality/.

135

CITED LITERATURE (continued)

39. Bishop, C.: Pattern recognition and machine learning. Berlin: Springer. ISBN 0-387-
31073-8, 2006.

40. Ma, X., Tao, Z., Wang, Y., Yu, H., and Wang, Y.: Long short-term memory neural network
for traffic speed prediction using remote microwave sensor data. Transportation
Research Part C: Emerging Technologies, 54:187–197, 2015.

41. Williams, R. J. and Zipser, D.: A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

42. Zheng, H., Yuan, J., and Chen, L.: Short-term load forecasting using emd-lstm neural
networks with a xgboost algorithm for feature importance evaluation. Energies,
10(8):1168, 2017.

43. Duan, Y., Lv, Y., and Wang, F.-Y.: Travel time prediction with lstm neural net-
work. In Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International
Conference on, pages 1053–1058. IEEE, 2016.

44. Graves, A., Jaitly, N., and Mohamed, A.-r.: Hybrid speech recognition with deep bidirec-
tional lstm. In Automatic Speech Recognition and Understanding (ASRU), 2013
IEEE Workshop on, pages 273–278. IEEE, 2013.

45. Schuster, M. and Paliwal, K. K.: Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681, 1997.

46. Time Series. https://en.wikipedia.org/wiki/Time_series.

47. Time Series Forecasting. https://machinelearningmastery.com/

time-series-forecasting.

48. Sak, H., Senior, A., and Beaufays, F.: Long short-term memory recurrent neural network
architectures for large scale acoustic modeling. In Fifteenth annual conference of
the international speech communication association, 2014.

49. Step-by-Step LSTM Walk Through. http://colah.github.io/posts/

2015-08-Understanding-LSTMs/.

50. Akshay Sood: Long Short Term Memory.

136

CITED LITERATURE (continued)

51. Graves, A., Mohamed, A.-r., and Hinton, G.: Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee
international conference on, pages 6645–6649. IEEE, 2013.

52. Yu, Z., Ramanarayanan, V., Suendermann-Oeft, D., Wang, X., Zechner, K., Chen, L., Tao,
J., Ivanou, A., and Qian, Y.: Using bidirectional lstm recurrent neural networks
to learn high-level abstractions of sequential features for automated scoring of non-
native spontaneous speech. In Automatic Speech Recognition and Understanding
(ASRU), 2015 IEEE Workshop on, pages 338–345. IEEE, 2015.

53. Osogami, T., Kajino, H., and Sekiyama, T.: Bidirectional learning for time-series models
with hidden units. In International Conference on Machine Learning, pages 2711–
2720, 2017.

54. Sainath, T. N., Vinyals, O., Senior, A., and Sak, H.: Convolutional, long short-term
memory, fully connected deep neural networks. In Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International Conference on, pages 4580–4584.

IEEE, 2015.

55. Keras. https://keras.io/.

56. Tensorflow. https://www.tensorflow.org/.

57. Cheng, H., Tan, P.-N., Gao, J., and Scripps, J.: Multistep-ahead time series prediction. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 765–774.
Springer, 2006.

58. Popescu, M.-C., Balas, V. E., Perescu-Popescu, L., and Mastorakis, N.: Multilayer
perceptron and neural networks. WSEAS Transactions on Circuits and Systems,
8(7):579–588, 2009.

59. Specht, D. F.: A general regression neural network. IEEE transactions on neural networks,
2(6):568–576, 1991.

60. Inverse Distance Weighting Interpolation. https://en.wikipedia.org/wiki/Inverse_

distance_weighting.

61. How IDW works. http://pro.arcgis.com/en/pro-app/help/analysis/

geostatistical-analyst/how-inverse-distance-weighted-interpolation-works.

htm.

137

CITED LITERATURE (continued)

62. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data.
In Proceedings of the 1968 23rd ACM national conference, pages 517–524. ACM,
1968.

63. Kriging. https://en.wikipedia.org/wiki/Kriging.

64. Kriging2. http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/

how-kriging-works.htm.

65. Land Use Regression. http://www.integrated-assessment.eu/eu/guidebook/land_

use_regression.html.

66. Ryan, P. H. and LeMasters, G. K.: A review of land-use regression models for characterizing
intraurban air pollution exposure. Inhalation toxicology, 19(sup1):127–133, 2007.

67. Leelőssy, Á., Molnár, F., Izsák, F., Havasi, Á., Lagzi, I., and Mészáros, R.: Dispersion
modeling of air pollutants in the atmosphere: a review. Open Geosciences, 6(3):257–
278, 2014.

68. Blum, A. and Mitchell, T.: Combining labeled and unlabeled data with co-
training. In Proceedings of the eleventh annual conference on Computational
learning theory, pages 92–100. ACM, 1998.

69. Zhu, X.: Semi-supervised learning literature survey, department of computer sciences,
university of wisconsin at madison, madison. Technical report, WI, Technical Report
1530. http://pages. cs. wisc. edu/˜ jerryzhu/pub , 2006.

70. Land Data. https://catalog.data.gov.

71. Traffic. https://webapps1.cityofchicago.org/traffic/.

72. LSTM scaling. https://machinelearningmastery.com/

how-to-scale-data-for-long-short-term-memory-networks-in-python/.

73. Gers, F. A., Eck, D., and Schmidhuber, J.: Applying lstm to time series predictable
through time-window approaches. In Neural Nets WIRN Vietri-01, pages 193–200.
Springer, 2002.

74. AirNow Maps. https://gispub.epa.gov/airnow/.

138

CITED LITERATURE (continued)

75. Cheng, W., Shen, Y., Zhu, Y., and Huang, L.: A neural attention model for urban air
quality inference: Learning the weights of monitoring stations. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

VITA

NAME Marco Miglionico

EDUCATION

Master of Science in Computer Science, University of Illinois at
Chicago, December 2018, USA

Pursuing Master of Science Degree in Computer Science and Engineer-
ing, Politecnico di Milano, Italy

Exchange program at the Hong Kong University of Science and Tech-
nology (HKUST), January 2016, Hong Kong

Bachelor’s Degree in Computer Science and Engineering, Feb 2017,
Politecnico di Milano, Italy

LANGUAGE SKILLS

Italian Native speaker

English Full working proficiency

2016 - IELTS examination (6.5/9)

A.Y. 2017/18 One Year of study abroad in Chicago, Illinois

A.Y. 2016/17. Lessons and exams attended exclusively in English

A.Y. 2015/16 Six Months of study abroad in Hong Kong, HK

SCHOLARSHIPS

Spring 2015 Research Assistantship (RA) position (20 hours/week) with monthly
stipend

WORK EXPERIENCE AND PROJECTS

Jan 2018 - Cur-
rent

Artifical Intelligence Architect at Stanley Black and Decker Digital
Accelerator, Atlanta, GA.

Sep 2018 - Dec
2018

Data Science Internship at Norfolk Southern, Atlanta, GA

January 2018 -
May 2018

Research Assistant an the University of Illinois, Chicago, IL

139

140

VITA (continued)

2018 Movies Recommender System using Stacked Autoencoders and Boltz-
man Machines

2018 Long Short Term Memory(LSTM) for Google Stock Price Prediction

2017 CS412 Machine Learning Final Project. Build a classifier able to pre-
dict whether a borrower,based on their loan application details, will
either fully pay off their loan or not.

