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SUMMARY

The recent trend in the semiconductor industry to increase the number of computing

cores on a single microprocessor has encountered a bottleneck in processor to memory

communication bandwidth. To ensure that higher parallelism could be achieved between

processing elements and memory banks, the old fashioned shared bus topology for on-chip

intercommunication is not sufficient anymore. Alternative topologies have been proposed.

The classical bus architecture is often replaced by a crossbar switch type interconnection

where cores can simultaneously access memory banks and I/O modules, increasing paral-

lelism.

Through this thesis we will study the LEON 3 processor architecture and study a way

to increase the speed of the intercommunication network used by LEON 3 systems. We

will adapt ARM’s Advanced Microcontroller Bus Architecture (AMBA) High-performance

Bus (AHB), which is the protocol used by LEON 3 and which is inherently implemented

as a multiplexed bus, to work with a crossbar-switch structure instead. The resulting

module, named AHB Crossbar Controller, will replace the existing AHB Controller and

will maintain compatibility with existing AMBA AHB devices.

We will then test the circuit’s fault tolerance to Single Event Upset faults to study its

reliability in critical applications.

This thesis work is finally intended to be part of a bigger project which aims to the

creation of multi-processing partitioned systems. Such systems would include multiple core-

xiii



SUMMARY (continued)

memory couples executing in parallel, enabling, through the means of an hypervisor, to

have several computing environments running concurrently in these logical partitions. The

final objective of this future project is to provide a software alternative to hardware fault-

tolerance methods, like radiation hardening, by concurrently running redundant computing

environments in a partitioned system and checking via software for correctness.

xiv



CHAPTER 1

INTRODUCTION

1.1 Motivations and aims

Interconnection networks are a critical part of computing systems. They have become

even more critical in the era of very large-scale integration (VLSI) circuitry because of the

drive characteristics of MOS transistors combined with the relatively high capacitance of

on-chip interconnects (1).

The interconnection networks, used to connect functional units within a chip, can have

a significant – indeed, dominating – effect on the chip’s performance. Buses, although the

simplest form of interconnect, are a poor choice from a density or power standpoint as the

power and space required to drive them at maximum speed grow exponentially with the

capacitance of the bus (2). Furthermore, multi-point connection networks are a poor choice

because the entire length of the bus must be driven even when only a single conversation

may be going on at a time, or where the communication is between direct neighbors. A

crossbar is an optimal solution, up to a maximum size determined by the underlying device

and wiring technology (1).

The LEON 3 system, a moderately multiprocessing-enabled computing architecture,

theoretically supports up to 16 cores, but in reality is used in configurations with up to 4

cores and a limited number of other master modules. The relatively small number of mas-

1
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ters in this system leads us to think that a crossbar switch topology intercommunication

network would be a good compromise between performance increase and implementation

complexity to increase the parallelism with respect to the actual shared bus implementa-

tion. In this thesis we will investigate the related performance improvements introduced

by an innovative crossbar switch, in the form of the AHB Crossbar Controller. The new

module, which will replace the shared bus structure used in the LEON 3, will support

existing hardware transparently as it is completely compatible with any AHB-compliant

device. We will also investigate the reliability of the resulting entity by performing an

in-depth series of fault injections to simulate Single Event Upset (SEU) faults. SEUs are a

kind of non-destructive fault that is caused by electro-magnetic radiation striking a circuit,

and are frequent in microprocessors for space-applications.

We will start by focusing our case study on the LEON 3 processor architecture. We

will consider the feasibility of a crossbar adaptation of the protocol. The LEON 3 system

provides several AMBA-compliant IP cores and a full framework for testing. It is, in our

opinion, the ideal choice for such a study because of the open source nature of its code and

the fact that it is freely accessible and released under the GNU GPL open-source license.

The LEON 3 processor implements the AMBA AHB 2.0 specification, which dictates a

shared-bus topology for on-chip intercommunication.

In this chapter we are going to explore the existing building blocks upon which our

work is based, and we are introducing the main differences between the shared-bus and

crossbar switch topologies.
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1.2 On-chip interconnection networks

The components in a Multi Processing SoC design invariably need to communicate

with each other during application execution (3). For instance, a microprocessor fetches

instructions from memory components, or writes to external memories by sending data

to an on-chip memory controller. It is the responsibility of the on-chip communication

architecture to ensure that the multiple, co-existing data streams on the chip are correctly

and reliably routed from the source components to their intended destinations. In addition

to correctness, the on-chip communication architecture must provide latency or bandwidth

guarantees to ensure that the application performance constraints are satisfied. A latency

guarantee implies that a data unit must traverse the communication architecture and reach

its destination within a finite amount of time, determined by a latency bound (e.g., 40 ns

from source to destination). Depending on the performance requirements of an application,

various types of on-chip communication architectures can be used, as described in following

subsections.

1.2.1 Shared Bus

A basic building block of most on-chip communication architectures in MPSoC designs

is the single shared bus. This is the simplest on-chip communication architecture, consisting

of a set of shared, parallel wires to which various components are connected. Only one

component on the bus can have control of the shared wires at any given time to perform

data transfers. The bus is accessed in a time-sharing manner by the masters of the system.
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This limits the parallelism and achievable performance, which makes it unsuitable for most

highly multi-processing SoC applications which can have tens to hundreds of components.

Consequently, the single shared bus architecture is not scalable to meet the demands of

MPSoC applications.

Master #0 Master #1 Master #2

Slave #0 Slave #1

Bus

Figure 1. Shared-bus topology
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1.2.2 Crossbar Switch

A crossbar switch, also called full bus matrix, is an extension of the shared bus where

each master element of the system is connected to all the slaves and vice versa, as shown

in Figure 2. This network topology drastically increases parallelism. For instance, two

processing elements can access two separate memory banks concurrently. At the same

time this structure requires more silicon area and increases power consumption.

A crossbar switch is generally, but not necessarily, implemented through multiplexers,

as is the case in my implementation, which is detailed in Section 3.1.

1.3 LEON 3 and GRLIB: an AMBA compliant processor and framework

The GRLIB IP Library is an integrated set of reusable IP cores (4), designed for SoC

development. The IP cores are centered around a common on-chip bus, the AMBA AHB

2.0 bus, and use a coherent method for simulation and synthesis. The library is vendor-

independent, with support for different CAD tools and target technologies. A unique

plug&play method is used to configure and connect the IP cores without the need to

modify any global resource.

The Library is organized as a collection of VHDL entities, divided in multiple VHDL

libraries. Each library provides components from a particular vendor (e.g. Gaisler, Gleich-

mann), or a specific set of shared functions or interfaces (e.g. grlib/amba, techmap). Data

structures and component declarations to be used in a GRLIB-based design are exported
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Master
#1

Master
#2

Master
#3

Slave
#1

Slave
#2

Crossbar
Switch

Figure 2. Crossbar switch topology

through library-specific VHDL packages. All GRLIB cores use the same data structures

to declare the AMBA interfaces, and can then easily be connected together.

GRLIB is designed to be ‘bus-centric’, i.e. it is assumed that most of the IP cores

be connected through an on-chip bus. The AMBA 2.0 AHB bus was selected as the
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common on-chip bus, due to its market dominance (ARM processors) and because it is

well documented and can be used for free without license restrictions (4). The multiplexed

shared-bus structure of AHB is condensed inside the AHB Controller module, which will

be replaced, in my implementation, by the AHB Crossbar Controller module. An example

of a single processor LEON3 system designed with GRLIB is shown in Figure 3.

5

1 Introduction

1.1 Overview

The GRLIB IP Library is an integrated set of reusable IP cores, designed for system-on-chip
(SOC) development. The IP cores are centered around a common on-chip bus, and use a coherent
method for simulation and synthesis. The library is vendor independent, with support for different
CAD tools and target technologies. A unique plug&play method is used to configure and connect
the IP cores without the need to modify any global resources.

1.2 Library organization

GRLIB is organized around VHDL libraries, where each major IP (or IP vendor) is assigned a
unique library name. Using separate libraries avoids name clashes between IP cores and hides
unnecessary implementation details from the end user. Each VHDL library typically contains a
number of packages, declaring the exported IP cores and their interface types. Simulation and syn-
thesis scripts are created automatically by a global makefile. Adding and removing of libraries and
packages can be made without modifying any global files, ensuring that modification of one ven-
dor’s library will not affect other vendors. A few global libraries are provided to define shared data
structures and utility functions.
GRLIB provides automatic script generators for the Modelsim, Ncsim, Aldec, Sonata and GHDL
simulators, and the Synopsys, Synplify, Cadence, Mentor, Actel, Altera, Lattice, and Xilinx imple-
mentation tools. Support for other CAD tools can be easily be added.

1.3 On-chip bus

The GRLIB is designed to be ‘bus-centric’, i.e. it is assumed that most of the IP cores will be con-
nected through an on-chip bus. The AMBA-2.0 AHB/APB bus has been selected as the common
on-chip bus, due to its market dominance (ARM processors) and because it is well documented
and can be used for free without license restrictions. The figure below shows an example of a
LEON3 system designed with GRLIB:

Processor

AMBA AHB

Timers IrqCtrl

AMBA APB

8/32-bits memory bus

USBLEON3
Serial

Dbg Link

AHB
Controller

Memory
Controller

AHB/APB
Bridge

I/O portUART

32-bit I/O port

JTAG
Dbg Link

RS232 JTAG

RS232

Spacewire
Link

LVDS

PCI

PCI

WDOG

Ethernet
MAC

PHY

PS/2VGA

Video PS/2 IF

LEON3 Template Design

DAC

CAN 2.0
Link

CAN

SRAM SDRAMPROM I/O

USB PHY

Figure 3. LEON3 GR-XC3S-1500 Template Design
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1.3.1 LEON 3 IP Core

The LEON3 processor core, one of the main design modules of GRLIB, is a synthe-

sizable VHDL model of a 32-bit processor compliant with the SPARC V8 (IEEE-1754)

architecture (5). It is designed for embedded applications, combining high performance

with low complexity and low power consumption. The core is highly configurable and

particularly suitable for SoC designs. The configurability allows designers to optimize the

processor for performance, power consumption, I/O throughput, silicon area and cost.

The processor can be efficiently implemented on FPGA and ASIC technologies and uses

standard synchronous memory cells for caches and register file.

The LEON3 core has the following main features (Figure 4): 7-stage pipeline with Har-

vard architecture, separate instruction and data caches, hardware multiplier and divider,

on-chip debug support and multi-processor extensions.

The LEON3 processor’s separate instruction and data buses are connected to two in-

dependent cache controllers. Both instruction and data cache controllers can be separately

configured to implement a direct-mapped cache or a multi-set cache with set associativity

of 2–4 and multiple replacement policies.

The LEON3 processor uses one unique AHB master interface for all data and instruction

accesses. Instructions are fetched with incremental bursts if the IB bit is set in the cache

control register, otherwise single READ cycles are used.
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AEROFLEX GAISLER 626 GRIP

62 LEON3 - High-performance SPARC V8 32-bit Processor

62.1 Overview

LEON3 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is
designed for embedded applications, combining high performance with low complexity and low
power consumption.
The LEON3 core has the following main features: 7-stage pipeline with Harvard architecture, sepa-
rate instruction and data caches, hardware multiplier and divider, on-chip debug support and multi-
processor extensions.

Note: this manual describes the full functionality of the LEON3 core. Through the use of VHDL
generics, parts of the described functionality can be suppressed or modified to generate a smaller or
faster implementation.

62.1.1 Integer unit

The LEON3 integer unit implements the full SPARC V8 standard, including hardware multiply and
divide instructions. The number of register windows is configurable within the limit of the SPARC
standard (2 - 32), with a default setting of 8. The pipeline consists of 7 stages with a separate instruc-
tion and data cache interface (Harvard architecture).

62.1.2 Cache sub-system

LEON3 has a highly configurable cache system, consisting of a separate instruction and data cache.
Both caches can be configured with 1 - 4 sets, 1 - 256 kbyte/set, 16 or 32 bytes per line. Sub-blocking
is implemented with one valid bit per 32-bit word. The instruction cache uses streaming during line-
refill to minimize refill latency. The data cache uses write-through policy and implements a double-
word write-buffer. The data cache can also perform bus-snooping on the AHB bus. A local scratch
pad ram can be added to both the instruction and data cache controllers to allow 0-waitstates access
memory without data write back.

Integer pipeline

I-Cache D-Cache

3-Port Register File

AMBA AHB Master (32-bit)

AHB I/F

7-Stage

Interrupt controller

Co-Processor

HW MUL/DIV

IEEE-754 FPU Trace Buffer

Debug port

Interrupt port

Debug support unit

Local DRAMLocal IRAM

Figure 169. LEON3 processor core block diagram

SRMMU DTLBITLB

Figure 4. LEON3 processor core block diagram

1.3.2 SMP and Coherency

The LEON3 processor supports synchronous multi-processing (SMP) configurations,

with theoretically up to 16 processors attached to the same AHB bus. In practice, the

maximum allowed processing cores in GRLIB is 4.

With multi-core support comes the need for cache-coherency. Cache-coherency is the

problem of keeping the cache contents of the cores coherent within themselves. So to say,

even if there are multiple copies of a memory item in different caches, and the values of

one of this items changes, the change will be propagated among the copies. It is worth

noticing that the problem arises only on write operations to memory items, not on reads.
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In the LEON 3, cache coherency among the cores is maintained by the use of cache

snooping and a write-through policy on cache write access. Cache snooping, also known

as bus sniffing, is a technique for achieving cache coherence based on the continuous moni-

toring of transfers on the bus done by every processor. In its most simple implementation,

each cache line of a processor can be either ‘valid’ or ‘invalid’. When processor X performs

a memory write, the data is written in its cache(X), and at the same time it is also written

in the system memory, accessing the AHB bus (write-through policy). Every other proces-

sor in the system, for instance processor Y, monitors the AHB bus for writes. If processor

Y detects that some other processor has performed a write of a memory element that is, at

that moment, in cache(Y), then processor Y marks the corresponding line of its cache as

‘invalid’. Reading a memory address that is in a cache line marked as ‘invalid’, will result

in a read miss. In this way cache coherency is guaranteed.

To perform cache snooping, every LEON3 processor, which is a master on the AHB

bus, has also access to the slave inputs of the AHB bus. It is not considered by the system

a slave and it uses the slave input lines only to perform snooping. In the next section, it

will be clear how the AMBA AHB signals are structured, as master outputs and inputs,

and slave outputs and inputs. Further details of the signals as they are implemented in

the LEON 3 system and GRLIB’s AHB Controller are provided in Section 1.5.

1.4 The AMBA AHB 2.0 Architecture

The Advanced Microcontroller Bus Architecture (AMBA) is a set of architectural and

protocol specifications widely used in the industry. Since its inception, its scope has gone
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far beyond microcontroller devices and is now widely used in a number of ASIC and SoC

parts, including most of the application processors used in modern portable devices such

as smartphones and tablets. It was first introduced by ARM, and in its second version

expanded its specification to include the AMBA High-Performance Bus (AHB), a single

clock-edge protocol, which is one of the subjects of this thesis. The AMBA protocol is today

the de facto standard for 32-bit embedded processors, as it is open source, well documented

and finally usable without royalties. Another important feature of the standard is that it

promotes reusability of designs by defining a common back-bone through specifications.

The AMBA Specification 2.0 (6) defines an on-chip communication standard for design-

ing high-performance embedded microcontrollers. Three distinct buses are defined within

the AMBA specification:

• the Advanced High-performance Bus (AHB)

• the Advanced System Bus (ASB)

• the Advanced Peripheral Bus (APB)

We will focus on AHB, as it is the standard used in the LEON 3 processor for com-

munication among cores, memories and high speed peripherals. This section will give a

not-too-brief introduction to the wider AHB 2.0 standard, to make matters covered in

detail in the next chapters more comprehensible.
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1.4.1 Introducing the AMBA AHB

The AMBA AHB is a high-performance, high clock frequency system backbone bus for

system modules. AHB supports the efficient connection of processors, on-chip memories

and off-chip external memory interfaces with low-power peripheral macrocell functions.

AHB is also specified to ensure ease of use in an efficient design flow using synthesis and

automated test techniques. AMBA AHB implements many features required for high-

performance, high clock frequency systems, including:

• burst transfers

• split transactions

• single-cycle bus master handover

• single-clock edge operation

• non-tristate implementation

• wider data bus configurations (64/128 bits).

An AMBA AHB design may contain one or more bus masters, typically a system would

contain at least the processor and test interface. However, it would also be common for

a Direct Memory Access (DMA) or Digital Signal Processor (DSP) to be included as bus

masters.

The external memory interface, APB bridge and any internal memory are the most

common AHB slaves. Any other peripheral in the system could also be included as an

AHB slave. However, low-bandwidth peripherals typically reside on the APB.
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A typical AMBA AHB system design contains the following components:

AHB master A bus master is able to initiate read and write operations by providing

an address and control information. Only one bus master is allowed to

actively use the bus at any one time.

AHB slave A bus slave responds to a read or write operation within a given address-

space range. The bus slave signals back to the active master the success,

failure or waiting of the data transfer.

AHB arbiter The bus arbiter ensures that only one bus master at a time is allowed

to initiate data transfers. Even though the arbitration protocol is fixed,

any arbitration algorithm, such as highest priority or fair access can be

implemented depending on the application requirements.

An AHB would include only one arbiter, although this would be trivial

in single bus master systems.

AHB decoder The AHB decoder is used to decode the address of each transfer and

provide a select signal for the slave that is involved in the transfer.

A single centralized decoder is required in all AHB implementations.

It is important to note that the GRLIB implementation of the AHB arbiter, also in-

cludes the AHB decoder and bus structure, all of which is condensed in the AHB Arbiter

entity. In the GRLIB framework, each slave and master provide the plug&play information

statically by the means of a configuration record that goes to the AHB Controller. The
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plug&play information includes the memory mapping areas, cacheability, device identifica-

tion, and the like. This mechanism will be further explored in Section 1.5.

1.4.2 Bus Interconnection

The AMBA AHB bus protocol is designed to be used with a central multiplexer inter-

connection scheme. Using this scheme all bus masters drive out the address and control

signals indicating the transfer they wish to perform and the arbiter determines which mas-

ter has its address and control signals routed to all of the slaves. A central decoder is

also required to control the read data and response signal multiplexer, which selects the

appropriate signals from the slave that is involved in the transfer. Figure 5 illustrates the

structure required to implement an AMBA AHB design with three masters and four slaves.

1.4.3 Overview of AMBA AHB operation

Before an AMBA AHB transfer can commence the bus master must be granted access

to the bus. This process is started by the master asserting a request signal to the arbiter.

Then the arbiter indicates when the master will be granted use of the bus.

A granted bus master starts an AMBA AHB transfer by driving the address and control

signals. These signals provide information on the address, direction and width of the

transfer, as well as an indication if the transfer forms part of a burst. Two different forms

of burst transfers are allowed:

• incrementing bursts, which do not wrap at address boundaries

• wrapping bursts, which wrap at particular address boundaries.
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3.2 Bus interconnection
The AMBA AHB bus protocol is designed to be used with a central multiplexor 
interconnection scheme. Using this scheme all bus masters drive out the address and 
control signals indicating the transfer they wish to perform and the arbiter determines 
which master has its address and control signals routed to all of the slaves. A central 
decoder is also required to control the read data and response signal multiplexor, which 
selects the appropriate signals from the slave that is involved in the transfer.

Figure 3-2 illustrates the structure required to implement an AMBA AHB design with 
three masters and four slaves.

Figure 3-2 Multiplexor interconnection
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Figure 5. Multiplexer interconnection
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A write data bus is used to move data from the master to a slave, while a read data

bus is used to move data from a slave to the master.

Every transfer consists of:

• an address and control cycle

• one or more cycles for the data.

The address cannot be extended and therefore all slaves must sample the address during

this time. The data, however, can be extended using the HREADY signal. When LOW

this signal causes wait states to be inserted into the transfer and allows extra time for the

slave to provide or sample data.

During a transfer the slave shows the status using the response signals, HRESP[1:0]:

OKAY The OKAY response is used to indicate that the transfer is

progressing normally and when HREADY goes HIGH this

shows the transfer has completed successfully.

ERROR The ERROR response indicates that a transfer error has oc-

curred and the transfer has been unsuccessful.

RETRY and SPLIT Both the RETRY and SPLIT transfer responses indicate that

the transfer cannot complete immediately, but the bus master

should continue to attempt the transfer.

In normal operation a master is allowed to complete all the transfers in a particular

burst before the arbiter grants another master access to the bus. However, in order to
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avoid excessive arbitration latencies, it is possible for the arbiter to break up a burst and

in such cases the master must re-arbitrate for the bus in order to complete the remaining

transfers in the burst.

1.4.4 Basic transfer

An AHB transfer consists of two distinct sections:

• The address phase, which lasts only a single cycle.

• The data phase, which may require several cycles. This is achieved using the HREADY

signal.

Figure 6 shows the simplest transfer, one with no wait states.

In a simple transfer with no wait states:

• The master drives the address and control signals onto the bus after the rising edge

of HCLK.

• The slave then samples the address and control information on the next rising edge

of the clock.

• After the slave has sampled the address and control it can start to drive the appro-

priate response and this is sampled by the bus master on the third rising edge of the

clock.

This simple example demonstrates how the address and data phases of the transfer

occur during different clock periods. In fact, the address phase of any transfer occurs
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3.4 Basic transfer

An AHB transfer consists of two distinct sections:
• The address phase, which lasts only a single cycle.
• The data phase, which may require several cycles. This is achieved using the 

HREADY signal.

Figure 3-3 shows the simplest transfer, one with no wait states. 

Figure 3-3 Simple transfer

In a simple transfer with no wait states:

• The master drives the address and control signals onto the bus after the rising 
edge of HCLK. 

• The slave then samples the address and control information on the next rising 
edge of the clock. 

Address phase Data phase

HCLK

Control

HADDR[31:0]

HWDATA[31:0]

HREADY

A

Control

Data
(A)

HRDATA[31:0]
Data
(A)

Figure 6. Simple transfer
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during the data phase of the previous transfer. This overlapping of address and data is

fundamental to the pipelined nature of the bus and allows for high performance operation,

while still providing adequate time for a slave to provide the response to a transfer.

A slave may insert wait states into any transfer, as shown in Figure 7, which extends

the transfer allowing additional time for completion.

AMBA AHB
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• After the slave has sampled the address and control it can start to drive the 
appropriate response and this is sampled by the bus master on the third rising 
edge of the clock.

This simple example demonstrates how the address and data phases of the transfer occur 
during different clock periods. In fact, the address phase of any transfer occurs during 
the data phase of the previous transfer. This overlapping of address and data is 
fundamental to the pipelined nature of the bus and allows for high performance 
operation, while still providing adequate time for a slave to provide the response to a 
transfer.

A slave may insert wait states into any transfer, as shown in Figure 3-4, which extends 
the transfer allowing additional time for completion. 

Figure 3-4 Transfer with wait states

Note
For write operations the bus master will hold the data stable throughout the extended 
cycles. 

For read transfers the slave does not have to provide valid data until the transfer is about 
to complete.
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Control

HADDR[31:0]
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Figure 7. Transfer with wait states
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Note: For write operations the bus master will hold the data stable throughout the

extended cycles. For read transfers the slave does not have to provide valid data until the

transfer is about to complete.

When a transfer is extended in this way it will have the side-effect of extending the

address phase of the following transfer. This is illustrated in Figure 8 which shows three

transfers to unrelated addresses, A, B & C.AMBA AHB
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When a transfer is extended in this way it will have the side-effect of extending the 
address phase of the following transfer. This is illustrated in Figure 3-5 which shows 
three transfers to unrelated addresses, A, B & C. 

Figure 3-5 Multiple transfers

In Figure 3-5:

• the transfers to addresses A and C are both zero wait state

• the transfer to address B is one wait state 

• extending the data phase of the transfer to address B has the effect of extending 
the address phase of the transfer to address C.
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Figure 8. Multiple transfers

In Figure 8:
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• the transfers to addresses A and C are both zero wait state

• the transfer to address B is one wait state

• extending the data phase of the transfer to address B has the effect of extending the

address phase of the transfer to address C.

1.4.4.1 Transfer type

Every transfer can be classified into one of four different types, as indicated by the

HTRANS[1:0] signals as shown in Table I.

1.4.5 Burst Operation

Four, eight and sixteen-beat bursts are defined in the AMBA AHB protocol, as well as

undefined-length bursts and single transfers. Both incrementing and wrapping bursts are

supported in the protocol:

• Incrementing bursts access sequential locations and the address of each transfer in

the burst is just an increment of the previous address.

• For wrapping bursts, if the start address of the transfer is not aligned to the total

number of bytes in the burst (size x beats) then the address of the transfers in the

burst will wrap when the boundary is reached. For example, a four-beat wrapping

burst of word (4-byte) accesses will wrap at 16-byte boundaries. Therefore, if the

start address of the transfer is 0x34, then it consists of four transfers to addresses

0x34, 0x38, 0x3C and 0x30.
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TABLE I

TRANSFER TYPE ENCODING

HTRANS[1:0] Type Description

00 IDLE Indicates that no data transfer is required. The IDLE
transfer type is used when a bus master is granted the
bus, but does not wish to perform a data transfer. Slaves
must always provide a zero wait state OKAY response to
IDLE transfers and the transfer should be ignored by the
slave.

01 BUSY The BUSY transfer type allows bus masters to insert
IDLE cycles in the middle of bursts of transfers. This
transfer type indicates that the bus master is continuing
with a burst of transfers, but the next transfer cannot
take place immediately. When a master uses the BUSY
transfer type the address and control signals must reflect
the next transfer in the burst. The transfer should be
ignored by the slave. Slaves must always provide a zero
wait state OKAY response, in the same way that they
respond to IDLE transfers.

10 NONSEQ Indicates the first transfer of a burst or a single transfer.
The address and control signals are unrelated to the pre-
vious transfer. Single transfers on the bus are treated as
bursts of one and therefore the transfer type is NONSE-
QUENTIAL.

11 SEQ The remaining transfers in a burst are SEQUENTIAL
and the address is related to the previous transfer. The
control information is identical to the previous transfer.
The address is equal to the address of the previous trans-
fer plus the size (in bytes). In the case of a wrapping
burst the address of the transfer wraps at the address
boundary equal to the size (in bytes) multiplied by the
number of beats in the transfer (either 4, 8 or 16).
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Burst information is provided using HBURST[2:0] and the eight possible types are

defined in Table II.

An incrementing burst can be of any length, but the upper limit is set by the fact that

the address must not cross a 1kB boundary.

Note: The burst size indicates the number of beats in the burst, not the number

of bytes transferred. The total amount of data transferred in a burst is calculated by

multiplying the number of beats by the amount of data in each beat, as indicated by

HSIZE[2:0].

All transfers within a burst must be aligned to the address boundary equal to the size

of the transfer. For example, word transfers must be aligned to word address boundaries

(that is A[1:0] = 00), halfword transfers must be aligned to halfword address boundaries

(that is A[0] = 0).

Bursts must not cross a 1kB address boundary. Therefore it is important that masters

do not attempt to start a fixed-length incrementing burst which would cause this boundary

to be crossed.

It is acceptable to perform single transfers using an unspecified-length incrementing

burst which only has a burst of length one.

1.4.6 Address Decoding

A central address decoder is used to provide a select signal, HSELx, for each slave

on the bus. The select signal is a combinatorial decode of the high-order address signals,
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TABLE II

BURST SIGNAL ENCODING

HBURST[2:0] Type Description

000 SINGLE Single transfer

001 INCR Incrementing burst of unspecified length

010 WRAP4 4-beat wrapping burst

011 INCR4 4-beat incrementing burst

100 WRAP8 8-beat wrapping burst

101 INCR8 8-beat incrementing burst

110 WRAP16 16-beat wrapping burst

111 INCR16 16-beat incrementing burst

and simple address decoding schemes are encouraged to avoid complex decode logic and

to ensure high-speed operation.

A slave must only sample the address and control signals and HSELx when HREADY

is HIGH, indicating that the current transfer is completing. Under certain circumstances it

is possible that HSELx will be asserted when HREADY is LOW, but the selected slave

will have changed by the time the current transfer completes.

The minimum address space that can be allocated to a single slave is 1kB. All bus

masters are designed such that they will not perform incrementing transfers over a 1kB

boundary, thus ensuring that a burst never crosses an address decode boundary.

In the case where a system design does not contain a completely filled memory map

an additional default slave should be implemented to provide a response when any of the
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nonexistent address locations are accessed. If a NONSEQUENTIAL or SEQUENTIAL

transfer is attempted to a nonexistent address location then the default slave should provide

an ERROR response. IDLE or BUSY transfers to nonexistent locations should result

in a zero wait state OKAY response. Typically the default slave functionality will be

implemented as part of the central address decoder.

1.4.7 Slave transfer response

After a master has started a transfer, the slave then determines how the transfer should

progress. No provision is made within the AHB specification for a bus master to cancel a

transfer once it has commenced.

Whenever a slave is accessed it must provide a response which indicates the status

of the transfer. The HREADY signal is used to extend the transfer and this works

in combination with the response signals, HRESP[1:0], which provide the status of the

transfer. The slave can complete the transfer in a number of ways. It can:

• complete the transfer immediately

• insert one or more wait states to allow time to complete the transfer

• signal an error to indicate that the transfer has failed

• delay the completion of the transfer, but allow the master and slave to back off the

bus, leaving it available for other transfers.



26

1.4.7.1 Transfer done

The HREADY signal is used to extend the data portion of an AHB transfer. When

LOW the HREADY signal indicates the transfer is to be extended and when HIGH

indicates that the transfer can complete.

Note: Every slave must have a predetermined maximum number of wait states that

it will insert before it backs off the bus, in order to allow the calculation of the latency of

accessing the bus. It is recommended, but not mandatory, that slaves do not insert more

than 16 wait states to prevent any single access locking the bus for a large number of clock

cycles.

1.4.7.2 Transfer response

A typical slave will use the HREADY signal to insert the appropriate number of wait

states into the transfer and then the transfer will complete with HREADY HIGH and an

OKAY response, which indicates the successful completion of the transfer.

The ERROR response is used by a slave to indicate some form of error condition with

the associated transfer. Typically this is used for a protection error, such as an attempt to

write to a read-only memory location.

The SPLIT and RETRY response combinations allow slaves to delay the completion of

a transfer, but free up the bus for use by other masters. These response combinations are

usually only required by slaves that have a high access latency and can make use of these
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response codes to ensure that other masters are not prevented from accessing the bus for

long periods of time.

SPLIT operation support is not mandatory and not covered in this thesis, while we will

frequently use the RETRY operation in the dummy slaves that we will describe further on

in Chapter 3, a fundamental part of the crossbar design that we will implement.

The encoding of HRESP[1:0], the transfer response signals, and a description of each

response are shown in Table III.

When it is necessary for a slave to insert a number of wait states prior to deciding what

response will be given then it must drive the response to OKAY.

1.4.8 Two-cycle response

Only an OKAY response can be given in a single cycle. The ERROR, SPLIT and

RETRY responses require at least two cycles. To complete with any of these responses

then in the penultimate (one before last) cycle the slave drives HRESP[1:0] to indicate

ERROR, RETRY or SPLIT while driving HREADY LOW to extend the transfer for

an extra cycle. In the final cycle HREADY is driven HIGH to end the transfer, while

HRESP[1:0] remains driven to indicate ERROR, RETRY or SPLIT.

If the slave needs more than two cycles to provide the ERROR, SPLIT or RETRY

response then additional wait states may be inserted at the start of the transfer. During

this time the HREADY signal will be LOW and the response must be set to OKAY.

The two-cycle response is required because of the pipelined nature of the bus. By the

time a slave starts to issue either an ERROR, SPLIT or RETRY response then the address
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TABLE III

RESPONSE ENCODING

HRESP[1] HRESP[0] Response Description

0 0 OKAY When HREADY is HIGH this shows the
transfer has completed successfully. The
OKAY response is also used for any additional
cycles that are inserted, with HREADY
LOW, prior to giving one of the three other
responses.

0 1 ERROR This response shows an error has occurred.
The error condition should be signaled to the
bus master so that it is aware the transfer
has been unsuccessful. A two-cycle response
is required for an error condition.

1 0 RETRY The RETRY response shows the transfer has
not yet completed, so the bus master should
retry the transfer. The master should con-
tinue to retry the transfer until it completes.
A two-cycle RETRY response is required.

1 1 SPLIT The transfer has not yet completed success-
fully. The bus master must retry the transfer
when it is next granted access to the bus. The
slave will request access to the bus on behalf
of the master when the transfer can complete.
A two-cycle SPLIT response is required.
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for the following transfer has already been broadcast onto the bus. The two-cycle response

allows sufficient time for the master to cancel this address and drive HTRANS[1:0] to

IDLE before the start of the next transfer.

For the SPLIT and RETRY response the following transfer must be canceled because

it must not take place before the current transfer has completed. However, for the ERROR

response, where the current transfer is not repeated, completion of the following transfer

is optional.

AMBA AHB
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3.9.3 Two-cycle response

Only an OKAY response can be given in a single cycle. The ERROR, SPLIT and 
RETRY responses require at least two cycles. To complete with any of these responses 
then in the penultimate (one before last) cycle the slave drives HRESP[1:0] to indicate 
ERROR, RETRY or SPLIT while driving HREADY LOW to extend the transfer for an 
extra cycle. In the final cycle HREADY is driven HIGH to end the transfer, while 
HRESP[1:0] remains driven to indicate ERROR, RETRY or SPLIT.

If the slave needs more than two cycles to provide the ERROR, SPLIT or RETRY 
response then additional wait states may be inserted at the start of the transfer. During 
this time the HREADY signal will be LOW and the response must be set to OKAY.

The two-cycle response is required because of the pipelined nature of the bus. By the 
time a slave starts to issue either an ERROR, SPLIT or RETRY response then the 
address for the following transfer has already been broadcast onto the bus. The two-
cycle response allows sufficient time for the master to cancel this address and drive 
HTRANS[1:0] to IDLE before the start of the next transfer.

For the SPLIT and RETRY response the following transfer must be cancelled because 
it must not take place before the current transfer has completed. However, for the 
ERROR response, where the current transfer is not repeated, completion of the 
following transfer is optional.

Figure 3-13 shows an example of a RETRY operation. 

Figure 3-13 Transfer with retry response
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Figure 9. Transfer with retry response
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Figure 9 shows an example of a RETRY operation where the following events are

illustrated:

• The master starts with a transfer to address A.

• Before the response is received for this transfer the master moves the address on to

A + 4.

• The slave at address A is unable to complete the transfer immediately and therefore

it issues a RETRY response. This response indicates to the master that the transfer

at address A is unable to complete and so the transfer at address A + 4 is canceled

and replaced by an IDLE transfer.

Further details and coverage of the AMBA AHB 2.0 standard can be found in (6).

1.5 The AMBA AHB Controller

The AMBA AHB Controller, which is part of GRLIB, is the base upon which I con-

ducted my feasibility studies for the AHB compliant crossbar structure and arbiter which I

realized. This Section describes its structure and implementation, together with some key

configuration parameters that were mostly transposed and used in my implementation. It

is worth noticing that the code style of this entity is the one used in most of GRLIB, and

which is described in (7), authored by Jiri Gaisler, one of the main contributors of GRLIB.

I will further describe it in Section 2.1.
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1.5.1 Overview

The AMBA AHB Controller is a combined AHB arbiter, bus multiplexer and slave

decoder according to the AMBA 2.0 standard.

The controller supports up to 16 AHB masters, and 16 AHB slaves. The maximum

number of masters and slaves are defined in the GRLIB AMBA package, in the VHDL

constants NAHBSLV and NAHBMST. It can also be set with the nahbm and nahbs

VHDL generics.

AEROFLEX GAISLER 49 GRIP

4 AHBCTRL - AMBA AHB controller with plug&play support

4.1 Overview

The AMBA AHB controller is a combined AHB arbiter, bus multiplexer and slave decoder according
to the AMBA 2.0 standard.
The controller supports up to 16 AHB masters, and 16 AHB slaves. The maximum number of masters
and slaves are defined in the GRLIB.AMBA package, in the VHDL constants NAHBSLV and NAH-
BMST. It can also be set with the nahbm and nahbs VHDL generics.

Figure 3. AHB controller block diagram

4.2 Operation

4.2.1 Arbitration

The AHB controller supports two arbitration algorithms: fixed-priority and round-robin. The selection
is done by the VHDL generic rrobin. In fixed-priority mode (rrobin = 0), the bus request priority is
equal to the master’s bus index, with index 0 being the lowest priority. If no master requests the bus,
the master with bus index 0 (set by the VHDL generic defmast) will be granted.
In round-robin mode, priority is rotated one step after each AHB transfer. If no master requests the
bus, the last owner will be granted (bus parking). The VHDL generic mprio can be used to specify one
or more masters that should be prioritized when the core is configured for round-robin mode.
During incremental bursts, the AHB master should keep the bus request asserted until the last access
as recommended in the AMBA 2.0 specification, or it might loose bus ownership. For fixed-length
burst, the AHB master will be granted the bus during the full burst, and can release the bus request
immediately after the first access has started. For this to work however, the VHDL generic fixbrst
should be set to 1.

4.2.2 Decoding

Decoding (generation of HSEL) of AHB slaves is done using the plug&play method explained in the
GRLIB User’s Manual. A slave can occupy any binary aligned address space with a size of 1 - 4096
Mbyte. A specific I/O area is also decoded, where slaves can occupy 256 byte - 1 Mbyte. The default
address of the I/O area is 0xFFF00000, but can be changed with the ioaddr and iomask VHDL gener-
ics. Access to unused addresses will cause an AHB error response.

MASTER MASTER

SLAVESLAVE

ARBITER/
DECODER

AHBCTRL

Figure 10. AHB controller block diagram

As shown in Figure 10, the master outputs are fed to the controller module as a vector.

Once the master-slave couple is selected by the arbitration logic, the master’s output will

be selected by the appropriate multiplexer to be routed as the slave input signal. The signal
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is fed to all the slaves. The same happens for the slave outputs. The master’s selected slave

is routed by a multiplexer to be the input for all the masters. Only the granted master

then reads its input, and only the selected slave reads its own input. The other modules

in the system simply ignore their inputs when they are not granted (HGRANTx signal

for masters) or selected (HSELx signal for slaves).

1.5.2 Arbitration

The AHB controller supports two arbitration algorithms: fixed-priority and round-robin

(5). The selection is done by the VHDL generic rrobin. In fixed-priority mode (rrobin =

0), the bus request priority is equal to the master’s bus index, with index 0 being the lowest

priority. If no master requests the bus, the master with bus index 0 (set by the VHDL

generic defmast) will be granted.

In round-robin mode, priority is rotated one step after each AHB transfer. If no master

requests the bus, the last owner will be granted (bus parking). The VHDL generic mprio

can be used to specify one or more masters that should be prioritized when the core is

configured for round-robin mode.

During incremental bursts, the AHB master should keep the bus request asserted until

the last access as recommended in the AMBA 2.0 specification, or it might loose bus

ownership. For fixed-length burst, the AHB master will be granted the bus during the full

burst, and can release the bus request immediately after the first access has started. For

this to work however, the VHDL generic fixbrst should be set to 1.
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1.5.3 Decoding

Decoding (generation of HSEL, see Subsection 1.4.6) of AHB slaves is done using the

plug&play method explained in the GRLIB User’s Manual (4). A slave can occupy any

binary aligned address space with a size of 1 – 4096 Mbyte. A specific I/O area is also

decoded, where slaves can occupy 256 byte – 1 Mbyte. The default address of the I/O area

is 0xFFF00000, but can be changed with the ioaddr and iomask VHDL generics. Access

to unused addresses will cause an AHB error response.

1.5.4 Plug & Play information

GRLIB devices contain a number of plug&play information words which are included in

the AHB records they drive on the bus (see the GRLIB user’s manual (4) for more informa-

tion). These records are combined into an array which is connected to the AHB controller

unit. The plug&play information is mapped on a read-only address area, defined by the

cfgaddr and cfgmask VHDL generics, in combination with the ioaddr and iomask VHDL

generics. By default, the area is mapped on address 0xFFFFF000 – 0xFFFFFFFF. The

master information is placed on the first 2 kbyte of the block (0xFFFFF000 – 0xFFFFF800),

while the slave information is placed on the second 2 kbyte block. Each unit occupies 32

bytes, which means that the area has place for 64 masters and 64 slaves. The address of

the plug&play information for a certain unit is defined by its bus index. The address for

masters is thus 0xFFFFF000 + n*32, and 0xFFFFF800 + n*32 for slaves.
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4.2.3 Plug&play information

GRLIB devices contain a number of plug&play information words which are included in the AHB
records they drive on the bus (see the GRLIB user’s manual for more information). These records are
combined into an array which is connected to the AHB controller unit.
The plug&play information is mapped on a read-only address area, defined by the cfgaddr and cfg-
mask VHDL generics, in combination with the ioaddr and iomask VHDL generics. By default, the
area is mapped on address 0xFFFFF000 - 0xFFFFFFFF. The master information is placed on the first
2 kbyte of the block (0xFFFFF000 - 0xFFFFF800), while the slave information is placed on the sec-
ond 2 kbyte block. Each unit occupies 32 bytes, which means that the area has place for 64 masters
and 64 slaves. The address of the plug&play information for a certain unit is defined by its bus index.
The address for masters is thus 0xFFFFF000 + n*32, and 0xFFFFF800 + n*32 for slaves.

Figure 4. AHB plug&play information record

4.3 AHB split support

AHB SPLIT functionality is supported if the split VHDL generic is set to 1. In this case, all slaves
must drive the AHB SPLIT signal.
It is important to implement the split functionality in slaves carefully since locked splits can otherwise
easily lead to deadlocks. A locked access to a slave which is currently processing (it has returned a
split response but not yet split complete) an access which it returned split for to another master must
be handled first. This means that the slave must either be able to return an OKAY response to the
locked access immediately or it has to split it but return split complete to the master performing the
locked transfer before it has finished the first access which received split.

4.4 AHB bus monitor

An AHB bus monitor is integrated into the core. It is enabled with the enbusmon generic. It has the
same functionality as the AHB and arbiter parts in the AMBA monitor core (AMBAMON). For more
information on which rules are checked se the AMBAMON documentation.

4.5 Registers

The core does not implement any registers.

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 5 4 0

31 20 19 16 15 4 3 0

Identification Register 00

10 9

HADDR P MASK TYPEC0 0ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

Bank Address Registers

USER-DEFINED

USER-DEFINED

USER-DEFINED

00

04

08

10

14

18

1C

0C

18 17

BAR0

BAR1

BAR2

BAR3

C = Cacheable
P = Prefetchable TYPE

0010 = AHB Memory space
0011 = AHB I/O space

0001 = APB I/O space

Figure 11. AHB plug&play information record

Further details, like configuration options, signal descriptions and how to instantiate

the entity in a project can be found in (5).



CHAPTER 2

APPROACH

In order to complete the task of building and integrating my projected design entity

inside GRLIB, I decided to base all of my work on an already available and productive

design methodology. I chose to adhere to the style in which most of GRLIB is already

written, that is the structured VHDL approach described by Jiri Gaisler 1 (7).

Courtesy of my home university, “Politecnico di Torino”, I was given access to a license

of Mentor Graphics’ ModelSim and a remote account on a workstation on the internal

university network. This chapter will describe in detail how I proceeded in laying down

the basis for the project and creation of my final entity.

2.1 Structured VHDL method

The VHDL language was developed to allow modeling of digital hardware. When the

language was first put to use, it was used for high-level behavioral simulation only (8).

‘Synthesis’ into VLSI devices was carried out by manually converting the models into

schematics using gates and building blocks from a target library. However, manual conver-

sion tended to be error-prone, and was likely to invalidate the effort of system simulation.

To address this problem, VHDL synthesis tools that could convert VHDL code directly to

1the founder of Gaisler Research, upon which GRLIB takes its name.
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a technology netlist started to emerge on the market at the beginning of 1990’s. Since the

VHDL code could now be directly synthesized, the development of the models was primar-

ily made by digital hardware designers rather than software engineers. Hardware engineers

were used to schematic entry as design method, and their usage of VHDL resembled the

dataflow design style of schematics. The functionality was coded using a mix of concurrent

statements and short processes, each describing a limited piece of functionality such as

a register, multiplexer, adder or state machine. In the early 1990’s, such a design style

was acceptable since the complexity of the circuits was relatively low (<50 Kgates) and

the synthesis tools could not handle more complex VHDL structures. However, today the

device complexity can reach several millions of gates, and synthesis tools accept a much

larger part of the VHDL standard. It should therefore be possible to use a more modern

and efficient VHDL design method than the traditional ‘dataflow’ version.

In order to overcome the limitations of this classical ‘dataflow’ design style, a ‘two-

process’ coding method is proposed: one process contains all combinational logic, whereas

the other process infers all (and only) the registers.

2.1.1 Traditional VHDL design methodology

The most commonly used design ‘style’ for synthesizable VHDL models is what can be

called the ‘dataflow’ style. A larger number of concurrent VHDL statements and small pro-

cesses connected through signals are used to implement the desired functionality. Reading

and understanding dataflow VHDL code is difficult since the concurrent statements and

processes do not execute in the order they are written, but whenever any one of their input
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signals changes value. It is not uncommon that to extract the functionality of dataflow

code, a block diagram has to be drawn to identify the dataflow and dependencies among

the statements. The readability of dataflow VHDL code can be compared to an ordinary

schematic where the wires connecting the various blocks have been removed, and the block

inputs and outputs are just labeled with signal names!

A problem with the dataflow method is also the low abstraction level. The functionality

is coded with simple constructs typically consisting of multiplexers, bit-wise operators and

conditional assignments (if-then-else). The overall algorithm (e.g. non-restoring division)

might be very difficult to recognize and debug.

Yet, there is another issue is simulation time: the assignment of a signal takes approxi-

mately 100 times longer than assigning a variable in a VHDL process. This is because the

various signal attributes must be updated, and the driving event added to the event queue.

With many concurrent statements and processes, a larger proportion of the simulator time

will be spent managing signals and scheduling processes and concurrent statements.

2.1.2 Proposed structured design method

To overcome the limitations of the dataflow design style, a new ‘two-process’ coding

method is proposed. The method is applicable to any synchronous single-clock design,

which represents the majority of all designs. The goal of the two-process method is to:

• Provide uniform algorithm encoding

• Increase abstraction level
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• Improve readability

• Clearly identify sequential logic

• Simplify debugging

• Improve simulation speed

• Provide one model for both synthesis and simulation

The above goals are reached with surprisingly simple means:

• Using record types in all port and signal declarations

• Only using two processes per entity

• Using high-level sequential statements to code the algorithm

The biggest difference between a program in VHDL and standard programming lan-

guage like C, is that VHDL allows concurrent statements and processes that are scheduled

for execution by events rather than in the order they are written. Indeed, this reflects the

dataflow behavior of real hardware, but becomes difficult to understand and analyze when

the number of concurrent statements passes some threshold (e.g. 50). On the other hand,

analyzing the behavior of programs written in sequential programming languages does not

become a problem even if the program tends to grow, since there is only one thread of

control and execution is done sequentially from top to bottom.

In order to improve readability and provide a uniform way of encoding the algorithm

of a VHDL entity, the two-process method only uses two processes per entity: one process
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that contains all combinational (asynchronous) logic, and one process that contains all

sequential logic (registers). Using this structure, the complete algorithm can be coded in

sequential (non-concurrent) statements in the combinational process while the sequential

process only contains registers, i.e. the state.
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The above goals are reached with suprisingly simple means:
• Using record types in all port and signal declarations
• Only using two processes per entity
• Using high-level sequential statements to code the algorithm
The following section will outline how the two-process method works and how it com-
pares with the traditional dataflow method.

5.4 Using two processes per entity
The biggest difference between a program in VHDL and standard programming lan-
guage such C, is that VHDL allows concurrent statements and processes that are sched-
uled for execution by events rather than in then order they are written. This reflects
indeed the dataflow behaviour of real hardware, but becomes difficult to understand
and analyse when the number of concurrent statments passes some threashold (e.g. 50).
On the other hand, analysing the behaviour of programs witten in sequential program-
ming languages does not become a problem even if the program tends to grow, since
there is only one thread of control and execution is done sequentially from top to bot-
tom.
In order to improve readability and provide a uniform way of encode the algorithm of
a VHDL entity, the two-process method only uses two processes per entity: one process
that contains all combinational (asynchronous) logic, and one process that contains all
sequential logic (registers). Using this structure, the complete algorithm can be coded
in sequential (non-concurrent) statements in the combinational process while the
sequential process only contains registers, i.e. the state.

Figure 20 above shows a block diagram of a two-process entity. Inputs to the entity are
denoted D and connected to the combinational process. The inputs to the sequential
process are denoted rin and driven by the combinational process. In the sequential proc-
ess, the inputs (rin) are copied to the outputs (r) on the clock edge,
The functionality of the combinational process can be described in two equations:

Q = fq(D, r) rin = fr(D, r)
Given that the sequential process only perform a latching of the state vector, the two
functions are enough to express the overall functionality of the entity.

Figure 20: Generic two-process circuit

Combinational

Sequential

D Q

Clk

r

rin
r = rin

Q = fq(D, r)

rin = fr(D,r)

Figure 12. Generic two-process circuit

Figure 12 shows a block diagram of a two-process entity. Inputs to the entity are

denoted by D and connected to the combinational process. The inputs to the sequential

process are denoted by rin and driven by the combinational process. In the sequential

process, the inputs (rin) are copied to the outputs (r) on the clock edge.
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The functionality of the combinational process can be described by means of two equa-

tions:

Q = fq(D, r)

rin = fr(D, r)

Given that the sequential process only performs a latching of the state vector, the two

functions are enough to express the overall functionality of the entity.

2.1.3 Using record types

The port interface list can, for complex IP blocks, consist of several hundreds of signals.

Using the standard dataflow method, the signals are not grouped into more complex data

types but just listed sequentially. The most common data types are scalar types and

one-dimensional arrays (buses). Having a port list of several hundreds of signals makes it

difficult not only to understand which signals functionally belong together, but also to add

and remove signals. Each modification to the interface list has to be made at three separate

locations: the entity declaration, the entity’s component declaration, and the component

instantiation (adding a port map).

By using record types to group associated signals, the port list becomes both shorter

and more readable. The signals are grouped according to functionality and direction (in

or out). The record types can be declared in a common global ‘interface’ package which is

imported in each module. Alternatively, the record types can be declared together with the
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entity’s component declaration in a ‘component’ package. This package is then imported

into those modules where the component is used. A modification to the interface list using

record types corresponds to adding or removing an element in one of the record types.

This is done only in one single place, the package where the record type is declared. Any

changes to this package will automatically propagate to the component declaration and the

entity’s component instantiation, avoiding time-consuming and error-prone manual editing.

Similar problems arise when more registers are added. For each register, two signals have

to be declared (register input and output), the register output signal has to be added to

the sensitivity list of the combinational process, and an assignment statement added to

the sequential process. By grouping all signals used for registers into one record type, this

becomes unnecessary. The rin and r signals becomes records, and adding register is done

by simply adding a new element in the register record type definition.

Below is the count8 example using records for port and register signals. The load and

count inputs are now latched before being used, and a zero flag has been added:

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
package count8 comp i s −− component d e c l a r a t i on package

type count8 in type i s record
load : s t d l o g i c ;
count : s t d l o g i c ;
din : s t d l o g i c v e c t o r (7 downto 0 ) ;

end ;

type count8 out type i s record
dout : s t d l o g i c v e c t o r (7 downto 0 ) ; ze ro : s t d l o g i c ;

end ;

component count8
port (
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c l k : in s t d l o g i c ;
d : in count8 in type ; q : out count8 out type ) ;

end component ;
end package ;

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . s t d l o g i c a r i t h . a l l ;
use work . count8 comp . a l l ;

entity count8 i s
port (

c l k : in s t d l o g i c ;
d : in count8 in type ; q : out count8 out type ) ;

end ;

architecture twoproc of count8 i s
type r eg type i s record

load : s t d l o g i c ;
count : s t d l o g i c ;
ze ro : s t d l o g i c ;
cva l : s t d l o g i c v e c t o r (7 downto 0 ) ;

end ;
signal r , r i n : r eg type ;

begin
comb : process (d , r ) −− combinat iona l proces s

variable v : r eg type ;
begin

v := r ; −− d e f a u l t assignment
v . load := d . load ; v . count := d . count ; −− ov e r r i d i n g ass ignments
v . zero := ’ 0 ’ ;
i f r . count = ’1 ’ then v . cva l := r . cva l + 1 ; end i f ; −− module a l gor i thm
i f r . load = ’1 ’ then v . cva l := d . data ; end i f ;
i f v . cva l = ”00000000” then v . zero := ’ 1 ’ ; end i f ;
r i n <= v ; −− d r i v e r e g i s t e r inpu t s
q . dout <= r . cva l ; q . ze ro <= r . zero ; −− d r i v e module ou tpu t s

end process ;

r eg s : process ( c l k ) −− s e q u e n t i a l p roces s
begin

i f r i s i n g e d g e ( c l k ) then r <= r in ; end i f ;
end process ;

end ;

Note the usage of variable v in the combinational process. The variable is of the register

record type, and assigned at the beginning of the process with the value of r, i.e. the current
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register values. At the end of the process, the register inputs rin are assigned with v. This

means that those elements of v which are not assigned during execution of the process will

maintain their values, i.e. the register value will not change.

A large benefit with using record types for the register signals rin and r, is that elements

can be added or removed without requiring any other modifications to the code. The

sensitivity list of the combinational process does not have to be modified, and neither does

the assignment of r <= rin in the sequential process. This is because the operation is

performed on the record as a whole, regardless of how many elements it has. In larger

blocks with many registers, readability can be improved by defining separate record types

for related registers.

The presented two-process method is a way of producing structured and readable VHDL

code, suitable for efficient simulation and synthesis. By defining a common coding style,

the algorithm can be easily identified and the code analyzed and maintained also by other

engineers rather than the main designer. Using sequential VHDL statements to code

the algorithm also allows the use of complex statements and a higher abstraction level.

Debugging and analysis is simplified due to the serial execution of statements, rather than

the parallel flow used in dataflow coding.

2.2 Framework structure and compilation

The basis for my practical understanding of the AMBA protocol was the behavior of the

LEON3 processor. I run several simulations of a working LEON system and I analyzed the

behavior of the AMBA bus signals. To do so, I configured the GRLIB framework to work
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in the ModelSim simulation environment. My objective was to configure a minimal LEON

3 system with a minimal set of modules plugged on the AHB bus, to be able to analyze

the system’s behavior in an easier way. This basic system needs to have two processing

cores, to inquire the multi-processing aspects of the LEON 3 system.

The system hardware simulation provided by the framework includes a test bench which

runs some simulated software tests on internal components on the simulated system. This

tests were replaced with some simplified ad-hoc software, a simple ‘hello world’ program.

The reason behind this was to study the compilation method used by the LEON 3 and to

find a way to run software on the simulated system for possible further development of my

work. The library organization and the process of configuration of the library are detailed

below.

2.2.1 Directory organization

GRLIB is organized around VHDL libraries, where each IP vendor is assigned a unique

library name. Each vendor is also assigned a unique subdirectory under grlib/lib in which

all vendor-specific source files and scripts are contained. The vendor-specific directory can

contain subdirectories, allowing for further partitioning among IP cores etc.

The basic directories delivered with GRLIB under grlib-1.0.x/lib are (4):

grlib packages with common data types and functions

gaisler Gaisler Research’s components and utilities

tech/* target technology libraries for gate level simulation
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techmap wrappers for technology mapping of macro cells (RAM, pads)

work components and packages in the VHDL work library

Other vendor-specific directories are also delivered with GRLIB, but are not necessary for

understanding the design concept. Libraries and IP cores are described in detail in separate

documentation (5).

2.2.2 LEON 3 Overview

Implementing a LEON 3 system is typically done by using one of the template designs

on the designs directory. I chose to start my configuration building on the already available

LEON 3 template design for the GR-XC3S-1500 board. Implementation is typically done

in three basic steps:

• Configuration of the design using xconfig

• Simulation of design and test bench

• Synthesis and place&route

The template design is located in designs/leon3-gr-xc3s-1500, and is based on three files:

config.vhd a VHDL package containing design configuration parameters. Au-

tomatically generated by the xconfig GUI tool.

leon3mp.vhd contains the top level entity and instantiates all on-chip IP cores.

It uses config.vhd to configure the instantiated IP cores.
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testbench.vhd test bench with external memory, emulating the GR-XC3S-1500

board.

Each core in the template design is configurable using VHDL generics. The value of these

generics is assigned from the constants declared in config.vhd, created with the xconfig GUI

tool.

2.2.3 LEON 3 Configuration

By issuing the command ‘make xconfig’ in a remote bash shell on the workstation,

I launched the xconfig GUI tool and modified the LEON 3 template design (the GR-

XC3S-1500 board). When the configuration is saved and xconfig is exited, the config.vhd

is automatically updated with the selected configuration. I configured a basic LEON

3 processor, disabling every module on the AHB bus that was unnecessary to a basic

configuration. The AHB modules that I retained in my final system design are the following:

• two LEON 3 cores

• the AHB Controller

• the SDRAM memory controller

• the LEON 3 Debug Support Unit

• the AHB/APB bridge

In addition the following APB modules were enabled:

• the Generic UART
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• the Multi-processor Interrupt Controller

• the Modular Timer Unit

2.2.4 Compilation of ad-hoc software

All software related to LEON 3 processor resides in the grlib/software/leon3 directory.

This directory holds the source code for the boot loader and the totality of the hardware

tests. This is also where I will keep future code which I intend to run on the machine.

The Makefile of this directory ensures that files will be compiled with the sparc-elf version

of GCC, and that the resulting executable and library files are packed into an S-record

binary file, an ASCII hexadecimal binary format that can be loaded directly into the

PROM/SDRAM. The sparc-elf version of GCC is part of BCC, the LEON Bare-C Cross

Compilation System, an essential part of the LEON toolchain. To build the software

package for the LEON 3 core, I had to run the ‘make soft’ command from inside the

designs/leon3-gr-xc3s-1500 directory. This command compiles a simple boot loader from

prom.s and the hardware tests. Everything is packed into a binary. The boot loader is

loaded into PROM, while the software is loaded into both SDRAM and SRAM. Eventually,

I modified the Makefile to build my Hello world software program and have it automatically

create the S-record file which is loaded during test bench simulation of my basic system.

The addition to the Makefile of the software/leon3 directory is the following:

h e l l o . exe : h e l l o . c
$ (XCC) $ (XCFLAGS) $ (VPATH)/ h e l l o . c $ (XLDFLAGS) −o h e l l o . exe

my−s o f t : prom . s r e c my−sram . s r e c my−sdram . s r e c
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my−sram . s r e c : h e l l o . exe
sparc−e l f−objcopy −O sr e c h e l l o . exe sram . s r e c

my−sdram . s r e c : h e l l o . exe
sparc−e l f−objcopy −O sr e c h e l l o . exe sdram . s r e c

My Hello world program consists of a single printf line. Again, by running the ‘make

my-soft’ command from inside the designs/leon3-gr-xc3s-1500 directory, I compiled and

built the SDRAM image which was then executed during the simulation.

2.2.5 Simulation

I simulated the design in a test bench emulating the basic prototype board described

in Subsection 2.2.3. The test bench includes an external SDRAM which is pre-loaded with

the ad-hoc program. The ‘make vsim’ command was issued to compile the VHDL code

inside ModelSim, then the ‘vsim testbench’ command started the simulation of my design.

A simulation log is shown below, including, at the very end, the output of my Hello world

program 1.

# LEON3 GR−XC3S−1500 Demonstration des ign
# GRLIB Vers ion 1 . 1 . 0 , bu i ld 4113
# Target techno logy : spartan3 , memory l i b r a r y : spartan3
# ahbc t r l : AHB a rb i t e r /mu l t i p l exe r rev 1
# ahbc t r l : Common I /O area d i s ab l ed
# ahbc t r l : AHB masters : 2 , AHB s l a v e s : 8
# ahbc t r l : Con f igurat ion area at 0 x f f f f f 0 0 0 , 4 kbyte
# ahbc t r l : mst0 : Ga i s l e r Research LEON3 SPARC V8 Proces sor
# ahbc t r l : mst1 : Ga i s l e r Research LEON3 SPARC V8 Proces sor
# ahbc t r l : s l v 0 : European Space Agency LEON2 Memory Cont r o l l e r
# ahbc t r l : memory at 0x00000000 , s i z e 512 Mbyte , cacheable , p r e f e t ch

1The accelerated UART tracing option was enabled before compiling the VHDL system. The
option ensures a faster hardware simulation of software functions like printf.
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# ahbc t r l : memory at 0x20000000 , s i z e 512 Mbyte
# ahbc t r l : memory at 0x40000000 , s i z e 1024 Mbyte , cacheable , p r e f e t ch
# ahbc t r l : s l v 1 : Ga i s l e r Research AHB/APB Bridge
# ahbc t r l : memory at 0x80000000 , s i z e 1 Mbyte
# ahbc t r l : s l v 2 : Ga i s l e r Research LEON3 Debug Support Unit
# ahbc t r l : memory at 0x90000000 , s i z e 256 Mbyte
# apbc t r l : APB Bridge at 0x80000000 rev 1
# apbc t r l : s l v 0 : European Space Agency LEON2 Memory Cont r o l l e r
# apbc t r l : I /O por t s at 0x80000000 , s i z e 256 byte
# apbc t r l : s l v 1 : Ga i s l e r Research Generic UART
# apbc t r l : I /O por t s at 0x80000100 , s i z e 256 byte
# apbc t r l : s l v 2 : Ga i s l e r Research Multi−proc e s s o r In t e r rup t Ctr l .
# apbc t r l : I /O por t s at 0x80000200 , s i z e 256 byte
# apbc t r l : s l v 3 : Ga i s l e r Research Modular Timer Unit
# apbc t r l : I /O por t s at 0x80000300 , s i z e 256 byte
# gptimer3 : GR Timer Unit rev 0 , 8−b i t s c a l e r , 2 32−b i t t imers , i r q 8
# irqmp : Multi−proc e s s o r In t e r rup t Cont r o l l e r rev 3 , #cpu 2 , e i r q 0
# apbuart1 : Generic UART rev 1 , f i f o 4 , i r q 2 , s c a l e r b i t s 12
# dsu3 2 : LEON3 Debug support un i t + AHB Trace Buffer , 2 kbytes
# leon3 1 : LEON3 SPARC V8 proc e s s o r rev 0
# leon3 1 : i cache 2∗4 kbyte , dcache 1∗4 kbyte
# leon3 0 : LEON3 SPARC V8 proc e s s o r rev 0
# leon3 0 : i cache 2∗4 kbyte , dcache 1∗4 kbyte
# c lkgen spar tan3e : spartan3 /e sdram/ pc i c l o ck generator , v e r s i on 1
# c lkgen spar tan3e : Frequency 50000 KHz, DCM d i v i s o r 4/5
# Hel lo World from Po l i t o !
#
# ∗∗ Fa i l u r e : ∗∗∗ IU in e r r o r mode , s imu la t i on ha l t ed ∗∗∗
# Time : 311923 ns I t e r a t i o n : 0 Process : / tes tbench / i u e r r F i l e : t e s tbench . vhd

Note that the simulation is terminated by generating a VHDL failure, which is the only

way of stopping the simulation from inside the model.



CHAPTER 3

IMPLEMENTATION

This chapter will deal with the problems which were encountered while translating a

protocol that was specifically created to work on a bus, the AMBA AHB protocol, on a

concurrent parallel communication channel like a crossbar. Initially, I studied how the

AHB Controller functioned, and using that module as an inspiration, I created the AHB

Crossbar Controller.

3.1 Communication on the crossbar switch

In the standard AHB Controller bus design every master’s output and every slave’s

output passes through a multiplexer and go to the slave input and the master input,

respectively (confront Figure 5 on page 15). The master input and slave input signals are

shared among the masters and among the slaves respectively. The crossbar switch topology

that we are going to implement, on the other hand, connects every master to every slave.

In the crossbar switch topology adaptation of the AHB Controller there will be an array

of master inputs and slave inputs. The masters and slaves are connected by a crossbar

switch, which is, in turn, made of a series of multiplexers. In a system with N masters and

M slaves, there will be N+M multiplexers in total. An example crossbar switch network

topology with three masters and four slaves is shown in Figure 13.
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Figure 13. AHB Crossbar Topology
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As seen in Section 1.4, every AHB protocol transfer consists of two different stages:

the control cycle and the data cycle. During the control cycle the communication is mono-

directional, from master to slave, and is handled by the crossbar mux shown at the top

of Figure 13. The data cycle is bi-directional and the connection between the master and

the slave (and vice versa) is handled by the middle and bottom multiplexers of Figure 13.

Being bi-directional means that, for instance, if master 0 output is connected to slave 2

input, then slave 2 output is connected to master 0 input. At a certain instant of time,

several concurrent connections between masters and slaves can happen in a crossbar switch.

We will now show in detail how the crossbar switch network is implemented in hardware

by means of multiplexers.

Figure 14 shows an example configuration with three masters and two slaves. In this

case, we just show the data/cycle part of the crossbar, which is bi-directional. The control

cycle crossbar can be easily extrapolated from this explanation. In this example configu-

ration, we can see that the array of master outputs goes through two multiplexers, one for

each slave input. As can be seen in the left part of Figure 14, a selection command, issued

by the AHB Crossbar Controller’s arbiter, routes the master output #0 to slave input #1,

as highlighted by the green colored connection. Another selection command routes master

output #2 to slave input #0, highlighted in blue. This completes the master-to-slave part

of the crossbar. At the same time the slave-to-master connection must be connected coher-

ently, as seen in the right part of Figure 14. Therefore two selection commands route the

slave outputs to the correct master inputs, as highlighted by the blue and green colored
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wires. Master #1 input is not connected to a slave output, and is connected by the AHB

Crossbar Controller to a dummy default slave output (not shown in figure).

Now that we can connect multiple masters to multiple slaves concurrently, we will have

to deal with the problem of collisions. A collision happens when two masters will try to

access the same slave simultaneously. Clearly, for protocol coherency reasons, this cannot

happen.

3.2 Concurrent access and the AHB protocol

In a shared bus architecture, concurrent access to the same slave is dealt by limiting

the use of the bus to one master at a time. As only one master can use the bus at

every moment, it is not possible to have collisions. In a crossbar switch network topology

this is not guaranteed by design. Our arbiter will have to manage collisions. As seen in

Subsection 1.4.4, the AHB protocol is a two-phased protocol. Once the master is granted,

it will output the address and control signals at the first phase, and then the read or write

data at the second phase. From now on we will refer to this phases as the control phase

and the data phase. With the bus topology, the prerequisite for a master to access the

shared bus, is that the master be granted the bus. The granting process is the preliminary

phase for any transfer on the bus. Subsequently a master requests a slave by outputting

an address on the control bus during the control phase. The address is decoded, using the

plug&play information, and the correspondingly mapped slave is then known.

But in order to detect collisions we have to control, at any moment, every master’s

request for any slave. Therefore, because a master can request a slave only when it is
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granted, all masters must be granted at any time in the crossbar system. In this way, when

a master requests a slave, it does not need to initiate the granting process. It can directly

output the address corresponding to the slave on the control bus.

My AHB Crossbar Controller therefore always grants every master access to the bus, it

then proceeds at monitoring the control bus, for any control phase access by any master.

By doing this, we are able to detect when two masters try to access the same slave by

outputting on the bus an address that is mapped to said same slave.

3.3 Resolving collisions

The AHB protocol requires that the slave sample the address and control information

during the control phase when the ready signal is high. But the AHB bus is pipelined, and

the ready signal has the timing of the data phase. It is then output by the slave which

was contacted by the master at the previous control phase. A simple basic transfer which

involves two different slaves is shown in Figure 15.

The address and control signals cannot be extended and so must be sampled whenever

they are present. This raises a problem when a collision occurs. In fact, whenever two

masters are requesting the same slave, as shown in Figure 16, one of the two masters will

have access to the slave, while the other master will have to be denied somehow. As we

cannot extend the control phase of the denied master (confront Subsection 1.4.3), said

master will have to retry the transfer at a later time. To implement this behavior we will

connect the denied master to a dummy slave that will send the master a RETRY response.
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t0 t1 t2 t3 t4

HCLK

HADDR[31:0] A B

HWDATA[31:0]
DATA(A) DATA(B)

HREADY

HRESP[1:0] OKAY OKAY

Figure 15. Transfer of data between one master and two different slaves on a bus

In this way the denied master will try again the transfer after two cycles (see two-cycle

response in Subsection 1.4.8).

3.4 Dummy slaves

I envisioned the use of dummy slaves as this method is already used in the standard

AHB Controller during some operations. For instance, a master which issues an address

on the control bus that is not recognized by the plug&play decoder, is given an ERROR

response by a dummy slave whose logic is situated on the AHB Controller. We expanded

this concept and implemented several dummy slaves, implementing several different kind

of responses. Each master can be connected to a dummy slave to have a certain type of

response. In our implementation of the AHB Crossbar Controller we have, for each master,

one dummy slave for each type present in the following list:
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t0 t1 t2 t3 t4 t5 t6

HCLK

HADDR[31:0] A

HWDATA[31:0]
DATA(A)

HREADY

HRESP[1:0] OKAY

HADDR[31:0] A A

HWDATA[31:0]
DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY OKAY

Figure 16. Two masters requesting the same slave concurrently
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• retry slave

• error slave

• configuration slave.

The retry and error slaves will give a RETRY or ERROR type response, according to the

two cycle response scheme that is discussed in Subsection 1.4.8. The configuration slave

is used by the masters for read access of the plug&play information stored on the AHB

Crossbar Controller. Concurrent access by several masters of this area is possible without

collision or coherency problems because it is a read-only area.

3.5 Wait state behavior

A master is assigned a slave during the control phase, it will then sample the data at

the following clock cycle during the data phase. The slave can delay the data phase by

asserting a low ready signal. This cycle is called a ‘wait state’. During a wait state the

slave will not sample the control phase signals of the master. The master’s control signals

will be sampled when the ready signal is asserted high again. The control signal are ignored

during a wait state, so in our AHB Crossbar Controller a master is stuck to a slave while

the slave is in a wait state.

3.6 Arbitration

Arbitration in the AHB Crossbar Controller works accordingly to a round-robin scheme.

This scheme was chosen to avoid starvation, a particular problem in parallel systems which

arises whenever a master is never granted a resource. The round robin arbitration scheme



59

here presented works according to a per-slave basis. During arbitration each slave will be

assigned to the next requesting master, starting from master 0, if more than one master is

requesting it.

An example is shown in Figure 17: master 0 is granted slave 0 at the cycle right before

t1 as it is the only master requesting it in the system. It receives an OKAY response at

the corresponding data cycle, right before t2. Then master 0 and master 1 concurrently

request slave 0 right before t2. Master 1 will be granted slave 0 and master 0 will be given

a RETRY response (right before t3) because master 0 was already granted that slave at

the previous cycle and because the system’s round-robin policy.

3.7 Busy slaves

A slave must not be busy in order to be arbitrated between requesting masters. A slave

is busy if it in a wait state because of a previous master access. It can also possibly be

busy if it is in the middle of a burst and therefore locked on a master.

3.8 Burst operation

When a master issues a burst transfer on the control bus and is allowed the connection

to the slave by the arbiter, it will lock the slave for the entire length of the burst. Locking

a slave prevents any other master in the system from being able to establish a connection

with said slave. If another master requests an address of a locked slave, it will receive a

RETRY response. It will then try again the connection after the two cycles required by the

RETRY response, and if the slave is still locked, it will receive another RETRY response,

and so on. The internal implementation of fixed-length burst mode operation is done using
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t0 t1 t2 t3 t4 t5 t6 t7

HCLK

HADDR[31:0] A A+4 (A+4)

HWDATA[31:0]
DATA(A) DATA(A+4) DATA(A+4)

HREADY

HRESP[1:0] OKAY RETRY RETRY OKAY

HADDR[31:0] A+8

HWDATA[31:0]
DATA(A+8)

HREADY

HRESP[1:0] OKAY

Figure 17. Example of simple concurrent request to same slave and the Round Robin
policy
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a counter. There is a per-master counter which increments with every successful burst

transfer cycle in a burst. When, for instance, an 8 burst cycle reaches its eighth transfer,

the AHB Crossbar Controller unlocks the slave for arbitration. This means that by the end

of the last data cycle of the burst, the control cycle will be sampled and arbitrated among

the requesting masters. In case of incrementing bursts (non fixed-length) the master will

keep the HBUSREQ signal high during the burst, and lower it after the penultimate

data cycle. This means that the last data cycle will be signaled to the arbiter by a lowered

HBUSREQ. The AHB Crossbar Controller will then arbitrate between the master when

it senses this event in an incrementing burst transfer.

3.9 The AHB Crossbar Controller implementation

My implementation of the AHB Crossbar Controller follows the two process method

described in Section 2.1. The purely combinational process will consist of the proper

crossbar structure (a group of multiplexers as described in Section 3.1) and the arbitration

logic. The Decoder logic for the plug&play architecture is also purely combinational and

included in this process. The sequential process will hold a control register which directly

controls the crossbar selection values.

3.9.1 The crossbar control structure

The crossbar switch is a fundamental part of the circuit. Its task is to connect the

master outputs to the slave inputs, and, vice versa, the slave outputs to the master inputs.

As seen in Subsection 1.4.3, the AMBA signals are divided in two categories:
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• control signals: from a master to a slave,

• data signals: both directions.

The pipelined nature of the AHB protocol implies that during a data cycle, a new control

cycle will be issued by the master. Therefore these signals have two different timings: the

control signals take one clock cycle, the data signals relative to the control signals take one

or more clock cycles right after the control signals, depending on the number of wait states

inserted by the slave. It is worth remembering that during a wait state, the control signals

are withheld by the master, and they are not sampled by the slave that is issuing the wait

state.

To ensure a collision free behavior of the crossbar, we envisioned a structure, imple-

mented as two VHDL records, one for the control cycle and one for the data cycle, and

hereon called the crossbar control structure. Each record in the structure contains, for

each master and for each slave, their relative behavior. In other words, the record keeps

information on the masters’ and slaves’ connections in the switch, so to say, what the

master is connected to, and what the slave is connected to, in a consistent way. There is a

record structure for each of the two timing cycles described in the previous paragraph: the

control cycle and the data cycle. At a certain moment, a master can have its control bus

connected to a certain slave, and its data bus connected to another slave, if, for example,

it makes consecutive transfers to two different slaves, and both the transfers are allowed

by the arbitration logic.
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The structure’s VHDL is described below:

type r eg maste r type i s record
busy : s t d u l o g i c ;
h s l ave : i n t e g e r range 0 to nahbs − 1 ;
r e t s l v : s t d u l o g i c ;
e r r s l v : s t d u l o g i c ;
c f g s e l : s t d u l o g i c ;
i d l e : s t d u l o g i c ;

haddr : s t d l o g i c v e c t o r (15 downto 2 ) ;
hrdatam : s t d l o g i c v e c t o r (31 downto 0 ) ;
hrdatas : s t d l o g i c v e c t o r (31 downto 0 ) ;
c fga11 : s t d u l o g i c ;
hready : s t d u l o g i c ;
htrans : s t d l o g i c v e c t o r (1 downto 0 ) ;
beat : s t d l o g i c v e c t o r (3 downto 0 ) ;

end record ;

type r e g s l a v e t yp e i s record
busy : s t d u l o g i c ;
hmaster : i n t e g e r range 0 to nahbmx − 1 ;

end record ;

type reg mvector type i s array ( natura l range <>) of r eg maste r type ;
type r e g s v e c t o r t yp e i s array ( natura l range <>) of r e g s l a v e t yp e ;
subtype reg mvector i s reg mvector type (nahbm − 1 downto 0 ) ;
subtype r e g s v e c t o r i s r e g s v e c t o r t yp e ( nahbs − 1 downto 0 ) ;

type cb type i s record
m : reg mvector ;
s : r e g s v e c t o r ;

end record ;

Listing 3.1. Crossbar control structure records and types

It can be seen that each master has 5 basic, mutually exclusive fields:

busy the master is busy connecting to a slave (whose AMBA slave number is

kept in hslave),

retslv the master is connected to its return dummy slave,

errslv the master is connected to its error dummy slave,



64

cfgsel the master is connected to the configuration slave,

idle the master is currently idle.

Every slave, in turn, has the following field, consistent with the master entries:

busy the slave is currently busy (connected to a master whose AMBA master

number is kept in hmaster).

The other signals in the record are used by the internal dummy slaves and by the arbiter

logic in case of burst operation.

The control structure record for the control cycle is implemented as a variable v of type

cb type. The control structure record for the data cycle is implemented as a signal r of

type cb type. Together v and r form the crossbar control structure. Furthermore, the

r record is simply the sequential version of v. That is the v record at the previous cycle

saved in a sequential memory structure.

For instance, if master 0 at cycle 0 is busy, then the corresponding field of the record v

is set. At cycle 1, the corresponding field of r will maintain the value for busy. This ensures

that the data cycle will be connected to the same slave as the control cycle, maintaining

the correct pipelined timing.

It is the arbitration logic that will populate the v record. It fills the record after all

master control signals are read and possible colliding masters and masters requesting a

busy or locked slave are arbitrated. The crossbar reads the v record and then connect the

control signals from the correct master to the correct slave. The v record is an output of



65

the purely combinational arbitration logic (it is a subset of Q from Subsection 2.1.2 on

page 37). It is important to note that arbitration and routing of the control signals happen

in the same clock cycle in which the master has issued the signals (the control cycle).

The following clock cycle (or clock cycles, according to the number of wait states in-

serted by the slave), the r record is filled with the previous value of v. The r record

corresponds to the output r of the sequential process as seen in Subsection 2.1.2. It will

be read by the crossbar and used to connect the data signals, both ways, from master to

slave.

3.9.2 Code organization

The combinational process is organized as follows:

• arbitration loops,

• interrupt merging,

• crossbar loops.

The interrupt-merging code merges, by performing an OR operation, all the hardware

interrupts from the slaves. The output is a single interrupt signal that is fed to all the

masters.

The crossbar is implemented as two ‘for’ loops. The loops here are completely concur-

rent, there is no inter-dependence between the two. One loop connects the slave output to

the master input. The other loop, on the other hand, connects the master outputs to the
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slave inputs. The slaves which are not busy receive a de-asserted selection input, and are

given a ‘don’t care’ value on every other input.

The arbitration algorithm is divided into three loops which have a sequential depen-

dence among one another, but which don’t have a sequential dependence among the itera-

tion of each loop. This means that every loop can be unfolded and executed concurrently,

or in other words, can be synthesized in a completely parallel way.

The first loop iterates all the masters. It decodes the control output of every master

and tries to decide which will be the attempted behavior of the master at the current clock

cycle. The attempted behavior can be one of the following:

• idle,

• busy: trying to connect to a slave,

• configurational: trying to read the plug&play configuration from the AHB Crossbar

Controller,

• error: trying to decode an address that is not mapped to any slave,

• retry: trying to connect to a slave that is not ready.

This information is kept in the variables: busym, idle, cfgsel, errslv, retslv, which are

of type vector, meaning that each master has its set of variables. Optionally the variable

lock can be set for a master that is in the middle of a locked transfer (burst transfer).

The second loop iterates the slaves and assigns to each master the requested slave,

handling eventual collisions and busy slaves. The ‘selmast’ function is executed for each
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ready slave. The function ensures the arbitration between colliding masters. If several

masters are requesting the same slave, the function uses a round robin policy to select

which master will connect to the slave. The function also ensures that a master which

started a locked transfer at the previous cycle, keeps the connection with the slave, in a

prioritized way. The masters which are not granted a slave, are connected to their RETRY

slave. At the end of this loop, the slave part of the crossbar v record will be correctly

populated with the new information if the slave was ready. If the slave was not ready,

the record will hold the old information. The slave record can be seen in Listing 3.1 on

page 63.

The third loop iterates once again among the masters. It contains the logic for the

dummy slaves (RETRY and ERROR) and also the logic for the access to the configuration

slave and configuration plug&play information. At this cycle, if the master was connected

to a slave that is ready, its master record information in the crossbar structure will be

updated with new values, otherwise the old values will hold. The master record is shown

in Listing 3.1 on page 63.

The information in the master record and the slave record is kept consistent by the

arbitration logic. Inconsistent information in the crossbar control structure can lead to

errors in the connections and invalid data access.

The complete code of the AHB Crossbar Controller can be found in Appendix A.



CHAPTER 4

SYSTEM VERIFICATION AND SIMULATION

Testing was an essential part throughout the development of the AHB Crossbar Con-

troller. As I progressed in the completion of the entity, I would test any change made to

the code on a set of purposely created tests, to ensure the proper behavior of the circuit

after each modification to the code was made. The testing of my entity was not done on

the complete LEON 3 system, as for testing and simulation purposes a reduced complexity

system was preferred. The advantages of a reduced-complexity system are the ease of use

of a limited number of masters, which could be directly controlled, and a limited number

of slaves, which could be easily monitored. To simulate a complete LEON 3 system with

my entity, more time would have been needed. Furthermore, there is no control over the

initial startup sequence of the processor and there is a whole lot more complexity in the

design of the masters, the LEON 3 cores, and the slaves, the memory controllers. For this

reason I decided to create a test bench system with my AHB Crossbar Controller and the

already available AHB test bench master and AHB test bench slave, from GRLIB. I made

some modifications to the slave to allow a parametrized number of wait states. The setup

and results of the testing of the circuit are discussed in this chapter.

68
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4.1 Test bench entities

Fundamental for my test benches were the AHB test bench master and AHB test bench

slave. These two entities are part of GRLIB and their code is located in the sub-directory

lib/gaisler/ambatest. The test bench master implements a simple AHB master that can be

controlled with a set of control signals to issue several kind of transfers on an AHB bus.

The test bench slave implements a simple SRAM module that can be read or written with a

configurable amount of bits and a configurable address. The test bench slave was modified

to include a generic-mappable number of wait states. In real world usage scenarios, AHB

slaves usually respond to AHB requests issuing wait states at the beginning of a transfer.

If the transfer is sequential, like in a burst, usually the wait states are inserted only at the

beginning of the response cycles. If the transfer is non-sequential, usually the slaves include

wait states at every transfer response cycle. Normally, a slave responds with a number of

wait states between 0 and 2.

4.2 Test bench formulation

I formulated several test benches for simulation. Every test bench has a varying number

of masters and slaves and performs different kind of transfers (sequential, non-sequential,

etc. . . ). GRLIB provides a package with pre-compiled functions to more easily access the

control input of the AHB test bench masters. This way I was able to easily configure

and formulate a test bench for several configurations. Some of the functions needed to be

modified to be able to finely tune some of the control signals. For example, I needed to add
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a function to control the master and have it output fixed-length burst transfers, as only

incremental burst transfers were possibly started with the standard test bench package.

Such function is reported below in Listing 4.2.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− AMBA AHB wr i t e acces s ( h trans )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
procedure ahbwrite (

constant address : in s t d l o g i c v e c t o r (31 downto 0 ) ;
constant data : in s t d l o g i c v e c t o r (31 downto 0 ) ;
constant s i z e : in s t d l o g i c v e c t o r (1 downto 0 ) ;
constant htrans : in s t d l o g i c v e c t o r (1 downto 0 ) ;
constant hburst : in s t d l o g i c v e c t o r (2 downto 0 ) ;
constant debug : in i n t e g e r ;
constant app id l e : in boolean ;
signal c t r l : inout ahb tb c t r l t yp e ) i s

begin
−−c t r l . o <= c t r l o n o d r i v e ;
wait until c t r l . o . update = ’1 ’ and r i s i n g e d g e ( c t r l . o . c l k ) ;
c t r l . i . ac . c t r l . use128 <= 0 ;
c t r l . i . ac . c t r l . dbgl <= debug ;
c t r l . i . ac . hburst <= ”000” ; c t r l . i . ac . h s i z e <= ’0 ’ & s i z e ;
c t r l . i . ac . haddr <= address ; c t r l . i . ac . hdata <= data ;
c t r l . i . ac . htrans <= htrans ; c t r l . i . ac . hwr i te <= ’1 ’ ;
c t r l . i . ac . hburst <= hburst ;
c t r l . i . ac . hprot <= ”1110” ;
i f app id l e = true then

wait until c t r l . o . update = ’1 ’ and r i s i n g e d g e ( c t r l . o . c l k ) ;
c t r l . i <= c t r l i i d l e ;

end i f ;
end procedure ahbwrite ;

Every test bench VHDL entity includes a number of components: from 1 to 4 masters,

from 1 to 4 slaves and the AHB Crossbar Controller. For the testing of the basic transfers,

every test bench was run with all its slaves answering with 0, 1 and 2 wait states. In each

test bench entity there is a sequential process for each master, compiled with the AHB

test bench package functions for controlling its behavior. An example of said process code,

simulating a single transfer request from the master, is the following:
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−− t e s t b ench f o r master 0
tb0 : process i s
begin

−− I n i t i a l i z e the con t r o l s i g n a l s
ahbtbminit ( c t r l 0 ) ;

−− Write 0x12345678 to address 0xA0000000 .
ahbwrite ( x”A0000000” , x”12345678” , ”10” , ”10” , ’ 0 ’ , 2 , true , c t r l 0 ) ;

−− Stop s imu la t i on
ahbtbmdone (1 , c t r l 0 ) ;

wait ;
end process tb0 ;

The test bench files were kept in the designs/leon3-gr-xc3s-1500 folder.

4.3 Test bench results

In this section I will report the results of our simulation tests. The correctness of a test

bench was checked by performing a manual analysis on the master outputs to slave inputs

and slave outputs to master inputs. The content of the slave memory was also analyzed to

check for correctness. The software used for the VHDL simulation was Mentor Graphics’

ModelSim. The clock frequency used for the simulation was 50 MHz, giving a clock period

of 20 ns.

The following list describes the typology of the tests I run. For each typology, whenever

applicable, the tests were run on slaves in three configurations: 0 wait state response, 1

wait state response, 2 wait states response.

The test typologies are presented below, every typology is executed on a multi-master

test bench:
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• parallel slave access with collision,

• interlaced parallel multi-slave access,

• mixed timing multi-slave access,

• parallel slave non-sequential transfers access with collision,

• parallel slave burst access (incrementing and fixed length) with collision,

• parallel configuration access,

• parallel error access attempt,

• parallel slave burst incrementing access with collision.

The timing diagrams of the following subsections show the behavior that was both

expected and verified during the tests. The key to read the diagrams is that they are

shown from the masters’ perspective. For each master the input-outputs are shown. The

sequence of the signals in all the diagrams is the following: the master signals are shown

first, going from master 0 to the highest-numbered master. Then the crossbar control

record v is shown, with the signals organized in a similar manner. The v record shows

the crossbar control signals of the masters, going from master 0 to the highest-numbered

master, then it shows the signals of the slaves, going from slave 0 to the highest-numbered

slave. In the diagrams every master at every cycle could potentially be received from or sent

to a different slave. Every transfer cycle (control and data) is highlighted in the diagrams.

So for every highlighted cycle it will be possible to understand what is the slave connected
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to the master, by observing the control signals output and then the data signal response. If

the response is RETRY or ERROR, then a dummy slave was connected. This connection

between the masters and the slave is stated clearly in the crossbar control structure that is

shown at the bottom of the diagrams. In fact, the structure clearly states which connection

the masters and the slaves are granted for the control cycle. For example Figure 18 shows

a simple concurrent connection between master 0 and slave 0 and between master 1 and

slave 1.

The diagram in Figure 18 shows that both master 0 and master 1 output an address on

their control bus just before t1. Master 0 outputs address A, which maps to slave 0. Master

1 outputs address B which maps to slave 1. The AHB Crossbar controller recognizes the

addresses, finds that there are no collisions, so no need for arbitration, and populates the

v record of the crossbar with the correct information, as can be seen in the bottom part of

the diagram. It is shown that master 0 is busy and connected to slave 0, and at the same

time slave 0 is busy and connected to master 0. The same holds for the couple master 1

slave 1. The v record controls the control cycle crossbars which are correctly routed. At

the following cycle, record r, which is not shown in the diagram as it is a one-clock delayed

version of record v (see Section 3.9), correctly routes the data cycle crossbars as seen in

the diagram just before t2.

Every test’s behavior will be detailed in the following subsections.
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t0 t1 t2 t3

HCLK

HADDR[31:0] A

HWDATA[31:0] DATA(A)

HREADY

HRESP[1:0] OKAY

HADDR[31:0] B

HWDATA[31:0] DATA(B)

HREADY

HRESP[1:0] OKAY

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0

BUSY

HMASTER #1

Figure 18. Simple concurrent transfers between two master-slave couples with crossbar
control record v
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4.3.1 Test 1, 2 and 3

These test benches are composed of two masters accessing the same slave at the same

clock cycle. The correct behavior is that one of the two masters will be connected to

its dummy REPLY slave, while the other will connect to the slave. After the two-cycle

response the denied master will attempt another connection with the slave, and this time

it will succeed. Test 1 is configured with a 0 wait state slave, test 2 with a 1 wait state

slave, test 3 with a 2 wait states slave. The test results are shown in Figure 19, Figure 20

and Figure 21.

Address A maps to slave #1.

4.3.2 Test 4, 5 and 6

These tests are performed on two masters accessing two different slaves at each clock

cycle, in an interlaced way. That means that master 0 will try to access slave 0 while at

the same time master 1 will try to access slave 1. In a shared bus topology interconnection

network, only one master at a time will be able to access a slave. Using the AHB Crossbar

Controller both masters will be able to access the slaves concurrently. At a later moment

master 0 will try to access slave 1 and master 1 will try to access slave 0. This transfer can

also happen concurrently. The use of a crossbar halves the time it takes to complete all

the transfers in this situation. As before, test 1 is configured with 0 wait state slaves, test

2 with 1 wait state slaves and test 3 with 2 wait states slaves. The test results are shown

in Figure 22, Figure 23 and Figure 24.
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t0 t1 t2 t3 t4 t5 t6 t7 t8

HCLK

HBUSREQ0

HADDR[31:0] A

HWDATA[31:0] DATA(A)

HREADY

HRESP[1:0] OKAY

HBUSREQ1

HADDR[31:0] A A

HWDATA[31:0] DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY OKAY

BUSY

HSLAVE #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

Figure 19. Test 1: two masters and one 0-ws slave
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t0 t1 t2 t3 t4 t5 t6 t7 t8

HCLK

HBUSREQ0

HADDR[31:0] A

HWDATA[31:0] DATA(A)

HREADY

HRESP[1:0] OKAY OKAY

HBUSREQ1

HADDR[31:0] A A

HWDATA[31:0] DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY OKAY OKAY

BUSY

HSLAVE #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

Figure 20. Test 2: two masters and one 1-ws slave
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t0 t1 t2 t3 t4 t5 t6 t7 t8

HCLK

HBUSREQ0

HADDR[31:0] A

HWDATA[31:0] DATA(A)

HREADY

HRESP[1:0] OKAY OKAY OKAY

HBUSREQ1

HADDR[31:0] A A

HWDATA[31:0] DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY OKAY OKAY OKAY

BUSY

HSLAVE #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

Figure 21. Test 3: two masters and one 2-ws slave
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Address A maps to slave #0.

Address B maps to slave #1.

4.3.3 Test 7, 8 and 9

These test benches are composed of three masters accessing two slaves at different

times. All the slaves respond to a transfer request with the same number of wait states.

This test is done to control the behavior of the crossbar in a mixed access situation, with

several masters accessing several slaves at several different times. The number of wait

states implemented by the slave changes drastically the total completion time of the test,

as it can be seen in the results. Tests 7, 8 and 9 are performed on slaves with 0, 1 and 2

wait states respectively. The test results are shown in Figure 25, Figure 26 and Figure 27.

Address A maps to slave #0.

Address B maps to slave #1.

4.3.4 Test 10, 11 and 12

This series of tests builds on the previous series described in Subsection 4.3.3 and

increases the number of masters in the system connected to the crossbar to four. As

before, tests 10, 11 and 12 are performed on slaves with 0, 1 and 2 wait states respectively.

The test results are shown in Figure 28, Figure 29 and Figure 30.

Address A maps to slave #0.

Address B maps to slave #1.
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t0 t1 t2 t3 t4 t5 t6 t7 t8

HCLK

HADDR[31:0] A B

HWDATA[31:0] DATA(A) DATA(B)

HREADY

HRESP[1:0] OKAY OKAY

HADDR[31:0] B A

HWDATA[31:0] DATA(B) DATA(A)

HREADY

HRESP[1:0] OKAY OKAY

BUSY

HSLAVE #0 #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #1 #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

BUSY

HMASTER #1 #0

Figure 22. Test 4: two masters and two 0-ws slaves
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t0 t1 t2 t3 t4 t5 t6 t7 t8

HCLK

HADDR[31:0] A B

HWDATA[31:0] DATA(A) DATA(B)

HREADY

HRESP[1:0] OKAY OKAY OKAY OKAY

HADDR[31:0] B A

HWDATA[31:0] DATA(B) DATA(A)

HREADY

HRESP[1:0] OKAY OKAY OKAY OKAY

BUSY

HSLAVE #0 #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #1 #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

BUSY

HMASTER #1 #0

Figure 23. Test 5: two masters and two 1-ws slaves
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t0 t1 t2 t3 t4 t5 t6 t7 t8

HCLK

HADDR[31:0] A B

HWDATA[31:0] DATA(A) DATA(B)

HREADY

HRESP[1:0] OKAY OKAY OKAY OKAY OKAY OKAY

HADDR[31:0] B A

HWDATA[31:0] DATA(B) DATA(A)

HREADY

HRESP[1:0] OKAY OKAY OKAY OKAY OKAY OKAY

BUSY

HSLAVE #0 #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #1 #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

BUSY

HMASTER #1 #0

Figure 24. Test 6: two masters and two 2-ws slaves
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t0 t1 t2 t3 t4 t5 t6 t7 t8

HCLK

HADDR[31:0] A B

HWDATA[31:0] DATA(A) DATA(B)

HREADY

HRESP[1:0] OKAY OKAY

HADDR[31:0] A

HWDATA[31:0] DATA(A)

HREADY

HRESP[1:0] OKAY

HADDR[31:0] B B

HWDATA[31:0] DATA(B) DATA(B)

HREADY

HRESP[1:0] RETRY RETRY OKAY

BUSY

HSLAVE #0 #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

BUSY

HMASTER #0 #2

Figure 25. Test 7: three masters and two 0-ws slaves
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t0 t1 t2 t3 t4 t5 t6 t7 t8

HCLK

HADDR[31:0] A B B

HWDATA[31:0] DATA(A) DATA(B) DATA(B)

HREADY

HRESP[1:0] OKAY OKAY RETRY RETRY OKAY OKAY

HADDR[31:0] A A

HWDATA[31:0] DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY OKAY OKAY

HADDR[31:0] B

HWDATA[31:0] DATA(B)

HREADY

HRESP[1:0] OKAY OKAY

BUSY

HSLAVE #0 #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

BUSY

HMASTER #2 #0

Figure 26. Test 8: three masters and two 1-ws slaves
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t0 t1 t2 t3 t4 t5 t6 t7 t8

HCLK

HADDR[31:0] A B B

HWDATA[31:0] DATA(A) DATA(B) DATA(B)

HREADY

HRESP[1:0] OKAY OKAY OKAY RETRY RETRY OKAY OKAY OKAY

HADDR[31:0] A A

HWDATA[31:0] DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY OKAY OKAY OKAY

HADDR[31:0] B

HWDATA[31:0] DATA(B)

HREADY

HRESP[1:0] OKAY OKAY OKAY

BUSY

HSLAVE #0 #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

BUSY

HMASTER #2 #0

Figure 27. Test 9: three masters and two 2-ws slaves
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

HCLK

HADDR[31:0] A B

HWDATA[31:0] DATA(A) DATA(B)

HREADY

HRESP[1:0] OKAY OKAY

HADDR[31:0] A A

HWDATA[31:0] DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY OKAY

HADDR[31:0] A

HWDATA[31:0] DATA(A)

HREADY

HRESP[1:0] OKAY

HADDR[31:0] A

HWDATA[31:0] DATA(A)

HREADY

HRESP[1:0] OKAY

BUSY

HSLAVE #0 #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #2 #3 #1

BUSY

HMASTER #0

Figure 28. Test 10: four masters and two 0-ws slaves
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

HCLK

HADDR[31:0] A B

HWDATA[31:0] DATA(A) DATA(B)

HREADY

HRESP[1:0] OKAY OKAY OKAY OKAY

HADDR[31:0] A A A

HWDATA[31:0] DATA(A) DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY RETRY RETRY OKAY OKAY

HADDR[31:0] A A

HWDATA[31:0] DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY OKAY OKAY

HADDR[31:0] A

HWDATA[31:0] DATA(A)

HREADY

HRESP[1:0] OKAY OKAY

BUSY

HSLAVE #0 #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #3 #2 #1

BUSY

HMASTER #0

Figure 29. Test 11: four masters and two 1-ws slaves
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

HCLK

HADDR[31:0] A B

HWDATA[31:0] DATA(A) DATA(B)

HREADY

HRESP[1:0] OKAY OKAY OKAY OKAY OKAY OKAY

HADDR[31:0] A A

HWDATA[31:0] DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY OKAY OKAY OKAY

HADDR[31:0] A A A

HWDATA[31:0] DATA(A) DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY RETRY RETRY OKAY OKAY OKAY

HADDR[31:0] A A A A

HWDATA[31:0] DATA(A) DATA(A) DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY RETRY RETRY RETRY RETRY OKAY OKAY OKAY

BUSY

HSLAVE #0 #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1 #2 #3

BUSY

HMASTER #0

Figure 30. Test 12: four masters and two 2-ws slaves
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4.3.5 Test 13

In this test two masters are requesting the same slave. The master which is granted

access, begins a sequence of non-sequential single-length transfers to sequential addresses

on the slave. The arbiter should not give priority to this kind of non-sequential bursts.

Furthermore, a slave should answer with wait states at each transfer, if it requires it. The

difference with a burst transfer is that in the burst, only the first transfer of the cycle

is non-sequential and possibly receives wait states, at the following cycle. The remaining

transfers of the burst will be of type sequential, will have 0 wait-state responses and will

be prioritized. The slave in this test responds inserting 1 wait state. The test results are

shown in Figure 31.

Address A maps to slave #0.

4.3.6 Tests 14 through 17

This series of tests was developed in order to test the behavior of the crossbar in case

of a burst transfer. In fact, the purposed behavior is to lock the slave to the master which

is instantiating the burst transfer, and unlock it only when the transfer is done. This

ensures that the sequential accesses typical of a burst transfer are completed before the

slave is re-assigned to another master according to the round-robin policy. A burst transfer

has the potential of being much faster because it requests sequential accesses during its

length. The sequential-access requests are served by the slave in a speedier way with

respect to a non-sequential transfer, that could cause the insertion of wait-state at each
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

HCLK

HTRANS[1:0] NONSEQ NONSEQ NONSEQ NONSEQ NONSEQ IDLE

HBURST[2:0]

HADDR[31:0] A A + 4 A + 8 A + 12 A+16

HWDATA[31:0] DATA(A) DATA(A + 4) DATA(A + 8) DATA(A + 12)

HREADY

HRESP[1:0] OKAY OKAY OKAY OKAY OKAY OKAY RETRY RETRY OKAY

HRDATA[31:0]

HTRANS[1:0] NONSEQ NONSEQ IDLE NONSEQ NONSEQ IDLE NONSEQ

HBURST[2:0]

HADDR[31:0] A A + 4 A A + 4 A

HWDATA[31:0] DATA(A) DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY OKAY RETRY RETRY OKAY OKAY OKAY

HRDATA[31:0]

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

Figure 31. Test 13: two masters and one 1-ws slave
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address request. The preferred behavior would be to let a master complete a burst transfer,

without interrupting it if another master is requesting the slave. This is the implemented

behavior as it enhances the overall performance of the system. In test 14, we have two

masters requesting a transfer to the same slave. The master which is granted access to

the slave performs a 5-burst incrementing burst. As this transfer is not fixed-length, the

specifications of the AMBA AHB bus require that the master keep the bus request signal

asserted during the burst, and de-asserts it one clock before completing the burst. This

way the AHB Crossbar Controller knows when it is allowed to re-arbitrate the slave to

another requesting master, as seen in this test. The test results are shown in Figure 32.

In test 15 through 17 we have fixed length incrementing bursts of size 4, 8 and 16. The

size of the burst indicates the number of transfers which will be requested on the bus, and

not the size in bytes (compare the specification in Subsection 1.4.5). During the transfer

the slave must be locked to the requesting master and the address must increase at each

transfer. The test results are shown in Figure 33, Figure 34 and Figure 35.

In all the previous tests address A maps to slave #0.
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

HCLK

HTRANS[1:0] NONSEQ SEQ SEQ SEQ SEQ

HBURST[2:0] INCR

HADDR[31:0] A A + 4 A + 8 A + 12 A + 16

HWDATA[31:0] DATA(A) DATA(A + 4) DATA(A + 8) DATA(A + 12) DATA(A + 16)

HREADY

HRESP[1:0] OKAY OKAY OKAY OKAY OKAY OKAY

HRDATA[31:0]

HTRANS[1:0] NONSEQ SEQ IDLE NONSEQ SEQ IDLE NONSEQ SEQ SEQ

HBURST[2:0] INCR INCR INCR

HADDR[31:0] A A + 4 A A + 4 A A + 4 A + 8

HWDATA[31:0] DATA(A) DATA(A) DATA(A) DATA(A + 4)

HREADY

HRESP[1:0] RETRY RETRY OKAY RETRY RETRY OKAY OKAY OKAY OKAY

HRDATA[31:0]

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

Figure 32. Test 14: two masters and one 1-ws slave
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

HCLK

HTRANS[1:0] NONSEQ SEQ SEQ SEQ

HBURST[2:0] INCR4

HADDR[31:0] A A + 4 A + 8 A + 12

HWDATA[31:0] DATA(A) DATA(A + 4) DATA(A + 8) DATA(A + 12)

HREADY

HRESP[1:0] OKAY OKAY OKAY OKAY OKAY

HRDATA[31:0]

HTRANS[1:0] NONSEQ SEQ IDLE NONSEQ SEQ IDLE NONSEQ SEQ SEQ

HBURST[2:0] INCR4 INCR4 INCR

HADDR[31:0] A A + 4 A A + 4 A A + 4 A + 8

HWDATA[31:0] DATA(A) DATA(A) DATA(A) DATA(A + 4)

HREADY

HRESP[1:0] RETRY RETRY OKAY RETRY RETRY OKAY OKAY OKAY OKAY

HRDATA[31:0]

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

Figure 33. Test 15: two masters and one 1-ws slave
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

HCLK
HTRANS[1:0] NONSEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ

HBURST[2:0] INCR8

HADDR[31:0] A A + 4 A + 8 A + 12 A + 16 A + 20 A + 24 A + 28

HWDATA[31:0] DATA(A) DATA(A + 4) DATA(A + 8) DATA(A + 12) DATA(A + 16) DATA(A + 20) DATA(A + 24) DATA(A + 28)

HREADY
HRESP[1:0] OKAY OKAY OKAY OKAY OKAY OKAY OKAY OKAY OKAY

HRDATA[31:0]
HTRANS[1:0] NONSEQ SEQ IDLE NONSEQ SEQ IDLE NONSEQ SEQ IDLE NONSEQ SEQ

HBURST[2:0] INCR8 INCR8 INCR8 INCR8

HADDR[31:0] A A + 4 A A + 4 A A + 4 A A + 4

HWDATA[31:0] DATA(A) DATA(A) DATA(A) DATA(A)

HREADY
HRESP[1:0] RETRY RETRY OKAY RETRY RETRY OKAY RETRY RETRY OKAY OKAY OKAY

HRDATA[31:0]
BUSY

HSLAVE #0

RETSLV
ERRSLV
CFGSLV

IDLE
BUSY

HSLAVE #0

RETSLV
ERRSLV
CFGSLV

IDLE
BUSY

HMASTER #0 #1

Figure 34. Test 16: two masters and one 1-ws slave
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

HCLK

HTRANS[1:0] NONSEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ

HBURST[2:0] INCR16

HADDR[31:0] A A + 4 A + 8 A + 12 A + 16 A + 20 A + 24 A + 28 A + 32 A + 36 A + 40 A + 44 A + 48 A + 52 A + 56 A + 60

HWDATA[31:0] DATA(A) DATA(A + 4) DATA(A + 8) DATA(A + 12) DATA(A + 16) DATA(A + 20) DATA(A + 24) DATA(A + 28) DATA(A + 32) DATA(A + 36) DATA(A + 40) DATA(A + 44) DATA(A + 48) DATA(A + 52) DATA(A + 56) DATA(A + 60)

HREADY

HRESP[1:0] OKAY OKAY OKAY OKAY OKAY OKAY OKAY OKAY OKAY OKAY OKAY OKAY OKAY OKAY OKAY OKAY OKAY

HRDATA[31:0]

HTRANS[1:0] NONSEQ SEQ IDLE NONSEQ SEQ IDLE NONSEQ SEQ IDLE NONSEQ SEQ IDLE NONSEQ SEQ IDLE NONSEQ SEQ IDLE NONSEQ SEQ

HBURST[2:0] INCR16 INCR16 INCR16 INCR16 INCR16 INCR16 INCR16

HADDR[31:0] A A + 4 A A + 4 A A + 4 A A + 4 A A + 4 A A + 4 A A + 4

HWDATA[31:0] DATA(A) DATA(A) DATA(A) DATA(A) DATA(A) DATA(A) DATA(A)

HREADY

HRESP[1:0] RETRY RETRY OKAY RETRY RETRY OKAY RETRY RETRY OKAY RETRY RETRY OKAY RETRY RETRY OKAY RETRY RETRY OKAY OKAY OKAY

HRDATA[31:0]

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

Figure 35. Test 17: two masters and one 1-ws slave
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4.3.7 Tests 18 and 19

In tests 18 and 19 we do not have any slave in our test bench entity. The purpose of these

tests is to control the proper behavior of the dummy ERROR slave and the configuration

slave. In test 18 two masters request a read transfer from an address on the configuration

area. The AHB Crossbar Controller provides this piece of information by reading it from

the plug&play ROM and concurrently responds to the masters, inserting 1 wait state. In

test 19 we have two masters requesting two different non-existing addresses at the same

clock cycle. Each master is routed to its dummy ERROR slave and given a two-cycle

ERROR response. The test results are shown in Figure 36 and Figure 37.

In Test 18 address X maps to the plug&play configuration area on the AHB Crossbar

Controller.

In Test 19, addresses X and Y are not present in the system and are not mapped to

any slave, therefore an ERROR response is generated.

4.3.8 Test 20

Test 20 is a special case of test 14 (seen in Subsection 4.3.6). In this test we check that

the AHB Crossbar Controller keep the proper slave locked to a master which inserts BUSY

states during an incremental burst (confront the specification in Subsection 1.4.4.1). The

test results are shown in Figure 38.

Address A maps to slave #0.
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t0 t1 t2 t3 t4 t5 t6 t7 t8

HCLK

HBUSREQ0

HADDR[31:0] X

HREADY

HRESP[1:0] OKAY OKAY

HRDATA[31:0] DATA(X)

HBUSREQ1

HADDR[31:0] X

HREADY

HRESP[1:0] OKAY OKAY

HRDATA[31:0] DATA(X)

BUSY

HSLAVE

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE

RETSLV

ERRSLV

CFGSLV

IDLE

Figure 36. Test 18: two masters communicating with the AHB Crossbar Controller
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t0 t1 t2 t3 t4 t5 t6 t7 t8

HCLK

HBUSREQ0

HADDR[31:0] X

HWDATA[31:0] DATA(X)

HREADY

HRESP[1:0] ERROR ERROR

HBUSREQ1

HADDR[31:0] Y

HWDATA[31:0] DATA(Y)

HREADY

HRESP[1:0] ERROR ERROR

BUSY

HSLAVE

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE

RETSLV

ERRSLV

CFGSLV

IDLE

Figure 37. Test 19: two masters communicating with the AHB Crossbar Controller
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

HCLK

HTRANS[1:0] NONSEQ SEQ BUSY SEQ SEQ SEQ

HBURST[2:0] INCR

HADDR[31:0] A A + 4 A + 8 A + 8 A + 12 A + 16

HWDATA[31:0] DATA(A) DATA(A + 4) DATA(A + 8) DATA(A + 12) DATA(A + 16)

HREADY

HRESP[1:0] OKAY OKAY OKAY OKAY OKAY OKAY OKAY

HRDATA[31:0]

HTRANS[1:0] NONSEQ SEQ IDLE NONSEQ SEQ IDLE NONSEQ SEQ IDLE NONSEQ SEQ SEQ

HBURST[2:0] INCR INCR INCR INCR

HADDR[31:0] A A + 4 A A + 4 A A + 4 A A + 4 A + 8

HWDATA[31:0] DATA(A) DATA(A) DATA(A) DATA(A) DATA(A + 4)

HREADY

HRESP[1:0] RETRY RETRY OKAY RETRY RETRY OKAY RETRY RETRY OKAY OKAY OKAY OKAY

HRDATA[31:0]

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0 #1

Figure 38. Test 20: two masters and one 1-ws slave
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4.4 Transfer time comparison

An useful measure of performance gain of the AHB Crossbar Controller is the speedup

obtained by comparing the total transfer time of the previous tests and comparing it with

the total transfer time obtained in the same tests performed on the shared bus topology,

by the means of the old AHB Controller. Table IV shows the total number of clock cycles

required to complete all the transfers in the previous test benches. The time is measured

in number of clock cycles. Each clock cycle lasts 20 ns, as the system clock used in the

tests is 50 MHz, as stated before. The total time is measured from the beginning of the

issuing of the address on the bus, by the earliest issuing master in the test bench, to the

end of the issued data by the latest issuing master in the test bench. For instance, test 4

total duration is 3 clock cycles, as seen in Figure 22 on page 80. A speedup figure is also

shown in the table for comparison.

Speedup was calculated as: {cycles on bus}
{cycles on crossbar}

Table IV shows drastic speedups in test benches which are highly parallel. For instance,

test benches 4, 5 and 6, as seen in Subsection 4.3.2, consist of completely parallel transfers

between two master-slave couples. These tests represent the perfect case where a crossbar

improves the timing by a large factor. The theoretical speedup of 2 is in fact very much

approximated by the speedup obtained in this series of tests.

Tests 7 through 12 are mixed access tests where parallelism is limited. Nonetheless these

tests show an improvement in the total transfer time in the system using the crossbar, seen
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as a speedup of between 7% and 30%, except for test 7, where there is a 17% performance

degradation, probably due to the fast response of the 0 wait state slave compared to the

relative slowness of the two-cycle responses of the dummy slaves.

Tests 1 through 3, 13 through 17 and test 20 do not involve parallel transfer, but instead

colliding accesses among masters were tested. The crossbar behavior in these cases does

not degrade performance significantly. Instead, it shows an overall slight improvement

in the total execution times of the tests. We can furthermore consider that performance

degradation was consistently detected only for tests with 0 wait-state slaves.

Tests 18 and 19 show again how parallel access to slaves is significantly improved by

the use of a crossbar, with speedups approximating the theoretical maximum of 2 (two

masters are involved).
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TABLE IV

NUMBER OF CLOCK CYCLES REQUIRED BY TEST BENCHES AND RELATIVE
SPEEDUP

Test # # of cycles on crossbar # of cycles on bus Speedup
(AHB Crossbar Controller) (AHB Controller)

1 5 3 0.60

2 6 5 0.83

3 7 7 1.00

4 3 5 1.67

5 5 9 1.80

6 7 13 1.86

7 6 5 0.83

8 8 9 1.13

9 10 13 1.30

10 5 6 1.20

11 9 11 1.22

12 15 16 1.07

13 14 13 0.93

14 13 14 1.08

15 12 12 1.00

16 18 20 1.11

17 36 36 1.00

18 3 5 1.67

19 3 5 1.67

20 17 16 0.94



CHAPTER 5

FAULT TOLERANCE ANALYSIS

In this chapter we are going to explore the possible outcome of Single Event Upset

faults on our AHB Crossbar Controller. We are going to create a model of the faults, able

to replicate them in a deterministic way. We are then going to run a series of tests to

determine the behavior of our entity in the event an SEU strike a memory element.

5.1 Single Event Upset faults

A Single Event Upset (SEU) fault is a type of soft error which generally occurs when

deposited charge directly causes a change of state in dynamic circuit memory elements

(e.g. flip-flop, latch) (9). In other words, an SEU occurs when a charged particle changes

the stored value in a memory element from logic “1” to logic “0”, or vice versa.

SEU is the most common soft fault which can be observed. A soft fault is an error which

is temporary, one that does not permanently destroy the hardware, and that, in theory, can

be detected and corrected. The SEU most common cause is ionizing or electro-magnetic

radiation, especially galactic cosmic rays. Energetic particles, for example, protons trapped

in the Van Allen radiation belts, can deposit unwanted charge in a microelectronic device.

The excess charge builds up and can manifest as an SEU. While this holds in space, in

a terrestrial environment SEUs are caused by cosmic particles colliding with atoms in the

103



104

atmosphere and creating cascades or showers of neutrons and protons, which in turn may

interact with electronics.

5.2 Faults in the AHB Crossbar Control

As seen previously, the AHB Crossbar Controller makes use of memory elements, as

it is implemented with the structured VHDL design approach explained in Section 2.1.

Specifically, the r record, part of the crossbar control structure (refer to Subsection 3.9.1),

is the output of the sequential part of the entity. As such, only the r record is affected by

possible SEUs.

I envisioned a method to programmatically simulate a test bench entity and execute a

bit-flip (from logic “1” to logic “0”, or vice versa) at a specified time. The method, which

simulates an SEU, is implemented as a TCL/TK script for ModelSim. I run the script on

a series of test benches and programmatically confronted the resulted signal outputs with

the outputs generated during normal operation. This way I was able to see when an SEU

changed the behavior of the AHB Crossbar Controller, generating a failure, or when the

resulting behavior did not change, therefore generating what is called a ‘silent failure’.

5.3 Test methodology and results

To perform my tests I simulated an SEU fault which strikes record r of the AHB

Crossbar Controller once, on a certain bit, at a certain time. Every possible bit in the

sequential memory of the crossbar is flipped, and every occurrence of an SEU is run as

a separate test. The record’s used memory bits for the masters are shown in Table V on

page 106, while the memory bits used for the slaves are shown in Table VI. It can be seen
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that the total number of bits used in record r of the crossbar varies with the number of

masters and with the number of slaves. For instance, a system which is configured with

N masters and M slaves will have N × (91 + dlog2Me) + M × (1 + dlog2Ne) bits in the

r record of the AHB Crossbar Controller. The system used in my tests has two masters

and two slaves, so the total number of bits which can suffer from an SEU fault is 188.

Furthermore, all the SEUs are tested for every clock cycle throughout the duration of the

transmission. In the simplest case, for instance, which will be seen in Subsection 5.3.1,

we have a single transfer to a 0 wait state slave, happening in parallel in two master-slave

couples. The transfer lasts two clock cycles in total, one for the control phase, one for the

data phase. Therefore all the SEUs are tested during the first clock cycle, and then during

the second, for a total of 188 × 2 = 376 tests. This is explained more thoroughly in the

next Subsections. The code for the test benches and for the scripts used in the following

Subsections is shown in Appendix B.

5.3.1 Test 1: single transfer

The first batch of tests shows an SEU fault happening on a random location of the r

record of the crossbar during a single write transfer transmission which happens in parallel

in two master-slave couples. The proper behavior of the crossbar in the absence of the

SEU is shown in Figure 39. I programmatically run a script simulating an SEU on every

bit of the r record at time 80 ns and then, in a separate batch of tests, at 100 ns, one clock

later. The SEU has the effect of possibly influencing the behavior of the AHB Crossbar

Controller. The correct behavior of the test bench, as shown in Figure 39, was tested by
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TABLE V

RECORD STRUCTURE REG MASTER TYPE ENTRIES FOR EACH MASTER AND
NUMBER OF BITS USED

Field name # of bits

busy 1
hslave dlog2{#ofslaves}e
retslv 1
errslv 1
cfgsel 1
idle 1
haddr 14
hrdatam 32
hrdatas 32
cfga11 1
hready 1
htrans 2
beat 4

TABLE VI

RECORD STRUCTURE REG SLAVE TYPE ENTRIES FOR EACH SLAVE AND
NUMBER OF BITS USED

Field name # of bits

busy 1
hmaster dlog2{#ofmasters}e
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matching the address and data input of the RAM which is situated on the slaves with the

desired inputs. In case the signals differ, then the SEU has modified the behavior of the

AHB Crossbar Controller, and we can state that we are experiencing a failure.

Table VII and Table VIII highlight the failures detected during the test for, respectively,

the first and the second transmission cycles, with fault injections happening at 80 ns and

100 ns. For each record entry in the r record, we show the number of failures and of

silent failures. If a record is multi-bit (e.g. hrdatam), the numbers refer to the aggregated

number of tests/bits on said record.

Not only does the record control the data bus connections in the crossbar, it is also read

by the arbiter inside the AHB Crossbar Controller. If an SEU strikes one of the bits of

the record structure that primarily control the crossbar behavior, namely the busy, retslv,

errslv or cfgsel fields, then some misbehavior might occur.

We have seen that, at timing 80 ns, a change on retslv, errslv or cfgsel modifies the

data bus connection on the crossbar and connects the master to the dummy slaves, which

are by default in hready state 0. This faulty connection starts a fake two-cycle response

transfer which was not expected.

At timing 100 ns a change in the slave control signals, mistakenly connects them to

the wrong master, or to a default master, in case their busy record is flipped from 1 to

0. This is another faulty connection that is not expected and which results in a failure.

Any other SEU is handled by the crossbar as a silent failure, because it either affects a

field that is not used at that moment, like most of the failures in the dummy slave internal
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70 ns 90 ns 110 ns 130 ns

HCLK

HADDR[31:0] A0000004

HWDATA[31:0] DATA(A0000004)

HREADY

HRESP[1:0] OKAY

HADDR[31:0] B000001C

HWDATA[31:0] DATA(B000001C)

HREADY

HRESP[1:0] OKAY

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0

BUSY

HMASTER #1

Figure 39. Test 1 correct behavior: two masters accessing two different slaves in parallel
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TABLE VII

TEST 1 RESULTS: INJECTION AT 80 NS

Record entry # of failures # of silent failures

m(1).busy 0 1

m(1).hslave 0 1

m(1).retslv 1 0

m(1).errslv 1 0

m(1).cfgsel 1 0

m(1).idle 0 1

m(1).haddr 0 14

m(1).hrdatam 0 32

m(1).hrdatas 0 32

m(1).cfga11 0 1

m(1).hready 0 1

m(1).htrans 0 2

m(1).beat 0 4

m(0).busy 0 1

m(0).hslave 0 1

m(0).retslv 1 0

m(0).errslv 1 0

m(0).cfgsel 1 0

m(0).idle 0 1

m(0).haddr 0 14

m(0).hrdatam 0 32

m(0).hrdatas 0 32

m(0).cfga11 0 1

m(0).hready 0 1

m(0).htrans 0 2

m(0).beat 0 4

s(1).busy 0 1

s(1).hmaster 0 1

s(0).busy 0 1

s(0).hmaster 0 1
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TABLE VIII

TEST 1 RESULTS: INJECTION AT 100 NS

Record entry # of failures # of silent failures

m(1).busy 0 1

m(1).hslave 0 1

m(1).retslv 0 1

m(1).errslv 0 1

m(1).cfgsel 0 1

m(1).idle 0 1

m(1).haddr 0 14

m(1).hrdatam 0 32

m(1).hrdatas 0 32

m(1).cfga11 0 1

m(1).hready 0 1

m(1).htrans 0 2

m(1).beat 0 4

m(0).busy 0 1

m(0).hslave 0 1

m(0).retslv 0 1

m(0).errslv 0 1

m(0).cfgsel 0 1

m(0).idle 0 1

m(0).haddr 0 14

m(0).hrdatam 0 32

m(0).hrdatas 0 32

m(0).cfga11 0 1

m(0).hready 0 1

m(0).htrans 0 2

m(0).beat 0 4

s(1).busy 1 0

s(1).hmaster 1 0

s(0).busy 1 0

s(0).hmaster 1 0
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signals, or because of priorities inside the crossbar which ignore signals set to wrong values

in case other signals are asserted, i.e. if a master is both busy and retslv, then retslv will

be ignored because busy has a higher priority in the circuitry of the crossbar.

5.3.2 Test 2: burst transfer

A similar test was repeated with a different test bench configuration. This time the SEU

injections were tested on the crossbar while two parallel 4-burst sequential write transfers

were executed on the two master-slave couples. This time the total length of the transfer is

5 clock cycles, as the transfer is 4-cycle long and, being pipelined and 0 wait-state, we have

to add one additional cycle. The correct behavior of the transfer is shown in Figure 40. In

total we run 188× 5 = 940 tests, whose results are shown in Table IX and Table X below.

As in the previous test, we have seen that, at clock cycle 1 (timing from 70 ns to 90 ns),

a change on the master’s retslv, errslv or cfgsel signals modifies the data bus connection

on the crossbar and connects the master to the dummy slaves, which are by default in

hready state 0. This faulty connection starts a fake two-cycle response transfer which was

not expected. Additionally, a bit flip in the busy signal of slave 0 creates a failure in the

system. We inspected the failure and found that the behavior of the crossbar connects the

master requesting slave 0 to the retry dummy slave as it considers the slave 0 ‘busy’.

At clock cycles 2 and 3 (90 ns to 110 ns and 110 ns to 130 ns), failures are generated

when an SEU strikes the sensitive masters’ retslv, errslv or cfgsel signals or the slaves’ busy

or hmaster signals.
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70 ns 90 ns 110 ns 130 ns 150 ns 170 ns 190 ns

HCLK

HTRANS[1:0] NONSEQ SEQ SEQ SEQ

HBURST[2:0] INCR4

HADDR[31:0] A0000000 A0000004 A0000008 A000000C

HWDATA[31:0] DATA(A0000000) DATA(A0000004) DATA(A0000008) DATA(A000000C)

HREADY

HRESP[1:0] OKAY OKAY OKAY OKAY

HRDATA[31:0]

HTRANS[1:0] NONSEQ SEQ SEQ SEQ

HBURST[2:0] INCR4

HADDR[31:0] B0000010 B0000014 B0000018 B000001C

HWDATA[31:0] DATA(B0000010) DATA(B0000014) DATA(B0000018) DATA(B000001C)

HREADY

HRESP[1:0] OKAY OKAY OKAY OKAY

HRDATA[31:0]

BUSY

HSLAVE #0

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HSLAVE #1

RETSLV

ERRSLV

CFGSLV

IDLE

BUSY

HMASTER #0

BUSY

HMASTER #1

Figure 40. Test 2 correct behavior: two masters accessing two different slaves in parallel
with 4-beat burst transfers
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TABLE IX

TEST 2 RESULTS: INJECTIONS AT 80 NS, 100 NS AND 120 NS

Record entry Cycle 1 Cycle 2 Cycle 3

# of f. # of s. f. # of f. # of s. f. # of f. # of s. f.

m(1).busy 0 1 0 1 0 1

m(1).hslave 0 1 0 1 0 1

m(1).retslv 1 0 1 0 1 0

m(1).errslv 1 0 1 0 1 0

m(1).cfgsel 1 0 1 0 1 0

m(1).idle 0 1 0 1 0 1

m(1).haddr 0 14 0 14 0 14

m(1).hrdatam 0 32 0 32 0 32

m(1).hrdatas 0 32 0 32 0 32

m(1).cfga11 0 1 0 1 0 1

m(1).hready 0 1 0 1 0 1

m(1).htrans 0 2 0 2 0 2

m(1).beat 0 4 0 4 0 4

m(0).busy 0 1 0 1 0 1

m(0).hslave 0 1 0 1 0 1

m(0).retslv 1 0 1 0 1 0

m(0).errslv 1 0 1 0 1 0

m(0).cfgsel 1 0 1 0 1 0

m(0).idle 0 1 0 1 0 1

m(0).haddr 0 14 0 14 0 14

m(0).hrdatam 0 32 0 32 0 32

m(0).hrdatas 0 32 0 32 0 32

m(0).cfga11 0 1 0 1 0 1

m(0).hready 0 1 0 1 0 1

m(0).htrans 0 2 0 2 0 2

m(0).beat 0 4 0 4 0 4

s(1).busy 0 1 1 0 1 0

s(1).hmaster 0 1 1 0 1 0

s(0).busy 1 0 1 0 1 0

s(0).hmaster 0 1 1 0 1 0
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TABLE X

TEST 2 RESULTS: INJECTIONS AT 140 NS AND 160 NS

Record entry Cycle 4 Cycle 5

# of f. # of s. f. # of f. # of s. f.

m(1).busy 0 1 0 1

m(1).hslave 0 1 0 1

m(1).retslv 0 1 0 1

m(1).errslv 0 1 0 1

m(1).cfgsel 0 1 0 1

m(1).idle 0 1 0 1

m(1).haddr 0 14 0 14

m(1).hrdatam 0 32 0 32

m(1).hrdatas 0 32 0 32

m(1).cfga11 0 1 0 1

m(1).hready 0 1 0 1

m(1).htrans 0 2 0 2

m(1).beat 0 4 0 4

m(0).busy 0 1 0 1

m(0).hslave 0 1 0 1

m(0).retslv 0 1 0 1

m(0).errslv 0 1 0 1

m(0).cfgsel 0 1 0 1

m(0).idle 0 1 0 1

m(0).haddr 0 14 0 14

m(0).hrdatam 0 32 0 32

m(0).hrdatas 0 32 0 32

m(0).cfga11 0 1 0 1

m(0).hready 0 1 0 1

m(0).htrans 0 2 0 2

m(0).beat 0 4 0 4

s(1).busy 1 0 1 0

s(1).hmaster 1 0 1 0

s(0).busy 1 0 1 0

s(0).hmaster 1 0 1 0
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At clock cycles 4 and 5 (130 ns to 150 ns and 150 ns to 170 ns) the masters’ signals are

not sensitive to faults anymore because of the burst transfer locking behavior. Failures are

generated nonetheless by SEUs which strike the slaves’ signals, creating a misconnection

on the crossbar and an erroneous data read by the slave.

From the data in Table VII through Table X, we can deduce that some values of the

crossbar r record are more sensitive to SEU faults. In particular we see that masters’ and

slaves’ signals which are direct inputs to the crossbar structure (i.e. masters’ retslv, errslv

and cfgsel, and slaves’ busy and hmaster) are particularly sensitive to this kind of faults

during a write transfer. We can infer that for a read transfer also the masters’ busy and

hslave signals will be sensitive to SEU faults, which generally cause a misconnection in the

proper crossbar structure which routes the master inputs. Faults on the idle signal of the

crossbar are easily recovered: a master whose idle is de-asserted by an SEU (bit flip from

“1” to “0”) is simply going to ignore the data on its inputs anyhow. A master which is not

idle but gets an asserted idle signal from an SEU (bit flip “0” to “1”) will ignore the idle

signal as the other fields (busy, retslv, errslv and cfgsel) take a precedence over it.

The record fields used by the master’s dummy slaves, which were not directly tested in

these chapter, compose the vast majority of the bits of the r record structure, as can be

seen in Table V (hrdatam and hrdatas for instance are 32-bit fields each one). These values

are rarely used in a real-case scenario, but nonetheless are fundamental for the correct

behavior in case of arbitration or special connections on the crossbar, such as error and

configuration access.



CHAPTER 6

CONCLUSIONS AND FURTHER DEVELOPMENT

The study of the LEON 3 processor system, with its versatility and modularity, has been

the base for the development of my work. By simulating the whole computing system I was

able to analyze a real-case scenario for the use of an intercommunication network, namely

the AHB bus. Furthermore, I studied the working details of a multi-processor system, and

the features of the cache system of the LEON 3 and the way it handles coherency among

the cores. This study was actualized in the adaptation of the AHB standard to work on a

crossbar structure.

The use of a mature method of writing VHDL code enabled us to create a functional

entity, the AHB Crossbar Controller, as described in Chapter 3, which is made up of more

than 8 hundred code lines. The entity was tested with more than 20 test benches, for

a total of more than 2 thousand lines of code, to simulate several real-case-usage models

and different behaviors of masters and slaves communication in a system. The correctness

of the test benches was then checked and the total transfer time of each test bench was

compared with the transfer time of the same test bench run on a bus topology, instead of

a crossbar.

After the proper functioning of the entity was ensured, we run several tests to charac-

terize the behavior of the AHB Crossbar Controller in case of random SEU faults striking
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the circuit. A comprehensive set of more than 1300 tests was run where we simulated the

bit flipping of every static memory cell of the circuit, at every cycle of the transfer, in two

common test cases: two parallel single-beat transfers and two parallel burst transfers.

The results of performance testing of Chapter 4 confirmed that a crossbar network

topology drastically improves parallel transfers among master-slave couples (see Table IV,

tests 4, 5, 6, 18 and 19). We found that this type of transfer reports a speedup of,

at minimum, 67% on two-master systems, quite close to the theoretical 100% speedup.

Overall performance degradation was reportedly not a problem and even most transfers

with low or no parallelism were subjected to a speedup.

The fault tolerance analysis highlighted some sensitive areas in the static memory used

by the circuit, as seen in Chapter 5. Specifically, we reported that the AHB Crossbar

Controller static-memory elements which directly feed the internal crossbar control signals,

are more susceptible to Single Event Upset faults.

The AHB Crossbar Controller, as is, could work on a single-core single-master LEON

3 system but it would be unable to operate on a multi-core one, because of the way the

LEON 3 handles cache coherency. As bus snooping is used to ensure coherency between the

in-core caches (see Subsection 1.3.2 on page 9), the crossbar adaptation would not be able

to serve the processors with the needed data, as we do not have a unique bus anymore, but

several buses working in parallel. In theory, a two-core system could be adapted to work

with the AHB Crossbar Controller, but there are theoretical considerations that prevent

the system, as is, to work for three or more cores. The cache coherency part of the LEON
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3 would therefore have to be modified. For instance a central directory scheme (10) could

be implemented inside the AHB Crossbar Controller, or the cache could be moved out of

the core and onto the intercommunication network.

Nonetheless, the AHB Crossbar Controller would be able to operate, and increase

performance through parallelism, for non-cached memory accesses. So, for instance, a

multi-core LEON 3 system with cache disabled could be operating with the crossbar as is.

Otherwise we envision a single-core LEON 3 system which shares the crossbar with other

AHB master devices accessing only non-cacheable memory entries, or accessing read-only

memory or, else, not performing writes but only reads.

Finally the creation of the AHB Crossbar Controller and its fault tolerance analysis

enables us to further our work towards software fault tolerance. In this thesis we have seen

how a crossbar would be an efficient network topology for logically partitioned computing

systems, because, in these systems, communication happens in parallel almost exclusively

between cores and memories couples. Future expansions of the work could delve into the

creation of an hypervisor which could manage multiple logical partitions of a computing

system, running in parallel the same code we want to examine in the fault tolerance analysis.

The hypervisor would then check the consistence of the data execution results of the code

among the partitions, and would be able to detect the presence of a fault in one of the

partitions if the results differ. This kind of software fault detection would have in the

crossbar its weak spot, as possible SEUs on the crossbar hardware structure could not

be detected by the hypervisor. The crossbar fault tolerance analysis we carried out in
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this thesis tries to analyze this unwanted situation in the pursuit of possible remedies for

addressing this inconvenient in a more general setup.
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Appendix A

AHB CB CTRL - AMBA AHB CROSSBAR CONTROLLER CODE

−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− This f i l e i s a par t o f the GRLIB VHDL IP LIBRARY
−− Copyright (C) 2003 − 2008 , Ga i s l e r Research
−− Copyright (C) 2008 − 2012 , Aero f l e x Ga i s l e r
−−
−− This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify
−− i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by
−− the Free Sof tware Foundation ; e i t h e r ve r s i on 2 o f the License , or
−− ( at your opt ion ) any l a t e r ve r s i on .
−−
−− This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u s e fu l ,
−− but WITHOUT ANY WARRANTY; wi thou t even the imp l i ed warranty o f
−− MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
−− GNU General Pub l i c License f o r more d e t a i l s .
−−
−− You shou ld have r e c e i v ed a copy o f the GNU General Pub l i c License
−− a long wi th t h i s program ; i f not , wr i t e to the Free Sof tware
−− Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ent i t y : a h b c t r l
−− F i l e : a h b c t r l . vhd
−− Author : J i r i Gais ler , Ga i s l e r Research
−− Modif ied : Edvin Catovic , Ga i s l e r Research
−− Descr ip t i on : AMBA arb i t e r , decoder and mu l t i p l e x e r wi th p lug&p lay suppor t
−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
l ibrary g r l i b ;
use g r l i b . s t d l i b . a l l ;
use g r l i b . amba . a l l ;
−− pragma t r a n s l a t e o f f
use g r l i b . d ev i c e s . a l l ;
use std . t e x t i o . a l l ;
−− pragma t r an s l a t e on

entity ahbc t r l cb i s



122

Appendix A (continued)

generic (
defmast : i n t e g e r := 0 ; −− d e f a u l t master
s p l i t : i n t e g e r := 0 ; −− s p l i t suppor t
t imeout : i n t e g e r range 0 to 255 := 0 ; −− HREADY timeout
i oaddr : ahb addr type := 16# f f f #; −− I /O area MSB

address
iomask : ahb addr type := 16# f f f #; −− I /O area address

mask
c fgaddr : ahb addr type := 16# f f 0 #; −− con f i g area MSB

address
cfgmask : ahb addr type := 16# f f 0 #; −− con f i g area

address mask
nahbm : i n t e g e r range 1 to NAHBMST := NAHBMST; −− number o f masters
nahbs : i n t e g e r range 1 to NAHBSLV := NAHBSLV; −− number o f s l a v e s
i oen : i n t e g e r range 0 to 15 := 1 ; −− enab l e I /O area
d i s i r q : i n t e g e r range 0 to 1 := 0 ; −− d i s a b l e i n t e r r u p t

rou t ing
f i x b r s t : i n t e g e r range 0 to 1 := 0 ; −− suppor t f i x−l e n g t h

bu r s t s
debug : i n t e g e r range 0 to 2 := 2 ; −− r epor t cores to conso l e
fpnpen : i n t e g e r range 0 to 1 := 0 ; −− f u l l PnP con f i g u r a t i on

decoding
i check : i n t e g e r range 0 to 1 := 1 ;
devid : i n t e g e r := 0 ; −− unique dev i c e ID
enbusmon : i n t e g e r range 0 to 1 := 0 ; −−enab l e bus monitor
assertwarn : i n t e g e r range 0 to 1 := 0 ; −−enab l e a s s e r t i o n s f o r

warnings
a s s e r t e r r : i n t e g e r range 0 to 1 := 0 ; −−enab l e a s s e r t i o n s f o r

e r ro r s
hmstd i sab le : i n t e g e r := 0 ; −−d i s a b l e master checks
h s l v d i s a b l e : i n t e g e r := 0 ; −−d i s a b l e s l a v e checks
a rbd i s ab l e : i n t e g e r := 0 ; −−d i s a b l e a r b i t e r checks
mprio : i n t e g e r := 0 ; −−master wi th h i g h e s t

p r i o r i t y
mcheck : i n t e g e r range 0 to 2 := 1 ; −−check memory map f o r

i n t e r s e c t s
ccheck : i n t e g e r range 0 to 1 := 1 ; −−perform san i t y checks on

pnp con f i g
acdm : i n t e g e r := 0 ; −−AMBA compl iant data

muxing ( f o r h s i z e > word )
index : i n t e g e r := 0 ; −−Index f o r t race pr in t−

out
ahbtrace : i n t e g e r := 0 ; −−AHB trace enab l e
hwdebug : i n t e g e r := 0 ; −−Hardware debug
f o u r g s l v : i n t e g e r := 0 −−1=S ing l e s l a v e wi th

s i n g l e 4 GB bar
) ;
port (

r s t : in s t d u l o g i c ;
c l k : in s t d u l o g i c ;
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msti : out ahb mst in vec to r ;
msto : in ahb mst out vector ;
s l v i : out ahb s l v i n v e c t o r ;
s l v o : in ahb s l v ou t v e c t o r ;
t e s t en : in s t d u l o g i c := ’ 0 ’ ;
t e s t r s t : in s t d u l o g i c := ’ 1 ’ ;
scanen : in s t d u l o g i c := ’ 0 ’ ;
t e s t o en : in s t d u l o g i c := ’1 ’

) ;
end ;

architecture r t l of ahbc t r l cb i s
constant nahbmx : i n t e g e r := 2 ∗∗ l og2 (nahbm) ;
type nmstarr i s array (1 to 3) of i n t e g e r range 0 to nahbmx − 1 ;
type nva la r r i s array (1 to 3) of boolean ;

type r eg maste r type i s record
−− hmaster : i n t e g e r range 0 to nahbmx −1;
−− hmasterd : i n t e g e r range 0 to nahbmx −1;
busy : s t d u l o g i c ;
h s l ave : i n t e g e r range 0 to nahbs − 1 ;
r e t s l v : s t d u l o g i c ;
e r r s l v : s t d u l o g i c ;
c f g s e l : s t d u l o g i c ;
i d l e : s t d u l o g i c ;

haddr : s t d l o g i c v e c t o r (15 downto 2) ;
hrdatam : s t d l o g i c v e c t o r (31 downto 0) ;
hrdatas : s t d l o g i c v e c t o r (31 downto 0) ;
c fga11 : s t d u l o g i c ;
hready : s t d u l o g i c ;
htrans : s t d l o g i c v e c t o r (1 downto 0) ;
beat : s t d l o g i c v e c t o r (3 downto 0) ;

end record ;

type r e g s l a v e t yp e i s record
busy : s t d u l o g i c ;
hmaster : i n t e g e r range 0 to nahbmx − 1 ;

end record ;

type reg mvector type i s array ( natura l range <>) of r eg maste r type ;
type r e g s v e c t o r t yp e i s array ( natura l range <>) of r e g s l a v e t yp e ;
subtype reg mvector i s reg mvector type (nahbm − 1 downto 0) ;
subtype r e g s v e c t o r i s r e g s v e c t o r t yp e ( nahbs − 1 downto 0) ;

type nhmaster vector type i s array ( natura l range <>) of i n t e g e r range 0 to
nahbmx − 1 ;

subtype nhmaster vector i s nhmaster vector type ( nahbs −1 downto 0) ;
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type n s l a v e v e c t o r t yp e i s array ( natura l range <>) of natura l range 0 to
31 ;

subtype n s l a v e v e c t o r i s n s l a v e v e c t o r t yp e (nahbmx −1 downto 0) ;

type h s e l v e c t o r t yp e i s array ( natura l range <>) of s t d l o g i c v e c t o r (0 to
31) ;

subtype h s e l v e c t o r i s h s e l v e c t o r t yp e (nahbmx −1 downto 0) ;

type hmbse l vec tor type i s array ( natura l range <>) of s t d l o g i c v e c t o r (0
to NAHBAMR − 1) ;

subtype hmbse l vector i s hmbse l vec tor type (nahbmx −1 downto 0) ;

type s e l v e c t o r t y p e i s array ( natura l range <>) of s t d u l o g i c ;
subtype s e l v e c t o r i s s e l v e c t o r t y p e (nahbmx −1 downto 0) ;

type s l a v e v e c t o r t yp e i s array ( natura l range <>) of s t d u l o g i c ;
subtype s l a v e v e c t o r i s s l a v e v e c t o r t yp e ( nahbs −1 downto 0) ;

type hr e sp ve c t o r type i s array ( natura l range <>) of s t d l o g i c v e c t o r (1
downto 0) ;

subtype hr e sp vec t o r i s hr e sp ve c t o r type (nahbmx −1 downto 0) ;

type bns l av e ve c t o r type i s array ( natura l range <>) of s t d l o g i c v e c t o r (3
downto 0) ;

subtype bns l ave ve c t o r i s bns l av e ve c t o r type (nahbmx −1 downto 0) ;

type data vec to r type i s array ( natura l range <>) of s t d l o g i c v e c t o r (31
downto 0) ;

subtype data vec to r i s data vec to r type (nahbmx −1 downto 0) ;

type cb type i s record
m : reg mvector ;
s : r e g s v e c t o r ;

end record ;

constant primst : s t d l o g i c v e c t o r (NAHBMST downto 0) :=
c onv s t d l o g i c v e c t o r (mprio , NAHBMST + 1) ;

type l 0 t yp e i s array (0 to 15) of s t d l o g i c v e c t o r (2 downto 0) ;
type l 1 t yp e i s array (0 to 7) of s t d l o g i c v e c t o r (3 downto 0) ;
type l 2 t yp e i s array (0 to 3) of s t d l o g i c v e c t o r (4 downto 0) ;
type l 3 t yp e i s array (0 to 1) of s t d l o g i c v e c t o r (5 downto 0) ;

type t z tab type i s array (0 to 15) of s t d l o g i c v e c t o r (2 downto 0) ;

−−r e turns the index number o f the h i g h e s t p r i o r i t y r e que s t
−−s i g n a l in the two l s b b i t s when indexed wi th a 4− b i t
−−r e que s t v e c t o r wi th the h i g h e s t p r i o r i t y s i g n a l on the
−− l s b . the re turned msb b i t i n d i c a t e s i f a r e que s t was
−−a c t i v e ( ’1 ’ = no re que s t a c t i v e corresponds to ”0000”)
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constant tztab : t z tab type := ( ”100” , ”000” , ”001” , ”000” , ”010” , ”000” , ”
001” , ”000” , ”011” , ”000” , ”001” , ”000” , ”010” , ”000” , ”001” , ”000” ) ;

−−c a l c u l a t e the number o f the h i g h e s t p r i o r i t y r e que s t s i g n a l ( up to 64
−−r e qu e s t s are suppor ted ) in v e c t i n us ing a d i v i d e and conquer
−−a l gor i thm . The lower the index in the vec t o r the h i ghe r the p r i o r i t y
−−o f the s i g n a l . F i r s t 4− b i t s l i c e s are indexed in t z t a b and the msb
−−i n d i c a t e s whether t h e r e i s an a c t i v e r e que s t or not . Then the r e s u l t i n g
−−3 b i t v e c t o r s are compared in pa i r s ( the one corresponding to ( 3 : 0 ) wi th
−−( 7 : 4 ) , ( 11 :8 ) wi th (15 :12) and so on) . I f the l e a s t s i g n i f i c a n t o f the

two
−−conta ins an a c t i v e s i g n a l a ’0 ’ i s added to the msb s i d e ( the vec t o r
−−becomes one b i t wider at each l e v e l ) to the next l e v e l to i n d i c a t e t ha t
−−t h e r e are a c t i v e s i g n a l s in the lower n i b b l e o f the two . Otherwise
−−the msb i s removed from the vec t o r corresponding to the h i ghe r n i b b l e
−−and ”10” i s added i f i t does not conta in a c t i v e r e qu e s t s and ”01” i f
−−does conta in a c t i v e s i g n a l s . Thus the msb s t i l l i n d i c a t e s i f the new
−−s l i c e con ta ins a c t i v e s i g n a l s and a ’1 ’ i s added i f i t i s the h i ghe r
−−par t . This r e s u l t s in a 6− b i t v e c t o r con ta in ing the index number
−−o f the h i g h e s t p r i o r i t y master in 5:0 i f b i t 6 i s ’0 ’ o the rw i s e
−−no master r eque s t ed the bus .
function tz ( v e c t i n : s t d l o g i c v e c t o r ) return s t d l o g i c v e c t o r i s

variable vect : s t d l o g i c v e c t o r (63 downto 0) ;
variable l 0 : l 0 t ype ;
variable l 1 : l 1 t ype ;
variable l 2 : l 2 t ype ;
variable l 3 : l 3 t ype ;
variable l 4 : s t d l o g i c v e c t o r (6 downto 0) ;
variable bc i l s b , bci msb : s t d l o g i c v e c t o r (3 downto 0) ;
variable bco l sb , bco msb : s t d l o g i c v e c t o r (2 downto 0) ;
variable s e l : s t d l o g i c ;

begin
vect := ( others => ’ 1 ’ ) ;
vect ( vec t in ’ l ength − 1 downto 0) := v e c t i n ;

−− l e v e l 0
for i in 0 to 7 loop

b c i l s b := vect (8 ∗ i + 3 downto 8 ∗ i ) ;
bci msb := vect (8 ∗ i + 7 downto 8 ∗ i + 4) ;
−−l ookup the h i g h e s t p r i o r i t y r e que s t in each n i b b l e
bco l sb := tztab ( conv in t eg e r ( b c i l s b ) ) ;
bco msb := tztab ( conv in t eg e r ( bci msb ) ) ;
−−s e l e c t which o f two n i b b l e s conta in the h i g h e s t p r i o r i t y ACTIVE
−−s i gna l , and forward the corresponding vec t o r to the next l e v e l
s e l := bco l sb (2 ) ;
i f s e l = ’0 ’ then

l 1 ( i ) := ’0 ’ & bco l sb ;
else

l 1 ( i ) := bco msb (2) & not bco msb (2) & bco msb (1 downto 0) ;
end i f ;
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end loop ;

−− l e v e l 1
for i in 0 to 3 loop

s e l := l 1 (2 ∗ i ) ( 3 ) ;
−−s e l e c t which o f two 8− b i t v e c t o r s conta in the
−−h i g h e s t p r i o r i t y ACTIVE s i g n a l . the msb s e t a t the prev ious l e v e l
−−f o r each 8− b i t s l i c e determines t h i s
i f s e l = ’0 ’ then

l 2 ( i ) := ’0 ’ & l 1 (2 ∗ i ) ;
else

l 2 ( i ) := l 1 (2 ∗ i + 1) (3 ) & not l 1 (2 ∗ i + 1) (3 ) & l 1 (2 ∗ i + 1) (2
downto 0) ;

end i f ;
end loop ;

−− l e v e l 2
for i in 0 to 1 loop
−−16− b i t vec tor s , the msb s e t a t the prev ious l e v e l f o r each 16− b i t
−−s l i c e determines the h i ghe r p r i o r i t y s l i c e
s e l := l 2 (2 ∗ i ) ( 4 ) ;
i f s e l = ’0 ’ then

l 3 ( i ) := ’0 ’ & l 2 (2 ∗ i ) ;
else

l 3 ( i ) := l 2 (2 ∗ i + 1) (4 ) & not l 2 (2 ∗ i + 1) (4 ) & l 2 (2 ∗ i + 1) (3
downto 0) ;

end i f ;
end loop ;

−− l e v e l 3
−−32− b i t vec tor s , the msb s e t a t the prev ious l e v e l f o r each 32− b i t
−−s l i c e determines the h i ghe r p r i o r i t y s l i c e
i f l 3 (0 ) (5 ) = ’0 ’ then

l 4 := ’0 ’ & l 3 (0 ) ;
else

l 4 := l 3 (1 ) (5 ) & not l 3 (1 ) (5 ) & l 3 (1 ) (4 downto 0) ;
end i f ;

return ( l 4 ) ;
end ;

−−i n v e r t the b i t order o f the hbusreq s i g n a l s l o c a t e d in v e c t i n
−−s ince the h i g h e s t hbusreq has the h i g h e s t p r i o r i t y but the
−−a l gor i thm in t z has the h i g h e s t p r i o r i t y on l s b
function l z ( v e c t i n : s t d l o g i c v e c t o r ) return s t d l o g i c v e c t o r i s

variable vect : s t d l o g i c v e c t o r ( vec t in ’ l ength − 1 downto 0) ;
variable vect2 : s t d l o g i c v e c t o r ( vec t in ’ l ength − 1 downto 0) ;

begin
vect := v e c t i n ;
for i in vect ’ r i g h t to vect ’ l e f t loop
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vect2 ( i ) := vect ( vect ’ l e f t − i ) ;
end loop ;
return ( tz ( vect2 ) ) ;

end ;

−− Find next master :
−− ∗ 2 a r b i t r a t i o n p o l i c i e s : f i x e d p r i o r i t y or round−rob in
−− ∗ Fixed p r i o r i t y : p r i o r i t y i s f i x ed , h i g h e s t index has h i g h e s t

p r i o r i t y
−− ∗ Round−rob in : a r b i t e r maintains c i r c u l a r queue o f masters
−− ∗ ( master 0 , master 1 , . . . , master (nahbmx−1)) . F i r s t r e qu e s t i n g

master
−− ∗ in the queue i s granted acces s to the bus and moved to the end o f

the queue .
−− ∗ s p l i t t e d masters are not granted
−− ∗ bus i s re−a r b i t e d when current owner does not r e que s t the bus ,
−− or when i t performs non−bu r s t a cce s s e s
−− ∗ f i x l e n g t h bu r s t t r a n s f e r s w i l l not be i n t e r r up t e d
−− ∗ incrementa l b u r s t s shou ld a s s e r t hbusreq u n t i l l a s t acces s

procedure se lmast ( r : in cb type ;
−− msto : in ahb ms t ou t v e c t o r ;
s l a v e : in i n t e g e r range 0 to nahbs − 1 ;
busym : inout s e l v e c t o r ;
n s l ave : in n s l a v e v e c t o r ;
l o ck : in s e l v e c t o r ;
r e t s l v : inout s e l v e c t o r ;
e r r s l v : in s e l v e c t o r ;
c f g s e l : in s e l v e c t o r ;
i d l e : in s e l v e c t o r ;
mast : out i n t e g e r range 0 to nahbmx − 1 ;
busy : out s t d l o g i c
) i s

variable nmst : nmstarr ;
variable nva l id : nva la r r ;

variable r rvec : s t d l o g i c v e c t o r (nahbmx ∗ 2 − 1 downto 0) ;
variable zcnt : s t d l o g i c v e c t o r ( log2 (nahbmx) + 1 downto 0) ;
variable hpvec : s t d l o g i c v e c t o r (nahbmx − 1 downto 0) ;
variable zcnt2 : s t d l o g i c v e c t o r ( log2 (nahbmx) downto 0) ;

begin
nva l id (1 to 3) := ( others => f a l s e ) ;
nmst (1 to 3) := ( others => 0) ;
mast := r . s ( s l a v e ) . hmaster ;

r rve c := ( others => ’ 0 ’ ) ;
−−mask r e qu e s t s up to and in c l u d i n g curren t master . Concatenate
−−an unmasked r e que s t v e c t o r above the masked vec t o r . Otherwise
−−the r u l e s are the same as f o r f i x e d p r i o r i t y
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for i in 0 to nahbmx − 1 loop
i f ( i <= r . s ( s l a v e ) . hmaster ) then

r rvec ( i ) := ’ 0 ’ ;
else

i f ( ns l ave ( i ) = s l av e ) and ( c f g s e l ( i ) /= ’1 ’ ) and ( r e t s l v ( i ) /= ’1 ’ )
and ( e r r s l v ( i ) /= ’1 ’ ) and ( i d l e ( i ) /= ’1 ’ ) then

r rvec ( i ) := busym( i ) ; −− msto ( i ) . hbusreq ;
else

r rvec ( i ) := ’ 0 ’ ;
end i f ;

end i f ;
i f ( ns l ave ( i ) = s l av e ) and ( c f g s e l ( i ) /= ’1 ’ ) and ( r e t s l v ( i ) /= ’1 ’ )

and ( e r r s l v ( i ) /= ’1 ’ ) and ( i d l e ( i ) /= ’1 ’ ) then
r rvec (nahbmx + i ) := busym( i ) ; −− msto ( i ) . hbusreq ;

else
r rvec (nahbmx + i ) := ’ 0 ’ ;

end i f ;
end loop ;
−−f i n d the next master uz ing t z which g i v e s p r i o r i t y to lower
−−indexes
zcnt := tz ( r rvec ) ( log2 (nahbmx) + 1 downto 0) ;
−−was the r e a master r e qu e s t i n g the bus?
i f zcnt ( log2 (nahbmx) + 1) = ’0 ’ then

nva l id (2 ) := true ;
end i f ;
nmst (2 ) := conv in t eg e r ( zcnt ( log2 (nahbmx) − 1 downto 0) ) ;

−− i f we have a l o cked s l a v e ( f o r in s tance when a bur s t t r a n s f e r i s in
prog re s s ) we l o c k i t to the prev ious master

i f r . s ( s l a v e ) . busy = ’1 ’ and l o ck ( r . s ( s l a v e ) . hmaster ) = ’1 ’ then
nmst (1 ) := r . s ( s l a v e ) . hmaster ;
nva l id (1 ) := true ;

end i f ;
−− i f no o ther master i s r e qu e s t i n g the bus s e l e c t the curren t one

−− nmst (3) := r . s ( s l a v e ) . hmaster ;
−− nva l i d (3) := true ;

−−s e l e c t the next master . I f f o r round rob in a h igh p r i o r i t y master
−−(mprio ) r eque s t ed the bus i f n va l i d (1) i s t rue . Otherwise
−− i f n va l i d (2) i s t rue at l e a s t one master was r e qu e s t i n g the bus
−−and the one wi th h i g h e s t p r i o r i t y was s e l e c t e d . I f none o f t h e s e
−−were t rue then the d e f a u l t master i s s e l e c t e d ( nva l i d (3) t rue )
busy := ’ 0 ’ ;
for i in 1 to 3 loop

i f nva l id ( i ) then
mast := nmst ( i ) ;
busy := ’ 1 ’ ;
for k in 0 to nahbmx − 1 loop

i f k /= nmst ( i ) and busym(k ) = ’1 ’ and ( ns l ave (k ) = s l av e ) then
busym(k ) := ’ 0 ’ ;
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r e t s l v ( k ) := ’ 1 ’ ;
end i f ;

end loop ;
exit ;

end i f ;
end loop ;

end ;

constant MIMAX : i n t e g e r := log2x (nahbmx) − 1 ;
constant SIMAX : i n t e g e r := log2x ( nahbs ) − 1 ;
constant IOAREA : s t d l o g i c v e c t o r (11 downto 0) := c onv s t d l o g i c v e c t o r (

ioaddr , 12) ;
constant IOMSK : s t d l o g i c v e c t o r (11 downto 0) := c onv s t d l o g i c v e c t o r (

iomask , 12) ;
constant CFGAREA : s t d l o g i c v e c t o r (11 downto 0) := c onv s t d l o g i c v e c t o r (

cfgaddr , 12) ;
constant CFGMSK : s t d l o g i c v e c t o r (11 downto 0) := c onv s t d l o g i c v e c t o r (

cfgmask , 12) ;
constant FULLPNP : boolean := ( fpnpen /= 0) ;

signal r , r i n : cb type ; −− r e g v e c t o r ;
signal r s p l i t , r s p l i t i n : s t d l o g i c v e c t o r (0 to nahbmx − 1) ;
−− s i g n a l rcb , r cb in : c b t yp e ;

−− pragma t r a n s l a t e o f f
signal lms t i : ahb mst in type ;
signal l s l v i : a hb s l v i n t yp e ;

−− pragma t r an s l a t e on

begin
comb : process ( r s t , msto , s lvo , r , r s p l i t , t e s ten , t e s t r s t , scanen , t e s t o en

)
variable area : s t d l o g i c v e c t o r (1 downto 0) ;

variable hconfndx : i n t e g e r range 0 to 7 ;

variable defmst : s t d u l o g i c ;
variable tmpv : s t d l o g i c v e c t o r (0 to nahbmx − 1) ;

−− no need to v e c t o r i z e
variable hgrant : s t d l o g i c v e c t o r (0 to NAHBMST − 1) ; −− bus grant
variable v : cb type ; −− r e g v e c t o r ;
variable v s p l i t : s t d l o g i c v e c t o r (0 to nahbmx − 1) ;
variable v s l v i : a hb s l v i n t yp e ;
−− v a r i a b l e vcb : c b t yp e ;

−− v e c t o r i z e d
−− v a r i a b l e arb : s e l v e c t o r ;
variable i d l e : s e l v e c t o r ;
variable busym : s e l v e c t o r ;
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variable busys : s l a v e v e c t o r ;
variable hready : s e l v e c t o r ;
variable hresp : h r e sp ve c t o r ;
variable nhmaster : nhmaster vector ;
variable ns lave : n s l a v e v e c t o r ;
variable h s e l : h s e l v e c t o r ; −− s l a v e s e l e c t
variable hmbsel : hmbse l vector ;
variable c f g s e l : s e l v e c t o r ;
variable r e t s l v : s e l v e c t o r ;
variable e r r s l v : s e l v e c t o r ;
variable bns lave : bn s l av e ve c t o r ;
variable hrdata : da ta vec to r ;
variable hrdatam : data vec to r ;
variable hrdatas : da ta vec to r ;
variable l o ck : s e l v e c t o r ;

variable hcache : s t d u l o g i c ;
−−v a r i a b l e hrdata : s t d l o g i c v e c t o r (AHBDW − 1 downto 0) ;
variable haddr : s t d l o g i c v e c t o r (31 downto 0) ;
variable h i rq : s t d l o g i c v e c t o r (NAHBIRQ − 1 downto 0) ;

begin
v := r ;
hgrant := ( others => ’ 1 ’ ) ;
defmst := ’ 0 ’ ;

−− l oop masters and grant a l l masters ( r e qu e s t i n g )
−− degrant a l s o
−− TODO: s p l i t l o g i c
for j in 0 to nahbm − 1 loop
−− s l a v e decoding
haddr := msto ( j ) . haddr ;

h s e l ( j ) := ( others => ’ 0 ’ ) ;
hmbsel ( j ) := ( others => ’ 0 ’ ) ;
busym( j ) := ’ 0 ’ ;
i d l e ( j ) := ’ 0 ’ ;
c f g s e l ( j ) := ’ 0 ’ ;
e r r s l v ( j ) := ’ 0 ’ ;
r e t s l v ( j ) := ’ 0 ’ ;
l o ck ( j ) := ’ 0 ’ ;

i f f o u r g s l v = 0 then
for i in 0 to nahbs − 1 loop

for k in NAHBIR to NAHBCFG − 1 loop
area := s l vo ( i ) . hcon f i g ( k ) (1 downto 0) ;
case area i s

when ”10” =>
i f ( ( ioen = 0) or ( (IOAREA and IOMSK) /= ( haddr (31 downto 20)

and IOMSK) ) ) and ( ( s l v o ( i ) . h con f i g ( k ) (31 downto 20) and
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s l v o ( i ) . hcon f i g ( k ) (15 downto 4) ) = ( haddr (31 downto 20)
and s l v o ( i ) . hcon f i g ( k ) (15 downto 4) ) ) and ( s l v o ( i ) .
hcon f i g ( k ) (15 downto 4

) /= ”000000000000” ) then
h s e l ( j ) ( i ) := ’ 1 ’ ;
hmbsel ( j ) ( k − NAHBIR) := ’ 1 ’ ;

end i f ;
when ”11” =>

i f ( ( ioen /= 0) and ( (IOAREA and IOMSK) = ( haddr (31 downto
20) and IOMSK) ) ) and ( ( s l v o ( i ) . h con f i g ( k ) (31 downto 20)
and s l v o ( i ) . hcon f i g ( k ) (15 downto 4) ) = ( haddr (19 downto
8) and s l v o ( i ) . hcon f i g ( k ) (15 downto 4) ) ) and ( s l v o ( i ) .
hcon f i g ( k ) (15 downto 4

) /= ”000000000000” ) then
h s e l ( j ) ( i ) := ’ 1 ’ ;
hmbsel ( j ) ( k − NAHBIR) := ’ 1 ’ ;

end i f ;
when others =>

end case ;
end loop ;

end loop ;
else
−− There i s on ly one s l a v e on the bus . The s l a v e has on ly one bar ,

which
−− maps 4 GB address space .
h s e l ( j ) (0 ) := ’ 1 ’ ;
hmbsel ( j ) (0 ) := ’ 1 ’ ;

end i f ;

−− conver t unary to b inary r ep r e s en t a t i on
bns lave ( j ) (0 ) := h s e l ( j ) (1 ) or h s e l ( j ) (3 ) or h s e l ( j ) (5 ) or h s e l ( j ) (7 )

or h s e l ( j ) (9 ) or h s e l ( j ) (11) or h s e l ( j ) (13) or h s e l ( j ) (15) ;
bns lave ( j ) (1 ) := h s e l ( j ) (2 ) or h s e l ( j ) (3 ) or h s e l ( j ) (6 ) or h s e l ( j ) (7 )

or h s e l ( j ) (10) or h s e l ( j ) (11) or h s e l ( j ) (14) or h s e l ( j ) (15) ;
bns lave ( j ) (2 ) := h s e l ( j ) (4 ) or h s e l ( j ) (5 ) or h s e l ( j ) (6 ) or h s e l ( j ) (7 )

or h s e l ( j ) (12) or h s e l ( j ) (13) or h s e l ( j ) (14) or h s e l ( j ) (15) ;
bns lave ( j ) (3 ) := h s e l ( j ) (8 ) or h s e l ( j ) (9 ) or h s e l ( j ) (10) or h s e l ( j ) (11)

or h s e l ( j ) (12) or h s e l ( j ) (13) or h s e l ( j ) (14) or h s e l ( j ) (15) ;

n s l ave ( j ) := conv in t eg e r ( bns lave ( j ) (SIMAX downto 0) ) ;

−− i d l e t r a n s f e r
i f (msto ( j ) . htrans = HTRANS IDLE) then

i d l e ( j ) := ’ 1 ’ ;
−− con f i g acces s
e l s i f ( ( ( ( (IOAREA and IOMSK) = ( haddr (31 downto 20) and IOMSK) ) and (

ioen /= 0) ) or ( (IOAREA = haddr (31 downto 20) ) and ( ioen = 0) ) ) and
( (CFGAREA and CFGMSK) = ( haddr (19 downto 8) and CFGMSK) ) and (

cfgmask /= 0) ) then
c f g s e l ( j ) := ’ 1 ’ ;



132

Appendix A (continued)

h s e l ( j ) := ( others => ’ 0 ’ ) ;
−− decoding unknown s l a v e ? error !
e l s i f ( ns l ave ( j ) = 0) and ( h s e l ( j ) (0 ) = ’0 ’ ) then

e r r s l v ( j ) := ’ 1 ’ ;
−− then we are busy i f we are acce s s ing a s l a v e and doing a NONSEQ or

SEQ or BUSY t r an s f e r
else −− i f msto ( j ) . h t rans = HTRANS NONSEQ or msto ( j ) . h t rans = HTRANS SEQ

or msto ( j ) . h t rans = HTRANS BUSY then
−− i f r e que s t ed s l a v e i s not ready , then r e t r y
i f s l v o ( ns lave ( j ) ) . hready = ’1 ’ then

busym( j ) := ’ 1 ’ ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− BURST PRIORITY LOGIC
l o ck ( j ) := ’ 1 ’ ;
case msto ( j ) . htrans i s

when HTRANSNONSEQ =>
case msto ( j ) . hburst i s

when HBURST SINGLE => l o ck ( j ) := ’ 0 ’ ;
when HBURST INCR => l o ck ( j ) := msto ( j ) . hbusreq ; −− NOTE out

o f specs case ? ? ! !
when others =>

end case ;
when HTRANS SEQ =>

case msto ( j ) . hburst i s
when HBURSTWRAP4 | HBURST INCR4 => i f ( f i x b r s t = 1) and ( r

.m( j ) . beat (1 downto 0) = ”11” ) then l o ck ( j ) := ’ 0 ’ ; end
i f ;

when HBURSTWRAP8 | HBURST INCR8 => i f ( f i x b r s t = 1) and ( r
.m( j ) . beat (2 downto 0) = ”111” ) then l o ck ( j ) := ’ 0 ’ ; end
i f ;

when HBURSTWRAP16 | HBURST INCR16 => i f ( f i x b r s t = 1) and ( r
.m( j ) . beat (3 downto 0) = ”1111” ) then l o ck ( j ) := ’ 0 ’ ; end
i f ;

when HBURST INCR => l o ck ( j ) := msto ( j ) . hbusreq ; −− l a s t
t r a n s f e r o f an INCR bur s t w i l l have low busreq

when others =>
end case ;

when others => l o ck ( j ) := ’ 1 ’ ;
end case ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

else
r e t s l v ( j ) := ’ 1 ’ ;

end i f ;
end i f ;

−− wa i t s t a t e s hand l ing l o g i c
−− TODO t h i s code might be moved in a more appropr ia t e l o ca t i on , l i k e

in the t h i r d loop
i f (busym( j ) = ’1 ’ and r .m( j ) . busy = ’1 ’ and s l v o ( r .m( j ) . h s l ave ) . hready

= ’0 ’ ) then
busym( j ) := ’ 0 ’ ;
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r e t s l v ( j ) := ’ 1 ’ ;
e l s i f (busym( j ) = ’1 ’ and ( r .m( j ) . r e t s l v = ’1 ’ or r .m( j ) . e r r s l v = ’1 ’

or r .m( j ) . c f g s e l = ’1 ’ ) and r .m( j ) . hready = ’0 ’ ) then
busym( j ) := ’ 0 ’ ;
r e t s l v ( j ) := ’ 1 ’ ;

end i f ;
end loop ;

−− now loop the s l a v e s to d e t e c t c o n f l i c t s
−− TODO a r b i t r a t e between c o n f l i c t i n g con f i g u r a t i on acce s s e s

for j in 0 to nahbs − 1 loop
i f s l v o ( j ) . hready = ’1 ’ then

busys ( j ) := ’ 0 ’ ;
s e lmast ( r , j , busym , ns lave , lock , r e t s l v , e r r s l v , c f g s e l , i d l e ,

nhmaster ( j ) , busys ( j ) ) ;
v . s ( j ) . hmaster := nhmaster ( j ) ;
v . s ( j ) . busy := busys ( j ) ;
−−v . s ( j ) . l o c k := l o c k ( nhmaster ( j ) ) ;

end i f ;
end loop ;

−− now loop masters , answering wi th the embedded s l a v e s

for j in 0 to nahbm − 1 loop

−− t h i s i f b l o c k can move to o ther prev ious f o r i t e r a t i o n s
i f cfgmask /= 0 then
−− p lug&p lay in format ion f o r masters
i f FULLPNP then

hconfndx := conv in t eg e r ( r .m( j ) . haddr (4 downto 2) ) ;
else

hconfndx := 0 ;
end i f ;
i f ( r .m( j ) . haddr (10 downto MIMAX+6) = zero32 (10 downto MIMAX+6) ) and

(FULLPNP or ( r .m( j ) . haddr (4 downto 2) = ”000” ) ) then
v .m( j ) . hrdatam := msto ( conv in t eg e r ( r .m( j ) . haddr (MIMAX+5 downto 5) )

) . hcon f i g ( hconfndx ) ;
else

v .m( j ) . hrdatam := ( others => ’ 0 ’ ) ;
end i f ;

−− p lug&p lay in format ion f o r s l a v e s
i f ( r .m( j ) . haddr (10 downto SIMAX+6) = zero32 (10 downto SIMAX+6) ) and

(FULLPNP or ( r .m( j ) . haddr (4 downto 2) = ”000” ) or ( r .m( j ) . haddr
(4 ) = ’1 ’ ) ) then

v .m( j ) . hrdatas := s l vo ( conv in t eg e r ( r .m( j ) . haddr (SIMAX+5 downto 5) )
) . hcon f i g ( c onv in t eg e r ( r .m( j ) . haddr (4 downto 2) ) ) ;

else
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v .m( j ) . hrdatas := ( others => ’ 0 ’ ) ;
end i f ;

−− dev i c e ID , l i b r a r y b u i l d and p o t e n t i a l l y debug in format ion
i f r .m( j ) . haddr (10 downto 4) = ”1111111” then

i f hwdebug = 0 or r .m( j ) . haddr (3 downto 2) = ”00” then
v .m( j ) . hrdatas (15 downto 0) := c onv s t d l o g i c v e c t o r (

LIBVHDL BUILD, 16) ;
v .m( j ) . hrdatas (31 downto 16) := c onv s t d l o g i c v e c t o r ( devid , 16) ;

e l s i f r .m( j ) . haddr (3 downto 2) = ”01” then
for i in 0 to nahbmx−1 loop v .m( j ) . hrdatas ( i ) := msto ( i ) . hbusreq ;

end loop ;
else

for i in 0 to nahbmx−1 loop v .m( j ) . hrdatas ( i ) := r s p l i t ( i ) ; end
loop ;

end i f ;
end i f ;

end i f ;

v .m( j ) . hready := ’ 0 ’ ;

i f ( r .m( j ) . busy = ’1 ’ ) then −− i f master was busy , we read i t ’ s data
bus s l a v e ready .

hready ( j ) := s l vo ( r .m( j ) . h s l ave ) . hready ;
else

i f ( r .m( j ) . r e t s l v = ’0 ’ and r .m( j ) . e r r s l v = ’0 ’ and r .m( j ) . c f g s e l =
’0 ’ ) then

hready ( j ) := ’ 1 ’ ;
else

i f ( r .m( j ) . htrans = HTRANS IDLE) or ( r .m( j ) . htrans = HTRANS BUSY)
then

hresp ( j ) := HRESPOKAY;
hready ( j ) := ’ 1 ’ ;

else
−− two c y c l e response from in t e r n a l s l a v e s

i f r .m( j ) . r e t s l v = ’1 ’ then
hresp ( j ) := HRESP RETRY;

e l s i f r .m( j ) . e r r s l v = ’1 ’ then
hresp ( j ) := HRESP ERROR;

e l s i f r .m( j ) . c f g s e l = ’1 ’ then
hresp ( j ) := HRESPOKAY;
hrdata ( j ) := ( others => ’ 0 ’ ) ; −− po in t o f t h i s l i n e ?
i f r .m( j ) . c fga11 = ’0 ’ then

hrdata ( j ) := ahbdrivedata ( r .m( j ) . hrdatam ) ;
else

hrdata ( j ) := ahbdrivedata ( r .m( j ) . hrdatas ) ;
end i f ;

end i f ;

hready ( j ) := r .m( j ) . hready ;
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v .m( j ) . hready := not r .m( j ) . hready ;
end i f ;

end i f ;
end i f ;

i f ( hready ( j ) = ’1 ’ ) then
v .m( j ) . busy := busym( j ) ;
v .m( j ) . h s l ave := ns lave ( j ) ;
v .m( j ) . r e t s l v := r e t s l v ( j ) ;
v .m( j ) . e r r s l v := e r r s l v ( j ) ;
v .m( j ) . c f g s e l := c f g s e l ( j ) ;
v .m( j ) . i d l e := i d l e ( j ) ;
v .m( j ) . htrans := msto ( j ) . htrans ;
v .m( j ) . haddr := msto ( j ) . haddr (15 downto 2) ;
v .m( j ) . c fga11 := msto ( j ) . haddr (11) ;
−− increment bu r s t counter
i f (msto ( j ) . htrans = HTRANSNONSEQ) or (msto ( j ) . htrans = HTRANS IDLE)

then
v .m( j ) . beat := ”0001” ;

e l s i f (msto ( j ) . htrans = HTRANS SEQ) then
v .m( j ) . beat := r .m( j ) . beat + 1 ;

end i f ;
end i f ;

end loop ;

−− at t h i s po in t every entry o f n s l a ve conta ins the co r r e c t s l a v e . There
won ’ t be two en t r i e s wi th the same s l a v e .

−− we can connect our c ro s s bar .

−− i n t e r r u p t merging
h i rq := ( others => ’ 0 ’ ) ;
i f d i s i r q = 0 then

for i in 0 to nahbs − 1 loop
h i rq := h i rq or s l v o ( i ) . h i rq ;

end loop ;
for i in 0 to nahbm − 1 loop

h i rq := h i rq or msto ( i ) . h i rq ;
end loop ;

end i f ;

−− PROPER CROSSBAR

−− masters loop
for i in 0 to nahbm − 1 loop

msti ( i ) . hgrant <= ( others => ’ 0 ’ ) ; msti ( i ) . hgrant ( i ) <= ’1 ’ ;

i f ( r .m( i ) . busy = ’1 ’ ) then
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−− data bus
msti ( i ) . hready <= s lvo ( r .m( i ) . h s l ave ) . hready ;
msti ( i ) . hresp <= s lvo ( r .m( i ) . h s l ave ) . hresp ;
msti ( i ) . hrdata <= s lvo ( r .m( i ) . h s l ave ) . hrdata ;
msti ( i ) . hcache <= s lvo ( r .m( i ) . h s l ave ) . hcache ;
msti ( i ) . h i rq <= hirq ;

e l s i f ( r .m( i ) . r e t s l v = ’1 ’ or r .m( i ) . e r r s l v = ’1 ’ or r .m( i ) . c f g s e l =
’1 ’ ) then

msti ( i ) . hready <= hready ( i ) ;
msti ( i ) . hresp <= hresp ( i ) ;
msti ( i ) . hrdata <= hrdata ( i ) ;
msti ( i ) . hcache <= ’X’ ;
msti ( i ) . h i rq <= hirq ;

else −− i d l e
−− data bus
msti ( i ) . hready <= ’1 ’ ;
msti ( i ) . hresp <= HRESPOKAY;
msti ( i ) . hrdata <= ( others => ’X’ ) ;
msti ( i ) . hcache <= ’X’ ;
msti ( i ) . h i rq <= hirq ;

end i f ;
msti ( i ) . t e s t en <= te s t en ;
msti ( i ) . t e s t r s t <= t e s t r s t ;
msti ( i ) . scanen <= scanen and t e s t en ;
msti ( i ) . t e s t o en <= tes toen ;

end loop ;

−− s l a v e s loop
for i in 0 to nahbs − 1 loop

i f ( v . s ( i ) . busy = ’1 ’ ) then
−− con t r o l bus
s l v i ( i ) . h s e l <= ( others => ’ 0 ’ ) ; s l v i ( i ) . h s e l ( i ) <= ’1 ’ ;
s l v i ( i ) . haddr <= msto (v . s ( i ) . hmaster ) . haddr ;
s l v i ( i ) . hwr i te <= msto (v . s ( i ) . hmaster ) . hwr i te ;
s l v i ( i ) . htrans <= msto (v . s ( i ) . hmaster ) . htrans ;
s l v i ( i ) . h s i z e <= msto (v . s ( i ) . hmaster ) . h s i z e ;
s l v i ( i ) . hburst <= msto (v . s ( i ) . hmaster ) . hburst ;
s l v i ( i ) . hprot <= msto (v . s ( i ) . hmaster ) . hprot ;
s l v i ( i ) . hmaster <= conv s t d l o g i c v e c t o r ( v . s ( i ) . hmaster , 4) ;
s l v i ( i ) . hmastlock <= msto (v . s ( i ) . hmaster ) . h lock ;

else
s l v i ( i ) . h s e l <= ( others => ’ 0 ’ ) ;
s l v i ( i ) . haddr <= ( others => ’X’ ) ;
s l v i ( i ) . hwr i te <= ’X’ ;
s l v i ( i ) . htrans <= ( others => ’X’ ) ;
s l v i ( i ) . h s i z e <= ( others => ’X’ ) ;
s l v i ( i ) . hburst <= ( others => ’X’ ) ;
s l v i ( i ) . hprot <= ( others => ’X’ ) ;
s l v i ( i ) . hmaster <= ( others => ’X’ ) ;
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s l v i ( i ) . hmastlock <= ’X’ ;
end i f ;

i f ( r . s ( i ) . busy = ’1 ’ ) then
−− data bus
s l v i ( i ) . hwdata <= msto ( r . s ( i ) . hmaster ) . hwdata ;

else
s l v i ( i ) . hwdata <= ( others => ’X’ ) ;

end i f ;

−− s l v i ( i ) . hcache <= ;
s l v i ( i ) . h i rq <= hirq ;
s l v i ( i ) . hready <= s lvo ( i ) . hready ;
s l v i ( i ) . t e s t en <= te s t en ;
s l v i ( i ) . t e s t r s t <= t e s t r s t ;
s l v i ( i ) . scanen <= scanen and t e s t en ;
s l v i ( i ) . t e s t o en <= tes toen ;

end loop ;

−− r e s e t opera t ion
i f ( r s t = ’0 ’ ) then
−− r e s e t master records

for i in 0 to nahbm − 1 loop
v .m( i ) . busy := ’ 0 ’ ;
v .m( i ) . h s l ave := 0 ;
v .m( i ) . c f g s e l := ’ 0 ’ ;
v .m( i ) . r e t s l v := ’ 0 ’ ;
v .m( i ) . e r r s l v := ’ 0 ’ ;
v .m( i ) . i d l e := ’ 0 ’ ;

v .m( i ) . haddr := ( others => ’ 0 ’ ) ;
v .m( i ) . hrdatam := ( others => ’ 0 ’ ) ;
v .m( i ) . hrdatas := ( others => ’ 0 ’ ) ;
v .m( i ) . c fga11 := ’ 0 ’ ;
v .m( i ) . hready := ’ 0 ’ ;
v .m( i ) . htrans := ( others => ’ 0 ’ ) ;

end loop ;
−− r e s e t s l a v e records

for i in 0 to nahbs − 1 loop
v . s ( i ) . busy := ’ 0 ’ ;
v . s ( i ) . hmaster := nahbmx−1;
−−v . s ( i ) . l o c k := ’0 ’ ;

end loop ;
end i f ;
r i n <= v ;

end process ;

reg0 : process ( c l k )
begin

i f r i s i n g e d g e ( c l k ) then
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r <= r in ;
end i f ;

end process ;

end ;
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FAULT TOLERANCE TESTING CODE

B.1 Test 1 testbench code

−− two masters acce s s ing same s l a v e at the same time

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

l ibrary g a i s l e r ;
use g a i s l e r . ahbtbp . a l l ;

l ibrary g r l i b , techmap ;
use g r l i b . amba . a l l ;
use techmap . gencomp . a l l ;

use work . c on f i g . a l l ;

entity t h e s i s t e s t 1 i s
generic (

c l kp e r i od : i n t e g e r := 20 −− system c l o c k per iod
) ;

end entity t h e s i s t e s t 1 ;

architecture RTL of t h e s i s t e s t 1 i s
signal c l k : s t d u l o g i c := ’ 0 ’ ;
signal r s t : s t d u l o g i c ;
signal r s tn : s t d u l o g i c ;
signal c t r l 0 , c t r l 1 : ahb tb c t r l t yp e ;
signal ahbs i : a hb s l v i n v e c t o r ;
signal ahbso : ahb s l v ou t v e c t o r := ( others => ahbs none ) ;
signal ahbmi : ahb mst in vec to r ;
signal ahbmo : ahb mst out vector := ( others => ahbm none ) ;

constant ct : i n t e g e r := c l kpe r i od / 2 ;
constant BOARDFREQ : i n t e g e r := 50000; −− inpu t f requency in KHz
constant CPU FREQ : i n t e g e r := BOARDFREQ ∗ CFGCLKMUL / CFG CLKDIV; −−

cpu f requency in KHz
constant IOAEN : i n t e g e r := CFG CAN + CFG ATA + CFGGRUSBDC;

begin
r s tn <= not r s t ;

r s t <= ’0 ’ after 0 ns , ’ 1 ’ after 20 ns ;
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c l k <= not c l k after ct ∗ 1 ns ;

ahbtbm0 : ahbtbm
generic map( hindex => 0) −− AMBA master index 0
port map( r s t , c lk , c t r l 0 . i , c t r l 0 . o , ahbmi (0 ) , ahbmo(0) ) ;

ahbtbm1 : ahbtbm
generic map( hindex => 1) −− AMBA master index 1
port map( r s t , c lk , c t r l 1 . i , c t r l 1 . o , ahbmi (1 ) , ahbmo(1) ) ;

−− ahb0 : a h b c t r l −− AHB a r b i t e r / mu l t i p l e x e r
−− gener i c map( defmast => CFG DEFMST, s p l i t => CFG SPLIT, r rob in =>

CFG RROBIN, ioaddr => CFG AHBIO, ioen => IOAEN, nahbm => maxahbm , nahbs
=> 8 , ahb t race => 1)

−− por t map( rs t , c l k , ahbmi , ahbmo , ahbs i , ahbso ) ;

ahb0 : ahbc t r l cb −− AHB a r b i t e r / mu l t i p l e x e r − 2 masters
& 2 s l a v e s

generic map( defmast => CFGDEFMST, s p l i t => 0 , ioaddr => CFG AHBIO, ioen
=> IOAEN, nahbm => 2 , nahbs => 2 , ahbtrace => 1)

port map( r s t , c lk , ahbmi , ahbmo , ahbsi , ahbso ) ;

ahbtbs0 : ahbtbs
generic map(

hindex => 0 ,
haddr => 16#A00#,
ws => ”00000000”

)
port map(

r s t => r s t ,
c l k => c lk ,
ahbs i => ahbs i (0 ) ,
ahbso => ahbso (0 )

) ;

ahbtbs1 : ahbtbs
generic map(

hindex => 1 ,
haddr => 16#B00#,
ws => ”00000000”

)
port map(

r s t => r s t ,
c l k => c lk ,
ahbs i => ahbs i (1 ) ,
ahbso => ahbso (1 )

) ;

tb0 : process i s −− t e s t b ench f o r master 0
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begin

−− I n i t i a l i z e the con t r o l s i g n a l s
ahbtbminit ( c t r l 0 ) ;

−− Write 0x12345678 to address 0x40000000 . Print acces s .
ahbwrite ( x”A0000004” , x”12345678” , ”10” , ”10” , ’ 0 ’ , 2 , true , c t r l 0 ) ;

−− Stop s imu la t i on
ahbtbmdone (1 , c t r l 0 ) ;

wait ;
end process tb0 ;

tb1 : process i s −− t e s t b ench f o r master 1
begin

−− I n i t i a l i z e the con t r o l s i g n a l s
ahbtbminit ( c t r l 1 ) ;

ahbwrite ( x”B000001C” , x”0FEDCBA9” , ”10” , ”10” , ’ 0 ’ , 2 , true , c t r l 1 ) ;

−− Stop s imu la t i on
ahbtbmdone (1 , c t r l 1 ) ;

wait ;
end process tb1 ;

end architecture RTL;

B.2 Test 2 testbench code

−− two masters acce s s ing same s l a v e at the same time

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

l ibrary g a i s l e r ;
use g a i s l e r . ahbtbp . a l l ;

l ibrary g r l i b , techmap ;
use g r l i b . amba . a l l ;
use techmap . gencomp . a l l ;

use work . c on f i g . a l l ;

entity t h e s i s t e s t 2 i s
generic (
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c l kp e r i od : i n t e g e r := 20 −− system c l o c k per iod
) ;

end entity t h e s i s t e s t 2 ;

architecture RTL of t h e s i s t e s t 2 i s
signal c l k : s t d u l o g i c := ’ 0 ’ ;
signal r s t : s t d u l o g i c ;
signal r s tn : s t d u l o g i c ;
signal c t r l 0 , c t r l 1 : ahb tb c t r l t yp e ;
signal ahbs i : a hb s l v i n v e c t o r ;
signal ahbso : ahb s l v ou t v e c t o r := ( others => ahbs none ) ;
signal ahbmi : ahb mst in vec to r ;
signal ahbmo : ahb mst out vector := ( others => ahbm none ) ;

constant ct : i n t e g e r := c l kpe r i od / 2 ;
constant BOARDFREQ : i n t e g e r := 50000; −− inpu t f requency in KHz
constant CPU FREQ : i n t e g e r := BOARDFREQ ∗ CFGCLKMUL / CFG CLKDIV; −−

cpu f requency in KHz
constant IOAEN : i n t e g e r := CFG CAN + CFG ATA + CFGGRUSBDC;
constant maxahbm : i n t e g e r := CFG NCPU + CFG AHB UART + CFGGRETH +

CFG AHB JTAG + CFG SPWNUM ∗ CFG SPW EN + CFG GRUSB DCL +
CFG SVGA ENABLE + CFG ATA + CFGGRUSBDC;

begin
r s tn <= not r s t ;

r s t <= ’0 ’ after 0 ns , ’ 1 ’ after 20 ns ;

c l k <= not c l k after ct ∗ 1 ns ;

ahbtbm0 : ahbtbm
generic map( hindex => 0) −− AMBA master index 0
port map( r s t , c lk , c t r l 0 . i , c t r l 0 . o , ahbmi (0 ) , ahbmo(0) ) ;

ahbtbm1 : ahbtbm
generic map( hindex => 1) −− AMBA master index 1
port map( r s t , c lk , c t r l 1 . i , c t r l 1 . o , ahbmi (1 ) , ahbmo(1) ) ;

−− ahb0 : a h b c t r l −− AHB a r b i t e r / mu l t i p l e x e r
−− gener i c map( defmast => CFG DEFMST, s p l i t => CFG SPLIT, r rob in =>

CFG RROBIN, ioaddr => CFG AHBIO, ioen => IOAEN, nahbm => maxahbm , nahbs
=> 8 , ahb t race => 1)

−− por t map( rs t , c l k , ahbmi , ahbmo , ahbs i , ahbso ) ;

ahb0 : ahbc t r l cb −− AHB a r b i t e r / mu l t i p l e x e r
generic map( defmast => CFGDEFMST, s p l i t => 0 , ioaddr => CFG AHBIO, ioen

=> IOAEN, nahbm => 2 , nahbs => 2 , ahbtrace => 1)
port map( r s t , c lk , ahbmi , ahbmo , ahbsi , ahbso ) ;

ahbtbs0 : ahbtbs
generic map(
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hindex => 0 ,
haddr => 16#A00#,
ws => ”00000000”

)
port map(

r s t => r s t ,
c l k => c lk ,
ahbs i => ahbs i (0 ) ,
ahbso => ahbso (0 )

) ;

ahbtbs1 : ahbtbs
generic map(

hindex => 1 ,
haddr => 16#B00#,
ws => ”00000000”

)
port map(

r s t => r s t ,
c l k => c lk ,
ahbs i => ahbs i (1 ) ,
ahbso => ahbso (1 )

) ;

tb0 : process i s −− t e s t b ench f o r master 0
begin

−− I n i t i a l i z e the con t r o l s i g n a l s
ahbtbminit ( c t r l 0 ) ;

−− Write 0x12345678 to address 0x40000000 . Print acces s .
ahbwrite ( x”A0000000” , x”11111111” , ”10” , ”10” , ”011” , 2 , f a l s e , c t r l 0 ) ;
ahbwrite ( x”A0000004” , x”22222222” , ”10” , ”11” , ”011” , 2 , f a l s e , c t r l 0 ) ;
ahbwrite ( x”A0000008” , x”33333333” , ”10” , ”11” , ”011” , 2 , f a l s e , c t r l 0 ) ;
ahbwrite ( x”A000000C” , x”44444444” , ”10” , ”11” , ”011” , 2 , true , c t r l 0 ) ;

−− Stop s imu la t i on
ahbtbmdone (1 , c t r l 0 ) ;

wait ;
end process tb0 ;

tb1 : process i s −− t e s t b ench f o r master 1
begin

−− I n i t i a l i z e the con t r o l s i g n a l s
ahbtbminit ( c t r l 1 ) ;

ahbwrite ( x”B0000010” , x”55555555” , ”10” , ”10” , ”011” , 2 , f a l s e , c t r l 1 ) ;
ahbwrite ( x”B0000014” , x”66666666” , ”10” , ”11” , ”011” , 2 , f a l s e , c t r l 1 ) ;
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ahbwrite ( x”B0000018” , x”77777777” , ”10” , ”11” , ”011” , 2 , f a l s e , c t r l 1 ) ;
ahbwrite ( x”B000001C” , x”88888888” , ”10” , ”11” , ”011” , 2 , true , c t r l 1 ) ;

−− Stop s imu la t i on
ahbtbmdone (1 , c t r l 1 ) ;

wait ;
end process tb1 ;

end architecture RTL;

B.3 Injection script

The following code was used to simulate injections in the crossbar control structure in

Test 1 and Test 2 in Chapter 5.

# b i t f l i p s c r i p t t h a t f l i p s b i t s o f a l l s i g n a l s pre sen t in
t h e s i s s i g n a l l i s t 1 and saves data in t h e s i s t e s t r e s u l t s 1 /

# Copyright Andrea Gianarro 2012
proc b i t f l i p { s } {

i f { [ examine $s ] == 0} {
f o r c e −deposit $s 1

} else {
f o r c e −deposit $s 0

}
}

proc a s s e r t { t s va lue } {
i f { [ examine −radix Hex −time $t $s ] == $value } {

return 1
} else {

return 0
}

}

proc t e s t s { fp } {

set t e s t l i s t {}
lappend t e s t l i s t [ a s s e r t 91 s im: / t h e s i s t e s t 1 /ahbtbs0/ramaddr 01 ]
lappend t e s t l i s t [ a s s e r t 111 s im: / t h e s i s t e s t 1 /ahbtbs0/ramdata 12345678]

lappend t e s t l i s t [ a s s e r t 91 s im: / t h e s i s t e s t 1 /ahbtbs1/ramaddr 07 ]
lappend t e s t l i s t [ a s s e r t 111 s im: / t h e s i s t e s t 1 /ahbtbs1/ramdata 0FEDCBA9]

set temp bool 1
foreach t $ t e s t l i s t {
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set temp bool [ expr $temp bool && $t ]
}

puts $fp ” $temp bool $ t e s t l i s t ”
}

set fp [open ” t h e s i s s i g n a l l i s t 1 ” ” r ” ]
set f p ck1 [open ” t h e s i s t e s t r e s u l t s 1 / summary ck1.txt ” ”w” ]
set f p ck2 [open ” t h e s i s t e s t r e s u l t s 1 / summary ck2.txt ” ”w” ]
set f i l e d a t a [ read $fp ]
close $fp
set s i g n a l s [ sp l i t $ f i l e d a t a ”\n” ]

#se t s [ l i n d e x $ s i g n a l s 0 ]

# b i t f l i p o f c on t r o l r e g i s t e r b i t s dur ing f i r s t c l o c k c y c l e
foreach s $ s i g n a l s {

log −r s im: / t h e s i s t e s t 1 /∗
run 80ns
b i t f l i p $s
run 40ns
# s imu la t i on run , now check r e s u l t s
t e s t s $ fp ck1
r e s t a r t −force

}
close $ fp ck1

# b i t f l i p o f c on t r o l r e g i s t e r b i t s dur ing second c l o c k c y c l e
foreach s $ s i g n a l s {

log −r s im: / t h e s i s t e s t 1 /∗
run 100ns
b i t f l i p $s
run 20ns
# s imu la t i on run , now check r e s u l t s
t e s t s $ fp ck2
r e s t a r t −force

}
close $ fp ck2

unset s i g n a l s f i l e d a t a

# b i t f l i p s c r i p t t h a t f l i p s b i t s o f a l l s i g n a l s pre sen t in
t h e s i s s i g n a l l i s t 2 and saves data in t h e s i s t e s t r e s u l t s 2 /

# Copyright Andrea Gianarro 2012
proc b i t f l i p { s } {

i f { [ examine $s ] == 0} {
f o r c e −deposit $s 1

} else {
f o r c e −deposit $s 0
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}
}

proc a s s e r t { t s va lue } {
i f { [ examine −radix Hex −time $t $s ] == $value } {

return 1
} else {

return 0
}

}

proc t e s t s { fp } {

set t e s t l i s t {}

lappend t e s t l i s t [ a s s e r t 91 s im: / t h e s i s t e s t 2 /ahbtbs0/ramaddr 00 ]
lappend t e s t l i s t [ a s s e r t 111 s im: / t h e s i s t e s t 2 /ahbtbs0/ramdata 11111111]

lappend t e s t l i s t [ a s s e r t 111 s im: / t h e s i s t e s t 2 /ahbtbs0/ramaddr 01 ]
lappend t e s t l i s t [ a s s e r t 131 s im: / t h e s i s t e s t 2 /ahbtbs0/ramdata 22222222]

lappend t e s t l i s t [ a s s e r t 131 s im: / t h e s i s t e s t 2 /ahbtbs0/ramaddr 02 ]
lappend t e s t l i s t [ a s s e r t 151 s im: / t h e s i s t e s t 2 /ahbtbs0/ramdata 33333333]

lappend t e s t l i s t [ a s s e r t 151 s im: / t h e s i s t e s t 2 /ahbtbs0/ramaddr 03 ]
lappend t e s t l i s t [ a s s e r t 171 s im: / t h e s i s t e s t 2 /ahbtbs0/ramdata 44444444]

lappend t e s t l i s t [ a s s e r t 91 s im: / t h e s i s t e s t 2 /ahbtbs1/ramaddr 04 ]
lappend t e s t l i s t [ a s s e r t 111 s im: / t h e s i s t e s t 2 /ahbtbs1/ramdata 55555555]

lappend t e s t l i s t [ a s s e r t 111 s im: / t h e s i s t e s t 2 /ahbtbs1/ramaddr 05 ]
lappend t e s t l i s t [ a s s e r t 131 s im: / t h e s i s t e s t 2 /ahbtbs1/ramdata 66666666]

lappend t e s t l i s t [ a s s e r t 131 s im: / t h e s i s t e s t 2 /ahbtbs1/ramaddr 06 ]
lappend t e s t l i s t [ a s s e r t 151 s im: / t h e s i s t e s t 2 /ahbtbs1/ramdata 77777777]

lappend t e s t l i s t [ a s s e r t 151 s im: / t h e s i s t e s t 2 /ahbtbs1/ramaddr 07 ]
lappend t e s t l i s t [ a s s e r t 171 s im: / t h e s i s t e s t 2 /ahbtbs1/ramdata 88888888]

set temp bool 1
foreach t $ t e s t l i s t {

set temp bool [ expr $temp bool && $t ]
}

puts $fp ” $temp bool $ t e s t l i s t ”
}

# l i s t o f s i g n a l s s u b j e c t to b i t f l i p p i n g
set fp [open ” t h e s i s s i g n a l l i s t 2 ” ” r ” ]
set f i l e d a t a [ read $fp ]
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close $fp
set s i g n a l s [ sp l i t $ f i l e d a t a ”\n” ]

#se t s [ l i n d e x $ s i g n a l s 0 ]

# number o f c l o c k s where b i t f l i p p i n g w i l l happen
for { set x 1} {$x<=5} { incr x} {

# r e s u l t s f i l e
set f p r e s [open ” t h e s i s t e s t r e s u l t s 2 / summary ck$x.txt ” ”w” ]
#set s [ lindex $ s i g n a l s 0 ]
foreach s $ s i g n a l s {

log −r s im: / t h e s i s t e s t 2 /∗
set t1 [ expr 60 + 20∗$x ]
run $t1 ns
b i t f l i p $s
run [ expr 200 − $t1 ] ns
# s imu la t i on run , now check r e s u l t s
t e s t s $ f p r e s
r e s t a r t −force

}
close $ f p r e s

}

unset s i g n a l s f i l e d a t a
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