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SUMMARY

The genes in NCBI databases are currently annotated with itemized text (Gene Reference

Into Function, or GeneRIF). A previous work suggests that the visual presentation can be

more effective when time and space are under heavy constraints. In this thesis we first report

a novel annotation of the genome information using Web 2.0 technologies: GeneGIF (Gene

Graphics Into Function). The users can quickly scan through important functions of each gene

from a graph, and then go to detailed pages when they find interesting annotations. The

modular implementation makes it easily pluggable into other widely used databases without

reprogramming. Then we present another web based tool - ListGIF which derives over repre-

sented concepts for a list of genes from biomedical literature. ListGIF supports two literature

resources: GeneRIF and Gene Ontology. Our strategy is based on the idea that the signifi-

cance of a feature is associated with the number of literature co-occurrences among each gene’s

annotation in the list. To reduce the bias that unbalanced GeneRIF distribution among genes

might bring to the result, we provide both gene level and GeneRIF level analysis. Result is also

presented in a word-cloud like graph with traceability to original published evidence.

viii



CHAPTER 1

INTRODUCTION

1.1 Introduction

Because of the nature of biology and biomedical fields, the amount of information generated

from experiments and other computational methods is enormous. Information accumulated is

a lot more than it has been interpreted. Traditional manual review for discovering important

knowledge from biomedical literature is not sufficient in modern scientific researches. For ex-

ample in PubMed (1) database, there are 21 million citations for biomedical literature from

MEDLINE. And it is expanding at the rate of 500,000 new citations each year (2). It is impos-

sible for a researcher to go through all related articles or even abstracts to find the functionality

one is interested in. Thus, there are lots of vocabularies and annotation databases to summarize

the important information from biomedical literature, eg. Gene Ontology (3) and GeneRIF (4).

But even with this effort, sometimes, the amount of information related to a single gene could

still be very large. For example, gene ”TP53 tumor protein p53”, has 4509 GeneRIFs. It could

take one hours or even days to read through all those GeneRIF sentences. And one could easily

get lost when going through hundreds or even thousands of annotation sentences. So to better

refine gene functional annotation and provide a quick idea of gene functionality more efficiently

is in demand.

1
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Also, as bioinformatics entering post genomic era, a new trend of gene research is transition

from single gene to a group of genes. Those genes are usually obtained from ESTs (expressed

sequence tags) and DNA microarrays experiments. Finding the similarity and difference among

those genes can be helpful to uncover new functionalities. To achieve this, functional enrichment

analysis are usually employed. With applying statistical tests to Gene Ontology and functional

annotation, significance level of functional concepts will be calculated. However, the traditional

graph and tree views of the result take a lot of space and usually are lack of information

clustering. Thus, we develop graphical visualization to simplify the result and make it easier

for discovering over represented concepts among a list of genes.

In this thesis, we introduce two web servers for gene functional annotation using computa-

tional methods and statistical analysis. Both of them use a visual presentation with graphs to

reduce the amount of time and spaces for discovering important functional features from text.

The first tool is mainly focusing on refining useful terms from text based annotation for a single

gene with text mining techniques. While the second tool utilizes statistical model to find the

over represented functional concepts for a list of genes.

1.2 Organization

The thesis is organized as follows:

Chapter 2 reviews the background knowledge related to this thesis. First, we briefly intro-

duce biomedical literatures - GeneRIF and Gene Ontology applied in thesis project. Then we

describe the main problem of the thesis - gene functional enrichment as well as the methods
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and statistical models used for the problem. Lastly, we present the web technologies that lead

to the idea of visualizing gene functional annotation graphically.

Chapter 3 presents our first work - GeneGIF that applies text mining techniques to biomed-

ical literature resources and presents the important information of functional annotation in a

word-cloud like graph. Coupled with web technologies of ASP.net, GeneGIF provides easy ac-

cess to gene functionality of different levels of details from general overview to original PubMed

articles.

Chapter 4 presents the gene functional enrichment tool - ListGIF. It takes a gene list as

input and applies hypergeometric test on terms from GeneRIF and Gene Ontology to find out

the most significant concepts among the list of genes. Finally it utilizes graphical representation

from GeneGIF to add readability and amount of information displayed on the limit space.



CHAPTER 2

BACKGROUND

2.1 Biomedical literature resources

Biomedical literature is a tremendous knowledge base for gene researches. There are various

resources that are trying to annotate genes in many comprehensive ways. In this work, we are

focusing on two important gene literature systems: Gene Ontology and GeneRIF.

2.1.1 Gene Ontology

One source for gene researches is Gene Ontology. Ontology provides a controlled vocabulary

to unify, as well as classifying the representation of genes and gene products. In GO system,

each term has a unique identifier and falls into one of the three categories: biological processes,

cellular components and molecular functions (5). Each GO term is annotated with predefined

format in the system (6). Figure 1 shows an example of GO term.

Celluar component: is a component or substance of a cellar. Eg. membrane, protein.

Molecular function: is an elementary activity which occurs at the molecular level of a gene

or a gene product.

Biological process: is a serial of events or activities with defined beginning and ending time

to accomplish some molecular functions.

4
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Figure 1. Example of GO term
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Each GO term is not a static or isolated phrase. It has various relationships to one or more

terms in GO system. Those relationships can be represented by direct graph, thus building up

the hierarchy of the entire GO system (7).

GO terms can be represented in directed acyclic diagram (DAG) like in Figure 2(a). DAG

is a directed graph without any cycles. Two nodes in the graph are connected with a directed

edge. The source node acts like a parent node in a tree structure and destination node acts like

a child node. But in DAG, each child node can have more than one parent nodes. As a result,

DAG also can be transformed into a tree structure with the same child node appears multiple

times in different parent-child pairs. GO terms that have more than one parent nodes appear

multiple times in the tree under different parent node providing different path ways to the GO

term and better illustration of related GO concepts. Figure 2(b) shows inferred tree view for

GO terms.

Each gene or gene product can be mapped onto one or more GO term which describes some

of the features of them. Figure 3 is an example of how GO term annotating a protein. Gene

Ontology also provides many tools to analyze genomic data. (7)

GO terms are well organized and standardized to describe the basic characteristics of a gene

or gene product, but GO terms limit the analysis to the existing phrases which do not cover

some functionalities researchers are interested in. Also, associating one gene to a GO term

requires lots of effort from a biologist who may needs to go through all the GO terms and pick

up those related with the genes or gene products.
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Figure 2. Go term in tree view vs. GO term in graph view

(a) Go term graph view

(b) Go term in inferred tree view
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Figure 3. Example of gene annotated by GO term
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Figure 4. GeneRIF of gene ”RENBP”

2.1.2 GeneRIF

The other source is functional annotation which lies in literature database such as GeneRIF(Gene

Reference Into Function)or PubMed. GeneRIF is a database which allows gene researchers and

scientists to write functional description of a gene based on the related PubMed articles. It

provides a simple but powerful way to gene functional annotation: each GeneRIF is a textual

statement up to 255 characters describing the function of a gene, which gives more detailed

description of genes’ function compared to GO terms. Figure 4 is an example of gene ”RENBP”

annotated by GeneRIF sentences.

Everyone can contribute to the addition of GeneRIFs by providing the linked a PubMed

ID where the GeneRIF sentence comes from. Genes that are on research hotspot usually have
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a fast growth of GeneRIFs. Those GeneRIFs provide a comprehensive annotation of gene

functionality. By September 2011, there are 668571 GeneRIF and 62802 genes with at least

one GeneRIF. For those genes in the important research areas usually have significantly large

numbers of GeneRIF. For example, gene ”TP53 tumor protein p53” has 4509 GeneRIFs. And

because of the rapid progress scientist have made, the number of GeneRIFs is incrementing

every day. Figure 5 shows the distribution of GeneRIFs among different organisms.

GeneRIF provides an important and relatively fast entrance to gene functionality studies.

It extracts key information of gene functions from PubMed abstract or articles. So that it

would be faster to get a general idea of functionality of genes. But sometimes, the number of

GeneRIF for a single gene could be dozens or even hundreds. It will be time-consuming to go

through all of them.

Because of the massive amount of information in biological literatures, development of

methods to analyze the information and extract the most important features and relationships

from it is an area that has drawn a lot of attentions from scientists.

2.2 Knowledge management and information extraction

With modern techniques, information is accumulated at a much faster rate than it has been

interpreted. Generation of information can be achieved by different computational methods.

But discovering important information and analyzing relationships between information entities

still requires lots of human input. Particularly, in biological and biomedical areas, large amount

of data is generated from micro array experiments, clinic trials and other lab reports. Using

computational methods to extract and analyze information is an urgent need for biomedical
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Figure 5. Number of GeneRIF for different organisms



12

researches. Some of the techniques for information retrieval have been developed and applied

to scientific domain. Those applications have been widely used and changing the ways that

how information is discovered, organized, analyzed and represented.

2.2.1 Text mining

One popular way for biomedical information retrieval is text mining. Text mining is the

also called text data mining and can be considered as a branch of data mining. As indicated in

its name, it is a process to derive high quality information from large amount of text (8). By

parsing the input text data, text mining can discover the important information such as entity

names, concepts and hidden patterns(9). Figure 6 shows different types of output that text

mining can generate.

Calling for text mining techniques in biomedical area is a recent trend in scientific research.

There are two major reasons for the need of this technique. First, fast increasing of electronic

data available in private and public databases makes manual analysis of information impossible

and inefficient. One major database is PubMed. There are huge amount of records in PubMed.

Even with looking for a specific research subject, a large number of records could be retrieved

from PubMed. And for each of those items, it is a publication with thousands of words. Even

by reading only the abstract, it will be significant amount of time spending.

Apart from the considerable amount of information, another advantage that text mining can

bring to biomedical research is it can discover the connections between related genes and gene

products from the massive literature resource. Because of the enormous amount of publications

and articles in PubMed and diversity of biomedical research, one scientist usually only works
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Figure 6. Types of output from text mining process

with a small sub group of them. It is possible that they encounter some genes they have no

idea of and need to get a simple and general idea of the functionality of them without spending

too much time reading through all the articles and annotations for the genes.

Text mining usually starts with the process of structuring the input text by adding the de-

rived linguistics features as well as removing non-informative words and inserting into database

structure. Then it derives patterns for the structured text and finally result validation will be

performed to see if those derived patterns apply to general wild text.

Text mining is the kind of technique that can provide a broader and quick view of genes and

sequences in one’s interest. Many text mining applications in bioinformatics area have been
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developed (10). The main development of text mining in biological and biomedical area focus

on the subjects like entity identification, such as finding gene or protein name from free text.

After the gene and protein name has been identified successfully, the next step is to analyze

the relationship of the gene and gene product, such as protein interactions (11).

2.2.2 Text based functional enrichment analysis

Gene functional enrichment analysis is aim to find the most significant functionalities of a

list of genes generated from micro-array experiments. It exams some specific functionalities and

determines whether they are over represented in this group of genes. Thereby it obtains the

shared features from the functional side of the group of genes and uncovers the relationships

between those genes and gene products. Traditionally, this was done by reviewing all the

functional annotations lying in different literatures. The disadvantages of manual review are:

first, there are tremendous articles in PubMed and other databases which requires significant

amount of time to summarize the functionalities for the list of genes if scientist has no idea of

some of them. Second, even scientist is familiar with all the genes in the list, some personal

understanding could be brought into the analysis which leads to inaccuracy and bias for the

result.

To solve the two problems in manual review of finding the over represented concepts in gene

list, some statistical methods are employed and known as functional enrichment analysis. The

most common statistical model used for over representation analysis is hyper-geometric tests,

which will be explained in detail in the next section.
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TABLE I

EXAMPLE OF OVERREPRESENTED FUNCTIONS FOR A GROUP OF GENES

num of genes in population: 1000
num of sub group of genes: 100

# of expected genes in study group # of observed genes in study group
Feature A: 50 50
Feature B: 10 10
Feature C: 50 30
Feature D: 5 20

To introduce over-represented analysis, first we will explain how features can be determined

as overly represented within a group of features for a gene list. For example, we have a popu-

lation of genes which acts as a background gene list and a sub set of genes which is the study

group of genes of our research interests. There are several attributes we want to exam for the

study group and decide which ones are overly represented in this study group. Table I is an

example showing how genes are presented with four different features in gene population and

in study group.

In the example above, for feature ’A’, there are 50 genes are associated with it and for

feature ’D’, there are only 8 genes are associated with it. But we still consider feature ’D’

is over represented more significantly than feature ’A’ within study group of genes. Because

for feature ’D’, there are 20 genes out of 100 are expressed with it, which has much higher
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proportion than the expected ratio 5/100 by chance. But for feature ’A’, the ratio of genes

expressed is 50/100 which is equal to the expected ration by chance.

This example uses the simplest way by calculating the proportion of genes associated with

feature out of total genes in study group. If this proportion is significantly larger than the

expected proportion by chance, we consider this feature is over represented in this study group

of genes.

As there is lots of information hidden in biomedical literature, a major part of functional

enrichment analysis is text based with finding the over represented features from publications

or other text resources. In this case, usually a statistical model is used for sampling the genes.

Different statistical models such as hyper geometric distribution, binomial distribution, χ2, and

fisher’s exact (12) test are used in different over representation tools. And there are lots of

debates on which test would be best (13).

In functional enrichment analysis, another concept is p value, which represents the significant

level of the concept in the given study gene group. P value is probability of obtaining such a

gene list with as many genes related with some features as the study group from the background

gene population. If the p value is small, it reflects the possibility of having this amount of genes

related with the target feature by chance is very small, which proves the study group over

represents the target feature.

Table II shows the literature resources used by different text based enrichment analysis tools.

We can easily find that most of the current tools for functional enrichment analysis are based on

the pre-defined Ontology (GO) or pathway annotation (KEGG) (14). The advantage of using
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TABLE II

BIOMEDICAL LITERATURE RESOURCES USED BY GENE FUNCTIONAL
ENRICHMENT TOOLS

Tool Literature resources

CLENCH (17): Gene Ontology
ClueGO (18): Gene Ontology, KEGG
DAVID (19): Gene Ontology, KEGG, PFAM, NCBI
eGOn (20) : UniGene, EntrezGene, SwissPort, Gene Ontology
FuncAssociate (21): Gene Ontology
FunNet (22): Gene Ontology, KEGG
GOEAST (23): Gene Ontology
GOSurfer (24): Gene Ontology
GORILLA (25): Gene Ontology
Martini (26): PubMed
MILANO: GeneRIF, Medline
The Ontologizer (27; 28): Gene Ontology

those pre-defined resources is they are well organized and standardized to describe the basic

characteristics of a gene or gene product. On the other hand, generating concepts of ontology

and pathway requires a lot of manual review from literature which will limit the scope and

diversity of research area. Because of the limitation that ontology brings, some researches are

trying to expand the resources for over representation analysis to a more general and broader

scope (15). For example, MILANO (16) uses GeneGIF and Medline as literature resources for

enrichment analysis.
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There are many over representation analysis tools that have been developed. They vary from

reference literatures, statistical models, visualization of result and have their own limitations

(29).

Among those tools, DAVID and MILANO are two of the most popular ones. DAVID was

first developed in 2003, which is one of the earliest over representation tools. One of the most

useful aspects of DAVID is that it provides different graphs and chats to present the results

within different biological context such as GO, KEGG Pathways and PFAM protein domains.

Another popular tool is MILANO. It was developed in 2004. It uses GeneRIF and Medline

as the background literature source and allows users to specify the free text to customize the

features of over representation analysis.

2.2.3 Hypergeometric Distribution

In probability theory and statistics, the hypergeometric distribution is a discrete probability

distribution that describes the number of successes in a sequence of n draws from a finite popu-

lation without replacement (30). Similar to Binomial distribution, hypergeometric distribution

also describe the probability distribution of number of successes out of a serial of experiments.

But after each draw from population, the selected item is not returned to the population, which

is defined as without replacement. In binomial distribution, every draw is performed against

the same population which means each selected item will be put back to the population for the

next draw which is defined as with replacement.

Hypergeometric experiment is the experiment that has two properties:

1. A sample of size n is selected randomly from a population N without replacement.
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2. There are only two outcomes of the result: k items are classified as success and N −k are

classified as failure.

Because the experiment is without replacement, each time the chance of drawing an item

marked as success is different. In the model above, chance of getting a success for the first draw

is k/N. But chance of success becomes (k − 1)/N − 1 for the second draw if the first draw is a

success; or becomes k/(N − 1) if the first draw is a failure. But in binomial distribution, the

chance of success is equal in each draw which is always k/N .

In hypergeometric distribution, usually a random variable X is used to describe the number

of successes of outcomes from a serial of hypergeometric experiments. Several parameters used

in hypergeometric distribution as follows:

N: population size - total number of items in population ∈{1,2. . . }

m: number of items classified as success in population ∈{0,1,2. . . N}

n: sample size - total number of items drawn from population ∈{0,1,2. . . N}

k: number of success in n draws ∈{0,1,2. . . n}

Table III explains hypergeometric experiment with classic ball model.

With the parameters defined, the variable X of the number of successful draws which follows

hypergeometric distribution can be given by Equation 2.1:

P (X = k) =

(
m
k

)(
N−m
n−k

)
(
N
n

) (2.1)
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TABLE III

HYPERGEOMETRIC EXPERIMENT WITH BALL MODEL

Drawn Not Drawn Total

Black (success) k m-k m

White (failure) n-k N-n-m+k N-m

Total n N-n N

The numerator is the number of ways to get k success out of n draws from the total

population of N with m items as success in it. The denominator is the number of ways to

randomly draw n items from total population of N . The outcome is the probability of getting

k success out of n draws from population N which has m items classified as success. If the

probability is very small, which means a very unusual event occurs.

Hypergeometric distribution is widely used in sampling without replacement. In gene func-

tional enrichment analysis, the whole genome acts like item population of N and a study group

acts like a sample of n items. The genes related with the subject of interest can be classified as

items of success. So, gene functional enrichment analysis has the properties of hypergeometric

experiment and it is a good example to apply hypergeometric distribution in bioinformatics

area.
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2.3 Web based information visualization

With the massive growth of information on the internet, how should we present the infor-

mation in the limited space like a web page with as much information as possible and without

getting user lost? There are lots of creative ideas and innovations for solving this problem in

other areas like media, entertaining etc on the web. And those ideas can also be solutions to

some problems in bioinformatics.

2.3.1 Word cloud

Word cloud or tag cloud is a visual representation of a collection of text (31). Figure 7

shows the most searched tags in NT times website in tag cloud. Usually, it is applied to key

words or tags to label or categorize data from literatures or user inputs on websites. The tags

have different weights indicating the popularity or importance of the data it applies to. And

the weight is usually represented by the font size or bold colors. Words in word clouds can

be arranged alphabetically or grouped by their meanings or centered by the most important

tags with less important words surrounded. In most of the time, word cloud is organized in a

rectangular area for neatness of a web page and better readability. But sometimes, to utilize

space on web page as much as possible, word clouds also can display as a cluster of words and

terms without any fixed shape of boundaries.

The first word cloud application online is Flickr (32), which is an online photograph sharing

website. Tag cloud is used to sort out the most popular labels that users created for their

albums.
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Figure 7. Most searched topcis in NY Times displayed in tag cloud

There are mainly two types of word clouds (33). Although they have similar visual repre-

sentation, there is slight difference of their meanings and what those tags represent. The first

type of word cloud is used for indicating the popularity of each key word or tag. The weight

of a tag represents the number of items that tag has been applied to. This type of word cloud

can be used to free text. Each key word in the tag cloud with different font size indicates the

frequency of occurrences. The other type of word clouds serves as an index of categories. The

size of tag reflects the number of items under that category. For example, an online library

website can use tag cloud to label the categories of each book and generate the tag clouds with

the tag size representing how large the book collection is for that category.

Because on website, usually word clouds are served for labeling and organizing data, they

must present a way to explore the actual data under that tag or category. Most word clouds

on the websites are represented with hyperlinks to all the text or data related to the tag. Word
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clouds are used as index to make it easier for user to find what they are interested in from a

large amount of information on a website (34).

Word clouds are usually implemented as inline html on web clients. The size of tag is

determined by the frequencies of occurrences. If the frequencies are relatively small, they can

be directly mapped to the font size of each tag. Otherwise, they need to be scaling to a

range that the maximum and minimum font sizes are both readable and well proportioned to

differentiate their importance.

With the growth of information on the web and high demand of innovative ways for infor-

mation visualization, more and more revolutionary word cloud web sites have emerged. They

have changed the original ways that word clouds used to be, adding more colors, fonts, dynamic

visual effects to provide a better experience of knowledge exploring. One of the most famous

and beautiful application is Wordle (35). It is an online word cloud gallery where you can

create and share your own word cloud generated by the text you upload. It is not limited to

the rectangular shape any more, word cloud can be tweaked in different fonts, shapes and color

schemes. Figure 8 is the Wordle graph for gene ”KLF4” using its GeneRIF sentences.

Generally, word cloud is a useful as well as beautiful way for information visualization,

providing helpful aid to online exploring (36).

2.3.2 ASP.NET and PHP

ASP.NET and PHP are two popular technologies for web page development. They are

both used to create dynamic web pages which allow user interaction and backend database

connection. Both have advantages and disadvantages and are used by many popular websites.
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Figure 8. Word cloud for gene ”KLF4” using Wordle
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ASP.NET is a successor of ASP which stands for Active Server Pages. It is developed by

Microsoft for building dynamic web application. ASP.NET separates the code for actual web

event from the static HTML web forms, where the web designer can focus on the web page

creation without any interrupt of server side code. It achieves the isolation of presentation

with content (37). Also, ASP.NET provides a large selection of user controls including custom

controls which makes it even easier for building web pages. Also ASP.NET embraces the

extension of AJAX which handles asynchronous request for web server using javascript without

refreshing the entire web page. ASP.NET also support multiple programming languages like

C++, C#, VB.net, Python, Perl, Java and Delphi. But ASP.NET also has its disadvantages.

ASP.NET is a product of Microsoft and it is run using Internet Information Services (IIS) and

it is mostly hosted on Windows platform, which means the deployment of ASP.NET website

can cost a lot. Also, ASP.NET is designed for Windows platform and has limited portability

to other operating systems.

PHP is an open source language for creating dynamic web pages. It stands for Hypertext

preprocessor. Unlike the ASP.NET, PHP code usually is embedded into html pages to response

to the server side events. PHP can run on most operating systems, like Windows, Linux, Mac

OS. So PHP has very good crossing platform ability and absolutely free of development and

deployment. PHP also supports most databases like SQl server, MySQL etc. like ASP.NET

does and it can be edited in most text editor like Vi, or notepad. However, because PHP is

an interpreted language, the speed could be slower compared to ASP.NET which is a compiled

language. As a result, PHP is more suitable for developing small to mid size website instead
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TABLE IV

COMPARISION OF ASP.NET AND PHP

ASP.NET PHP

Released by Microsoft PHP Community

Source code mode Closed Open

Cross platform Strongly tied to Win-
dows

Any

Price .NET framwork is free,
but Windows and IIS
are not

Free

Type Compiled Interpreted

Languages C#, VBScript, C++,
etc.

PHP

Database Most Databases Most Databases

Extensibility .Net based extensibility PECL:PHP Extension
Community Library

Recommended for
large systme

Yes No

Performace fast fast for small system

of very large and complex website. We compared ASP.NED and PHP in different aspects in

Table IV.



CHAPTER 3

GENEGIF

3.1 Introduction

GeneRIF (Gene Reference Into Function) provides a simple way to gene functional anno-

tation: each GeneRIF is a textual statement up to 255 characters to document the function of

a gene. One can scan the functions of a gene through each GeneRIF quickly. However, when

a gene has dozens or even hundreds of GeneRIFs, it will be time-consuming to go through all

of them. The situation is getting worse when users need to get some ideas of a long list of

genes, such as over-expressed genes from microarray experiments. The users will get lost in the

information and miss the message of interests. To get a general idea of what functions a gene

has, a faster and more intuitive way is in demand.

The first observation is that for genes with many GeneRIFs, there are quite some overlaps

among each of them. Thus if we emphasis the keywords and present them with the importance

associated, it will be easier for users to get the idea of functionalities.

One solution to this problem is the so called in-line html tag cloud which appeared firstly in

Douglas Coupland’s book(38) in 1995. Tag cloud drawing has become a popular way to display

data with its frequency used in many website such as New York Times (39) and Flickr. The

advantage of this method is that it delivers the important information by a bunch of key words

according to its popularity and avoid going through several paragraphs of sentences. Usually,

27
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in this method, to check what a key word is referring to, one has to navigate to a new page.

However, one needs to go back to the tag cloud homepage to check the details of another word.

A recent solution is to use a nice and convenient word clouds graph called Wordle which is

developed by Jonathan Feinberg. The graph is also generated base on the word frequency.

The font size is proportional to its word counts. Compared with in-line html tag, Wordle-like

graphs utilize space more effectively by meshing up the words. To enhance readability, colors

and directions are added to each word.

To compare different representations of gene annotation, a survey(40) was conducted among

experts who work on genomic data analysis using microarrays. In this survey, a graph (similar

to Figure 8) is generated by Wordle based on GeneRIF of gene KLF4 followed by 8 questions

related with usage of GeneGIF and participant characteristics (such as gender, age, education

level, study field and native language). 53 valid responses were collected in the end. The

result showed that in terms of usage, 64% of the users were either positive or neutral toward

using GeneGIF in their daily work; in terms of preference, 51% of the users preferred visual

(GeneGIF) information than textual (GeneRIF) information.

Some of the participants gave very useful comments on both the advantages and drawbacks

of these two types of gene annotation methods: GeneRIF vs GeneGIF. Most participants think

GeneGIF is more convenient when one needs to check functions of many genes at a time or get

an outline of the functions. It gives a quick idea of the functional annotation for a gene. But

traditional GeneRIF provides a more precise description of gene function. It is necessary when
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one needs to study the gene function in detail. Many of the participants suggested to make

GeneGIF clickable so that the GeneRIF could be displayed when needed.

In this work, we are presenting an visual annotation tool: GeneGIF which combines Tag

cloud, Wordle-like graph as a pluggable web 2.0 component to biologists.

3.2 System and methods

3.2.1 Data set

The genes used in this project cover the entire human genome whose Taxonomy ID is 9606

in the NCBI database. By September 2011, there are 40765 human genes and 413937 GeneRIFs

. 15926 of human genes have at least one GeneRIF related to it. So on average, each gene has

about 26 GeneRIFs. Figure 9 shows the statistics of how many genes for each range of number

of GeneRIF sentences.

The first thing is to get the data file from NCBI gene site. We examined each file and

extracted the necessary information into our database. Thus, information of genes, GeneRIFs

and Gene Ontologiy are well organized in data tables to optimize query and update.

3.2.2 Text mining

Before generating the graphs, first we needed to pre-process the sentences in GeneRIFs and

derive a word frequency list from the raw GeneRIFs. In this stage, some meaningless words

(stop words) will be removed while terms related to genomic data will be identified.

3.2.2.1 Stopwords removing

After carefully checking the graph in Figure 8, we found some words in the graph with high

frequency but useless in terms of gene function. We divided them into three domains: common
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Figure 9. Number of genes vs. number of GeneRIFs
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TABLE V

STOPWORD LIST IN GENEGIF

Common English
stopwords

Biology domain-
specific stopwords

Expert suggested
stopwords

Self-referring
stopwords

word frequency word frequency word frequency word
of 676768 cell 53344 show 21508 KLF
the 518474 gene 44659 play 12778 MSH6
and 467563 protein 44383 signal 4987
in 448203 receptor 27148 result 2517
a 204164 dna 11377 review 1700
to 172195 active 4724 transfer 1180
is 142363 bind 2281 finding 612
that 135835 paper 346
with 124964 prove 160
by 101519
for 97942
be 36879
at 26704
which 24524

English stopwords (eg. ”the”, ”of”), biology domain-specific stopwords (eg. ”active”, ”protein”)

and experts suggested stopwords (eg. ”paper”, ”review”).These words should be filtered out

before we generate our graphs. Also the self-referring words, such as the gene symbol (”KLF4”

in Figure 8) and the gene name are removed from the graph. Table V shows most common stop

words with their frequencies in GeneRIF in each category. By September 2011, total number

of words in GeneRIF sentences is 12305989.
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TABLE VI

MORPHOLOGICAL RULES USED TO DERIVE BASE FORM OF A WORD

Nouns Verbs Adjectives
”s” → ”” ”s” → ”” ”er” → ””
”ses” → ”s” ”ies” → ”y” ”est” → ””
”xes” → ”x” ”es” → ”e” ”er” → ”e”
”zes” → ”z” ”es” → ”” ”est” → ”e”
”ches” → ”ch” ”ed” → ”e”
”shes” → ”sh” ”ed” → ””
”men” → ”man” ”ing” → ”e”
”ies” → ”y” ”ing” → ””

3.2.2.2 Morphological unification

Next, we unify the different forms of nouns and verbs into their prototype to make the

frequency of each word more accurate. For nouns, plural nouns will be restored to the single

form. For example, the word ”cells” is considered the same as its singular form ”cell”. For verbs,

all different tenses will be restored to present tense and first person. For example, ”regulates”,

”regulated”, ”regulating” and ”regulation” will be counted into the frequency of ”regulate”.

Porter Stemming Algorithm (41) is used to implement this function. Table VI shows rules

applied for morphological unification.

We used free library ”Morphy” from WordNet (42) for morphological unification. It applies

different rules for detaching the suffixes for nouns, verbs and adjectives. Also there is an

exception list containing all the words that don’t meet any of the rules of detachment. It works
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as follows: when a word is passed into ”Morphy”, the program first looks up the exception

list. If it is not found in the list, morphological rules will be applied according to the syntactic

category. Because some of the words (eg. ”axes” with base form as ”axe” or ”axis”) may have

several base forms, the program will return every possible base form for the input and stop

until NULL is returned. The process also illustrated in Figure 10.

3.2.2.3 Phrase recognition

In gene annotation, sometimes, phrases contain much more information than single words

and should be parsed as a whole term. For example, ”cell cycle” is recognized as one term,

because neither the individual word ”cell” nor ”cycle” can express its meaning. And for the

phase recognition part, we use the Gene Ontology terms as our glossary to define the meaningful

phrases. Currently, we only identify phrases with two words.

3.2.3 Generation of graph

In our GeneGIF project, one of our ideas is to use an efficient way to present the result

of our analysis, which makes it easier for users to pick up the important information from the

massive amount of outputs. As in other annotation tools, usually result is gathered into tables

or list or tree structures. And the amount of information can be overwhelming and users are

required to click one after one link to see the information they need.

Given the processed word frequency list, we can generate a colorful annotation graph using

Thomas Boutell’s open source GD-library (43). With GD-library, it is very easy to generate

the bounding box (the smallest rectangle containing the word) of the word with arbitrary font,

color, size and rotation.
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Figure 10. Data flow for mophological unification
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The font size is based on our text mining result, proportional to its frequency and scaled

for best viewing. If ftmax is the maximum font size, ftmin is the minimum font size, Ctmax is

the frequency of the word occurs most, Ctmin is the frequency of the word occurs least within

the GeneRIF sentences of one gene, Ct is the frequency of the word, then font size of this word

Ft can be calculated as in Equation 3.1:

Ft = ftmax · (Ct− Ctmin)
(ftmax − ftmin)

(3.1)

Therefore, each tag in the tag cloud can be assigned with appropriate size with proportional

to the tag that has largest frequency. The position and rotation of each word is currently set to

random which means we randomly throw the word on to the screen until it fits. See Figure 11

for an example.

To reduce the chances of collision when throwing the next word onto GeneGIF graph when

generating the graph, we started with the word with largest size. So that when available space

is decreasing, words with smaller font size are added to the graph and there are better chances

for small font sized word to fit the space.

3.2.4 Advanced web features

Based on our graph, we implement advanced features to enhance the usability. We provide

different search configurations. User could search genes with ID, symbols and with options

to limit the search key word only in gene names or GeneRIF sentences Figure 12(a). After

user searching for the specific gene according to its ID or symbol, in the list of search result,
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Figure 11. The GeneGIF of gene ”KLF4” and the related GeneRIFs when clicking a specific
word. The words related to the important gene functions like ”Cell Cycle”, ”Cancer” etc.

stand out in the graph.
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a thumbnail of the GeneGIF Figure 12(b) will display when mouse moves over the gene name.

Users can look through each image to get a quick idea of genes’ function. If one is interested in

a specific gene, the full size annotation graph will be presented after clicking the gene name. On

this full size graph, when user clicks on each word, a panel of all the GeneRIFs containing this

word will be displayed with key words highlighted. The panel can be dragged anywhere on the

page. Also, each GeneRIF is a clickable link to the original Pubed article where this GeneRIF

comes from. With this implementation, the detailed information of GeneRIF is included and

user can easily trace back to the published evidence of the functionality.

Another feature GeneGIF provide is embeddability. For each GeneGIF graph, we provide a

piece of simple HTML codes to let user conveniently embed GeneGIF graph to one’s own work.

For example, GeneGIF can be seamlessly embedded to any biomedical articles or database,

which GeneGIF thumbnail graph can appear when mouse over a gene name.

For each GeneGIF, we provide a discussion board (Figure 13). The discussion board is pre-

populated with the RefSeq records. Everyone can contribute their ideas of the genes, GeneRIFs,

GeneGIF graphs, agreement or disagreement of previous comments. No login required for mak-

ing comments. GeneGIF provide a friendly environment of communication between anyone

interested in genomic research and knowledge discovery.

GeneGIF is implemented with ASP.NET. Reusable controls in ASP.NET make implemen-

tation convenient and more standard. Also, precompiled codes in ASP.net allow faster user

interaction with GeneGIF. To further prompt the performance of GeneGIF, we also move all

work of text preprocessing from online to offline. Each graph is generated in advance and stored
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Figure 12. Some web features for better user interaction with GeneGIF

(a) Search options in GeneGIF

(b) Search result page with thumbnail of GeneGIF when mouse over a gene name
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Figure 13. Discussion board for GeneGIF graph with prepopulated RefSeq records
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on web server cutting off all unnecessary waiting time of response when users visit GeneGIF.

Figure 14 illustrates the GeneGIF system architecture.

3.3 Result and conclusion

GeneGIF provide a convenient and innovative way for biomedical information discovery.

All raw GeneRIF sentences are preprocessed to refine the text that will be displayed in the

GeneGIF graph. So that, in the limited spaces, users can view meaningful information as much

as possible. The graphic layout makes knowledge discovery much easier and more intuitive.

Combining thumbnails, graphs, GeneRIF sentences and links to original PubMed articles to

four tiers of information (Figure 15) meet the various demands of how detail the information

should be for different users. User can choose the detail level they want to go into. If one only

want to get a general idea of gene, a thumbnail or GeneGIF graph may be sufficient. If one

is interested or specialized in some genes, the detailed GeneRIF or even the original PubMed

article are also necessary.

One of our future enhancements for GeneGIF is to extend phrase recognition to phrases

with more than 3 words. Currently, only single words or phrases with two words are parsered.

Also, we have observed that some synonymous words describe similar functionality in GeneRIF

such as ”promote” and ”boost”. We can experiment with grouping those synonyms and test

out if the weight of each key word in graph will be more accurate. WordNet is one of the free

software that includes most of English words and groups them into 117 000 synsets (sub sets

of synonyms ) and can be used for identifying synonymous in GeneGIF.
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Figure 14. GeneGIF system architecture
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Figure 15. Four tiers of information levels in GeneGIF

Other resources
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In this work we have implemented GeneGIF for gene annotation which used of tag cloud

and Wordle-like graphic techniques. To our knowledge, this is the first report of annotat-

ing the functions of each gene in the human genome visually. In the mean time, we employ

new web tools to make the website more user-friendly. The project can be accessed here

http://proteomics.bioengr.uic.edu/genegif/. This graphic annotation can be easily embedded

in other database and resources.



CHAPTER 4

LISTGIF

4.1 Introduction

Post genomic era explores a new field for gene functional study: from one single gene to

a group of genes. Studies on a single gene could reveal its functionality which may have huge

impact on the entire organism (44). Meanwhile, with DNA microarray experiments, a list of

genes is usually obtained, which leads to the study of functional annotation for a group of genes.

One of the most important studies of a list of genes is functional enrichment analysis which is

to find the overrepresented concepts among these genes.

One source for functional enrichment analysis is using Gene Ontology, such as DAVID. In

GO system, every gene or gene product can be mapped onto some GO terms. Those GO

terms are divided into three categories: biological processes, cellular components and molecular

functions. Statistical test could be performed on those GO terms and identify the significance of

each term associated with the list. GO terms are well organized and standardized to describe

the basic characteristics of a gene or gene product, but GO terms limit the analysis to the

existing phrases which do not cover some functionality researchers are interested in. Also,

associating one gene to a GO term requires lots of effort from a biologist who may needs to go

through all the GO terms and pick up those related with the gene or gene product.

44
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The other source is using functional annotation which lies in literature database such as

GeneRIF or PubMed for gene functional enrichment analysis. GeneRIF is a database which

allows gene researchers and scientists to write functional description of a gene based on the

related PubMed articles. It gives more detailed description of genes’ function compared to GO

terms. However, reading GeneRIFs is time consuming since each gene may have several even

hundreds of GeneRIF sentences. Especially, when researchers want to compare the common

features of a list of genes, it is easy to get distracted if one need to read all those GeneRIFs.

To overcome this limitation, some applications such as MILANO asks users to limits their

query to specific words and provide the analysis which is only related to the given words.

However, this requires users to have pre-understanding about the gene list. Also, key word only

searching may hide some important information from users.

Based on those considerations above, we have developed a web server-ListGIF, which pro-

vides a comprehensive analysis and interactive interface to identify the overrepresented concepts

from a list of genes.

The basic idea is that the co-occurring terms in functional annotation of many genes from

a list must reveal some common features of the list. We apply text mining techniques and

hypergeometric test on Gene Ontology terms and GeneRIF text to rate the significance of each

term occurred in those two kinds of annotation based on the p-value from the hypergeometric

test. Then a text based graph is drawn with each preprocessed terms of different sizes according

to its significance. The graph therefore represents the significantly overrepresented concepts of

the gene list.
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To demonstrate the superiority of ListGIF, we tested it on several gene lists which had been

analyzed in previous publications. The graphic results shown in ListGIF indicate the most

significant functions and over-represented concepts as suggested and discovered in previous

researches.

4.2 Methods

4.2.1 Hypergeometric distribution for enrichment analysis

We start with the assumption that each informative word from GeneRIFs or GO terms

is related to the function of genes. A glossary is built to count the occurrence of each word

for every individual gene in human genome. However, the simple frequency can’t describe

the significance of each word, since some terms occur frequently and evenly in the GeneRIF

sentences for the entire genome. High occurrence could not guarantee an over-representation of

a gene function. On the other hands, some words are exclusively related to the given gene list

with small number of occurrence. In this case, only counting the number of frequency will under

estimate the significance. To avoid this inaccuracy, we calculate the probability of getting such

a gene list same as the input list by chance by hypergeometric test. Our goal is to discover the

most important words by counting the occurrence and comparing it with the expected counts

from chance for the user-defined gene list.

There are two levels of probability from hypergeometric distribution being investigated in

ListGIF: Gene Level and GeneRIF sentence level. In gene level test, the gene would be counted

only once for a term if this term occurs at least once in GeneRIF text. Let N be the number

of genes for the entire human genome and m be the number of genes which have at least one
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count for word ’A’. The size of the gene list to be analyzed is n and k of them have at least

one count for word ’A’. Using X as the random variable of number of genes whose GeneRIF

contain word ’A’ for the given list, we apply Equation 4.1 to obtain probability of getting such

a list for word ’A’ of gene level:

P (X = k) =

(
m
k

)(
N−m
n−k

)
(
N
n

) (4.1)

Probability of gene level serves a good measurement of significance analysis in most gene

list studies. However, for some words, if there is an extremely unbalanced distribution of key

words among GeneRIFs, it would introduce some bias when using gene level probability. For

example, if we have a study feature ’A’ and two gene lists with the same number of genes.

If in the first gene list, there are 10 genes with total 100 GeneRIF sentences containing word

’A’. While in the second gene list, there are 10 genes with only total 20 GeneRIF sentences

containing word ’A’. We believe that word ’A’ is significantly overrepresented in the first gene

list’, since there is more published evidence of feature ’A’ for the first gene list’s genes. But

with gene level analysis, there is no difference between probabilities calculated for word ’A’ for

the two gene lists.

To overcome this issue, we propose another probability of GeneRIF sentence level. In

GeneRIF sentence level test, the method to obtain probability for word ’A’ is similar to that

of gene level except the calculation of term related count is done at GeneRIF level. The count

for a term will increase by one every time one more GeneRIF sentence has this term. The

probability of getting such a list for one single term ’A’ in GeneRIF level can be described
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as follows: let Nr be the number of GenRIFs for the entire human genome and mr be the

number of GeneRIF sentences which have at least one count for word ’A’. The total number of

GenRIF sentences for the gene list to be analyzed is nr and k of them have at least one count

for word ’A’. Using Xr as the random variable of counts for word ’A’ in the given list, we use

Equation 4.2 to obtain probability of getting such a list for word ’A’ of GeneRIF level is:

P (Xr = k) =

(
mr

k

)(
Nr−mr

nr−k

)
(
Nr

nr

) (4.2)

In both gene level and GeneRIF level test, the smaller probability represents more rarely

this event will occur by chance. That means getting such a list with k number of genes or

GeneRIF sentences containing this word has an extremely small possibility to happen. But in

our input list, the probability is 100% for the given list as we have observed this event. So we

use 1 divided by the probability by chance and get the significance level of association of the

word with the gene list. For each word occurring in GeneRIF sentences of the given gene list,

we execute calculation independently and get the probability.

Also, we apply statistical model to Gene Ontology similarly as to GeneRIF for gene level.

If a gene is annotated with a GO term, it is considered as a success of a draw. Thus, with total

N genes in human genome and m of them are related with the target GO term, for a gene list

with n genes, if there are k genes related with a specific GO term, we consider k success draws

out of n draws. And the same equation of Equation 4.1 can be applied to calculate probabilities

getting a list as the input list of each GO term.
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4.2.2 Graphic visualization and web access

ListGIF provides a graphic representation for the word extracted from GeneRIF sentences

and terms in Gene Ontology using open source library GDLib, which is inspired by Wordle.

In this implementation, words can be drawn with arbitrary color, size, rotation and font in a

rectangular hidden bounding box. The font size is based on the p-value calculated by hyperge-

ometric test and indicates the significance level of each word.

Before carrying out hypergeometric test and drawing the graph, we first get the data from

NCBI gene database including data of genes, GeneRIFs and GO terms. Then, we pre-process

the raw GeneRIF text to get the informative words by removing other English common words.

For each gene list, we search the related GeneRIF text of the given gene list and maintain a

three column table in our database including the word, the gene which contains this word and

the occurring frequency in its GeneRIF text. Similarly, a word frequency table is created for

each GO term occurred for genes in the list. With this data, the number of genes related to

this word of GeneRIF or GO term is calculated and p-value is obtained. After all the p-values

are derived, we calculate maximum and minimum font size and number of font size level based

on the number of words to be displayed and variance of p values to ensure optimal readability

and space utilization.

ListGIF is easily accessed through a web form. User defines a list of gene with official gene

symbol and gets the graphic result by one click. The detailed GeneRIF sentences in which the

word is contained are displayed when user mouses over the word. Also, the genes that contain

this key word are displayed to show the specific sub gene group that is functional enriched of
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Figure 16. ListGIF graph when clicking a specific term showing raw GeneRIF and genes in
the input list that present with this term.

the target term. User could be linked to the original published evidence in PubMed by clicking

each GeneRIF sentence (Figure 16). The graphic result can also be embedded into any HTML

compatible website by a small piece of code.

4.3 Results

To evaluate our program, we test it on several gene lists which were used in previous research

and publication. Following are results from two sample lists.
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Gene List 1: A small 50-gene list (45) categorized in three domains: (a) development; (b)

Alzheimer’s disease (AD); (c) cancer biology. Results in ListGIF verifies the characteristics of

this list with significant p values of term ”Alzheimer” and ”Cancer” ranking second and seventh

respectively of all informative terms. Also word ”development” has appeared in many GO terms

like ”forebrain development”, ”heart development” and ”embryo development”. (Table VII).

Gene List 2: Breast cancer gene list (46). This is a list of breast cancer genes which contains

70 genes. With this gene list, it discovered that ”matrix metalloproteinase 9” and ”VEGF” are

associated with breast cancer prognosis (47). From the result of gene level, one could easily

get an idea of the significant features of this gene list are ”breast”, ”cancer”, ”differential”,

”tumor” etc. Coupled with GeneRIF level result, some detailed terms such as: ”matrix”,

”Metalloproteinase 9”, ”Mmp”, ”vegf” and ”vegfr” would easily help researchers uncover the

strong relationship that ”Matrix metalloproteinase 9” and ”VEGF” are associated with breast

cancer (Table VIII).

ListGIF also reports the most overrepresented concepts from GO terms for the given list

of genes. Comparing with result from DAVID, ListGIF not only ranks each GO term with

its calculated p-value and identifies the genes related to this GO term, but also provides the

PubMed evidence to the relationship of gene and GO term. Also, the graphic representation

dramatically reduces time and space of identifying concentrated information from a list of genes.

4.4 Discussion and conclusion

In this paper, we present a revolutionary way for gene list annotation. It utilizes the space

to display large amounts of information on a single page and improve efficiency of important
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TABLE VII

PROBABILITY FROM HYPERGEOMETRIC DISTRIBUTION FOR OVER
REPRESNETED TERMS IN 50-GENE LIST

Top over represented concepts of GO terms Top over represented concepts
of GeneRIF level

GO0005515: protein binding 1.9579E-13 Tgf-beta 9.10E-281
GO0016563: ranscription activator
activity

5.57117E-
10

Alzheimer 2.08E-242

GO0007219: Notch signaling path-
way

3.06203E-
09

Breast 3.00E-197

GO0030900: forebrain develop-
ment

3.06203E-
09

Amyloid 1.89E-142

GO0043025: neuronal cell body 3.46861E-
09

Epsilon4 1.71E-141

GO0001764: neuron migration 7.65973E-
09

Epidermal 3.82E-131

GO0042802: identical protein bind-
ing

1.35672E-
08

Cancer 1.43E-122

GO0008219: cell death 3.85541E-
08

Presenilin 1.97E-94

GO0030424: axon 3.85541E-
08

Notch 8.82E-91

GO0009790: embryo develop-
ment

3.97237E-
08

Apoe4 2.36E-85

GO0005886: plasma membrane 1.88849E-
07

Mutation 4.09E-83

GO0007275: multicellular organ-
ismal development

2.85014E-
07

Growth 3.19E-81

GO0007507: heart develop-
ment

4.92492E-
07

Apolipoprotein 2.23E-79

GO0046982: protein heterodimer-
ization activity

1.38453E-
06

Brca2 3.92E-72

GO0007399: nervous system
development

4.97692E-
06

Observational 7.14E-72

GO0006897: endocytosis 7.07226E-
06

Gene-disease 1.98E-68
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TABLE VIII

PROBABILITY FROM HYPERGEOMETRIC DISTRIBUTION FOR OVER
REPRESNETED TERMS IN BREAST CANCER GENE LIST

Top over represented concepts of
gene level

Top over represented concepts of
GeneRIF level

Cancer 0.00566463 Matrix 1.45483E-91
Differential 0.00717815 Metalloproteinase-

9
9.36207E-80

Tumor 0.0124176 Vegfr-1 1.02323E-63
Essential 0.013856 Igfbp-5 5.18242E-63
Enhance 0.0247058 Mmp-2 3.24722E-60
Represent 0.026507 Metalloproteinase 6.31738E-48
Proliferation 0.0396574 Flt-1 6.96683E-42
Epithelial 0.0411594 Sflt-1 7.20692E-41
Growth 0.047448 Vegf 1.77548E-38
Transcription 0.0477475 Timp-1 1.65555E-29
Breast 0.0543682 Mmp 1.27366E-28
Phosphorylation 0.0640073 Mutation 2.27833E-23
Carcinoma 0.065562 Preeclampsium 1.76974E-21
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features discovery for a list of genes. There are four main advantages of ListGIF. First, we

combine GO terms and GeneRIF text to enlarge the source of literature mining. The result

is more informative and richer compared to that using GO term or GeneRIF only. Second,

we provide two levels of hypergeometric test to reduce the bias that unbalanced GeneRIF

distribution causes. Third, we introduce an innovative way to present the result with easily

readable text graph, which ensures scientists to identify the important gene features more

efficiently. Lastly, for better analyticity and traceability, we also provide details and links to

published evidence of GO terms and GeneRIF sentences for those who want to make further

investigation on the results.

The main issue of ListGIF is that there are some uninformative words occurring in the re-

sults. Although the original GeneRIF text is pre-processed and the terms displayed in the graph

are selected based on a threshold of p-value, some field related words with little information still

has high frequency to occur due to the universal description for particular biological process.

For example, the top word with highest frequency in GeneRIF text is ”associate”, however,

in most case, the two entities which are associated are much more meaningful to users. After

carefully examine the graph, we found that most verbs don’t bring much information but they

usually have high frequencies. Identifying different part of a sentence such as nouns, verbs,

subject and object will be the next step of ListGIF. Shallow parsing can be used to achieve

this (48). Currently, with the implementation of showing original GeneRIF sentences by mouse

over the term, users could see the detailed information about the term, which solve the issue

on a certain level.
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Result from ListGIF also reveals some unexpected term in the graph, which indicates List-

GIF may help in finding new common features for a list of gene. We will validates this by

testing on more datasets and verify the result with experiments. Third, this Wordle-like graph

is not only limited to the use in genomic study. It is a convenient way to organize large amount

of data by key word on limited space.

One of the enhancements of ListGIF is we can add query option for PubMed ID, which

allows user to input a list of PubMed IDs and ListGIF will performed the enrichment analysis

on all the PubMed abstracts that are retrieved by those IDs. Also, we could allow more than one

gene lists as input, in which case, user may want to compare the similarity of over represented

concepts between those two lists. Lastly, we can group queries into sub domains like drugs,

chemicals, genes, diseases, symptoms and organism. So that, analysis will be performed on the

concepts that are more interesting to user and unrelated information will be filtered out. There

are some tools that work as biomedical dictionaries (49) and pre-tag key words from PubMed

abstract into different sub domains.

In this paper, we present a novel representation for knowledge discovery: ListGIF. This

tool can be access from http://listgif.nubic.northwestern.edu/. ListGIF emphasizes accuracy

and interactiveness of gene functional enrichment analysis by combining hypergeometric test

with the graphic display of result. It applies analysis to Gene Ontology and GeneRIF to

derive concepts from both controlled literature and free text literatures. It shares a similar

representation of GeneGIF which is a functional annotation tool for single gene. But in ListGIF

for a group of gene, hypergeometric test is added to reduce the bias of analysis and test result
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on several gene list shows that ListGIF can provide accurate functional enrichment analysis

with more readable and feasible visual presentation.
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