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SUMMARY 

A series of computational models were developed to better understand clinical measurements 

of cerebrospinal fluid flow in normal and hydrocephalic human brains. Because the available 

clinical measurements include information about CSF flow in only a few points of interest, the 

models are useful for quantifying CSF pressures and velocities throughout the entire craniospinal 

system. 

A 2d model of the craniospinal system was used to predict the onset of acute communicating 

hydrocephalus by increasing the CSF outflow resistance. Predicted pressures and pressure 

gradients in the disease state were in good agreement with pressure measurements in 

hydrocephalic dogs (Linninger, Tsakiris et al. 2005).  

A 3d model of the craniospinal system was used to quantify complex flow patterns in the 

ventricular system. We found that large Womersley numbers in the ventricular system lead to a 

phase lag between the flow direction and the instantaneous pressure gradient. More work is 

needed to assess whether significance changes in ventricular flow patterns are a cause or 

consequence of hydrocephalus or other cerebrospinal fluid disorders. 

Finally, this dissertation presents a novel method for integrating blood flow, CSF flow, and 

brain tissue motion into one comprehensive intracranial dynamics model. We seek to use the 

model to quantify CSF motion as a function of cerebral vasculature expansion in the brain. 

Overall, the models presented in this dissertation provide insight into the complex mechanical 

interactions occurring in the brain, and in the future may be a useful tool for assessing abnormal 

brain function.  
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1. AN OVERVIEW OF “CEREBROSPINAL FLUID FLOW IN NORMAL AND 
HYDROCEPHALIC BRAINS” 

 Cerebrospinal fluid (CSF) is a colorless liquid that bathes the brain and spinal cord; the 

density and viscosity of CSF is approximately that of water. CSF is produced via active transport 

through the capillary network of the choroid plexi, which are found throughout the brain’s 

ventricular system (Johanson, Duncan et al. 2008). Due to constant CSF production there is bulk 

flow of CSF throughout the cranio-spinal system. However, clinical studies focused on 

describing the flow of CSF have shown that CSF flow is pulsatile. A small amount of CSF flows 

into the spinal canal during cardiac systole with an equal amount flowing back to the brain 

during cardiac diastole.  

 The prevalence of diseases such as hydrocephalus and syringomyelia has motivated scientists 

to investigate the natural flow patterns of CSF. Cine-phase-contrast-MRI (CINE-MRI) is a 

noninvasive imaging technique which allows scientists to quantify the flow of CSF in various 

regions of the cranio-spinal system. The collaboration between Andreas Linninger (Professor in 

Bioengineering and Director of the Laboratory for Product and Process Design at the University 

of Illinois at Chicago) and Neurosurgeon Dr. Richard Penn has led to a library of CSF flow data 

from normal and hydrocephalic patients. This library of historical data serves as the basis of this 

dissertation.  

 This dissertation will describe the methods for measuring CSF flow in the cranio-spinal 

system as well as describe the methods for developing mathematical models of the human brain. 

Through the chapters to follow, the importance of mathematical modeling of the cranio-spinal 

system will become evident. However, the fundamental message is this: measurements capture 

phenomena; mathematical models help explain phenomena. 
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 The chapter to follow describes a clinical study of CSF flow in normal patients and patients 

with hydrocephalus. In the study, the net CSF flow through the lateral ventricles was compared 

between normal subjects and patients with hydrocephalus. A significant finding was that in 

normal subjects the net CSF flow is out of the ventricles (in the direction from brain to spinal 

canal), whereas in hydrocephalic patients the net CSF flow is into the ventricles (in the direction 

from spinal canal to brain). When the hydrocephalic patients are treated with a ventricular shunt, 

in the majority of patients, net CSF flow reverses, resembling the pattern observed in normal 

patients. Moreover, an already existing mathematical model was used to quantify and support the 

clinical findings.  

 Remaining chapters describe various mathematical models aimed at describing certain 

aspects of intracranial dynamics. Advancements in scientific computing and in our own 

understanding allow mathematical models to improve as well. Thus, predictions of CSF flow and 

pressures become more precise. This in fact is a major goal of mathematical modeling. With a 

better model, we can have greater assurance of predictive outcomes. The first model I describe in 

this dissertation is a compartmental model of the cranio-spinal system that includes the brain, 

cerebral vasculature, and CSF. All three domains are represented as cylinders. The power of this 

approach is that all mass and momentum transfers between different compartments can be 

represented analytically. It is a straightforward matter to change physiological conditions or 

parameters in the model to study a clinical experiment. In fact, the model becomes a virtual 

laboratory where clinical tests can first be tested on the model before unknown risks are 

undertaken in the clinical setting.  

 Compartmental models represent one type of modeling choice. Another, which is described 

in three separate chapters is a distributed model. In such a model, the domains are not simplified 
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into cylindrical compartments, but rather the geometry of the physical domain is retained. Those 

chapters will describe the methods for developing such models and describe aspects of the CSF 

flow that could not be understood using clinical measurements alone. For example, these models 

have the ability to predict pressure gradients in the cranio-spinal system. Moreover, pressure 

wave speed in the spinal canal and flow dynamics such as the Womersley number can be 

assessed only with mathematical models such as those described here. Furthermore, having 

shown the excellent match of the CSF flow field between measurements and the model, one can 

change the normal CSF reabsorption in the model to better understand the dynamics of 

hydrocephalus. 

 This dissertation closes with a final chapter devoted to an emerging field in mathematical 

modeling, that of multi-scale modeling. It is inconceivable to use a distributed model to capture 

the dynamics of the three largest contributors to intracranial dynamics, namely the cerebral 

vasculature, brain tissue, and CSF. The number of vessels in the cerebral vasculature network is 

well over one billion (Pardridge 2011). Currently, it is not possible to discretize the entire 

cerebral vasculature network simultaneously with the CSF and brain tissue for the purpose of 

developing a fluid-structure interaction model of all three domains. The length scale of the 

cerebral vasculature compared to the length scale of the brain and CSF is about 10,000 times 

smaller and makes simultaneous discretization of all domains infeasible. To circumvent this 

constraint, we have developed a multi-scale approach in which the vasculature is represented as 

discrete cylinders in which simplified flow laws can be applied. However, the brain tissue and 

CSF is discretized using a continuum (finite volume) approach. The work described in the final 

chapter should be seen as a first step; it is a conceptual framework. Comparisons or attempts to 

match the model with clinical data would at this stage be unfounded for several reasons. First, 



4 

 

 
 

the model is two-dimensional, whereas the brain of course is three-dimensional. Removing the 

third dimension puts obvious limits on the model, but however, is a necessary step to establish 

proof of concept. Secondly, the material properties of the brain are assumed linear elastic. In 

reality, the brain is a porous medium through which interstitial fluid freely flows. Thirdly, more 

clinical data is needed before attempting to predict quantitatively the blood flow through specific 

vessels or regions of the brain. Once the model is advanced to three-dimensions and more 

clinical data is at our disposal, one can discuss quantitative predictions of the model. At this 

stage, we should be content with the conceptual mathematical framework and qualitative results 

and conclusions. The numerous steps required to build the model and the mathematical 

framework used at each stage of the analysis are fully documented in the final chapter. 
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2. VENTRICULAR WALL MOVEMENTS AND CSF FLOW IN HYDROCEPHALUS 

2.1. Summary 
 The dynamics of fluid flow in normal pressure hydrocephalus (NPH) are poorly understood. 

In the normal case, cerebrospinal fluid (CSF) flows out of the brain through the ventricles. 

However, ventricular enlargement during NPH may be caused by CSF back flow into the brain 

through the ventricles. A previous study showed this reversal of flow; additional clinical data is 

provided on NPH patients and supplemented with computer simulations to better understand the 

CSF flow and wall displacement and emphasize its clinical implications. In three NPH patients, 

CINE-MRI was used to measure the CSF flow and ventricular wall movement during the cardiac 

cycle. The CSF flow measurements were obtained at the outlet of the aqueduct of Sylvius. 

Calculation of the ventricular wall movement was determined from the complete set of CINE-

MRI images obtained axially at the middle of the lateral ventricle. The data was obtained before 

and after CSF removal with a ventriculoperitoneal (VP) shunt with an adjustable valve. In order 

to supplement the clinical data, a computational model was used to predict the transmural 

pressure and flow. In normal subjects, net CSF flow was out of the brain tissue at 1.2 ml/min. 

For NPH patients, the net CSF flow was in the opposite direction—into the brain tissue—before 

shunting. After shunting, the magnitude of the fluid flow into the brain decreased, resembling the 

flow patterns observed in normal subjects. The MRI based measurements of the CSF flow 

direction and the lateral ventricle volume size change, and computer modeling of fluid dynamics 

lead us to conclude that the directional pattern and magnitude of CSF flow in NPH patients may 

be an indication of the disease state. This has practical implications for shunt design and 

understanding the mechanisms which produce hydrocephalus. 
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2.2. Introduction 
 In a large CINE-MRI study of normal (N=28) and hydrocephalus patients (NPH=11), Kim et. 

al (Kim, Choi et al. 1999) noted that patients with normal pressure hydrocephalus (NPH) had a 

net flow of CSF through the aqueduct from the 4th ventricle into the 3rd which they noted is 

opposite to that found in normal subjects. The “retrograde” net flow reversed to the normal 

“anterograde”, with ventricular cranio-caudal flow pattern after ventricular-peritoneal shunting. 

This observation has important implications for an understanding of fluid dynamics of 

hydrocephalus and the effect of shunting. It means that in hydrocephalus, the brain parenchyma 

absorbs CSF via a transependymal route rather than produces it. Shunting is able to reverse this 

abnormality and allow flow again in the normal brain to ventricle route. We have confirmed their 

findings in normal subjects and in a small group of NPH patients and provide a computational 

model based on fluid dynamics to explain theirs and our findings. To see if the hyperdynamic 

flow patterns that they found in hydrocephalus cause abnormal ventricle wall movements, we 

have also measured lateral ventricular wall displacement in our normal subjects and in NPH 

patients. We found that wall movements are slightly larger in the hydrocephalus patients but do 

not change significantly with shunting, a result predicted by our fluid dynamic modeling. This 

has clinical implications for shunt design. If the pulsating CSF flow is the root cause of 

ventricular dilatation, then reducing such flow could be easily achieved by constructing a 

mechanical system that dampens CSF oscillations. Our findings suggest such a solution would 

not work and that the fundamental problem to be treated is the accumulation of CSF in the 

ventricles and the abnormal flow into brain tissue. 

2.3. Methods 
 The details of the CINE-MRI techniques used in the study had been described in full in a 

previous article (Zhu, Xenos et al. 2006). The scans were done on the 3T GE Sigma system, GE 
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medical systems (Milwaukee Wisconsin USA), equipped with a standard quadrature birdcage 

head coil. Eight normal subjects, (ages 23 to 52, mean 35, equal males and females) were used as 

controls. Three patients diagnosed with normal pressure hydrocephalus and one with congenital 

aqueductal stenosis were studied before and after treatment with ventricular peritoneal shunting. 

(Medtronic Inc. Strata Shunt®, adjustable valve). The diagnosis of normal pressure 

hydrocephalus was made by clinical criteria, primarily gait disturbance and early mentation 

changes, and confirmed by a positive response to three or four days of continuous lumbar 

drainage. In retrospect the third patient with the diagnosis of NPH did not have the syndrome. He 

did not improve clinically with shunting, but his ventricular size did not decrease and his 

dementia progressed without further gait problems. The patient with aqueductal stenosis was 

shunted because of headaches and memory problems 12 years after his previous shunt revision. 

He is included to look for shunting changes in ventricular wall dynamics in obstructive 

hydrocephalus, not for aqueductal flow. Scans on the patients were taken a week before shunting 

and then 2-6 months later. The patients signed consent forms for the additional MRI scanning, 

and the study was approved by the institutional review Board at the University of Chicago. Note 

that some of the data on normal subjects was previously published but has been reanalyzed here 

(Linninger, Sweetman et al. 2009; Linninger, Xenos et al. 2009). 

 The CINE-MRI images were collected at an axial slice across the middle of the lateral 

ventricle (LV) to investigate the LV volumetric change, and an axial slice across the junction 

between the aqueduct of Sylvius and the 4th ventricle to measure the CSF flow rate. For the slice 

across LV, velocities in three directions were measured; images at 16 equidistant time frames 

were reconstructed per cardiac cycle. For the slice at the other location, only the velocity 

perpendicular to the slice plane was measured; 32 images were acquired at equidistant time 
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frames per cardiac cycle. Flow compensation and peripheral gating were applied for the two 

CINE-MRI measurements. A low maximum measurable velocity of 5 cm/sec was chosen at the 

limit to achieve a reasonable velocity resolution. Other MR imaging parameters were: TR/TE = 

18/8.3 ms, flip angle = 200, FOV = 240 mm, slice thickness = 5 mm, matrix size = 256x192, 

75% phase field of view to achieve an effective matrix resolution of 256x256. The pixel velocity 

in regions of CSF was corrected by subtraction of the time-average “velocity” of a nearby solid 

brain tissue within a 29x29mm
2
 region having this pixel at its center. The CSF flow at the 

junction of the aqueduct of Sylvius and the 4th ventricle is estimated by the product of the 

average velocity at the cross section of the CSF pathway and the corresponding area.  To 

estimate the LV wall movement, the edge between solid brain tissue and lateral ventricle was 

first manually drawn based on an image that showed the best cross section from a T1-weighted 

image that has been acquired at exactly the same scan plane. This drawing marks the initial pixel 

positions during a full cardiac cycle. The position shift of each pixel at the edge of the lateral 

ventricle was then estimated for each time frame of the cardiac cycle by integrating the velocity 

over time, including all three components of the velocity. 

2.4. Results 
 The flow data on eight normal subjects was reanalyzed to calculate the net flow per cycle, 

then the net flow per minute. Every normal subject had net flow out through the cranial-caudal 

aqueduct, see Table 1. Using our standardized technique the average flow was 1.1 ml per minute 

with a range of 0.5 to 1.9 ml/min and a standard deviation of 0.6 ml/min. The average ventricular 

wall movement for these same subjects was 0.168 mm with a range of 0.12 to 0.18 mm. 

 In contrast, two of the three patients who had the initial clinical diagnosis of normal pressure 

hydrocephalus had a net flow into the third ventricle and lateral ventricles. The third patient that 

by later clinical course proved not to have NPH had flow in the normal direction. After 
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ventricular peritoneal shunting using an adjustable valve on a low pressure setting, the direction 

reversed in the first case and in the second was markedly reduced. In the non NPH patient the 

cranio-caudal flow increased. Table 1 also shows calculations of the displacement of the 

ventricular wall and lateral ventricle volume before and after shunting. The ventricular wall 

displacement was higher in hydrocephalics than in normals, 0.21 to 0.30mm compared to 

0.17mm. Shunting had no significant effect on this movement. In the two patients who had 

excellent clinical responses to shunting with major improvements in gait and mentation, the 

ventricular size decreased and the inward flow pattern reversed to the normal direction. The 

patient with minimal clinical improvement, patient three, had no change in ventricular size and 

flow was initially outward; with shunting the outward flow increased. The patient with 

congenital aqueductal stenosis responded to shunting with a complete remission of his symptoms 

of mental confusion and headaches. His ventricular size decreased and the ventricular wall 

movement slightly increased after shunting.  

Table 1: Observations of net flow and wall displacement during cardiac cycle and calculation of 

ventricular volume in patients with NPH before and after treatment and in healthy volunteers. 
  Net Flow (ml/min) Wall displacement (mm) LV Vol (ml) 

Case or Group Dx Preop Postop Control Preop Postop Control Preop Postop Control 

Case 1 AS NP NP  0.22 0.27  188 131  

Case 2 NPH -8.8 -1.5  0.27 0.30  130 98  

Case 3 NPH -5.6 0.76  0.24 0.21  172 120  

Case 4 “NPH” 1.17 3.07  0.25 0.26  123 123  

8 healthy 

volunteers 
   

1.14±0.

599 

  0.168±

0.038 
  33±9.4 

The patient in Case 4 did not have improvement with shunting and did not in retrospect have true NPH. 

Abbreviations: AS=congenital aqueductal stenosis; LV=lateral ventricle; NP=measurement not performed. † Group 

mean values (± SD) are given for 8 healthy volunteers. 

 

Models of CSF flow and ventricular wall movement 

 In a recently published paper we modeled the combined blood, CSF flow and brain tissue 

dynamics of normals and in patients with hydrocephalus (Linninger, Xenos et al. 2009). Figure 1 

shows the model and areas of interest for this chapter. The direction of flow is schematically 
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shown as well as wall displacement. The model predicted a reversal in the aqueduct net flow as 

the ventricular size enlarges due to impaired CSF absorption in the subarachnoid space. That 

model also predicted that as the ventricles enlarge the movement of the ventricular wall 

increases. This was shown as a graph of wall movement versus percentage change of ventricular 

size (Figure 6 in Linninger et al. (Linninger, Xenos et al. 2009)).  

 

Figure 1. Schematic of the model highlighting areas of interest. Note that the normal 

pattern of CSF flow is from the third ventricle (3V) to the fourth ventricle (4V) and that 

this reverses in hydrocephalus. The obstruction to flow out of the subarachnoid space 

(SAS) to the venous sinus (vSinus) causes a reversal of the pressure gradient from the 

brain parenchyma to the lateral ventricles (LV), which in turn results in the flow 

direction change. The model predicts this reversal. The shunt reduces the gradient and 

brings the flow pattern back to normal. cAr = carotid artery; Ar = artery; AI = arteriole; 

Cp = capillary; V = vein; VI = venule. Superscript L and R refer to left and right, 

respectively. The thickness of the arrows indicates volume of flow and the relative size 

of the boxes indicate degree of wall displacement relative to the normal size. 

 

 To predict the effect of ventricular peritoneal shunting on the flow, we added in the right 

lateral ventricle of the model a drainage function with a valve set at a low resistance. After 

producing hydrocephalus by an absorption block, opening the drain resulted in the normalization 

of the flow pattern. Figure 2 shows the predicted transmural pressures which are calculated from 

the flow in normal subjects and in hydrocephalic patients before and after shunting. The 

magnitude of the average ventricular pressure (dashed line) varies when compared to the average 
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parenchyma pressure (solid line). In normals and in the shunted cases, ventricular pressure is 

lower than brain parenchymal pressure; this relationship is reversed in untreated hydrocephalus. 

 

Figure 2. Computer simulation showing the pressure across the ventricle and brain 

parenchyma. The normal case (Frame A) shows a higher average brain pressure (solid 

line), which indicates flow from the brain to the ventricles. Frame B shows higher 

ventricular pressure (dashed line) due to hydrocephalus, which indicates flow reversal. 

Frame C shows the effect of fluid removal from the right ventricle and the reversal of 

pressure to normal. 

 

2.5. Discussion 
 Our CINE-MRI studies show changes in the direction or magnitude of the net CSF flow in 

patients after shunting but no significant change in the ventricular wall movement. In our normal 

subjects the net flow is outward through the aqueduct. This flow pattern was shown by Grietz 

and confirmed by Huang (Greitz, Hannerz et al. 1994; Huang, Chung et al. 2004).  Kim et al. 

also have found outward net flow in 28 healthy volunteers and what they call “retrograde” or 

reverse net flow caudal to cranial into the ventricles in 11-normal pressure hydrocephalus 

patients (Kim, Choi et al. 1999). The flow normalized after shunting. Our NPH patients confirm 

this reversal of flow with shunting. The flow of CSF into the ventricular system in hydrocephalus 

should not be a surprise. Cisternography with In 111 EDTA was one of the early methods used to 
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try to differentiate cerebral atrophy from clinically significant hydrocephalus. Distribution of the 

marker into the ventricular system from the basal cisterns and only later over the convexities was 

taken as an indication of communicating hydrocephalus. While the test is poorly predictive of the 

outcome of shunting, it still indicates a profoundly abnormal flow pattern in many hydrocephalus 

patients. Prior physiological measurements on normal production and convection of interstitial 

fluid by the brain parenchyma clearly established flow into the ventricles from the brain (Davson 

and Segal 1996; Abbott 2004). This fluid contributes up to one third of the total CSF exiting 

through the aqueduct. Increasing ventricular pressure slows this convective flow (Davson and 

Segal 1996). The net cranial to caudal flow in normal subjects is seen by CINE-MRI (Kim, Choi 

et al. 1999; Huang, Chung et al. 2004) and it is within the range measured by earlier 

physiological tracer studies. All of our eight normal subjects had this net outward flow pattern. 

 Shunting has a major effect on CSF dynamics and in particular the pressure volume 

relationship (Czosnyka, Czosnyka et al. 2004; Czosnyka, Cieslicki et al. 2005). The CSF 

compartment after shunting becomes more compliant. Even though the shunt is placed into the 

ventricle and removes CSF, the change in flow pattern in our patients after shunting reversed to 

normal. Most likely fluid drainage reduces the small pressure gradient from the ventricle to the 

brain tissue. The restitution of net CSF production of the brain parenchyma can then occur. 

Current MRI measurements are not sensitive enough to show such slow net fluid movements 

within the brain parenchyma, so other types of methods will be necessary to demonstrate this in 

humans. The CINE-MRI measurements show only a small increase in ventricular wall 

displacement during hydrocephalus. Shunting did not decrease this movement and in our only 

obstructive case the movement appeared to increase after shunting. In view of the small sub-
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millimeter wall movement and its lack of change when ventricular volume decreases, theories 

which postulate wall movement as a cause of hydrocephalus may have to be reconsidered.  

 Computational models provide quantitative and qualitative information critical to the 

understanding of the disease. Our computational model suggests a net flow of CSF into the brain 

parenchyma during hydrocephalus, as shown in Figure 3. The fluid flow throughout the brain is 

plotted; showing that in the hydrocephalic case the net flow is into the brain, but reverses or 

decreases in the treated patient.  

 
Figure 3. Computer simulation of CSF net flow in 

the normal and hydrocephalic brain. Net flow is 

from the parenchyma to the ventricles in the 

normal case (left); net flow is from the ventricles 

to the brain parenchyma in the hydrocephalic case 

(right). 

 

 The slight increase in wall movement is also predicted by our model. The measurements that 

we have made on ventricular wall movement pre-and post-shunting are difficult to interpret 

without an understanding of the forces at play at the ventricular wall during the cardiac cycle. 

For this the stresses on the wall need to be modeled using the known flow patterns of CSF and 

the laws of fluid dynamics. Using a number of modeling techniques we have simulated CSF and 

ventricular wall movements in normals and in communicating hydrocephalus (Linninger, 

Sweetman et al. 2009; Linninger, Xenos et al. 2009). The simulation results are consistent with 
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our CINE-MRI measurements. As would be expected, as hydrocephalus develops fluid increases 

in the ventricles and the entire compliance of the intracranial space is reduced and pressure 

increases. This increase is reflected also in an elevated pulse pressure. The maximum driving 

force on the ventricular wall due to the expansion of the less compliant brain is greater and 

results in a larger excursion of the wall. Since the ventricles are enlarged, the to and fro 

movement of CSF through the aqueduct is significantly increased (Egnor, Zheng et al. 2002; 

Chiang, Takoudis et al. 2009). This increased flow velocity has been taken as a measure of 

hydrocephalus and reflects larger ventricles and a reduced intracranial compliance. Our CINE-

MRI measurements show an approximate 50% increase in wall movement between normal 

subjects and our hydrocephalic patients. It should be noted that these movements are very small, 

only 10ths of a millimeter. Using a viscoelastic model of the brain parenchyma, Wilkie et al. 

estimated that for a pulse pressure of 10 mmHg, simulating early hydrocephalus, the wall 

movement would be approximately 100 nanometers (Wilkie, Drapaca et al. 2010). For normals, 

the movement would be even less, perhaps 50 nanometers. 

 Our computational model has been extended to show the effect of shunting on aqueductal 

flow and ventricular wall movement. The results of this modeling are consistent with our MRI 

measurements of ventricular size and wall movement. Of note is how small the calculated forces 

acting on the ventricular wall are during the cardiac cycle. The model predicts a transmural 

pressure in normals ranging from 0.6 mm of mercury in systole to minus 0.2 mm of mercury in 

diastole. This cycle of transmural pressure drives CSF back and forth through the aqueduct. In 

hydrocephalus stroke volume is known to increase but according to our model the transmural 

pressure is no higher. This is in spite of a higher pulse amplitude and absolute CSF pressure. The 

larger stroke volume is most likely due to the lower compliance in the intracranial space. As 
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others have shown, the flow through the aqueduct is directly related to its increasing size in 

hydrocephalic patients and also to ventricular size (Chiang, Takoudis et al. 2009). Intuitively if 

the ventricle surface enlarges and the ventricle wall movement is the same more CSF will be 

driven to and fro in the aqueduct for the same pressures.  

 What are the stresses due to the cyclic pressure gradients on the ventricular wall? The 

distribution of stress has been estimated by finite element models for hydrocephalus and they 

predict that the regions of high curvature will be subjected to higher stresses than the flat 

areas (Pena, Bolton et al. 1999; Taylor and Miller 2004; Linninger, Sweetman et al. 2009). This 

modeling has been used to explain the early enlargement and edema in the frontal, temporal, and 

occipital horns. The wall movement we measured is an average of all the movements along the 

ventricular surface of the MRI slice through the largest area of the lateral ventricles. The 

technique is not sensitive enough to accurately measure different regions of the ventricle such as 

the flat surface along the thalamus or the curved regions like frontal horns. However, the gradual 

displacement of the ventricles in hydrocephalus is in the order of centimeters with volume 

changes often over 100 ml. This is two orders of magnitude higher than the cyclic wall 

movements of 0.1 to 0.3 mm. This means that the pulsating stresses on the wall are at least one 

hundred times less. If shunting were to work primarily by reducing pulse pressure one would 

expect the wall movements to decrease post shunting but this is not the case for the two patients 

who had deceases in ventricular volume.  A surgical device which damps pulse amplitude alone 

would not deal with the primary pathology. The blockage to CSF absorption in the subarachnoid 

space must be compensated for by providing a new low resistance pathway, one that is large 

enough to decrease the abnormal pressure gradient and which allows fluid flow from the brain to 

the ventricle. 
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2.6. Conclusion 
 The CINE-MRI findings of Kim and our confirmatory observations provide an important 

clue to how shunts work. Shunting by removing fluid enables the brain once again to return to 

the normal pattern of transependymal flow outward into the ventricles. A small steady pressure 

gradient in the wrong direction into the brain tissue is enough to enlarge the 

ventricles (Linninger, Tsakiris et al. 2005; Levine 2008). Our measurements and those of others 

(Kim, Choi et al. 1999) of the net flow inward suggest such a gradient. Recent very precise 

measurements of pulse pressure amplitudes over thousands of cycles in hydrocephalus patients 

are also consistent with this analysis (Eide 2008). These patients had median pressure amplitudes 

of 0.4 mm of mercury higher in the ventricles compared to the brain parenchyma. In one patient 

who had the monitors still in place after shunting the pulse amplitude difference was reversed, 

the pressure becoming higher in the parenchyma than in the ventricles. These small differences 

in pressure found in patients are consistent with our CINE-MRI measurements. Modeling based 

on basic fluid dynamics also supports the view that small pressure gradients create ventricular 

enlargement (Linninger, Tsakiris et al. 2005; Levine 2008).  

 There are clinical consequences to this view of hydrocephalus. The first is that a mechanical 

system that dampens the increased oscillatory fluid movements found in hydrocephalus is 

unlikely to decrease ventricular size or reduce symptoms. Such a system would be easy to 

construct by providing a compliant chamber for CSF to flow into and out of. However, unless 

CSF is removed and the pressure gradients reversed, hydrocephalus will not change. Another 

clinical consequence of this understanding is that the shunt brings the flow pattern of CSF in the 

brain back to normal. A shunt that continues to function when normal flow patterns are achieved 

may cause harm by overdrainage. Unfortunately, at present there is no easy way to adjust shunt 

flow precisely to the value which would produce a normal state. “Smart shunts” that adjust to 
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physiological measurements have been suggested but have not yet been developed for use in 

patients.  

 Measurements of flow patterns of CSF as obtained by CINE-MRI may be useful for 

predicting the outcome of shunting. At present such measurements are time consuming and 

expensive. For the measurements to be worthwhile, they would have to be more accurate than 

current lumbar CSF drainage testing. Larger CINE-MRI studies will have to be done to establish 

how well they correlate with clinical response to shunting. If proven to be accurate in predicting 

patient outcome, the measurements have the great advantage of being non-invasive.  
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3. A MODEL OF BLOOD, CEREBROSPINAL FLUID AND BRAIN DYNAMICS 

3.1. Summary 
Using first principles of fluid and solid mechanics a comprehensive model of human 

intracranial dynamics is proposed. Blood, cerebrospinal fluid and brain parenchyma as well as 

the spinal canal are included. The compartmental model predicts intracranial pressure gradients, 

blood and cerebrospinal fluid flows and displacements in normal and pathological conditions like 

communicating hydrocephalus. The system of differential equations of first principles 

conservation balances is discretized and solved numerically. Fluid-solid interactions of the brain 

parenchyma with cerebral blood and CSF are calculated. The model provides the transitions from 

normal dynamics to the diseased state during the onset of communicating hydrocephalus. 

Predicted results were compared with physiological data from Cine phase–contrast magnetic 

resonance imaging to verify the dynamic model. Bolus injections into the cerebrospinal fluid are 

simulated in the model and found to agree with clinical measurements. 

3.2. Introduction 
Motivation 

 A variety of central nervous system diseases alter intracranial dynamics and changes in 

dynamics may in turn result in changes to the brain. An important example is hydrocephalus in 

which the cerebral ventricles enlarge, thus in effect displacing and compressing brain tissue. This 

condition is well described clinically, but its fundamental dynamic principles are poorly 

understood. The goal of our research is to provide such an understanding and by doing so point 

the way to new treatment based on this knowledge. 

 Current mathematical models do not incorporate the interaction between the cerebral 

vasculature, parenchyma and cerebrospinal fluid (CSF) during the cardiac cycle, and many 

models do not account properly for conservation of the fluid volume (Sorek, Bear et al. 1988; 

Lakin, Stevens et al. 2003). According to the Monro-Kellie doctrine, the cranium is a closed 



19 

 

 
 

system, enclosing the brain, CSF and cerebral blood; but for intracranial dynamics to be 

described correctly the spinal canal and its pulsating CSF displacements need to be included. The 

flow of CSF with each cardiac pulse into and out of the spinal subarachnoid space is well known 

by clinicians and has been measured by Cine phase–contrast MRI (Pelc, Bernstein et al. 1991; 

Loth, Yardimci et al. 2001; Raksin, Alperin et al. 2003; Zhu, Xenos et al. 2006). As we will 

show, it is critically important in accounting for CSF flow patterns inside the ventricular and 

subarachnoidal systems. 

 

Background 

 Some early models of the brain vasculature have simplified the dynamics by lumping 

numerous compartments (Sorek, Feinsod et al. 1988; Sorek, Bear et al. 1989; Ursino and Lodi 

1997; Stevens 2000). Other approaches use bundles of tubes to represent different types of 

cerebral blood vessels (Zagzoule and Marc-Vergnes 1986). Monro’s first model of the 

intracranial cavity consisted of two compartments, brain and blood. This model was expanded by 

Karni to contain several fluid structures, including arterial, capillary, venous, venous sinus, 

jugular bulb, and cerebrospinal fluid pathways (Sorek, Bear et al. 1988). To refine the model, 

Karni et al, added an additional component, brain tissue, to the previous six compartments 

model. Piechnik and collaborators developed a mathematical model to study autoregulation and 

cerebral species transport in the human brain (Piechnik, Czosnyka et al. 2001). Marmarou 

derived a widely used mathematical model that describes intracranial pressure dynamics 

(Marmarou, Shulman et al. 1978). However, his model does not explicitly incorporate brain 

vasculature or the porous parenchyma in the calculations. Many researchers have based their 

experimental work on this model which correlates well with experimental data, but does not 

predict blood alterations or brain water content change (Czosnyka, Czosnyka et al. 2004).  
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 For the current study, a more complete dynamic model consisting of the bi-phasic brain, 

arteries, arterioles, capillaries, veinules, veins, venous sinus, ventricles, subarachnoid space and 

the spinal canal will be described and compared to experimental results obtained from Cine 

phase–contrast MRI measurements. This multi-compartment mathematical model accounts for 

cerebral hemodynamics, the expansion or compression of the parenchyma and the CSF flow 

dynamics. The expansion of the vasculature is linked with the volumetric change of the brain 

parenchyma. In turn, changes in cerebral volume affect the space available to the ventricles and 

the cerebrospinal fluid. Due to the full coupling of the distensible blood vessels, CSF spaces, and 

the brain parenchyma, it is possible to solve dynamic force and mass balances of the entire 

system. The model is used to simulate normal and pathological conditions to determine the 

temporal change in intracranial pressures and volumes for the various brain structures. The brain 

parenchyma pressure is a function of the force interaction with the embedded cerebral 

vasculature and CSF. Hence, elevation of intracranial pressure (ICP) is not an input to the model, 

but is calculated by solving the model equations for the brain interacting with CSF and blood. 

Similarly, ventricular expansion is only possible as a function of force balances and flow 

equations. The objective is to describe and quantify the dynamic interactions between blood 

flow, ICP, extensions of the cerebral vasculature and brain parenchyma during the cardiac cycle, 

and how it is changed in pathological conditions. The modeling results should consistently 

describe the transient force interactions between blood, CSF and brain. Predictions of accurate 

states are a secondary objective. 

 

Outline 

 The methods section describes the MRI techniques and acquisition of experimental data. 

Section two introduces the mathematical equations describing blood and CSF flow as well as the 
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equations for fluid and solid motion in the bi-phasic parenchyma. Results are presented in 

section three for normal intracranial dynamics and their validation with experimental MRI 

measurements. The pathological conditions of communicating hydrocephalus are predicted 

qualitatively and quantitatively. We show the use of standard clinical tests like a bolus injection 

to determine brain parameters, and compare results with previously published experiments in 

section four (Czosnyka, Czosnyka et al. 2002; Czosnyka, Czosnyka et al. 2004; Czosnyka, 

Cieslicki et al. 2005). Section five discusses our new mechanistic explanation of hydrocephalus, 

its implications, and the limitations of current models.  

3.3. Methods 
Measuring ICP in dog brains 

 Prior experiments with dogs were conducted to establish whether pressure gradients exist 

between the ventricles, brain tissue and subarachnoid space in acute or chronic hydrocephalus 

(Penn, Lee et al. 2005). The outcome of these experiments showed that no transmantle pressure 

differences between the ventricles and subarachnoid space could be detected in any of the dogs 

before kaolin administration or afterwards when hydrocephalus developed. 

 

Cine phase-contrast MRI in the human brain 

 CSF flow velocity vectors were determined in eleven subjects, six normal and five with 

hydrocephalus, in several regions of interest using a Cine phase-contrast MRI technique. These 

velocity vectors were measured over the cardiac cycle using simultaneous gating (Dumoulin, 

Souza et al. 1988; Pelc, Bernstein et al. 1991) on a 3T GE Signa scanner, GE Medical Systems, 

Milwaukee, WI. The data acquisition and velocity calculation we used have been discussed 

elsewhere (Zhu, Xenos et al. 2006). Experimental results are summarized in Table 2. 
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Table 2. Comparison of maximum CSF flow velocity at prepontine area and junction between 

the aqueduct of Sylvius, AS, and 4
th

 ventricle, 4V. CH: Communicating hydrocephalus 

 

Average  peak to 

peak flow velocity at 

prepontine (mm/s) 

Average  peak to peak flow 

velocity at AS and V4 

(mm/s) 

Average peak to peak 

flow velocity ratio 

(Prepontine/AS and V4) 

Normal CSF (NN=6) 37.06  ± 12.21 6.91 ± 3.95 5.36 

CH (NHC=5) 19.35  ± 7.11 23.56 ± 19.69 0.82 

 

 Size changes of the lateral ventricle were also determined by MRI. The axial slice with the 

largest size of the lateral ventricles was used. The edge between brain tissue and lateral ventricle 

was drawn based on T2- or T1-weighted images. This drawing marks the initial pixel positions 

during a full cardiac cycle. The position-shift of each pixel at the edge of the lateral ventricle is 

then estimated for each time frame of the cardiac cycle by integrating the velocity over time. The 

edge points of the lateral ventricle at each cardiac time frame were connected by spline 

interpolation (De Boor 2000). The area change of the enclosed region was then calculated by 

comparison with the time-averaged area of this enclosed region throughout the cardiac cycle 

assuming that the lateral ventricle changes its size uniformly. The total lateral ventricle volume 

change was estimated based on the T1-weighted volume images, after conversion of voxel 

dimensions to milliliters (Zhu, Xenos et al. 2006). 

 Cine phase–contrast MRI was also used to measure the timing of the arterial pulse wave; 

with mean blood pressure of 100 mmHg absolute. Figure 1 displays the MRI measurements of 

blood flow in the basilar artery (ml/min) (Zhu, Xenos et al. 2006). Table 2 provides a 

comparison of the aqueduct of Sylvius and fourth ventricle flow velocity and the prepontine flow 

velocity in normal and hydrocephalic subjects scanned with the Cine phase-contrast MRI 

technique. These measurements were used as a reference for the predictions of the mathematical 

model of intracranial dynamics. 

 



23 

 

 
 

 
Figure 4. MRI was used to measure the blood flow in the basilar artery (ml/min) as a 

function of the cardiac cycle (100% = 1 beat). The basilar artery signal was represented 

with discrete Fourier series of seventeen coefficients: 0c = 102.3530; 1 8...a a = (-0.0345, 

-0.0511, -0.0267, -0.0111, -0.0013, 0.0050, 0.0027, 0.0061); 1 8...b b = (0.1009, 0.0284, -

0.0160, -0.0070, -0.0174, -0.0041, -0.0041, 0.0005).  

 

Mathematical Model of Intracranial dynamics 

 In order to better understand the dynamic forces linking CSF with blood motion, a multi-

compartment dynamical model of intracranial dynamics was designed. The model accounts for 

the force interaction of three principal elements – the cerebral vasculature, the CSF pathways and 

the bi-phasic brain parenchyma. Blood is modeled as viscous and incompressible fluid flowing 

through the cerebral vasculature, which is divided into arteries, arterioles, capillaries, veinules, 

veins and venous sinus. The CSF system includes the lateral, third and fourth ventricles, cerebral 

and spinal subarachnoid spaces which are all connected. The brain parenchyma, divided in two 

hemispheres, is treated as a bi-phasic medium composed of extracellular fluid and a solid cell 

matrix. The network of intracranial compartments and their connectivity is depicted in Figure 5. 

All compartments, except the spinal subarachnoid space, are enclosed inside the cranium. The 

Monro-Kellie doctrine of constant cranial volume is enforced rigorously. However, CSF can be 

displaced into the expandable spinal subarachnoid space which is not confined by the skull bone. 

 

 

%%
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(a) (b) 

Figure 5. (a) The proposed holistic model is composed of three main layers inside the cranial 

vault–the ventricular system, the cerebral and spinal subarachnoid space, blue, where CSF 

flows, the vascular system, red, where blood flows; and the parenchyma, a bi-phasic medium 

with extracellular fluid motion and constant solid cell matrix, black. (b) The main blood 

compartments are the carotid artery, cAr, main arteries, Ar, arterioles, Al, capillaries, Cp, 

veinules, Vl, veins, V, venous sinus, vSinus, and jugular veins, JV. The CSF system is 

composed of the lateral ventricles, Lv, third and fourth ventricles, 3V, 4V, subarachnoid space, 

SAS, and the spinal canal outside of the cranium. The parenchyma is divided into the right and 

left hemisphere, indicated by superscript, L/R for individual compartments. The arterial 

pressure in the carotid is pinit; the venous pressure in the jugular vein is pout. The ICP in the 

parenchyma is pbrain
L/R

,  and pv.si is the venous sinus pressure. Mass transfer fluxes between 

compartments are indicated by labels carrying the equation number with prefix A. Other mass 

transfer terms I IIS →  describing fluid source and sink terms are explained in section 2. Dashed 

arrows indicate CSF production, while solid arrows signify pressure driven fluid exchange. 

 

 Fluid flow in our model is governed by the pressure difference between the carotid arteries 

and the jugular veins, Figure 5. The model contains one main artery as input, labeled cAr. The 
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carotid pressure signal, initp  is displayed in Figure 6c–Pin. This signal was based on Cine phase–

contrast MRI measurements of a normal subject and was used as a dynamic boundary condition 

in the model; it was fitted using discrete Fourier series consisting of 17 coefficients enumerated 

in Figure 4. 

( ) ( )
8 8

0

1 1

( ) 1 cos sin , 2 ,  1, 2,...,8init k k

k k

p t c a t b t k kω ω ω π
= =

 
= + + = = 

 
∑ ∑  (1-1) 

 The venous pressure signal, labeled outp  was assumed to be flat compared to the arterial 

signal with 3 mmHg absolute value and zero amplitude. The effects of gravity or body activity 

on the venous and intracranial pressures were neglected. Additional interior input conditions 

include the constant CSF production from the arterioles to the ventricles through the choroid 

plexus and the diffuse capillary production through the brain parenchyma to the ventricles. 
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(a) (b) 

 
(c) (d) 

Figure 6. Simulated normal intracranial dynamics for an individual with a carotid blood 

pressure of 120/80 mmHg. (a) The flow in the vascular system (arteries, arterioles, capillaries, 

veinules, veins and venous sinus) has a mean value of 12.3 ml/s. The forward volume at each 

cardiac cycle in the spinal canal is approximately 0.9 ml (black line). (b) Detail b shows the 

volumetric blood flow rate for the arterial (upper red curve), arteriole (red dashed curve), 

capillary (blue curve), and the venous system (magenta curve). Frame (c) plots the intracranial 

pressure waveforms predicted by the model. Red lines represent blood pressures. The green 

line is the parenchymal pressure which is close to the ventricular, cerebral and spinal 

subarachnoid ICP. (d) Detail d displays the time dependent pressures for the ventricular system 

(dark blue), subarachnoid space (light blue), and the spinal canal (dashed). 

 

 We formulated mass and momentum balances to mathematically describe the flow of blood 

and CSF and its interaction with the bi-phasic brain compartments. The spatial dimensions were 

discretized to obtain 84 differential equations with 84 unknown deformations, coupled pressures 

and flows between the interacting blood, CSF and brain parenchyma. The model has three types 

of variables for each fluid compartment: the pressure at the center, p , inflow and efflux, inf  and 

outf , as well as the hydraulic cross-sectional area, A . The equations for the right and left brain 
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hemisphere can be adjusted for symmetry or alternatively account for unilateral differences such 

as in Bering’s one-sided hydrocephalic experiments on dogs (Bering 1962). Time integration 

was implemented by a fully implicit Euler scheme. The fully discretized algebraic system was 

solved numerically using a globally convergent step-size controlled Newton-Raphson method. 

Details of the numerical techniques can be found elsewhere, (Linninger, Xenos et al. 2007; 

Zhang, Kulkarni et al. 2007). Flow through each arterial, venous, or cerebrospinal fluid 

compartment is governed by three basic balances: continuity, momentum and distensibility 

which are described next.  

 

The continuity equation  

 Continuity ensures that fluid is neither gained nor lost, consistent with the assumption of 

incompressible blood and CSF flow. The continuity equations can be written as in (1-2),  

in out I II

A
l f f S

t
→

∂
= − +

∂
 (1-2) 

where l  is the hydraulic length of the compartment, /A t∂ ∂ is the change in cross-sectional area 

with respect to time, inf  and outf  are the volumetric flow rates in and out of the compartment, 

respectively. The source or sink terms, I IIS →  account for mass transfer between different 

compartments as described next. 

 

Fluid exchange between compartments 

 In addition, some fluid compartments also have permeable boundaries allowing fluid 

exchange with another phase. For example, CSF production involves mass exchange, I IIS → , 

transferring blood plasma from the choroid plexuses into the ventricles, Al LvS → . A second source 

of CSF production occurs throughout the brain parenchyma, which is accounted for by a constant 

CSF production from the brain capillaries into the extracellular space of the parenchyma, 

Cp brainconstS
→

. This diffusely produced CSF may also further seep from the extracellular space of the 
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parenchyma into the ventricles, brain LvS → . Seepage from the capillary bed, Cp brainS →  may occur in 

both directions depending on the net Starling pressure difference between the capillary pressure 

and the surrounding brain, (Starling 1896). The specific equations for mass transfer between 

phases, I IIS → , are given in the sections for vasculature, CSF and parenchyma. 

 

Pressure Drops 

Our model uses a simplified axial momentum balance similar to the Hagen-Poiseuille law. 

in inp p p af− = ∆ = with 28 /a l Aπµ=  (1-3) 

inp  is the pressure of the upstream compartment and p  is the pressure of the current 

compartment. The term a  is a flow resistance term that accounts for the pressure drop in the 

fluid along the length of the compartment due to viscous forces; it is a function of the dynamic 

fluid viscosity, µ , the hydraulic length of the compartment, l , and square of the compartment’s 

cross-sectional area, A . The momentum equation relates the pressure drop, p∆ , to volumetric 

flow rate, inf . Positive p∆  along the vessel’s axis causes flow into a compartment, otherwise the 

flow occurs in the opposite direction. For a thinner vessel, the flow resistance a  increases and a 

larger pressure drop would be necessary to maintain the same flow rate.  
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Table 3. Physical parameters and their source for cerebral compartments of the intracranial 

dynamic model. 
Location Elastance (Pa) Volume at rest (cc) 

Arteries, Ar 27.3×10
4
 (Zagzoule and Marc-Vergnes 1986) 

30.0 (Zagzoule and Marc-

Vergnes 1986) 

Arterioles, Al 40.0×10
4
 (Zagzoule and Marc-Vergnes 1986) 

16.0 (Zagzoule and Marc-

Vergnes 1986) 

Capillaries, Cp 44.0×10
4
 (Zagzoule and Marc-Vergnes 1986) 

20.0 (Zagzoule and Marc-

Vergnes 1986) 

Veinules, Vl 117.0×10
4
 (Zagzoule and Marc-Vergnes 1986) 70 - 80 (Zagzoule and Marc-

Vergnes 1986) Veins, V (5.0 - 27.3)×10
4
 (Zagzoule and Marc-Vergnes 1986) 

Venous sinus, vSinus 2.6×10
4
 (Zagzoule and Marc-Vergnes 1986) 

13 (Zagzoule and Marc-Vergnes 

1986) 

Ventricles, Lv 
(0.1 – 1.0)×10

4
 (Kaczmarek, Subramaniam et al. 1997; 

Smillie, Sobey et al. 2005) 

15–20 (Gjerris and Borgesen 

1992; Lakin, Stevens et al. 2003) 

Cerebral SAS, SAS 8.0×10
4
 (estimated) 30 (Fishman 1980) 

Spinal SAS, sp. canal 
1.0×10

6
 (Wilcox, Bilston et al. 2003; Bertram, 

Brodbelt et al. 2005) 
90-100 (Fishman 1980)  

Brain parenchyma 
(1.0-10.0)×10

3
 (Kaczmarek, Subramaniam et al. 1997; 

Smillie, Sobey et al. 2005) 
1400 (Fishman 1980) 

 

Compartment expansion or compression  

 The cerebral vasculature, made up of arteries, arterioles, capillaries, veinules, and veins has 

varying degrees of distensibility. Arteries that surround the brain are typically more compliant 

than vessels deeply embedded within the brain tissue. We therefore have assigned different 

values of elastance to each of the cerebral vasculature compartments; these values are given in 

Table 3 taken from literature. Fluid traction of blood or CSF flow may deform the distensible 

vascular vessels or CSF compartments. Distensibility of the cerebral vasculature and CSF spaces 

is incorporated using the steady state force balances implemented in eq. (1-4).  

0

0

lumen brain

A A
p p E

A

 −
− =  

 
 (1-4) 

 The change in a vessel’s cross-sectional area, 0A A− , is governed by the vessel’s elastance, 

E , and the pressure difference between the vessel lumen and the bi-phasic brain compartment, 

lumen brainp p− . 0A  is the cross-sectional area at zero transmural pressure (Luo and Pedley 1998). 

The greater the transmural pressure across the vessel wall, the more expansion or constriction of 
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the vessel will occur. When the blood pressure exceeds the intracranial pressure of the 

surrounding brain tissue, the vessel dilates. Conversely, the vessel may be compressed when the 

ICP outside is higher. This simple linear distensibility model does not properly describe complex 

non-linear phenomena like collapsible vessels described by Luo and Pedley (Luo and Pedley 

1998) and also neglects autoregulation. Nevertheless, it fully couples the blood and CSF flow 

equations with the intracranial brain parenchyma pressure by accounting for: (i) vessel 

distensibility and brain compliance as a function of the elastance, (ii) effect of vessel expansion 

on the bi-phasic brain parenchyma (change in brain parenchyma volume and porosity) and 

(iii) pressure increase of the brain parenchyma due to the effect of vessels’ interaction with the 

parenchyma. It also incorporates the possibility of changes in blood distribution patterns in 

response to vessel dilation or compression, which in turn follows from the force interactions 

between the blood and the soft deformable brain tissue as well as coupling with the continuity 

and axial momentum balances.  The specific network connectivity for vasculature, CSF filled 

spaces and brain parenchyma is discussed next. 

 

Cerebral vasculature 

 Blood flow exiting the carotid artery, cAr, bifurcates into the cerebral arteries for the right 

and left brain hemisphere, Ar. The blood then flows into the arterioles, Al. Choroid CSF 

production diverts plasma from the choroidal blood to generate newly produced CSF in the 

lateral ventricles, Lv. The choroidal CSF production accounts for about two-thirds of the total 

CSF production and was found clinically to be almost invariant to pressure changes suggesting 

an active transport process (Kaczmarek, Subramaniam et al. 1997). Accordingly, the mass 

transfer is a pressure independent constant equal to, Al LvS →  = 0.35 ml/min. Blood further flows 

into the capillary bed, where there is also CSF mass transfer from the capillary bed into the 
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parenchyma. This diffuse CSF production rate is 
Cp brainconstS

→
 = 0.12 ml/min. Moreover, the model 

accounts for CSF seepage allowing capillaries to reabsorb excess fluid or discharge plasma when 

the interstitial pressure is lowered. The seepage model is governed by the Starling pressure 

difference which accounts for hydrostatic as well as osmotic pressure differences. Because our 

model does not balance ions, the effective Starling pressure for fluid seepage is reduced to the 

hydrostatic pressure difference between capillaries and surrounding brain tissue (Starling 1896). 

Hence, extracellular fluid reabsorption into the capillaries may occur when intracranial pressure 

rises relative to the capillary pressure. All equations for the mass transfer coupling between 

blood and CSF have been reported in (Del Bigio and Bruni 1988). 

  

Cerebrospinal fluid (CSF) system  

 Similar to blood flow, CSF flow in the ventricles and the subarachnoid spaces satisfies 

continuity, axial momentum and distensibility equations. CSF production is integrated with the 

cerebral vasculature as described above. Two-thirds are produced in the choroid plexuses, while 

one-third of CSF has its origin in the distributed capillary bed generating CSF at a constant rate. 

This diffuse CSF may travel through the parenchyma into ventricles, or traverse the pia to reach 

the cerebral subarachnoid space. The distribution of the diffusely produced CSF depends on the 

pressure gradients between the compartments according to the laws of fluid flow in porous media 

known as Darcy’s law. The pressure dependent fluxes are depicted as mass transfer flows, 

Cp brainS → and brain LvS → ,  in Figure 5. The CSF exiting the lateral ventricles, Lv, enters the third 

ventricle, 3V. CSF from the third ventricle flows through the fourth ventricle, 4V, into the 

cerebral subarachnoid space, SAS. From the cerebral subarachnoid space, CSF is believed to be 

reabsorbed into the venous sinus through the arachnoid granulations (Del Bigio and Bruni 1988; 

Segal 2001). We account for CSF reabsorption by a mass transfer flux reabsorptionf , which is a 
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function of the pressure difference between the subarachnoid space and the venous sinus, 

.SAS v sip p−  and a reabsorption constant, k, according to eq. (1-5). The significance of 

reabsorption for hydrocephalus will be discussed later.  

.si ( )reabsorption SAS vf k p p= −  (1-5) 

 

 In addition, CSF may be displaced into the spinal canal. Previous MRI measurements (Loth, 

Yardimci et al. 2001) have shown that in normal subjects about 0.5-2cc of CSF are displaced 

from the cranial cavity into the spinal canal and back in every cardiac cycle. These 

measurements also confirm that the net CSF exchange is zero, thus indicating that the CSF 

reabsorption in the spinal canal is negligible. Thus, we set the CSF outflow, outf , in the 

continuity equation for the spinal canal to zero. For the displacement to occur, the spinal 

subarachnoid space must be distensible. This expandability does not violate the Monro-Kellie 

doctrine because the CSF in the spinal canal is not confined by the cranial vault. The spinal canal 

compliance is largest in the lumbar area. Moreover, a detailed finite element analysis of the 

spinal canal expansion in response to CSF influx showed a hyperlinear increase of stiffness with 

large deformation (Linninger, Sweetman et al. 2009). Accordingly, we accounted for the 

nonlinear deformation of the spinal canal. The complete set of momentum equations describing 

the flow into the spinal canal and venous sinus from the SAS are found in (Biot 1941). 

 

Brain parenchyma 

 The brain is a bi-phasic, anisotropic, three-dimensional structure. The Biot-theory of 

consolidation describes stresses, strains and fluid motion in a consolidating porous media. 

However, current three-dimensional brain consolidation models with full fluid-structure 

interaction in addition to the cerebral vasculature and CSF spaces are still computationally 

intractable. Therefore, we captured the main dynamic properties without performing a three-
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dimensional spatial discretization of the brain parenchyma. The brain is merely divided in left 

and right hemispheres, each one modeled by a single lumped compartment. In the proposed 

simplified bi-phasic brain model, each hemisphere is treated as an incompressible, deformable 

medium composed of two phases, the solid cell matrix, representing neurons, glial cells, and 

axon fibers, and the extracellular fluid. The solid phase normally occupies 70% of its total size. 

The model assumes that the volume of the solid cell matrix does not change. Thus, size changes 

of the parenchyma can occur only when extracellular fluid content is altered.  

 The extracellular fluid content of each brain hemisphere consists of fluid similar to CSF. It 

occupies 30% of the parenchyma volume and was considered as a viscous and incompressible 

fluid. The continuity and pressure driven fluid exchange of the bi-phasic brain are given in eqs. 

(1-6)-(1-8). 

 

     Continuity for the extracellular fluid for each brain hemisphere 

in out

exf

exf exf exf

A
l f f

t

∂
= −

∂
, 

(1-6) 

     Fluid exchange in each hemisphere according to pressure difference 

(1-7) _ _Cp exf br hem exf Cp brp p a S →− = , 

_ _exf br hem Lv exf br Lvp p a S →− = , 
with /exf exf exf exfa l kµ= , 

     Volume consistency – Monro-Kellie doctrine 

_ _ _total br hem b CSF br hem

b CSF

V V V V= + +∑ ∑  = constant,    _ _ _br hem exf br solid brV V V= + . 
(1-8) 

 

 The subscript, exf , refers to the extracellular fluid flow inside the left and right brain 

hemispheres. Each brain hemisphere is modeled as a cylinder with cross-sectional area, exfA  , 

and equivalent hydraulic length, exfl . The SAS interacts with the two brain hemispheres. The 

third and fourth ventricles are shared by both hemispheres as shown in Figure 5. Each brain 

hemisphere contains arteries, arterioles, capillaries, veinules, veins, and also encases the lateral 
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ventricles. The pressure difference, _ _Cp exf br hemp p− , in eq. (1-7) drives seepage of extracellular 

fluid flow from capillaries into the brain, Cp brainS → . The term _ _exf br hem Lvp p−  in eq. (1-7) 

accounts for the extracellular fluid flow from the brain into the ventricles, br LvS → . The parameter 

exfa  is a function of the extracellular fluid viscosity, exfµ , the hydraulic length of the brain 

hemisphere, exfl , and the brain parenchyma permeability, exfk , (Biot 1941; Biot 1955; Nield and 

Bejan 2006). This pressure driven flow can be considered a simplified version of Darcy’s law 

with the hydraulic permeability of the brain parenchyma, exfk , given in Table 4, brain 

parenchyma. The pressure difference between the brain, _ _exf br hemp , and the surrounding 

compartments, bp , CSFp , fully couples the brain parenchyma with the cerebral blood and CSF 

compartments. 
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Table 4. Material properties for the bi-phasic model of intracranial dynamics. Predicted 

amplitudes and phase lag for the arterial and venous systems agree with MRI measurements 

(Kim, Thacker et al. 2007). 
Location Material property Value/reference 

Brain 

parenchyma 

porosity, φ  

permeability, exfk (m
2
) 

density, exfρ  (kgm
-3

)  

viscosity, exfµ  (kgm
-1

s
-1

) 

0.3 (Lakin, Stevens et al. 2003) 

0.7×10
-15

 (Lakin, Stevens et al. 2003) 

1050 (Pellicer, Gaya et al. 2002) 

0.001 

Blood 
density, bρ  (kgm

-3
) 

viscosity, bµ  (kgm
-1

s
-1

) 

1050 (Pedley 1980) 

0.004 (Pedley 1980) 

CSF 
density, CSFρ  (kgm

-3
) 

viscosity, CSFµ  (kgm
-1

s
-1

) 

998.2 (Lakin, Stevens et al. 2003) 

0.001 (Lakin, Stevens et al. 2003) 

CSF production 

choroid plexus, Al LvS → ,  

(ml/min) 
0.35 (Linninger, Tsakiris et al. 2005) 

capillaries diffuse prod.,  

Cp brCp br constS S
→→ + , (ml/min) 

0.12 (estimated) 

Reabsorption @ 

sagittal sinus 

Permeability, k, (m
2
)  

N:  0.5×10
-14

 

HC:  0.1×10
-14

 

Reabsorption, R, (mmHg/ml/min)  
N:  

16.0 (Kosteljanetz 1985; 

Gjerris and Borgesen 

1992; Czosnyka, 

Czosnyka et al. 2004) 

HC:  88.9 

Porosity, φ  0.3 (Lakin, Stevens et al. 2003) 

Arterial flow max/min (ml/min) 
1194/588* (Baledent, Henry-Feugeas et al. 

2001; Kim, Thacker et al. 2007) 

Venous flow max/min (ml/min) 882/630* (Kim, Thacker et al. 2007) 

Cerebral blood 

flow 
mean (ml/min) 738 

Phase lag  % cardiac cycle 
Predicted 13%  /  12% in (Kim, Thacker et 

al. 2007) 

N=normal, HC=hydrocephalic, *model predictions 

 

 The model also satisfies the Monro-Kellie doctrine stating that total of volumes of all 

parenchyma, blood and CSF compartments remain constant for each brain hemisphere. The 

volume consistency of the brain parenchyma and all fluid spaces was enforced through eq. (1-8), 

for each brain hemisphere. In eq. (1-8) the volume of the brain parenchyma, _br hemV , is the sum 

of the volume of extracellular fluid, _exf brV , and the volume of the solid part of the brain, _solid brV . 

As a result, expansion of the ventricles is only possible when other compartments compress. In 
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principle, volume conservation gives rise to the following options for spatial redistribution: 

(i) Reduced CSF spaces by displacing CSF into the spinal canal, which is not limited by the 

cranial Monro-Kellie doctrine; (ii) Compression of the brain parenchyma by diminished 

extracellular fluid content; (iii) Compression of the cerebral vascular bed, which is however 

expected to influence the cerebral blood flow. The mathematical analysis will provide 

quantitative results about the forces and conditions likely to occur in normal and diseased states. 

The fluid content change relates the volume of the extracellular fluid to the invariant cell matrix 

of constant volume. This relation is expressed through the brain porosity,  φ ,  shown in eq. (1-9). 

 

     Porosity, φ  of bi-phasic brain hemisphere 

0

_ _

_ _

_ _ _

initial,  0.3
exf br exf br

br hem br hem

exf br solid br br hem

V V

V V V
φ φ= = =

+
 

(1-9) 

 

 Eq. (1-9) is applied for each brain hemisphere. A complete description of the equations for 

each bi-phasic brain compartment and the coupled blood and CSF equations is provided in 

(Baledent, Henry-Feugeas et al. 2001). This brain model does not resolve spatial distribution of 

stresses and strains of the brain. Nevertheless, due to its full coupling with the embedded CSF 

and blood force and mass balances, it conserves the main features of the porous brain matrix and 

the induced fluid changes that occur in intracranial dynamics. 

3.4. Results 
 This section introduces the results of the computer predictions for the interactions of all 

cerebral compartments. The emphasis lies on comparing the differences between normal and 

hydrocephalic cases to highlight pathological changes and offer to mechanistic explanations. 

 

Blood and CSF flow dynamics 

 The predicted blood and CSF flows in normal subjects are depicted in Figure 6a and Figure 

6b. The total cerebral flow through arteries, arterioles, capillaries and veins, has a mean flow rate 



37 

 

 
 

of 12.3 ml/s, or 738 ml/min, which is consistent with physiological values (Zagzoule and Marc-

Vergnes 1986). The maximum arterial pulsatile flow rate is 19.9 ml/s and the minimum is 9.8 

ml/s, matching similar findings to those in (Baledent, Henry-Feugeas et al. 2001). The maximum 

venous pulsatile flow rate is 14.7 ml/s and the minimum is 10.5 ml/s. The pulsatility index (PI) 

as defined in (Gosling and King 1974) and given in eq. (1-10) was calculated and found to be 

0.82 in the arteries and 0.34 in the venous system. These pulsatility indices agree with clinically 

reported measurements (Kim, Thacker et al. 2007). 

maximum systolic flow rate - minimum diastolic flow rate
 Pulsatility index = 

mean flow rate
 (1-10) 

 

 Figure 6a also shows the forward/backward CSF flow of approximately 0.9 cc from the 

cranium into the spinal canal, Fsp. canal. The predicted CSF displacement agrees with previous 

published experimental results based on Cine phase–contrast MRI (Loth, Yardimci et al. 2001). 

The CSF stroke-volume into the spinal canal was also predicted for hydrocephalic cases. In 

hydrocephalus, our model predicts a diminished CSF fluid exchange with the spinal canal. The 

net forward flux in the hydrocephalic case is only 0.25 ml with each cardiac cycle, indicating a 

reduction of 72% of the CSF pulsatility in the cervical area. Our Cine MRI measurements of 

CSF flow velocities also showed a reduction of CSF flow in the cervical area in hydrocephalus, 

Figure 7. 
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Figure 7. In normal brains the average peak to peak velocity at the aqueduct of Sylvius is 

6.9 mm/s. In the hydrocephalic case, the amplitude is 3.4 times higher with peak to peak 

velocity 23.56 mm/s. At the same time the velocity amplitude in the prepontine area is 

decreased in hydrocephalus. The peak to peak velocity in the prepontine area is about 37 

mm/s in normal cases and 19 mm/s in hydrocephalic cases. Velocity measurements based on 

6 normal and 5 hydrocephalic subjects are shown in dots, computer predictions are shown in 

solid lines. 
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Hemodynamics  

 Figure 6c plots predicted blood pressures and pulse waveforms in the normal human brain. 

The mean pressure in arteries is 82 mmHg, in the arterioles is 55 mmHg, in capillaries is 18 

mmHg and drops to 5 mmHg in the veins. Normally, the mean pressure in the brain parenchyma 

is slightly above the ventricular ICP. Figure 6d shows the simulated intracranial pressure signals 

of the lateral ventricles, cerebral and spinal subarachnoid spaces, for one cardiac cycle. In the 

ventricles, cerebral and spinal subarachnoid spaces, the pressure has a mean value of 9.1 mmHg. 

The model predicts approximately 5 mmHg pulse pressure in the ventricular system. This value 

compares well to a range of 3-5 mmHg reported in (Czosnyka, Cieslicki et al. 2005). The pulse 

pressure in the subarachnoid space and spinal canal was computed to be about 3.5 mmHg. The 

computer predictions also show that the pressure and flow amplitudes of the cerebral veins are 

attenuated. Our model links this dampening to the dilation of the compliant cerebral vascular bed 

made possible by CSF displacement into the spinal canal. We note that without the CSF 

displacement into the spinal canal, the vasculature could not deform the nearly incompressible 

parenchyma. In addition, the model predicts a phase lag between the arterial and the venous 

wave forms in the order of 13% of the cardiac cycle as depicted in Figure 6b. The dampening of 

the cerebral hemodynamics is clinically well established; our model prediction is in excellent 

agreement with previous gated MRI blood flow measurements yielding a phase lag of 12% 

(Kim, Thacker et al. 2007). 

 

Ratio of aqueduct flow to prepontine flow 

 The detailed analysis of MRI measurements of CSF flow in normal and hydrocephalic brains 

shows substantial changes in the flow patterns. Figure 7 shows the computational fluid dynamics 

simulations and clinical MRI measurements, based on six normal and five communicating 

hydrocephalic subjects (Linninger, Tsakiris et al. 2005; Linninger, Xenos et al. 2007). Compared 
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in detail are the CSF flows in two regions of interest - in the aqueduct of Sylvius and in the 

prepontine area. In normal subjects, the flow velocity amplitude is much higher in the prepontine 

area than in the aqueduct. In hydrocephalus, the aqueduct flow is increased, while the velocity in 

the prepontine area is reduced. The ratio of the aqueduct to the prepontine velocity amplitude is 

about seven times larger in hydrocephalic cases than in normals. This change suggests that the 

ratio of the prepontine to the aqueduct flow amplitude could be an indicator for the status of 

communicating hydrocephalus. While this ratio has not been used for diagnosis yet, its 

significance might be confirmed in future research. Figure 8 shows snapshots of simulated 

velocity fields at the peak of the systole using patient-specific lateral brain sections of a normal 

and a hydrocephalic subject, where a two dimensional simulation of the flow field is created as 

previously published (Linninger, Xenos et al. 2007). The discussion will present a mechanistic 

explanation for these changes in the flow patterns occurring in hydrocephalus. 

 

  

Figure 8. Two-dimensional simulation of the CSF flow field at mid systole in 

a sagittal brain section of normal (left) and hydrocephalic subjects (right). 

 

Pulsatile dilation of the lateral ventricles for normal subjects and hydrocephalic patients 

 The MRI technique described in the methods section was also used to demonstrate the timing 

for the expansion and contraction of the ventricles in normal and hydrocephalic subjects. When 
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the flow in the lateral ventricles is from superior to inferior, meaning flow from the ventricular 

system to the cerebral and spinal subarachnoid spaces, the ventricles contract as shown in Figure 

9. When CSF streams upwards from the spinal subarachnoid spaces, then the ventricles expand. 

We have recently discussed the role of the choroid plexus in driving the CSF flow in the 

ventricular system (Linninger, Tsakiris et al. 2005). In systole, when the fluid space inside the 

lateral ventricle is compressed, there is outwards CSF flow because the space available for the 

CSF inside the lateral ventricle is simultaneously confined by the parenchyma as well as by the 

expanding choroid plexus. Figure 9 compares the percent area change from the MRI 

measurements with the computational predictions. Since the MRI ventricular size calculation is 

based on only a single slice, the timing of the wall movement and its relative magnitude (not the 

absolute amount of fluid moved) can be derived. Note that the model predicts that with 

hydrocephalus and larger ventricles, the percent movement of the wall is less. Calculation of the 

total fluid force out of the ventricle cannot yet be done because the detailed geometry of the 

whole ventricular system is not included. 
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Figure 9. Area change for normal and hydrocephalic subjects. Comparison of the MRI area 

measurements with the simulated results from the computational model. 

 

Transmantle pressure differences 

 Flow reversal in the aqueduct of Sylvius requires a sign change of the pressure gradients 

along a streamline. The ventricular space has a higher pressure when CSF is flowing through the 
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aqueduct to the subarachnoid space. The subarachnoid space must have the higher pressure when 

CSF flows from the subarachnoid space back into the ventricles. Accordingly, the transmantle 

pressure difference - defined as the pressure difference between the ventricles and cerebral 

subarachnoid space - changes sign. Figure 10 shows the pressures in the ventricular system, 

cerebral and spinal subarachnoid spaces in three different phases of hydrocephalus. Initially, the 

absolute intracranial pressure is low not exceeding 11 mmHg as in Figure 10a. As hydrocephalus 

gradually develops in our simulation, the intracranial pressure increases to 15 mmHg in the 

ventricular and subarachnoid spaces shown in Figure 10b. Finally, the intracranial pressure 

reaches 35 mmHg in the diseased steady state as in Figure 10c. Despite elevated pressure in 

acute hydrocephalus, the transmantle pressure signal remains almost unchanged as depicted in 

Figure 10. The maximum transmantle pressure difference in normals is 0.56 mmHg (75 Pa), 

while in acute communicating hydrocephalus it does not exceed 0.62 mmHg (83 Pa). Despite the 

marked ICP rise, transmantle pressure differences hardly change. On average, the pressure is 

higher at the ventricular side, LV SASp p> , but even this type of compression of the parenchyma 

from the inside is reversed in each cardiac cycle. Accordingly, the parenchyma experiences 

dynamic load changes, not static pressure differences with a high pressure at the ventricular side, 

LVp , opposed to lower pressures at the interface to the subarachnoid space, SASp . Overall, the 

transmantle pressure does not exceed modest values in both normal and hydrocephalic cases.  
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Figure 10. Intracranial pressure signals in (a) normal conditions for an individual with carotid 

blood pressure of 120/90 mmHg, (b) transient phase and (c) fully developed communicating 

hydrocephalus. The simulations support prior experimental measurements in animal models 

that showed only small transmantle pressure differences occur in communicating 

hydrocephalus. Moreover, in each cardiac cycle, there is a pressure sign change, indicating a 

pulsating loading pattern of the parenchyma. 

 

Communicating hydrocephalus 

 The model is able to predict the transition from the normal to the acute diseased state. In all 

disease simulations only the reabsorption constant was reduced according to eq. (1-11); all 

outcomes follow naturally from the dynamic interactions between the three compartments, 

blood, CSF and brain parenchyma. The dynamic transitions predicted by the model for the 

induction of acute communicating hydrocephalus can be compared to our dog models. Kaolin 

injected into dogs’ cisterna magna raises the resistance of reabsorption pathways in the 

subarachnoid villi (Penn, Lee et al. 2005). In humans, the increase of the reabsorption resistance 

may be due to inflammation of meninges. The acute communicating hydrocephalus is simulated 

by reducing the reabsorption constant between the subarachnoid space and the sagittal sinus as in 

eq. (1-11).  
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 (1-11) 

1p , is the pressure in the cerebral subarachnoid space and, 2p , is the pressure in the venous 

sinus. Increased reabsorption resistance causes an ICP rise of 25 mmHg, which is about 3325 Pa 

above normal as depicted in Figure 11b. For the same outflow resistance 

of 88.9 / / minR mmHg ml= , previous researchers found an ICP elevation from normal dynamics 

of 15-25 mmHg (1995-3325 Pa) (Gjerris and Borgesen 1992). Figure 11a also depicts the 

pressure trajectories of the ventricular system and the brain parenchyma. The ICP of the brain 

parenchyma follows the ventricular pressure rise in a period of 22 hours. The detail of Figure 

11b indicates sign changes in the transmantle pressure differences confirming our dog 

experiments and earlier calculations (Linninger, Tsakiris et al. 2005; Penn, Lee et al. 2005). The 

model also correctly predicts the increase in intracranial pulse pressure as has been observed 

experimentally (Czosnyka, Cieslicki et al. 2005; Penn, Lee et al. 2005).  
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Figure 11. Simulated acute communicating hydrocephalus for an individual with carotid 

blood pressure of 120/90 mmHg. (a) Predicted intracranial pressures for the induction of 

communicating hydrocephalus. (b) Simulated intracranial pressures and pressure amplitudes 

for the ventricular system for the induction of communicating hydrocephalus. (c) Volume 

increase in the ventricular system and cerebral subarachnoid space for the induction of 

communicating hydrocephalus case. (d) Porosity changes of the brain parenchyma prompted 

by the onset of simulated acute communicating hydrocephalus. 

 

 Figure 11c shows the volume increase for the lateral ventricles and the cerebral subarachnoid 

space. In this simulation, the ventricular volume grew to 27 ml, an increase of about 150%. The 

extracellular fluid content in the brain parenchyma is reduced by 25.4 ml. The brain porosity 

falls from 0.3 to 0.291 or a reduction of about 5% as depicted in Figure 11d. Figure 12 

summarizes the relative expansion and compression of the main cerebral structures and spinal 

canal occurring in hydrocephalus. The CSF volume increases significantly, and its expansion 

reduces the extracellular fluid volume in the brain parenchyma. The model also predicts 
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phenomena which are difficult to measure like a small reduction of blood volume which is 

smallest in the capillaries and larger in the arterial and venous systems.  

CSF and Brain Spinal SASCerebral Vasculature
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(a) (b) 

Figure 12. The volume change predicted for hydrocephalus relative to normal (baseline) in the 

vascular and ventricular systems as well as in the brain parenchyma. (a) Volume changes 

predicted by the model in each vascular substructure of the hydrocephalic human brain in 

contrast to normal, (b) volume changes of the ventricular system, the brain parenchyma and 

the spinal canal.  

 

Clinical infusion tests and the model 

 Standard clinical methods such as bolus injections to determine cerebrospinal compliance in 

humans permit another test of the model’s predictions. The bolus test is done by injecting fluid 

into the spinal subarachnoid space, while recording the induced pressure rise. The well-known 

pressure-volume curves provide clinically important information about the brain compliance and 

are often used for determining treatment options (Kosteljanetz 1985; Czosnyka, Czosnyka et al. 

2004). If our model is accurate, it should predict compliance curves consistent with clinical 

observations. 

 Bolus injections were simulated by inserting a corresponding CSF source in the fluid 

equations of the subarachnoid space. Dynamic responses of the overall system showed 

characteristic ICP trajectories with a peak pressure and subsequent relaxation phase as in the 

detail of Figure 13a. Figure 13a also shows the typical polynomial relationship between infusion 
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volume and peak pressure. The reported computational trends correlate well with experimental 

data (Czosnyka, Czosnyka et al. 2004). Figure 13b uses the data of the same simulation to 

correlate pulse amplitude and mean intracranial pressure. The pulse amplitude increases with 

rising ICP with the slope of α = 0.128 in these simulations.  Moreover, we calculated the 

system’s overall mean resistance and found it to be, R=16.0 mmHg/ml/min. The predicted 

resistance for the normal brain falls within the range of clinically observed normal reabsorption 

resistances of 13 - 18 mmHg/ml/min (Marmarou, Shulman et al. 1978; Czosnyka, Czosnyka et 

al. 2004). 
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(a) (b) 

Figure 13. Experimental results of bolus injections in humans versus simulated results from 

the holistic mathematical model, (a) Mean pressure – volume of infusion (P-V) for short 

time infusion. In the zoomed window on the right lower side the ventricular ICP 

trajectories after bolus injection in the subarachnoid space are presented. (b) Experimental 

results versus simulated relationship between pulse amplitude, AMP, and mean ICP for 

different infusion times.  

 

 Using eq. (1-12), we also calculated the pressure-volume index (Czosnyka, Czosnyka et al. 

2004). We found the pressure-volume index (PVI) for the normal brain to be in the range of 13.5 

- 19 ml. The hydrocephalic brain simulations gave a PVI of 8.0 - 10.0 ml. These values are 

below the clinically reported threshold of 13, indicating that our model correctly reproduces the 

loss of the pressure-volume compensatory reserve (Czosnyka, Czosnyka et al. 2004). 
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These comparisons demonstrate how clinical measurements can be fit into the model, and how 

individual patient data can be analyzed to derive specific values for that patient.  

3.5. Discussion 
 We have developed a model for intracranial dynamics in which the interactions of all 

compartments are quantified by fundamental mass and force conservation balances. Under 

normal conditions, CSF motion is produced by the vascular expansion and pulsatile brain 

deformation. Since the parenchyma is incompressible, its deformation is passed on to the 

ventricles, forcing CSF displacement from the confined cranium into the spinal canal. The 

Monro-Kellie doctrine is fully satisfied in our model and we have predicted a CSF displacement 

into the spinal canal of about 0.9 ml in each cardiac cycle. For normal dynamics, the pulsations 

of the lateral ventricles as well as the amplitudes and pressure gradients of arteries, arterioles, 

capillaries, veinules and veins can be calculated. It is important to recognize that in simulating 

communicating hydrocephalus we have simplified the situation for analysis. Firstly, the model 

does not divide the cerebral subarachnoid space into compartments. Quite likely some forms of 

hydrocephalus are caused by adsorption blocks at the arachnoid granulations and others by more 

proximal blocks at the base of the brain. These two situations cannot be distinguished in the 

current state of the model so the volume changes and pressure in the single cerebral 

subarachnoid space may be different from what actually occurs. The model, as it stands, predicts 

that the cerebral subarachnoid space is slightly increased with hydrocephalus. Clinical MRI 

observations, on the other hand, show a decrease in subarachnoid space in communicating 

hydrocephalus. MRI measurements need to be quantified in cases of acute hydrocephalus, and 
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our model needs further spatial development to account for changes of the parenchymal cell 

matrix.  

 In the current model we have chosen to neglect inertia terms for convenience and to avoid 

problems that come from wave reflection when using wave equations that include spatial and 

time derivatives. In the future, the inertia terms should be included, specifically for large arteries 

in which there are large Womersley numbers. Furthermore, it may be fruitful to divide the 

vasculature into a more refined network of vessels. The larger arteries and veins are in the 

cerebral subarachnoid space and the large draining sinuses of the brain may be coupled to the 

CSF pressure because they share a dural wall. These possible refinements of the model and their 

effect on dynamics need to be explored further.  

 Finally, it needs to be stated clearly that the model only deals with normal brain dynamics 

and acute onset of hydrocephalus. It does not at this point predict what happens if the developing 

hydrocephalus changes the brain tissue due to compression or stretching. A number of clinical 

studies show that plastic changes occur and that hydrocephalus is not perfectly reversible. This is 

particularly true for the aging brain that no longer has the same physical structure as the adult 

brain. Some of the non-reversibility of the brain tissue might be due to its porous nature and 

some due to biochemical/structural changes which take place with deformation. This point was 

explained in Hakim’s original model for normal pressure hydrocephalus over thirty years ago 

(Hakim, Venegas et al. 1976). 

 The lack of reliable measurements of the properties of the brain tissue and CSF absorption 

also are a problem for all mathematical models. As explained in a recent article on the 

assessment of CSF outflow resistance, different measurement tests can provide quite different 

absolute values of Rout (Eklund, Smielewski et al. 2007). Such measurements all assume that the 
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CSF outflow is linearly dependent on the pressure difference between ICP and the dural sinus, a 

constant dural sinus pressure and a constant CSF formation rate. They also assume that the only 

volume change is that of CSF, not blood or spinal subarachnoid space.  

 While our model has a number of simplifications and is not discretized in three dimensions, it 

does for the first time couple the three key elements important in intracranial dynamics (the 

brain, CSF, and blood), and it does so with first principle equations. It provides quantitative 

explanations for a series of important observations. 

 Why does the prepontine fluid flow decrease? The systolic pulse pressure expands the 

vasculature producing CSF displacement from the cranium into the spinal subarachnoid space. 

At normal ICP, the soft tissues in the spinal canal outside the dura can be deformed. However, 

when the ICP is gradually elevated as in hydrocephalus, the ability of the spinal canal to receive 

CSF displacements is diminished, thus reducing the system compliance. Impaired compliance 

explains (i) the reduced CSF flow into spinal canal observable as lower cisternal velocity 

magnitudes, and (ii) an increase in mean ICP and amplitude reflecting a stiffer cerebrospinal 

system. 

 Why does the aqueduct flow increase simultaneously? The model suggests that small 

changes in hemodynamics are responsible. Increased stiffness leads to larger pulse pressures of 

the cerebral vasculature, which in turn interacts with the bi-phasic parenchyma. At the same 

time, elevated ICP slightly compresses the cerebral vasculature and drains the parenchyma. 

Similar compressive trends were reported by previous experimental studies (Greitz, Hannerz et 

al. 1994; Czosnyka, Czosnyka et al. 2004). Compression also impacts the overall blood flow; 

however, changes in blood flow need to be treated with caution as we did not account for auto-

regulation. The compressed state with larger pulse pressures heightens the pressure and size 
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changes that the ventricles experience. In effect, the forward and backward CSF flows in the 

lateral and third ventricles are larger in the hydrocephalic case. Therefore, the observable CSF 

flow in the aqueduct increases. At the same time, cisterna magna flow decreases because of the 

reduction of the spinal compliance as described above. The proposed mathematical model 

correctly predicts both aqueduct flow increase and cistena magna flow decrease using no 

assumptions other than mass and force conservation balances. While predictions do not prove 

these points, they offer plausible explanations for the complex changes in flow patterns between 

cerebral vasculature and CSF compartments occurring in hydrocephalus. 

Transmantle pressure gradients 

 MRI techniques do not provide absolute intracranial pressures. However, it is possible to 

accurately reconstruct flows and the necessary pressure differences using the equations of motion 

together with measured CSF velocities (Linninger, Xenos et al. 2007; Zhang, Kulkarni et al. 

2007). These pressure predictions are independent of any assumptions made for the parenchyma. 

These predictions and actual measurement in dogs confirm that transmantle pressure differences 

do not cause communicating hydrocephalus as proposed by most previous theories. Previous 

theories of hydrocephalus (Hakim, Venegas et al. 1976; Kaczmarek, Subramaniam et al. 1997; 

Smillie, Sobey et al. 2005) postulating large transmantle pressure gradients are not supported by 

our model or the evidence of Cine phase–contrast MRI measurements, or by clinical 

measurements. 

A mechanistic explanation of communicating hydrocephalus 

 Our model also explains ventricular expansion in the acute onset of communicating 

hydrocephalus. The model predicts that fluid exchange between the main cerebral compartments 

occurs in communicating hydrocephalus. Normally, the ventricular system drains CSF from the 

arteries of the choroid plexus and from the brain parenchyma. CSF is reabsorbed into the venous 
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system at the superior sagittal sinus. Impaired reabsorption causes CSF to accumulate and 

hydrocephalus to develop. Despite a gradual ICP increase, CSF is continuously produced 

because CSF production is only a weak function of ICP, perhaps due to active transport 

mechanisms underlying CSF production (Segal 2001; Brown, Davies et al. 2004). Continued 

CSF production leads to CSF accumulation in the ventricles, at the same time CSF transport 

from the vascular to the ventricular system through the extracellular space is diminished. Finally, 

as the ICP further rises, the CSF reabsorption flow is restored, but requires much higher ICP to 

off-set increased reabsorption resistance. In this final state, only a small amount of CSF is 

predicted to seep back into the vasculature from the ventricles through the extracellular space, 

which constitutes a complete reversal of CSF flow direction when compared to the normal state. 

The ventricles stay enlarged unless treatment restores the original conditions. This explanation of 

ventricular expansion is consistent with the laws of fluid mechanics and poroelasticity despite 

the occurrence of only small transmantle pressure differences. 

3.6. Conclusions 
 The model of intracranial dynamics incorporates interactions of all significant intracranial 

contents including the vascular system, CSF and the parenchyma. It does so for each pulsation of 

the cardiac cycle or multiple cycles over time. By changing one factor, the resistance to CSF 

absorption, communicating hydrocephalus and its onset can be simulated. This first principle 

model has been compared to actual Cine phase–contrast MRI of normal subjects and patients 

with hydrocephalus and found to properly reflect the observed dynamic flow patterns. To 

account for the all relevant system interactions, we have included the spinal canal with its more 

compliant epidural surface compared to the brain. The spinal subarachnoid space is normally 

very compliant because of the soft tissue and vessels that surrounds the dural face and acts as a 

cushion. Its deformability permits CSF displacement from the cranium into the spinal canal. 
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Normal pulsations amount to approximately 0.9 ml of flow back and forth through the foramina 

of magnum with each cycle. At high ICP, compliance decreases as the spinal canal is stretched. 

Thus, less CSF can be exchanged from the cranium to the spinal canal against a more 

compressed tissue. Our model incorporates these characteristics and plausibly explains the 

decrease in the cisternal CSF flow in hydrocephalus.  

 Some aspects of the mystery of acute communicating hydrocephalus have been explained. 

The model, however, does not aim to explain chronic forms of hydrocephalus, hemodynamic 

effects caused by pseudo-tumors or dural sinus thrombosis. Future work will resolve in more 

detail the cerebral vascular tree to increase the fidelity of the predictions as well as to quantify 

the effect of brain deformations on the local blood flow, straining or elongation of blood vessels 

in the periventricular area. More questions about the physiological consequences of the physical 

changes in its chronic phase arise. How does the brain and vasculature adapt to stretching or 

compressing, and what specifically causes damage to the brain? Knowing the fundamental 

physics of the central nervous system provides a scientific understanding of the forces that affect 

the brain tissue and may help predict when irreversible damage will occur. The same type of 

physical analysis can be applied to tumors, hemorrhagic strokes and sub-dural hemorrhages, and 

can potentially lead to a better understanding of these pathological states. Much work remains to 

be done in expanding the model, but the integration of the major components (blood, CSF, and 

parenchyma) appears to provide a good start into understanding intracranial dynamics. 
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4. NORMAL AND HYDROCEPHALIC BRAIN DYNAMICS—THE ROLE OF 

REDUCED CEREBROSPINAL FLUID REABSORPTION IN VENTRICULAR 

ENLARGEMENT 

4.1. Summary 
 CINE phase-contrast MRI (CINE-MRI) was used to measure cerebrospinal fluid (CSF) 

velocities and flow rates in the brain of six normal subjects and five patients with communicating 

hydrocephalus. Mathematical brain models were created using the MRI images of normal 

subjects and hydrocephalic patients. In our model, the effect of pulsatile vascular expansion is 

responsible for pulsatile CSF flow between the cranial and the spinal subarachnoidal spaces. 

Simulation results include intracranial pressure gradients, solid stresses and strains, and fluid 

velocities throughout the cranio-spinal system. Computed velocities agree closely with our in 

vivo CINE-MRI CSF flow measurements. In addition to normal intracranial dynamics our model 

captures the transition to acute communicating hydrocephalus. By increasing the value for 

reabsorption resistance in the subarachnoid villi, our model predicts that the poroelastic 

parenchyma matrix will be drained and the ventricles enlarge despite small transmantle pressure 

gradients during the transitional phase. The poroelastic simulation thus provides a plausible 

explanation on how reabsorption changes could be responsible for enlargement of the ventricles 

without large transmantle pressure gradients.  

4.2. Introduction 
A more complete understanding of cerebrospinal fluid (CSF) flow through the ventricular 

system, brain parenchyma, and subarachnoidal spaces may be necessary in explaining diseases of 

the central nervous system such as hydrocephalus, Chiari malformations (Greitz 2004), and 

syringomyelia (Greitz 2006). Precise knowledge about fluid flow and complex fluid-tissue 

interactions in the human brain has in the past been hampered by experimental inaccessibility. 



55 

 

 
 

However, state of the art medical techniques such as CINE-MRI and CT angiography allow us to 

non-invasively measure CSF flow rates and blood flow, and have great potential for improving 

the quantitative understanding of intracranial dynamics. Despite progress in medical imaging, 

measuring fluid pressures and tissue stresses in the brain still requires invasive procedures. 

Therefore, using CINE-MRI data we have developed and validated computational models based 

on first principle conservation balances for predicting fluid pressures and solid stresses. First 

principles models satisfy the laws of motion, while at the same time predicted results align with 

the experimental measurements. By using this computational approach we propose to better 

explain experimental measurements by quantifying the driving forces, flows, and interactions 

that are responsible for the patterns that we see in normal as well as diseased dynamics. This 

model based approach should not be confused with data fitting in which experimental values are 

reproduced by suitable mathematical functions that do not conserve basic physical quantities like 

momentum or mass. The first principles approach, if correctly applied, will not only render 

agreement between experiment and proposed models, but by induction also show that the 

physical principles that supported the model might be at work in reality. 

Due to the geometric complexity of the cranio-spinal system, many attempts to quantify CSF 

flow have relied on analyzing the system as a series of compartments, each compartment 

idealized as a simple geometric entity like a cylindrical tube. In the approach, governing 

equations are solved analytically (Kaczmarek, Subramaniam et al. 1997; Smillie, Sobey et al. 

2005), and the results are useful in helping us understand the basic fundamentals of fluid flow 

through such structures. However, because compartmental models simplify the true geometry, 

results are merely qualitative. Others have attempted to quantify CSF flow and brain movement 

using the distributed finite volume and finite element methods (Jacobson, Fletcher et al. 1999; 
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Pena, Bolton et al. 1999; Taylor and Miller 2004; Linninger, Xenos et al. 2007). A mathematical 

model is created by converting human MRI brain images into a grid of finite elements, 

preserving the patient-specific brain geometry. With the introduction of suitable boundary 

conditions and material properties, the discretized equations of fluid flow and solid deformation 

are solved numerically over each element. This approach is hampered by the geometric 

complexity of the human brain; realistic brain models require large computational meshes and 

computer power. Consequently, some researchers have limited their analysis of the cranio-spinal 

system to small substructures, such as a sagittal section of the parenchyma (Pena, Bolton et al. 

1999; Taylor and Miller 2004), axisymmetric model of the spinal cord (Bertram, Brodbelt et al. 

2005), or a reconstructed aqueduct of Sylvius (Jacobson, Fletcher et al. 1996; Jacobson, Fletcher 

et al. 1999; Fin and Grebe 2003). Results obtained from isolated substructures may explain 

details about fluid flow and geometry dependent stresses in a small region (Pena, Bolton et al. 

1999), but do not provide insights into the main pathology leading to a complex disease like 

hydrocephalus. To better understand normal and hydrocephalic intracranial dynamics, a holistic 

model of the physics of the central nervous system is needed—one that incorporates the 

interaction between blood flow, cerebral vasculature expansion, soft tissue stresses, and CSF 

dynamics including production, flow, and reabsorption. 

A poroelastic model for the deformable parenchyma is a necessary step to quantify changes 

that occur in the hydrocephalic brain. Recently, we have studied the CSF flow patterns and 

pressure fields in a normal subject and a patient with communicating hydrocephalus (Linninger, 

Xenos et al. 2007). In this present work, we include a poroelastic fluid-tissue interaction model 

which accounts for brain motion due to systolic expansion of the cerebral vasculature and CSF 

flow within the spinal canal. 
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In the next section we describe our methodology, including a discussion of the governing 

equations and boundary conditions used in our simulations. Section three presents results 

validating the predicted CSF flow and pressure field patterns. The experiments and computations 

show significant changes in flow patterns in hydrocephalus. This report closes with a critical 

discussion of our findings and future challenges for understanding hydrocephalus. 

4.3. Methods 

4.3.1. CSF Flow Measurements 

Using CINE-MRI, we have previously measured cranial CSF velocities and flow rates, as 

well as the deformation of the lateral ventricular space in six normal subjects and five patients 

with hydrocephalus. All participants signed the consent forms approved by the Institutional 

Review Board at the University of Chicago and the University of Illinois at Chicago. More 

information on the CINE-MRI protocol for obtaining CSF flow measurements using sixteen 

equidistant time frames throughout the cardiac cycle is provided in our previous publications 

(Zhu, Xenos et al. 2006; Linninger, Xenos et al. 2007).  

4.3.2. Image Reconstruction 

T1 and T2 images from six normal subjects and five communicating hydrocephalus patients 

were used to reconstruct accurately the geometry of the ventricular system, the cranial and spinal 

subarachnoidal spaces, and the brain parenchyma. The image reconstruction was performed 

using Mimics 11.0 (Materialise, Belgium) software. Reconstructed surfaces and volumes were 

then meshed with computational grid generation methods, Gambit 2.4.6 software. The three-

dimensional normal and hydrocephalic brain meshes were composed of 486,542 and 498,857 

tetrahedral elements, respectively. The two-dimensional normal and hydrocephalic brain meshes 

were composed of 8,328 and 8,515 triangles, respectively. All simulations were confirmed to 

have reached convergent solutions after successive grid refinements with a time step size of 0.01 
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sec using an implicit Euler scheme. The computational meshes served as the computational 

domain for the fluid-structure-interaction (FSI) finite element analysis presented in subsequent 

sections. A sample three-dimensional reconstruction of the ventricular system for a 

hydrocephalic subject is given in Figure 14. Computed velocity fields are displayed at equally 

spaced cross sections. 

 
Figure 14. Maximum three-dimensional CSF flow velocity in the 

ventricular system of a communicating hydrocephalus patient. 

The velocity field is displayed in sagittal cross-sections of 5 mm 

increments from the mid-sagittal plane. This simulation predicts a 

maximum aqueductal velocity of 39.6 mm/s. Image 

reconstruction of the ventricular system was performed using 

MIMICS, 11.0. 

4.3.3. Mathematical Model 

We have created anatomically accurate poroelastic, finite element models for normal subjects 

and communicating hydrocephalus patients. Both types of models include CSF spaces as well as 

the brain parenchyma and spinal canal. For the normal subject, the anterior-posterior length of 

the cranium was 16.3 cm, the superior-inferior length of the entire model was 67.2 cm, and the 

spinal canal, measured from the cerebellomedullary cistern to the lowest point of the model, was 

51.5 cm. These same dimensions in the hydrocephalic patient model were 19.4 cm, 70.0 cm, and 

52.5 cm, respectively. Our finite element model is depicted in Figure 15.  
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(c) 

(a) Normal subject. 

 

(b) CH patient. 

Figure 15. Blood and CSF flow, CINE-MRI measurements, in both a normal 

subject (a) and a patient with communicating hydrocephalus (b). Blood flow 

patterns were used in volumetric source term boundary conditions. Grid 

reconstruction was used to convert mid-sagittal MRI scans into discretized 

computational domains necessary for CFD-FSI analysis (c). CH: 

Communicating hydrocephalus 

 

CSF velocity and pressure fields throughout the cranio-spinal system were calculated by 

solving the Navier-Stokes and Darcy equations for fluid flow coupled with the equations of solid 

motion. The governing equations for CSF motion in the ventricular and subarachnoidal spaces 

are given in eqs. (1-13)-(1-14).  
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      Momentum for clear CSF flow in ventricles and subarachnoidal space 

2

f

u
u u p u

t
ρ µ

∂ + ⋅∇ = −∇ + ∇ ∂ 

�
� � �

 
(1-14) 

fρ  is the fluid density, u
�

 the velocity vector, p  the fluid pressure, and µ  the CSF viscosity. 

fS  is a fluid source term that accounts for the constant production of CSF. The total CSF 

production was set to 0.35ml/min (Johanson, Duncan et al. 2008). Outside of the ventricular 

system no CSF is produced in our model; thus the continuity equation for an incompressible 

fluid reduces to 0u∇ ⋅ =
�

. Even though position does influence intracranial pressure (ICP), 

currently we have no scanner allowing us to include position-dependent flow measurements. 

Hence, gravitational influences were neglected in the current model. CSF was treated as an 

incompressible, viscous, Newtonian fluid.  

The parenchyma and spinal cord were modeled as poroelastic media. Their two phases are 

the deformable cell matrix and the interstitial fluid. The interstitial fluid, occupying about 30% of 

the bulk volume, is essentially incompressible CSF. Additionally, the cell matrix occupies 70% 

of the bulk, is composed of mainly water and proteins, and can be deformed. The change of fluid 

content, / tξ∂ ∂  is equal to the volume change of the parenchyma as described by Darcy’s law 

(Biot 1941), eq. (1-15). The Darcy velocity, q
�

, is the relative motion of the extracellular fluid 

with respect to the solid cell matrix, eqs. (1-15)-(1-16). The average pore fluid velocity is fu
�

, 

and su
�

 is the velocity of the solid structure (Biot 1941; Biot 1955; Peters and Smith 2002). The 

permeability of the solid matrix is k , fluid viscosity is µ , and fluid pressure is p . 

     Continuity for the extracellular fluid 

q
t

ξ∂
= −∇⋅

∂
�

 with f sq u u= −
� � �

 
(1-15) 
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     Darcy’s law for the extracellular fluid flow inside the parenchyma 

2k
p q p

k t

µ ξ
µ

∂
−∇ = ⇒ = ∇

∂
�

 
(1-16) 

The cell matrix must obey the dynamic force balance according to the theory of dynamic 

consolidation as in eq. (1-17), in which sρ  is the density of the solid phase, d
�

 is the 

displacement vector of the solid cell matrix, G  is the shear modulus, ν  is the Poisson ratio, and 

vε  is the volumetric strain (Biot 1941). The medium was assumed to be saturated. The force 

balance for the solid phase of the poroelastic medium is given in (1-17). 

2
2

v2 1 2
s

d G
G d p

t
ρ ε

ν
∂

= ∇ + ∇ −∇
∂ −

�
�

 with v dε = ∇⋅
�

 and sd u=
�
�ɺ  (1-17) 

Equations (1-13)-(1-17) were solved over finite element meshes reconstructed from real 

subjects’ brain images with the commercial FSI code ADINA 8.3 (Adina R&D Inc., Watertown 

MA, USA). Material properties used in the simulations for both solid and fluid constituents are 

given in Table 5. In the next sections we explain the boundary conditions of solid displacement, 

CSF formation, and fluid pressure imposed on each of the finite element models. 

Table 5: Material Parameters 

Location 

Young’s 

Modulus 

[Pa] 

Poisson 

ratio 

Density 

(solid) 

[kgm
-3

] 

Density 

(fluid) 

[kgm
-3

] 

Viscosity 

[kgm
-1

s
-1

] 

Permeability 

[m
2
] 

Porosity 

Parenchyma 1x10
4 

0.45 1,000   1x10
-14 

0.3 

Upper Spinal Dura 1x10
7
 0.30 1,000     

Mid Spinal Dura  1x10
6
 0.30 1,000     

Lower Spinal Dura  1x10
5
 0.30 1,000     

CSF (SAS and 

ventricular 

pathway) 

   1,000 0.001   

Porous 

Reabsorption region 
  1,000 1,000 0.001 1x10

-8
 0.3 

 

4.3.4. Displacement Boundary Conditions 

Special displacement boundary conditions emulated the expansion and dilation of cerebral 

vasculature occurring during the cardiac cycle. The experimental basilar arterial blood flow 

waveforms shown in Figure 15a, b were reconstructed using Fourier series and used as a 
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dynamic forcing function for the expansion terms. Vascular expansion terms representing the 

Circle of Willis and the choroid plexus were assumed to concur with the timing of the blood flow 

signal. The expansion terms representing arterioles inside the parenchyma were also applied 

dynamically, with a phase lag of about 30%. This phase lag led to CSF velocity, magnitudes, and 

directions consistent with the MRI signals. As displayed in Figure 15a, b the phase lag between 

maximum basilar arterial blood flow and maximum ventricular contraction for both the normal 

and hydrocephalic patient is about 20-35% of the cardiac cycle—the maximum basilar arterial 

blood flow precedes the maximum ventricular contraction. Therefore, our assumptions are 

consistent with the MRI data. 

The increase in cerebral vasculature volume during systole is about 1.5 ml; typically 0.8 ml is 

displaced from the cranium into the spinal canal (Greitz 2004). Accordingly, the volumetric 

dilation terms were set to 0.5 to 1 ml at specific locations inside the brain in the choroid plexus. 

The effect of the total volumetric expansion was verified by integrating the calculated flow rate 

through the cranio-cervical junction over one cardiac cycle. The calculation confirmed a CSF 

pulsatile volumetric exchange between the cranial and spinal subarachnoidal space of 0.5 ml in 

normals. As observed in the real brain, expanding vasculature in our model causes forces in the 

parenchyma, leading to compression and dilation of the poroelastic brain, which in turn induces 

interstitial fluid flow inside the porous medium and within the CSF spaces. In our model the 

deforming brain tissue also causes stresses on the lateral ventricles. The ventricles compress 

slightly, and CSF is forced out of the ventricular system. Therefore, as a consequence of the 

vascular expansion, a portion of the CSF is displaced out of the cranium into the compliant 

spinal canal. This CSF exchange is well known clinically and is possible due to distensibility of 

the lower lumbar region and the rigidity of the skull. Deformable boundaries such as the lateral 
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ventricles, the lumbar region of the spinal canal, and portions of the cortex are governed by fluid-

structure constrains as given in eqs. (1-18)-(1-20). 

f sd d=
� �

 (1-18) 

f sn n⋅ = ⋅σ σσ σσ σσ σ  (1-19) 

su d=
�

� ɺ  (1-20) 

Equation (1-18) ensures displacement compatibility between the fluid, fd
�

, and solid, sd
�

, 

domains along the deformable interface. Also along the fluid-solid interface the stresses normal 

to the interface, n ⋅σσσσ , must balance as in (1-19). Finally, the velocity of the fluid, u
�

, at the 

interface is equal to the velocity of the solid wall, sd
�
ɺ , as shown in (1-20). At non-deformable 

interfaces, no-slip boundary conditions apply for the fluid. 

4.3.5. Fluid, Pressure Boundary Conditions 

In this section we briefly discuss the fluid boundary conditions. CSF is generated in the 

choroid plexus and is also produced in the brain parenchyma. The production is known to be 

constant at a rate of 0.35 ml/min and largely pressure independent, suggesting active transport 

mechanisms (Johanson, Duncan et al. 2008). In the real brain, the choroid plexus is situated at 

the bottom of the lateral and third ventricles. For simplicity, the bulk CSF production in the 

model is introduced only in the lateral ventricle. 

An ICP of 500 Pa is normal. In hydrocephalus, the ICP can rise to 3000 Pa or higher (Troupp 

1975). Accordingly, we assumed a baseline ICP of 500 Pa for the normal case and 2700 Pa for 

the hydrocephalic case. These baseline pressure values were applied at the sagittal sinus. The 

sagittal sinus is represented as a porous structure surrounding the cranial subarachnoidal space. 
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4.4. Results 

4.4.1. Predicted CSF Flow Patterns in the Cranio-Spinal System 

Figure 15 displays experimentally obtained blood flow in the basilar artery, lateral ventricle 

deformation, CSF flow at the third ventricle, and CSF flow at the junction of the aqueduct of 

Sylvius and the fourth ventricle for a typical normal subject and a patient with communicating 

hydrocephalus. Figure 16 summarizes two-dimensional analyses of CSF flow measurements for 

normal subjects and hydrocephalic patients at six locations of interest obtained with CINE-MRI. 
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 (a)  (e) 

 

 (b)  (f) 

 (c)  (g) 

 (d)  (h) (i) 

Figure 16. Measured (CINE-MRI; frames a-d) and calculated (CFD; frames e-h) CSF flow in a 

normal brain during one cardiac cycle; relative magnitude depicted by arrow length. The model 

CSF flow predictions are in good agreement with CINE-MRI measurements—in timing, direction, 

and magnitude. (i) CSF flow field throughout the cranio-spinal system at 18% of the cardiac cycle. 



66 

 

 
 

The reference time of the cardiac cycle is based on the signal of the basilar arterial blood 

flow given in Figure 15a, b. The measured direction and relative magnitude of CSF flow 

occurring at early systole, mid-systole, late systole, and diastole is shown in frames a through d 

of Figure 16. Frame a shows the latter stages of inferior-superior flow of CSF from the spinal 

canal to the cranium in early systole. This flow pattern is in good agreement with the 

measurement of the lateral ventricle size change shown in Figure 15. At this point in time, the 

lateral ventricles are just beginning to decrease in volume. During systole, the cerebral 

vasculature expands. The increase of the cerebral blood lumen causes stress to the parenchyma 

which in turn compresses the lateral ventricles simultaneously. The CSF volume inside the 

lateral ventricles is also diminished by the expanding choroid plexus. A compression of the 

lateral ventricles at the same time as the expansion of the choroid plexus results in displacement 

of CSF out of the ventricular system as seen in frames b and c. CSF is further discharged from 

the cranial subarachnoidal space into the spinal canal. Thus, CSF flow is superior-inferior, 

entering the spinal canal during mid and late stages of systole. The arterial pressure decreases in 

diastole of frame d. The blood lumen diminishes again, and CSF flows back from the spinal 

canal into the cranial subarachnoidal space. This backflow is also reversing the flow in the 

aqueduct. The complex flow patterns and the predicted CSF velocities throughout the cranium of 

a normal subject during the course of one cardiac cycle are provided in frames e-h of Figure 16. 

The predicted results agree closely with CINE-MRI data in direction, magnitude, and timing. 

The CSF velocity field throughout the cranio-spinal system at 18% of the cardiac cycle is shown 

in Figure 16i.  

The overall sequence of pulsatile CSF flow patterns in the hydrocephalic case is similar to 

the normal. However, the total CSF displacement through the ventricular system is larger in 
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hydrocephalus than in the normal case. In healthy brains, N=6, the average peak CSF velocity at 

the junction of the aqueduct and the fourth ventricle is about 3.82±2.12 mm/s. In hydrocephalus, 

N=5, the velocity magnitude is 3.4 times higher with peak velocity of 13.14±2.64 mm/s as in 

Figure 17. The CSF stroke volume through the ventricular system in the normal case is 0.028 ml; 

in hydrocephalus it is 0.222 ml, about eight times greater, shown in Figure 18. Predicted 

ventricular CSF stroke volumes for both the normal and hydrocephalic case are in good 

agreement with CINE-MRI CSF ventricular stroke volume measurements. 
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Normal subject Communicating hydrocephalus patient 

Figure 17. Changes in pontine cistern and aqueduct flow patterns. In normal brains the 

average peak velocity in the pontine cistern is about 13.9 mm/s. Average peak velocity in the 

pontine cistern for the communicating hydrocephalic patients was 10.8 mm/s. In normal 

brains the average peak velocity at the junction of the aqueduct and the fourth ventricle is 3.8 

mm/s. In the hydrocephalic case, the velocity magnitude is 3.4 times higher with peak 

velocity 13.1 mm/s. Velocity measurements based on 6 normal and 5 communicating 

hydrocephalic subjects; CFD results shown in solid lines. (Note: positive values correspond to 

S-I flow; negative values to I-S flow.) 
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(a) (b) 

Figure 18. Comparison of predicted CSF flow rate (a) and stroke volume (b) through lower 

fourth ventricle (LV4) in the normal versus communicating hydrocephalic case. Flow rate was 

calculated by multiplying LV4 velocity measurements (over the course of the cardiac cycle) 

by the cross sectional area of LV4 (circular cross section assumed). Stroke volume calculated 

by calculating the positive area under the curve (S-I flow) of (a).  

 

In normals, the CSF velocity is higher in the pontine cistern compared to the hydrocephalic 

case. As displayed in Figure 17, in healthy brains, the average peak velocity in the pontine 

cistern is about 13.93±9.97 mm/s, N=6. Peak velocity in the pontine cistern for the hydrocephalic 

patients we tested, N=5, was only 10.82±1.16 mm/s on average. This value is about 30% lower 

than the normal subjects. We calculated the ratios of aqueduct to pontine velocity magnitudes, 

A/P. For the normal subject (A/P)N is about 0.3. In hydrocephalus this ratio is 1.2, approximately 

four times greater than normal. This increase in the velocity magnitude ratio is indicative of a 

reduced flow in the pontine cistern together with an increased flow through the aqueduct under 

hydrocephalic conditions, quantified in Figure 19.  
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(a) (b) 

Figure 19. CINE-MRI data from Figure 17 is revisited here to more clearly show 

the marked changes in CSF flow dynamics between normal subjects and 

communicating hydrocephalic patients. Due to the standard deviation of the 

measurements, a range of ratio values has been plotted. Frame (a) shows that in 

the normal case the aqueduct to pontine cistern CSF velocity is small compared to 

the same ratio in hydrocephalic patients. The ratio of the aqueduct to the pontine 

cistern velocity may on average be 4.5 times larger in the hydrocephalic case. (b) 

There is a significant increase in aqueductal flow velocity and marked decrease in 

pontine cistern flow velocity in the communicating hydrocephalic case. 

(AN=3.82±2.12, PN=13.93±9.97, AHC=13.14±2.64, PHC=10.82±1.16) 

 

Qualitative differences in the CSF flow patterns between the normal and hydrocephalic case 

are displayed in Figure 20. At mid systole, the pontine CSF flow is larger in the normal case, but 

the aqueductal CSF flow is larger in the hydrocephalic case.  

 



71 

 

 
 

 

 

 

Figure 20. Simulated CSF flow pattern changes in the pontine cistern (A) and 

aqueduct (B) for normal (left) and hydrocephalic (right) subjects. CSF pontine 

flow is more pronounced in the normal case, whereas CSF flow is higher in 

the aqueduct and ventricular pathways under hydrocephalic conditions. 

 

4.4.2. Intracranial Pressure Dynamics 

For both normal and hydrocephalic subjects, the ICP peaks during systole. The timing of the 

ICP wave follows the blood pressure wave. We believe this lag indicates that CSF motion is 

induced by the expanding and receding vasculature. As shown in Figure 21, our simulations 

predict an ICP amplitude in the lateral ventricles for the normal subject of about 84 Pa; in the 

hydrocephalic patient it is almost twice that amount—161 Pa. This predicted increase in 

pulsatility matches ample clinical evidence of increased ICP amplitudes in hydrocephalus 

(Pettorossi, Di Rocco et al. 1978; Gonzalez-Darder and Barcia-Salorio 1989). The transmantle 

pressure gradient, defined as the difference between the subarachnoidal space and the lateral 

ventricle pressure, stays always small in both normal (45 Pa) as well as hydrocephalic (22 Pa) 

subjects. The lack of large transmantle pressure differences corroborates earlier findings 

(Stephensen, Tisell et al. 2002; Penn, Lee et al. 2005; Linninger, Xenos et al. 2007).  
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Normal Communicating Hydrocephalus 

Figure 21. Simulations of intracranial pressure (ICP) dynamics. Normal subject (left); 

hydrocephalic patient (right). Top: Pressures in the ventricular system (Lateral ventricle (LV), 

third ventricle (V3), and junction of aqueduct and fourth ventricle (AV4)), the subarachnoidal 

space (SAS), cerebrum, and lower lumbar region. Middle: Despite elevated ICP in 

hydrocephalus, the transmantle pressure gradient, defined as the pressure difference between 

SAS and LV, does not exceed 45 Pa for the normal subject, 22 Pa for the hydrocephalic patient. 

Bottom: Two-dimensional visualization of the pressure field throughout the ventricular system 

and SAS when the transmantle pressure gradient is a maximum. 

 

Pressure fields within the aqueduct for both normal and hydrocephalic cases are shown in 

Figure 22. Pressure gradients of only 1.4 Pa (normal) and 0.9 Pa (hydrocephalic) produce 

maximum velocities of 18 mm/s (normal) and 45 mm/s (hydrocephalic), respectively. These 
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predicted pressure differences for the normal subject is in agreement with both experimental and 

other earlier computational findings (Jacobson, Fletcher et al. 1996; Jacobson, Fletcher et al. 

1999; Fin and Grebe 2003; Linninger, Tsakiris et al. 2005).  

 

  

Normal Communicating Hydrocephalus 

Figure 22. Pressure gradients across the aqueduct of Sylvius for normal subject (left) and 

patient with communicating hydrocephalus (right) when CSF velocity is a maximum 

through this structure. Pressure gradient: normal=1.4 Pa; hydrocephalic=0.9 Pa. The 

pressure difference in the aqueduct for the normal subject is on the order of other 

published values (Jacobson, Fletcher et al. 1996; Jacobson, Fletcher et al. 1999; Fin and 

Grebe 2003; Linninger, Tsakiris et al. 2005).  

 

A summary of tissue stresses and CSF flow velocities at 13% of the cardiac cycle for the 

communicating hydrocephalus patient is given in Figure 23. Detail A provides a partial view of 

the parenchyma stress and CSF velocity fields in the lateral and third ventricles. Detail B shows 

stresses on the spinal dura wall in the prepontine area and CSF velocity in lower cranial 

subarachnoidal space. Detail C displays the stresses on the distensible mid portion of the spinal 

dura and a snapshot of CSF velocities in the spinal canal. These computations suggest that as 

fluid flows into the spinal canal, the spinal dura is compressed.  
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Figure 23. Summary of stresses and CSF velocities at 13% of the cardiac 

cycle, communicating hydrocephalus patient. Zone A: parenchyma stress 

and CSF velocity within the ventricular system. Zone B: stress on the spinal 

dura wall; CSF velocity in lower cranial SAS. Zone C: stress on mid 

portion of spinal dura wall and CSF velocity magnitude in the superior-

inferior direction. 

 

4.4.3. Prediction of Acute Hydrocephalic Conditions 

We changed the reabsorption resistance in our model and observed dynamically which 

changes would occur in response to drastically increasing the reabsorption resistance. Without 

any further changes to the model we observed that the ventricles grew. In response to an 

incremental increase in CSF outflow resistance through the sagittal sinus, the lateral ventricular 

pressure also increases as shown in Figure 24.  
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(a) 

 

(b) 

 
Figure 24. Predicted hydrocephalus model. (a) The resistance to CSF flow 

out of the cranium was increased incrementally. The negative log of 

permeability versus time has been plotted for ease of presentation. The size 

of the lateral ventricles increases substantially as the outflow resistance of 

our model is increased. (b) Quantitative results showing the surface area and 

pressure of the lateral ventricles as the resistance is increased. 

k=permeability  

 

Three stages of ventricular growth have been plotted to show how the ventricles enlarge with 

increasing fluid pressure. The first image, in which the outflow resistance has not increased 

substantially, shows minimal enlargement of the lateral ventricle as well as an intraventricular 

pressure near the baseline ICP (500 Pa) prescribed in the model. There is noticeable ventricular 

expansion in the second image, in which higher outflow resistance results in intraventricular 

pressure of 1876 Pa, or three times the baseline value. In the third image there is substantial 

expansion of the lateral ventricle as well as an intraventricular pressure seven times larger than 

baseline. Figure 24b shows quantitatively the extent of lateral ventricle expansion and pressure 
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rise as outflow resistance is increased. The lateral ventricle surface area increases from 4.64 cm
2
 

to 10.38 cm
2
, an increase of 223%; intraventricular pressure increases to 3708 Pa, approximately 

seven times greater than normal. The stress field for the largest ventricular expansion is shown in 

Figure 25. Tensile stresses are highest in the anterior and posterior horns. This pattern has also 

been noted clinically and computationally (Zimmerman, Fleming et al. 1986; Pena, Bolton et al. 

1999; Taylor and Miller 2004). Large tensile stresses in the posterior and anterior horns in the 

hydrocephalic case imply that the tissue is stretched, and this may lead to periventricular edema 

associated with tissue damage (Ulug, Truong et al. 2003). Compressive stresses over the middle 

section may be responsible for fluid content change known to occur in hydrocephalus (Penn and 

Bacus 1984). The CSF seepage pathways inside the parenchyma is shown in Figure 25b. CSF 

flows through the ventricular system as well as seeps into the cerebrum toward the sagittal sinus 

where CSF is reabsorbed. 
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(a) (b) 

Figure 25. Solid stresses and fluid flow in simulated communicating 

hydrocephalus. (a) Stress in the cerebrum under conditions of large 

ventricular expansion. Tensile stresses (red) occur near the anterior and 

posterior horns of the ventricles. Compressive stresses (blue) are prominent 

at and superior to the midsection of the lateral ventricle wall. (b) CSF flow 

field under identical conditions as in (a). CSF flows through the ventricular 

system as well as seeps through the cerebrum. The CSF is reabsorbed 

through the sagittal sinus.  

 

4.5. Discussion 

4.5.1. CSF Flow through the Pontine Cistern 

The fluid-tissue interaction model proposed here advances the work of Linninger, et al. 

(Linninger, Xenos et al. 2007), by incorporating a deformable poroelastic medium. In contrast to 

earlier work where for the normal case we could not validate CSF velocity in the area of the 

pontine cistern, this work suggests that the expansion of arteries surrounding the cortex and the 

base of the brain (Circle of Willis) contribute significantly to the CSF velocity in the pontine 

cistern and ultimately to the CSF stroke volume into the spinal canal. Using a compartmental 

model, our group has determined that the reduction of CSF flow into the spinal canal in 

hydrocephalus may be due to a stiffening cerebrospinal system (in production). The soft tissue 

surrounding the spinal canal is compliant up to a particular threshold. An increase in ICP, 

VELOCITY 

[m/s]
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perhaps caused by a decrease in CSF uptake through the sagittal sinus, may push the spinal canal 

to its threshold, limiting the amount of CSF that may be displaced into the canal, and thereby 

lowering the flow rate through the pontine cistern. 

4.5.2. Pressures throughout the Ventricular System 

We have reproduced experimental findings that show a doubling of the pressure amplitude of 

the lateral ventricle in hydrocephalic patients (Czosnyka, Czosnyka et al. 2004).  We have shown 

also that only a small pressure gradient is needed for maximum velocity through the aqueduct of 

Sylvius. Our predicted result of 1.4 Pa is in excellent agreement with other independent findings 

(Jacobson, Fletcher et al. 1996; Jacobson, Fletcher et al. 1999; Fin and Grebe 2003; Linninger, 

Tsakiris et al. 2005). We also predict a smaller value of 0.9 Pa for the hydrocephalic case, 

indicative of the change in geometry of the deformed ventricular system. 

4.5.3. Changes to CSF Outflow Resistance 

Our model used only basic conservation laws for mass and momentum transport and a small 

set of physical properties given in Table 5 to reproduce all known measurements of pressures 

and flow fields consistently in normal as well as in hydrocephalic patients. Given this 

satisfactory match between predictions and measurements, can the mathematical model also 

predict the transition from the normal to hydrocephalic state? An answer to this question would 

also provide a basic physical understanding of the causes of hydrocephalus. The next paragraph 

shows evidence in support of a theory for the creation of hydrocephalus. 

A majority of researchers agree that hydrocephalus is associated with changes in the 

reabsorption of CSF into the sagittal sinus through the subarachnoid villi. Such obstruction 

causing hydrocephalus in animal models (Dandy 1919; Linninger, Tsakiris et al. 2005) is bound 

to increase the reabsorption resistance of CSF into the venous system. Thus, we implemented in 

the model a gradual increase of the outflow resistance. After a short delay, an increase in the 
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stresses in the horns of the lateral ventricles was noticed. As the reabsorption resistance is 

increased further the ventricular space enlarges thus reducing the space available for the 

parenchyma. Simultaneously the fluid water content of the parenchyma is reduced by 

discharging extracellular CSF. In effect the lateral ventricle increases and the size of the 

parenchyma is diminished consistent with the pathophysiology of hydrocephalus.  

According to the Kellie-Monro doctrine, the cranium is a closed system. Therefore, when 

CSF accumulates due to constant production but increased outflow resistance, the deformation 

also goes along with an increase of ICP. Nevertheless, in our simulation of acute communicating 

hydrocephalus no large transmantle pressure gradients were observed remaining approximately 

at only 1 Pa. In fact, the only condition needed for ventricular enlargement was the overall 

increase in intraventricular pressure. In many cases of hydrocephalus it is believed that 

reabsorption through the arachnoid granulations is diminished. The mechanical model proposed 

here fits the current understanding of the pathophysiology of acute communicating 

hydrocephalus.  

This model supports the notion of the significance of reabsorption resistance in the onset of 

acute hydrocephalus. This model does not prove hydrocephalus occurs in this manner nor does it 

explain all forms of the hydrocephalus syndrome. Specifically, normal pressure hydrocephalus 

requires the understanding about why the intracranial pressures, which might have been initially 

high, return to lower levels. We believe that biomechanical relaxation of tissues or changes to the 

tissue properties might be responsible for the normal pressure hydrocephalus phenomenon, but 

definitive answers require more research and are too early to be made from this study focusing 

on the onset of acute hydrocephalus. Nevertheless, the qualitative agreement of changes induced 

in this comprehensive model by reducing the reabsorption constant leading to intracranial 
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pressure rise as well as the enlargement of the ventricles are very encouraging. While these 

simulation results do not confirm the onset of acute hydrocephalus in reality, the first principles 

physics model adopted here supports the notion of the significance of reabsorption in the 

development of hydrocephalus. 

4.6. Model Limitations and Future Work 
This chapter presents CSF flow field predictions in two and three dimensions, and advances 

our compartmental model (Linninger, Tsakiris et al. 2005) which accounted for the interaction 

between CSF and the choroid plexus. Some limitations of this current model need to be 

mentioned. First, even though the MRI reconstruction of geometry and physiological spaces in 

the brain was performed in three dimensions, many of the comparisons between normal and 

hydrocephalic simulation experiments were conducted with mid-sagittal two-dimensional 

simulations. This choice shortened the simulation time since the main objective in this 

publication was to describe the timing and the relationship between variables. Some results of 

the three-dimensional analysis have been reported in Figure 14, like the flow fields in the 

ventricular spaces, but a full display of three-dimensional results was omitted. Second, in the 

current model we predicted the effect of expanding vasculature as input on the parenchyma and 

the CSF flow as output. However, we did not fully create a spatially accurate model of the 

cerebral vasculature. In the simulations for normal and hydrocephalic brain dynamics, the 

amplitudes in the prepontine region are smaller than ones observed in CINE-MRI measurements. 

We attribute that to the simplified model of cerebral vasculature which in reality may add more 

pulsatility due to the interaction with the basilar artery. In the future, a fully coupled cerebral 

vasculature model interacting with the CSF and parenchyma will be developed. This future 

model will compute all forces and pressures that occur inside the central nervous system only as 

functions of the arterial and venous pressures. All internal force interactions and mass transfer 
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between vasculature, CSF, and parenchyma will be resolved by momentum and species transport 

equations. 
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5. THREE-DIMENSIONAL COMPUTATIONAL ANALYSIS OF CSF FLOW IN THE 

BRAIN 

5.1. Summary 
A three-dimensional model of the human cerebrospinal fluid (CSF) spaces is presented. 

Patient-specific brain geometries were reconstructed from magnetic resonance images. The 

model was validated by comparing the predicted flow rates with Cine phase-contrast MRI 

measurements. The model predicts the complex CSF flow patterns and pressures in the 

ventricular system and subarachnoid space of a normal subject. The predicted maximum rostral 

to caudal CSF flow in the pontine cistern precedes the maximum rostral to caudal flow in the 

ventricles by about 10% of the cardiac cycle. This prediction is in excellent agreement with the 

subject-specific flow data. The computational results quantify normal intracranial dynamics and 

provide a basis for analyzing diseased intracranial dynamics. 

5.2. Introduction 
CSF, a clear plasma-like fluid surrounding the cerebrum and spinal cord, is produced mainly 

by the choroid plexus and flows through the ventricles to the subarachnoid space where it is 

absorbed into the blood stream via the sagittal sinus (Nolte and Sundsten 2002). Disturbances in 

the natural CSF flow patterns are often associated with diseases like hydrocephalus, 

syringomyelia, or Chiari malformation (Milhorat, Chou et al. 1999; Koyanagi, Iwasaki et al. 

2005). The modeling approach presented here provides a basis for creating a quantitative 

understanding of changes in flow patterns associated with the diseased brain. By incorporating 

subject-specific geometric data into our model, the CSF flow and pressure gradients in the brain 

can be quantified. Through rigorous modeling, we intend to reproduce the dynamic mechanical 

behavior of an individual human brain, and by doing so, we aim to explain quantitative 

relationships between cerebral blood flow, CSF pressures, and flow rates.  
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Previously, we have devoted much effort to reconstructing the CSF flow in two-dimensions 

(Linninger, Xenos et al. 2007; Linninger, Sweetman et al. 2009). However, a two-dimensional 

approach has the disadvantage that it does not render the volume relationships accurately. For 

instance, when considering only a two-dimensional cross-section along the longitudinal fissure 

of the brain, one either misses the cerebral ventricles completely or does not correctly render the 

space between the two hemispheres. Moreover, the spatial relationship between the pontine 

cistern and the ventricular space can not be properly rendered in a two-dimensional model. The 

correct relationship between all fluid spaces in the cranium can only be studied properly when 

using a three-dimensional model. 

Several three-dimensional models of cerebrospinal fluid flow have been reported in the 

literature. Jacobson et al. have studied the flow and pressure dynamics of the cerebral aqueduct 

(Jacobson, Fletcher et al. 1996; Jacobson, Fletcher et al. 1999). More advanced aqueductal 

models accounted for the aqueduct’s deformability (Fin and Grebe 2003). Three-dimensional 

CSF flow studies inside the third ventricle have also been reported (Kurtcuoglu, Soellinger et al. 

2007; Cheng, Tan et al. 2010). Gupta et al. investigated the CSF flow in the lower region of the 

subarachnoid space, caudal to the lateral and third ventricles (Gupta, Soellinger et al. 2009). 

More recently, Linge et al. proposed a three-dimensional CSF flow model of the lower 

subarachnoid space and cervical region of the spinal canal (Linge, Haughton et al. 2010). 

However, none of the prior models described the CSF flow in the entire ventricular system and 

the subarachnoidal spaces. 

The models described above were developed to increase knowledge about normal and 

diseased CSF dynamics. We agree with those researchers who point out that computational 

modeling of the CSF spaces is needed for improving shunt design for hydrocephalic patients and 
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for improving methods of intraventricular and intrathecal drug delivery (Kurtcuoglu, Soellinger 

et al. 2007; Gupta, Soellinger et al. 2009). To this end, this article presents a three-dimensional 

flow model of the human cranial fluid space. As an advancement of the prior models mentioned 

above, the current model includes the entire cranial subarachnoid space as well as the entire 

ventricular system. The model is used to predict the CSF flow field and intracranial pressures 

resulting from brain tissue displacement.  

The next section describes our methodology and presents the governing equations and 

boundary conditions used in our simulations. The Results section presents model predictions of 

CSF flow rates and intracranial pressures for a subject with average-sized ventricles and a patient 

with enlarged cerebral ventricles. This report closes with a discussion of our findings as well as a 

critical assessment of the current model.  

5.3. Methods 

5.3.1. CSF and Blood Flow Measurements 

Cine phase-contrast magnetic resonance imaging (CINE-MRI) was used to measure cranial 

CSF velocities in a normal subject and a patient diagnosed with communicating hydrocephalus. 

Additional measurements included change in lateral ventricle size, CSF flow rate in the third 

ventricle and at the junction of the aqueduct and fourth ventricle, and the blood flow rate in the 

basilar artery. The participants signed consent forms approved by the Institutional Review Board. 

Detailed flow results and data acquisition methods were described previously (Zhu, Xenos et al. 

2006; Linninger, Xenos et al. 2007; Linninger, Sweetman et al. 2009).  

5.3.2. Image Reconstruction and Model Development 

T2-weighted MR images of the cranium were manually segmented using image 

reconstruction software, Mimics 12.11 (Materialise, Belgium). The manual segmentation process 

resulted in patient-specific, three-dimensional triangulated surface meshes of a normal subject 
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and a patient with communicating hydrocephalus. The crude image displayed in the left panel of 

Figure 26 displays the actual reconstruction of the ventricular and cranial subarachnoid spaces 

obtained from the T2 images for the normal subject.  

 
Figure 26. Manual segmentation of the CSF-filled 

spaces of the cranium resulted in the initially crude 

surface shown on the left. Advanced filtering 

techniques such as surface smoothing and triangle 

reduction resulted in the improved, more realistic 

surface displayed on the right. 

 

Because of the finite resolution of the MRI data, the crude reconstruction has rough surfaces 

with many discontinuous faces. The coarse surface may cause artificial flow effects along 

uneven interfaces. In an effort to overcome this deficiency, the rough surfaces were removed 

using Laplacian smoothing (Hansen, Douglass et al. 2005). During the smoothing process, the 

quantity of triangular faces defining the surface mesh was reduced and the surface quality 

improved by normalizing the triangles’ height to base ratio. These filtering techniques were 

provided by Mimics to obtain the improved surface reconstruction shown on the right in Figure 

26. After improving the reconstructed brain and ventricular surfaces, the surface meshes were 

imported into ADINA-FSI 8.6. In ADINA-FSI the meshes were discretized using Delaunay 

triangulation for the inner domain and the advancing front algorithm for the domain boundary. 

The normal brain shown in Figure 27 required 765,062 tetrahedral fluid elements and 486,542 

tetrahedral solid elements. The three-dimensional model and a summary of boundary conditions 
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are shown in Figure 27. Material parameters and a list of boundary conditions are given in Table 

6. 

 
Figure 27. Three-dimensional model of the human cranium. Deformation 

occurs along the upper surface of the lateral ventricle wall, highlighted in red. 

The blood flow waveform in the basilar artery, bottom graph, was used as a 

boundary condition for pulsatile CSF flow; described in Methods section. 

Circular cross sections a, b, and c in the ventricular system indicate locations 

where the Womersley numbers were calculated. Mean value, c0 and 

coefficients ak, and bk of the Fourier series in eq. (1-23) are 169.7760, 

27.9791, 12.3427, 14.9403, -5.3310, -5.4838, -1.6638, 2.2920, 4.5670, 

9.5584, -6.9098, -6.8080, -0.6282, 3.7181, 4.2953, 1.6978, -0.1358, 

respectively. 

 

Table 6. List of boundary conditions and material parameters.  
Location Boundary Condition Material parameters 

Lateral & 3
rd

 Ventricle CSF inflow, 0.5 ml/min  - 

Upper subarachnoid space Pressure, 500 Pa  - 

Arachnoid layer no slip, u=v=w=0 - 

CSF pathways divergence free 
density, 998.2 kg/m

3
; viscosity, 

0.001003 kgm
-1

s
-1

 

Brain tissue 

fluid structure interaction along 

lateral ventricle wall and near 

pontine cistern 

Young’s modulus, 10 kPa; 

Shear modulus, 3.4 kPa; 

Poisson ratio, 0.45 

 

5.3.3. Fluid-Solid Boundary Conditions 
The mathematical models adopt physiologically relevant boundary conditions accounting for 

CSF production and pulsatility. The total CSF production, fS , is a fluid generation term 
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matching experimental data for average CSF production in adult humans, approximately 

0.5 ml/min (Segal 2001). CSF is treated as a Newtonian fluid with viscosity and density similar 

to water. Assuming fluid incompressibility, continuity for CSF flow in the ventricles is written, 

( )f fu Sρ ∇⋅ =
� �

 (1-21) 

Outside the ventricles no CSF is produced; accordingly the continuity equation reduces to 

0u∇⋅ =
�

. CSF motion inside the fluid-filled spaces is governed by the Navier-Stokes equations 

given in eq. (1-22), written in vector form.  

2

f

u
u u p u

t
ρ µ

∂ + ⋅∇ = −∇ + ∇ ∂ 

� � � �� � �
 (1-22) 

In eqs. (1-21) and (1-22), fρ  is CSF density; u
�

 is CSF velocity; p∇
�

 is the pressure gradient; 

µ is fluid viscosity.  

Pulsating cerebral blood flow drives pulsatile CSF flow within the central nervous system 

(CNS). The process is driven by blood supply to the brain causing compliant arteries and 

arterioles to expand. Vascular expansion causes brain tissue stresses and displacements. In our 

model, tissue displacement compresses the lateral ventricles, forcing CSF into the subarachnoid 

space. Because the cranial volume remains constant, the total vascular expansion is matched by 

the sum of the CSF stroke volume expelled into the distensible spinal canal and the blood which 

leaves the cranium through the venous sinuses (Greitz 2004). As the cerebral vasculature returns 

to its diastolic resting lumen, CSF expelled during cardiac systole flows back from the spinal 

canal to the cranial subarachnoid space.  

To account for the blood-CSF interaction in our model, volumetric expansion terms 

embedded in the parenchyma mimic arterial expansion and contraction. These volumetric 

expansions, VS , are transmitted to the CSF-filled spaces. The magnitude and timing of the source 

terms, VS , follow the measured cerebral blood flow wave pattern shown in Figure 27. The signal 
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was discretized with a Fourier series, eq. (1-23), where 1i = − , ( ) / 2k k kc a ib= ± . The sign of the 

complex part, kib , is taken as plus when k is positive, and negative when k is negative. The value 

index zero, 0c , and coefficients ka , kb  are given in Figure 27.  

8
2

8

( ) ik t

V k

k

S t c e π

=−

= ∑  (1-23) 

 Seventeen terms were used to reconstruct the blood flow waveform measured at the 

basilar artery. We found that seventeen terms are a sufficient number of coefficients to reproduce 

the waveform accurately. The use of additional Fourier coefficients did not further improve the 

quality of the reconstructed waveform. Tissue displacement and ventricular wall movement is 

governed by eq. (1-24), where sρ  is the density of the solid phase, d
�

 is the displacement vector 

of the solid cell matrix, G  is the shear modulus, ν  is the Poisson ratio, and vε  is the volumetric 

strain.  

2
2

v2 1 2
s

d G
G d

t
ρ ε

ν
∂

= ∇ + ∇
∂ −

�
�

 with v dε = ∇⋅
��

 and sd u=
�
�ɺ  (1-24) 

Fluid-structure interaction constraints are applied along the upper wall of the lateral ventricle. 

These constraints ensure equal displacement of solid and fluid elements along the ventricular 

surface as well as equal but opposite forces normal to the fluid-solid interface. At non-

deformable interfaces, no-slip boundary conditions apply for the fluid.  

5.3.4. Fluid Pressure Boundary Conditions 
Normal intracranial pressure (ICP) is about 500 Pa (4 mmHg above venous pressure). 

Accordingly, we set a baseline ICP of 500 Pa. For the pathological case, we set the baseline ICP 

at 2700 Pa (Linninger, Xenos et al. 2007). These baseline pressures were applied at the sagittal 

sinus. The sagittal sinus represents as a porous structure surrounding the cranial subarachnoid 

space through which CSF reabsorption occurs. 
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5.3.5. Grid Independence Studies 
To ensure accurate solutions of the fluid flow simulations, mesh independence studies were 

conducted. The velocity magnitude in three locations was compared across three computational 

grids: a coarse mesh with 543,903 elements, a medium mesh with 765,062 elements, and a fine 

mesh containing 1,599,412 elements. As shown in Figure 28, the percent error between the 

medium and fine meshes is less than 0.6% for the three areas of interest. This small change 

justifies the choice of the medium size grid for subsequent simulations. A fully implicit Euler 

scheme, using ADINA, with a step-size of 0.01 seconds was adequate to capture the CSF 

dynamics sufficiently; computer experiments with smaller step sizes showed no differences in 

the simulation results. 

 
 

A B 

Figure 28. Frame A: the three grid sizes used in the mesh independence study. 

Frame B: comparison of the predicted maximum velocity magnitude in the 

aqueduct, cerebellomedullary cistern, and upper convexity of the subarachnoid 

space for the three grids. Percent error between the medium grid and fine grid is 

less than 0.6% for the three locations. Velocity values were obtained at mid-systole 

and normalized with respect to the maximum velocity at each location. 

 

5.4. Results 

5.4.1. Geometrical Properties of Normal and Diseased Brains 
Table 7 summarizes the geometrical dimensions of the normal and hydrocephalic brains 

obtained from the image reconstruction technique. Although the main brain dimensions were 

similar for the normal and hydrocephalic case, the lateral ventricle volume was almost 18 times 

larger in the hydrocephalic case. This difference in ventricular size corresponds to a much 
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smaller parenchyma volume in the hydrocephalic case compared to normal: 1120 ml 

hydrocephalic, 1388 ml normal. Because this patient was diagnosed with communicating 

hydrocephalus, we conjecture that the decrease in brain tissue volume was due to tissue 

compression coupled with decreased brain water content. This process occurring in 

hydrocephalus is different from ventricular enlargement due to brain atrophy (Charney and 

Nestler 2004). The brain model cortical surface area is also given in Table 7. The values of the 

computational meshes are smaller than those typically reported for the brain cortical surface area, 

which can range from 1,500cm
2
 to 2,500cm

2
 (Blinkov and Glezer 1968; Peters and Jones 1984; 

Tramo, Loftus et al. 1995; Hutsler, Loftus et al. 1998). The significance of this discrepancy will 

be addressed in the Discussion section. 

 

Table 7. Geometric details of three-dimensional reconstructed normal and diseased brains.  
  Normal  Hydrocephalic 

Dimension 

[mm] 

Crnm 

163.1
 

AP  170.6 AP  

157.0
 

SI 168.2 SI 

150.3
 

RL 160.0 RL 

     

LV 
73.3 AP

a 
103.4 AP

a 

59.9
 

RL
b 

48.6 RL
b 

      

Volume 

[mL] 

BT 1388.0  1120.3  

SAS 101.1  104.0  

LV 16.5  290.1  

3V 4.5  9.9  

4V 7.2  6.2  

Surface area 

[cm
2
] 

CS 783.8  851.9  

VS 108.7  317.4  

Womersley 

number 

A-V3 5.0  10.7  

AS 4.2  9.2  

A-4V 8.0  35.2  

AP
a
 measured from the left posterior horn to the left anterior horn; RL

b
 measured from left posterior horn to right 

posterior horn; Crnm, cranium; AP, anterior to posterior length; SI, superior to inferior length; RL, length from right 

to left; LV, lateral ventricle; BT, brain tissue; SAS, subarachnoid space; 3V, third ventricle; 4V, fourth ventricle; 

CS, cortical surface; VS, ventricular surface; A-V3, junction of aqueduct and third ventricle; AS, aqueduct of 

Sylvius; A-4V, junction of aqueduct and fourth ventricle 
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5.4.2. Model Predictions of CSF Flow and Pressures 
Figure 29 compares the predicted CSF flow rate with CINE-MRI measurements obtained 

from a mid-coronal cross section in the third ventricle. The model predictions are in close 

agreement with the in vivo flow measurements. Computing the positive area under the curve in 

Figure 29 yielded a CSF stroke volume of 0.028 ml.  
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Figure 29. Simulated and measured CSF flow 

rates in the third ventricle of a normal subject. 

The model predictions (solid line) agree 

closely with the patient-specific data 

(squares). 

 

Figure 30 shows early systolic, mid-systolic, and diastolic pressure and velocity profiles. The 

model predicts that velocity magnitude is largest in the aqueduct of Sylvius and at mid-systole 

reaches a maximum of 25 mm/s. The pressure contours indicate a reversal in the pressure 

gradient during the course of the cardiac cycle. This pressure sign change corresponds to a 

reversal of CSF flow, from caudal to rostral, seen in Details A-C.  

 



92 

 

 
 

E
a
rl
y
 S
y
st
o
le
 

(8
5
%
 c
.c
.)
 

 
 

M
id
-S
y
st
o
le
 

(1
5
%
 c
.c
.)
 

 
 

D
ia
st
o
le
 

(6
5
%
 c
.c
.)
 

 
 

 Intracranial pressure CSF velocity magnitude 

Figure 30. Predicted CSF pressure and velocity magnitude in the ventricles and subarachnoid 

space. Left panel shows the pressure contours at 15%, 65%, and 85% of the cardiac cycle. 

Pressure is highest in the ventricles at early systole with flow in the rostral direction shown in 

Detail A. Flow rate reaches a maximum in mid-systole with flow out of the ventricles shown 

in Detail B. During diastole, the pressure gradient reverses, being higher in the subarachnoid 

space compared to the ventricles. Accordingly, CSF flows back to the ventricles as shown in 

Detail C. 

 

Velocity magnitude in the pontine cistern and in three points in the ventricular system is 

plotted over one cardiac cycle in Figure 31. Peak caudal CSF velocity magnitude slightly 

exceeds peak rostral CSF velocity magnitude. This difference reflects the small net flow due to 

constant CSF production. Figure 31 also shows that CSF flow in the pontine cistern becomes 

caudal before ventricular flow becomes caudal. The phase difference is about 10% of the cardiac 

cycle.  
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Pressure levels in the lateral ventricle and the upper convexity of the subarachnoid space are 

shown in the lower panel of Figure 31. The difference in pressure between the lateral ventricles 

and the upper convexity of the subarachnoid space is called the transmantle pressure gradient; 

the transmantle pressure gradient does not exceed 4 Pa at any point in the cardiac cycle. The 

pressure profile shows two time instances during the cardiac cycle in which the pressure gradient 

between the lateral ventricles and the subarachnoid space reverses. These events occur at about 

23% and 82% of the cardiac cycle and are indicated by open circles in the figure. The 

simulations predict that when the pressure gradient reverses, that is when lateral ventricle 

pressure begins to exceed subarachnoid pressure, CSF flow does not immediately change from 

rostral to caudal. For example, at 82% of the cardiac cycle lateral ventricle pressure surpasses the 

subarachnoid pressure, but CSF flow does not become entirely caudal until 98% of the cardiac 

cycle. Thus, the change in predominant flow direction lags 58 degrees behind the transmantle 

pressure sign reversal.  
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Figure 31. Velocity magnitude and pressure in the ventricular system and 

subarachnoid space. Velocity magnitude in third ventricle, cerebral aqueduct, 

fourth ventricle, and pontine cistern (downward pointing triangles, upper 

figure right) is plotted. Positive values correspond to caudal flow; negative 

values rostral. Bottom graph: pressure trajectories in the lateral ventricle and 

subarachnoid space.  

 

5.4.3. Disease Simulation 
The analysis of velocity and pressure dynamics can also be performed for abnormal 

intracranial dynamics. The brain geometry of a 50 year old hydrocephalic patient was 

reconstructed. As indicated in Table 7, the ventricular space was eleven times larger than normal. 

Snapshots of the pressure and velocity fields at 15% of the cardiac cycle are shown in Figure 32, 

Frames A and B. Peak caudal CSF velocity in the aqueduct was 41.3 mm/s in systole; peak 

rostral CSF velocity was 39.9 mm/s in diastole. Intracranial pressure trajectories in the lateral 

ventricle and the upper convexity of the subarachnoid space, Frame C, reveal that the 

transmantle pressure gradient in the hydrocephalic case remains small throughout the cardiac 
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cycle, not exceeding 11 Pa in this subject. The predicted pressure amplitude in the lateral 

ventricles is 69 Pa. This pressure amplitude is almost twice the normal case. Frame D shows the 

excellent agreement between the measured and predicted CSF flow rates in the third ventricle. 

The CSF stroke volume in the ventricles (for this particular patient) is about eight times larger 

compared to the normal case we studied. 
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C) Pressure trajectories D) Measured and predicted flow rate 

Figure 32. Predicted CSF pressure and velocity magnitude in the ventricles and 

subarachnoid space for the hydrocephalic case; the right hemisphere is hidden in these 

figures for easier visualization. Frame A: band plot of intracranial pressure at 15% of the 

cardiac cycle. Frame B: velocity magnitude in a two-dimensional cross section containing 

the aqueduct of Sylvius. Frame C: intracranial pressure in the lateral ventricles and upper 

convexity of the subarachnoid space during a cardiac cycle. Frame D: comparison between 

measured and predicted CSF flow rate in the third ventricle.  
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5.5. Discussion 

5.5.1. CSF Flow Patterns and Pressure Dynamics 
Figure 31 displayed the CSF velocity magnitude in the ventricular system and pontine cistern 

over the course of the cardiac cycle. The maximum velocity magnitude in the pontine cistern 

precedes the maximum velocity magnitudes in the ventricles by about 10% of the cardiac cycle. 

This finding is in good agreement with recent clinical measurements also showing a phase lag of 

10% between maximum pontine flow and ventricular flow (Enzmann and Pelc 1991; Baledent, 

Henry-Feugeas et al. 2001; Zhu, Xenos et al. 2006; Gupta, Soellinger et al. 2009). In the human 

brain, blood traverses the Circle of Willis at the base of the brain before reaching the 

microvasculature. Because the Circle of Willis is near the pontine cistern, large arterial 

expansion in this region is likely to displace CSF out of the subarachnoid space before 

microvasculature expansion in the brain tissue causes CSF flow out of the ventricles. This 

explanation is consistent with in vivo CSF flow measurements indicating extracerebral expansion 

precedes brain expansion by about 8% of the cardiac cycle (Greitz, Franck et al. 1993; Greitz 

2004). Cerebral vasculature relaxation leading to volumetric contraction of the large arterial 

vessels causes CSF flow reversal about mid-way into the cardiac cycle. Simultaneously, CSF 

refills the lateral ventricles to make up for the contracting parenchyma volume in the diastole.  

5.5.2. Non-Dimensional Analysis of the Navier-Stokes Equations 
When the lateral ventricle pressure exceeds subarachnoid pressure, CSF flows out of the 

ventricles into the subarachnoid space. The flow reverses when subarachnoid pressure exceeds 

ventricular pressure. The change in flow direction is not directly in phase with the pressure sign 

change. Figure 31 shows a transmantle pressure sign reversal at about 82% of the cardiac cycle 

where lateral ventricular pressure begins to exceed the pressure in the subarachnoid space. CSF 

however, begins to flow out of the ventricles only at about 98% of the cardiac cycle. We 
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conclude that this is a delayed flow response with a phase lag of 58 degrees. The phase lag can 

be explained in terms of the Womersley number, a non-dimensional number derived from the 

unsteady Navier-Stokes equations.  

The Womersley number, abbreviated Wo , relates flow pulsatility (unsteady or inertial forces) 

to fluid viscosity (viscous forces), and has been used to characterize flow and pressure dynamics 

in blood vessels and the cranial fluid space (Ku 1997; Gupta, Soellinger et al. 2009). 

Experimental and theoretical studies have shown that when viscous forces are much larger than 

inertial forces the flow profile is parabolic and its direction immediately follows the 

instantaneous pressure gradient. In this case the flow is well represented by the Hagen–Poiseuille 

equation (Womersley 1955). When inertial forces dominate viscous forces the flow profile is flat 

or plug-like. In this case, the flow direction is also governed by the pressure gradient, but some 

time is required to overcome the inertial forces and for the fluid direction to align with the 

instantaneous pressure gradient. In general, for 1Wo < , the fluid velocity profile is parabolic and 

the flow is in phase with the pressure gradient. The fluid profile loses its parabolic shape when 

1Wo > , and a phase lag between pressure and flow becomes more pronounced as Wo  reaches 

ten or more (Womersley 1955; Loudon and Tordesillas 1998). Womersley numbers were 

calculated using eq. (1-25) in which ω  is the pressure pulsation frequency, ν is the kinematic 

fluid viscosity, and R is characteristic length. 

Wo R
v

ω
=  (1-25) 

For a cylindrical fluid domain, the parameter R is simply the tube radius. For more complex 

geometry such as the brain ventricles, the characteristic length needs to be defined locally. 

Accordingly, local Womersley numbers were computed at three locations in the ventricular 

system as shown in Figure 27. At these locations, the characteristic length, R, is the average 
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radius of a circular cross section, the pressure pulsation frequency is 2 /Tπ  (with 1T =  s), and 

the kinematic viscosity is 610v −= m
2
s

-1
. Table 7 lists the Womersley numbers for the aqueduct-

third ventricle junction, aqueduct, and aqueduct-fourth ventricle junction. The aqueductal 

Womersley number of our model differs by about 12% from the value reported in (Gupta, 

Soellinger et al. 2009), indicating slight anatomical variations between normal subjects. All sites 

analyzed in the ventricular system had Womersley values greater than one. Our computational 

results show that as a consequence, noticeable phase separation is observed between the pressure 

gradient and the flow response. In summary, the phase lag can be attributed to highly pulsatile 

CSF flow within the ventricles where the Womersley numbers are much greater than unity. 

5.5.3. Specific Contributions 
Early in this report, prior three-dimensional flow studies of the CSF spaces were reported. 

The premise of this and prior studies were that by studying the flow dynamics in the human brain 

diseases like hydrocephalus can be better understood, and perhaps better treatments for this 

disease can be devised. To this end, this report presents our most recent advancement in 

computational fluid flow analysis of the human brain. The main contributions from this 

particular study are the following: 

1. The fluid motion in the entire subarachnoid space and ventricular system was modeled. 

2. The pulsating CSF flow was set in motion by deforming tissue boundaries. 

3. The three-dimensional analysis of normal dynamics was extended to a pathological case. 

 

We believe these three contributions constitute a significant advancement over previous 

work. The first main contribution reflects our continued progress toward more complete and 

spatially accurate computational models of the central nervous system. The second main 

contribution stems from a concerted effort in our group to make system wide CSF models 

physiologically consistent. Clinical evidence points to the cerebral vasculature expansion as the 
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driving force for CSF motion. Rather than imposing CSF motion directly as an inflow boundary 

condition, our model allows for fluid and tissue boundary interaction. Tissue boundary motion 

deforms the CSF space and drives CSF motion in a pulsatile, cyclical fashion. Finally, the third 

major contribution is the analysis of the CSF motion in a patient with communicating 

hydrocephalus. There is still a need for improving the diagnosis of hydrocephalus (Greitz 2004). 

Improvements in diagnosing hydrocephalus may be possible once the differences between 

normal and hydrocephalic CSF flow patterns are satisfactorily quantified. The computational 

fluid dynamics results reported in this article foster a better fundamental understanding of flow 

principles, which will eventually lead to better diagnosis. 

5.5.4. Model Limitations and Future Model Refinement 
In this extensive, yet preliminary investigation, some details of the cranial fluid space were 

not addressed. For example, the gyrated cortical surface was not resolved and the resistance 

posed by the arachnoid trabeculae was neglected. However, in view of the small pressure drops 

that occur in the CSF spaces, we believe these omissions will not significantly affect the flow 

field. The trabeculae may increase the flow resistance, but the large cortical surface area will 

decrease the resistance. Overall, resolving aspects of the geometric domain for which there is 

little data available does not yet seem to be warranted.  

Also, lacking in our current model of intracranial dynamics is an accurate implementation for 

brain tissue stress. More research of brain tissue properties, and in particular tissue stiffness, is 

needed before mathematical models of the brain can provide accurate stress predictions. 

Recently, researchers have used magnetic resonance elastography (MRE) to measure brain tissue 

stiffness non-invasively (Green, Bilston et al. 2008; Kruse, Rose et al. 2008; Sack, Beierbach et 

al. 2008). To calculate the tissue shear modulus, Kruse et al. assume a Hookean, linear elastic 

relationship between stress and strain (Kruse, Rose et al. 2008). Green et al. (Green, Bilston et al. 
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2008) and Sack et al. (Sack, Beierbach et al. 2008) have used MRE to derive shear and shear-

viscosity moduli to fit their proposed viscoelastic model of brain tissue. In the study conducted 

by Green et al., differences in white and gray matter are accounted for, whereas in the Sack et al. 

study, the tissue is assumed homogenous. Unfortunately, MRE is highly dependent on these 

underlying tissue property assumptions, and as such the literature values are often inconsistent 

qualitatively and quantitatively. For example, Kruse et al. report that white matter shear stiffness 

is higher than that of gray matter—13.6 kPa and 5.22 kPa, respectively. Conversely, Green et al. 

find that gray matter is stiffer than white matter—3.1 kPa and 2.7 kPa, respectively. Sack et al. 

does not differentiate between white and gray matter in their study, and is difficult to compare 

quantitatively. However, their overall tissue shear stiffness, ~1.2 kPa is closer to the value 

reported by Green et al. Complicating all these findings is the fact that shear stiffness is 

dependent on the excitation frequency applied to the tissue; typically anywhere between 25Hz to 

100Hz. How the findings derived from high level excitations can be extrapolated for much 

smaller frequencies which naturally occur in the brain (~1Hz) has not been quantified. However, 

the MRE results seem to suggest a trend in the overall magnitude of the shear modulus. Thus, 

our implemented value of 3.4 kPa is on the same order of magnitude as that reported in the 

literature.  

As a final note, accurate prediction of pathological brain dynamics will require model 

refinement. For the prediction of hydrocephalus, we propose to treat the brain tissue as 

poroelastic. This treatment will allow prediction of fluid transport in the brain as well as predict 

more accurately brain tissue stress induced by vasculature expansion or ventricular dilation. 

Modeling normal and diseased CSF dynamics may even be improved with the inclusion of the 

spinal canal because the tissues surrounding the spinal subarachnoid space provide the greatest 
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region of compliance in the entire CNS.  Although including the spinal canal in this three-

dimensional model was beyond the scope of this study, we have addressed the impact on brain 

dynamics due to a compliant spinal canal in previous publications using a physiological 

compartmental model (Linninger, Xenos et al. 2009). More advanced models accounting for the 

spinal canal are expected to elucidate the pressure-volume relationship and compensatory 

mechanisms of the CSF system, which has received much attention in hydrocephalus 

research (Meier and Bartels 2002; Czosnyka, Cieslicki et al. 2005). 

5.6. Conclusions 
In this study, experimental data was obtained from a normal subject and compared with a 

three-dimensional computational model of intracranial dynamics. Developed from subject-

specific MR images, and using physiological boundary conditions as input, the model reproduces 

pulsatile CSF motion and predicts intracranial pressures and flow rates. CSF flow predictions 

agreed quantitatively with actual human CINE-MRI measurements. Small pressure gradients and 

amplitudes were predicted by the model. Based on the close match between model and 

experimental measurements, we conclude that the predicted pressure gradients and CSF flow 

fields are representative of those in the human brain.  

5.7. Summary of Equations Used in the Model 
This section summarizes the equations in vector form and boundary conditions for the 

solution of the fluid-structure interaction problem of intracranial dynamics. 

CSF flow 

          ( )f fu Sρ ∇⋅ =
� �

,                                           continuity in ventricles, 

          0u∇⋅ =
� �

,                                                     continuity outside the ventricles, 
(A1) 

          2

f

u
u u p u

t
ρ µ

∂ + ⋅∇ = −∇ + ∇ ∂ 

� � � �� � �
,               fluid momentum. (A2) 

 

CSF boundary, and interface conditions and source terms 

On non-deformable interfaces a no-slip boundary condition is applied for the fluid 

          fu
�

= 0,                                                         no-slip on non-deformable faces. (A3) 
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A baseline ICP pressure is applied on the upper subarachnoid space: 

          upper SASp = 500 Pa (4 mmHg),                     for normal subject,  

          upper SASp = 2,700 Pa (20 mmHg),                for pathological case. 
(A4) 

 

Fluid-structure interaction constraints are applied along the upper wall of the lateral ventricle to 

ensure: (i) displacements of the fluid and solid domain are compatible; (ii) stresses at this 

boundary are at equilibrium, and (iii) no-slip condition for the fluid. 

          s fd d=
� �

 (A5) 

          ⋅
s

σσσσ n
�

= ⋅
f

σσσσ n
�

 (A6) 

          s fu u=
� �

 (A7) 

 

where σσσσ , d ,u , n
� � �

 are the stress tensor, the vector of displacement, the velocity vector and the 

normal vector on the boundary (Valencia, Morales et al. 2008). 

 

          fS = 0.5 ml/min, CSF constant production in the lateral, 3
rd

 and 4
th

 ventricles. (A8) 

 

Tissue displacement 
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Tissue boundary conditions and source terms 

          
8

2

8

( ) ik t

V k

k

S t c e π

=−

= ∑ , k = 1, 2, …, volumetric tissue expansion. (A10) 

The subscripts s, f  indicate the solid and the fluid. 
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6. CEREBROSPINAL FLUID FLOW DYNAMICS IN THE CENTRAL NERVOUS 

SYSTEM 

6.1. Summary 
Cine-phase-contrast-MRI was used to measure the three-dimensional cerebrospinal 

fluid (CSF) flow field inside the central nervous system (CNS) of a healthy subject. Image 

reconstruction and grid generation tools were then used to develop a three-dimensional fluid-

structure interaction model of the CSF flow inside the CNS. The CSF spaces were discretized 

using the finite element method and the constitutive equations for fluid and solid motion solved 

in ADINA-FSI 8.6. Model predictions of CSF velocity magnitude and stroke volume were found 

to be in excellent agreement with the experimental data. CSF pressure gradients and amplitudes 

were computed in all regions of the CNS. The computed pressure gradients and amplitudes 

closely match values obtained clinically. The highest pressure amplitude of 77 Pa was predicted 

to occur in the lateral ventricles. The pressure gradient between the lateral ventricles and lumbar 

region of the spinal canal did not exceed 132 Pa (~ 1 mmHg) at any time during the cardiac 

cycle. The pressure wave speed in the spinal canal was predicted and found to agree closely with 

values previously reported in the literature. Finally, the forward and backward motion of the CSF 

in the ventricles was visualized, revealing the complex mixing patterns in the CSF spaces. The 

mathematical model presented in this article is a prerequisite for developing a mechanistic 

understanding of the relationships between vasculature pulsations, CSF flow, and CSF pressure 

waves in the CNS. 

6.2. Introduction 
Cine-phase-contrast-MRI (CINE-MRI) has been used to quantify CSF flow in humans 

(Enzmann and Pelc 1991; Greitz, Franck et al. 1993; Zhu, Xenos et al. 2006). Computational 

fluid dynamics has been used to complement CINE-MRI measurements by calculating the CSF 
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pressure and velocity fields in the cranial subarachnoid space and cerebral ventricles (Jacobson, 

Fletcher et al. 1996; Fin and Grebe 2003; Gupta, Soellinger et al. 2009; Linninger, Sweetman et 

al. 2009; Cheng, Tan et al. 2010). These computational studies predict and explain complex fluid 

flow patterns in the CSF spaces, an outcome difficult to establish with CINE-MRI alone. As a 

measuring device for some regions of interest in the CSF space, CINE-MRI is not apt to explain 

the complex dynamics inside the CNS. However, CINE-MRI is the basis for developing 

computational fluid dynamic models that help quantify intracranial dynamics of the human brain. 

Using CINE-MRI and image processing tools, CSF velocities can be calculated in several areas 

of interest in the cranial space. These experimental measurements may then be used to develop 

and validate computational models.  

The advantage of developing a computational model from CINE-MRI is that the 

computational model reproduces the three-dimensional flow field in all regions of interest in the 

entire CSF filled spaces of the CNS. Moreover, once the model is validated, studies can be 

conducted on a computer to assess if particular deviations from normal physiology may be 

responsible for significant changes in flow patterns (Levine 1999; Pena, Harris et al. 2002). 

Conclusions may then be drawn or clinical experiments devised to improve clinicians’ 

understanding of disease onset or progression. In effect, computational CSF flow studies are a 

valuable tool for developing a mechanistic understanding of normal and pathological CNS 

dynamics.  

Previous computational studies deployed simplified models of the CSF spaces. These studies 

focused on two-dimensional cross sections or partial aspects of the CSF space (Pena, Bolton et 

al. 1999; Fin and Grebe 2003; Linninger, Xenos et al. 2007; Gupta, Soellinger et al. 2009; 

Linninger, Sweetman et al. 2009). To date, there are no three-dimensional fluid-structure 
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interaction models of CSF motion inside the entire CNS. A physiological CSF model should 

account for the cranial CSF space as well as the spinal canal. Computer models that include the 

spinal canal are needed for improving our understanding of many diseases of the CNS including 

hydrocephalus, Chiari malformation, or benign intracranial hypertension (Czosnyka, Czosnyka et 

al. 2004). Furthermore, a craniospinal model of the CNS may help evaluate modern drug 

delivery methods like intrathecal drug administration by accurately predicting therapeutic drug 

distribution in the CSF spaces and brain tissue (Saltzman and Olbricht 2002; LaVan, McGuire et 

al. 2003). Predicting drug distribution with computer models is possible by numerically solving 

the governing equations for drug diffusion coupled with convective species transport through the 

CSF (Linninger, Somayaji et al. 2008). This article presents a three-dimensional fluid dynamics 

model of the CNS which accurately resolves the geometry of the fluid-filled spaces in the 

cranium and spinal canal. The objective is to develop a computational model that quantifies the 

interactions between pulsating vasculature, CSF flow, and deformable brain tissue. By doing so, 

we hope to render a more detailed picture of CSF dynamics in the human CNS.  

The article is organized as follows: In the next section we describe methods. The results 

section compares in vivo data with computer simulations and provides a detailed analysis of CSF 

flow and pressure dynamics in the cranium and spinal canal. The article closes with a discussion 

and suggestions for future advancements in computational fluid mechanics of the CNS. 

6.3. Methods 

6.3.1. Process Overview: From Measurement to Computation 

The modeling approach described here proceeds in four phases illustrated in Figure 33. First, 

CINE-MRI imaging (3T GE Signa; GE Medical Systems, Milwaukee, WI) is used to extract 

actual patient’s brain geometry and to measure CSF flow velocities in vivo. Second, image 

reconstruction software (Materialise, Belgium) is used to create accurate geometrical 
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representations of the human ventricular system, subarachnoid spaces and brain parenchyma. 

The image reconstruction process delineates the boundaries between cerebrospinal fluid spaces 

and soft brain tissue. By connecting the pixel information from each MRI slice with adjacent 

slices, a three-dimensional representation of the individual’s brain geometry is generated. In the 

third phase, the fluid-filled spaces bounded by the reconstructed surfaces are divided into small 

tetrahedral balance envelopes via grid generation software (Gambit 2.4). Finally, in phase four, 

physiological boundary conditions are assigned to the model, and governing equations for fluid 

flow and solid motion are solved numerically using finite element methods. Computational 

predictions are then compared to the in vivo measurements.  

 

 
Figure 33. Workflow for developing a computational model of the central nervous system. 

The first step is the collection of medical images from magnetic resonance imaging. Then, 

geometry reconstruction is used to detect sharp boundaries of functional regions inside the 

brain to generate three-dimensional surfaces. Third, grid generation partitions the surfaces into 

tetrahedral elements for the solution of transport equations. Finally, computational analysis 

solves transport equations to predict fluid velocities and pressures as well as solid strains and 

stresses.  

 

Details related to CSF flow measurements have been discussed in our prior publications 

(Zhu, Xenos et al. 2006; Linninger, Xenos et al. 2007),
 
but for completeness will be repeated 

briefly. The CINE-MRI technique was used to collect CSF flow data from eight healthy subjects 

and three patients with hydrocephalus. The scans were performed in a 3T GE Signa system (GE 

Medical Systems, Milwaukee, WI, USA) equipped with a standard quadrature birdcage head 
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coil. Study participants signed the consent forms approved by the Institutional Review Board at 

the University of Chicago and the University of Illinois at Chicago. Images at 16 equidistant time 

frames were collected at a mid-sagittal cross-section and an axial slice across the middle of the 

lateral ventricle. Images at 32 equidistant time frames were collected at: 1) an axial slice across 

the junction between the aqueduct of Sylvius and the fourth ventricle to measure CSF flow rate; 

2) a mid-coronal slice at the third ventricle to measure CSF flow rate; and 3) an axial slice 

perpendicular to the basilar artery in the prepontine region to measure blood flow rate. For CSF 

flow measurement, a velocity encoding value (VENC) of 5 cm/s was chosen; for blood flow 

measurement in the basilar artery, VENC was set to 100 cm/s. Additional acquisition parameters 

were: echo time = 8.4 msec; repetition time = 18 msec; flip angle = 20°; field of view = 24 cm; 

slice thickness = 5 mm; matrix size = 256x192, 75% phase field of view to achieve an effective 

matrix resolution of 256x256. Total acquisition time was about one hour. The measured velocity 

at a particular point of interest on the MR image is averaged over 180 cardiac cycles. The 

comparison between simulated results and experimental measurements is made point to point; 

averaged velocities from CINE-MRI are compared with simulated velocities from our 

computational model. The computational results provide velocity data at mesh nodes, the 

location of which is matched with the pixel location of the CINE-MRI CSF velocity 

measurement. To compute flow rates, the velocity vector field is integrated over a cross sectional 

area in the model corresponding to the area of interest used in the CINE-MRI measurements. 

6.3.2. Model Boundary Conditions and Governing Equations 

Meaningful CSF flow and pressure predictions require physiologically consistent boundary 

conditions. CSF production, CSF reabsorption, and effects of pulsatile vasculature expansion 

were incorporated into the computer model. Constant CSF production is due to active secretion 

from the choroid plexus as well as diffuse production in the brain parenchyma. In the model, 
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CSF is constantly produced from the lateral ventricles at a rate of 0.4 ml/min. This value is in the 

range of several clinical studies (Lorenzo, Page et al. 1970; Segal 2001; Silverberg, Heit et al. 

2001; Huang, Chung et al. 2004). The constant production of CSF is governed by eq. (1-26) 

which assumes fluid incompressibility and Newtonian rheological behavior. The fluid velocity 

vector is u
�

, and constant CSF production is represented as fS . 

fu S∇⋅ =
�

 (1-26) 

 There are many clinical studies supporting the thesis that CSF is mainly reabsorbed into 

the circulatory system through the arachnoid villi (Ellington and Margolis 1969; Davson 1984; 

Upton and Weller 1985). To mimic the actual CSF uptake through the arachnoid villi, in the 

model CSF reabsorption occurs via a porous region superior to the upper convexity of the 

subarachnoid space (Linninger, Sweetman et al. 2009). Although some researchers believe a 

small amount of CSF is reabsorbed in the spinal canal, we choose to neglect spinal CSF 

reabsorption in this study. The assumption of negligible reabsorption in the spinal cavity is also 

supported by CINE-MRI measurements showing undetectable levels of CSF elimination in the 

spinal canal (Alperin, Vikingstad et al. 1996; Loth, Yardimci et al. 2001).
  

Transient changes in vasculature lumen throughout the cardiac cycle cause local deformation 

of brain tissue. Tissue deformation, in turn, compresses the fluid-filled extracellular space in the 

parenchyma and causes compression of the lateral ventricles. The subsequent change in lateral 

ventricular volume results in CSF flow out of the ventricles (White, Wilson et al. 1979). This 

chain of events leads to the hypothesis that CSF motion in the CNS is mainly caused by 

vasculature expansion in the cranium (Bhadelia, Bogdan et al. 1997; Baledent, Henry-Feugeas et 

al. 2001; Greitz 2004). To mimic the effects of vascular pulsations and tissue boundary motion 

near the lateral ventricles, we have imposed moving parenchyma boundaries in the model that 
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pulsate in accordance with the physiological blood flow waveform measured in vivo. The 

measured blood flow waveform was reconstructed with a Fourier series, ( )f t ,  with seventeen 

coefficients as shown in eq. (1-27).  

8
2

8

( ) ik t

k

k

f t c e π

=−

= ∑  (1-27) 

 In (1-27), 1i = − , ( ) / 2k k kc a ib= ± . The sign of the complex part, kib , is taken as plus 

when k is positive, and negative when k is negative. The values for 0c , ka , and kb  were provided 

in an earlier chapter. The signal was further normalized and then scaled in order to apply an 

explicit displacement boundary condition along the upper walls of the lateral ventricles. This 

boundary condition mimics the effects of the tissue deformation that is transmitted to the moving 

lateral ventricle walls. Pulsatile volume changes in the subarachnoid space near the basilar artery 

and Circle of Willis are also accounted for in the model. These displacements are also due to 

expanding vasculature. Overall, the expansion of the intracranial vasculature decreases the space 

available to the cranial CSF by about 1.5 ml (Greitz 2004). Because the skull is rigid and all fluids 

are incompressible, CSF is necessarily pushed into the spinal canal due to mass conservation. In 

our model, the CSF motion is governed by the Navier-Stokes equations provided in eq. (1-28), 

where p∇
�

 is the pressure gradient, µ  the fluid viscosity, fρ  the fluid density, and u
�

 the CSF 

velocity.
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u u p u

t
ρ µ

∂ + ⋅∇ = −∇ + ∇ ∂ 

� � � �� � �
 (1-28) 

CSF exchange between the cranial and spinal subarachnoid space is possible because the 

spinal canal boundaries are not as rigid as the bony cranium. The extent of spinal canal volume 

change is a measure of its compliance. This compliance is believed to be due to several factors: 

(1) the venous plexi (which may displace venous blood) in the lumbar and epidural spaces, 
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(2) ligamentum flava, and (3) nerve sheaths (Nieuwenhuys, Voogd et al. 1988; Thron, Rossberg 

et al. 1988; Yaksh 1999; Bateman 2000; Henry-Feugeas, Idy-Peretti et al. 2000; Czosnyka, 

Czosnyka et al. 2004; Barshes, Demopoulos et al. 2005). CSF cranial-spinal exchange maintains 

proper pressure–volume compensation within the entire CNS. Without this fluid exchange, 

intracranial pressures could rise to dangerous levels, in effect immediately reducing cerebral 

blood flow to critical levels (Czosnyka, Czosnyka et al. 2004). Spinal compliance is accounted 

for in the model by incorporating a deformable region that surrounds the spinal fluid. Because 

experimental data suggests the upper region of the canal is less compliant than lower regions, the 

compliance in our model is high in the lumbar region (Martins, Wiley et al. 1972; Enzmann and 

Pelc 1991; Baledent, Henry-Feugeas et al. 2001; Yallapragada and Alperin 2004; Wagshul, Chen 

et al. 2006). The membrane boundary may deform in response to changes in fluid pressure along 

the fluid-membrane interface. As pressure increases in the lower lumbar region, the membrane 

distends. Fluid expelled from the cranium then occupies the additional volume of the spinal canal 

(Baledent, Henry-Feugeas et al. 2001). The deformation of the lumbar area and motion of the spinal 

fluid must obey to specific force balances enforced along the fluid-structure interface. To ensure 

equal stresses and equal displacements along the fluid-structure interface, kinematic and dynamic 

boundary conditions were imposed. The kinematic boundary condition, eq. (1-29), states that the 

fluid displacement, fd
�

, equals the solid displacement, sd
�

, along the interface. Dynamic 

boundary condition, eq. (1-30) states that the fluid and solid stresses normal to the interface are 

equivalent. In (1-30) fσσσσ  and sσσσσ  are the fluid and solid stresses respectively, and n
�

 is the normal 

vector to the boundary interface. 

f sd d=
� �

 (1-29) 

f sn n⋅ = ⋅
� �
σ σσ σσ σσ σ  (1-30) 
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The deformable membrane, representing the compliance of the epidural space, was modeled 

as a neo-Hookean material; the neo-Hookean material formulation is an extension of the 

isotropic linear Hooke’s law to large nonlinear deformations. This choice was motivated by 

clinical observations that the pressure-volume relationship in the central nervous system is 

nonlinear (Czosnyka, Czosnyka et al. 2004). The neo-Hookean material response is governed by 

eq. (1-31).  

1

1
( 3)

2
W Iµ= −  (1-31) 

In (1-31), W  is the strain energy density, µ  is the shear modulus, and 1I  is the sum of the 

diagonal elements of the Cauchy-Green deformation tensor (Belytschko, Liu et al. 2000). In the 

model, the shear modulus of the deformable membrane is set to 4kPa. The Young’s modulus, E  

is related to the shear modulus through the Poisson ratio, v  as in eq. (1-32). 

2 (1 )E vµ= +  (1-32) 

For the incompressible, neo-Hookean material formulation, the Poisson ratio is nearly 0.5; 

accordingly eq. (1-32) yields a corresponding Young’s modulus of 12kPa. To our knowledge, the 

exact mechanical properties of the epidural space have not yet been determined experimentally. 

Nevertheless, the material stiffness assigned to the deformable membrane lies in the reported 

stiffness range for soft biological tissues (Fung 1993). The model was implemented in the fluid-

structure interaction module of ADINA 8.6 (Adina R&D Inc., Watertown MA, USA). A more 

thorough treatment of the theory behind fluid-structure interaction problems can be found 

elsewhere (Bathe 1996). In addition, the solution procedure for nonlinear, large deformation 

materials implemented in the ADINA program is fully discussed elsewhere (Sussman and Bathe 

1987; Bathe 1996). The cranial and spinal canal domains were typically composed of 871,358 

tetrahedral fluid elements and the deformable membrane contained 4,792 tetrahedral solid 
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elements; more refined meshes were used for mesh independence studies. Simulations were 

analyzed for grid and time-step size independence by successively refining the computational 

mesh and decreasing the time-step size until a stable result of the numerical solution was 

reached. Table 8 shows that the predicted velocities and pressures at select locations were 

independent of the mesh resolutions and time-steps used in the CFD simulation. Tabular values 

show velocity magnitude and pressure in the aqueduct at 20% of the cardiac cycle as a function 

of approximate mesh size (x10
3
 elements) and time-step size. The numerical solution was 

convergent with about 850,000 elements and a time-step size of 0.01s. Shaded values show small 

changes with further grid and time-step size refinement. Velocity magnitude and pressure in the 

lateral ventricle, pontine cistern, and lower spinal canal showed similar convergence trends. 

 

Table 8. Solution convergence study for mesh and time-step independence.  
 Velocity magnitude [m/s] Pressure [Pa] 

Time step [s] 230 460 750 870 1,230 230 460 750 870 1,230 

0.025 18.1 19.2 20.7 22.4 22.5 519.5 522.2 524.1 526.5 528.3 

0.020 19.3 20.4 21.5 22.5 22.5 519.7 522.5 526.2 527.5 529.5 

0.015 20.8 21.8 22.3 22.5 22.5 520.0 523.0 527.8 528.5 529.5 

0.010 21.8 22.4 22.6 22.6 22.6 521.1 523.2 530.7 530.7 530.7 

0.005 21.8 22.4 22.6 22.6 22.6 521.3 523.5 530.7 530.7 530.7 

 

 

A schematic of the computational model of the CNS is shown in Figure 34. Table 9 also 

summarizes a summary of the boundary conditions and material properties used in the model. 
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Figure 34. Computer model of the central nervous 

system. The model consists of the cranial fluid space 

and spinal canal. Shown in detail is a representative 

cross section of the spinal canal. Expansion of the 

spinal fluid space is possible by deforming a 

surrounding flexible epidural region, labeled B in the 

diagram.  

 

Table 9. List of boundary conditions and material parameters. Available published data is also 

provided. 
Location Boundary Condition Material parameters 

Lateral Ventricles 
CSF inflow, 0.4 ml min

-1 
  

(Silverberg, Heit et al. 2001)  
Volume, 16.5 ml 

Upper subarachnoid space 
Pressure, 500 Pa    (Jacobson, 

Fletcher et al. 1996) 
- 

Arachnoid and pia layer no slip, u=v=w=0 rigid wall 

CSF pathways divergence free ρ : 998.2 kg m
-3

; µ , 0.001 kgm
-1

s
-1

 

Deformable membrane fluid structure interaction 
Neo-Hookean model; 

Young’s modulus, 12 kPa 

ρ :density; µ :viscosity 

6.4. Results 
The computed three-dimensional fluid velocities and pressures in the cranium are presented 

first. The direction and magnitude of CSF flow in the third and fourth ventricles, aqueduct of 

Sylvius, and pontine cistern are then quantified. Next, the fluid-mixing occurring in the CSF 

spaces is demonstrated by visualizing the fluid pathlines in the ventricles. Finally, a description 

60 cm

A: Fluid-structure interfaces

B: Epidural space

C: Spinal CSF

D: Spinal cord

1.2 cm

C

D

A

B
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of the flow patterns in the spinal canal is presented along with methods for quantifying fluid 

pressures and visualizing the flow field. 

6.4.1. 3D Simulation of CSF Velocity and Pressure Fields in the CNS 

The left frame of Figure 35 shows the comparison between model predictions and 

experimental data for the CSF flow rate measured at the third ventricle for an individual healthy 

subject. The predicted flow rate and waveform match experimental measurements closely. 

Integrating the positive area under the curve yields a predicted CSF stroke volume from the 

ventricular spaces into the subarachnoid space of 0.032 ml per cardiac cycle. The right frame of 

Figure 35 compares the predicted and experimental velocity magnitudes in the pontine cistern. 

Though the predicted and experimental results do not match in all instances of the cardiac cycle, 

the overall trends in frequency and amplitudes are in excellent agreement. Table 10 summarizes 

the computed and experimental velocity magnitudes in the ventricles, pontine cistern, and cranio-

cervical junction. Flow data obtained by Greitz (Greitz, Hannerz et al. 1994) and Zhu et al (Zhu, 

Xenos et al. 2006) from several normal subjects show similar flow patterns. Similar trends 

include larger CSF stroke volumes at the cranio-cervical junction compared with smaller stroke 

volumes through the ventricles.  
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Flow at 3

rd
 ventricle CSF velocity in pontine cistern 

Figure 35. Left: Comparison of predicted and measured CSF flow rate at the level of the 

third ventricle for a normal subject. Right: Comparison of predicted and measured CSF 

velocity in the pontine cistern. By convention, positive values represent cranial to caudal 

flow, whereas negative values represent caudal to cranial flow. The overall temporal 

pattern of predicted velocities is in excellent agreement with in vivo measurements. 

 

 

Table 10. Experimental and predicted CSF flow quantities. Published clinical data is also 

provided. 

Location 
Computational fluid dynamics CINE-MRI 

Max Velocity [mm/s] Max Velocity [mm/s] 

Third ventricle 
4.5 

3.7±1.5 (Zhu, Xenos et al. 

2006) 

Aqueduct 24 - 

Lower fourth ventricle 
2.9 

3.8±2.1 (Zhu, Xenos et al. 

2006) 

Pontine cistern 
12.5 

13.9±9.9 (Zhu, Xenos et al. 

2006) 

Plane with L1 vertebra 1.9 - 

   

Location 
Computational fluid dynamics CINE-MRI 

Stroke volume [ml] Stroke volume [ml] 

Ventricles 0.032 
0.0289±0.0161 (Zhu, Xenos et 

al. 2006) 

Cranio-cervical junction 0.8 
0.96±0.16 (Greitz, Hannerz et 

al. 1994) 

 

 

Figure 36 shows the predicted CSF velocity magnitude at equally spaced cross sections in the 

cranial fluid space at mid systole. High CSF velocities occur in the ventricles and are maximal in 

the aqueduct of Sylvius. The computational model predicted a maximum velocity magnitude in 

the aqueduct of 24 mm/s. Figure 36 also shows the changes in CSF velocity magnitude 

throughout the cardiac cycle at four locations in the cranium: third ventricle, aqueduct of Sylvius, 
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fourth ventricle, and pontine cistern. Caudal flow predominates in the pontine cistern earlier than 

in the ventricles; the phase lag is about 10% of the cardiac cycle. 

 

 

Figure 36. Computed CSF velocity magnitude at mid systole shown at equally spaced 

cross sections in the cranial fluid space (left). Predicted CSF velocity magnitude at 

four regions of interest in the cranium throughout the cardiac cycle (right). Positive 

values correspond to predominantly caudal (from cranium to spinal canal) CSF flow. 

Negative values reflect CSF returning to the cranium. Velocity magnitude: 
2 2 2

x y zu u u u= + +
�

. 

 

The cranial fluid pressure field at mid systole is shown in Figure 37. The model predicts 

relatively flat intracranial pressure wave amplitude over the course of a cardiac cycle. The peak 

pressures at any given location do not fluctuate from their average value by more than 96 Pa. 

These predictions agree well with clinical studies showing small pulse amplitudes throughout the 

cardiac cycle (Czosnyka, Czosnyka et al. 2004). Changes in cranial CSF pressure are small, less 

than 1 mmHg, despite large pressure differences, about 40 mmHg, in cranial blood throughout 

the cardiac cycle (Sherwood 1995; Silbernagl and Despopoulos 2009). The CSF pressure 

stabilization is due to the availability of the compliant spinal canal to receive CSF. The model 

supports the theory of the spinal canal’s role to attenuate CSF pressure amplitudes.  
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Figure 37. CSF pressure at mid systole in the cranial fluid space (left). The graph on the 

right depicts the predicted CSF pressure throughout the cardiac cycle in the lateral 

ventricles (LV), fourth ventricle (V4), upper convexity of the subarachnoid space 

(SAS), and cranio-cervical junction (CCJ). Detail_A shows that very small pressure 

gradients exist between SAS, V4, and CCJ throughout the cardiac cycle. 

 

6.4.2. Fluid Pathlines in the Ventricular System 

Knowledge of CSF flow patterns is significant for possible drug administration; the CSF 

spaces provide a vehicle for administering drugs directly into the CNS by bypassing the blood-

brain-barrier. To illustrate these flow patterns more clearly, Figure 38 shows the fluid pathlines 

in the lateral ventricles, third ventricle, and aqueduct of Sylvius. As shown in the figure, CSF 

flow in systole is in the cranial to caudal direction. In diastole, flow reverses to become 

dominantly cranial, again filling the lateral ventricles.  
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(A) 

 

 

(B) 

 
Figure 38. CSF flow trajectories visualized as pathlines in the lateral 

ventricles, third ventricle, and aqueduct of Sylvius. The top and bottom 

frames show the flow direction and velocity magnitude at 20% and 

80% of the cardiac cycle, respectively. At each location the CSF flow 

exhibits flow reversal with pulsatile forward and backward motion. The 

velocity profile for location A in the top frame is plotted in Figure 39 

The net CSF flow during the cardiac cycle is cranial to caudal with a 

stroke volume of 0.032 ml.  

 

Figure 39 plots the velocity profile of location A labeled in Figure 38. As indicted by the 

shaded areas in Figure 39, there is a net forward flow due to the CSF production, but the peculiar 

forward and backward stroke volume induces a complex mixing pattern. When administering 

drugs or nanoparticles into the spinal CSF, they would be affected by these mixing patterns and 

carried with the fluid so that the apparent transport is expected to be much faster than by 

diffusion alone. Although an analysis of drug transport in the CSF spaces is beyond the scope of 

this article, we suspect the pulsatile cranial-caudal motion can contribute significantly to the 

wider distribution of drugs administered intrathecally or intraventricularly. Actually, such 
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favorable transport in intrathecal delivery has been reported previously and can now be studied 

with the detailed computational fluid mechanic models of this article (Kroin, Ali et al. 1993). 

 

Figure 39. Velocity data plotted for location A of Figure 38. 

The flow in the ventricles changes direction during the cardiac 

cycle as indicated by the shaded regions. Due to the constant 

production of CSF in the lateral ventricles, volumetric flow out 

of the ventricles slightly exceeds volumetric flow returning to 

the ventricles during each cardiac cycle.  

 

6.4.3. CSF Pressure in the Cranio-Spinal System 

Figure 40 shows the pressures in the cranium and spinal canal at four time points in the 

cardiac cycle. During early systole, pressure is highest in the ventricles, while lower pressures 

are found near the base of the spinal canal. As fluid continues to exit the cranium during mid 

systole, ventricular pressure reaches its peak, while the pressure in the spinal canal also rises. In 

late systole the pressure in the spinal canal exceeds the pressure in the lateral ventricles. At this 

point in the cardiac cycle fluid flow begins to reverse from predominantly caudal to rostral 

direction. Finally, in diastole the spinal canal pressure is higher than the ventricular pressure. At 

this point in the cardiac cycle, CSF flow is also predominantly rostral, refilling the ventricles as 

they return to normal size. 
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 Early systole (86% cc) Mid systole (15% cc) 

 
 

 
Late systole (24% cc) Diastole (60% cc)  

Figure 40. Half section of the brain and spinal canal showing calculated pressure evolution and 

CSF flow direction at four time points in the cardiac cycle (cc). In the systole pressure is 

higher in the cranium than in the spinal canal. The pressure difference reverses in diastole; in 

effect CSF flow is predominantly rostral toward the cranium in the diastolic phase of the 

cardiac cycle. Details A-D show the computed velocity vectors in a representative cross 

section of the spinal canal. Black arrows indicate the dominant flow direction, which is mainly 

caudal in the systole and reverses in the diastole.  

 

6.4.4. Pressure Wave Speed in the Spinal Canal 

Figure 41 shows detailed pressure and flow predictions at three locations in the spinal canal: 

upper (I), middle (II), and lower (III) regions. The pressure amplitude is highest in the superior-

most portion of the spinal canal, 77 Pa. The pressure amplitude is 57% lower in the middle 

section, and 83% lower in the lumbar region.  
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I II III 

Figure 41. Detailed predictions of pressure and CSF flow profiles at three locations in 

the spinal canal throughout the cardiac cycle. Peak pressure in upper (I), middle (II), 

and lower (III) sections occur at 2%, 4%, and 22% of the cardiac cycle, respectively. 

Pressure amplitude of 77 Pa in the superior-most section of the spinal canal is 57% 

higher than the middle section, and 83% higher than the lower section of the canal. The 

second row of plots shows CSF flowing much faster at the cranio-cervical junction 

(section I) compared to other regions of the canal. Note: positive velocity values 

indicate the flow direction is from cranium to lower lumbar region (caudal flow). The 

opposite holds true for negative values: flow occurs toward the cranium (rostral flow). 

 

Our simulations also permit an estimation of the pressure wave speed, a phenomenon that has 

recently received much attention in the MRI community. Some researchers claim that the 

pressure wave speed in the spinal canal may be an indicator of pathological changes in the CNS 

(Greitz, Ericson et al. 1999; Carpenter, Berkouk et al. 2003; Kalata, Martin et al. 2009). The 

wave speed was calculated by first noting the time at which peak pressures occur in three 

different locations of the spinal canal. Figure 41 shows that the peak pressure in the upper region 

occurs at 2% of the cardiac cycle and that peak pressures in the middle and lower regions occur 
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at 4% and 22%, respectively. Taking the cardiac cycle to be 1 second and the length of the spinal 

canal as 60 cm, the pressure wave speed in the canal was found to be 3 m/s (60 cm/0.20 s).  

6.4.5. CSF Flow Predictions in the Spinal Canal and Summary of Central Nervous System 

Dynamics 

CSF flow predictions in Figure 41 show that velocity is highest near the cranio-cervical 

junction and diminishes further down the canal. Because the spinal canal expands, CSF flux 

decreases as a function of distance from the cranio-cervical junction (Loth, Yardimci et al. 2001). 

Lower predicted CSF velocity in the inferior regions of the canal is due to the expansion of the 

deformable region in the model.  

Pressures and velocities in the cranium and spinal canal are compared in Figure 42. The 

pressure and velocity profiles of Figure 41 have been superimposed to allow for a direct 

comparison. According to model predictions, 96 Pa is the highest pressure amplitude in the CNS 

and occurs in the ventricles. Pressure gradients are small throughout the CNS. The pressure 

difference between the lateral ventricles and lower lumber region does not exceed 132 Pa at any 

time during the cardiac cycle. This value is close to 1 mmHg, which is below the detection limit 

of current in vivo pressure sensors. Table 11 provides detailed pressure gradients between the 

lateral ventricles, subarachnoid spaces, and spinal canal during the cardiac cycle. The data shows 

that pressures gradients and pressure amplitudes in the central nervous system are small, and that 

there is a sign change in the pressure gradient. This sign change occurs when CSF flow direction 

changes from caudal to rostral.  
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Figure 42. Summary of the pressures and CSF flow patterns in the spinal canal and 

cranium as indicated by the pressure and velocity trajectories in five regions of 

interest. Black lines correspond to cranial data. Grey lines refer to spinal canal data 

(see Figure 41 for locations I, II, III). Frame A: computer model predicts that the 

intracranial pressure amplitude (based on LV curve) is about 96 Pa. Also, the 

pressure difference between the lateral ventricles and position III (lower lumbar 

region) in the spinal canal does not exceed 132 Pa (~ 1 mmHg) at any time during 

the cardiac cycle. Curves I and SAS are indistinguishable. Frame B: positive values 

correspond to CSF flow out of the cranium toward the lower lumbar region of the 

spinal canal. Flow becomes caudal first in the pontine and cerebellomedullary 

cisterns as well as in the spinal canal; this specific flow pattern is due to large 

arterial expansion near the base of the brain. Flow out of the ventricles (data for 

third ventricle shown, V3) then follows when the lateral ventricles compress slightly 

due to brain capillary and arteriole expansion. 

 

Figure 42b shows the relative flow direction and magnitude in the ventricles and spinal canal. 

Caudal flow in the spinal canal precedes caudal flow in the ventricles by about 10% of the 

cardiac cycle. We attribute this phase lag to the temporal distribution of vasculature expansion 

throughout the cranium. As blood flows into the brain, compliant arteries near the base of the 

brain expand, decreasing the available cranial CSF volume. Downstream arterioles and 

capillaries in the brain parenchyma dilate soon after, causing local tissue displacement and slight 
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compression of the lateral ventricles. The earlier expansion at the base of the brain causes the 

initial caudal flow into the spinal canal. The second wave of vasculature expansion in the brain 

tissue leads to caudal flow in the ventricles.  

Table 11. Temporal pressure gradients between the lateral ventricles (LV), three points in the 

spinal canal (I, II, III), and upper convexity of the subarachnoid space (SAS) as a function of 

time (% cardiac cycle). 
 Pressure Difference [Pa] 

% cc LV-I LV-II LV-III LV-SAS SAS-I 

0 30.57  76.22  130.39  29.69  0.88  

10 34.10  47.99  64.08  34.47  -0.37  

20 16.09  -11.76  -45.75  17.27  -1.18  

30 -10.36  -49.28  -96.34  -9.51  -0.85  

40 -20.82  -38.77  -60.12  -20.66  -0.16  

50 -12.03  -28.36  -47.27  -11.83  -0.20  

60 -19.50  -23.97  -28.70  -19.72  0.22  

70 -7.97  -12.39  -16.96  -7.91  -0.06  

80 -10.63  8.12  30.92  -11.52  0.89  

90 9.27  51.93  103.08  8.26  1.01  

100 30.58  76.24  130.42  29.70  0.88  

 

6.5. Discussion 
A three-dimensional physiological model of intracranial dynamics of CSF flow in the central 

nervous system has been presented. The model included the cranial CSF spaces and the spinal 

canal. Rather than modeling the brain parenchyma, or calculating its distributed stress and strain 

field directly, we have applied physiological boundary conditions like constant CSF production, 

CSF reabsorption in the sagittal sinus, and vasculature expansion. The effects of vasculature 

expansion were implemented as moving parenchyma boundaries near the lateral ventricles and 

base of the brain. In this particular study, fluid motion in the porous brain parenchyma was not 

modeled because the main intent was to study in detail the fluid motion in the cranial and spinal 

subarachnoid spaces. Despite this simplification, the model predictions of CSF flow throughout 

the central nervous system are in excellent agreement with clinical findings both in velocity 

magnitude and stroke volume at several locations in the craniospinal system. Although the 

stresses in brain parenchyma were not computed explicitly, we believe the impact on the 
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predicted results were minimal because, as we have shown in prior studies, the CSF velocity and 

pressure gradients in the brain parenchyma are several orders of magnitude less than those 

observed in the free CSF spaces (Penn, Lee et al. 2005; Linninger, Xenos et al. 2007; Linninger, 

Sweetman et al. 2009).  

CSF flow was predicted everywhere in the three-dimensional fluid space of the craniospinal 

system. Pulsatile flow patterns throughout the cardiac cycle were shown for four locations in the 

cranial space and three locations in the spinal canal. The model predictions support clinical 

findings that caudal flow occurs sooner in the pontine cistern than in the ventricles (Greitz 2004). 

We attribute the 10% predicted phase lag to an early vasculature expansion occurring near the 

base of the brain, later followed by dilation of the capillaries and arterioles embedded in the 

brain parenchyma. The early expansion compresses the cranial subarachnoid space, whereas the 

later expansion compresses the CSF space of the lateral ventricles. Both events cause CSF to 

displace caudally toward the compliant spinal canal.  

Fluid pressure fields in the ventricles, subarachnoid space, and spinal canal were quantified. 

However, absolute pressures could not be verified in the model because absolute pressure 

measurements were not available for the normal subjects we tested. Nevertheless, relative 

pressures (or pressure gradients) predicted in the model follow naturally from the Navier-Stokes 

equations and are in excellent agreement with previous findings (Jacobson, Fletcher et al. 1996; 

Linninger, Xenos et al. 2007; Linninger, Sweetman et al. 2009). The model predicts a complex 

pattern of small fluid pressure fluctuations distributed in space and time throughout the CNS. 

The pressure amplitude is a measure of these fluctuations; it was found to be highest in the 

lateral ventricles, but did not exceed 96 Pa. The pressure difference between the lateral ventricles 

and lowest region of the spinal canal was less than 132 Pa throughout the entire cardiac cycle. 
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These differences are very small, less than 1 mmHg, and would be difficult to measure directly 

with most in vivo pressure monitors.  

A pressure wave speed of 3 m/s in the spinal canal was calculated. This value matches other 

published values of wave speeds in the spinal canal. A summary of six independent studies of 

wave speed measurements was recently published by Kalata (2009). Half of the studies reported 

a wave speed in the spinal canal of about 4 m/s. As discussed by these authors, in studies 

reporting values higher than 4 m/s there may have been significant experimental errors. Also, in 

a recent study by Bertram et al. in which a wave speed of 12.2 m/s was predicted, the elastic 

modulus assumed for the surrounding dura of the spinal canal appears too large (Bertram, 

Brodbelt et al. 2005); stiffer systems yield higher pressure wave speeds (Zhang and Greenleaf 

2006). In our study, the deformable region at the base of the spinal canal was modeled as a 

nonlinear neo-Hookean material with Young’s modulus set to 12kPa. The choice of a nonlinear 

material model is consistent with clinical observations which show a nonlinear trend between 

fluid volume and fluid pressure in the central nervous system. In those studies, bolus injections 

into the central nervous system gave rise to a nonlinear pressure response as seen in compliance 

curves relating intracranial pressure and fluid volume (Czosnyka, Czosnyka et al. 2004). The 

Young’s modulus chosen for the deformable membrane is within the range of stiffness values for 

biological soft tissues reported by Fung(Fung 1993). Based on the match between simulated and 

measured CSF flow patterns, the supporting literature for biological soft tissues, and the 

consistency between compliance studies and our chosen material model, the model parameters 

selected for this study appear to be satisfactory.  

More research is needed to fully assess the mechanical function of the epidural space in 

maintaining homeostasis of the cranio-spinal system. Prior experimental data cited in this article 
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suggests a compensatory role of the epidural space in maintaining a healthy level of CNS system 

compliance. Until mechanical properties and stress responses of the epidural space are 

determined experimentally, we chose a simple neo-Hookean model. Limited precision of the 

material properties, however, should not alter the major conclusions drawn from this study, 

which seeks to understand the overall dynamics of blood flow, CSF motion, and CSF pressure. 

As additional experimental compliance data of the spinal cavity becomes available, our models 

can and should easily be updated.  

6.6. Conclusion 
We have presented a mathematical model for developing a mechanistic understanding of the 

relationships between vasculature pulsations, CSF flow, and CSF pressure waves in the CNS. 

CSF flow data and geometry of a healthy human subject were used to construct a physiological 

model of the central nervous system. The model was validated by comparing the experimental 

CSF velocity and flow rates with the simulated results. Model predictions were in excellent 

agreement with the CINE-MRI measurements. The complex CSF flow patterns and pressure 

profiles were resolved by graphing their predicted waveforms as a function of space and time. 

According to the model, the complex pulsatile CSF flow pattern in the CNS is realized with 

pressure gradients below 1 mmHg. The model was useful in estimating the pressure wave speed 

in the spinal canal and found to be about 3 m/s. This value closely matches other theoretical 

studies by independent researchers. Backward and forward CSF mixing in the ventricles was 

visualized. Quantifying these mixing patterns throughout the craniospinal system is of clinical 

interest for intrathecal and intraventricular drug delivery. Future work will apply this current 

three-dimensional model to predicting therapeutic drug transport in the CSF spaces and be used 

as an analysis tool for designing drug delivery methods to the CNS. 
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7. A NOVEL METHOD FOR MULTI-SCALE MODELING OF BIOMECHANICAL 

INTERACTIONS IN THE BRAIN 

7.1. Background and Motivation 
CSF flow rates and velocities can be measured using advanced imaging modalities such as 

CINE-MRI, but the driving forces behind CSF motion are not fully understood. Recent clinical 

measurements suggests there is a cause and effect relationship between cerebral blood flow 

dynamics and pulsatile CSF flow, but there are no computational methods capable of quantifying 

the dynamic force balances between the expanding cerebral vasculature, the soft deformable 

brain tissue matrix, and the displaceable CSF (Henry-Feugeas, Idy-Peretti et al. 2000; Baledent, 

Henry-Feugeas et al. 2001; Baledent, Gondry-Jouet et al. 2004; Kim, Thacker et al. 2007). This 

computational deficit stems from three major challenges: generating an anatomically consistent 

model of cerebral vasculature, quantifying the force interactions between vasculature and brain 

tissue, and quantifying the force interactions between brain tissue and CSF.  

In the previous chapters of this dissertation, I have presented first principles models of the 

craniospinal system as a valuable tool for quantifying CSF dynamics. In our models, CSF motion 

was induced by one of two methods. First, hollow spheres (rectangles in 2d) representing large 

clusters of cerebral vessels were forced to expand and contract according to the cardiac pressure 

waveform. The expansion and contraction of these spheres caused the brain tissue to deform and 

accelerate the surrounding CSF. In a second approach, the CSF domain was deformed explicitly 

via an applied boundary motion along the lateral ventricle wall and pontine cistern. In both cases, 

CSF was accelerated toward the spinal canal during cardiac systole, and in diastole, CSF flowed 

back to the cranium and lateral ventricles. Regardless of the approach used to deform the CSF 

space, the predicted CSF flow field was in good agreement with our CSF flow measurements 
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(Zhu, Xenos et al. 2006), suggesting that brain motion and its interaction with the CSF space is 

the driving force of CSF motion.  

Beyond explaining the CSF flow field as a function of the pulsating vasculature, a detailed 

representation of the cerebral vasculature may provide greater insight into several poorly 

understood phenomena in the human brain. For example, besides quantifying the interactions 

between blood, brain, and CSF, the vasculature-brain-CSF model could have potential for 

clinical applications such as analysis and prediction of blood flow changes due to ventricular 

enlargement in hydrocephalus (Momjian, Owler et al. 2004; Owler, Momjian et al. 2004; Owler, 

Pena et al. 2004), analysis and planning of surgical interventions for aneurysm and vessel 

occlusion (Charbel, Gonzales-Portillo et al. 1999; Charbel, Guppy et al. 2001; Charbel, Zhao et 

al. 2004; Amin-Hanjani, Alaraj et al. 2010), or improved prediction of therapeutic drug delivery 

to the central nervous system. 

These potential clinical applications require a quantitative tool to analyze cerebral blood 

flow, CSF flow, and biomechanical interactions between vasculature, brain tissue, and CSF. 

However, the development of such a tool requires knowledge of several disciplines including 

medical imaging/image processing, computer science, computational fluid dynamics, and solid 

mechanics. For this reason, we believe the development of a comprehensive model of blood, 

CSF, and brain dynamics has not yet been satisfactorily addressed by the medical or engineering 

community. Therefore, to bridge the gap between experimental measurements of blood and CSF 

flow and quantitative analysis, this final chapter offers a multi-step process for quantifying the 

interactions between expanding vasculature, brain tissue, and CSF.  
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7.2. Limitation of Conventional Computational Fluid Dynamics 
Steps toward quantifying these interactions will require the development of a computational 

fluid dynamics (CFD) program. In most CFD applications, a physical domain is divided into 

small balance envelopes (or control volumes) over which the fluid flow equations are solved. 

(Readers unfamiliar with computational fluid dynamics may consult (Fox, McDonald et al. 2009) 

and (Versteeg and Malalasekera 2007) for an excellent overview). In some cases, the physical 

domain of interest can be discretized using a structured grid approach. In structured grids, each 

boundary (or face) of a balance envelope is aligned with one of the axes of the global coordinate 

system. Structured grid discretization is limited to primitive shapes such as rectangles, 

rectangular prisms, cylinders, cones, and spheres. In contrast, in order to represent brain 

geometry accurately, one needs to adopt an unstructured grid approach. In unstructured grids, the 

control volume boundaries are generally not aligned with the global coordinate system. These 

arbitrary face orientations in unstructured grids require writing the governing equations of solid 

and fluid motion in terms of local coordinate systems defined by each control volume face.  

Though fluid dynamics can be predicted in geometrically complex biological domains using 

unstructured grids, advanced technology is still required to develop a comprehensive model of 

vasculature, brain tissue, and CSF. In conventional fluid-structure interaction approaches, 

interacting domains require mesh compatibility at the interface. In the brain-vasculature 

interaction problem, the computational cells on the boundary of each vessel will cause the 

computational cells of the brain mesh to be several orders of magnitude smaller than its overall 

length scale, which is approximately 15 cm. In other words, the size of the smallest control 

volumes in the brain mesh would have to be on the same order of magnitude as the control 

volumes of an embedded cerebral vessel. It is very likely that this situation makes the entire 

problem intractable even with state-of-the-art computational resources. 
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7.3. Overview of Proposed Method 
To overcome the intractability of the brain-vasculature-CSF interaction problem, we propose 

a novel method in which the CSF and brain domains are discretized with quadrilateral (2d) or 

tetrahedral (3d) elements while the vasculature domain is discretized into several thousand 

cylinders, each representing individual vessel segments of the arterial network. To be precise, the 

finite volume method is used to govern brain and CSF motion and a network-based model is 

used to govern vasculature dynamics.  

Computational domains of the brain, CSF, and cerebral arteries were derived from medical 

images using manual segmentation (Materialise Inc 2008). Due to the finite resolution of the 

medical images, the microvasculature computational domain could not be derived using manual 

segmentation. Instead, the microvasculature domain was generated using sophisticated growth 

and optimization algorithms based on natural flow laws (Schreiner and Buxbaum 1993; Karch, 

Neumann et al. 1999; Schreiner, Karch et al. 2006; Sweetman, Linninger et al. 2010).  

The vessel growth algorithm idealizes each blood vessel as a cylinder. By treating individual 

blood vessels as cylinders, blood flow and pressures as well as changes in vessel diameter can be 

computed analytically. Changes in vessel diameter were governed by a linear elastic model that 

accommodates vessel expansion or contraction due to pressure differences between the vessel 

lumen and surrounding brain tissue. Changes in vessel caliber were then transmitted to an 

associated brain mesh control volume as a volumetric strain (positive volumetric strain for vessel 

expansion, negative volumetric strain for vessel contraction). The association between a vessel 

and a brain mesh control volume was then established via a search algorithm, details of which 

are provided later in this chapter. Brain tissue displacement induced by dynamic changes in 

volumetric strain was governed by a steady-state momentum balance with an underlying linear 

elastic constitutive model.  
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Data from MRI suggests displacements in the brain tissue cause compression of the CSF-

filled lateral ventricles (Zhu, Xenos et al. 2006). We hypothesize this motion along the brain-

CSF interface contributes to the pulsatile CSF flow field. The SIMPLE algorithm was used to 

solve the CSF flow field in the deforming fluid space of the lateral ventricles and subarachnoid 

space. In a deformable fluid domain, a relative velocity occurs between the fluid and the 

computational grid. As such, the Navier-Stokes equations were written in an Arbitrary-

Lagrangian-Eulerian (ALE) reference frame. To maintain the integrity of the fluid mesh due to 

grid deformation, a mesh displacement scheme was developed and implemented. For this 

extensive initial undertaking which seeks to model vasculature, brain tissue, and CSF 

interactions, we have limited the study to a two-dimensional mid-sagittal cross section of the 

human brain.  

This chapter is divided into six sections. The first four sections describe the mathematical 

framework that supports the brain-vasculature-CSF model. Dividing this complex problem into 

small self-contained sections will elucidate the physics of each sub-problem as well as serve as a 

guideline for creating one’s own computer program. The fifth section summarizes the methods 

and results of the model. The sixth section discusses the model results and future applications. 

7.4. Fluid Motion: Solution of the Navier-Stokes Equations Using the SIMPLE Algorithm 

7.4.1. Section Overview 

This section describes how to solve the governing equations of fluid motion, the Navier-

Stokes equations, using the SIMPLE (semi-implicit method for pressure-linked equations) 

method. The SIMPLE algorithm, introduced by Patankar (1980), is prevalent in CFD literature 

and used in many CFD codes. Two excellent references for learning about the SIMPLE 

algorithm are (Patankar 1980; Versteeg and Malalasekera 1995). Other texts and articles which 

may be useful are (Date 1993; Date 1996; Davidson 1996; Date 1998; de Foy and Dawes 2000; 
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Lien 2000; Date 2005; Versteeg and Malalasekera 2007). Before describing the details of the 

SIMPLE algorithm, the governing equations of fluid motion are presented. The concept of the 

unstructured grid is also presented to prepare the reader for the details of how to discretize the 

governing fluid equations. These prerequisites then lead naturally to the presentation of the 

SIMPLE algorithm. The section closes with a fluid flow simulation in the brain’s lateral ventricle 

in which our results are compared to the commercial CFD tool, Fluent 6.3. 

7.4.2. The Governing Equations for Fluid Motion 

The governing equations for fluid motion are derived from three conservation laws: 

 

• Conservation of Mass   (Continuity Equation) 

• Conservation of Momentum  (Momentum Equation) 

• Conservation of Energy   (Energy Equation) 

 

The energy equation is included when the physical system is subject to changes in temperature. 

In this dissertation, the fluid and tissue interactions are quantified. Since these systems 

experience negligible change in temperature, our discussion of the energy equation ceases here. 

Assuming fluid incompressibility, the continuity and momentum equations are written: 

      Continuity 0u∇⋅ =
�

 (1-33) 

      Momentum  
( )

ConvectivePressure Diffusion
AccelerationLocal Gradient Term

Acceleration

u
p u u u

t
ρ ρ µ
∂

= −∇ − ⋅∇ + ∇⋅ ∇
∂

�
� � �

�������� �����������

 
(1-34) 

In (1-33) through (1-34), u
�

 is the fluid velocity, ρ  is the fluid density, and µ  is the fluid 

viscosity. The momentum equation consists of four main contributions: a local acceleration term, 

a pressure gradient term, a convective acceleration term, and a diffusion term. In a two-

dimensional analysis, the x and y momentum equations are: 
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x momentum: 
( )

  
componentcomponent

onlyonly

uu

x

u
p u u u

t
ρ ρ µ
∂

= −∇ − ⋅ ∇ + ∇ ⋅ ∇
∂

������
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(1-35) 

y momentum: 
( )

  
componentcomponent

onlyonly

vv

y

v
p u v v

t
ρ ρ µ
∂

= −∇ − ⋅ ∇ + ∇ ⋅ ∇
∂

������
�

 
(1-36) 

 

In (1-35) and (1-36), the notation, x p∇ , indicates that the derivative is with respect to x only 

( /p x∂ ∂ ). Similarly, y p∇  is equivalent to ( /p y∂ ∂ ). Let us keep the following goal in mind. We 

would like to predict fluid flow in a complex domain (such as the lateral ventricles of the brain). 

To do so, we need to discretize that domain into several control volumes (or balance envelopes) 

as shown in Figure 43. The computational domain in Figure 43 is an example of an unstructured 

grid. As previously mentioned, the faces of each balance envelope are generally not aligned with 

a global coordinate system (x, y as shown). 

x

y

 
Figure 43. Complex physical domain (the brain’s lateral 

ventricle—2D cross section) subdivided into approximately 

1,600 balance envelopes. The red circled region is used to 

illustrate face fluxes in Figure 44. 

 

The fluid motion must adhere to mass and momentum balances. The momentum balance in the 

x-direction is enforced over each balance envelope (control volume, cv) by integrating each term 

of eq. (1-35) over the volume (area in 2d) of the balance envelope, and over a finite period of 

time, t∆ . The same procedure is applied to eq. (1-36) for the momentum balance in the y-
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direction. The integration is explicitly shown in eq. (1-37), using the x-momentum as an 

example.  

 

( )
cv cv cv cv

t t t t t t t t

x

t t t t

u
dVdt p dVdt u u dVdt u dVdt

t
ρ ρ µ

+∆ +∆ +∆ +∆∂
= − ∇ − ⋅∇ + ∇⋅ ∇

∂∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
�

 (1-37) 

 

It will be shown in section 7.4.3 how the integration of the terms in eq. (1-37) leads to the 

discretized version of the momentum equation. Before describing the integration of each term, 

some geometrical definitions and conventions must be described. First, let us keep in mind that 

the momentum balances will be written for each control volume. Figure 44 shows a typical 

control volume in the center of the grid with its geometrical center point labeled 0φ . 0φ ’s West, 

North, East, and South neighbors labeled 1φ  in Frames A, B, C, and D, respectively. The vector 

pointing in the direction from 1φ  to 0φ  is labeled eξ
�

. The red vector, eη
�

, is always defined on the 

face adjacent to 0φ  and 1φ . The magnitude of eη
�

 is equal to the length of the face. The key 

question is: In which direction should this vector point? In my derivations, the direction of eη
�

 is 

such that the cross product, e eξ η×
� �

, follows the right-hand rule (your thumb will point up when 

you curl eξ
�

 into eη
�

). A section of the computational grid from Figure 43 is used to show four 

possible orientations of the eξ
�

 and eη
�

 vectors in Figure 44.  
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Figure 44. A section of the computational grid from the lateral ventricle 

(see Figure 43) is used to illustrate how the face vectors eξ
�

 and eη
�

 are 

oriented. eξ
�

 is always directed from 1φ  to 0φ . The direction of eη
�

 is such 

that e eξ η×
� �

 follows the right hand rule.  

 

In our discussion of discretization which follows, when we apply Gauss theorem we will need 

the unit normal vector directed outward from the control volume. Consider Frame A of Figure 

44. Since eη
�

 is defined as ( , )e x yη η η=
�

, a perpendicular vector to eη
�

 can be written as either 

( , )Ae y xη η η⊥ = −
�

 or ( , )Be y xη η η⊥ = −
�

. We need to determine which one of those normal vectors is 

directed out of the volume. This can be determined by performing the following cross product:  

2 2 ˆˆ ˆ0 0 0 ( )

0

A

i j k

e e y x i j y x k

x y

η η η η η η

η η

⊥ × = − = − + +
� �

 

Because the k̂  component is positive, Ae eη η⊥ ×
� �

 is defined by the right hand rule, and 

consequently, Aeη⊥

�
 is directed into the control volume, as shown in Figure 45. Since we require 
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the outward normal, ( , )Be y xη η η⊥ = −
�

, we can write the outward normal as ( , )n y xη η= − −
�

 and 

the unit outward normal to be used in Gauss theorem is: 

2 2ˆ ( , ) /n y x x yη η η η= − − +
�

 

1φ
0φ

eη
� ( , )y xη η−

( , )y xη η−

 
Figure 45. Frame A of Figure 44 revisited. The blue and 

green vectors are both perpendicular to the eη
�

 vector.  The 

blue vector is directed into control volume 0φ . The green 

vector is directed out of control volume 0φ .  

7.4.3. Discretization of the Fluid Equations 

We are now ready to describe the discretization of the momentum equations. However, to 

simplify the following discussion, only steady-state conditions are considered. Consequently, 

each term of the momentum equation is integrated over a control volume only; the time 

integration is postponed until section 7.5. Eq. (1-35) will be used as an example.  

Pressure Gradient Term 
Apply Gauss Theorem

cv

ˆ

face

p dV p n dA− ∇ ⇒ −∫ ∫
������

�
�  

 

Because the integral 
face

dA∫�  is the length of the control volume face, that is, 2 2

face

dA x yη η= +∫� , 

we have: 

( )
# of faces # of faces

1 1

1
f f

y y
p p

x x

η η

η η= =

   
− − =   − −   
∑ ∑  

 

For the x-momentum, the pressure gradient term is written as: 
# of faces

1

f

f

p yη
=
∑  



138 

 

 
 

 

For the y-momentum, the pressure gradient term is written: 

( )
# of faces

1

f

f

p xη
=

−∑  

Special Note: We use a collocated grid approach which solves for pressure and velocities at the 

center of each control volume. Since the discretized equation requires pressure at the control 

volume face, the value of pressure on the face is taken as the average pressure value between two 

adjacent cells ( 0φ  and 1φ ).  

 

Convective Acceleration Term 

This term causes the Navier-Stokes equations to be nonlinear. To circumvent this problem, we 

will provide an initial guess (u
�

, given) for the fluid velocity, such that the momentum equation 

takes the following form: 

	

solution solution
variable variable

givencv cv cv

0 x p dV u u dV u dVρ µ= − ∇ − ⋅ ∇ + ∇⋅ ∇∫ ∫ ∫
�� ��

�
 

This arrangement is the basis of the SIMPLE algorithm in which u
�

 is provided via a guess or an 

earlier iteration. The velocity field resulting from the x and y momentum equations are then used 

to correct the pressure field; this will be discussed later. Since ( ),u u v=
�

 is known from a 

previous iteration, we can take it out of the integral. We will append the superscript i-1 to the 

velocity vector u
�

 (denoting its value is known from a previous iteration) and append an asterisk 

to the solution variable, u. 

( )11 *

cv cv

iiu u dV u v u dVρ ρ
−−− ⋅∇ = − ∇∫ ∫

�
 

 

We now apply Gauss theorem: 

( ) ( )11 * 1 1 *

cv face

ˆii i iu v u dV u v u n dAρ ρ
−− − −− ∇ = −∫ ∫

�
,   

 

Assuming *u  is constant along the face, dA , and noting that ( )ˆ , /
face

n y x dAη η= − − ∫
�

� , we have: 
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For the x-momentum, the convective term is written: 

( )
# of faces

1 1 *

1

f
i i

f

u y v x uη ηρ − −

=

−∑  

 

For the y-momentum, the convective term is written: 

( )
# of faces

1 1 *
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f
i i

f

u y v x vη ηρ − −

=

−∑  

 

The discretization invokes *u  and *v  at the face. To obtain *u  (or *v ) at a face which is adjacent 

to two control volumes, we take the average value of *u  (or *v ) in those respective control 

volumes. 

Diffusion Term 
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The following formula provides an excellent approximation to the diffusion term of the x-

momentum (1-38); details provided in the Appendix. 

* *# of faces
10 1

=1 3

f

f

u u
J

q
µ − −

⇒ −  
 

∑ , where   

2 2

3

1

q x y

J x y x y

ξ ξ

ξ η η ξ
−

= +

= −
 

 

For the y-momentum, the diffusion term is written: 

* *# of faces
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f
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v v
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q
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∑  

To summarize, eq. (1-37) in its discretized form can be written (for x-momentum): 
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7.4.4. The SIMPLE Algorithm: A Pressure and Velocity Correction Scheme 

Overview. Instead of simultaneously solving the momentum and continuity equations to 

obtain the velocity and pressure fields, we decouple the equations so that the pressure and 

velocity fields are solved independently. How can this be accomplished? The first step is to 

assume a pressure field, 1ip − , as well as an x and y velocity field, 1iu −  and 1iv − . Using these 

“known” fields, we solve for the *u  component of the *u
�

 velocity field with the help of the x 

momentum equation and solve for the *v  component of the *u
�

 velocity field with the help of the 

y momentum equation.  

The next step involves computing a pressure correction 'p . The equation for 'p  is derived 

by implementing a Darcy-like flow assumption on the velocity correction. This gives rise to a 

pure diffusion equation for the pressure correction, which serves to drive the system toward 

conserving mass; see continuity equation, eq. (1-33). This iterative procedure is repeated 
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successively until the entire flow field satisfies continuity. As an additional check for solution 

convergence, the calculated velocities must change only slightly from a previous iteration to a 

current one. For example, one may set the velocity change tolerance to 0.1%, which is the default 

convergence criteria used in the commercial CFD tool Fluent.  

Implementation: Solution of the x and y momentum equations. The first step in the SIMPLE 

algorithm is to solve the following momentum equations (assuming steady-state for simplicity): 

x-momentum: ( ) ( )1 1 * *

cv cv cv

0 i i

x p dV u u dV u dVρ µ− −= − ∇ − ⋅ ∇ + ∇⋅ ∇∫ ∫ ∫
�

 (1-40) 

y-momentum: ( ) ( )1 1 * *

cv cv cv

0 i i

y p dV u v dV v dVρ µ− −= − ∇ − ⋅ ∇ + ∇ ⋅ ∇∫ ∫ ∫
�

 (1-41) 

As stated above, two fields are provided a priori: the pressure field, 1ip −  and the velocity 

field, 1iu −� , where i-1 indicates initial guess or value from previous iteration. On the first iteration, 

i equals 1, so the initial guess, 0u  is given. Equations (1-40) and (1-41) will lead to two 

independent systems of equations. One system will yield solution *u ; the other will yield *v .  

Implementation: Velocity correction. Since the initial guess may be far off from the actual 

solution, ( )* *u v  will likely not equal ( )1 1i iu v− − . Thus, we devise an equation for the velocity 

correction, 'u
�

. As documented in (Patankar 1980; Versteeg and Malalasekera 1995), it may be 

assumed that the velocity correction at a control volume face (boundary) is proportional to the 

pressure gradient across that same face. The proportionality constant is a conglomerate of fluid 

viscosity, density, and sizes of neighboring control volumes (see eqs. 6.19-6.23 of (Versteeg and 

Malalasekera 1995)). In the SIMPLE algorithm, some of the contributions to the velocity 

correction from the neighboring cells are ignored (compare eqs. 6.19 and 6.21 of (Versteeg and 

Malalasekera 1995)). Thus, the velocity correction does not need to be derived rigorously from 

the governing equations. (Dropping the contributions from the neighbor cells is quite an arbitrary 
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choice). The authors contend that “The omission of terms such as 'nb nba u∑  in the derivation 

does not affect the final solution because the pressure correction and velocity corrections will all 

be zero in a converged solution…” (pg. 145, (Versteeg and Malalasekera 1995)). Based on this 

argument, we propose the following form for the velocity correction:  

' 'u p
κ
µ

= − ∇
�

 (1-42) 

Equation (1-42) is similar in form to Darcy’s Law. µ  and κ  account for the diffusion and 

convective contributions to the velocity correction, respectively. Whereas µ  is always set to the 

actual value of the fluid viscosity, κ  is an adjustable constant needed for improving convergence 

speed. For example, when the viscosity is 1Pa s⋅ , setting κ  to 0.01 accelerates convergence 

speed by about 20 times (compared to when κ  is set to 1). For a viscosity value of 0.001Pa s⋅ , 

κ  should be set to 1e-6. To account for generalized coordinates, (1-42) is written: 

'

'

''

p

u x

pv

y

κ
µ

∂ 
   ∂ = −  ∂  
 ∂ 

 with 

' ' ' ' '

' ' ' ' '

x x

y y

p p p p p

x x x

p p p p p

y y y

ξ η
ξ η

ξ η ξ η
ξ η

ξ η
ξ η ξ η

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 

Recall the metrics of transformation:  

1 1 1 1
; ; ;x x y y

y y x x

J J J J

η ξ η ξξ η ξ η
− − − −

= = − = − =  

So that we have: 

1 1

' ' ' '
' ;               '

p p p p
u y y v x x

J J
η ξ η ξ

κ κ
ξ η ξ ηµ µ− −

   ∂ ∂ ∂ ∂
= − − = − − +   ∂ ∂ ∂ ∂   

 

 

From (Linninger 2011) we have that 0 1

'
' ' '

p
p p pξξ

∂
= ∆ = −

∂
 and 

'
' ' 'N S

p
p p pηη

∂
= ∆ = −

∂
. This 

leads to the final form for the velocity correction: 
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( ) ( )

( ) ( )

0 11

0 11

' ' ' ' '

' ' ' ' '

N S

N S

u y p p y p p
J

v x p p x p p
J

η ξ

η ξ

κ
µ

κ
µ

−

−

 = − − − − 

 = − − − + − 

 (1-43) 

Implementation: Corrected velocity. The velocity correction, 'u
�

 will be used to calculate the 

corrected velocity, u
�

. The velocity correction, 'u
�

 is the difference between the corrected 

velocity, and the solution variable, ( )* *u v : 

*

*

'

'

u u u

v v v

    
= −     

     
 

 

After rearranging the above expression, eq. (1-44) emerges: 
*

*

'

'

u uu

v vv

    
= +    

    
 (1-44) 

 

Substituting eq. (1-43) into eq. (1-44) leads to two equations that represent the corrected velocity 

components, u and v. 

( ) ( )*

0 11
' ' ' 'N Su u y p p y p p

J
η ξ

κ
µ −

 = − − − −   (1-45) 

( ) ( )*

0 11
' ' ' 'N Sv v x p p x p p

J
η ξ

κ
µ −

 = − − − + −   (1-46) 

 

Equations (1-45) and (1-46) require some discussion. First, eqs. (1-45) and (1-46) are used to 

obtain u  and v  at the faces of each control volume. Thus, to obtain u  (and v ) at the cell center, 

eqs. (1-47) and (1-48) are used: 

( ) ( )
# of faces

*

Average 0 11
1

1
' ' ' '

# of faces

f

f

N S

f

u u y p p y p p
J

η ξ

κ
µ −

=

 
  = − − − −  
  

∑  (1-47) 

( ) ( )
#of faces

*

Average 0 11
1

1
' ' ' '

# of faces

f

f

N S

f

v v x p p x p p
J

η ξ

κ
µ −

=

 
  = − − − + −  
  

∑  (1-48) 
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Equations (1-47) and (1-48) return the average corrected velocity component (at the cell center) 

based on the corrected velocities computed at the cell center’s faces. Second, since *u  is 

computed at the cell center, *
f

u  is computed using * * *

v1 v2( ) / 2
f

u u u= + , where *

v1u  and *

v2u  are 

known values from cells adjacent to face, f. 

Implementation: Pressure correction equation. If the corrected velocity components, u and v, 

were the correct velocity, we should expect these velocity components to satisfy the continuity 

equation: 

cv face

ˆu dV q u n dA q∇⋅ = ⇒ ⋅ =∫ ∫
� � �

�  

Note, q  is zero for an incompressible fluid in an undeformable fluid domain. With the relation, 

2 2

face

dA x yη η= +∫� , the above can be cast into  

( ) ( )
#of faces

=1

1

f

f

y
q u v

x

η

η

 
= ⋅ −  − 
∑  

 

Therefore, the total mass balance is: 

( )
#of faces

=1

f

f

q uy vxη η= − −∑  (1-49) 

 

For a given face, we can substitute eq. (1-45) into (1-49) and rewrite continuity as: 

( ) ( )

( ) ( )

*

0 11

*

0 11

' ' ' '

1

' ' ' '

N S

f

N S

y u y p p y p p
J

q

x v x p p x p p
J

η η ξ

η η ξ

κ
µ

κ
µ

−

−

     − − − −      = −
     − − − − + −      

 

This simplifies to: 

( )
( )

( )
( )

2 2

* *

0 11 1
1 ' ' ' 'f

N S

y x y y x x
q y u x v p p p p

J J

η η ξ η ξ η
η η

κ κ
µ µ− −

 + +
 = − − − − + −
  

 

Or more simply as:  
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( ) ( )* * 1 2
0 11 1

1 ' ' ' 'f

N S

q q
q y u x v p p p p

J J
η η

κ
µ − −

   
 = − − − − − − 
    

 

 

We can again use the approximation for the diffusion term introduced earlier to rewrite the above 

expression as: 

( )0 1* * 1

3

' '
1f

p p
q y u x v J

q
η η

κ
µ

−
 −  

= − − −  
   

,   where     

2 2

3

1

q x y

J x y x y

ξ ξ

ξ η η ξ
−

= +

= −
 

 

(1-50) 

Assuming q  to be zero for an incompressible fluid in an undeformable fluid domain, the 

complete equation which takes into account the contributions from all faces of a control volume 

is: 

( )# of faces
0 1* * 1

1 3

' '
0

f

f

p p
y u x v J

q
η η

κ
µ

−

=

 −  
− + + =  

   
∑ . 

 

This leads to the pressure correction equation for 'p :  

( )# of faces # of faces
0 1 1 * *

1 13
Continuity

Deviation from Continuity

' '
f

f

f f

p p
J y u x v

q
η η

κ
µ

−

= =

− 
= − 

 
∑ ∑

���������
����������������

 
(1-51) 

 

Note about eq. (1-51): First, it should be emphasized that 'p  is the pressure correction, not the 

actual pressure. Second, the right-hand-side of eq. (1-51) is continuity (see eq. (1-49)). The left-

hand-side seems to describe the deviation from satisfying continuity. If solving the system of 

equations for the pressure correction, 'p  leads to 'p  being zero everywhere, then *u  and *v  

satisfy continuity—the left-hand-side will be zero and hence * * 0y u x vη η− = . Thus, at 

convergence the current velocity field, *u  and *v  satisfies continuity and 'p  is zero (or 

sufficiently close to zero) everywhere.  

 

Implementation: Pressure and velocity update. If convergence has not been reached, we 

apply the relation, 1 'ip p p−= +  to improve the quality of the pressure field. 1ip −  is the pressure 

value at the previous iteration—the value used in (1-40) and (1-41). Actually, the improved 

pressure value will be calculated via under-relaxation:  
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1 'new i

pp p pα−= + ,   where    0 1pα< <  

 

For the second iteration, 1ip −  will be set equal to newp ; this updated 1ip −  will be used as the new 

pressure guess in eqs. (1-40) and (1-41). The velocities are also updated with under-relaxation 

( 0 1uα< <  and 0 1vα< < ); the velocity components that will be used in eqs. (1-40) and (1-41) 

for the next iteration are:  

 
From eq. (1-45) 

 

A flow diagram of the proposed method is given in Figure 46. 

 

Start

Step 1: Solve x and ymomentum equations

Guess: pi-1, ui-1, vi-1

Step 2: Use u* and v* to solve the 

pressure correction equation

Retrieve u*, v*

Retrieve p’

Retrieve unew, vnew

No

Stop

Yes

Check Convergence:

u*, v* satisfy continuity?
p’ ~ zero?

Step 3: Calculate corrected pressure 

and velocity fields

Step 4: Apply under-relaxation 

to calculate the updated 
velocity fields

Retrieve pnew, u, v

Set pi-1=pnew; ui-1=unew; vi-1=vnew

 

Figure 46. Flow diagram of the SIMPLE algorithm. 

 

( )
( )

1

1

1

1

new i

u u

new i

v v

u u u

v v v

α α

α α

−

−

= + −

= + −
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7.4.5. Program Validation of Steady-State Fluid Flow Prediction  

The methodology described in the previous sections has been implemented as an object-

oriented finite volume computer program in Delphi 7. Fluid flow simulations using our program 

were compared with results obtained using the commercial CFD tool, Fluent 6.3. Both structured 

and unstructured grids were used in the validation study.  

Figure 47 shows a structured grid case study with dimensions, height 0.0764m and width 

0.44m. The fluid domain was subdivided into 1,000 rectangular control volumes. A fluid 

velocity of 0.05m/s was specified at the left boundary and an outlet pressure of 0.001 Pa was 

specified at the right boundary. As shown in the figure, there is good agreement between the 

simulations obtained using our program and those obtained using Fluent.  
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(a) 

 

 

(b) 

2x10−

  

(c) 

3x10−

 
 

LPPD Code Fluent 

Figure 47. Comparison between our CFD results and those of Fluent 6.3 using a 

structured grid. Our results are in good agreement with the commercial CFD program. 

(a): Pressure; (b): x- velocity component; (c): y- velocity component 

To validate our unstructured discretization scheme, Figure 48 compares our program results 

with those of Fluent in a cross section of a human brain’s ventricular system. 1,180 control 

volumes were used in the simulation. In the study, an inflow of 0.003m/s in the negative y-

direction was applied at the top o the lateral ventricle. An outlet pressure of 0.001 Pa was applied 

as indicated in the figure. The results for pressure and velocity closely match the results obtained 

using Fluent.  
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0.003m/s

0.001Pa
 

 

2x10−

  
2x10−

  
LPPD Code Fluent 

Figure 48. CFD results of flow in the brain’s lateral ventricle. Our implementation compares 

well with results obtained using the commercial CFD program, Fluent. Top row: Pressure; 

Middle row: x-velocity component; Bottom row: y-velocity component 
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7.5. The Arbitrary Lagrangian-Eulerian Method for Fluid Flow 

7.5.1. Motivation and Overview of Section 

An Eulerian reference frame is a reference frame in which the quantity of interest (fluid 

motion for example) is observed by a fixed observer. When the observer moves with the quantity 

of interest, the reference frame is referred to as Lagrangian. When a fluid grid is stationary, the 

governing fluid flow equations introduced in section 7.4.2 are applicable and are said to be 

written in an Eulerian reference frame. When the boundary of the fluid grid is displaced 

explicitly or implicitly (an implicit displacement of the fluid grid could be due to the 

displacement of a solid body along the solid-fluid interface) the internal structure of the fluid 

grid is also set in motion to accommodate the motion at the boundary.  

At a moving boundary, the fluid grid and the fluid move at the same rate. The mathematical 

treatment at the moving boundary is said to be Lagrangian because the observer (an imaginary 

observer sitting on the fluid grid boundary) moves at the same rate as the fluid. Internal fluid grid 

points which are not on the moving boundary may move according to some overall governing 

scheme such that all control volumes in the fluid grid remain viable. For example, if a particular 

control volume in the computational domain were to collapse due to grid deformation, the 

continuum would break down and one could no longer compute the velocity or pressures for that 

particular control volume. Instituting a scheme for grid motion and coupling that motion with the 

underlying fluid dynamics leads to what many researchers call an Arbitrary Lagrangian-Eulerian 

(ALE) mathematical framework. In ALE, with the exception of the grid boundary, the fluid grid 

moves at a different speed than the fluid. Thus the governing flow equations are modified to 

account for the difference between the convective flux of the fluid with respect to the convective 

flux of the fluid grid.  
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Two key points regarding problems involving moving boundaries must be emphasized: 

• The local time derivative in the momentum equations must be accounted for 

• A zero (no-slip) velocity along the moving wall is not appropriate 

 

The first point is due to the fact that the volume (or area in 2D) of the control volumes is 

changing; the local time derivative accounts for this change as will be shown in section 7.5.3. 

We must account for this volume change to properly balance the change in momentum of a given 

control volume. The second point is due to the fact that there can be no material separation along 

the solid-fluid interface. This condition is often referred to as a kinematic boundary condition for 

the solid-fluid interface. Mathematically it is written, 

fu d=
�� ɺ

 

where fu
�

 is the fluid velocity at the wall and d
�ɺ

 is the wall velocity. 

The ALE governing equations and implementation will be introduced in this section. The 

derivation of the modified governing equations for a moving reference frame can be found in 

(Fox, McDonald et al. 2009) and will not be repeated here. The Space Conservation Law (SCL), 

which is introduced in (Demirdzic and Peric 1988), is a law which seeks to maintain volume 

conservation of the fluid grid. CFD codes in which the SCL is not accounted for may lead to 

spurious results. If the SCL is not implemented, the grid motion usually leads to an undesirable 

mass source as documented in (Ferziger and Peric 2002). In this section, the SCL will briefly be 

explained and supported by a specific example. After introducing the modified governing 

equations in the ALE reference frame, the importance and inner workings of the SCL will be 

explained. 

7.5.2. Governing Equations in the ALE Reference Frame 

The governing flow equations for an incompressible fluid written in the ALE reference frame 

(see (Demirdzic and Peric 1988; Demirdzic and Peric 1990) for example) are:  
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SCL 
cv

ˆ 0g

face

d
dV u n dA

dt
− ⋅ =∫ ∫

� �
�  (1-52) 

Continuity 
cv

ˆ( ) 0f g

face

d
dV u u n dA

dt
+ − ⋅ =∫ ∫

� � �
�  (1-53) 

Momentum ( ) ( ) ( )1 1 * *

cv cv cv cv

i i

f g

u
dV p dV u u u dV u dV

t
ρ ρ µ− −∂

= − ∇ − − ⋅ ∇ + ∇⋅ ∇
∂∫ ∫ ∫ ∫
�

� � � �
 (1-54) 

 

In eqs. (1-52) through (1-54), gu
�

 is introduced as the grid velocity (defined at a control 

volume face). The SCL is an auxiliary equation by virtue that gu
�

 should be computed such that 

(1-52) is satisfied. Methods to compute gu
�

 are given in section 7.5.4. Eq. (1-53) will be used to 

derive a modified pressure correction equation in a similar manner as described in section 7.4.4 

for stationary grids. Before discussing the SCL and the modified pressure correction, the next 

section presents the discretized forms of the momentum equations in the ALE reference frame. 

7.5.3. Discretization of the ALE Equations 

We present in eq. (1-55) the unsteady form of the x-momentum equation, which was first 

introduced in eq. (1-35). Each term in eq. (1-55) is integrated in space and time to arrive at the 

discretized form of the unsteady x-momentum equation. 

( )
cv cv cv cv

t t t t t t t t

x

t t t t

u
dVdt p dVdt u u dVdt u dVdt

t
ρ ρ µ

+∆ +∆ +∆ +∆∂
= − ∇ − ⋅∇ + ∇⋅ ∇

∂∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
�

 (1-55) 

 

This section will describe the integration/discretization of each term in eq. (1-55). 

 

Local Acceleration Term. The discretizated form of the local acceleration term in the 

unsteady x-momentum equation is derived as follows. To handle the integral, we will assume 

that u  (the x component of the velocity vector) is a function of time but not a function of V (the 

volume/area of a control volume at an instance in time). We will further assume that V is a 

function of time only. With these assumptions, we rewrite the double integral in eq. (1-55) as,  
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cv cv

t t t t

t t

u u
dVdt dV dt

t t
ρ ρ

+∆ +∆∂ ∂
=

∂ ∂∫ ∫ ∫ ∫ , 

 

which ultimately leads to  

 

( ) ( )
cv

t t t t
t t t

t t

u u
dV dt V dt uV uV

t t
ρ ρ ρ

+∆ +∆
+∆∂ ∂  = ⇒ − ∂ ∂∫ ∫ ∫  (1-56) 

 

Pressure Gradient Term. The discretizated form of the pressure gradient term in the 

unsteady x-momentum equation is derived as follows. From section 7.4.3, integration over the 

control volume led to: 

# of faces

1cv

f

x

f

p dV p yη
=

− ∇ = ∑∫  

 

Thus, we have for the time integration: 

 
# of faces

1

t t
f

ft

p y dtη

+∆

=

 
 
 
∑∫  (1-57) 

 

Let us recall that the SIMPLE algorithm stands for semi-implicit method for pressure-linked 

equations. Since the method is semi-implicit, some terms can be treated implicitly while others 

treated explicitly. We have chosen to treat the pressure term as explicit and the velocity term as 

implicit. Consequently, in the first iteration of a given time step, we use the converged value of 

p  from the previous time step. Thus, we can remove p  from the time integral and rewrite 

eq. (1-57) as: 

# of faces

1

t t
f

f t

p y dtη

+∆

=
∑ ∫ , 

which leads to: 
# of faces

1

f

f

p y tη
=

∆∑  
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Convective Acceleration Term. The convective term in the ALE reference frame was 

introduced in eq. (1-54). The convective term associated with the x-momentum is given in eq. (1-

58). 

( ) ( )1 *i

f gu u uρ −− − ⋅ ∇
� �

 (1-58) 

1i

fu −�  and gu
�

 are the fluid velocity and fluid grid velocity, respectively, calculated at a control 

volume face. To aid the derivation, we introduce the relative velocity vector, ˆ
ru
�

 with 

components ˆ
ru  and ˆ

rv . ˆ
ru
�

, ˆ
ru , and ˆ

rv  are defined as:  

1

1

1

ˆ

ˆ

ˆ

i

r f g

i

r f g

i

r f g

u u u

u u u

v v v

−

−

−

= −

= −

= −

� � �

 (1-59) 

By substituting eq. (1-59) into eq. (1-58) and integrating over a control volume, cv we have: 

( )*

cv

ˆ
ru u dVρ− ⋅ ∇∫
�

 

 

Using the same arguments for the integral as in section 7.4.3, we eventually arrive at: 

 

( )
# of faces

*

1

ˆ ˆ
f

r r

f

u y v x uη ηρ
=

−∑  

 

Thus, we have for the time integration: 

( )
# of faces

*

1

ˆ ˆ
t t

f

r r

ft

u y v x u dtη ηρ
+∆

=

 
− 

 
∑∫  

 

The relative velocity contribution can be removed from the time integral leading to: 

( )
# of faces

*

1

ˆ ˆ

f
t t

r r

f t

u y v x u dtη ηρ
+∆

=

 
− 

 
∑ ∫  

As stated in (Patankar 1980) (page 55), we need an assumption for how the unknown, *u  varies 

with time from t to t t+ ∆ . One may propose 

( )* *, *,1

t t

new old

t

u dt f u f u t

+∆

 = + − ∆ ∫  
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where f is a weighting factor between 0 and 1. Setting f equal to one leads to an implicit time 

integration; setting f equal to zero, leads to explicit time integration. Since implicit time 

integration is unconditionally stable, we set f to 1. In this chapter *u  has always been assumed to 

be at the new time level. Thus we write the discretized convective term as 

( )
# of faces

*

1

ˆ ˆ
f

r r

f

u y v x u tη ηρ
=

 − ∆ ∑  

 

Diffusion Term. The discretized diffusion term requires no special treatment other than 

appending it with t∆  as was done in the pressure gradient term and the convective term. From 

section 7.4.3, integration over the control volume led to:  

* *# of faces
10 1

=1 3

f

f

u u
J

q
µ − −

−  
 

∑  

Thus, we have for time integration, 

* * * *# of faces # of faces
1 10 1 0 1

=1 =13 3

f f
t t

f ft

u u u u
J dt J t

q q
µ µ

+∆
− −

    − − − = − ∆        
∑ ∑∫  

 

Complete Discretized Forms of the Unsteady Momentum Equations. Since t∆  is common 

to the pressure gradient, convective, and diffusion terms, both sides of the momentum equation 

are divided by t∆ , and the discretized x and y-momentum equations are written: 

x-momentum 

( ) ( )
( )

* *# of faces # of faces # of faces
* 10 1

1 1 =1 3

ˆ ˆ

t t t f
ff

r r

f f f

uV uV u u
p y u y v x u J

t q
η η η

ρ
ρ µ

+∆

−

= =

 −  −   = + − −   ∆  
∑ ∑ ∑  

 

y-momentum 

( ) ( )
( )

* *# of faces # of faces # of faces
* 10 1

1 1 =1 3

ˆ ˆ

t t t f

ff

r r

f f f

vV vV v v
p x u y v x v J

t q
η η η

ρ
ρ µ

+∆

−

= =

 −  −  = − + − −  ∆  
∑ ∑ ∑  

 

Ultimately, a linear algebra problem will be solved to compute *u  and *v . The transition from 

discrete equations to a linear set of equations is clearer when we bring the unknown variables to 
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the left side and the constants to the right side. In the equations below, *u  and *v  have been 

rewritten as t tu +∆  and t tv +∆ . According to the derivation, it seems tu  and tv  should be the values 

of the velocity components from the previous time step. However, the ALE program is more 

stable when tu  and tv  are the values of the velocity components from the previous iteration 

within a given time step. Therefore tu  and tv  will be rewritten as 1iu −  and 1iv − . The pressure 

term, 1ip −  is the value of the pressure from the previous iteration within a given time step. tV  is 

the volume (area in 2d) of a control volume from the previous time step; t tV +∆  is the known 

volume (area in 2d) of a control volume at the current time.  

x-momentum 

( )
# of faces # of faces # of faces

1 1 10 1
0 0

1 =1 13

ˆ ˆ

f
t t t tt t tf f

t t t t i i

r r

f f f

u uV V
u u y v x u J p y u

t q t
η η η

ρ ρ
ρ µ

+∆ +∆+∆
+∆ +∆ − − −

= =

 − − − + = +  ∆ ∆ 
∑ ∑ ∑

 

y-momentum 

( )
# of faces # of faces # of faces

1 1 10 1
0 0

1 =1 13

ˆ ˆ

f
t t t tt t tf f

t t t t i i

r r

f f f

v vV V
v u y v x v J p x v

t q t
η η η

ρ ρ
ρ µ

+∆ +∆+∆
+∆ +∆ − − −

= =

 − − − + = − +  ∆ ∆ 
∑ ∑ ∑

 

7.5.4. Space Conservation Law: Calculating the Grid Velocities 

As stated in section 7.5.2, eq. (1-52) is not explicitly included in the equation set. 

Nevertheless, the grid velocity gu
�

 should satisfy the SCL, eq. (1-52). Using a specific example, 

this section aims to describe how the grid velocities at each face are computed. To compute the 

face velocities, we need two items: 

• A perpendicular vector to the face 

• The distance vector of the face center 

 

Finding the Perpendicular to the Face 

To find the perpendicular vector to the face, we will first need to construct a vector from the 

face. This face vector will be given the label 0η  in the initial configuration, and the label nη  at 

the new time level. The direction of this vector is not important. However, it is important that the 
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direction we choose be the same for the initial configuration and the new time step. The vector 

perpendicular to 0η  ( nη  in the new time level) will be labeled o

fS
�

 ( n

fS
�

 in the new time level). 

Given that 0η  is defined as 0 0

0 ( , )x y
η η

η = , o

fS
�

 will be defined as 0 0( , )o

fS y x
η η

= −
�

.  

Finding the Distance Vector of the Face Center 

To find the distance vector of the face center, one should subtract the coordinates of the face 

center in the initial configuration from the coordinates of the face center in the new 

configuration. Specifically, one would have, 

0n

f f fr r rδ = −
� � �

 

where n

fr
�

 is a position vector in the new configuration and 0

fr
�

 is a position vector in the initial 

configuration. Once these items have been computed, the equations for calculating the grid 

velocities can be invoked. The specific equations which are derived in (Demirdzic and Peric 

1988), are as follows: 

u component of grid velocity 
, ,

,

,2

o n

x f x f f

g f n

x f

S S x
u

S t

δ+
=

∆
 (1-60) 

v  component of grid velocity 
, ,

,

,2

o n

y f y f f

g f n

y f

S S y
v

S t

δ+
=

∆
 (1-61) 

 

The symbols used in (1-60) through (1-61) as well as those used in the example which follows 

are defined in Table 1. Figure 49 shows the physical interpretation of all variables used to 

calculate the grid velocity. The example will clarify all above concepts and demonstrate how to 

successfully use eqs. (1-60) and (1-61). 
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1f 1f
4f 4f

3f
2f

3f
2f

2

o

fS

3

o

f
S

4

o

fS

1

o

fS
1

n

fS

2

n

fS

4

n

fS

3

n

fS

x

y

x

y
1

o

fr
�

1

n

fr
�

 
Figure 49. Physical interpretation of o

fS , n

fS , o

fr
�

and n

fr
�

used to calculate ,g fu and 

,g fv  

  

Table 12: Definition of symbols used in the SCL calculations. 

Symbol Description 
0η , nη  Face vector in initial and new configuration, respectively 

o

fS
�

, n

fS
�

 
Vector that is perpendicular to the face vector (initial and new 

configuration, respectively) 

,

o

x fS , ,

o

y fS  
The x and y components of the perpendicular vector (initial 

configuration shown only) 

frδ
�

 
A distance vector that arises when the position of a face center 

moves to a new point in space in a given time period 

fxδ , fyδ  The x and y components of the distance vector, frδ
�

 

t∆  Time step size 
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Example Problem: Calculating Grid Velocities Using the SCL 

Consider the grid shown in Figure 50. Initially, cells V1 and V2 have an equal area of 15 units. 

During a one second interval, f3 is moved two units to the left. V1 has a final area of 9 and V2 

has a final area of 21. In this example, the calculation of all face velocities will be demonstrated. 

Since only f3 moves in this example, intuitively, we can guess that the only face with a velocity 

value will be f3.  

 

Cell Areas in Initial Configuration 
0

1 (5)(3) 15VA = =  
0

2 (5)(3) 15VA = =  

Cell Areas at New Time Level 

1 (3)(3) 9n

VA = =  

2 (7)(3) 21n

VA = =  

Figure 50. Case study of a grid undergoing internal deformation. Face 3 (f3), 

highlighted in green, is moved two units to the left in a time span of 1 second 

( 1t∆ = sec).  

 

The velocities will be computed for each face. 

 

Face 1 

The first component of the face 1 vector is calculated by subtracting the x-coordinate of one 

endpoint of face 1 from the x-coordinate of the other endpoint of face 1. The second component 

arises by repeating the procedure for the y-coordinates: 

1

0 ( , ) (0 0,3 0) (0,3)f x yη ηη = = − − =  

The vector perpendicular to 
1

0

fη  is obtained using the formula,  

1
( , ) (3,0)o

fS y xη η= − =
�

 

Since the face remains stationary during the time interval, the face vector and perpendicular 

vector in the new configuration have the same values as in the initial configuration. Note the 

change in notation below on these vectors in the new configuration: 

(0,0) (5,0) (10,0)

(10,3)(5,3)(0,3)

V2

V5

f3 f6 V6

f7

V7

f5

(5, 1.5)
V1

f2

V4

V3 f1

f4

V8

∆t = 1sec

(0,0) (3,0) (10,0)

(10,3)(3,3)(0,3)

V2

V5

f3 f6 V6

f7

V7

f5

(3, 1.5)V1

f2

V4

V3 f1

f4

V8
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1
( , ) (0 0,3 0) (0,3)n

f x yη ηη = = − − =  

1
( , ) (3,0)n

fS y xη η= − =
�

 

 

The distance vector arising from a change in the position of the face 1 center is computed as: 

( ) ( ) ( )
1 1 1

0 0,1.5 0,1.5 0,0n

f f fr r rδ = − = − =
� � �

 

 

Having all required items, we are now ready to invoke eqs. (1-60) and (1-61) to compute the face 

velocity.  

, ,

,

,

3 3 0
0

2 2(3) 1

o n

x f x f f

g f n

x f

S S x
u

S t

δ+ +
= = =

∆
;    

, ,

,

,

0 0 0
0

2 2(0) 1

o n

y f y f f

g f n

y f

S S y
v

S t

δ+ +
= = =

∆
 

We must be careful when coding so that the denominator does not become zero as it has in this 

simple example. If it does, simply make that velocity component zero. 

 

For face 1, 
1, 0g fu = ; 

1, 0g fv = . This face has zero velocity. 

 

Face 2 

2

0 (5 0,0 0) (5,0) (0, 5)o

fSη = − − = ⇒ = −
�

 

2
(3 0,0 0) (3,0) (0, 3)n n

fSη = − − = ⇒ = −
�

 

0

2 2 2 (1.5 2.5,0 0) ( 1,0)n

f f fr r rδ = − = − − = −
� � �

 

Let’s review:       
2

(0, 5)
o

fS = −

�

  
2

(0, 3)
n

fS = −

�

  
2

( 1,0)frδ = −
�

 

 

2,

0 0 1
0

2(0) 1
g fu

+ − = = 
 

; 
2,

5 3 0
0

2( 3) 1
g fv

− + −  = = −  
 

 

Though the size of face 2 shrunk, both the u and v components of the velocity vector of face 2 

are zero. The face velocity is based on how the face moves in the direction of the normal vector. 

From the diagram, we can see that the face did not move in the direction of 
2f

S
�

.  

Face 3 
0 (0,3)η = ⇒  

3
(3,0)o

fS =
�

 

(0,3)nη = ⇒
3

(3,0)n

fS =
�

 

3 3 3

0 (3 5,1.5 1.5) ( 2,0)n

f f fr r rδ = − = − − = −
� � �

 

Let’s review:          
3

(3,0)o

fS =
�

         
3

(3,0)n

fS =
�

            
3

( 2,0)frδ = −
�
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3,

3 3 2
2

2(3) 1
g fu

+ − = = − 
 

 
3,

0 0 0
0

2(0) 1
g fv

+  = = 
 

 

 

Velocity of f3 = (-2,0) 

 

Based on our findings for f1 and f2, we can conclude that all other faces should have a velocity 

of zero.  

Check the Solution 

We can check our results by calculating the fluid continuity for both control volumes. For an 

incompressible fluid, continuity is written as 

u q∇⋅ =
�

, 

where u∇⋅
�

 is the divergence of the velocity field and q is a measure of volume change in the 

control volume. Integrating both sides of the equation over a control volume yields 

CV CV

u dV q dV∇⋅ =∫ ∫
�

 

( )
# of faces

1

ˆ x

f yCV S

n
u dV u n dS u v

n=

 
⇒ ∇⋅ ⇒ ⋅ ⇒  

 
∑∫ ∫

� � �
�  (1-62) 

where ( , )T

x yn n  is normal vector to the face directed out of the control volume. Equation (1-62) 

should be evaluated for all faces. However, since f3 is the only face that had a velocity, the 

computation is: 

Volume 1 (V1) 

( 2,0)u = −
�

; (3,0)n =
�

 

( )
3

2 0 6
0

u n
 

⋅ = − = − 
 

� �
 

 

Volume 2 (V2) 

( 2,0)u = −
�

; ( 3,0)n = −
�

 

 ( )
3

2 0 6
0

u n
− 

⋅ = − = 
 

� �
 

This matches the change in area experienced by the volumes. V1 decreased by 6 and V2 

increased by 6; compare 0

1VA  to 1

n

VA  and 0

2VA  to 2

n

VA .  
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Additional case studies invoking the SCL are given in the Appendix.  

 

7.5.5. Pressure Correction in the ALE Framework 

The overall solution approach for solving fluid flow in an ALE reference frame is, 

 

• Compute the grid velocities 

• Solve the x and y momentum equations using the relative velocity 

• Solve the pressure correction equation 

 

Having demonstrated how to calculate the grid velocities, and having presented the momentum 

equations written in an ALE reference frame, we are now in a position to address how the 

pressure correction equation is modified in the ALE reference frame. To derive a modified 

pressure correction let us compare the continuity equation written in the Eulerian reference frame 

to the continuity equation written in the ALE reference frame.  

 

Continuity Equation 

           Eulerian Reference Frame ALE Reference Frame 

"Correct"
Velocity

ˆ 0f

A

u n dA⋅ =∫
� �

���
 

  (1-63) 
CV "Correct"

Velocity

ˆ( ) 0f g

A

d
dV u u n dA

dt
+ − ⋅ =∫ ∫
� � �

�������  
(1-64) 

 

Let us also recall the expression for the “correct” velocity, fu
�

, defined in section 7.4.4 and 

repeated here for convenience:  

* 'f f fu u u= +
� � �

 (1-65) 

where the subscript f has been appended to each term to indicate fluid velocities (as opposed to 

grid velocities). The velocity entity used in the continuity eq. (1-49) was indeed fu
�

. Therefore, 

to obtain the “correct” velocity in the ALE reference frame, we simply subtract the grid velocity, 

gu
�

 from the fluid velocity, fu
�

: 

*ˆ 'r f g f f gu u u u u u= − = + −
� � � � � �
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The correct velocity in the ALE reference frame has been given the notation ˆ
ru
�

, where r 

indicates relative velocity between the fluid and the grid. With the help of eq. (1-43), the new 

components of the correct velocity field are: 

( ) ( )*

0 11
ˆ ' ' ' 'r f N S gu u y p p y p p u

J
η ξ

κ
µ −

 = − − − − −   (1-66) 

( ) ( )*

0 11
ˆ ' ' ' 'r f N S gv v x p p x p p v

J
η ξ

κ
µ −

 = − − − + − −   (1-67) 

 

When the grid velocity is zero everywhere, gu  and gv  are zero, and hence the original formula 

for the correct velocity is preserved. These components of the correct velocity can now be 

substituted into eq. (1-64). First, let us rewrite the second term of eq. (1-64) as: 

ˆˆ
r

A

u n dA⋅∫
� �

 

Substituting the components in eqs. (1-66) and (1-67) into the above expression yields:  

( ) ( ) 2 2ˆ ˆ 1 /r r

A

y
u v x y dA

x

η
η η

η

 
⋅ − + − 

∫�  

 

Which eventually leads to 

( )
# of faces

=1

ˆ ˆ
f

r r

f

q u y v xη η= − −∑  (1-68) 

 

Of note, eq. (1-68) is completely analogous to eq. (1-49). Substituting (1-66) and (1-67) into 

eq. (1-68) eventually yields: 

( ) ( )
# of faces

* * 10 1

=1 3

' '
f

f g f g

f

p p
q y u u x v v J

q
η η

κ
µ

−
  − 

= − − − − −  
   

∑  (1-69) 

 

To complete the formulation for the pressure correction equation in the ALE reference frame, we 

need to address the first term in eq. (1-64). 
CV

d
dV

dt ∫  will be discretized as follows: 
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0

CV

nd V V
dV

dt t

−
⇒

∆∫  (1-70) 

 
nV  and 0V  are the current and old volumes, respectively, of a particular control volume. In two-

dimensions, V  is the area of the control volume. t∆  is the time step. The final form of the 

pressure correction equation in the ALE reference frame can therefore be written as: 

Pressure Correction Equation in the ALE Reference Frame  

( ) ( )
0 # of faces

* * 10 1

=1 3

' '
0

f
n

f g f g

f

p pV V
y u u x v v J

t q
η η

κ
µ

−
  −−  

− − − − − =  ∆    
∑  (1-71) 

 

By isolating the unknown variable 'p  on the left side of the equation, and bringing known 

variables to the right, eq. (1-71) can be rewritten as:  

 

( ) ( )
0# of faces # of faces

1 * *0 1

=1 13

' '
f

n

f g f g

f f

p p V V
J y u u x v v

q t
η η

κ
µ

−

=

 − − = − − − −    ∆ 
∑ ∑  

 

The overall solution strategy for solving fluid motion in a deformable grid is given in Figure 51. 

 

 

 

 



165 

 

 
 

ALE Solution Strategy 

Objective: To solve fluid flow problems in a moving grid.  

 

Required Steps: 

1. Solve flow field on undeformed grid 

2. Compute boundary deformation and fluid grid displacement to solve 0

fS  and n

fS  

3. Calculate cell face velocities, gu
�

 using eq. 20 of (Demirdzic and Peric 1988): 

, ,

,

,2

o n

x f x f f

g f n

x f

S S x
u

S t

δ+
=

∆
 ;   

, ,

,

,2

o n

y f y f f

g f n

y f

S S y
v

S t

δ+
=

∆
 

4. Solve the x and y momentum equations for *u  and *v  using the current value of 

fu
�

 (where fu
�

is the fluid velocity) and pressure as well as gu
�

 from above.  

x-momentum:  

( ) ( ) ( )1 1 * *

cv cv cv cv

i i

x f g

u
dV p dV u u u dV u dV

t
ρ ρ µ− −∂

= − ∇ − − ⋅ ∇ + ∇ ⋅ ∇
∂∫ ∫ ∫ ∫

� �
 

y-momentum: 

( ) ( ) ( )1 1 * *

cv cv cv cv

i i

y f g

v
dV p dV u u v dV v dV

t
ρ ρ µ− −∂

= − ∇ − − ⋅ ∇ + ∇⋅ ∇
∂∫ ∫ ∫ ∫

� �
 

5. Solve the pressure correction equation for  'p : 

( ) ( )
0# of faces # of faces

1 * *0 1

=1 13

' '
f

n

f g f g

f f

p p V V
J y u u x v v

q t
η η

κ
µ

−

=

 − − = − − − −    ∆ 
∑ ∑  

6. Update pressure and velocity fields  

7. Repeat steps 4 through 6 until convergence 

8. Repeat steps 2 through 7 for all deformation steps 

Figure 51. Overview of the ALE solution strategy 
 

The appendix includes a validation study of my ALE program by presenting my results alongside 

results obtained in Fluent. Also in the appendix is a step by step example of the ALE method in a 

one-cell grid. 

7.6. Mesh/Grid Motion for a Fluid Domain 

7.6.1. Overview and Motivation 

A mesh (computational grid) will deform if one or more of its boundaries are set in motion. 

In the brain model, the fluid boundary will move due to brain tissue motion along the fluid-tissue 

interface. In our discussion of ALE, it was implicit that a particular method governed the internal 

motion of the fluid grid. This section describes the actual method used to govern fluid mesh 
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motion. Several methods for fluid grid motion have been proposed (Hughes, Liu et al. 1981; 

Nomura and Hughes 1992; Nitikitpaiboon and Bathe 1993; Blom 2000; Cao, Huang et al. 2002; 

Zhao and Forhad 2003; Tan, Tang et al. 2006). Some of these methods utilize distance functions 

while others incorporate spring-based stiffness functions to maintain fluid grid integrity. These 

methods are well suited when applied to Cartesian or curvilinear grids. However, unstructured 

meshes (as encountered exclusively in this dissertation) present a limitation to these methods, 

requiring a more general formulation. For example, Souli and Zolesio (2001) proposed an 

elasticity model to govern fluid mesh motion. Similar to Souli and Zolesio’s method, our 

formulation uses solid elasticity equations to govern fluid mesh motion. Our method results in a 

favorable distribution of fluid mesh displacement such that deformations occurring at the brain-

CSF interface do not lead to significant mesh distortion or element collapse. The governing 

equation for fluid mesh motion is given in (1-72).  

( ) ( )20 G d G dλ= ∇ + + ∇ ∇ ⋅
� �

 (1-72) 

 

In a two-dimensional analysis, eq. (1-72) takes the following form:  

( )

( )

2

2

0

0

G G
x y

G G
x y

α β
α λ

α β
β λ

 ∂ ∂
= ∇ + + ∇ + ∂ ∂ 

 ∂ ∂
= ∇ + + ∇ + ∂ ∂ 

 (1-73) 

In eq. (1-72) and (1-73), G  and λ  are Lame constants and d
�

 is the displacement vector. In 2d, 

d
�

 has two components, α  and β , as indicated in eq. (1-73). With relation (1-74) 

v d
x y

α β
ε

∂ ∂
= ∇⋅ = +

∂ ∂

�
, (1-74) 

 

eq. (1-72) is equivalent to 

( )2

v0 G d Gλ ε= ∇ + + ∇
�

, (1-75) 
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where vε  is the volumetric strain. The value of G  affects the shearing motion of the internal 

fluid grid, whereas λ  affects the compressibility of the fluid control volumes. For the fluid grid, 

G  is set to 1,000 N/m
2
. λ  can be determined from G  and the Poisson ratio, v  (set to 0.3 for the 

fluid grid) as shown in eq. (1-76). 

2

1 2

Gv

v
λ =

−
 (1-76) 

The discretized form of eq. (1-75) is described next. 

7.6.2. Discretization of Governing Equations 

The discretized form of eq. (1-75) is obtained by integrating each term over a control 

volume. In eq. (1-77), G  and λ  are assumed constant and removed from the integral. 

( )2

v0
CV CV

G d dV G dVλ ε= ∇ + + ∇∫ ∫
�

 (1-77) 

 

Because a collocated discretization scheme is adopted, d
�

 and vε  are calculated at the control 

volume center. However, the discretization will invoke the displacements (and hence 

contributions to the volumetric strain) at the face of a control volume. Therefore, the bar over the 

volumetric strain term in eq. (1-77) indicates that the average displacement at each face will be 

used to calculate the volumetric strain for a given control volume. As illustrated in Figure 52, the 

displacements of adjacent cell centers are averaged to calculate the displacement at the face. 
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1 2

1 2

2

2

d

α α
α
β β β

+ 
  

= =    +    
 

�
 

Figure 52. Illustration and mathematical formula for calculating the 

displacement at the face of a control volume. 

 

Gauss theorem is applied to rewrite eq. (1-77) as: 

 

( ) v
ˆ ˆ0

A A

G d n dA G n dAλ ε= ∇ ⋅ + + ⋅∫ ∫
� � �

� �  (1-78) 

 

n̂
�

 is a unit vector perpendicular to a control volume face and directed out of the control volume. 

When using the outward normal in Gauss theorem, we imply that material is flowing out of a 

domain. If a solid control volume decreases in size, its volumetric strain is defined as negative; 

we can think of the solid material as leaving the domain. Thus, in the derivations to follow, vε  is 

assumed to be a negative value. We will now examine each term in eq. (1-78).  

The Volumetric Strain Term 

The average volumetric strain (the contribution to the volumetric strain at a face), vε  can be 

written 

v d
x y

α β
ε

∂ ∂
= + = ∇ ⋅

∂ ∂

�
 

The average displacement vector d
�

 is calculated as in Figure 52. The change in size of a control 

volume is governed by the following relation: 

v

cv

d dVε = ∇⋅∫
�

 (1-79) 

Performing Gauss theorem on (1-79) and using the relation ( )ˆ , /
face

n y x dAη η= − − ∫
�

�  leads to: 

d

eξ
�

eη
�1

1

α
β

 
 
 

2

2

α
β

 
 
 
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# of faces

v

1

ˆ
f

fface

d n dA d nε
=

= ⋅ = ⋅∑∫
� �� �
� ,   where  d

α
β

 
=  
 

�
;    

y
n

x

η

η

 
= − − 

�
 

 

(1-80) 

Here again, the bars have been introduced to indicate average values are calculated at the face. 

Carrying out the inner product (dot product) in eq. (1-80), we have: 

    ( )
# of faces # of faces

v

1 1f f

y
y x

x

η
η η

η

α β ε α β
= =

 
− ⋅ ⇒ = − − − 
∑ ∑  (1-81) 

 

According to eq. (1-77), we need the gradient of the volumetric strain, vε . We apply Gauss 

theorem and obtain: 

v v

cv

ˆ

Face

dV n dAε ε∇ =∫ ∫
�

� , 

 

Because we are assuming vε  to be negative, in what follows, we will use the opposite value 

specified in (1-81). Again using the relation, ( )ˆ , /
face

n y x dAη η= − − ∫
�

� , we have for a given face: 

( ) ( )( ) ( )v 1 1
y y xy y y

y x y x
x x x x y x

η η ηη η η
η η η η

η η η η η η

α β
ε α β α β

α β

  − −−        − = − − = − =     − −   −        
 

 
2The Diffusion Term, G d∇  

The discretized form of the diffusion term was derived in section 7.4.3: 

1 2

# of faces

1 1
1

f

f

q q
G

J J
ξ ηφ φ

− −
=

 
 − ∆ − ∆
  

∑ , 

where 1q x yξ ξ= +  and 2q x x y yξ η ξ η= + . Substituting the above relation with the approximated 

diffusion term, the final discretized form of the solid deformation equations are: 

( ) ( ) ( )
# of faces # of faces

0 1 1

1 13

0

f
f

f f

G J G y y x
q

η η η

α α
λ α β−

= =

 −
 = − − + −
  

∑ ∑  (1-82) 

( ) ( ) ( )
# of faces # of faces

0 1 1

1 13

0

f
f

f f

G J G x y x
q

η η η

β β
λ α β−

= =

 −
 = − + + −
  

∑ ∑  (1-83) 
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However, it is more convenient for programming to rewrite eqs. (1-82)-(1-83) with opposite 

signs. This is easily accomplished by multiplying each term by -1:  

( ) ( ) ( )
# of faces # of faces

0 1 1

1 13

0

f
f

f f

G J G y y x
q

η η η

α α
λ α β−

= =

 −
 = + + −
  

∑ ∑  (1-84) 

( ) ( ) ( )
# of faces # of faces

0 1 1

1 13

0

f
f

f f

G J G x y x
q

η η η

β β
λ α β−

= =

 −
 = − + −
  

∑ ∑  (1-85) 

 

We can write eqs. (1-84) and (1-85) more explicitly: 

( )

( ) [ ] [ ] [ ] [ ]{ }

# of faces
0 1 1

1 3

# of faces
2 2

1 2 1 2

1

0

0.5 0.5 0.5 0.5

f

f

f

G J
q

G y y x y x yη η η η η η

α α

λ α α β β

−

=

=

 −
 = +
  

+ + − −

∑

∑
 (1-86) 

( )

( ) [ ] [ ] [ ] [ ]{ }

# of faces
0 1 1

1 3

# of faces
2 2

1 2 1 2

1

0

0.5 0.5 0.5 0.5

f

f

f

G J
q

G x y x y x xη η η η η η

β β

λ α α β β

−

=

=

 −
 = +
  

+ − − + +

∑

∑
 (1-87) 

 

In eqs. (1-86) and (1-87), the average values, α  and β , have been replaced by the relations 

given in Figure 52. Equations (1-86) and (1-87) lead to a linear algebra problem which computes 

the displacement of each control volume. The new grid positions are then updated by averaging 

the displacements of neighboring cell centers. 

7.7. Volumetric Strain as an Input/Boundary Condition for Solid Mechanics 

7.7.1. Overview and Motivation 

Typically, solid mechanics problems utilize displacement, force, or pressure conditions on the 

boundary of the solid body. For the vasculature-brain tissue interaction problem, we implement a 

volumetric strain boundary condition to simulate the effect of expanding cerebral vessels on the 

deformation of the surrounding brain tissue. To demonstrate the blood vessel-brain tissue 

interaction problem, consider a distensible tube surrounded by a deformable solid body with 
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pressure, Solidp  as in Figure 53. As fluid (or blood) pressure, Tubep  in the tube increases relative 

to Solidp , the tube expands. In turn, the surrounding solid body deforms. One may therefore ask: 

To what extent is the solid body deformed, and how does one go about computing the 

deformation? This section seeks to address this question by presenting the governing equations 

for vessel dynamics and brain tissue motion. 

Tubep

Solidp

 

Solidp

Tubep↑

 
A B 

Figure 53. Frame A: Tube is at resting state and there is no solid body deformation. Frame 

B: Differences between fluid (or blood) pressure and surrounding increases and the tube 

expands. The tube expansion causes the surrounding solid body at pressure Solidp  to 

deform. 

 

7.7.2. Blood Flow and Vessel Expansion Formulation 

In our model of cerebral vasculature, each vessel is represented as a cylinder with a fixed length. 

Given these assumptions, eqs. (1-88)-(1-90) are applied to the model to compute blood pressure, 

blood flow, and vessel cross-sectional area at discrete time points during the cardiac cycle. 

Equation (1-88) is a mass conservation equation. Equation (1-89) is a simplified momentum 

balance for the vessel, and eq. (1-90) governs vessel expansion. The description of each symbol 

in eqs. (1-88)-(1-90) is provided in Table 13.  

1n n

vessel vessel
vessel in out

A A
l f f

t

−−
= −

∆
 (1-88) 

( )2
1

8 vessel
in out out

n

vessel

l
p p f

A

πµ
−

− =  (1-89) 
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n o

vessel vessel
vessel brain vessel o

vessel

A A
p p E

A

 −
− =  

 
 (1-90) 

 

Table 13: Definition of symbols in eqs. (1-88)-(1-90) 
Symbol Meaning 

vessell  Vessel length 

1,n n

vessel vesselA A −
 Vessel cross-sectional area at current time and previous time, respectively 

o

vesselA  Vessel cross-sectional area at zero transmural pressure 

t∆  Time step size 

,in outf f  Flow into and out of a given tube, respectively 

,in outp p  Pressure at the inlet and outlet of a given tube, respectively 

µ  Blood viscosity 

brainp  Brain tissue pressure 

vesselp  Vessel lumen pressure; defined by the average of inp  and outp  

vesselE  Vessel stiffness 

 

To illustrate how these equations can be applied to a vasculature network, consider the small 

vessel network shown in Figure 54. Labels P1, P2, and P3 stand for pressures at nodes 1, 2, and 

3, respectively. Labels v1, v2, and v3 refer to specific segments (or vessels) of the network. In 

such a system, choices can be made regarding the boundary conditions. For example, one could 

choose to set the inflow at P1 and the pressures at P3 and P4. Alternatively, one could specify the 

inlet and outlet pressures and solve for all flows in the network. The latter is chosen for the 

example to follow. 

 
Figure 54. Small network to demonstrate blood flow and 

vessel expansion methodology.  

 

For the example to follow, 0.5 0.5
2

in out
vessel in out

p p
p p p

+
= = +   

P1 P2

P3

P4

v1

v2

v3
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Example 

In Figure 54, blood enters at P1 and exits the network at P3 and P4. The pressures are specified 

at P1, P3, and P4. In this example, there are 10 unknowns: 1

n

vA , 2

n

vA , 3

n

vA , _ 1in vf , _ 1out vf , _ 2in vf , 

_ 2out vf , _ 3in vf , _ 3in vf , 2p . The constants, material parameters, boundary conditions, and initial 

conditions are: 

 

Constants 

Length of vessel 1: l_v1=0.02m 

Length of vessel 2: l_v2=0.015m 

Length of vessel 3: l_v3=0.015m 

 

Material parameters 

Blood viscosity: mu=0.003 kg/ms 

Young’s  Modulus of blood vessel: E=1.6e6 N/m
2 

 

Boundary conditions 

Pbrain=10,000 N/m
2 

P1=16,000 N/m
2
 (~120 mmHg) 

P3=13,333 N/m
2
 (~100 mmHg) 

P4=13,333 N/m
2
 (~100 mmHg) 

 

Initial conditions 

Cross-sectional area of tube 1: A_v1 =  2(0.005 ) 7.854 5m eπ ≅ −  

Cross-sectional area of tube 2: A_v2 =  2(0.004 ) 5.027 5m eπ ≅ −  

Cross-sectional area of tube 3: A_v3 =  2(0.004 ) 5.027 5m eπ = −  

 

The equations are set up as follows (unknowns have been brought to the left hand side; known 

values are on the right hand side): 

Vessel 1 

11 1
1 _ 1 _ 1 1

n nv v
v in v out v v

l l
A f f A

t t

−− + =
∆ ∆

 

( )
1

_ 1 2 12
1

1

8 v
out v

n

v

l
f p p

A

πµ
−

− − = −  

1 2 1

1

0.5 0.5n

v braino

v

E
A p p p E

A
− + = − + −  

 

Vessel 2 

12 2
2 _ 2 _ 2 2

n nv v
v in v out v v

l l
A f f A

t t

−− + =
∆ ∆
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( )
2

_ 2 2 32
1

2

8 v
out v

n

v

l
f p p

A

πµ
−

− + =  

2 2 3

2

0.5 0.5n

v braino

v

E
A p p p E

A
− + = − + −  

 

Vessel 3 

13 3
3 _ 3 _ 3 3

n nv v
v in v out v v

l l
A f f A

t t

−− + =
∆ ∆

 

( )
3

_ 3 2 42
1

3

8 v
out v

n

v

l
f p p

A

πµ
−

− + =  

3 2 4

3

0.5 0.5n

v braino

v

E
A p p p E

A
− + = − + −  

 

As one can see, there are only 9 equations above. However, we previously stated that there are 

10 unknowns. Therefore, we need an additional equation. It is the tube junction law equation: 

_ 1 _ 2 _ 3 _ 1 _ 2 _ 3 0out v in v in v out v in v in vf f f f f f= + ⇒ − − =  

This equation states that the flux out of vessel 1 is equal to the combined flux entering vessels 2 

and 3. The equations can be put into matrix format and solved in Matlab. The Matlab script and 

the results for the parameters listed in the Matlab file are given below.  

clc 
clear all 
format long e 
 
l_v1=0.02; %[m] 
l_v2=0.015; %[m] 
l_v3=0.015; %[m] 
mu=0.003; %[kg/(m*s)] 
E = 1.6e6;%[N/(m^2)] 
A_v1= pi*(0.005^2); %[m^2] 
A_v2= pi*(0.004^2); %[m^2] 
A_v3= pi*(0.004^2); %[m^2] 
p_star = 10000; %[N/(m^2)] 
deltaT = 0.25; 
p1 = 16000; 
p3 = 13333; 
p4 = 13333; 
 
Matrix = [l_v1/deltaT 0 0 -1 1 0 0 0 0 0 
           0 0 0 0 -8*pi*mu*l_v1/((A_v1)^2) 0 0 0 0  -1 
          -E/A_v1 0 0 0 0 0 0 0 0 0.5 
          0 l_v2/deltaT 0 0 0 -1 1 0 0 0 
          0 0 0 0 0 0 -8*pi*mu*l_v2/((A_v2)^2) 0 0    1 
          0 -E/A_v2 0 0 0 0 0 0 0 0.5 
          0 0 l_v3/deltaT 0 0 0 0 -1 1 0 
          0 0 0 0 0 0 0 0 -8*pi*mu*l_v3/((A_v3)^2)    1 
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          0 0 -E/A_v3 0 0 0 0 0 0  0.5 
          0   0  0  0 1 -1 0 -1 0 0]; 
    
TargetVector = [l_v1*A_v1/deltaT; -p1; -0.5*p1+p_star-E; l_v2*A_v2/deltaT; p3; -
0.5*p3+p_star-E; l_v3*A_v3/deltaT; p4; -0.5*p4+p_star-E; 0]; 
 
Result = Matrix\TargetVector 

 

 1

n

vA = 7.880016828035806e-005 

 2

n

vA =5.039021456139354e-005 

 3

n

vA = 5.039021456139354e-005 

_ 1in vf = 5.695415938288823e-003 

_ 1out vf = 5.695395110133574e-003 

_ 2in vf =2.847697555066784e-003 

_ 2out vf = 2.847690071140546e-003 

_ 3in vf =2.847697555066784e-003 

_ 3out vf = 2.847690071140546e-003 

2p  = 1.460769236279424e+004 

 

These results are reasonable. All vessels expanded slightly, and as a result all outflow values for 

a given tube are a little less than what flowed into that tube. If the vessel stiffness were 

decreased, the expansion of the tubes would be larger and the outflow of each vessel would 

decrease. 

7.7.3. The Relationship between a Vessel and a Brain Tissue Control Volume 

Because the vessel lengths are constant throughout the simulation, the change in volume of a 

particular vessel, vesselV∆ , is: 

( )1n n

vesselV l A A −∆ = −  (1-91) 

 

The vessel volume change is then used to compute the volumetric strain of a particular control 

volume of the brain mesh using eq. (1-92): 

v[b.c.v.]
Volume[b.c.v.]

vesselV
ε

∆
=  (1-92) 
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b.c.v. stands for brain control volume. In a 2d application, Volume[b.c.v.]  is the cell area. In 

general, the volume change of several vessels contributes to a particular brain control volume. As 

such, the equation above is placed in a program loop to accommodate contributions from all 

vessels contained in a given control volume. The general formula is given below. 

v v[b.c.v.] [b.c.v.]
Volume[b.c.v.]

vesselV
ε ε

∆
= +  

The volume change of a given blood vessel will contribute to the volumetric strain of a particular 

brain control volume if the center of the vessel lies in that particular control volume. In other 

words, if the center of vessel i lies in the space defined by control volume j, then the volume 

change of vessel i will contribute to the volumetric strain of control volume j. To better illustrate, 

Figure 55 considers a case in which the center of a blood vessel lies in one of the brain tissue 

control volumes. Since there is only one blood vessel in V5, and the center of the vessel lies 

within V5, the volume change of the vessel will lead to volumetric strain in V5.  

 
Figure 55. A computational mesh which contains one blood 

vessel. The center of the vessel (black dot) lies in the control 

volume labeled V5. Thus, when the vessel expands, its volume 

change will contribute to the volumetric strain of V5.  
 

7.7.4. Linking the Vasculature Mesh with the Brain Mesh 

Because the meshes are developed separately from one another, the vasculature mesh is 

completely independent of the brain mesh. To associate the volume change of a vessel with a 

particular brain control volume, a search algorithm was developed to link individual vessels with 

V1

V2

V3

V4

V5

V6

V7

V8

V9
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brain control volumes in which the vessel’s center resided. Equation (1-93) was used to calculate 

the vessel’s center with vessel begin point 1 1( , )x y  and end point 2 2( , )x y : 

1 2 1 2Vessel Center ,
2 2

x x y y+ + =  
 

 (1-93) 

  

A search was then performed over all brain control volumes to determine whether the 

vessel’s center resided in the currently tested brain control volume. The control volumes are 

labeled 1 through high, where high is the total number of internal control volumes. The center of 

vessel 1 is tested first to see whether it lies in control volume 1 of the brain mesh. To accomplish 

this, the control volume was divided into upper and lower triangles as shown in Figure 56.  

L

U

ξ

η

Vessel 

center

 
Figure 56. A sample quadrilateral control volume (center cell) that has 

been divided into an upper (U) and a lower (L) triangle. If the vessel 

center lies in the control volume, ξ  and η  will be greater or equal to 

zero, and the sum of ξ  and η  will be less than or equal to one. 

Incidentally, if the brain mesh were to contain triangular elements as 

opposed to quadrilaterals the search would be easier because the 

search space would be a triangle at the outset. 

 

If the vessel center did not lie in the upper triangle, the lower triangle was then tested. If it 

was determined that the vessel center did not lie in either the upper or lower triangle, the vessel 

center was tested in the next higher labeled brain control volume. This search algorithm uses the 

same math used to generate random points in the vasculature generation algorithm. The math is 

thoroughly described in (Sweetman, Linninger et al. 2010) but also provided in the Appendix for 
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ease of reference. In the search algorithm, instead of specifying ξ  and η  to generate a random 

point within a given control volume, we solve for ξ  and η . The algorithm begins by setting one 

of the control volume vertices as the origin while the other two points are used to establish two 

vectors which are parameterized in ξ  and η . If the vessel center lies in the control volume, ξ  

and η  will be greater or equal to zero, and the sum of ξ  and η  will be less than or equal to one. 

This method requires a linear algebra problem with the following components: 

 Coordinate of Vessel Center  Coordinate of Origin
Target Vector=

 Coordinate of Vessel Center  Coordinate of Origin

x x

y y

− 
 − 

 

1 2

1 2

Jacobian
x x

y y

V V

V V

 
=  
 

 

7.7.5. Computing the Deformation of the Grid with Volumetric Strain as Input 

This section includes an example of how to calculate brain tissue displacement when the 

volumetric strains in all control volumes are known. Before introducing the example problem, 

the governing equation for solid body motion due to volumetric strain input is presented.  

The governing equation for volumetric strain input is similar to that used in section 7.6. We 

begin by reintroducing eq. (1-75), written again here for convenience. 

 

( )2

v0 G d Gλ ε= ∇ + + ∇
�

 (1-94) 

 

Integrating each term over a control volume we have: 

 

( )2

v0
CV CV

G d dV G dVλ ε= ∇ + + ∇∫ ∫
�

 (1-95) 

 

Applying Gauss theorem leads to: 

( ) v
ˆ ˆ0

A A

G d n dA G n dAλ ε= ∇ ⋅ + +∫ ∫
� � �

 (1-96) 
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As in section 7.6, vε  is treated as a negative-valued scalar in the derivation. Let us therefore 

replace vε  with vε−   Eq. (1-96) leads to two equations for the 2D case: 

( ) ( ) ( )2 2 2 2

v0 1 / /
A A

y
G x y dA G y x y dA

x

η
η η η η η

η

α λ ε
 

= ∇ ⋅ − + + + − − + − 
∫ ∫  (1-97) 

( ) ( ) ( )2 2 2 2

v0 1 / /
A A

y
G x y dA G x x y dA

x

η
η η η η η

η

β λ ε
 

= ∇ ⋅ − + + + − + − 
∫ ∫  (1-98) 

 

We can distribute the minus sign out of the integral to arrive at: 

 

( ) ( )2 2 2 2

v0 / /
A A

y
G x y dA G y x y dA

x

η
η η η η η

η

α λ ε
 

= − ∇ ⋅ + + + + − 
∫ ∫  (1-99) 

( ) ( )2 2 2 2

v0 / /
A A

y
G x y dA G x x y dA

x

η
η η η η η

η

β λ ε
 

= − ∇ ⋅ + − + + − 
∫ ∫  (1-100) 

 

For the example that follows, it is easier to rewrite eqs. (1-99) and (1-100) as: 

( ) ( )2 2 2 2

v0 / /
A A

y
G x y dA G y x y dA

x

η
η η η η η

η

α λ ε
 

= ∇ ⋅ + − + + − 
∫ ∫  (1-101) 

( ) ( )2 2 2 2

v0 / /
A A

y
G x y dA G x x y dA

x

η
η η η η η

η

β λ ε
 

= ∇ ⋅ + + + + − 
∫ ∫  (1-102) 

 

Finally, in generalized coordinates, the discretized equations are: 

( ) ( )
# of faces # of faces

10 1
v

1 13

0

f
f

f f

G J G y
q

η

α α
λ ε−

= =

−
= − +∑ ∑  (1-103) 

( ) ( )
# of faces # of faces

10 1
v

1 13

0

f
f

f f

G J G x
q

η

β β
λ ε−

= =

−
= + +∑ ∑  (1-104) 
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Example  

This example shows how to calculate solid body deformation due to volumetric strain input. 

Figure 57 shows the computational grid.  
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f3

f4

f6

f7

f9

f8

f10

f11

f12

 
Figure 57. Computational grid used for calculating solid body 

deformation due to volumetric strain input. The control volumes are 

labeled V1 through V12 with the control volume center indicated by a 

black dot. Grid faces are labeled in red, f1 through f12. The diagonal 

lines along f1, f5, f6, and f9 indicate the body is fixed on those faces. 

 

Description of Boundary Conditions 

• Faces 1, 5, 6, and 9 are fixed. As a consequence, the displacement vector for volumes 5, 

6, 7, and 8 are set to zero (see boundary equations later on in this example). 

 

• Faces 4, 12, 11, and 10 are free to be displaced. The displacement vector for volumes 12, 

11, 10, and 9 will be set as follows: 

The displacement vector of volume 12 is set equal to the displacement vector of 

volume 1. 

The displacement vector of volume 11 and volume 10 are set equal to the 

displacement vector of volume 3. 

The displacement vector of volume 9 is set equal to the displacement vector of 

volume 4. 

 

Though different choices could be made regarding the displacement of vols 12, 11, 

10, and 9, I believe this is probably the simplest choice. 

 

• In this problem, only volume 3 will have a volumetric strain input—its value is 0.4. All 

other volumes will have zero volumetric strain input. 

 

Metrics Table 

It is convenient to set-up a table that includes the face and cell metrics. Recall that 2 2

3q x yξ ξ= +  

and 1J x y x yξ η η ξ
− = − .  
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Volume Face xξ  yξ  xη  yη  
3q  1J −  

1 

f1 0.5 0 0 1 0.25 0.5 

f2 0 1 -1 0 1 1 

f3 -1 0 0 -1 1 1 

f4 0 -0.5 1 0 0.25 0.5 

 

2 

f5 0.5 0 0 1 0.25 0.5 

f6 0 0.5 -1 0 0.25 0.5 

f7 -1 0 0 -1 1 1 

f2 0 -1 1 0 1 1 

 

3 

f3 1 0 0 1 1 1 

f8 0 1 -1 0 1 1 

f11 -0.5 0 0 -1 0.25 0.5 

f12 0 -0.5 1 0 0.25 0.5 

 

4 

f7 1 0 0 1 1 1 

f9 0 0.5 -1 0 0.25 0.5 

f10 -0.5 0 0 -1 0.25 0.5 

f8 0 -1 1 0 1 1 

 

Important Note for Equation Set-up Below: Since the volumetric strain is required at the face, 

averages are used to obtain the face value. Note also, that for boundaries, the face value is 

provided as a boundary condition. Thus, instead of using an average for the boundary faces, the 

value at the face (provided from the boundary condition) is used. 

 

Equations 

Volume 1, α  

( )

1 5 1 31 2 1 12

v1 v2 v1 v3
v5 v12

(0.5) (1) (1) (0.5) ...
0.25 1 1 0.25

(1) (0) ( 1) (0)
2 2

G

G

α α α αα α α α

ε ε ε ε
λ ε ε

− −− − + + +  
+ + − + + + − +  

 

Volume 1, β  

( )

1 5 1 31 2 1 12

v1 v2 v1 v3
v5 v12

(0.5) (1) (1) (0.5) ...
0.25 1 1 0.25

(0) ( 1) (0) (1)
2 2

G

G

β β β ββ β β β

ε ε ε ε
λ ε ε

− −− − + + +  
+ + + + + − + +  

 

Volume 2, α  

( )

2 6 2 7 2 4 2 1

v2 v4 v2 v1
v6 v7

(0.5) (0.5) (1) (1) ...
0.25 0.25 1 1

(1) (0) ( 1) (0)
2 2

G

G

α α α α α α α α

ε ε ε ε
λ ε ε

− − − − + + +  
+ + − + + + − +  
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Volume 2, β  

( )

2 6 2 7 2 4 2 1

v2 v4 v2 v1
v6 v7

(0.5) (0.5) (1) (1) ...
0.25 0.25 1 1

(0) ( 1) (0) (1)
2 2

G

G

β β β β β β β β

ε ε ε ε
λ ε ε

− − − − + + +  
+ + + + + − + +  

 

 

Volume 3, α  

( )

3 1 3 4 3 10 3 11

v3 v1 v3 v4 v3 v10 v3 v11

(1) (1) (0.5) (0.5) ...
1 1 0.25 0.25

(1) (0) ( 1) (0)
2 2 2 2

G

G

α α α α α α α α

ε ε ε ε ε ε ε ε
λ

− − − − + + +  
+ + + + − + + + − +  

 

Volume 3, β  

( )

3 1 3 4 3 10 3 11

v3 v1 v3 v4 v3 v10 v3 v11

(1) (1) (0.5) (0.5) ...
1 1 0.25 0.25

(0) ( 1) (0) (1)
2 2 2 2

G

G

β β β β β β β β

ε ε ε ε ε ε ε ε
λ

− − − − + + +  
+ + + + + + + − + +  

 

 

Volume 4, α  

( )

4 8 4 9 4 34 2

v4 v2 v4 v8 v4 v9 v4 v3

(1) (0.5) (0.5) (1) ...
1 0.25 0.25 1

(1) (0) ( 1) (0)
2 2 2 2

G

G

α α α α α αα α

ε ε ε ε ε ε ε ε
λ

− − −− + + +  
+ + + + − + + + − +  

 

Volume 4, β  

( )

4 8 4 9 4 34 2

v4 v2 v4 v8 v4 v9 v4 v3

(1) (0.5) (0.5) (1) ...
1 0.25 0.25 1

(0) ( 1) (0) (1)
2 2 2 2

G

G

β β β β β ββ β

ε ε ε ε ε ε ε ε
λ

− − −− + + +  
+ + + + + + + − + +  

 

Boundary Equations, α  

5 6 7 8

9 4 10 3 11 3 12 1

0; 0; 0; 0;

; ; ;

α α α α

α α α α α α α α

= = = =

= = = =
 

Boundary Equations, β   

5 6 7 8

9 4 10 3 11 3 12 1

0; 0; 0; 0;

; ; ;

β β β β

β β β β β β β β

= = = =

= = = =
 

The equations for volumes 1-4 will now be put in a more transparent form 

Volume 1, α  

( ) ( ) ( )[ ]1 5 1 2 1 3 1 12

1 2 3 5 12

2 2 0.2 0

6 2 2 192.308

G G

G G G G G

α α α α α α α α λ

α α α α α

− + − + − + − − + − =  
⇒ − − − − = −
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Volume 1, β  

( ) ( )1 5 1 2 1 3 1 12

1 2 3 5 12

2 2 0

6 2 2 0

G

G G G G G

β β β β β β β β

β β β β β

− + − + − + − =  
⇒ − − − − =

 

 

Volume 2, α  

( ) ( )2 6 2 7 2 4 2 1

1 2 4 6 7

2 2 0

6 2 2 0

G

G G G G G

α α α α α α α α

α α α α α

− + − + − + − =  
⇒ − + − − − =

 

Volume 2, β  

( ) ( )2 6 2 7 2 4 2 1

1 2 4 6 7

2 2 0

6 2 2 0

G

G G G G G

β β β β β β β β

β β β β β

− + − + − + − =  
⇒ − + − − − =

 

 

Volume 3, α  

( ) ( )3 1 3 4 3 10 3 11

1 3 4 10 11

2 2 0

6 2 2 0

G

G G G G G

α α α α α α α α

α α α α α

− + − + − + − =  
⇒ − + − − − =

 

Volume 3, β  

( ) ( )3 1 3 4 3 10 3 11

1 3 4 10 11

2 2 0

6 2 2 0

G

G G G G G

β β β β β β β β

β β β β β

− + − + − + − =  
⇒ − + − − − =

 

 

Volume 4, α  

( ) ( )4 2 4 8 4 9 4 3

2 3 4 8 9

2 2 0

6 2 2 0

G

G G G G G

α α α α α α α α

α α α α α

− + − + − + − =  
⇒ − − + − − =

 

Volume 4, β  

( ) ( ) ( )[ ]4 2 4 8 4 9 4 3

2 3 4 8 9

2 2 0.2 0

6 2 2 192.308

G G

G G G G G

β β β β β β β β λ

β β β β β

− + − + − + − + + =  
⇒ − − + − − = −

 

 

Let’s Review. We have the following set of equations: 
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1 2 3 5 12

1 2 4 6 7

1 3 4 10 11

2 3 4 8 9

5

6

7

8

9 4

10 3

11 3

12 1

6 2 2 192.308

6 2 2 0

6 2 2 0

6 2 2 0

0

0

0

0

0

0

0

0

G G G G G

G G G G G

G G G G G

G G G G G

α α α α α

α α α α α

α α α α α

α α α α α

α

α

α

α

α α

α α

α α

α α

− − − − = −

− + − − − =

− + − − − =

− − + − − =

=

=

=

=

− =

− =

− =

− =

 

1 2 3 5 12

1 2 4 6 7

1 3 4 10 11

2 3 4 8 9

5

6

7

8

9 4

10 3

11 3

12 1

6 2 2 0

6 2 2 0

6 2 2 0

6 2 2 192.308

0

0

0

0

0

0

0

0

G G G G G

G G G G G

G G G G G

G G G G G

β β β β β

β β β β β

β β β β β

β β β β β

β

β

β

β

β β

β β

β β

β β

− − − − =

− + − − − =

− + − − − =

− − + − − = −

=

=

=

=

− =

− =

− =

− =

 

 

The equations for α  can be rewritten in matrix format as:  
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6 0 2 0 0 0 0 0 0 2

6 0 0 2 2 0 0 0 0 0

0 6 0 0 0 0 0 2 2 0

0 6 0 0 0 2 2 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 1

G G G G G

G G G G G

G G G G G

G G G G G

− − − − 
 − − − − 
− − − −


− − − −






 −
 −
 −
 − 

1

2

3

4

5

6

7

8

9

10

11

12

192.308

0

0

0

0

0

0

0

0

0

0

0

α
α
α
α
α
α
α
α
α
α
α
α

−   
   
   
   
   
   
   
   
    =   
   
   
   
   
   
   
   

        
 

 

 

Similarly, the equations for β  can be rewritten in matrix format as: 

6 0 2 0 0 0 0 0 0 2

6 0 0 2 2 0 0 0 0 0

0 6 0 0 0 0 0 2 2 0

0 6 0 0 0 2 2 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 1

G G G G G

G G G G G

G G G G G

G G G G G

− − − − 
 − − − − 
− − − −


− − − −






 −
 −
 −
 − 

1

2

3

4

5

6

7

8

9

10

11

12

0

0

0

192.308

0

0

0

0

0

0

0

0

β
β
β
β
β
β
β
β
β
β
β
β

   
   
   
   
   

−   
   
   
    =   
   
   
   
   
   
   
   

        
 

 

Important Note: In the official implementation, one should not break up the alpha and beta 

equations into two separate matrices. It happens to work in this case because alpha and beta are 

decoupled—the grid is completely orthogonal. Once the grid deforms, the grid is no longer 

orthogonal and as a consequence, alpha and beta unknowns would appear together in a single 

equation.  

 

This Concludes the Example Problem.  
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7.8. Summary of Methods and Computational Results for the Comprehensive 
Vasculature-Brain-CSF Model 

7.8.1. Methods 

This section provides an overview of model development, governing equations, boundary 

conditions, initial conditions, and material properties of vasculature, brain tissue, and CSF. The 

required steps for obtaining the brain and CSF computational domains are presented first. Next, 

boundary conditions and governing equations of CSF and brain tissue motion are described. 

Finally, the process of obtaining the computational domain of cerebral vasculature is explained, 

followed by a description of the governing equations and boundary conditions for vessel-tissue 

interaction. The section concludes with a summary of the overall solution strategy.  

Development of Brain and CSF Computational Domains. The brain and CSF domains were 

obtained by selecting a domain of interest from an artery atlas of the human brain (Salamon and 

Corbaz 1971). An image from the atlas, shown in Figure 58A, was chosen so that major regions 

of the CSF pathway could be included in the study, such as the ventricles, aqueduct of Sylvius, 

pontine cistern, and subarachnoid space (SAS).  

  
A B 

Figure 58. (A) Mid-sagittal histological image of the human brain used to develop the two-

dimensional model of brain, vasculature, and CSF interaction (Salamon and Corbaz 1971). 

(B) Computer-generated model of a simplified cerebral vasculature network. 
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The image was imported into Image J (http://rsbweb.nih.gov/ij/), where points that delineated 

the brain tissue and CSF spaces were selected. These points were then imported into grid 

generation software, Gambit 2.4.6. In Gambit, the surface points were connected using a 

combination of non-uniform rational basis splines (NURBS) and straight edges. After creating 

all edges, two logically connected and closed regions representing brain tissue and CSF were 

generated. The two regions were then discretized into quadrilateral control volumes using an 

unstructured grid meshing algorithm in Gambit. The computational domains of brain tissue and 

CSF are shown in Figure 59. 

CSF and Brain Tissue Boundary Conditions. After meshing the CSF and brain domains, 

boundary conditions were applied to the model. For the fluid, a zero velocity (no-slip) boundary 

condition was applied to fixed walls and a kinematic boundary condition was applied to 

boundaries in which motion was possible along brain-CSF interfaces. The kinematic boundary 

condition is represented mathematically in eq. (1-105). 

CSF Brainu d=
�� ɺ

 (1-105) 

 

Equation (1-105) states that the CSF velocity, CSFu
�

, at a moving boundary is equal to the 

velocity of the moving boundary. The velocity of the moving boundary is represented by the 

time derivative of the brain tissue displacement, Braind
�ɺ

. As indicated in Figure 59B, a Neumann 

boundary condition for the velocity, / 0u n∂ ∂ =
� �

, was applied at the outlet of the CSF domain. 

This boundary condition sets the velocity at the boundary equal to the velocity at the adjacent 

interior control volume.  Also at the outlet, a Dirichlet boundary condition for the pressure was 

applied and set to 500 Pa (Linninger, Sweetman et al. 2009). Along all other fluid boundaries, 

Neumann boundary conditions for pressure, / 0p n∂ ∂ =
�

, were applied.  



188 

 

 

For the brain tissue, Neumann boundary conditions for tissue displacement were applied 

along the upper wall of the lateral ventricle and at the base of the brain near the pontine cistern. 

These locations constituted boundaries at which motion could occur along the brain-CSF 

interface. The Neumann boundary condition for displacement, / 0d n∂ ∂ =
� �

, sets the brain tissue 

displacement at the boundary equal to the displacement at the adjacent interior control volume. 

Our choice of where to place Neumann boundary conditions in the brain tissue was based on 

prior research which indicates that ventricular wall motion and large arterial expansion near the 

base of the brain drives pulsatile CSF flow (Linninger, Sweetman et al. 2009; Sweetman and 

Linninger 2011; Sweetman, Xenos et al. 2011). Along all other brain boundaries, Dirichlet 

boundary conditions of ( ) 0d t =
�

 were applied.  
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/ 0d n∂ ∂ =
� �

/ 0d n∂ ∂ =
� �

500 Pap =

CSF Brain
u d=

�� ɺ

CSF Brain
u d=

�� ɺ

/ 0u n∂ ∂ =
� �

 
A B 

Figure 59. Computational domains of brain tissue and CSF. (A) Neumann boundary conditions 

for tissue displacement are indicated at the top of the lateral ventricle and near the pontine 

cistern. All other boundaries of the brain domain are fixed in space throughout the simulation. 

(B) In the fluid domain, kinematic boundary conditions are specified at the top of the lateral 

ventricle and near the pontine cistern. A Neumann boundary condition for fluid velocity and a 

Dirichlet boundary condition for fluid pressure are specified at the outlet of the CSF domain. 

All other fluid boundaries were given a no-slip condition for velocity and a Neumann boundary 

condition for pressure. 

 

CSF Material Properties and Governing Equations. CSF was modeled as an incompressible, 

Newtonian fluid. Since CSF is mainly water with the exception of a small percentage of plasma 

proteins, we have set the density and viscosity of CSF to 1,000kg/m
3
 and 0.001Pa ⋅ s, 

respectively. In a non-deformable fluid domain, fluid motion is governed by the Navier-Stokes 

equations written in an Eulerian reference frame, as in eqs. (1-106) and (1-107). 

Continuity 0u∇⋅ =
�

 (1-106) 

Momentum ( )u
p u u u

t
ρ ρ µ
∂

= −∇ − ⋅∇ + ∇⋅ ∇
∂

�
� � �

 (1-107) 

 

In (1-106) and (1-107), u
�

, ρ , p , and µ  are the fluid velocity, density, pressure, and viscosity, 

respectively. In the real brain, the CSF space deforms due to displacement along the brain-CSF 
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interface. To account for the relative motion of CSF and the underlying CSF mesh, the governing 

flow equations are recast in an Arbitrary-Lagrangian-Eulerian (ALE) reference frame.  

Continuity-ALE ( ) 0g

V A

d
dV u u dA

dt
+ − =∫ ∫

�� �
 (1-108) 

Momentum-ALE ( ) ( ) ( )g

V V V V

u
dV p dV u u u dV u dV

t
ρ ρ µ

∂
= − ∇ − − ⋅ ∇ + ∇ ⋅ ∇

∂∫ ∫ ∫ ∫
�

� � � �
 (1-109) 

 

The new symbol introduced in eqs. (1-108)-(1-109) is gu
�

, the grid velocity. The grid velocity 

was calculated using the formula derived in (Demirdzic and Peric 1990), which ensures that the 

Space Conservation Law (SCL) is satisfied. The SCL prevents grid motion from leading to 

artificial mass sources (Demirdzic and Peric 1988; Demirdzic and Peric 1990; Ferziger and Peric 

2002). The mathematical representation of the SCL is given in eq. (1-110). 

Space Conservation Law 0g

V A

d
dV u dA

dt
− ⋅ =∫ ∫

��
 (1-110) 

 

Equation (1-110) states that for a given control volume in a given time interval, the divergence of 

the grid velocity must equal the volume change of that control volume.  

Equations (1-108)-(1-110) imply the existence of an underlying fluid mesh motion scheme. 

We govern fluid mesh motion with the steady-state equations of solid body displacement given 

in eq. (1-111). This technique follows the same strategy proposed by (Souli and Zolesio 2001). 

However, we implement a linear elastic model and use a finite volume spatial discretization 

technique.  

( ) ( )20 f f f f fG d G dλ= ∇ + + ∇ ∇⋅
� �

 (1-111) 
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In eq. (1-111), fG  and fλ  are Lame constants and fd
�

 is the fluid grid displacement. The value 

of fG  affects the shearing motion of the internal fluid grid, whereas fλ  affects the 

compressibility of the fluid control volumes. For the fluid grid, fG  is set to 1,000 N/m
2
. fλ can 

be determined from eq. (1-112) using fG  and the Poisson ratio, v  which was set to 0.3. The 

values of fG  and v  were determined empirically. 

2

1 2
f

Gv

v
λ =

−
 (1-112) 

Brain Tissue Material Properties and Governing Equations. Brain tissue displacement is also 

governed through eq. (1-111), which is written in terms of tissue displacement, Braind
�

, tissue 

volumetric strain, Brainε , and tissue material properties BrainG  and Brainλ  to form eq. (1-113).  

( )20 Brain Brain Brain Brain BrainG d Gλ ε= ∇ + + ∇
�

,  

where Brain Braindε = ∇⋅
�

 

(1-113) 

Based on (Taylor and Miller 2004), BrainG  was set to 500 Pa. v  was set at 0.48 to represent 

nearly incompressible brain tissue (Nagashima, Shirakuni et al. 1990). Accordingly, the Young’s 

modulus was 1,480 Pa. Brainλ  was calculated using eq. (1-112).  

Development of Cerebral Vasculature Computational Domain. The two-dimensional 

vasculature model was developed by first importing the image in Figure 58A into an “in-house” 

vasculature reconstruction program. In the program, a user creates and connects points along 

major arteries of the histological image until the basic structure of the large arteries is 

represented on the computer. An automatic vessel growth algorithm is then applied to the base 

arterial structure so that small arteries and arterioles are generated within the brain tissue domain. 

The simplified vasculature network displayed in Figure 58B consisted of approximately 3,000 
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vessel segments. The details of the vessel growth algorithm are fully described elsewhere 

(Schreiner and Buxbaum 1993; Karch, Neumann et al. 1999; Schreiner, Karch et al. 2006). 

Governing Equations for Vasculature. Each blood vessel in our model is cylindrical with a 

fixed length. With these physical assumptions, eqs. (1-114)-(1-116) are applied to the 

vasculature model to compute blood pressure, blood flow, and vessel cross-sectional area at 

discrete time points during the cardiac cycle.  
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Equation (1-114) is a mass balance represented by the vessel length, vessell , the vessel cross-

sectional area at time n and 1n − , n

vesselA  and 1n

vesselA −  respectively, the flow into and out of the 

vessel, inf  and outf  respectively, and the time step, t∆ . Equation (1-115) is a simplified 

momentum balance represented by the vessel inlet and outlet pressure, inp  and outp  respectively, 

the blood viscosity, µ , the vessel length, the vessel cross-sectional area at the previous time 

step, and the flow into the vessel. Equation (1-116) governs vessel distensibility via the pressure 

difference between vessel lumen and surrounding brain tissue, vesselp  and brainp  respectively, 

vessel stiffness, vesselE , the vessel cross-sectional area at time n, and the vessel cross-sectional 

area at zero transmural pressure (when vessel brainp p= ), o

vesselA . Equations (1-114)-(1-116) lead to a 

large system of linear equations in which the vessel cross section, vessel inflow and outflow, and 

vessel inlet and outlet pressures are solved simultaneously.  
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Boundary Conditions for Blood Flow. Blood flow and vasculature expansion were calculated 

as a function of the cardiac cycle. Though there is constant blood supply to the brain throughout 

the cardiac cycle, there is an increased amount of blood flow during cardiac systole when the 

cerebral blood pressure rises. In diastole, blood flow to the brain decreases with a simultaneous 

decrease in blood pressure. In the past, we have reconstructed the pressure waveform using a 

17 coefficient Fourier series (Linninger, Sweetman et al. 2009; Linninger, Xenos et al. 2009; 

Sweetman and Linninger 2011; Sweetman, Xenos et al. 2011). However, for this initial 

conceptual model of brain, vasculature, and CSF we employ a sinusoidal pressure function as 

given in eq. (1-117) and displayed in Figure 60. 

inlet ( ) 13,000 3,000sin[2 ( 0.25)]p t tπ= + −  (1-117) 

inletp  is applied to the inlet vessel of the arterial network. The waveform has a mean pressure of 

13,000Pa (97.5mmHg) and pressure amplitude of 3,000Pa (22.5mmHg). Currently, the 

vasculature model terminates at the arteriolar level. Each terminating blood vessel is assigned an 

outlet pressure of 40mmHg, commensurate with values found in (Knezevic 1988). 
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Figure 60. Blood pressure waveform. The pressure was applied 

to the inlet vessel of the brain-vasculature-CSF model to induce 

brain tissue motion and CSF flow dynamics.  

 

Boundary Conditions for Vasculature-Tissue Interaction. Vessel expansion and brain tissue 

deformation is initiated through eq. (1-116). As vesselp  increases during cardiac systole the 
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vessels expand. During cardiac diastole, vesselp  decreases, and the vessels contract to their pre-

systolic cross-sectional area. For each vessel, vesselp  is taken to be the mean of the vessel inlet 

and outlet pressure; brainp  is set to 1,000 Pa (Johanson, Duncan et al. 2008). 

The expansion or contraction of a vessel in a given time step, t∆ , is represented by the 

change in vessel cross-sectional area. Because each vessel is modeled as a cylinder with fixed 

length, the change in volume of a particular vessel, vesselV∆ , is given by eq. (1-118). 

( )1n n

vessel vessel vessel vesselV l A A −∆ = −  (1-118) 

 

The vessel volume change is then used to compute the volumetric strain, b.c.v.ε , of a particular 

control volume of the brain mesh using eq. (1-119). 

b.c.v.

b.c.v.

vesselV

V
ε

∆
=  (1-119) 

The subscript, b.c.v., stands for brain control volume. In a two-dimensional application, b.c.v.V  is 

the area of one control volume. In our model, we assume the volume change of a given blood 

vessel contributes to the volumetric strain of a particular brain control volume if the center of the 

vessel lies in that particular control volume. In other words, if the center of vessel i lies in the 

space defined by control volume j, then the volume change of vessel i will contribute to the 

volumetric strain of control volume j. Because the center of several vessels may reside within the 

same brain mesh control volume, the volume change of several neighboring vessels may 

contribute to the overall volumetric strain of a particular brain control volume. After calculating 

b.c.v.ε  via (1-119) for all brain control volumes, eq. (1-113) is applied to the brain mesh using 

b.c.v.ε  as an internal boundary condition. During vessel expansion, b.c.v.ε  is positive, the brain 

tissue expands, and the CSF space is compressed. When the vessels constrict, b.c.v.ε  is negative, 
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the brain tissue returns to an undeformed state, and the CSF space recovers to its initial volume. 

In summary, the cyclical expansion and relaxation of the cerebral vessels deforms the 

surrounding brain tissue and CSF space and leads to the pulsatile CSF flow patterns.  

Solution Strategy. The model simulations were performed over an entire cardiac cycle. The 

cardiac cycle was assumed to be one second and was divided into 0.01s time intervals. All time 

derivatives in eqs. (1-108)-(1-110) and (1-114) were discretized using implicit Euler integration. 

The finite volume method was used to spatially discretize the governing brain tissue 

displacement and fluid flow equations. The brain-vasculature-CSF interaction program was 

implemented in Delphi 7.0; all linear algebraic systems were written in a sparse matrix format 

and solved using HSL_MA48 (http://www.hsl.rl.ac.uk/). A flow diagram of the overall solution 

strategy is provided in Figure 61. 

As indicated in Figure 61, the CSF flow field is initialized under steady-state conditions. 

Next, with an increment in t∆ , a new pressure value is calculated from eq. (1-117) and applied 

to the first vessel in the vasculature network. Equations (1-114)-(1-116) are then solved to 

recover for each vessel the updated cross-sectional area, inlet and outlet pressures as well as inlet 

and outlet flows. Changes in vessel volume are then used to compute volumetric strains in the 

brain mesh. Next, the volumetric strains are used in eq. (1-113) to calculate brain deformation 

and displacements along the brain-CSF interface. Finally, the CSF flow field governed by eqs. 

(1-108)-(1-109) is solved using the SIMPLE algorithm (Patankar 1980; Versteeg and 

Malalasekera 1995). In our implementation of the SIMPLE algorithm, we have set the pressure 

and velocity under-relaxation parameters to 0.5. Two convergence criteria were used in the 

SIMPLE algorithm. The first, eq. (1-120), is a percent difference formula that corresponds to a 

0.1% change in the velocity field from the previous iteration, 1iu −� , to the current iteration, iu
�

. 
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The second, eq. (1-121), corresponds to a sufficiently small pressure correction, 'p . When eqs. 

(1-120) and (1-121) are satisfied, the pressure and velocity fields are accepted and the simulation 

advances to the next time step or terminates if the end of the cardiac cycle has been reached. 

Convergence-Velocity 

1

1
0.001

mean( , )

i i

i i

u u

u u

−

−

−
≤

� �

� �  (1-120) 

Convergence-Pressure Correction ' 1 5p e≤ −  (1-121) 
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Figure 61. Flow diagram of overall solution strategy.  
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7.8.2. Results 

Figure 62A shows a simplified cerebral vasculature network used to induce brain 

deformation and CSF motion. The inlet vessel, indicated by an arrow, had the largest radius of 

0.001m. The smallest vessel radius was 0.000208919m. Equation (1-122), which relates vessel 

radius, R to vessel stiffness was derived using values reported in (Zagzoule and Marc-Vergnes 

1986). The elastance distribution for the 235 vessels in the network is given in Figure 62B. 

Vessel Stiffness 17,435ln( ) 153,063R= − +  (1-122) 
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Figure 62. A) Conceptual model of the cerebral vasculature—inlet vessel indicated by arrow. 

B) Vessel radius and associated elastance distribution. 

Brain Tissue Displacement. Figure 63 shows the vessel pressure and brain tissue 

displacement at mid systole (30% of the cardiac cycle) and diastole (70% of the cardiac cycle). 

According to eq. (1-117) and Figure 60, the pressure applied to the inlet vessel at mid systole and 

diastole is equal. Thus, it follows that the pressure distribution at mid systole and diastole shown 

in Figure 63 are the same. However, the x and y brain tissue displacements differ at mid systole 

and diastole in the following way. At mid systole, the vessels are expanding. As a result, near the 

pontine cistern, the x-displacement is predominantly negative on the left side of the vessels and 

positive on the right side of the vessels. Because the tissue is free to deform into the CSF space 
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near the pontine cistern and along the lateral ventricle walls, the y-displacement is negative in 

these regions. When the vessels constrict during diastole, the brain begins to relax to its 

undeformed state. Hence, x-displacement becomes positive on the left side of the vessels and 

negative on the right side of the vessels. The y-displacement is positive in both the pontine 

cistern and lateral ventricle regions because the brain tissue is moving upward as it is restored to 

its undeformed state. 

Pressure [Pa]

Mid Systole X-displacement 

[x10-4  m]

Mid Systole

Y-displacement 

[x10-4  m]

Mid Systole

Pressure [Pa]

Diastole X-displacement 

[x10-4  m]

Diastole

Y-displacement 

[x10-4  m]

Diastole

Figure 63. Blood pressure distribution and brain tissue displacement at mid systole (30% of 

cardiac cycle) and diastole (70% of cardiac cycle).  

CSF flow and pressure dynamics. Figure 64 displays the CSF velocity and pressure field at 

early systole, mid systole, and diastole. At early systole, the vasculature begins to expand as it 

fills with blood. In turn, the brain parenchyma yields to the expanding vasculature and 

compresses the CSF space. As a result, the CSF is accelerated, directed toward the spinal canal 

and upper cranial subarachnoid space. The CSF pressure is highest in the pontine cistern and 

lateral ventricles, where brain tissue displacement along the brain-CSF interface is greatest. At 

30% of the cardiac cycle, the rate of vasculature expansion reaches a maximum. In turn, the rate 
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of displacement along the brain-CSF interface is also highest. Consequently, superior-inferior 

CSF speed near the pontine cistern reaches its maximum value of 8.6mm/s and superior-inferior 

speed in the aqueduct is 16.9mm/s. During diastole, the inlet blood pressure is decreasing at its 

maximum rate. In turn, vessel diameter and brain parenchyma size decrease at their maximum 

rate. Consequently, the CSF inferior-superior speed reaches its maximum value of 18.5mm/s.  

During systole the pressure is high in the ventricles and low at the base of the cranial CSF 

space. During diastole, the pressure gradient reverses, and the pressure is lower in the ventricles. 

According to the simulation, the largest pressure gradient in the cranial CSF space is less than 

2.5Pa. Also, the pressure difference across the cerebral aqueduct varies from about 1Pa to 2Pa at 

any given time during the cardiac cycle. These values are in excellent agreement with our 

previous computational studies (Linninger, Sweetman et al. 2009).  
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Figure 64. CSF pressure and velocity at early systole (10% of cardiac cycle), mid systole (30% 

of cardiac cycle), and diastole (70% of cardiac cycle). In early systole and mid systole, large 

motion along the brain-CSF interface near the pontine cistern and lateral ventricles causes 

compression of the CSF space and acceleration of CSF toward the spinal canal. The superior-

inferior flow reaches its maximum value at mid systole. During diastole, the brain returns to its 

undeformed state and in turn the CSF is accelerated back toward the cranium.  

Vessel stiffness and changes in CSF flow. Arteriosclerosis of the cerebral vasculature is found 

in a large percentage of the adult and elderly population. The hardening of arteries associated 

with arteriosclerosis is hypothesized to change the overall CSF flow dynamics (Greitz 2004). To 

test the impact of stiff vessels on intracranial dynamics, the larger vessels in the network were 

assigned an elastance value five times higher than typically observed in healthy subjects. The 

vessels were assigned stiffness values according to eq. (1-123). 

2,031.1Vessel Stiffness [Pa] 196,784 Re ⋅=  (1-123) 
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The elastance distribution for the 235 vessels in the network for this case study is given in Figure 

65.  
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Figure 65. Vessel radius and elastance distribution for a case study of stiff 

arteries. 

Figure 66 shows the CSF flow and pressure field at mid systole with stiff large vessels. Overall, 

the pressure gradient throughout the cranial CSF space is reduced compared to the normal case. 

In addition, the CSF velocity is decreased in the aqueduct and pontine cistern. We can gain 

greater insight into the effect of stiff vessels by comparing the aqueduct to pontine cistern 

velocity ratios between the two cases. In the normal case, the aqueduct to pontine cistern velocity 

ratio was 1.96 (16.9/8.6). In the stiff vessel case, the aqueduct to pontine cistern velocity ratio is 

higher at 3.18 (7/2.2). Though the total flow is decreased in the stiff vessel case, the flow is more 

diminished in the pontine cistern than in the aqueduct. Though we are cautious to draw 

conclusions based on this preliminary study, Greitz has hypothesized that stiff arteries would 

decrease flow in the pontine cistern and through the cervical junction (Greitz 2004). A more 

detailed vasculature network may prove or disprove this hypothesis and lead to greater 

knowledge about how vasculature compliance affects intracranial dynamics. 
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Figure 66. CSF pressure and y-velocity at mid systole for the stiff vessel case. 

 

Results of fluid grid deformation. This results section closes with a short presentation of the 

fluid grid deformation scheme we have implemented. Figure 67 shows the fluid grid near the 

pontine cistern at the beginning of the simulation (before brain tissue deformation) and at 0.5s, 

when brain tissue deformation is greatest. One can see from the figure that even with relatively 

large fluid grid deformation, the mesh motion algorithm controls the mesh displacement well. 

Before Grid Deformation

When Grid Deformation is Greatest
 

Figure 67. Top right: Fluid grid before compression of fluid domain. Bottom right: 

Fluid grid when compression of fluid domain is largest.  

 

7.9. Discussion 
This chapter has presented a novel approach for integrating a detailed cerebral vasculature 

network in a biomechanical model of brain tissue motion and CSF flow. The vasculature model 

was developed using a combination of manual segmentation and an automatic vessel growth 
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algorithm. The governing equations of tissue displacement and fluid motion were discretized 

using the finite volume method and solved over realistic domains of brain and CSF spaces. The 

dynamic expansion and contraction of the vasculature network led to deformation of brain tissue 

and the CSF spaces. Brain tissue displacement along the brain-CSF interface led to pulsatile CSF 

motion throughout the cardiac cycle. 

From 2d to 3d. To arrive at this fully integrated model of vasculature, brain tissue, and CSF, 

particular geometrical and physical assumptions were adopted. For example, the study has been 

confined to a two-dimensional mid-sagittal cross section of the human brain. Despite this 

simplification, we have been able to capture the fluid dynamics in the CSF spaces; the current 

model predictions are in good agreement with our previously published results (Linninger, 

Sweetman et al. 2009). Overall, this 2d model serves as a proof of concept for a future 3d model 

of vasculature, brain tissue, and CSF dynamics. The progression to 3d will require a 3d 

vasculature model as a well as 3d brain and CSF spaces. Our recent efforts in 3d modeling of the 

entire CSF space indicate this objective can be achieved. In addition, significant progress has 

been made toward the development of a 3d vasculature computer model. Figure 68 shows our 

current 3d vasculature model, which was obtained through a combination of advanced manual 

segmentation techniques developed in our lab with an automatic vessel growth algorithm. The 

model includes major arterial structures such as the carotid arteries, vertebral arteries, and Circle 

of Willis as well as automatically generated microvasculature. Steady-state blood pressure 

simulations over the course of a cardiac cycle were conducted. Figure 68 shows the systolic and 

diastolic pressure distribution throughout the network.  
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Figure 68. A surface mesh of the brain was constructed from MRI data and 

a vascular network was grown using the automatic growth algorithm. 

Blood pressure simulations of the generated vasculature network are 

shown for systole (cardiac contraction) and diastole (cardiac recoil). 

Systolic input (S) and diastolic input (D) are indicated on the pressure 

waveform. 

 

A fully integrated 3d model of vasculature, brain tissue, and CSF may also require a new 

method for controlling boundary motion along the brain-CSF interface. In 2d, the kinematic 

boundary condition is applied to line segments. In 3d, the kinematic boundary condition must be 

applied to planes. More work is needed to assess whether our current method of controlling 

boundary motion can be extended to 3d without major modification.  

An additional consideration for a 3d model is the calculation of the fluid grid velocity, gu
�

. 

Because the current approach for computing gu
�

 is specific for the 2d case, the progression to a 

3d model will require a new method for calculating gu
�

. Demirdzic and Peric state that the 

calculation of gu
�

 can be extended to 3d, but proposed no specific method (Demirdzic and Peric 

1988; Demirdzic and Peric 1990). However, since gu
�

 in 2d is a function of how much area is 

swept by a line segment in a given period of time, one could imagine that gu
�

 in 3d will be a 

function of how much volume is swept be a two-dimensional face in a given period of time.  
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A final note on the progression to 3d is the issue of computational resources. The 2d model 

for brain, vasculature, and CSF contained about 10,000 control volumes for brain and CSF 

combined, and about 3,000 vessel segments. This resolution translates to approximately 35,000 

equations, which was manageable on a standard PC using sparse solver techniques. A 3d model 

will require several million control volumes for combined brain and CSF and also several million 

vessel segments. Though still to be determined, the model may need to be represented by at least 

500 million equations.  

Two-way coupling between brain tissue and CSF. In its current stage, the model takes into 

account only kinematic boundary conditions along the CSF-brain tissue interface. Essentially, 

the brain tissue displaces, and the velocity of the moving boundary is used as a velocity 

boundary condition for the fluid. A more advanced treatment of the interacting forces between 

CSF and brain tissue would be to also implement a dynamic boundary condition. The dynamic 

boundary would require that the forces along the CSF-brain tissue interface are equal. The 

dynamic boundary condition is very advanced and beyond the scope of this dissertation. To 

begin thinking about implementing this condition, one would have to realize that the dynamic 

boundary condition would involve iterative coupling between the solid and fluid. When the brain 

tissue displacement drives CSF motion, the coupling scheme might proceed as follows: 

1. Guess tissue displacement everywhere in brain domain and along CSF-brain tissue 

boundary 

2. Compute fluid velocity and pressure field using SIMPLE 

3. Check if solid stress/pressure is equal to the fluid pressure computed from SIMPLE 

4. If solid and fluid pressures are not equal, provide a better guess for the brain tissue 

displacement and repeat steps 2 and 3. 
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The two-way coupling between fluid and solid domains is still an active area of research. Some 

articles that may be useful to the LPPD lab in the future are (Yu 1986; Nitikitpaiboon and Bathe 

1993; Crolet and Ohayon 1994; Morand and Ohayon 1995; Heil 1998; Bathe, Zhang et al. 1999; 

Le Tallec and Mouro 2001; Rugonyi and Bathe 2001; Dervieux 2003; Zhao and Forhad 2003; 

Heil 2004; Lohner, Cebral et al. 2004; Khurram 2005; Le Tallec, Gerbeau et al. 2005; Bungartz 

and Schäfer 2006; Kanchi 2006; Matthies, Niekamp et al. 2006; Fernandez, Gerbeau et al. 2007; 

Vierendeels, Lanoye et al. 2007; Heil, Hazel et al. 2008; Sternel, Schafer et al. 2008; Xia and Lin 

2008; Badia, Quaini et al. 2009; Brebbia 2009; Roszak, Posadzy et al. 2009; Wang and 

Belytschko 2009; Kuttler, Gee et al. 2010; Souli and Benson 2010). 

Two-way coupling between brain tissue and cerebral vasculature. In its current stage, there 

is only one-way coupling between the vasculature and brain tissue. Effectively, the vasculature 

expands due to a pressure difference between the dynamically changing lumen pressure and the 

statically set tissue pressure. A more rigorous and significantly advanced treatment of 

interactions between brain tissue and vasculature would be to implement a two-way coupling 

scheme between the vasculature and brain tissue. Implementation of two-way coupling is a very 

ambition task. Currently, I cannot provide the best advice for future implementation. However, I 

can provide some words of caution. Currently, the change in vessel volume is used as a boundary 

condition in the brain mesh as a volumetric strain. (The change in vessel volume is computed 

based on a set tissue pressure.) When the brain deforms due to the volumetric strain input, it 

assumes a different pressure state than the static pressure value used to compute the vessel 

volume change. This implies that (similar to the CSF-brain interface two-way coupling strategy), 

an iterative approach is needed between the vessels and the brain tissue. The expansion of the 

vessels would have to be guessed, the tissue pressure would have to be computed, and then the 
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solution would have to converge at a state in which the tissue pressure used to compute the 

vessel expansion is equal to the tissue pressure computed from the tissue displacement. 

Furthermore, one would have to be sure that the tissue pressures being computed are 

physiologically reasonable. In other words, since we are currently using a linear elastic model, it 

is possible that the pressures computed in a linear elastic model would be different than what 

would be computed in a poroelastic, viscoelastic, or hyperelastic model.  

Present vasculature model and thoughts for future improvements. The current vasculature 

model only considers arteries and arterioles. The model terminates before the capillary network. 

This omission is acceptable for the current aim of this model, which was to generate CSF flow as 

a function of the cerebral vasculature expansion. In comparison to the arterial network, the 

capillaries and venous do not expand as much if at all. Thus, there is little contribution lost from 

not modeling the capillary or venous system. In future work, our lab may be interested in 

investigating CSF production and reabsorption via the capillary network of the brain 

parenchyma. To that end, we have already begun work to develop a capillary model.  

One major assumption of this current model is that the arteries are expanding within the brain 

tissue. This may be true for the small arterioles, but in fact large arteries are found within the 

CSF space. Future work will be focused on learning how the expansion of the large arteries can 

be transferred to the CSF space directly as opposed to causing deformation in the brain tissue 

which eventually causes CSF space deformation.  

Brain tissue properties and disease assessment. Over several decades, researchers have 

modeled the material response of the brain as linear elastic, poroelastic, porous-undeformable, 

viscoelastic-nonporous, viscoelastic-porous, and hyperelastic. Since the main objective of this 

study was to quantify CSF motion as a function of the pulsating cerebral vasculature, the main 
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interest was the deformation of the brain tissue along the brain-CSF interfaces and the effect this 

has on the CSF flow field. Thus, for this initial work, the brain parenchyma was idealized as a 

linear elastic material.  

In our lab, we are also studying the porous properties of the brain, especially as it relates to 

hydrocephalus. As the ventricles enlarge in hydrocephalus, the porosity of the brain tissue 

decreases. Methods to quantify the extent of porosity change under hydrocephalic conditions are 

still underdeveloped. We envision mathematical models with realistic geometry and accurate 

material properties will someday provide better means for quantifying porosity changes. To 

accomplish this goal, our future work includes treating the brain as a poroelastic material.  

Further refinement of the vasculature bed is also needed to better understand hydrocephalus. 

For example, clinicians have not yet determined whether the capillaries or venous system serve 

as alternate CSF reabsorption pathways in hydrocephalic conditions. In the future, we will 

modify our existing model to allow fluid exchange across the endothelial layer of the capillaries 

and venules. As the current model terminates at the arteriolar level, we are developing new 

vessel growth algorithms to generate the capillary and venous system. Because there are over 

one billion capillaries in the brain, we do not propose to model capillaries as discrete segments, 

but instead will adopt a porous network model as has been reported in the literature (Baish, Netti 

et al. 1997). 

A final remark regarding the model’s application for hydrocephalus is related to blood flow 

in the brain. Clinicians have observed that expansion of the lateral ventricles and accompanying 

compression of the brain parenchyma leads to significant changes in cerebral blood flow. For 

example, Momjian et al. (2004) have found that cerebral blood flow decreases by about 14% in 

the periventricular white matter in patients with enlarged ventricles. We foresee our 
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mathematical model being used as an additional tool for quantifying these changes and for 

developing treatment strategies based on improved predictions. 

7.10. Conclusion 
In this first fully integrated vasculature, brain tissue, CSF intracranial dynamic model, we 

have computed the CSF flow field as a function of the interaction between pulsating cerebral 

vasculature and deformable brain tissue. The brain and CSF computational domains were 

derived from a 2d mid-sagittal histological image containing the cerebral ventricles, aqueduct of 

Sylvius, and subarachnoid space. The vasculature model was developed using a combination of 

manual segmentation and an automatic vessel growth algorithm. Computer predictions of blood 

flows and pressures as well as vessel distensibility were used to induce brain tissue motion and 

brain-CSF interaction along the lateral ventricles and the base of the brain near the pontine 

cistern. The predicted CSF flow field was in good agreement with previously published results 

(Linninger, Sweetman et al. 2009), and therefore provide a proof of concept for future work in 

advancing the model to three-dimensions to predict the entire CSF flow field as a function of the 

pulsating vasculature.  
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Appendix A: Quick Reference/Summary of the SIMPLE Algorithm 

Steady-State Navier-Stokes Equations 

Overview. Instead of simultaneously solving the momentum and continuity equations to 

obtain the velocity and pressure fields, we decouple the equations so that the pressure and 

velocity fields are solved independently. How can this be accomplished? The first step is to 

assume a pressure field, 1kp − , as well as an x and y velocity field, 1ku −  and 1kv − . Using these 

“known” fields, we solve for the *u  component of the *u
�

 velocity field with the help of the x 

momentum equation and solve for the *v  component of the *u
�

 velocity field with the help of the 

y momentum equation.  

The next step involves computing a pressure correction, 'p . The equation for 'p  is derived 

by implementing a Darcy-like flow assumption on the velocity correction. This gives rise to a 

pure diffusion equation for the pressure correction, which serves to drive the system toward 

conserving mass. This iterative procedure is repeated successively until the entire flow field 

satisfies continuity. As an additional check for solution convergence, the calculated velocities 

may only change slightly from a previous iteration to a current one. The commercial CFD tool 

Fluent, for example, requires that the velocity field change less than 0.1% from one iteration to 

the next before reporting a converged solution.  

 

Solution steps for steady-state Navier-Stokes equations 

Step 1: Assume pressure, and u-v velocity field; 
Possible choices for the initial guesses include velocities equal to the inlet velocities and for 

pressures one can start with the outlet pressures. 

 

Possible choices for  initial guesses: 1 1 1

; ;k k k

in in outu u v v p p− − −= = =   (1-124) 

Step 2. Compute current best velocities ( )* *
T

u v  

Using initial guesses 1 1 1, ,k k ku v p− − −  we solve separately two linear algebraic system as in 

Equations (1-125) and (1-126). Equation (1-125) can be interpreted as a convection with known 

velocity and diffusion problem with the pressure occurring as a source equation, its linear 

algebra solution (Ax=b) gives *u . (Steps 2a). Next, solve Equation (1-126) to get *v . (Steps 2b). 

x-momentum: ( ) ( )1 1 * *

cv cv cv

0 k k

x p dV u u dV u dVρ µ− −= − ∇ − ⋅ ∇ + ∇⋅ ∇∫ ∫ ∫
�

 (1-125) 

y-momentum: ( ) ( )1 1 * *

cv cv cv

0 k k

y p dV u v dV v dVρ µ− −= − ∇ − ⋅ ∇ + ∇⋅ ∇∫ ∫ ∫
�

 (1-126) 

If ( )* *
T

u v  is equal to ( )1 1
T

k ku v− −  we would have already found the solution. Since the initial 

guesses ( )1 1
T

k ku v− −  may be far off from the actual solution, even our calculated vector 

( )* *
T

u v  is usually not a solution in the first step.  
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Step 3. Compute Pressure  correction, 'p  

We solve for the pressure correction, 'p , as a linear algebraic system. To derive the pressure 

correction equation, we first introduce velocity corrections ( )' ''
T

u u v=
�

. These velocity 

corrections are not new variables, but merely labels used in the derivations. At a control volume 

face (boundary), velocity  corrections are proportional to the pressure gradient corrections across 

that same face as in Equation (1-127). 

' 'u p
κ
µ

= − ∇
�

 (1-127) 

Equation (1-127) is similar in form to Darcy’s Law. µ  and κ  account for the diffusion and 

convective contributions to the velocity correction, respectively. Whereas µ  is always set to the 

actual value of the fluid viscosity, κ  is an adjustable constant needed for improving convergence 

speed. For example, setting κ  to 0.01 accelerates convergence speed by about 20 times 

(compared to when κ  is set to 1). In generalized coordinates, (1-127) can be written as in 

Equation (1-128). 

'

' 1

''

p

u x

pv

y

µ

∂ 
   ∂ = −  ∂  
 ∂ 

with 

' ' ' ' '

' ' ' ' '

x x

y y

p p p p p

x x x

p p p p p

y y y

ξ η
ξ η

ξ η ξ η
ξ η

ξ η
ξ η ξ η

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂

 (1-128) 

In order to find the desired equation for 'p , we need the continuity equation. Specifically we let  

0u∇⋅ =
�

 

or 

cv

0u dV∇⋅ =∫
�

 

(1-129) 

The velocity vector is composed of the current best solution of known velocities, ( )* *u v , plus 

a required correction, ( )' 'u v ,  that yet is not yet known as in Equation (1-130).   

*

*

'

'

u uu

v vv

    
= +    

    
 (1-130) 

The yet unknown velocity corrections ( )' 'u v  can be expressed completely in terms of the 

unknown pressure correction gradients, 'p , as in eq. (1-131). 

( ) ( )

( ) ( )

0 11

0 11

1
' ' ' ' '

1
' ' ' ' '

N S

N S

u y p p y p p
J

v x p p x p p
J

η ξ

η ξ

µ

µ

−

−

 = − − − − 

 = − − − + − 

 (1-131) 
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( ) ( )

( ) ( )

0 11

0 11

1
' ' ' ' '

1
' ' ' ' '

N S

N S

u y p p y p p
J

v x p p x p p
J

η ξ

η ξ

µ

µ

−

−

 = − − − − 

 = − − − + − 

 (1-132) 

With known velocities, ( )* *u v , and the unknown ( )' 'u v ,  inserted into the continuity 

equation, (1-129), yield the desired equation for the pressure correction 'p . Equation (1-133) is a 

simple diffusion equation with a source term composed of ( )* *u v  contributions. 

( )# of faces # of faces
0 1 1 * *

1 13
Continuity

Deviation from Continuity

' '1
f

f

f f

p p
J y u x v

q
η ηµ

−

= =

− 
= − 

 
∑ ∑

����������
�����������������

 
(1-133) 

 

Solution of (1-133), gives the desired 'p . If the 'p  are close to zero the problem is converged 

(Convergence Criterion). The final values are 1 'kp p p−= + , and ( )u v . 

 

More implementation details follow.  

To derive eq (1-133), eqs. (1-134) and (1-135) are needed. 

( ) ( )*

0 11

1
' ' ' 'N Su u y p p y p p

J
η ξµ −

 = − − − −   (1-134) 

( ) ( )*

0 11

1
' ' ' 'N Sv v x p p x p p

J
η ξµ −

 = − − − + −   (1-135) 

 

Step 4. Pressure and velocity updates. 

If convergence has not been reached, we first update the pressure field, 1 'kp p p−= +  (step 4a). 
1kp −  is the pressure value at the previous iteration—the value used in (1-125) and (1-126). In 

practice, the improved pressure value will be calculated via under-relaxation:  

 
1 'new k

pp p pα−= + ,   where    0 1pα< <  (1-136) 

 

This new pressure is the update for the next iteration. Hence, in the second iteration, the previous 

pressure guess will be updated by setting it equal to 1 :k newp p− = ; this updated 1kp −  will be used 

as the new pressure guess in eqs. (1-125) and (1-126).  

 

Step 4b and 4c. The velocities ( )new newu v  are also updated with under-relaxation ( 0 1uα< <  

and 0 1vα< < );  
1(1 )new k

u uu u uα α −= + −  (1-137) 
1(1 )new k

v vv v vα α −= + −  (1-138) 
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The velocity components that will be used in a renewed iteration through steps 1- 4. Program 

termination is always when the convergence criterion in step 3 is reached or when the velocities 

no longer change significantly. 
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Figure 69. Flow diagram of the SIMPLE method. The numbered steps and equations are 

described in the text;  k is the iteration number. 

Unsteady (Dynamic) Navier-Stokes Equations 

Overview. In the previous section, we had assumed steady-state conditions for the fluid flow 

field. However, if the flow is subject to dynamic boundary conditions, the flow must be 

described using the dynamic x and y-momentum equations (1-139) and (1-140). Each term in (1-

139) and (1-140) is integrated in space and time to arrive at the discretized form of the unsteady 

momentum equations. The continuity equation is not modified in the dynamic situation. 

Consequently, the pressure correction equation in steady-state and dynamic situations is the 

same. 

Retrieve u* and v* 

Retrieve p’ 

Solution 

Converged? 

Yes 

No 

Step 1: Assume pressure and u-v velocity field 

(or use from previous iteration, k)  

Step 2: Solve x and y momentum, 

eqs. (1-125) and (1-126) 

Step 3: Compute pressure correction, 

eq. (1-133) 

Step 4: Update pressure and velocity fields, 

eqs. (1-136)-(1-138) 

Visualize Results 

Start, k=1 

Set 

k=k+1 
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( )
cv cv cv cv

t t t t t t t t

x

t t t t

u
dVdt p dVdt u u dVdt u dVdt

t
ρ ρ µ

+∆ +∆ +∆ +∆∂
= − ∇ − ⋅∇ + ∇⋅ ∇

∂∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
�

 (1-139) 

( )
cv cv cv cv

t t t t t t t t

y

t t t t

v
dVdt p dVdt u v dVdt v dVdt

t
ρ ρ µ

+∆ +∆ +∆ +∆∂
= − ∇ − ⋅∇ + ∇ ⋅ ∇

∂∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
�

 (1-140) 

 

Discretization of dynamic Navier-Stokes equations 

We now describe the discretization of each term in the x-momentum equation. Discretization of 

the y-momentum terms are completely analogous and will not be presented. 

 

Local Acceleration Term. The discretizated form of the local acceleration term in the unsteady 

x-momentum equation is derived as follows. Because the fluid grid is fixed in space, u  (the x 

component of the velocity vector) is a function of time and V (the volume/area of a control 

volume) is not a function of time. With these assumptions, we rewrite the double integral in eq. 

(1-139) as,  

cv cv

t t t t

t t

u u
dVdt dt dV

t t
ρ ρ

+∆ +∆∂ ∂
=

∂ ∂∫ ∫ ∫ ∫ , 

which ultimately leads to  
t t t t

t t t

t t

u u
V dt V dt V u u

t t
ρ ρ ρ

+∆ +∆
+∆∂ ∂

 = ⇒ − ∂ ∂∫ ∫  (1-141) 

 
Pressure Gradient Term. Spatial integration over the control volume leads to: 

# of faces

1cv

f

x

f

p dV p yη
=

− ∇ = ⋅∑∫  

Thus, we have for time integration: 
# of faces

1

t t
f

ft

p y dtη

+∆

=

 
⋅ 

 
∑∫  (1-142) 

Let us recall that the SIMPLE method stands for semi-implicit method for pressure-linked 

equations. Since the method is semi-implicit, some terms can be treated implicitly while others 

treated explicitly. We have chosen to treat the pressure term as explicit and the velocity term as 

implicit. Consequently, in the first iteration of a given time step, we use the converged value of 

p  from the previous time step. Thus, we can remove p  from the time integral and rewrite 

eq. (1-142) as: 
# of faces

1

t t
f

f t

p y dtη

+∆

=

⋅∑ ∫ , 

which leads to: 
# of faces

1

f

f

p y tη
=

⋅ ∆∑  

Convective Acceleration Term. The convective term associated with the x-momentum is given 

in eq. (1-143). 
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( ) ( )1 *ku uρ −− ⋅ ∇
�

 (1-143) 

1ku −�
 is the fluid velocity calculated at a control volume face. By integrating over a control 

volume, cv we have: 

( )1 *

cv

ku u dVρ −− ⋅ ∇∫
�

 

We eventually arrive at: 

( )
# of faces

1 1 *

1

f
k k

f

u y v x uη ηρ − −

=

−∑  

 

Thus, we have for the time integration: 

( )
# of faces

1 1 *

1

t t
f

k k

ft

u y v x u dtη ηρ
+∆

− −

=

 
− 

 
∑∫  

 

The velocity from the previous iteration can be removed from the time integral leading to: 

( )
# of faces

1 1 *

1

f
t t

k k

f t

u y v x u dtη ηρ
+∆

− −

=

 
− 

 
∑ ∫  

We need an assumption for how the unknown, *u  varies with time from t to t t+ ∆ . One may 

propose (Patankar 1980): 

( )* *, *,1

t t

new old

t

u dt f u f u t

+∆

 = + − ∆ ∫  

where f is a weighting factor between 0 and 1. Setting f equal to one leads to an implicit time 

integration; setting f equal to zero, leads to explicit time integration. Since implicit time 

integration is unconditionally stable, we set f to 1. In this chapter *u  has always been assumed to 

be at the new time level. Thus we write the discretized convective term as 

( )
# of faces

1 1 *

1

f
k k

f

u y v x u tη ηρ − −

=

 − ∆ ∑  

Diffusion Term. The discretized diffusion term requires no special treatment other than 

appending it with t∆  as was done in the pressure gradient term and the convective term. Spatial 

integration over the control volume leads to:  

* *# of faces
10 1

=1 3

f

f

u u
J

q
µ − −

−  
 

∑  

Thus, for time integration we have: 

* * * *# of faces # of faces
1 10 1 0 1

=1 =13 3

f f
t t

f ft

u u u u
J dt J t

q q
µ µ

+∆
− −

    − − − = − ∆        
∑ ∑∫  

 

Final discretized form of dynamic Navier-Stokes equations 

Since t∆  is common to the pressure gradient, convective, and diffusion terms, both sides of the 

momentum equation are divided by t∆ , and the discretized x and y-momentum equations are 

written: 
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x-momentum 

( )
* *# of faces # of faces # of faces

1 1 * 10 1

1 1 =1 3

( )
f

t t t ff
k k

f f f

u uu u
V p y u y v x u J

t q
η η ηρ ρ µ

+∆
− − −

= =

 −−  = ⋅ + − −   ∆  
∑ ∑ ∑  

y-momentum 

( )
* *# of faces # of faces # of faces

1 1 * 10 1

1 1 =1 3

( )
f

t t t
ff

k k

f f f

v vv v
V p x u y v x v J

t q
η η ηρ ρ µ

+∆
− − −

= =

 −−
= − ⋅ + − −  ∆  

∑ ∑ ∑  

Ultimately, a linear algebra problem will be solved to compute *u  and *v . The transition from 

discrete equations to a linear set of equations is clearer when we bring the unknown variables to 

the left side and the constants to the right side. In the equations below, *u  and *v  have been 

rewritten as t tu +∆  and t tv +∆ . According to the derivation, it seems tu  and tv  should be the values 

of the velocity components from the previous time step. However, the dynamic Navier-Stokes 

program is more stable when tu  and tv  are the values of the velocity components from the 

previous iteration within a given time step. Therefore tu  and tv  will be rewritten as 1ku −  and 
1kv − . The pressure term, 1kp −  is the value of the pressure from the previous iteration within a 

given time step.  

 

x-momentum 

( )
1# of faces # of faces # of faces

1 1 1 10 0 1 0

1 =1 13

f
t t t t t t kf f

k k t t i

f f f

u u u u
V u y v x u J p y V

t q t
η η ηρ ρ µ ρ

+∆ +∆ +∆ −
− − +∆ − −

= =

 − − − + = ⋅ +  ∆ ∆ 
∑ ∑ ∑  (1-144) 

 

y-momentum 

( )
1# of faces # of faces # of faces

1 1 1 10 0 1 0

1 =1 13

f
t t t t t t kf f

k k t t i

f f f

v v v v
V u y v x v J p x V

t q t
η η ηρ ρ µ ρ

+∆ +∆ +∆ −
− − +∆ − −

= =

 − − − + = − ⋅ +  ∆ ∆ 
∑ ∑ ∑  (1-145) 

 

Solution strategy for dynamic Navier-Stokes equations 

The solution steps for the dynamic Navier-Stokes equations follow the same process flow as in 

Figure 69 except in step 2, eqs. (1-125) and (1-126) are replaced with eqs. (1-144) and (1-145). 

Navier-Stokes in Arbitrary Lagrangian-Eulerian Frame 

Overview. An Eulerian reference frame is a reference frame in which the quantity of interest 

(fluid motion for example) is observed by a fixed observer. The classical Navier-Stokes 

equations are formulated in an Eulerian frame.  

When the observer moves with the quantity of interest, the reference frame is referred to as 

Lagrangian. The classical Newton law and the force balance for a deformable solid (Navier 

Equations) are written in a Lagrangian form. That is why they do not have the convective term of 

the substantial derivative in the acceleration term. The mathematical treatment at the moving 

boundary is said to be Lagrangian because the observer (an imaginary observer sitting on the 

fluid grid boundary) moves at the same rate as the fluid. 

When a fluid domain is stationary, the steady-state or dynamic fluid flow equations 

introduced earlier in this appendix are applicable. When the domain occupied by the fluid is 

changing shape as it occurs in moving boundaries, the fluid grid shape and location needs to be 
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updated to track the motion of the boundaries. A moving mesh is used to express the change in 

shape, and the conservation balances are written in terms of the moving mesh (ALE Method).   

The method is called arbitrary, because there are many ways for the grid to follow the 

deformed shape. We use a diffusion-type problem to propagate the boundary displacement into 

the interior of the “moving” mesh. The diffusion problem choice ensures an even distribution of 

the mesh points away from the moving boundaries and does not require explicit information 

about the location of the moving wall. Therefore, the diffusion moving mesh update is ideal for 

moving boundary problems of biological shapes such as the brain implemented with unstructured 

grids. At a moving boundary, the fluid grid and the fluid move at the same rate (kinematic 

boundary condition). Internal grid points move according to diffusion such that none of the 

control volumes in the fluid grid collapse.  

Fluid flow inside a moving domain is governed by the Arbitrary Lagrangian-Eulerian (ALE) 

mathematical framework. First, the motion is the mesh is computed by solving with the diffusion 

problem; it gives unique displacements of all cell centers, and by averaging, the motion of each 

cell point. Alternatively, we could just prescribe the motion of the mesh by hand or with an 

explicit function. Accordingly, the ALE method is termed arbitrary, because it can work with 

any user defined mesh motion scheme. In flow problems, the fluid grid moves at a different 

speed than the fluid itself. In solid deformation problems, the grid moves exactly at the speed of 

the deformation. 

In each balance envelope, the fluxes over the face include also an expression accounting for 

the “motion” of the face. The object of the ALE is to find the states of cell center (e.g. the 

“Eulerian” velocities) in each step, despite the moving faces enclosing the current cell. Thus the 

governing flow equations are modified to account for the difference between the convective flux 

of the fluid with respect to the convective flux of the fluid grid.  

Two key points regarding problems involving moving boundaries must be emphasized: 

• The local time derivatives in the momentum and continuity equations must be accounted 

for 

• A zero (no-slip) velocity along the moving wall is not appropriate 

 

The first point is due to the fact that the volume (or area in 2D) of the control volumes is 

changing; the local time derivative accounts for this change. We must account for this volume 

change to properly balance the change in mass and momentum of a given control volume. The 

second point is due to the fact that there can be no material separation along the solid-fluid 

interface. This condition is often referred to as a kinematic boundary condition for the solid-fluid 

interface. Mathematically it is written, 

fu d=
�� ɺ

 

where fu
�

 is the fluid velocity at the wall and d
�ɺ

 is the wall velocity. 
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Figure 70. Flow diagram of the SIMPLE method integrated with an ALE approach. The 

numbered steps and equations are described in the text; k is the iteration number. 
 

Solution 

converged for 

iteration? 

Yes 

No 
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Step 2: Compute grid deformation by solving the force 
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�

, the grid displacement 
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o

fS , 
n

fS , 
o

fr
�
, 

n
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�

for each face to solve the 

analytical equation for cell face velocity gu
�

 

 

Step 4: Solve x momentum conservation balance for 

*u  Solve y momentum conservation balance for *v  

Visualize Results 

Set k=1 
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k=k+1 

Advance Time step from 
ot to 

nt  

Step 5: Solve the diffusion problem for 
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Increase time step; 
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ot  values                                      
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nt  

Last time value reached? 
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and velocity fields 

Yes 
No 
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Appendix B: The SIMPLE Algorithm Derived in Cartesian Coordinates 

Discretization of the Fluid Equations in Cartesian Coordinates 

Here we present only the steady-state discretization. Consequently, each term of the momentum 

equation is integrated over a control volume only; the time integration is not considered. Let us 

refer back to eq. (1-35). We will use 2 2ˆ ( , ) /x y x yn n n n n= +
�

 as the unit outward normal vector to 

a control volume face. 

 

Pressure Gradient Term 
Apply Gauss Theorem

cv

ˆ
x

face

p dV p n dA− ∇ ⇒ −∫ ∫
������

�
�  

Because the integral 
face

dA∫�  is the length of the control volume face, that is, 2 2

x y

face

dA n n= +∫� , 

we have: 
# of faces

1

x

f y

n
p

n=

 
−  

 
∑  

 

For the x-momentum, the pressure gradient term is written as: 
# of faces

1

f

x

f

p n
=

− ∑  

 

For the y-momentum, the pressure gradient term is written: 
# of faces

1

f

y

f

p n
=

− ∑  

We actually calculate pressures at the center of a control volume. Thus, the pressure on a face is 

calculated by averaging the pressures in two adjacent cell centers.  

 

Convective Term 

This term causes the Navier-Stokes equations to be nonlinear. To circumvent this problem, we 

will provide an initial guess (u
�

, given) for the fluid velocity, such that the momentum equation 

takes the following form: 

	

solution solution
variable variable

givencv cv cv

0 x p dV u u dV u dVρ µ= − ∇ − ⋅ ∇ + ∇⋅ ∇∫ ∫ ∫
�� ��

�
 

This arrangement is the basis of the SIMPLE algorithm in which u
�

 is provided via a guess or an 

earlier iteration. The velocity field resulting from the x and y momentum equations are then used 

to correct the pressure field; this will be discussed later. Since ( ),u u v=
�

 is known from a 

previous iteration, we can take it out of the integral. We will append the superscript i-1 to the 

velocity vector u
�

 (denoting its value is known from a previous iteration) and append an asterisk 

to the solution variable, u. 

( )1 1 *

cv cv

i iu u dV u v u dVρ ρ − −− ⋅∇ = − ∇∫ ∫
�
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We now apply Gauss theorem: 

( ) ( )11 * 1 1 *

cv face

ˆii i iu v u dV u v u n dAρ ρ
−− − −− ∇ = −∫ ∫

�
�  

 

Assuming *u  is constant along the face, dA , and noting that ( )ˆ , /x y

face

n n n dA= ∫
�

� , we have: 

( ) ( )
# of faces

1 1 * 1 1 *

1face

ˆ fxi i i i

f y

n
u v u n dA u v u

n
ρ ρ− − − −

=

 
− = −  

 
∑∫

�
 

 

For the x-momentum, the convective term is written: 

( )
# of faces

1 1 *

1

f
i i

x y

f

u n v n uρ − −

=

− +∑  

 

For the y-momentum, the convective term is written: 

( )
# of faces

1 1 *

1

f
i i

x y

f

u n v n vρ − −

=

− +∑  

 

The discretization invokes *u  and *v  at the face. *u  at a face is calculated by taking the average 

of *u  in two adjacent cell centers. The same is done for *v . 

 

Diffusion Term 

( )
Apply Gauss Theorem

* *

cv face

ˆu dV u n dAµ µ∇⋅ ∇ = ∇ ⋅∫ ∫
�������

�
�  

Note that 
* *

* u u
u

x y

 ∂ ∂
∇ =  ∂ ∂ 

  

 

Thus, we have, 
* *

2 2

face

* *# of faces

1

# of faces
center neighbor center neighbor

1 center neighbor center neighbor

/
x

x y

y

x y

f

x y

f

nu u
n n dA

nx y

u u
n n

x y

u u u u
n n

x x y y

µ

µ

µ

=

=

  ∂ ∂
⋅ +  ∂ ∂   

 ∂ ∂
⇒ + ∂ ∂ 

 − −
⇒ +  − − 

∫

∑

∑

 

 

From now on, I will abbreviate center as C and neighbor as N. Simplifying the above, we have 

for the x-momentum: 

# of faces

C N

1 C N C N

( )

f

yx

f

nn
u u

x x y y
µ

=

 
+ − − − 

∑  
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For the y-momentum, the diffusion term is: 

# of faces

C N

1 C N C N

( )

f

yx

f

nn
v v

x x y y
µ

=

 
+ − − − 

∑  

 

To summarize, eq. (1-37) in its discretized form can be written: 

x-momentum ( )
# of faces # of faces # of faces

1 1 *

C N

1 1 1 C N C N

0 ( )

f

ff yi i x
x x y

f f f

nn
p n u n v n u u u

x x y y
ρ µ− −

= = =

 
= − ⋅ − + + + − − − 

∑ ∑ ∑  

y-momentum ( )
# of faces # of faces # of faces

1 1 *

C N

1 1 1 C N C N

0 ( )

f

ff yi i x
y x y

f f f

nn
p n u n v n v v v

x x y y
ρ µ− −

= = =

 
= − ⋅ − + + + − − − 

∑ ∑ ∑  

 

The Pressure and Velocity Correction Schemes in Cartesian Coordinates  

Implementation 

As previously described, the first step in the SIMPLE algorithm is to solve the following 

momentum equations (assuming steady-state for simplicity): 

x-momentum: ( ) ( )1 1 * *

cv cv cv

0 i i

x p dV u u dV u dVρ µ− −= − ∇ − ⋅ ∇ + ∇⋅ ∇∫ ∫ ∫
�

 (1-146) 

y-momentum: ( ) ( )1 1 * *

cv cv cv

0 i i

y p dV u v dV v dVρ µ− −= − ∇ − ⋅ ∇ + ∇ ⋅ ∇∫ ∫ ∫
�

 (1-147) 

 

The following form for the velocity correction is proposed:  

' 'u p
κ
µ

= − ∇
�

 (1-148) 

Let us rewrite (1-148) as: 

'

'

''

p

u x

pv

y

κ
µ

∂ 
   ∂ = −  ∂  
 ∂ 

 

 

Thus we have two equations for the velocity correction: 

 

C N

C N

' '
'

p p
u

x x

κ
µ
 −

= −  − 
 (1-149) 

C N

C N

' '
'

p p
v

y y

κ
µ
 −

= −  − 
 (1-150) 

 

The velocity correction, 'u
�

 is the difference between the correct velocity, u
�

 and the solution 

variable, ( )* *u v : 
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*

*

'

'

u u u

v v v

    
= −     

     
 

 

After rearranging the above expression, eq. (1-151) emerges: 

 
*

*

'

'

u uu

v vv

    
= +    

    
 (1-151) 

 

This leads to two equations that represent the correct velocity components, u and v. After 

substituting eqs. (1-149) and (1-150) into eq. (1-151) we have: 

* C N

C N

' 'p p
u u

x x

κ
µ
 −

= −  − 
 (1-152) 

* C N

C N

' 'p p
v v

y y

κ
µ
 −

= −  − 
 (1-153) 

 

Note about above. Equations (1-152) and (1-153) require u  and v  to be calculated at the face. 

To obtain u  at the cell center, compute the average of all face contributions for a given control 

volume. 

 

If u and v above were the correct velocity, we should expect these velocity components to satisfy 

continuity for an incompressible fluid: 

cv face

0 0u dV u n dA∇⋅ = ⇒ ⋅ =∫ ∫
� � �

�  

 

With the relation, 2 2

x y

face

dA n n= +∫� , the above can be cast into  

( )
#of faces

=1

0

f

x

f y

n
u v

n

 
= ⋅ 

 
∑  

 

Therefore, the total mass balance is: 

( )
#of faces

=1

f

x y

f

q un vn= +∑  (1-154) 

 

For an undeformable fluid grid with an underlying incompressible fluid, q  in eq. (1-154) will be 

zero. For a given face, we can substitute eq. (1-152) and (1-153) into (1-154) and rewrite 

continuity as: 

* *C N C N

C N C N

' ' ' '
x y

p p p p
n u n v

x x y y

κ κ
µ µ

      − −
− + −      − −      
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This simplifies to: 

( )* *

C N

C N C N

' '
yx

x y

nn
n u n v p p

x x y y

κ
µ

 
+ − − + − − 

 

The complete equation which takes into account the contributions from all faces of a control 

volume is: 

( )
# of faces

* *

C N

1 C N C N

' ' 0

f

yx
x y

f

nn
n u n v p p

x x y y

κ
µ=

   
+ − − + =  − −   

∑  

 

This leads to the pressure correction equation for 'p :  

( ) ( )
# of faces # of faces

* *

C N

1 1C N C N

' '

f

f
yx

x y

f f

nn
p p n u n v

x x y y

κ
µ= =

   
− + = +  − −   

∑ ∑  (1-155) 

 

Note about eq. (1-155): First, it should be emphasized that 'p  is the pressure correction, not the 

actual pressure. Second, the right-hand-side of eq. (1-155) is continuity (see eq.(1-154)). The 

left-hand-side seems to describe the deviation from satisfying continuity. If solving the system of 

equations for the pressure correction, 'p  leads to 'p  being zero everywhere, then *u  and *v  

satisfy continuity—the left-hand-side will be zero and hence * * 0x yn u n v+ = . Thus, at 

convergence the current velocity field, *u  and *v  satisfies continuity and 'p  is zero (or 

sufficiently close to zero) everywhere.  

 

If convergence has not been reached, we apply the relation, 1 'ip p p−= +  to improve the quality 

of the pressure field. 1ip −  is the pressure value at the previous iteration. In reality, the improved 

pressure value will be calculated via under-relaxation: 

 
1 'new i

pp p pα−= + ,   where    0 1pα< <  

 

For the next iteration, 1ip −  will be set equal to newp  and the updated 1ip −  will be used as the new 

pressure guess in the momentum equations. The velocities are also updated with under-

relaxation. The components that will be used in the momentum equations in the next iteration 

are:  

 
From eq. (1-152) 

 

( )
( )

1

1

1

1

new i

u u

new i

v v

u u u

v v v

α α

α α

−

−

= + −

= + −
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Example Problem for SIMPLE Algorithm Using Cartesian Coordinates 

 

 
 

For this problem, set the left boundary to pressure 1 Pa; the right boundary to 0 Pa. Faces 1 and 3 

(f1 and f3) are no-slip boundary conditions. Viscosity is 1; density is 1000.  

 

Step 1: Find outward normals for all faces: 

Face 1 

( , ) (0,4)x yn n =  

Face 2 

( , ) ( 1,0)x yn n = −  

Face 3 

( , ) (0, 4)x yn n = −  

Face 4 

( , ) (1,0)x yn n =  

 

Step 2: Calculate contributions from pressure gradient, convective, and diffusion terms using p
i-1

, 

u
i-1

, and v
i-1

.  

 

x-momentum 

Pressure Gradient Term 

Since all pressures are set to zero initially, we only need to calculate the pressure at face 2 (f2). 

Since f2 is a boundary, one could use the boundary value. But to keep a general scheme, we will 

average the pressures between v1 and v2: 

1 2
2

0 1
0.5

2 2

V V
f

p p
p

+ +
= = =  

Thus we have for the total face flux for the pressure term: 

 
# of faces

1

0.5( 1) 0.5
f

x

f

p n
=

− ⋅ = − − =∑  

 

V1V2 V4

V3

V5

(0,0) (4,0)

(4,1)(0,1)

f2

f1

f3

f4
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Convective Term 

( )
# of faces

1 1 *

1

f
i i

x y

f

u n v n uρ − −

=

− +∑  

Since 1iu −  and 1iv −  are initially zero, there is no contribution from the convective term on the 

first iteration. 

 

Diffusion Term 

# of faces

C N

1 C N C N

( )

f

yx

f

nn
u u

x x y y
µ

=

 
+ − − − 

∑ ; recall µ =1 

Face 1 

V1 V5 V1 V5

4
0 ( ) 8 8

0.5 1
u u u u

 + − = − + − 
 

 

Face 2 

V1 V2 V1 V2

1
0 ( ) 0.5 0.5

2 0
u u u u

− + − = − + − 
 

 

Face 3 

V1 V3 V1 V3

4
0 ( ) 8 8

0.5 0
u u u u

− + − = − + − 
 

 

Face 4 

V1 V4 V1 V4

1
0 ( ) 0.5 0.5

2 4
u u u u

 + − = − + − 
 

 

Step 3: Add up all contributions to establish first equation.  

 

V1 V5 V1 V2 V1 V3 V1 V4

V1 V2 V3 V4 V5

0 0.5 8 8 0.5 0.5 8 8 0.5 0.5

0 0.5 17 0.5 8 0.5 8

u u u u u u u u

u u u u u

= − + − + − + − +

⇒ = − + + + +
 

 

Step 4: Bring unknowns to left and knowns to right.  

V1 V2 V3 V4 V517 0.5 8 0.5 8 0.5u u u u u− + + + + = −  

 

We have 5 control volumes but only 1 equation. The other four equations come from the 

boundary conditions. We assume that the velocity at the inlet is the same as the velocity in v1. 

We also assume the velocity at the outlet is the same as the velocity in v1. Thus we have two 

additional equations: 

 

V2 V1 V1 V2

V1 V4 V1 V4

0

0

u u u u

u u u u

= ⇒ − =

= ⇒ − =
 

 

We assume “no-slip” at f1 and f3. Thus we have two more equations: 
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V3

V5

0

0

u

u

=

=
 

 

Step 5: Use the five equations and five unknowns to write an Ax=b problem.  

1

2

3

4

5

17 0.5 8 0.5 8 0.5

1 1 0 0 0 0

1 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 1 0

V

V

V

V

V

u

u

u

u

u

− −    
    −     
     =−
    
    

       

 

Using a calculator with matrix functions or Matlab or any other matrix solver, the answer is: 

1 2 3 4 50.03125; 0.03125; 0; 0.03125; 0V V V V Vu u u u u= = = = =  

 
Step 6: Solve the pressure correction equation to update the pressure and velocity fields.  

( )
# of faces # of faces

* *C N

1 1C N C N

' '
f

f
yx

x y

f f

np p n
n u n v

x x y yµ= =

  − 
+ = +  − −   

∑ ∑  

 

Face 1 

( )V1 V5
V1 V5 V1 V5

C N C N

' ' 4
' ' 0 8 ' 8 '

0.5 1

yx
np p n

p p p p
x x y yµ

 −  + = − + = − +   − − −  
 

 
* *

* 1 5( )
0 4 4 0

2

V Vv v
v

+
+ = = ; though we didn’t calculate the v* explicitly, if you did, you would 

find that they should all be zero. 

 

Face 2 

( )V1 V2 V1 V2

1
' ' 0 0.5 ' 0.5 '

2 0
p p p p

− − + = − + − 
 

( )
* *

1 2( )
1 0.5 0.03125 0.03125 0.03125

2

V Vu u+
− = − + = −  

 

Face 3 

( )V1 V3 V1 V3

4
' ' 0 8 ' 8 '

0.5 0
p p p p

− − + = − + − 
 

* *
* 1 3( )

0 4 4 0
2

V Vv v
v

+
− = − =  

 

Face 4 

( )V1 V4 V1 V4

1
' ' 0 0.5 ' 0.5 '

2 4
p p p p

 − + = − + − 
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* *
* 1 4( )

1 0 1 0.5(0.03125 0.03125) 0.03125
2

V Vu u
u

+
+ = = + =  

 

Now we need to add up all contributions (sum the face fluxes): 

V1 V5 V1 V2 V1 V3 V1 V4

V1 V2 V3 V4 V5

8 ' 8 ' 0.5 ' 0.5 ' 8 ' 8 ' 0.5 ' 0.5 ' 0.03125 0.03125

17 ' 0.5 ' 8 ' 0.5 ' 8 ' 0

p p p p p p p p

p p p p p

− + − + − + − + = − +

⇒ − + + + + =
 

 

We need four additional equations coming from the boundary conditions. We have from the 

boundary conditions that pf1 is 1 and pf4 is 0. So the pressure correction at v2 and v4 is zero: 

V2' 0p =  

V4' 0p =  

 

We also make an assumption about the pressure profile at f1 and f3. We assume that the pressure 

at these faces is the same as the pressure in the adjacent cell. These means the pressure correction 

for v5 is the same as the pressure correction for v1 and that the pressure correction for v3 is the 

same as the pressure correction for v1: 

 

V1 V3 V1 V3

V1 V5 V1 V5

' ' ' ' 0

' ' ' ' 0

p p p p

p p p p

= ⇒ − =

= ⇒ − =
 

 

Now we can set up our system of equations for the pressure correction: 

V1 V5 V1 V2 V1 V3 V1 V4

V1 V2 V3 V4 V5

8 ' 8 ' 0.5 ' 0.5 ' 8 ' 8 ' 0.5 ' 0.5 ' 0.03125 0.03125

17 ' 0.5 ' 8 ' 0.5 ' 8 ' 0

p p p p p p p p

p p p p p

− + − + − + − + = − +

⇒ − + + + + =
 

 

1

2

3

4

5

'17 0.5 8 0.5 8 0

'0 1 0 0 0 0

'0 0 0 1 0 0

'1 0 1 0 0 0

'1 0 0 0 1 0

V

V

V

V

V

p

p

p

p

p

−     
    
    
     =
    

−     
   −    

 

 

For this system, the pressure corrections are all zero. One consequence of doing the analysis for a 

one cell grid is that continuity is deceptively satisfied. One should keep in mind that this was a 

very coarse grid and in reality the solution has really not converged.  

 

Probably from some educated guess, you believe the pressure correction should really be 0.5 for 

V1. Let’s continue the SIMPLE algorithm assuming this is the case. So we will assume the 

pressure correction equation resulted in  

1 2 3 4 5' 0.5; ' 0; ' 0.5; ' 0; ' 0.5V V V V Vp p p p p= = = = =  

 

Step 7: Calculate “correct” velocity 

We need to solve for the correct velocity. I first solve for the velocity correction in the internal 

control volumes by averaging the contributions from the faces.  
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* C N
1

C N

' '1
Average of V

p p
u u

x xµ

  − 
= −  −   

 

Face 1 
* *

1 5 V1 V5

V1 V5 V1 V5

' ' 0.03125 0 0
0.015625

2 2

V Vu u p p

x x x x

   + − +
− = − =   − −   

 

Face 2 
* *

1 2 V1 V2

V1 V2

' ' 0.03125 0.03125 0.5 0
0.21875

2 2 2 0

V Vu u p p

x x

 + − + − − = − = −   − −  
 

Face 3 
* *

1 3 V1 V3

V1 V3 V1 V3

' ' 0.03125 0 0
0.015625

2 2

V Vu u p p

x x x x

   + − +
− = − =   − −   

 

Face 4 
* *

1 4 V1 V4

V1 V4

' ' 0.03125 0.03125 0.5 0
0.28125

2 2 2 4

V Vu u p p

x x

 + − + − − = − =   − −  
 

So the correct velocity is: 

( )0.015625 0.21875 0.015625 0.28125 / 4 0.0234375− + + =  

Basically, what happened here is that I used the velocity vectors and pressure corrections from 

the faces that surround V1 and averaged their contributions (you see I divided by 4 above) to the 

velocity correction. This is illustrated in Figure 71; the “correct” velocities at the face are 

averaged to obtain a “correct” velocity for the control volume.  

 
Figure 71. The velocity values at the face (thin arrows) are 

averaged to obtain a “correct” velocity for the cell center (thick 

arrow). 

 

The velocity corrections in the other 4 volumes (boundary volumes) are determined from the 

boundary conditions. Since the velocity at the inlet and outlet is the same as V1 the velocity for 

V2 and V4 will also be 0.0234375. Since there is no-slip on V3 and V5 their velocities remain 

zero.  
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Step 8: Update the pressure field 

Using the pressure correction values we need to update the pressure field. The initial pressures 

were: 

1 2 3 4 50; 1; 0; 0; 0V V V V Vp p p p p= = = = =  

The pressure corrections (that we invented) were: 

1 2 3 4 5' 0.5; ' 0; ' 0.5; ' 0; ' 0.5V V V V Vp p p p p= = = = =  

Using an under-relaxation parameter for pressure of 0.3pα = (0.3 is what Fluent uses as a default 

for the pressure under-relaxation) the updated pressure field is: 

1

2

3

4

5

0 (0.3)(0.5) 0.15

1 (0.3)(0) 1

0 (0.3)(0.5) 0.15

0 (0.3)(0) 0

0 (0.3)(0.5) 0.15

V

V

V

V

V

p

p

p

p

p

= + =

= + =

= + =

= + =

= + =

 

This updated pressure field will now be used as 1ip −  in the next SIMPLE iteration. Though not 

worked-out in this example, one must remember to apply under-relaxation to the “correct” 

velocities we calculated earlier. The updated velocities (after applying under-relaxation) then 

become 1iu −  and 1iv −  in the next SIMPLE iteration. 
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Appendix C: Example Problem for SIMPLE Algorithm Using Generalized Coordinates 

The SIMPLE algorithm is demonstrated with a specific example. Figure 72a shows the 

computational domain with control volumes labeled v1 through v21. The faces are labeled f1 

through f24. To motivate the case study, Figure 72b shows the flow field for this problem 

obtained using the commercial CFD tool, Comsol. The Comsol grid consisted of about 2,000 

control volumes. 

A 

 

B 

 
Figure 72. Frame A: Computational domain for the SIMPLE 

algorithm example. There are nine interior volumes and 12 boundary 

volumes. Frame B: Flow solution in Comsol. Right: Mesh density 

used in the Comsol solution.  

 

Important Note: To calculate the pressure at a given face, the pressures in the control volumes 

adjacent to the face are averaged. For example, to calculate the pressure at face 14, the following 

calculation is performed: 

v1 v4
14

2
f

p p
p

+
=  

This simple average procedure is also used for the boundary volumes. For example, if computing 

the pressure at f1, the following calculation is performed: 

v10 v1
1

2
f

p p
p

+
=  

In the actual computer program, this average might not be sufficient. More importantly, in the 

computer implementation, the center of v10 is actually coincident with the center of f1. Thus, 

one could take the value specified at v10 as the face value instead of calculating an average value 

based on v10 and v1.  

v1 v4 v7

v8

v9v6

v5v2

v3

f1

f2

f3

f9

f8

f7

f19

f21

f22

f14

f16

f17

f6 f5 f4

f13 f18 f23

f15 f20 f24

f10 f11 f12

v15 v14 v13

v19 v20 v21

v10

v11

v12

v18

v17

v16

1.2m

0.6m

(0,0) (0.4,0) (0.8,0) (1.2,0)

(0.4,0.2)

(0.4,0.4)

(0.4,0.6)
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To solve the problem, we adhere to the following steps. 

  

Step 1: Specify boundary conditions 

Fluid wall: v19, v20, v21, v15, v14, and v13 should have ( ),u v  equal to zero for all times.  

Pressure inlet: v10, v11, v12 should have 1Pa of pressure 

Pressure outlet: v18, v17, v16 should have 0Pa of pressure 

Velocity outlet: v18, v17, v16 should be related to v7, v8, v9 by 0
u v

x x

∂ ∂
= =

∂ ∂
; this specifies that 

the fluid flow should establish a parabolic profile. It means that the following relationships hold:  

• Fluid velocity in v18 equals velocity in v7 

• Fluid velocity in v17 equals velocity in v8 

• Fluid velocity in v16 equals velocity in v9 

Velocity inlet: same argument above applies to inlet boundary as well so that we have: 

• Fluid velocity in v10 equals velocity in v1 

• Fluid velocity in v11 equals velocity in v2 

• Fluid velocity in v12 equals velocity in v3 

 

Step 2: Specify material properties 

Density, 31000 /kg mρ =  ; viscosity, 1 Pa sµ = ⋅ ; Note viscosity here is 1000 times greater than 

water. 

 

Step 3: Initialize the pressure and velocity fields 

All pressures and velocities will be set to zero except for the values we specify for the boundary 

conditions. Boundary cells, v10, v11, v12 are given a Dirichlet value of 1Pa. The pressure at the 

outlet boundary cells, v18, v17, v16 is zero.  

 

Step 4: Compute the momentum face fluxes for all control volumes 

Volume 1 

Pressure gradient term 
1 6 14 13

face face face facep y p y p y p yη η η η
 − ⋅ + ⋅ + ⋅ + ⋅  

 

( ) ( )face1 v1 v10

1
0.5 0 1 0.5

2
p p p= + = + = ; ( )face6 v1 v15

1
0

2
p p p= + = ; 

( )face14 v1 v4

1
0

2
p p p= + = ; ( )face13 v1 v2

1
0

2
p p p= + =  

face1 face6 face14 face130.2; 0; 0.2; 0y y y yη η η η= = = − =  

[ ]
1 6 14 13

face face face face 0.5(0.2) 0 0 0 0.1p y p y p y p yη η η η
 ⇒ − ⋅ + ⋅ + ⋅ + ⋅ = − + + + = −  
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Convection term (Recall 31000 /kg mρ = ) 

face1 face6 face14 face13

* * * * * * * *

v1 v10 v1 v15 v1 v4 v1 v21000 0 0 0 0
2 2 2 2

u u u u u u u u
 
        + + + +

− ⋅ + ⋅ + ⋅ + ⋅        
        

  

��������� ��������� �������� ��������

 

There are zeros multiplying the unknowns in the convective term because we initialize the fluid 

vectors as zero. 

 

Diffusion term (Recall 1 Pa sµ = ⋅ ) 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

* * * *

v1 v10 v1 v15

2 2 2 2

* * * *

v1 v4 v1 v2

2 2 2 2

0.2 0.2 0 0 0 0 0.4 0.1
0.2 0 0 0.1

1

0.4 0.2 0 0 0 0 0.4 0.2
0.4 0 0 0.2

u u u u

u u u u

 − −
− + − −       + + − 

 
− − + − − − + − −       − + + 

 

 

The above reduces to the equation for Volume (cell) 1: 
from 

* * * * *

v1 v2 v4 v10 v157.5 2 ... 0.5 ... ... 4 0.1 0

p

u u u u u

∇

− − − − − =
��

 

Volume 2 

Pressure gradient term 

( ) ( )face2 v2 v11

1
0.5 0 1 0.5

2
p p p= + = + = ; ( )face16 v2 v5

1
0

2
p p p= + = ; 

( )face13 v2 v1

1
0

2
p p p= + = ; ( )face15 v2 v3

1
0

2
p p p= + =  

face2 face16 face13 face150.2; 0.2; 0; 0y y y yη η η η= = − = =  

[ ]0.5(0.2) 0 0 0 0.1⇒− + + + = −  

 

Convection term 
face2 face13 face16 face15

* * * * * * * *

v2 v11 v2 v1 v2 v5 v2 v31000 0 0 0 0
2 2 2 2

u u u u u u u u
 
        + + + +

− ⋅ + ⋅ + ⋅ + ⋅        
        

  

��������� �������� �������� ��������

 

 

Diffusion term 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

* * * *

v2 v11 v2 v1

2 2 2 2

* * * *

v2 v5 v2 v3

2 2 2 2

0.2 0.2 0 0 0 0 0.4 0.2
0.2 0 0 0.2

1

0.4 0.2 0 0 0 0 0.4 0.2
0.4 0 0 0.2

u u u u

u u u u

 − −
− + − −       + + − 

 
− − + − − − + − −       − + + 

 

 

Above reduces to an equation for Volume (cell) 2: 
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from 

* * * * *

v1 v2 v3 v5 v112 5.5 2 ... 0.5 ... 0.1 0

p

u u u u u

∇

− + − − − − =
��

 

Volume 3 

Pressure gradient term 

( ) ( )face3 v3 v12

1
0.5 0 1 0.5

2
p p p= + = + = ; face17 face10 face15 0p p p= = =  

face3 face17 face10 face150.2; 0.2; 0; 0y y y yη η η η= = − = =  

[ ]0.5(0.2) 0 0 0 0.1⇒− + + + = −  

 

Convection term 
* * * * * * * *

v3 v12 v3 v2 v3 v6 v3 v191000 0 0 0 0
2 2 2 2

u u u u u u u u        + + + +
− ⋅ + ⋅ + ⋅ + ⋅        

        
 

 

Diffusion term 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )( ) ( )( )

( ) ( )
( )( ) ( ) ( )

( ) ( )
( )( ) ( ) ( )

* * * *

v3 v12 v3 v2

2 2 2 2

* * * *

v3 v6 v3 v19

2 2 2 2

0.2 0.2 0 0 0 0 0.4 0.2
0.2 0 0 0.2

1

0.4 0.2 0 0 0 0 0.4 0.1
0.4 0 0 0.1

u u u u

u u u u

 − −
− + − −       + + − 

 
− − + − − − + − −       − + + 

 

 

Above reduces to an equation for Volume (cell) 3: 
from 

* * * * *

v2 v3 v6 v12 v19... 2 7.5 ... 0.5 ... ... 4 0.1 0

p

u u u u u

∇

− + − − − − =
��

 

 

For Volumes 4-9, the only contribution is from the diffusion term (on this first iteration): 

Volume 4 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

* * * *

v4 v1 v4 v14

2 2 2 2

* * * *

v4 v7 v4 v5

2 2 2 2

0.4 0.2 0 0 0 0 0.4 0.1
0.4 0 0 0.1

1

0.4 0.2 0 0 0 0 0.4 0.2
0.4 0 0 0.2

u u u u

u u u u

 − −
− + − −       + + − 

 
− − + − − − + − −       − + + 

 

Equation for Volume 4 
* * * * *

v1 v4 v5 v7 v140.5 ... 7 2 ... 0.5 ... 4 0u u u u u− + − − − =  

Volume 5 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

* * * *

v5 v2 v5 v4

2 2 2 2

* * * *

v5 v8 v5 v6

2 2 2 2

0.4 0.2 0 0 0 0 0.4 0.2
0.4 0 0 0.2

1

0.4 0.2 0 0 0 0 0.4 0.2
0.4 0 0 0.2

u u u u

u u u u

 − −
− + − −       + + − 

 
− − + − − − + − −       − + + 

 

Equation for Volume 5: 
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* * * * *

v2 v4 v5 v6 v8... 0.5 ... 2 5 2 ... 0.5 0u u u u u− − + − − =  

Volume 6 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )( ) ( )( )

( ) ( )
( )( ) ( ) ( )

( ) ( )
( )( ) ( ) ( )

* * * *

v6 v3 v6 v5

2 2 2 2

* * * *

v6 v9 v6 v20

2 2 2 2

0.4 0.2 0 0 0 0 0.4 0.2
0.4 0 0 0.2

1

0.4 0.2 0 0 0 0 0.4 0.1
0.4 0 0 0.1

u u u u

u u u u

 − −
− + − −       + + − 

 
− − + − − − + − −       − + + 

 

Equation for Volume 6: 
* * * * *

v3 v5 v6 v9 v20... 0.5 ... 2 7 ... 0.5 ... 4 0u u u u u− − + − − =  

Volume 7 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

* * * *

v7 v4 v7 v13

2 2 2 2

* * * *

v7 v18 v7 v8

2 2 2 2

0.4 0.2 0 0 0 0 0.4 0.1
0.4 0 0 0.1

1

0.2 0.2 0 0 0 0 0.4 0.2
0.2 0 0 0.2

u u u u

u u u u

 − −
− + − −       + + − 

 
− − + − − − + − −       − + + 

 

 

Equation for Volume 7: 
* * * * *

v4 v7 v8 v13 v18... 0.5 ... 7.5 2 ... 4 ... 0u u u u u− + − − − =  

Volume 8 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

* * * *

v8 v5 v8 v7

2 2 2 2

* * * *

v8 v17 v8 v9

2 2 2 2

0.4 0.2 0 0 0 0 0.4 0.2
0.4 0 0 0.2

1

0.2 0.2 0 0 0 0 0.4 0.2
0.2 0 0 0.2

u u u u

u u u u

 − −
− + − −       + + − 

 
− − + − − − + − −       − + + 

 

 

Equation for Volume 8: 
* * * * *

v5 v7 v8 v9 v17... 0.5 ... 2 5.5 2 ... 0u u u u u− − + − − =  

Volume 9 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )( ) ( )( )

( ) ( )
( )( ) ( ) ( )

( ) ( )
( )( ) ( ) ( )

* * * *

v9 v6 v9 v8

2 2 2 2

* * * *

v9 v16 v9 v21

2 2 2 2

0.4 0.2 0 0 0 0 0.4 0.2
0.4 0 0 0.2

1

0.2 0.2 0 0 0 0 0.4 0.1
0.2 0 0 0.1

u u u u

u u u u

 − −
− + − −       + + − 

 
− − + − − − + − −       − + + 

 

 

Equation for Volume 9: 
* * * * *

v6 v8 v9 v16 v21... 0.5 ... 2 7.5 ... ... 4 0u u u u u− − + − − =  

 

Boundary Equations (Volumes 10-21) 

Assumption on flow profile at inlet 

V10: * *

v10 v1 0u u− =  
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V11: * *

v11 v2 0u u− =  

V12: * *

v12 v3 0u u− =  

 

Fluid wall boundary 

V13, 14, 15, 19, 20, 21: * 0u =  

 

Assumption on flow profile at outlet 

V18: * *

v7 v18 0u u− =  

V17: * *

v8 v17 0u u− =  

V16: * *

v9 v16 0u u− =  

 

y-momentum 

The y-momentum equations for this first iteration will match the x-momentum equations with the 

exception of equations coming from vols 1, 2, and 3. In these three volumes, the contribution 

from the pressure gradient is zero because xη  for faces 1, 2, and 3 is zero. 

 

This means we have two systems of equations: 

x-momentum: 
* * * * *

v1 v2 v4 v10 v157.5 2 ... 0.5 ... ... 4 0.1 0u u u u u− − − − − =  

* * * * *

v1 v2 v3 v5 v112 5.5 2 ... 0.5 ... 0.1 0u u u u u− + − − − − =  
* * * * *

v2 v3 v6 v12 v19... 2 7.5 ... 0.5 ... ... 4 0.1 0u u u u u− + − − − − =  
* * * * *

v1 v4 v5 v7 v140.5 ... 7 2 ... 0.5 ... 4 0u u u u u− + − − − =  

* * * * *

v2 v4 v5 v6 v8... 0.5 ... 2 5 2 ... 0.5 0u u u u u− − + − − =  
* * * * *

v3 v5 v6 v9 v20... 0.5 ... 2 7 ... 0.5 ... 4 0u u u u u− − + − − =  
* * * * *

v4 v7 v8 v13 v18... 0.5 ... 7.5 2 ... 4 ... 0u u u u u− + − − − =  

* * * * *

v5 v7 v8 v9 v17... 0.5 ... 2 5.5 2 ... 0u u u u u− − + − − =  
* * * * *

v6 v8 v9 v16 v21... 0.5 ... 2 7.5 ... ... 4 0u u u u u− − + − − =  
* *

v1 v10... 0u u− + =  

* *

v2 v11... 0u u− + =  
* *

v3 v12... 0u u− + =  
*

v13 0u =  

*

v14 0u =  
*

v15 0u =  
*

v19 0u =  

*

v20 0u =  
*

v21 0u =  
* *

v7 v18... 0u u− =  
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* *

v8 v17... 0u u− =  
* *

v9 v16... 0u u− =  

 

y-momentum: 
* * * * *

v1 v2 v4 v10 v157.5 2 ... 0.5 ... ... 4 0v v v v v− − − − =  
* * * * *

v1 v2 v3 v5 v112 5.5 2 ... 0.5 ... 0v v v v v− + − − − =  
* * * * *

v2 v3 v6 v12 v19... 2 7.5 ... 0.5 ... ... 4 0v v v v v− + − − − =  

* * * * *

v1 v4 v5 v7 v140.5 ... 7 2 ... 0.5 ... 4 0v v v v v− + − − − =  
* * * * *

v2 v4 v5 v6 v8... 0.5 ... 2 5 2 ... 0.5 0v v v v v− − + − − =  
* * * * *

v3 v5 v6 v9 v20... 0.5 ... 2 7 ... 0.5 ... 4 0v v v v v− − + − − =  

* * * * *

v4 v7 v8 v13 v18... 0.5 ... 7.5 2 ... 4 ... 0v v v v v− + − − − =  
* * * * *

v5 v7 v8 v9 v17... 0.5 ... 2 5.5 2 ... 0v v v v v− − + − − =  
* * * * *

v6 v8 v9 v16 v21... 0.5 ... 2 7.5 ... ... 4 0v v v v v− − + − − =  

* *

v1 v10... 0v v− + =  
* *

v2 v11... 0v v− + =  
* *

v3 v12... 0v v− + =  

*

v13 0v =  
*

v14 0v =  
*

v15 0v =  

*

v19 0v =  
*

v20 0v =  
*

v21 0v =  

* *

v7 v18... 0v v− =  
* *

v8 v17... 0v v− =  
* *

v9 v16... 0v v− =  

 

It is more convenient to write them in matrix form as: 

x-momentum: 
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7.5 2 0 0.5 0 0 0 0 0 1 0 0 0 0 4 0 0 0 0 0 0

2 5.5 2 0 0.5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 2 7.5 0 0 0.5 0 0 0 0 0 1 0 0 0 0 0 0 4 0 0

0.5 0 0 7 2 0 0.5 0 0 0 0 0 0 4 0 0 0 0 0 0 0

0 0.5 0 2 5 2 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.5 0 2 7 0 0 0.5 0 0 0 0 0 0 0 0 0 0 4 0

0 0 0 0.5 0 0 7.5 2 0 0 0 0 4 0 0 0 0 1

− − − −

− − − −

− − − −

− − − −

− − − −

− − − −

− − − − 0 0 0

0 0 0 0 0.5 0 2 5.5 2 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0.5 0 2 7.5 0 0 0 0 0 0 1 0 0 0 0 4

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

− − − −

− − − −

−

−

−

*

v1

*

v2

*

v3

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

u

u

u

u

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 

− 
 −  

*

v4

*

v5

*

v6

*

v7

*

v8

*

v9

*

v10

*

v11

*

v12

*

v13

*

v14

*

v15

*

v16

*

v17

*

v18

*

v19

*

v20

*

v21

0.1

0.1

0.1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

=  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
     




















 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Solving for the unknown u*’s yields the Matlab solution, *

v1u  through *

v21u : 

0.0316; 0.0513; 0.0316; 0.0050; 0.0093; 0.0050; 0.0010; 0.0019; 0.0010; 0.0316; 0.0513; 

0.0316; 0; 0; 0; 0.0010; 0.0019; 0.0010; 0; 0; 0 

For this being only the first iteration, this value is not so far off from the Comsol solution. Since 

the target vector for the y-momentum is all zeros, the solution for all *v ’s is zero. This is not 

surprising based on the grid and the pressure boundary conditions.  

 

The u* and v* values are now inserted into the pressure correction equation to solve for the 

pressure correction, 'p . It is not possible to present all the equations for the pressure correction 

in this example. Only the expressions for volume 1 are presented below. Keep in mind that the 

pressure correction equation assumes velocities are provided at the face. Therefore, one must 

interpolate adjacent cell velocities to obtain the velocity on the face. The pressure correction 

equation is now modified, represented in eq. (1-156). The bar indicates the averaged velocity at 

the cell face.  

( )0 1* * 1

3

' '1 p p
y u x v J

q
η η µ

−− 
− −  

 
,     where     

2 2

3

1

q x y

J x y x y

ξ ξ

ξ η η ξ
−

= +

= −
 (1-156) 

 

Step 5: Solve the pressure correction equation 

Volume 1 

Face 1 

( )
( ) ( )

( ) ( ) ( ) ( )
* * * *

v1 v10v1 v10 v1 v10

2 2

' '1
0.2 0 0.2 0.2 0 0

2 2 1 0.2 0

p pu u v v  −   + +  
− ⋅ − −       

+      
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( )
( ) ( )

( ) ( ) ( ) ( )v1 v10

2 2

' '0.0316 0.0316 0 0 1
0.2 0 0.2 0.2 0 0

2 2 1 0.2 0

p p −+ +     ⇒ − ⋅ − −           +  
 

Face 6 

( )
( ) ( )

( )( ) ( )( )
* * * *

v1 v15v1 v15 v1 v15

2 2

' '1
0 0.4 0 0 0.4 0.1

2 2 1 0 0.1

p pu u v v  −   + +  
⋅ − − − −       

+ −      
 

( )
( ) ( )

( ) ( ) ( ) ( )v1 v15

2 2

' '0.0316 0 0 0 1
0 0.4 0 0 0.4 0.1

2 2 1 0 0.1

p p −+ +     ⋅ − − − −           + −  
 

Face 14 

( )
( ) ( )

( )( ) ( )( )v1 v4

2 2

' '0.0316 0.0050 0 0 1
0.2 0 0.4 0.2 0 0

2 2 1 0.4 0

p p −+ +     − − − − − −           − +  
 

Face 13 

( ) ( )
( ) ( )

( )( ) ( )( )v1 v2

2 2

' '0.0316 0.0513 0 0 1
0 0.4 0 0 0.4 0.2

2 2 1 0 0.2

p p −+ +     ⋅ − − − − −           +  
 

 

Adding up these four expressions gives the total face flux for the continuity equation for Volume 

1. If the total flux is nonzero, the solution has not converged. (Total flux for Volume 1 above is 

( ) ( )0.2 0.0316 0.0316 / 2 0.2 0.0316 0.0050 / 2 0.00266+ − + = , so more iterations are necessary). 

Doing the face fluxes for all volumes yields a system of equations for 'p . Once we solve for 'p , 

we update the pressure field via:  
1 'new i

pp p pα−= + ,   where    0 1pα< <  

If convergence is not reached, 1ip −  is set equal to newp  and the updated 1ip −  value is inserted 

into eqs. (1-40) and (1-41) for the next iteration. Also inserted into eqs. (1-40) and (1-41) is the 

updated velocity, u
new

 which is computed in two steps, described next:  

 

Step 1: Solve for ( ),u v  using eqs. (1-45) and (1-46): 

( ) ( ) ( ) ( )* *

0 1 0 11 1

1 1
' ' ' ' ;   ' ' ' 'N S N Su u y p p y p p v v x p p x p p

J J
η ξ η ξµ µ− −

   = − − − − = − − − + −    , 

where u* must be averaged between adjacent cells. Also see notes stated below eqs. (1-45) and 

(1-46) in section 7.4.4.  

 

Step 2: Apply under-relaxation to obtain: 

( ) ( )1 11 ; 1 ;new i new i

u u v vu u u v v vα α α α− −= + − = + −  

Finally, set 1i newu u− =  and 1i newv v− =  and then plug 1iu −  and 1iv −  into eqs. (1-40) and (1-41) 

along with p
i-1

.
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Appendix D: Example Problems for Space Conservation Law 

Case I 

(0,2) (5,2) (10,2)

(10,0)(5,0)(0,0)

f4

f7

f3

f2

f1

f5

f6 (0,2)

1t∆ =

(0,2) (3,2) (8,2)

(8,0)(3,0)(0,0)

0

1A 0

2A 1

nA 2

nA

 

Figure 73. Faces 3 and 6 move left and compress the computational 

grid. 

 

Control Volume Area before deformation, t = 0. 
0 0

1 2 5(2) 10A A= = =    

 

Control Volume Area after deformation,  t = 1. 

1 3(2) 6nA = =   2 5(2) 10nA = =  

 

Below, we compute the grid velocity at each face. The methodology and explanation of notation 

will not be repeated here. Reader is directed instead to section 7.5.4.  

face 1  

1
(0 0, 2 0) (0, 2) (2,0)

oo
fSη = − − = ⇒ =

�

 

1 1

1

1

, , 1

,

,2( )

o n

x f x f f

g f n

x f

S S x
u

S t

δ

∆

+
= ;    1 1

1

1

, , 1

,

,2( )

o n

y f y f f

g f n

y f

S S y
v

S t

δ

∆

+
=    

There is no movement on f1, so 
1

(2,0)n

fS = . 

There is no change in the center of f1, so 1 1 0f fx yδ δ= = , therefore 
1, 0g fu =  ; 

1, 0g fv =  

face 2 

2
(5 0,0 0) (5,0) (0, 5)

oo
fSη = − − = ⇒ = −

�

 

2
(3 0,0 0) (3,0) (0, 3)

nn
fSη = − − = ⇒ = −

�

 

2
2 2 2 2

(1.5 2.5,0 0) ( 1,0) ( , )
f f

n o
f f f x yr r rδ δ δ= − = − − = − =
�

 

2,

0 0 1
0

2(0) 1
g fu

+ − = = 
 

 ; 
2,

5 3 0
0

2( 3) 1
g fv

− + −  = = −  
 

 

Both u and v are zero. The face velocity is based on how the face moves in the direction of the 

normal vector. The face did not move in the direction of the normal vector so there is no velocity 

for this face.  

 

face 3  

3
(5 5, 2 0) (0, 2) (2,0)

oo
fSη = − − = ⇒ =

�
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3
(3 3,2 0) (0,2) (2,0)

nn
fSη = − − = ⇒ =

�

 

3
3 3 3 3

(3 5,1 1) ( 2,0) ( , )
f f

n o
f f f x yr r rδ δ δ= − = − − = − =
�

 

3,

2 2 2
2

2(2) 1
g fu

+ − = = − 
 

 ; 
3,

0 0 0
0

2(0) 1
g fv

+  = = 
 

 

 

We see that the velocity of f3 = (-2,0). Based on all results so far, we can conclude that f4, f5 and 

f7 will have zero velocity.  

 

face 6 

6
(10 10,2 0) (0,2) (2,0)

oo
fSη = − − = ⇒ =

�

 

6
(8 8,2 0) (0,2) (2,0)

nn
fSη = − − = ⇒ =

�

 

6
6 6 6 6

(8 10,1 1) ( 2,0) ( , )
f f

n o
f f f x yr r rδ δ δ= − = − − = − =
�

 

6,

2 2 2
2

2(2) 1
g fu

+ − = = − 
 

 ; 
6,

0 0 0
0

2(0) 1
g fv

+  = = 
 

 

Therefore, the velocity of f6 = (-2,0) 

 

Check: 

for cell 1A : ( 2,0)v = −
�

 ; (2,0)n =
�

 

( )
2

2 0 4
0

v n
 

⋅ = − = − 
 

� �
 

for cell 2A  : ( ) ( )
4

1

2 2
2 0 2 0 4 4 0

0 0f

v n
=

−   
⋅ = − + − = − =   

   
∑
� �

 

 

This result says that 1A  shrunk by four units and that the size of 2A  did not change. This is 

consistent with the drawings and the calculations at the outset of this problem. 
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Case II 

 
Figure 74. Faces 4 and 7 are compressed downward to deform the grid. In the process, f1 and f3 

shrink. F6, f2, and f5 remain the same size. 

 

Control Volume Area before deformation, t = 0. 
0 0

1 2 5(2) 10A A= = =    

 

Control Volume Area after deformation, t = 1. 

1 1 3 2

1
( ) 6.25

2

nA f f f= + =   2 3 6 5

1
( ) 7.5

2

nA f f f= + =  

The above has been computed using the area formula for a trapezoid 

 

face 1 

1
(0 0,2 0) (0,2) (2,0)

oo
fSη = − − = ⇒ =

�

 

1
(0 0,1.5 0) (0,1.5) (1.5,0)

nn
fSη = − − = ⇒ =

�

 

1
1 1 1 1

(0 0,0.75 1) (0, 0.25) ( , )
f f

n o
f f f x yr r rδ δ δ= − = − − = − =
�

 

1,

2 1.5 0
0

2(1.5) 1
g fu

+  = = 
 

 ; 
1,

0 0 0.25
0

2(0) 1
g fv

+ − = = 
 

 

( )
1

0,0fu∴ =
�

 

 

face 2 ( )
2

0,0fu =
�

 by inspection ( )
2

0,0frδ =
�

 

 

face 3 

3
(5 5,2 0) (0,2) (2,0)

oo
fSη = − − = ⇒ =

�

 

3
(5 5,1 0) (0,1) (1,0)

nn
fSη = − − = ⇒ =

�

 

3
3 3 3 3

(5 5,0.5 1) (0, 0.5) ( , )
f f

n o
f f f x yr r rδ δ δ= − = − − = − =
�

 

3,

2 1 0
0

2(1) 1
g fu

+  = = 
 

 ; 
3,

0 0 0.5
0

2(0) 1
g fv

+ − = = 
 

 

( )
3

0,0fu∴ =
�

 

face 4 

(0,1.5)

(5,1)

(10,2)

(10,0)(5,0)(0,0)

(0,2) (5,2) (10,2)

(10,0)(5,0)(0,0)

t∆

f5

f1

f4 f7

f3 f6

f2

(2.5,1.25)

(7.5,1.5)

(5,0.5)

0

1A 0

2A
1

nA 2

nA
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4
(5 0,2 2) (5,0) (0, 5)

oo
fSη = − − = ⇒ = −

�

 

4
(5 0,1 1.5) (5, 0.5) ( 0.5, 5)

nn
fSη = − − = − ⇒ = − −

�

 

4
4 4 4 4

(2.5 2.5,1.25 2) (0, 0.75) ( , )
f f

n o
f f f x yr r rδ δ δ= − = − − = − =
�

 

4,

0 0.5 0
0

2( 0.5) 1
g fu

+ −  = = −  
 ; 

4,

5 5 0.75
0.75

2( 5) 1
g fv

− + − − = = − −  
 

( )
4

0, 0.75fu∴ = −
�

 

 

Velocity is zero at f5 and f6 by inspection 

 

face 7 

7
(10 5,2 2) (5,0) (0, 5)

oo
fSη = − − = ⇒ = −

�

 

7
(10 5,2 1) (5,1) (1, 5)

nn
fSη = − − = ⇒ = −

�

 

7
7 7 7 7

(7.5 7.5,1.5 2) (0, 0.5) ( , )
f f

n o
f f f x yr r rδ δ δ= − = − − = − =
�

 

7,

0 1 0
0

2(1) 1
g fu

+  = = 
 

 ; 
7,

5 5 0.5
0.5

2( 5) 1
g fv

− + − − = = − −  
 

( )
7

0, 0.5fu∴ = −
�

 

 

Check: 

For A1 : ( )
0.5

0 0.75 3.75
5

u n
 

⋅ = − = − 
 

� �
 

For A2 : ( )
1

0 0.5 2.5
5

u n
− 

⋅ = − = − 
 

� �
 

The normal vectors at t = 1 were used for this check.  
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Case III 

 
Figure 75. Faces 4 and 7 are compressed downward to deform the grid. In the process, f1, f3, 

and f5 shrink. F2 elongates. F6 remains the same size. 

 

Control Volume Area before deformation, t = 0. 
0 0

1 2 5(2) 10A A= = =    

 

Control Volume Area after deformation, t = 1. 

1 1 3 2

1 1
( ) (1.5 1)7.5 9.375

2 2

nA f f f= + = + =   2 3 6 5

1 1
( ) (1 2)2.5 3.75

2 2

nA f f f= + = + =  

 

face 1 

1
(0 0,2 0) (0,2) (2,0)

oo
fSη = − − = ⇒ =

�

 

1
(0 0,1.5 0) (0,1.5) (1.5,0)

nn
fSη = − − = ⇒ =

�

 

1
1 1 1 1

(0 0,0.75 1) (0, 0.25) ( , )
f f

n o
f f f x yr r rδ δ δ= − = − − = − =
�

 

1,

2 1.5 0
0

2(1.5) 1
g fu

+  = = 
 

 ; 
1,

0 0 0.25
0

2(0) 1
g fv

+ − = = 
 

 

( )
1

0,0fu∴ =
�

 

 

face 2  

2
(5 0,0 0) (5,0) (0, 5)

oo
fSη = − − = ⇒ = −

�

 

2
(7.5 0,0 0) (7.5,0) (0, 7.5)

nn
fSη = − − = ⇒ = −

�

 

2
2 2 2 2

(3.75 2.5,0 0) (1.25,0) ( , )
f f

n o
f f f x yr r rδ δ δ= − = − − = =
�

 

2,

0 0 1.25
0

2(0) 1
g fu

+  = = 
 

 ; 
2,

5 7.5 0
0

2( 7.5) 1
g fv

− + −  = = −  
 

( )
2

0,0fu∴ =
�

 

(0,1.5)

(10,2)

(10,0)(7.5,0)(0,0)

(0,2) (5,2) (10,2)

(10,0)(5,0)(0,0)

t∆

f5

f1

f4 f7

f3 f6

f2

(7.5,1)

(7.5,0.5)

0

1A 0

2A
1

nA 2

nA

(3.75,1.25)

(3.75,0)

(8.75,1.5)

(0,0.75)

(10,1)

(8.75,0)
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face 3 

3
(5 5,2 0) (0,2) (2,0)

oo
fSη = − − = ⇒ =

�

 

3
(7.5 7.5,1 0) (0,1) (1,0)

nn
fSη = − − = ⇒ =

�

 

3
3 3 3 3

(7.5 5,0.5 1) (2.5, 0.5) ( , )
f f

n o
f f f x yr r rδ δ δ= − = − − = − =
�

 

3,

2 1 2.5
3.75

2(1) 1
g fu

+  = = 
 

 ; 
3,

0 0 0.5
0

2(0) 1
g fv

+ − = = 
 

 

( )
3

3.75,0fu∴ =
�

 

face 4 

4
(5 0,2 2) (5,0) (0, 5)

oo
fSη = − − = ⇒ = −

�

 

4
(7.5 0,1 1.5) (7.5, 0.5) ( 0.5, 7.5)

nn
fSη = − − = − ⇒ = − −

�

 

4
4 4 4 4

(3.75 2.5,1.25 2) (1.25, 0.75) ( , )
f f

n o
f f f x yr r rδ δ δ= − = − − = − =
�

 

4,

0 0.5 1.25
0.625

2( 0.5) 1
g fu

+ −  = = −  
 ; 

4,

5 7.5 0.75
0.625

2( 7.5) 1
g fv

− + − − = = − −  
 

( )
4

0.625, 0.625fu∴ = −
�

 

 

Velocity is zero at f5 and f6 by inspection 

 

face 7 

7
(10 5,2 2) (5,0) (0, 5)

oo
fSη = − − = ⇒ = −

�

 

7
(10 7.5, 2 1) (2.5,1) (1, 2.5)

nn
fSη = − − = ⇒ = −

�

 

7
7 7 7 7

(8.75 7.5,1.5 2) (1.25, 0.5) ( , )
f f

n o
f f f x yr r rδ δ δ= − = − − = − =
�

 

7,

0 1 1.25
0.625

2(1) 1
g fu

+  = = 
 

 ; 
7,

5 2.5 0.5
0.75

2( 2.5) 1
g fv

− + − − = = − −  
 

( )
7

0.625, 0.75fu∴ = −
�

 

 

Check: 

For ( ) ( )
4

1

1

1 0.5
3.75 0 0.625 0.625 0.625

0 7.5
f f

f

A v n
=

   
∆ = ⋅ = + − = −   

   
∑
� �

 

For ( ) ( )
5,6,7

2

3

1 1
3.75 0 0.625 0.75 6.25

0 2.5
f f

f

A v n
=

− −   
∆ = ⋅ = + − = −   

   
∑
� �

 

These values correspond to the change in area of A1 and A2 and are consistent with what was 

calculated at the outset. 
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Appendix E: Example Problem for ALE 

The following example problem contains one control volume. Because only one control volume 

is used, the final results of fluid velocity and pressure will not be accurate. However, the 

example is instructive for understanding the ALE methodology. To simplify the computations, 

the case is steady state. To begin, consider a grid with dimensions as specified in Figure 76. The 

pressures at the inlet and outlet are specified as shown. The evolution and solution to the 

problem involves two specific stages, each with several main tasks as follows: 

 

Stage 1: Velocity Calculation for Initial Grid, Shown in Figure 76 

Provide an initial value for the velocity and pressure in volume 1 

Solve the x and y momentum 

Solve the pressure correction 

Accept updated pressure and velocity field 

 

Stage 2: Velocity Calculation for Deformed Grid, Shown in Figure 76 

Deform the grid as shown in Figure 77 

Solve the x and y momentum 

Solve the pressure correction 

Accept updated pressure and velocity field 

 

 
Figure 76. Control volume used for example problem for ALE 

calculations 

 

Solution 

Stage 1: Calculate Velocity and Pressure on Initial Grid 

Step 1: Initialize pressure and velocity fields 

[0,0.1,0,0,0]p = ; [0,0,0,0,0]; [0,0,0,0,0]u v= =  

Note: The array index corresponds to the volume number—element 1 of the array corresponds to 

volume 1, et cetera. 

 

Step 2: Set up a metrics table 

It is easiest to set up a table of face metrics to which we can refer. 

Volume Face xξ  yξ  xη  yη  
3q  1J −  

1 

f1 0.5 0 0 0.25 0.3125 0.125 

f2 0 0.125 -1 0 0.015625 0.125 

f3 -0.5 0 0 -0.25 0.3125 0.125 

f4 0 -0.125 1 0 0.015625 0.125 

 

(0,0) (1,0)

(0,0.25)

f3V1

f2

V3

V2 f1

f4

V5

V4

(1,0.25)

Pin=0.1 Pout=0
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Step 3: Compute face fluxes for pressure gradient term 

The only pressure contribution comes from face 1. Instead of calculating an average for the face, 

we will take the actual value of the pressure at face 1, which is 0.1. 

1 2

1

0.1

0.1 0.25 0.025

face v

face

p p

p yη

= =

⋅ = ⋅ =
 

 

Step 4: Compute face fluxes for diffusion term 

1 2 1 3 1 4 1 5

3 3 3 3

1 2 1 3 1 4 1 51 0.125 0.125 0.125 0.125
0.3125 0.015625 0.3125 0.015625

v v v v v v v v

v v v v v v v v

u u u u u u u u
J J J J

q q q q

u u u u u u u u

µ
 − − − −

+ + + 
 

− − − − = + + +  

 

 

Step 5: Compute face fluxes for convective term 

There will be no contribution from the convective term on this iteration since all velocities are 

initially set to zero. 

 

Step 6: Set up linear algebra system 

Equation 1: 1 2 3 4 516.8 0.4 8 0.4 8 0.025v v v v vu u u u u− − − − =  

Equation 2: * *

v2 v1 0u u− =  

Equation 3: *

v3 0u =  

Equation 4: * *

v4 v1 0u u− =  

Equation 5: *

v5 0u =  

 

Step 7: Solve system 

( )

1

2

3

4

5

1 2 3 4 5

16.8 0.4 8 0.4 8 0.025

1 1 0 0 0 0

0 0 1 0 0 0

1 0 0 1 0 0

0 0 0 0 1 0

, , , , (0.0015625,0.0015625,0,0.0015625,0)

v

v

v

v

v

v v v v v

u

u

u

u

u

u u u u u

− − − −     
    −     
     =
    

−     
       

⇒ =

 

Since xη  for face 1 is zero, there is no contribution to the v-velocity from the pressure. 

Therefore, the v velocity is zero everywhere on the first iteration. 
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Figure 77. The grid is deformed by forcing face 4 to move 

downward. The ALE method is used to recalculate the flow 

field. 

 

Stage 2: Advance one time step; ∆t = 1 

Step 1: Take converged pressure and velocity fields as initial guess for new time step 

[0,0.1,0,0,0]p = ;   [0.0015625,0.0015625,0,0.0015625,0]; [0,0,0,0,0]u v= =  

 

Step 2: Calculate gu
�

 

Based on prior case studies, only f4 will have a velocity; it is calculated as follows: 

 

Face 4 

( ) ( ) ( )0 0

41 0,0.25 0.25 1,0 0, 1fSη = − − = ⇒ = −
�

 

( ) ( ) ( )41 0,0.2 0.2 1,0 0, 1n n

fSη = − − = ⇒ = −
�

 

( )4 0.5 0.5,0.2 0.25 (0, 0.05)frδ = − − = −
�

 

, 4 , 4

0 0 0 1 1 0.05
0; 0.05

2(0) 1 2( 1) 1
g f g fu v

+ − + − −   = = = = −   −   
 

, 4 (0, 0.05)g fu⇒ = −
�

 

 

Step 3: Calculate face fluxes for the pressure gradient, convective, and diffusion terms 

Pressure Gradient Term 
1 2 3 4

face face face facep y p y p y p yη η η η
 − ⋅ + ⋅ + ⋅ + ⋅  

 

f1 f2 f3 f40.1; 0; 0; 0p p p p= = = =  
1

0.2
f

yη = −  

[ ]0.1 ( 0.2) 0.2⇒− ⋅ − =  

 

Convective Term 

( ) ( )
# of faces

1 1 *

f

i i

g g

f

u u y v v x uη ηρ − − − − ⋅ − − ∑  

( ) ( )
( ) ( )

* *

v2 v3

* *

v4 v5

0.0015625 0 (0.2) (0 0)(0) 0 0 (0) (0 0)( 1)

... 0.0015625 0 ( 0.2) (0 0)(0) 0 0 (0) (0 ( 0.05)( 1)

u u

u u
ρ
 − − − + − − − − +       

−  
+ − − − − + − − − − −        

 

 

(0,0) (1,0)

(0,0.25)

f3V1
f2

V3

V2 f1

f4

V4

(1,0.25)

Pin=0.1 Pout=0

V5
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Diffusion Term 

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

* * * * * * * *

v1 v2 v1 v3 v1 v4 v1 v5

2 2 2 22
0.5(0.2) ( 1)(0.1) 0.5( 0.2) (1)( 0.1)

0.5 0 0.1 0.5 0 0.1

u u u u u u u u
µ
 − − − − 

+ − − + − − + − − 
+ − + −  

 

( ) ( ) ( ) ( )* * * * * * * *

v1 v2 v1 v3 v1 v4 v1 v50.4 10 0.4 10u u u u u u u u⇒ − + − + − + −  

* * * * *

v1 v2 v3 v4 v520.8 0.4 10 0.4 10u u u u u− − − −  

 

Step 3: Add contributions from p∇ , u u⋅∇
� �

, and 2u∇
�

 
* * * * *

v1 v2 v3 v4 v520.8 0.0875 10 0.7125 60 0.02 0u u u u u− − − − + =  

 

Step 4: Decide on boundary conditions and establish mathematical relationships 

Assume velocity at volume 2 equals velocity at volume 1 
* * * *

v2 v1 v2 v1 0u u u u= ⇒ − =  

Assume velocity at volume 4 equals velocity at volume 1 
* * * *

v4 v1 v4 v1 0u u u u= ⇒ − =  

Set velocity at volumes 3 and 5 equal to zero (no-slip boundary condition) 
*

v3 0u = ;  *

v5 0u =  

 

Step 5: Write all equations and place in matrix form 

Equation 1: * * * * *

v1 v2 v3 v4 v520.8 0.0875 10 0.7125 60 0.02 0u u u u u− − − − + =  

Equation 2: * *

v2 v1 0u u− =  

Equation 3: *

v3 0u =  

Equation 4: * *

v4 v1 0u u− =  

Equation 5: *

v5 0u =  

 
*

v1

*

v2

*

v3

*

v4

*

v5

20.8 0.0875 10 0.7125 60 0.02

1 1 0 0 0 0

0 0 1 0 0 0

1 0 0 1 0 0

0 0 0 0 1 0

u

u

u

u

u

− − − −   −   
    −     
     =
    

−     
       

 

 

Step 6: Solve system in Matlab 

Solution of above system is: 

[0.001,0.001,0,0.001,0]; [0,0,0,0,0]u v= =  

 

Step 7: Solve Pressure Correction Equation 

( ) ( )
0 # of faces

* * 10 1

f=1 3

' '1
0

f
n

f g f g

p pV V
y u u x v v J

t q
η η µ

−
  −−  

+ − − − − =  ∆    
∑  
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Appendix F: Validation of the ALE Program — Comparisons with Fluent 

This validation study considers an 18 by 18 grid. The x-velocity (0.003m/s) is specified at the 

inlet and the pressure (0.001 Pa) is specified at the outlet. My results are given in the left column; 

results from Fluent in the right column. The first set of pressure, x-velocity, and y-velocity results 

are obtained on an undeformed grid. The second set of pressure, x-velocity, and y-velocity results 

are obtained after three grid deformation steps. For all results, the “in-house” code and the Fluent 

results differ by only a small amount.  

Pressure 

 

x-velocity 

 

y-velocity 
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Pressure 

 

 

x-velocity 

 

y-velocity 

 
 

Figure 78. Validation of ALE computer program. The “in-house” computer program results 

are given in the left column. Fluent results are given in the right column.  
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Appendix G: Strain and Stress—Instructions for Implementation 

The FSI program contains procedures for calculating the strain and stress of the brain tissue. The 

strain and stress measures documented in (Linninger 2011) was implemented: 

 

     Strain 

x xy

xy y

x y x

y x y

α α β
ε ε

ε
ε ε α β β

∂ ∂ ∂ +   ∂ ∂ ∂
 = =  ∂ ∂ ∂   + ∂ ∂ ∂ 

 

 

     Stress 

x xy

xy y

σ σ
σ

σ σ
 

=  
 

 

 

The stress components are computed using a linear elastic constitutive model: 

( ) 2 2x x y xG G
x y x

α β α
σ λ ε ε ε λ

 ∂ ∂ ∂
= + + = + + ∂ ∂ ∂ 

 (1-157) 

( ) 2 2y x y yG G
x y y

α β β
σ λ ε ε ε λ

 ∂ ∂ ∂
= + + = + + ∂ ∂ ∂ 

 (1-158) 

xy xyG G
y x

α β
σ ε

 ∂ ∂
= = + ∂ ∂ 

 (1-159) 

 

Contributions to the strain components are: 

( ) ( )
1 1x x cell neighbor North South

y y

x x x J J

η ξα α ξ α η α α
ξ η α α α α

ξ η ξ η − −

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = + = − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (1-160) 

( ) ( )
1 1y y cell neighbor North South

x x

y y y J J

η ξα α ξ α η α α
ξ η α α α α

ξ η ξ η − −

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = + = − − + −

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (1-161) 

( ) ( )
1 1x x cell neighbor North South

y y

x x x J J

η ξβ β ξ β η β β
ξ η β β β β

ξ η ξ η − −

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = + = − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (1-162) 

( ) ( )
1 1y y cell neighbor North South

x x

y y y J J

η ξβ β ξ β η β β
ξ η β β β β

ξ η ξ η − −

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = + = − − + −

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (1-163) 

 

We take 
1

x

J

ξ

−
,

1

x

J

η

−
,

1

y

J

ξ

−
, and 

1

y

J

η

−
 to be in the deformed (current) configuration—after the grid 

has been updated with computed displacements.  

 



263 

 

 

Because we are using a collocated approach (all states are solved in the cell center). Thus, 
x

α∂
∂

, 

y

α∂
∂

, 
x

β∂
∂

, and 
y

β∂
∂

 in eqs. (1-160)-(1-163) are computed at the cell center. Equations (1-160)-(1-

163) seem to indicate that for a given control volume, neighboring cells will contribute to the 

strain measure for a given control volume. Thus, I compute the strain components for a given 

control volume by averaging the contributions from all neighboring control volumes: 

 

( ) ( )
# of faces

1 1
1

1

# of faces
cell neighbor North South

y y

x J J

η ξα
α α α α

− −

 ∂
 = − − −

∂   
∑  (1-164) 

( ) ( )
# of faces

1 1
1

1

# of faces
cell neighbor North South

x x

y J J

η ξα
α α α α

− −

 ∂
 = − − + −

∂   
∑  (1-165) 

( ) ( )
# of faces

1 1
1

1

# of faces
cell neighbor North South

y y

x J J

η ξβ
β β β β

− −

 ∂
 = − − −

∂   
∑  (1-166) 

( ) ( )
# of faces

1 1
1

1

# of faces
cell neighbor North South

x x

y J J

η ξβ
β β β β

− −

 ∂
 = − − + −

∂   
∑  (1-167) 

 

The stress components in eqs. (1-157)-(1-159) are then computed using the components of the 

strain tensor: xε , yε , xyε . 
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Appendix H: Proof of the Approximated Diffusion Flux Term 

Eq. (1-168) gives the total diffusion flux, totalq  for a given control volume.  

( ) ( )
# of faces

* * * *1 2
0 11 1

1

f

total N S

f

q q
q u u u u

J J
µ

− −
=

 
 = − − − −
  

∑  (1-168) 

 

If eξ
�

 and eη
�

 are nearly perpendicular, we can set 2q  equal to zero. Thus, for a single face, (1-

168) can be written as 

( )* *1
0 11face

q
q u u

J
µ

−
= − −  (1-169) 

We will derive an alternate form of the above which does not contain the 1J − . First note that 

( ) ˆˆ ˆ0 0 0

0

i j k

e e x y i j x y x y k

x y

ξ η ξ ξ ξ η η ξ

η η

× = = − + −
� �

 

 

The magnitude of the above vector is given by: 

sine e e eξ η ξ η θ× =
� � � �

 

 

Since we assume θ  is 90� , we have, 

parallelograme e e e Aξ η ξ η× = =
� � � �

 

 

The above relation equals the area of the parallelogram, parallelogramA , defined by eξ
�

 and eη
�

. Since 

the i and j components are zero, the area of the parallelogram is  

( )x y x yξ η η ξ− .  

 

Recall that 1J −  also equals ( )x y x yξ η η ξ− . Thus, we have that 1J e eξ η
− =

� �
. Therefore, we can 

write eq. (1-169) as 

 

Recall that 1q  is defined as 

2 2

1q x y e eη η η η= + =
� �

 

Thus, we can rewrite eq. (1-170) as 

An alternative form is derived similarly: 

( )* *1
0 1

f

D

q
q u u

e eξ η

µ= − −
� �

 (1-170) 

( ) ( )* * * *

0 1 0 1

f

D

e e e
q u u u u

e e e

η η η

ξ η ξ

µ µ= − − ⇒ − −

� � �

� � �
 (1-171) 
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( ) ( )

( ) ( )

1 * * * *

0 1 0 11

* * * *

0 1 0 1

D

e e eq
q u u u u

e e eJ

e e e e e
u u u u

e e e e e

η η ξ

ξ η ξ

η η ξ ξ η

ξ η ξ ξ ξ

µ µ

µ µ

−
= − − = − ⋅ −

⇒ − ⋅ − ⇒ − ⋅ −

� � �

� � �

� � � � �

� � � � �

 

Which ultimately leads to  

Eq. (1-172) is implemented in my fluid-structure interaction program. 
 

( )
1

* *

0 1

3

J
u u

q
µ

−

⇒ − ⋅ −  (1-172) 
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Appendix I: Generating a Random Point in a Quadrilateral 

Our implementation of constrained constructive optimization (CCO) requires that we 

generate random sample points within the perfusion domain and connect them to existing 

segments. In our implementation of the confined CCO algorithm, the domain is not analytical 

(circle, square), but is constructed of quadrilaterals. Therefore, we must generate sample points 

within quadrilaterals, and we propose the following method. Consider the quadrilateral in Figure 

79; it is divided into lower and upper triangles; the lower triangle is shaded in the figure. 

The shaded triangle is bounded by two functions which both involve x and y, namely, y = x, 

and y = (1/5)x. The third boundary is x = 5. It would not be a simple matter trying to generate a 

random point in such a domain. When we morph (transform) the shaded triangle into the ( ),ξ η  

domain, the boundary is much simpler. The domain is bounded by the lines 1η ξ= − , 0η = , and 

0ξ = . Because the domain boundaries are simpler functions than in the original domain, 

generating a random point in the transformed triangle will be much easier than in the original 

domain. For a point ( ),ξ η  to lie in the transformed domain, ξ  can take on values [0,1]ξ ∈ , 

while η  can take on values, [0,1 ]η ξ∈ − . The transformation from the ( ),x y  domain to the 

( ),ξ η  domain ensures one-to-one point correspondence. Thus, a random point generated in the 

transformed domain has a corresponding point in the ( ),x y  domain. 

x

y

(0,0)

(5,1)

(5,5)
(2,4)

1v
�

2v
�

(0,0)

(1,0)

(0,1)
( )ξ,η = T(x, y)

ξξξξ

ηηηη

1

2

3

4
1η ξ= −

2 1
v v−
� �

1
2

3

 

Figure 79. The triangle in the ( ),x y  domain is morphed (transformed) into the ( ),ξ η  

domain according to the transformation, ( ),T x y . The vector 1v
�

 is morphed into the 

vector =(1,0)ξ ; the vector 2v
�

 is morphed into the vector =(0,1)η ; the vector 2 1v v−
� �

 

is morphed into the hypotenuse 1η ξ= − . The transformed triangle has legs of length 

one, and is bounded by 0ξ = , 0η = , and 1η ξ= − . 

 

How to Transform the Domain 

The challenge lies in determining how to relate a point in the ( ),x y  domain to a point in the 

( ),ξ η  system, and vice-versa. First, note that the vertices in the shaded triangle (Figure 79) 

correspond to the vertices of the triangle in the ( ),ξ η  domain. We choose one vertex in the 

( ),x y  domain to be the “origin” and the remaining two vertices will be used to construct two 
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vectors. For this example, we choose the origin vertex to be point 1. The first vector, 1v
�

 will be 

directed from point 1 to point 2; the other vector, 2v
�

 will be directed from point 1 to point 3: 

 1v 2 1 (5,1) (0,0) (5,1)pt pt= − = − =
�

; 2v 3 1 (5,5) (0,0) (5,5)pt pt= − = − =
�

 

The vectors 1v
�

 and 2v
�

 provide a mapping from one coordinate system to another in the 

following way: 

1 2            v  v

5 5

1 5

x

y

ξ

η
     

=    
     

,   where 
5 5

1 5
A

 
=  
 

 and 1
5 51

1 520
A− − 

=  − 
 

 

The coordinates (0,0) , (5,1) , and (5,5)  in the ( ),x y  domain define the bounds of the ( ),ξ η  

domain as shown below: 

1
5 51

1 520

x x
A

y y

ξ
η

− −       
= =      −       

 

For ( ), (0,0)x y = : 

5 5 0 01

1 5 0 020

ξ
η

−       
= =      −       

 

For ( ), (5,1)x y = : 

5 5 5 11

1 5 1 020

ξ
η

−       
= =      −       

 

For ( ), (5,5)x y = : 

5 5 5 01

1 5 5 120

ξ
η

−       
= =      −       

 

This demonstrates that the ( ),x y  points transform to ( ),ξ η  points in the following way: 

( ),x y  

⇒  

( ),ξ η  

(0,0)  (0,0)  

(5,1)  (1,0)  

(5,5)  (0,1)  
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(0,0)

(1,0)

(0,1)

ξξξξ

ηηηη

(0.75,0.2)

1η ξ= −

 

Figure 80. A point, (0.75, 0.2) is generated at random 

in the ( ),ξ η  domain. The coordinates lie in the domain  

bounded by 0ξ η= =  and 1η ξ= − .  

The procedure above established how to transform any point from the ( ),x y  domain to the 

( ),ξ η  domain. We are now ready to select a random point in the ( ),ξ η  domain and relate it 

back to a point in the ( ),x y  domain. The first step is to generate a ξ  value between 0 and 1. For 

this example, ξ  is 0.75. Because the domain is bounded by 0η =   and 1η ξ= − , η  can assume 

any value between 0 and 1 ξ− . For this example, η  is 0.2. The random point in the ( ),ξ η  is 

shown in Figure 80. The points in the ( ),x y  domain corresponding to 0.75ξ = , 0.2η =  are: 

5 5 0.75 5*0.75 5*0.2 4.75

1 5 0.2 1*0.75 5*0.2 1.75

x

y

+         
= = =         +         

 

 

As Figure 81 shows, this point safely lies in the ( ),x y  domain as we desired. 

x

y

(0,0)

(5,1)

(5,5)
(2,4)

1

2

3

4

(0,0) (1,0)

(0,1)

ξξξξ

ηηηη

(0.75,0.2)

(4.75,1.75)

 

Figure 81. The random point, (0.75,0.2) in the ( ),ξ η  domain 

has a corresponding point, (4.75,1.75) in the ( ),x y  domain. 

 

Additional Example 

The quadrilateral in the previous example was a special case in which one of the vertices were at 

(0,0). A quadrilateral in which none of its vertices are (0,0) is shown in Figure 82. Generating the 

sample point in this domain corresponds to the general case. As before, we choose at random 
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whether to generate the random point in the lower or upper triangle. As before, we will assume 

the lower triangle has been chosen at random.  

(2,1)

(5,2)

(6,5)

(3,4)

1v
�

2v
�

x

y

 

Figure 82. Quadrilateral in which none of the vertices 

are (0,0). Generating the sample point in this domain 

corresponds to the general case.  

Vectors 1v
�

 and 2v
�

 are constructed: 

1v (5, 2) (2,1) (3,1)= − =
�

; 2v (6,5) (2,1) (4, 4)= − =
�

 

This leads to the system: 

1 2            v  v

3 4

1 4

x

y

ξ

η
     

=    
     

 where 
3 4

1 4
A

 
=  
 

 and 1
4 41

1 38
A− − 

=  − 
 

The vertices of the ( ),ξ η  domain correspond to the vertices of the ( ),x y  domain: 

1
4 41

1 38

x x
A

y y

ξ
η

− −       
= =      −       

 

For ( ), (2,1)x y = : 

4 4 2 0.51

1 3 1 0.1258

ξ
η

−       
= =      −       

 

For ( ), (5, 2)x y = : 

4 4 5 1.51

1 3 2 0.1258

ξ
η

−       
= =      −       
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For ( ), (6,5)x y = : 

4 4 6 0.51

1 3 5 1.1258

ξ
η

−       
= =      −       

 

0.25 0.5 0.75 1.0 1.25 1.5

0.25

0.5

0.75

1.0

1.25

1.5

ηηηη

ξξξξ

(0.5, 0.125)
(1.5, 0.125)

(0.5, 1.125)

η = 1.625 - ξ

 

Figure 83. Lower triangle of Figure 82 transformed into 

the ( ),ξ η  domain. As noted before, the legs of the 

triangle have length of one. 

 

Notice that the triangle in the ( ),ξ η  domain has legs with length one, but that the origin is not at 

(0,0). This is because the origin of the ( ),x y  domain was not (0,0), but (2,1). We could choose 

random points adhering to [0.5,1.5]ξ ∈  and [0.125,1.625 ]η ξ∈ − . However, our approach will 

be to keep the ξ  domain as [0,1]ξ ∈  and η  as [0,1 ]η ξ∈ − . We will then shift the coordinates 

of the random point, offsetting ξ  and η  by the origin, (0.5, 0.125). Let us assume random ξ  and 

η  have been generated as: 0.25ξ = , 0.5η = . Thus the actual random point generated in the 

transformed triangle is: 

0.5 0.25 0.75ξ = + = ; 0.5 0.125 0.625η = + = . The corresponding random point in the ( ),x y  

domain is: 

3 4 0.75 4.75

1 4 0.625 3.25

x

y

       
= =      

       
 

An alternative procedure would be to calculate the point in the ( ),x y  domain  corresponding to 

( ), (0.25,0.5)ξ η =  and perform the shift in the ( ),x y  domain. For example:  

3 4 0.25 2.75

1 4 0.5 2.25

x

y

       
= =      

       
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We then offset this point by the origin we chose for the ( ),x y  domain—(2,1). It follows that the 

random point ( ),random randomx y  is: 

2 3 4 0.25 2 2.75 4.75

1 1 4 0.5 1 2.25 3.25

random

random

x

y

             
= + = + =            
            

 

This offsetting of the (x,y) point is the actual implementation in the CCO confined vasculature 

code. As shown in Figure 84, point (4.75, 3.25) lies safely in the ( ),x y  domain. 

(2,1)

(5,2)

(6,5)

(3,4)

x

y

(4.75, 3.25)

 

Figure 84. Random point (4.75, 3.25) in the ( ),x y  

domain corresponds to point (0.75, 0.625) in the ( ),ξ η  

domain. 
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Appendix J: Steps for Preparing Vessel-Brain-CSF Interaction Simulation 

Required Steps: 

1. Create 2D geometry points for brain and CSF using Image J 

a. Load an image of the brain into Image J and click points making up the boundary 

of CSF and brain tissue 

b. Export these points in .xls format 

c. Open .xls file and reflect the y-coordinates across the x-axis because otherwise 

Gambit will read the points upside down. 

d. Scale the points such that the length and width are in SI units and are comparable 

with real brain dimensions. 

2. Import the points into Gambit. In Gambit you will mesh the fluid and solid domains and 

apply boundary conditions. There is a very strict protocol you should follow. You should 

know that the fluid and solid faces at the FSI boundary must have a means of 

communicating with one another. If the node points or boundary face numbers along the 

interface are the same, it is a straightforward matter to apply the displacements from the 

solid to the fluid domain. I have ensured that the node points and the boundary face 

numbers along the FSI boundary are the same by using the following procedure: 

a. Create faces for the fluid and solid domains.  

b. Mesh the edges of the interface (where solid and fluid domains are in contact with 

one another) first.  

c. Mesh all other edges that are not on the interface.  

d. Mesh faces one at a time. Do not mesh them at the same time. Since you have 

meshed all the edges already, you should specify Interval count equal to 1.  

e. In my implementation, I used two individual meshes. To do this, I deleted one of 

the meshes and exported the other. When you delete one of the meshes make sure 

you do not choose the option “Remove unused lower mesh”. If you select that 

option, you will delete the nodes of the meshed edges. The idea here is to 

maintain the nodes of the meshed edges so that the node numbers on the interface 

will be the same. 

f. After you have exported one of the meshes, click the Undo arrow. This will bring 

back the mesh you just deleted. Since you now want to export the other mesh, 

delete the mesh you exported previously. After you have deleted that mesh (again 

being careful not to select “Remove unused lower mesh”), export the second 

mesh. 

3. Create a vessel base tree structure (BTS) using the Network Viewer project in Delphi 

a. Load an image of vasculature, either a histological image or an accurate artistic 

rendering 

b. Select points that follow the trajectory of the vessels.  

c. Join points always from proximal to distal 

d. All this is documented in a conversation with Nick Vaičaitis. The recordings are 

included in my DVD package. 

4. Using the Vasculature Generation application, load the brain mesh created in Gambit and 

the BTS that was created in Network Viewer 

5. Click the Rough Scale button and position/anchor the vasculature to the brain mesh 

6. Add a vessel growth stage 
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7. After generation, compare the root radius of the original BTS file and the newly 

generated vasculature file. Determine the scaling factor by dividing the first point (x-

coordinate needed only) of the new file by the first point of the BTS file.  

8. In the Vasculature Generation tree viewer, find the Gambit Reader source pascal file. 

Find the readpointcoordinate procedure. Change the scale from 1 to 1/value determined 

in step 7. 

9. Load the brain mesh and the newly formed vasculature file. As the vasculature file gets 

loaded, it gets scaled down to its proper physiological size.  

10. Enter a value in the Edit 1 box for the root radius. Click the Qterm variable button and 

save the file. All downstream radii are updated when you perform this procedure. 

11. To verify the scaled-down vasculature fits in the brain mesh, change the scale in Gambit 

Reader source back to 1. 

12. To link the vasculature with the brain mesh, run the Search Algorithm in the FSI code. 
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