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SUMMARY

Metamaterials exhibit properties not normally observed in nature. Properties are derived

from an engineered internal structure rather than atomic composition. Major classes of meta-

materials are electromagnetic, acoustic and mechanical. Mechanical metamaterials are charac-

terized by their unnatural elastic properties. The shear modulus, elastic modulus, bulk modulus

and Poisson’s ratio are measures of rigidity, stiffness, inverse of the compressibility and ratio of

longitudinal strain to contractile strain. Mechanical metamaterials may take on a negative value

for one or more of these constants. Analysis is performed under quasistatic loading conditions.

The mechanical property under investigation is negative extensibility. A five element unit-

cell structure is able to contract against the line of increasing tension. If uniaxial stiffness

were to be measured during this contraction, the structure would appear to possess a negative

stiffness. More accurately, it would be a negative ‘incremental’ stiffness since the slope of the

stress-strain curve becomes negative after the load is applied. Negative extensibility is contrasted

with other mechanical phenomena including negative compressibility, negative Poisson’s ratio,

stretch-densification and St.-Venant edge effect reversal.

The unit-cell structure is bistable. There exists two valid solutions of equilibrium for a given

applied load. During a load-unload cycle, the response is hysteretic. The potential or strain

energy function of the unit-cell is highly nonlinear due to geometry. Several distinct types of

mechanical responses are possible depending on the choice of member stiffness and dimensions.

After the potential is put into dimensionless form, a phase diagram is calculated. The phase

x



SUMMARY (Continued)

diagram is a function of dimensionless system parameters that represent the geometry and

stiffness of elements. Regions of the diagram are associated with a distinct mechanical response

achieved during a load-unload cycle. Boundary lines are the onset of a particular mechanical

response.

Energy methods used in computational thermodynamics for the calculation of microstruc-

tural phase diagrams are re-purposed in order to map the mechanical response of the unit-cell

structure. The critical boundaries that divide monostability from bistability are determined us-

ing a set of constraints, which are informed by the principles of catastrophe theory. Even within

the bistable region it is possible to differentiate mathematically the nature of the hysteretic

response. Of most significance is the existence of negative extensibility of the superelastic-type

(NESE). The response is characterized by a ‘pinched’ hysteresis loop. The structure contracts

intermittently against the applied external tension. It does negative work as load is applied.

This is a condensation reaction.

The boundary lines delineating the NESE response are discussed in great detail. Conditions

are developed for computing the intersections of boundary lines on the phase diagram. Analogous

to thermodynamics, there exist singular ‘triple points’ where the system simultaneously satisfies

conditions for three different states of mechanical equilibrium. The discussion ends with a brief

presentation of how the unit-cell can be arranged into a periodic array. Periodic boundary

conditions are developed that could be used to approximate the response of a larger system.

Fabrication of a periodic structure designed to contract at a critically applied load remains an

open question. Viability of the phenomenon in practice is evaluated.

xi



CHAPTER 1

INTRODUCTION

In 1967, Russian physicist Victor Veselago showed analytically that a medium with simul-

taneously negative magnetic permeability µ and electric permittivity ε has a negative index of

refraction [1]. Although theoretically possible by the laws of physics, at that time no natural

or engineered material had been observed with this exotic electromagnetic property. It would

not be until three decades later that Sir John Pendry laid the groundwork for synthesis of

materials with negative permittivity [2] and permeability [3] by performing computations on

low-frequency diffraction in composites made of metallic rods and copper split-ring resonators.

Shortly thereafter, the optical phenomenon was realized experimentally when a team of Ameri-

can physicists fabricated an interlocking lattice of copper split-ring resonators and copper wire

strips, which exhibited simultaneous negative permittivity and permeability in the microwave

range [4]. Materials with a negative refractive index show a reversal of many physical properties

such as Snell’s Law and the Doppler effect [5,6]. This new category of material was coined as a

“metamaterial,”—it possesses properties not normally observed in nature.

1.1 Electromagnetic metamaterials and the metamaterials paradigm

The first metamaterials discovered were electromagnetic. Applications being investigated

include superlensing—the ability to resolve light below the diffraction limit [7], an “invisibil-

ity cloak” [8–10], antennae and wireless telecommunication devices [11–13], sensors [14] and

1
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photo-voltaic and catalytic cells [15]. Metamaterials represent not only a new class of materials

extending the design space to negative ranges for material constants, but perhaps more impor-

tantly, they represents a new framework to conceptualize about materials. Metamaterials are

quite diverse with acoustic and mechanical being the other two major types of metamaterials.

Engineered metamaterials may gain their properties from an array of repeating small-scale

units or “elements” embedded in a larger matrix [16, 17]. In the case of double negative elec-

tromagnetic metamaterials, the scale of these structural units is small relative to wavelength of

incident radiation. The constituent materials themselves do not have the same properties as

the composite metamaterial. It is the engineered internal structure rather than the chemical

composition that is responsible for an effective negative value for a physical property. In the

literature this is referred to as an “effective medium description” [18]. In other words, the

macroscopic response of the mixture is distinct from those of the ingredients [19]. However, this

distinction is not so clear when considering that for certain chemical compounds hierarchical

order starting from the level of the microstructure and down to the level of the atomic structure

are factors contributing to metamaterial properties, especially in the domain of mechanical

metamaterials [20,21].

1.2 Acoustic metamaterials

Properties of acoustic metamaterials, including an effective negative compressibility (inverse

of the bulk modulus K) and effective negative dynamic mass density, are based on the dynamics

of sonic wave propagation through the medium [22, 23]. Parallels between acoustics and elec-

tromagnetism are readily seen when comparing the Helmholtz equation for acoustic pressure
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to the electromagnetic wave equation [24]. Double negativity in the dynamic bulk modulus

and dynamic density is the acoustic analogue of double negativity in the permeability and

permittivity in electromagnetism [25]. The metamaterials paradigm is the same for acoustics

as it is for electromagnetism in that an unconventional macroscopic response such as effective

negative refraction is achieved through the periodicity of locally resonant elements, known as

Helmholtz resonators [26]. However, other types of composite acoustic metamaterials do not

make use of inertial resonance effects to achieve a negative bulk modulus; rather, this property

as well as other phenomena such as extreme damping [27] and extreme stiffness [28] are the

result of negative stiffness inclusions constrained within a viscoelastic matrix. The observation

of negative effective material properties is permissible by the laws of thermodynamics because

the system either is being dynamically excited, exists in a thermodynamically open state, or only

one constituent of the composite material bears this property [29, 30]. Potential applications of

acoustic metamaterials include acoustic lensing—focusing of acoustic waves below the diffrac-

tion limit for ultra-sound imaging [31, 32], acoustic cloaking—the ability to hide objects from

sound [33,34], acoustic shielding (a perfect mirror)—total reflection of sound waves over specific

frequency bands [35,36] and earthquake engineering [37]. Like electromagnetic metamaterials,

these effects act over a specific frequency range, stopband or band gap.

1.3 Mechanical metamaterials

Mechanical and structural metamaterials, often analyzed under quasistatic conditions, en-

compass a range of materials with non-natural elastic constants such as the shear modulus G,

elastic modulus E, bulk modulus K and Poisson’s ratio ν, which respectively, are measures of
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the rigidity, stiffness, inverse of the compressibility and ratio of contractile strain to longitudinal

strain [38]. Mechanical metamaterials can be characterized by an artificially designed structure,

which is often made up of simple microstructural spring and bar elements [39, 40]. Properties

are derived from the deliberate structuring of elements, and thus, these properties are distinct

from those of the bulk materials that comprise the structure [41]. Structures may be fabricated

using rapid prototyping techniques such as 3D printing [42]. For some mechanical metamate-

rials, the chemical makeup of the bulk material is at least in part responsible for an unusual

property—e.g., black phosphorus as well as certain plastically deformed polymeric and metallic

foams. These highly anisotropic materials possess a negative Poisson’s ratio and are known

as auxetic materials [43, 44]. Auxetic foams exhibit unit-cell geometry that is idealized as a

symmetrically collapsed 24-sided polyhedron, which facilitates lateral expansion when stretched

uni-axially [45].

Ultimately, it is the structure that governs the mechanical response. The interesting mechan-

ical properties stem from the fact that there are a finite number degrees of freedom in the system

constraining the allowed movements. The aggregate effect of many unit-cells together leads to

strange, unnatural effects such as in the case of pentamode metamaterials, which are defined by

an extremely large bulk modulus to shear modulus ratio [46]. Pentamode metamaterials behave

much like a fluid in that they mold to fit the shape of objects. The solid lattice structure shears

or deforms easily. At the same time the lattice is extremely hard to compress [47].

A common motif encountered in metamaterials research is that properties are ‘tunable.’

For instance, the permeability of light through electromagnetic metamaterials can be altered
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such that over the same band gap the material may switch between reflecting, transmitting

and absorbing light—i.e., the response can be tuned to a specific frequency [48]. Mechanical

metamaterials may have multiple stable states of equilibrium. Here, tuning capabilities are

achieved during the process of state switching, which often occurs by reconfiguration of the lattice

or unit-cell geometry [49]. Origami-based mechanical metamaterials serve as a prime example.

The Miura-ori tessellation is the basic pattern that is used to mesh a flat sheet into creases [50].

Because a single Miura fold can be reversibly switched between two states—one soft and one

stiff—a sheet with many creases can be re-folded into an entirely new three-dimensional shape

with a totally different set of mechanical properties than the original configuration [51]. Related

to the concept of programmable matter, physical properties of Origami-inspired metamaterials

are said to be dynamically re-configurable [52,53]. The defect structure in Origami, analogous to

a crystal lattice, plays a fundamental role in controlling physical properties [54]. Computational

Origami borrows the terms vacancy, dislocation and grain boundary to pertain to specific

features in the crease pattern that alter how the paper can be folded [55]. Applications of

Origami-based metamaterials include self-folding polymeric systems [56], self-folding robotics

systems [57] and soft robotics applications such as pneumatic and biomorphic actuators [58,59].



CHAPTER 2

BISTABLE SYSTEMS

Before presenting the metamaterial property of negative extensibility, the fundamental

concept of mechanical bistability must be discussed in greater depth. In mechanics, bistability

occurs when the total potential or strain energy function of the system generates two valid

equilibrium configurations for a single loading condition. Oftentimes, during loading there

exists a critical force where the structure jumps discontinuously from one state to another. For

instance, a beam may buckle, a switch may flip or a truss may snap-through. In the literature

prominent examples of mechanical bistability include the von Mises truss [60,61], machinery in

microelectromechanical systems (MEMS) [62–64], piezoelectric oscillators and switches [65, 66],

shape memory alloys and thin film actuators [67,68].

2.1 Two-bar truss

A single-degree-of-freedom two-bar truss coupled to a spring shown in Figure 1 is a model

system used to illustrate several fundamental concepts regarding bistability. A quasistatic

analysis is performed in order to generate a force-response curve, which plots the equilibrium

displacement of the truss u as a function of the applied load F . To begin the analysis, a balance

of energy over the system is performed where the stored energy U in the two bars k1 and spring

k2 are subtracted from the energy of the external load V .

6
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I N I T I A L S TAT E : Relaxed springs, no forces applied

H

L1

L

k2

k1 k1

θ

(a)

S TAT E 1 : Force F applied creating vertical displacement 

F


(b)

S TAT E 2 : Finite increase in force ΔF causes snap-through action
of the truss, associated with displacement Δ

F + ΔF
 + Δ

(c)

1

Figure 1: Two-bar truss coupled to a spring. (a): Relaxed bars and spring are initially in
state 1. (b): Application of force F at the midpoint causes displacement u while still remaining
in state 1. (c): At a critical force the structure ‘snaps-through’ to state 2 reaching a new
equilibrium after an intermittent displacement ∆u.
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Balance of energy:

Π = U − V (2.1)

=
1

2
k1(∆l1)

2 +
1

2
k1(∆l1)

2 +
1

2
(∆l2)

2 − Fu (2.2)

= k1

(√
L2 + (H − u)2 −

√
L2 +H2

)2
+

1

2
k2u

2 − Fu (2.3)

Equilibrium conditions require that the first derivative of the potential with respect to the

degree of freedom u must be equal to zero

dΠ

du
= −F + k2u−

2k1(H − u)
(√

(L2 +H − u)2 −
√
L2 +H2

)
√
L2 + (H − u)2

= 0 (2.4)

Because the system has just one degree of freedom, the displacement u, an analytic solution

for the force F as a function of u is possible by placing the force F on the other side of the

equilibrium equation (Equation 2.4). Alternatively, the displacement u can be solved as function

of F numerically by a Newton-Raphson approach. In this case, F is used as a running variable

and the displacement u is solved for at discrete values of F . To get a smooth response curve as

force is increased, a small enough step size ∆F is required.

For this simple truss system, there exists only three qualitatively distinct types of force-

response curves, each of which are graphed in Figure 2:

1. monostability (MS)

2. superelasticity (SE)

3. superplasticity (SP)

Although the material laws are all linear elastic, the strain energy function (Equation 2.3) is

highly nonlinear as a consequence of the geometry. Because of this nonlinearity, for certain
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combinations of element stiffnesses and dimensions it is possible for the solution to bifurcate or

split such that two stable states of equilibrium exist for a single loading condition. The result

is hysteretic bistability. Using principles from catastrophe theory1 it is possible to define the

set of all points corresponding to the onset of bistability. A hysteresis loop—i.e., bistability, is

observed for the superelastic (SE) and superplastic (SP) response curves. The monostable (MS)

response, although nonlinear, is a smooth, continuous expansion and contraction of the elastic

members during load-unload cycles.

During loading, the surroundings are doing work onto the system. Compression of the bars

and spring results in the absorption of strain energy linearly proportional to the change in

length. The displacement is in the direction of the applied force so work is defined as positive

Wload ≡ +. During unloading, the system does work onto the surroundings as it releases stored

strain energy. Wunload ≡ − since the displacement opposes the direction an applied force. For

the superelastic hysteresis of the truss in Figure 2, integrating over the cycle reveals that the

net work is positive Wcycle ≡ +. Work is F · du so that the x-axis (force F ) is integrated over

the y-axis (displacement u). The energy absorbed during loading exceeds the energy released

during unloading. Viscoelastic materials such as shape memory alloys show qualitatively a

similar hysteresis effect [69]. The stress-strain curve in loading is located above the unload

curve—i.e., under forward loading a greater applied stress is required to reach the same level of

deformation during unloading. The net work in a cycle is positive. Most of the energy absorbed

1Catastrophe theory is a branch of applied math derived from topology that studies how the shape of
smooth surfaces of equilibrium are affected when sudden, discontinuous catastrophic singularities occur.
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in the cycle will be lost primarily due to heat. Heat loss occurs due to friction between slip

planes as a material deforms, which is called hysteretic or material damping [70].

2.2 Superelasticity

Superelasticity is the ability of a structure to accommodate large applied strains and recover

to its original configuration when the load is removed. The superelastic response of the truss

system, shown in blue in Figure 2, is characterized by a forward phase transformation 1 → 2

during loading and a reverse transformation 2 → 1 during unloading. The critical force for

the forward transformation marks the onset of destabilization and snap-through action of the

truss as it re-equilibrates to a new configuration. Using Newton-Raphson to solve for the

equilibrium displacement reveals a vertical discontinuity in the strain. The forward superelastic

transformation is accompanied by the absorption of energy by the system, raising its internal

energy. Thermodynamically, this is comparable to a vaporization reaction. During load removal,

a reverse transformation 2 → 1 will occur but at a lower critical force than the forward

transformation. The structure destabilizes and re-equilibrates at a lower strain corresponding

to its original state 1. The reverse superelastic reaction is analogous to condensation; energy

is released from the system to the surroundings. During cycles of load-unload, the energy

dissipated in the process is proportional to the area enclosed by the hysteresis loop [71].

Shape memory alloys such as nickel titanium were the first discovered materials capable

of undergoing large, reversible deformation [72]. At a critically applied tension, these metals

expand in volume as a result of a stress-induced martensitic phase transformation [73]. Provided

temperature is great enough, when the load is removed the inverse reaction proceeds, thereby
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−0.1
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1
→

2
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1

Figure 2: Three classes of force-response curve for the single-degree-of-freedom two-bar truss
coupled to a spring. The type of response depends on the stiffness of the bars k1 and spring k2
and initial dimensions L and H. Curves are generated using L = 1.0 m, H = 0.2 m. Monostable
(MS) response (red), shown for k1 = 4e4, k2 = 2.3e3 kN/m. Superelastic (SE) response (blue),
shown for k1 = 1e4, k2 = 2.0e3 kN/m. Superplastic (SP) response (green), shown for k1 = 2e4,
k2 = 1 kN/m. Under normal loading conditions the ‘S’ shaped inner curve, which comprises
the analytical solution F (u) will not be accessed.
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restoring the alloy to its original position. Alloys with stress-induced transformations are

hysteretic, a defining feature of superelasticity. Alternatively, if the metals are stressed beyond

a certain threshold or the temperature is too low, during load removal the inverse reaction

may not proceeded to completion. The larger volume martensitic phase persists. In this state,

the alloys are referred to as ‘superplastic’ since during loading the material underwent the

forward (expansion) reaction but during unload the reverse (contraction) reaction either failed

to occur or failed to proceed to completion. However, if shape memory alloys—now in the

superplastic state—are heated then the inverse transformation is driven to completion and the

initial shape is restored. The shape memory effect is the recovery of superplastic metals with

heat. Temperature and applied stress play comparable roles in driving the transformation [74].

The austenitic phase is stable at high temperatures and low stresses. The martensitic phase is

stable at lower temperatures and higher stresses. Due to their extreme ductility, light weight

and high strength shape memory alloys see applications in the aerospace industry, often forming

complex, irregular shapes [75].

2.3 Superplasticity

As discussed, superplasticity occurs when a structure accommodates large applied strains

and remains in this highly deformed state after load removal. Superplastic materials usually

accommodate strains well beyond their normal breaking point. For some materials tensile

elongation exceeds 2000 % [76]. Large flow stresses and the shape memory effect are two

important features of superplastic shape memory alloys [77]. Superplasticity is observed in

fine-grained metal and ceramic systems [78, 79]. Fine-grained and nanocrystalline structures
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are amenable to superplasticity owing to the mechanism of plastic deformation, described as

grain boundary-diffusion, -sliding and -rotation [80]. Cold-rolled nano-crystalline copper was

elongated by 5100 % whereas coarse grained copper usually breaks around 800 % [81]. The

term ‘superplastic extensibility’ is used to describe the extreme elongation of nanocrystalline

metals [82].

The superplastic response of the two-bar truss, depicted as the green curve in Figure 2,

reveals a hysteresis loop. Like the superelastic response, during loading at a critical force

there is an abrupt forward 1→ 2 phase transformation. However, the main difference between

superelasticity and superplasticity is the location of critical force for the reverse transformation

2 → 1. When the load is removed from the superplastic truss it remains plastically deformed

in state 2. Under tension, the structure in state 2 would appear to have a different stiffness

than state 1. For this reason, the two states are considered structural polymorphs. In order to

restore the truss to its original configuration the load must be applied in the opposite (negative)

direction. Only then will the structure be able to overcome an energy barrier, which allows it

to snap back to its original state.

2.4 Cusp catastrophe

Catastrophe theory is particularly useful in understanding systems that undergo discrete,

non-smooth transitions such as the transition between monostability and bistability in a plane

truss when element stiffnesses, dimensions and load are altered [83]. The simplest ‘elementary

catastrophe’ is the fold catastrophe, which is graphed in Figure 3 (a) and the underlying function

shown in Table 1. In physics, the curve represents an energy minimum—i.e., solutions of static
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TABLE 1: Seven elementary catastrophes

Catastophe
Control

dimensions
Behavior

dimensions
Function First derivative

C
u

sp
oi

d
s Fold 1 1 1

3x
3 − ax x2 − a

Cusp 2 1 1
4x

4 − ax− 1
2 − bx

2 x3 − a− bx
Swallotail 3 1 1

5x
5 − ax− 1

2bx
2 − 1

3cx
3 x4 − a− bx− cx2

Butterfly 4 1 1
6x

6 − ax− 1
2bx

2 − 1
3cx

3 − 1
4dx

4 x5 − a− bx− cx2 − dx3

U
m

b
il

ic
s

Hyperbolic 3 2 x3 + y3 + ax+ by + cxy
3x2 + a+ cy
3y2 + b+ cx

Elliptic 3 2 x3 − xy2 + ax+ by + cx2 + cy2
3x2 − y2 + a+ 2cx
−2xy + b+ 2cy

Parabolic 4 2 x2y + y4 + ax+ by + cx2 + dy2
2xy + a+ 2cx
x2 + 4y3 + b+ 2dy

equilibrium. The ‘behavior’ axis is a dependent variable. The behavior is a function of the

control parameter a. If the dependent variable is position x, then the control parameter may

be the input force. The fold catastrophe is defined by a singular point where the two branches

meet. This point is the onset of solution splitting.

The fold catastrophe is a transversal projection of the cusp catastrophe, graphed in Figure 3

(b) and (c) with the function in Table 1. The cusp catastrophe is a three-dimensional figure with

two control parameters a and b and a third dimension for the behavior axis. The two control

FOLD

STABLE

UNSTABLE

CONTROL

B
E

H
AV

IO
R

1

(a) (b)

︸ ︷︷ ︸

(c)

Figure 3: (a): Fold catastrophe, (b): Cusp catastrophe, (c): Five properties that distinguish
systems modeled using the cusp catastrophe. Image (a) is original while images (b) and (c) are
modified from a Public Domain image from the Wikipedia Commons.
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parameters are two independent variables or inputs into the system. The distinctive shape of

a cusp—two lines meeting sharply at a point, is projected onto the control surface in Figure 3

(b). The set of control parameters that comprise the cusp is referred to as the ‘bifurcation

set.’ The bifurcation set marks the boundary of bimodal, hysteretic behavior. Inside the cusp

region, there will be two valid solutions of equilibrium for a single pair of control parameters.

Bimodal systems modeled with a cusp catastrophe include the buckling of an Eulerian beam,

the transformation from liquid to gas and stick vs. slip modes of dry friction [84,85].

The cusp catastrophe is characterized by five properties:

1. Bimodality: There are two possible states in the system.

2. Catastrophic jumps: Transitions between two states of equilibrium are sudden and dis-

continuous.

3. Hysteresis: The location of the transition from the bottom sheet to the top sheet occurs

at a different position than the transition from the top sheet to the bottom sheet, an effect

called hysteresis.

4. Inaccessible zone: The middle sheet (fold curve) that connects the top and bottom sheets

(shown in Figure 3 (b) but omitted in Figure 3 (c)) is the least likely response and often

physically inaccessible.

5. Divergence: Prior to the onset of bifurcation, a small perturbation in the system may

have a large downstream effect. Depending on the direction of perturbation, the final

state may end up on either the top or the bottom sheet.
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René Thom, the founder of catastrophe theory, demonstrated that for processes governed

by no more than four factors there exists only seven elementary catastrophes [86]. These are

presented in Table 1. Higher-dimensional catastrophes cannot be drawn in their entirety. The

behavior surfaces and solution splitting regions are often projected as three- and two-dimensional

figures. In Chapter 5, an understanding of the basic principles of catastrophe theory will greatly

aid the analysis of a two-degree-of-freedom (2 behavior axes) elastic structure whose response

is dictated by a total of five independent parameters. The potential function of this system is

concave, non-harmonic and consequently highly nonlinear. The ability to compute the location

of all cusp singularities—the bifurcation set—is a powerful tool in mapping the response of

the system since this is the crucial boundary between monostability and hysteretic bistability.

Computation of bifurcation points been successfully applied in different systems including

optimizing landing gear [87] and power systems [88], predicting climate transitions [89] and

predator-prey relationships [90] and analyzing compressor flow stability [91].



CHAPTER 3

MECHANICAL PROPERTIES AND THEIR REVERSAL

Mechanical metamaterials under certain circumstances see a reversal of the usual mechanical

properties typical to most engineering and natural materials. For instance, mechanical meta-

materials may experience: (1) a decrease in length along the line of increasing applied tension

(negative extensibility), (2) a decrease in hydrostatic stress under volume compression (negative

compressibility), (3) a lateral expansion when stretched axially (negative Poisson’s ratio), (4) a

decrease in volume when stretched axially (stretch-densification) and (5) fast decay of coarse

strain fluctuations with distance (reversal of St.-Venant edge effects).

3.1 Negative extensibility

Extensibility will be defined as the change in length ∆L of a material, which occurs along

the direction of an increasing applied external force F + ∆F . Normal materials expand in

the direction of an applied tension. In contrast, a mechanical metamaterial with a negative

extensibility transition will contract at a critical force so as to oppose the direction of an

increasing external tension. To be clear, this definition does not take into account how the

material deforms transversely or any other volumetric effects. All that is taken into account

is the response in the longitudinal direction when a linear force such as a tension is applied.

It follows that if the uniaxial stiffness were to be measured during this contraction against an

17
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Figure 4: Definition of negative extensibility. At a critically applied load F +∆F the structure
displaces −∆u so as to contract against the line of increasing tension.

applied tensile force F + ∆F , the result would be a negative spring constant k. The definition

is written as

Extensibility: ∆L =
∆F

k
(3.1)

A negative extensibility transition is shown in Figure 4.

If the slope of the force-displacement curve shifts negative after the force is applied, it is

said to be ‘non-monotonic.’ The transition from a positive to a negative slope represents a

“negative incremental stiffness” [92]. Negative incremental stiffness has been observed in post-

buckled rubber tubes and single-cell foam structures constrained under displacement control

[93, 94]. Constraint is a necessary condition for these structures to exhibit negative incremen-

tal stiffness. When multiple foam cells are tested under uniaxial compression, the constrain

becomes insufficient and the effect is no longer observed [94]. Negative extensibility should be

distinguished from other effects discussed in the literature including: negative compressibility,

negative Poisson’s ratio, stretch densification and St.-Venant edge effect reversal.
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3.2 Negative compressibility

The isothermal compressibility β quantifies the change in volume of the material in response

to a change in hydrostatic pressure

β = − 1

V

∂V

∂p
=

1

K
(3.2)

Normal materials compress axially in all directions in response to an increase in hydrostatic

pressure and expand axially in all directions in response to a decrease in hydrostatic pres-

sure, resulting in a positive value for the compressibility [95]. Metamaterials with negative

compressibility may see a reversal of this behavior in one or more axial dimensions [96]. The

bulk modulus K is the inverse of the compressibility. Therefore, the property of negative

compressibility always corresponds to a negative bulk modulus.

Negative incremental bulk modulus is the situation when increasing hydrostatic strain results

in a decrease in hydrostatic stress. In an experiment with a type of foam, an applied compressive

volumetric strain causes an increase in hydrostatic stress until a point is reached where the

hydrostatic stress starts to decrease even though the volume continues to shrink [92]. Over this

region the foam possesses a negative bulk modulus and equivalently, a negative compressibility.

In this case, the independent variable is the volumetric strain (displacement-controlled) while

the dependent variable is the hydrostatic stress.

Negative compressibility is related to and often coincides with a negative elastic modulus

or negative stiffness, depending on the context. For instance, certain composite materials when

dynamically excited show an effective negative compressibility, which is achieved in part because
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of pre-strained, negative stiffness phases that are constrained in a viscoelastic matrix [27,97]. A

unifying property that ties materials with a negative incremental bulk modulus and inclusions

with a negative stiffness is that these states are stabilized through surface constraints [28].

Previous work by Lakes and Wojciechowski [98] explored the notion that although thermo-

dynamic considerations require positive compressibility, there exist certain assumptions in this

claim that must be examined. At the crux of their argument was that “the continuum has

a non-denumerable infinite number of degrees of freedom, while a solid made of atoms has a

finite, albeit large, number of degrees of freedom” [98]. Moreover, since atoms are vibrating

due to nonzero temperature they experience a degree of freedom which is absent from the

continuum. Elasticity theory does allow for negative compressibility, in particular when the

object is constrained [43]. However, thermodynamics requires that the strain energy density

function be positive definite, which forbids negative compressibility [99]. Motter and Nicolaou

[39] similarly explored this notion and concluded that negative compressibility is prohibited in

thermodynamically closed systems. If it does occur then the original configuration is necessarily

unstable. However, the researchers stated that an implicit assumption of thermodynamics is

that changes in force are small and that equilibrium survives this loading, i.e.—a quasistatic

process. The researchers concluded that if force changes by a finite amount as in real physical

scenarios then it is possible that equilibrium may destabilize leading to a new stable equilibrium.

This would permit a negative compressibility transition.

Under conditions of increasing hydrostatic pressure, there are multiple instances of only one

axis of a material expanding under increasing hydrostatic pressure while the other two axes be-
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have with the usual positive compressibility. The effect is termed negative linear compressibility

and occurs in tetragonal networks of beam structures [100], crystal phase materials [101,102],

biological materials [103] and polymeric systems [104]. Even more rare is when changes in

hydrostatic pressure induce two perpendicular dimensions of a material to show negative com-

pressibility while the third dimension behaves with the usual positive compressibility. This

effect is called negative area compressibility and has been observed in crystal structures [105]

and biologic membranes [106]. The most exotic effect—negative compressibility in all axial

directions—has been realized in a mechanical metamaterial model, which is able to contract in

all directions when subjected to an isotropic tension [39, 40]. An expansion in volume under

increasing pressure is achieved through the nonlinear interaction of force potentials between

particle constituents [107].

3.3 Negative Poisson’s ratio

Poisson’s ratio ν is defined as the signed ratio of lateral strain to axial strain along the

direction of applied tension

ν = −εlateral
εaxial

(3.3)

Most materials grow thicker along their cross-section when compressed in a vice and stretch

thinner when pulled apart. Materials with a negative Poisson’s ratio expand laterally in tension

and diminish laterally in compression. The first observed materials with a negative Poisson’s

ratio were metallic and polymeric foams [20,43]. Later the phenomenon was seen in anisotropic

composites [108], laminates [109], naturally occurring rocks [110], inorganic single crystals [111]
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and engineered structures such as micro-porous cellular structures [112]. Before the discovery

of this class of material, referred to as auxetics, all known materials exhibited a Poisson’s

ratio ranging from nearly 0 (no lateral strain change, seen in cork) to nearly 0.5 (perfectly

incompressible, seen for rubbery solids). Auxetics comes from the Greek word auxetos, meaning

“that which may be increased” [113].

For isotropic materials, those without a preferred orientation, thermodynamic arguments

regarding stability restrict allowable ranges for Poisson’s ratio to be −1 < ν < 0.5. Over

this range, both the bulk modulus K and shear modulus G are positive [114]. A Poisson’s

ratio approaching 0.5 is the situation where the bulk modulus is much greater than the shear

modulus, K >> G, and the material is nearly incompressible. A Poisson’s ratio approaching

−1 is the situation where the material is highly compressible but difficult to shear G >> K.

Auxetic foams and composites are inhomogenous and anisotropic. Additionally, properties are

derived from the twisting and bending moments transmitted through fibers and cell ribs with

a ‘characteristic length’ comparable to the micro-cellular structure [115]. These considerations

raise doubts on the utility of the continuum theory of elasticity for auxetic materials.

A Poisson’s ratio of −0.8 was observed in a copper foam [116] and for highly anisotropic

micro-porous polyethylene the Poisson’s ratio reached as low as −1.2 in some directions [117].

Poisson’s ratio for cubic materials can theoretically range from −1 to 2 although there is no

theoretical limit for crystals having less intrinsic symmetry [118]. Few crystals exhibit a negative

ν for all directions. Because ν is defined as a ‘cross property’ with no specific energy coupled to

it, it does not have to be positive [98]. Moreover, negative Poisson’s effects can be achieved by
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structuring a composite material with viscous and elastic components such that the effective

response—increasing or decreasing Poisson’s ratio with time ν(t)—can be altered dynamically

[119].

3.4 Stretch-densification

Using the terminology of Baughman, materials with Poisson’s ratio ν > 0.5 in both transverse

directions are termed “stretch-densifying” [120]. The change in volume due to the thinning

of the cross-section, which occurs over two transversal dimensions, outweighs the change in

volume due to the elongation thereby increasing the density of the material. Cellular structures

including hexagonal honeycombs are known to exhibit a Poisson’s ratio of 1 in certain directions

[121]. Stretch-densification is realized in certain foams after they are plastically stretched along

one axis. This leads to an enhanced axial, anisotropic stiffness and an increased Poisson’s ratio

ν > 1 [122]. The processing here is different from the processing required to achieve foams with

a negative Poisson’s ratio. For negative Poisson’s ratio foams, permanent triaxial compression

produces a ‘re-entrant’ structure where the cell is transformed from a convex polyhedral shape

to a concave shape [43].

The above definition of stretch-densification based on a Poisson’s ratio ν > 0.5 is not

general enough since there exist a class of extremely rare crystalline and polymeric materials

that when stretched exhibit a negative Poisson’s ratio and a simultaneous increase in density

[96]. The increase in density occurs when these solids are stretched along an axis of negative

linear compressibility [123]. When compressed hydrostatically, these materials stretch along

one axis and see an increase in surface area—thereby exhibiting negative linear compressibility.
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When subjected to tension along this axis, a considerable lateral expansion occurs (associated

with a negative Poisson’s ratio) as well as a simultaneous lateral inward shift of a different

plane of atoms causing an increase in an density (corresponding to a positive Poisson’s ratio)

[118]. Baughman states that the density increase is made thermodynamically possible precisely

as a consequence of the negative Poisson’s ratio. The relationship between negative ν and

stretch-densification is reconciled through the extreme anisotropy of cubic phase crystals and

micro-porous polymers. In one transversal direction they show the greatest positive Poisson’s

ratio while in the second transversal direction they show the most negative Poisson’s ratio [120].

3.5 St.-Venant edge effect reversal

The St.-Venant edge effect is the local concentration of stress in the region of an applied

load or boundary condition. As one moves from the surface of the material where the load

is applied towards the interior, the stress distribution becomes more uniform. In isotropic

materials, fine fluctuations of strain (edge effects) decay rapidly with distance from the surface

[124]. Typically, the influence of the boundary condition extends a distance comparable to

the specimen width [125]. However, anisotropic materials including sandwich panels [126],

fiber-reinforced composites [127, 128] and polymeric micro-composites [129] experience a slow

decay of end effects, warranting careful consideration over which systems it is appropriate to

invoke St.-Venant’s principle. Edge effects in anisotropic materials can be transmitted on the

order of several specimen lengths, which is significantly greater than for homogeneous, isotropic

materials with identical geometry and boundary conditions [130]. Lakes examined analytically

the effect of Poisson’s ratio on the decay of edge effects. He found that as ν approaches 0.5 this
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induces slow decay of end stress in an axisymmetric cylinder but in other conditions such as the

plane sandwich panel an increasingly negative Poisson’s ratio results faster decay than it would

be otherwise [131]. No firm decay rate-to-Poisson’s ratio (γ-to-ν) dependence was established.

Recently, Karpov developed a class of mechanical metamaterials structured as a discrete,

two-dimensional lattice of linear elastic small-strain bar elements, and observed that for some

configurations there was a marked acceleration of edge-effect decay and even blocking edge

effects altogether [132]. The analysis was carried out in the frequency domain to access spectral

information about the exponential decay of sinusoidal strain fluctuations at material points.

Lattice networks with a high degree of non-local connections—i.e., elastic connections extending

beyond only nearest neighbors on the nodal grid, exhibited a fast decay of coarse surface

fluctuations versus fine surface fluctuations. This opposes the behavior of continuum solids

where coarse patterns of surface strain dissipate over longer distances compared to fine patterns

of surface strain. In addition to this inverse reaction to the applied pattern of deformation,

highly non-locally interacting lattice structures showed other anomalous effects in response to

surface excitation including near-surface deformation arrest or blocking, filtering and phase

shifts. None of these effects are seen in continuous solids or even simpler two-dimensional lattice

structures [133, 134]. Applications of materials with these spectral properties includes static

deformation cloaking, filtering and processing but more generally, the materials could be used

to modify or detect significant surface stress fluctuations.



CHAPTER 4

NEGATIVE EXTENSIBILITY UNIT-CELL

Here begins a novel, systematic approach in the analysis of unit-cell structure capable of

undergoing a negative extensibility transition. Although the methodology presented here is

particularly well-suited in understanding the mechanical response of this elastic structure with

two independent degrees of freedom, the approach can be extended to many other types systems

whose response is governed by a nonlinear potential.

4.1 Negative extensibility unit-cell

Figure 5 is the unit-cell structure capable of undergoing a negative extensibility transition.

It is composed of five linear elastic elements: a middle bar of stiffness k1, top and bottom bars

of stiffness k2 and springs on either side of stiffness k3. The initial dimensions are uniquely

determined by a horizontal length L, vertical height H and skewness h. The skewness is the

degree of offset from the horizontal. At h = 0 the structure is rectangular. The structure is

pinned at the midpoint of the center bar. Due to symmetry there exists only two independent

degrees of freedom, the displacements u and v. Rollers constrain their movement along the

vertical direction. The displacement u is the external degree of freedom since the force F is

applied at this node. Mechanical work is being done over this node. The displacement v is the

internal degree of freedom. No work is being done at this node.

26
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(INITIAL STATE)

k1

k2

k2

k3
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H

(STATE A)







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 + Δ  + Δ

 − Δ

 − Δ

(STATE B)

F + ΔF

F + ΔF

Figure 5: Negative extensibility unit-cell. Structured as five linear elastic elements: middle
bar with stiffness k1, top and bottom bars with stiffness k2 and springs on the side with stiffness
k3. Dimensions are uniquely defined by length L, height H and skew offset h. There are two
independent degrees of freedom, u and v. Displacement boundary conditions are shown in the
initial state. Applied forces and resulting displacements are shown in states A and B. During
the A→ B transformation, a contraction −∆u over the external degree of freedom u is observed.



28

4.1.1 Potential function

Two separate formulations for the strain energy function (also called the potential) of the

unit-cell structure will be presented:

1. Green’s strain potential: the Green strain approximation is used for the middle bar with

stiffness k1 and top and bottom bars with stiffness k2.

2. Engineering potential: the true potential with no approximations for any elastic member.

In general, using a Green strain approximation for the strain in a bar element works well at

moderate strains (< 0.05) [135]. Later on it will be demonstrated that the Green strain potential

is in fact the limiting case of the true potential for the flat unit-cell—that is, when the horizontal

length is much greater than the vertical height L >> H. The aspect ratio is to be defined

r = H
L . The Green strain potential is the situation when r → 0. In the analysis, both the Green

and engineering potential functions will be put into dimensionless form in order to reduce the

number of independent system parameters.
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4.2 Green strain potential

4.2.1 Basic definitions

The following definitions are relevant:

stiffness: k =
EA

l0
(4.1)

strain energy: U =
EA(lf − l0)2

2l0
=

1

2
k∆l2 (4.2)

Cauchy strain: εc =
lf − l0
l0

(4.3)

Green strain: εG =
l2f − l20

2l2o
=

1

2

(
l2f
l2o
− 1

)
= εc +

1

2
ε2c (4.4)

strain energy: U ≈ 1

2
kl20ε

2
G (after substitution of k and εG) (4.5)

4.2.2 Strain energy of each element

The stored strain energy in the middle bar with stiffness k1 using the Green strain approxi-

mation (Equation 4.5)

π1 =
1

2
k1l

2
0ε

2
G1

(4.6)

=
1

2
k1

(√
L2 + (H − h)2

)2(2v(v −H + h)

L2 + (H − h)2

)2

(4.7)

=
2k1

L2 + (H − h)2
v2(v −H + h)2 (4.8)
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The stored strain energy in the top and bottom bars with stiffness k2 using the Green strain

approximation

π2 =
1

2
k2l

2
0ε

2
G1

(4.9)

=
1

2
k2

(√
L2 + h2

)2
(√

L2 + (h+ u+ v)2
)2
−
(√

L2 + h2
)2

2
(√

L2 + h2
)2


2

(4.10)

=
k2

8(L2 + h2)
(u+ v)2(u+ v + 2h)2 (4.11)

The stored strain energy in the left and right springs with stiffness k3 using no approximations

π3 =
1

2
k3(∆l)

2 (4.12)

=
1

2
k3 (u− v)2 (4.13)

4.2.3 Balance of energy

The potential takes into account the collective strain energies U of all elastic elements and

the energy of the external load V

Π = U − V = π1 + 2(π2 + π3 − Fu) (4.14)

Π =
2k1

L2 + (H − h)2
v2(v −H + h)2

+
k2

4(L2 + h2)
(u+ v)2(u+ v + 2h)2 + k3 (u− v)2 − 2Fu

(4.15)
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4.2.4 Dimensionless potential

The potential Π is reduced to dimensionless form in order to reduce the number of indepen-

dent system parameters. The potential is divided by an energy term k3H
2. A dimensionless

potential U is defined. This U is not the same as the in Equation 4.14.

U =
Π

k3H2
(4.16)

Quantities in are redefined in terms of dimensionless parameters:

system (design) parameters: a =
k2
4k3

H2

L2 +H2
, b =

2k1
k3

H2

L2 + (H − h)2
,

s =
h

H
, r =

H

L

(4.17)

independent state parameters: x =
u

H
, y =

v

H
(4.18)

control parameter: f =
F

k3H
(4.19)

dimensionless potential: U=
Π

k3H2
(4.20)

The system or design parameters a, b, s and r represent quantities that are fixed based on

member stiffnesses and geometry. Variable s is the non-dimensional skewness. The aspect ratio

r is the ratio of the height H to the length L. It does not show up in the dimensionless Green

strain potential. As discussed, Green strain is the case when r → 0. The independent state

parameters x and y represent the displacements of the structure when the dimensionless force or

control parameter f is applied. Using these definitions the dimensionless Green strain potential

becomes

U = a(x+ y)2(x+ y + 2s)2 + by2(y − 1 + s)2 + (x− y)2 − 2fx (4.21)



32

In the analysis of the Green strain formulation only rectangular structures will be examined

closely. Therefore, the dimensional and dimensionless skewness are zero, h = s = 0. The overall

dimensionless energy balance for rectangular unit-cells is

U =
2k1
k3

H2

L2 +H2︸ ︷︷ ︸
b

[( v
H

)2
− v

H

]2
︸ ︷︷ ︸

(y2 − y)2

+
k2
4k3

H2

L2︸ ︷︷ ︸
a

( u
H

+
v

H

)4
︸ ︷︷ ︸

(x+ y)4

+
( u
H
− v

H

)2
︸ ︷︷ ︸

(x− y)2

− 2F

k3H︸ ︷︷ ︸
2f

u

H︸︷︷︸
x

(4.22)

Substituting terms, the dimensionless potential is a 4th order polynomial

U = a(x+ y)4 + b
(
y2 − y

)2
+ (x− y)2 − 2fx (4.23)

4.2.5 Force-response curves

Like the two-bar truss, the negative extensibility unit-cell structure undergoes several quali-

tatively distinct types of force-response curves depending on the values of the system parameters

a, b and s. There are now two degrees of freedom. The external degree of freedom x is of

primary interest and is the point where the load is applied. The strain of the structure can be

defined

ε = 2x (4.24)

Different from the truss, this two-degree-of-freedom unit-cell exhibits a new characteristic re-

sponse where the structure contracts intermittently at a critical force during loading. This

contraction corresponds to the forward phase transformation A→ B. This effect can be visual-

ized by the ‘pulling-back’ of the middle bar as it rotates beyond a horizontal configuration. At

this critical point of destabilization, a new equilibrium is reached but only after a discontinuous

jump in both degrees of freedom. Interestingly, the external degree of freedom x contracts,



33

opposing the line of increasing external tension. Negative extensibility is associated with a

pinched hysteresis loop. Over the region of pinched hysteresis, work is negative. If displacement

opposes the applied tension then the system is doing work on the surroundings. The forward

transformation A → B is a condensation reaction, and energy is released from the system to

the surroundings.

During unloading, the structure may fully recover to its original state B → A or it may

remain stuck in the deformed state. Therefore, these two additional hysteretic, bistable responses

are termed negative extensibility of the superelastic type (NESE) and negative extensibility of

the superplastic type (NESP). The five unique mechanical responses of the unit-cell are:

1. Monostability (MS)

2. Superelasticity (SE)

3. Superplasticity (SP)

4. Negative extensibility of the superelastic type (NESE)

5. Negative extensibility of the superplastic type (NESP)

They are graphed in Figure 5. In order to generate force-response curves requires that derivatives

with respect to both degrees of freedom, x and y in the dimensionless potential, be equal to

zero. Equilibrium conditions can be written

U ′x = g1(x, y, fc, a, b, r, s) = 0 (4.25)

U ′y = g2(x, y, fc, a, b, r, s) = 0 (4.26)
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Figure 5: Five distinct mechanical responses for the unit-cell. (a): Monostability. The
response while nonlinear remains smooth and continuous. (b): Superelasticity (SE). A single
hysteresis loop exists in the tensile region. The forward transformation A→ B is an extension.
(c): Superplasticity. A single hysteresis loop is seen expanding over the regions of tension
and compression. In order to restore the original configuration, the load must be reversed.
(d): Negative extensibility of the superplastic type (NESP). Like the superplastic response,
the hysteresis loop expands into the compressive (negative) region. However, the forward
transformation A→ B is a marked contraction. The hysteresis loop is ‘pinched.’ A secondary
hysteresis loop in the tensile region is observed. This secondary loop is of the usual superelastic
type. (e): Negative extensibility of the superelastic type (NESE). Zooming into the curve, at the
critical force fc and critical strain εc there is a forward phase transformation A→ B. The change
in strain ∆εc is the degree of contraction. Similarly, there is a second hysteresis loop of the
superelastic type in the tensile region. [All graphs use the same axes scale, width:height=1.8:3]



36

Prior to loading, the system parameters a, b are fixed. For the Green strain potential only

zero skewness s = 0 is considered. The aspect ratio r is not present although it will be in the

engineering potential. Defining equilibrium conditions U ′x and U ′y as the functions g1 and g2

will later be useful in developing more complex systems of equations. To simulate loading, the

equilibrium conditions are used to solve for the displacements x and y using discrete values

for the control parameter f by a Newton-Raphson numerical algorithm. The load is gradually

incremented, using converged solutions from the previous step as the initial guess for the next

step. After reaching the final forward phase transformation, the load is then decremented

following the same numerical algorithm.

The five basic types of mechanical responses (Figure 5) are defined based on the primary

tensile hysteresis loop only. In the next chapter, it will become more apparent that at certain

combinations of design parameters there will be a secondary hysteresis loop in the tensile region.

During a load-unload cycle, the existence of two hysteresis loops results in the four-fold switching

pattern A → B → A → B → A. A systematic way of determining which sets of parameters

lead to which mechanical response is the generation of a phase diagram where boundary lines

represent the onset of a type of response. Computational methods are developed in Chapter 5

to construct these phase diagrams mathematically.

4.3 Engineering (true) potential

The true potential differs from the Green strain potential in that no approximations are used

for the strain energy of the three bars. Consequently, there will be an additional independent

design parameter in the dimensionless engineering formulation that was not present in the Green
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strain potential. This is the ratio of the height H of the structure to its width L defined as the

aspect ratio r = H/L. The additional parameter r adds another dimension to the design space.

Also, in Chapter 5 the skewness s will be accounted for such that there is an even greater range

of possibilities.

4.3.1 Strain energy of each element

The stored strain energy in the bars k1 and k2 and the spring k3 is based off the simple

linear elastic relation U = 1
2k∆l2

π1 =
1

2
k1

(√
L2 + (H − h− 2v)2 −

√
L2 + (H − h)2

)2
(4.27)

π2 =
1

2
k2

(√
L2 + (h+ u+ v)2 −

√
L2 + h2

)2
(4.28)

π3 =
1

2
k3 (u− v)2 (4.29)

4.3.2 Balance of energy

The true potential is defined as the strain energies of elastic elements U minus the energy

of the external load V

Π = U − V = π1 + 2(π2 + π3 − Fu) (4.30)

Substituting the strain energies π of each element, the fully dimensional engineering potential

for the unit-cell is

Π =
1

2
k1

(√
L2 + (H − h− 2v)2 −

√
L2 + (H − h)2

)2
+ k2

(√
L2 + (h+ u+ v)2 −

√
L2 + h2

)2
+ k3 (u− v)2 − 2Fu

(4.31)
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4.3.3 Dimensionless potential

The potential Π is reduced to dimensionless form so as to reduce the number of independent

system parameters. This is accomplished by dividing by the same energy term k3H
2. The

resulting dimensionless potential U is defined using the same dimensionless parameters as for

the Green strain potential except with the addition of the aspect ratio r. The parameters are

tabulated with a short description (Table 2). Use of the same parameters makes the process

of non-dimensionalization quite tedious, however it will be essential in comparing the two

potentials.

The substitution of these dimensionless parameters into the true potential (Equation 4.31)

after non-dimensionalization requires extreme care. For a complete derivation see Appendix A.

The final form of the dimensionless engineering potential is

U = 4a

(
s2 +

1

r2

)(√
1

r2
+ (s+ x+ y)2 −

√
1

r2
+ s2

)2

+
b

4

(
s2 − 2s+

1

r2
+ 1

)(√
1

r2
+ (1− s− 2y)2 −

√
1

r2
+ (1− s)2

)2

+ (x− y)2 − 2fx

(4.32)

This potential has the same five characteristic force-response curves, which are shown in Figure 5.

The mechanical response depends on the values of the design parameters a, b, s and r. First,

second and third derivatives of this potential with respect to each variable get quite tedious

but the computer software Matlab R© does these automatically. The ability to compute the

analytical derivatives of the potential permits fast convergence when using a numerical method

for optimization such as the Newton-Raphson root-finding method.
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TABLE 2: Dimensionless parameters

Definition Description

Dimensionless potential U =
Π

k3H2

Potential is divided by an energy term
associated with the spring k3H

2

System (design)
parameters

a =
k2
4k3

H2

L2

Dimensionless top and bottom bar stiffness
scaled by geometry terms

b =
k1
k3

H2

L2 +H2

Dimensionless middle bar stiffness
scaled by geometry terms

s =
h

H
Skewness represents offset from the horizontal

r =
H

L

Aspect ratio defined
as the ratio of height to length

Independent state
parameters

x =
u

H

Dimensionless displacement
of the external degree of freedom u

y =
v

H

Dimensionless displacement
of the internal degree of freedom v

Control
parameter

f =
F

k3H
Dimensionless load input into the system



CHAPTER 5

PHASE DIAGRAM CALCULATION

5.1 Phase diagrams in materials science

Ursula Kattner states that “Phase diagrams are visual representations of the state of a ma-

terial as a function of temperature, pressure, and concentrations of the constituent components”

[136]. Phase diagrams differ from normal graphs in which one variable is plotted as a function

of another. In phase diagrams, the coordinate axes all represent independent variables and the

coordinate space shows the state of the system at equilibrium [137]. Also, the points in between

boundary lines have meaning whereas in a plot f(x) only points on the curve have meaning.

Phase diagrams are considered the blueprints for alloy design, development, processing, and

understanding of material properties [136]. When developing multi-component, multi-phase

materials such as alloys it is essential to know how processing affects microstructure and relative

quantities of the phases present since this dictates the physical and mechanical properties of the

material. Phase diagrams such as binary diagrams for steel or ternary diagrams for ceramics

shed light on how composition and temperature affect phase equilibria.

Constructing phase diagrams empirically is an arduous process, requiring many experi-

ments at different temperature and composition regimes. Starting in the 1970’s, computational

methods were developed for calculating phase diagrams as well as calculating thermodynamic

properties of multi-component, multi-phase systems and simulations of more complex phenom-

40
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ena such as diffusion and phase transformations [138]. These methods are based on numerical

optimization or minimization of Gibbs energy equations, which are used to model the thermo-

dynamic phases of materials [139].

The computational techniques implemented to generate phase diagrams in this manuscript

are essentially no different than those in existing commercial thermodynamic software [137,140,

141]. However, the fundamental difference is that in this manuscript the nonlinear mechanical

response, which is a function of relative stiffnesses of members and dimensions becomes of key

interest rather than the set of stable microstructural phases, which is a function of mass percents

of chemical constituents, temperature and pressure. Regions of the diagram pertain to a specific

mechanical behavior of the structure rather than a specific microstructural phase. The axes

represent design parameters such as relative stiffnesses rather than thermodynamic quantities like

temperature and mole fraction. At the most basic level, computing boundary lines for stability

of thermodynamic phases and boundary lines for stability of a specific mechanical response

both rely on the ability to compute a global energy minimum together with an additional set

of constraints.

5.2 Stability diagram

The presentation of the phase diagrams and key findings in this manuscript should be

prefaced with a discussion of stability diagrams, which are an important tool used in structural

and thermodynamic systems. Stability diagrams reveal points of destabilization for a given set of

system parameters. In structural analysis, one axis is the critical load fc (or critical displacement
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Figure 6: Stability diagram for the unit-cell. Parameters b = 5.21, r = 0.10, s = 0 are fixed
while the critical force fc and the system parameter a are varied. Points along the blue curves
Γb are the points of destabilization. When a > 0.085 the structure is monostable. As a is
decreased, the peaks of each of the curve are bifurcation points marking the onset of a hysteresis
loop. Also, the point where the two curves meet at a sharp point is different type of cusp
point. Below the sharp cusp singularity there is only one hysteresis loop or two-fold switching
A→ B → A in a load-unload cycle. Above the sharp singularity there are two hysteresis loops
or four-fold switching A→ B → A→ B → A.

xc) and the other axis is a system parameter of interest. All other system parameters must be

fixed. Thus, often it is a cross-section of a more complex higher dimensional surface.

For some combinations of the input load and system parameters there are points where

equilibrium becomes unstable. These critical points are plotted parametrically as curves in the

stability diagram. For the negative extensibility unit-cell, points of destabilization correspond

to a polymorphic phase transformation and vertical discontinuity in the displacement. Once

equilibrium is restored, the result is a new phase with a different effective stiffness than the
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original configuration. A stability diagram for the unit-cell is shown in Figure 6. A shortcoming

of stability diagrams is that the nature of the response in the bistable region, e.g., SE, SP, NESE,

NESP is unknown. All that is known is the location of critical destabilizing loads leading to

hysteretic bistability. Moreover, stability diagrams are limited because it is a single cross-section

requiring all but two parameters to be fixed. If b is changed then an entire new diagram must

be constructed.

In order to generate a curves in the stability diagram requires three conditions to be satisfied:

g1(x, y, fc, a, b, r, s) = U ′x = 0 (5.1)

g2(x, y, fc, a, b, r, s) = U ′y = 0 (5.2)

g3(x, y, fc, a, b, r, s) = detH = 0 (5.3)

The first two are conditions of equilibrium. The third condition is the requirement of the

determinant of the Hessian matrix, a matrix of second-order derivatives, to be zero.

detH =

∣∣∣∣∣∣∣∣
U ′′xx U ′′xy

U ′′yx U ′′yy

∣∣∣∣∣∣∣∣ = U ′′xxU
′′
yy − U ′′xyU ′′yx = 0 (5.4)

When the determinant of the Hessian is zero and equilibrium conditions are satisfied in the

vicinity of the critical point, these are the criteria for a point which is simultaneously an

inflection point and a stationary point—i.e., a saddle point. Physically, this is a point of

structural destabilization. To compute the diagram in Figure 6 the aspect ratio r, skewness

s and design parameter b are fixed. The unknowns are then x, y, fc and a. One of these

parameters is used as a running variable in the numerical algorithm meaning that it is fixed
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for each iteration. This leaves three unknowns to be solved by the three conditions. Points of

destabilization are solved numerically by a Newton-Raphson scheme using either fc or a as a

running variable and then plotted parametrically on the (fc, a)–stability diagram. Although

not shown, it is possible to use a different system parameter on the y-axis such as b or use an

independent state parameter on the x-axis such as xc.

5.3 Phase diagram

Like the stability diagram, boundary lines in the phase diagram are defined by a set of

constraints. The axes in the phase diagram are taken to be the system parameters a and b.

The aspect ratio r and skewness s are fixed for a given diagram. The regions in the diagram

are one of the five types of mechanical responses: MS, SE, SP, NESE or NESP. There are five

boundary lines delineating the system response:

ΓE : the boundary between superelasticity and superplasticity.

ΓS : the boundary between monostability and bistability. Referred to as the cusp curve since

these are conditions for a cusp singularity. A hysteresis loop is generated when passing

over this boundary.

ΓM : the boundary between elongation and contraction for the forward phase transformation

A → B. This curve separates the usual SE and SP responses from the more interesting

NESE and NESP responses. Referred to as the NESE boundary.

ΓN : the boundary between monostability and inaccessible bistability. Referred to as the

nucleation curve. When passing over this boundary line, a second solution nucleates
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although it cannot be accessed under normal loading conditions. The mechanical response

remains monostable.

ΓO: the boundary between monostability and NESE or NESP. Referred to as the coalescence

curve. Below this boundary, the second solution which had nucleated earlier becomes

accessible. The structure now exhibits the bistable NESE or NESP response.

Contours in the diagram show properties of the hysteretic response including

1. intensity of the strain change at the forward transformation

2. relative width of the primary hysteresis loop

5.3.1 Superelasticity-superplasticity curve

Conditions for the superelasticity-superplasticity curve ΓE require the equilibrium and

destabilization criteria be satisfied with the additional constraint that the critical force for the

reverse transformation B → A is set at zero, fc = 0. When the reverse critical force is zero, the

structure is neither plastic nor elastic.

ΓE : g1(x, y, fc = 0, a, b, r, s) = 0 (5.5)

g2(x, y, fc = 0, a, b, r, s) = 0 (5.6)

g3(x, y, fc = 0, a, b, r, s) = 0 (5.7)

The additional constraint reduces the number of unknowns to 6. Always the aspect ratio r

and skewness s are fixed for a given phase diagram. There are now 4 unknowns: x, y, a, b.

Using one of these as a running variable reduces the number of unknowns to three. The three
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Figure 7: Green strain phase diagram showing what the different regions mean. The phase
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to the formation of a secondary tensile hysteresis loop. To the right of this curve all bistable
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Figure 8: Green strain phase diagram with contours lines plotted. Dashed black and green
contours are the ratio of the critical force at the reverse transformation f2 to the critical force at
the forward transformation f1, φ = f2/f1. The force ratio contours express the relative width of
the hysteresis loop. Lower φ means a wider hysteresis loop. Positive values of φ are superelastic
while negative values are superplastic. The solid purple and blue contours are the superelastic
strain intensity contours ISE at the forward transformation, where ISE = ε2−ε1

ε1
. Larger positive

ISE is a larger and sooner onset superelastic expansion. Negative ISE is a contraction, which
occurs in the NESE and NESP regions. ISE approaches zero at ΓM .
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Figure 9: Force-response curve at the superelasticity-superplasticity boundary ΓE . The
reverse transformation B → A occurs at zero load fc = 0. The response is neither definitively
superelastic nor superplastic. The response will become SP if the parameter b is increased
slightly or SE if the parameter b is decreased slightly.

equations are sufficient to generate ΓE provided the initial guess to start the Newton-Raphson

scheme leads to physical, non-negative solutions for the design parameters a and b.

5.3.2 Cusp curve

Conditions for the cusp curve ΓS are the most intricate of all boundary lines. The algorithm

converges to the exact point of hysteresis loop formation. Cusp points along ΓS divide monos-

tability from bistability. The conditions are based on two sets of destabilization criteria (6 total

equations). Each set has different variables for the displacements x1, y1 and x2, y2. However,

the critical force fc is the same across all six equations. When a hysteresis loop initially forms,

critical points of destabilization corresponding to the forward and the reverse transformations

are nearly touching (the sides of the loop are nearly touching). Only at a cusp singularity will
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the two points of destabilization meet exactly at a single critical force. At this particular cusp

singularity, the hysteresis loop is reduced to a point. A bifurcation of this type occurs in one

place in the cusp catastrophe, Figure 3 (b)—the sharp point of the bifurcation set where the

top and bottom sheets split apart.

ΓS : g1(x1, y1, fc1, a, b) = 0 (5.8)

g2(x1, y1, fc1, a, b) = 0 (5.9)

g3(x1, y1, fc1, a, b) = 0 (5.10)

g1(x2, y2, fc2 = fc1, a, b) = 0 (5.11)

g2(x2, y2, fc2 = fc1, a, b) = 0 (5.12)

g3(x2, y2, fc2 = fc1, a, b) = 0 (5.13)

Aspect ratio and skewness are to be fixed and from now on will not be shown explicitly in the

systems of equations. For the cusp conditions to work, a single running variable is taken, usually

a or b, reducing the number of unknowns to 6: x1, x2, y1, y2, fc1 and either a or b. The system

is fully specified. Figure 10 (a) shows a force-response curve generated at a converged ΓS point.

Figure 10 (b) is just inside the boundary of ΓS . Hysteresis is now present.

The trial solution for the dimensionless displacements must be different. Either x1 6= x2

or y1 6= y2. Additionally, the trial guesses for the unknowns must ensure that solutions for

the design parameters a and b end up in quadrant I. Results reveal that there are multiple

ΓS curves, each is associated with the generation of a different hysteresis loop. The secondary

hysteresis loop in the tensile region forms at a ΓS curve shown as a dotted line in the phase
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Figure 10: Cusp points defined by ΓS are points of hysteresis formation. (a): Force-response
curve at a converged ΓS point. The response is the onset of bistability from monostability.
(b): Force-response curve with b increased by 0.01 relative to the ΓS point. The response is
superelastic.

diagrams. While compressive loops exist in a mathematical sense, only hysteresis loops in the

tensile region are considered physically significant. From an engineering standpoint, the cusp

curve ΓS conditions are extremely accurate in pinpointing the location of solution splitting. A

deeper mathematical analysis is a topic for another paper.

5.3.3 Pinched hysteresis and fold-point conditions

The boundary lines ΓM , ΓN and ΓO use the same set of conditions. The trial solution in

the Newton-Raphson algorithm determines what curve will be accessed. The nature of the

bifurcation associated with each boundary line is different. For ΓM , the conditions specify the

onset of a pinched hysteresis loop. This happens when a point of destabilization defined by

g1, g2 and g3 occurs at the same critical load and critical displacement as a stable solution of
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equilibrium defined by g1 and g2. Therefore, fc1 = fc2 and x1 = x2 where x1, y1 and fc1 are

associated with a point of destabilization while the variables x2, y2 and fc2 are associated with

a stable solution of equilibrium.

ΓM , ΓN , ΓO : g1(x1, y1, fc1, a, b) = 0 (5.14)

g2(x1, y1, fc1, a, b) = 0 (5.15)

g3(x1, y1, fc1, a, b) = 0 (5.16)

g1(x2 = x1, y2, fc2 = fc1, a, b) = 0 (5.17)

g2(x2 = x1, y2, fc2 = fc1, a, b) = 0 (5.18)

The onset of pinched hysteresis is illustrated when traversing across ΓM (Figure 11). At a

constant critical force fc during the forward transformation A → B, the system destabilizes

and then re-equilibrates with no net change in the displacement, x2 = x1. There is still a large

displacement jump in the internal degree of freedom y, y2 6= y1. The boundary ΓM divides the

usual SE or SP responses from the NESE or NESP responses.

The coalescence curve ΓO divides the regions of NESE and NESP from a region of apparent

monostability. ‘Apparent’ monostability refers to the fact that in the region above ΓO a second,

mathematical solution of equilibrium exists but is not realized under normal loading conditions.

Figure 12 shows that when crossing over ΓO the two hysteresis loops merge. The response shifts

abruptly to monostability. The reason the above conditions work for ΓO is related to the merging

of the two hysteresis loops. The initial point of destabilization at the negative extensibility

transition A → B is stabilized when the two loops merge, x1 (unstable) = x2 (stable) at ΓO.
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Figure 11: The NESE boundary ΓM divides the usual SE or SP responses from the NESE
or NESP responses. (a): Force-response curve at a ΓM point. The response shows a single
hysteresis loop but the forward transformation A → B results in no change in displacement
for the external degree of freedom, x2 = x1. The internal degree of freedom y (not shown)
experiences a discontinuous elongation at the critical load, y2 6= y1. (b): Force-response curve
when a is increased by 0.0012 from the original ΓM point. The response is NESE with the
characteristic pinched hysteresis. The dotted ΓS boundary is also crossed causing a second
hysteresis loop to form.

Coalescence points along ΓO are singularities where a solution of equilibrium, which satisfies g1,

g2, becomes a point of destabilization such that it now satisfies g3 in addition to g1 and g2. This

higher-order bifurcation causes two hysteresis loops to emerge in the force-response curve. This

abrupt change in the behavior is analogous a fold-point in the cusp catastrophe, Figure 3 (b).

At a fold-point a large hysteretic response emerges from a monostable response. The transition

is non-smooth and abrupt. In the cusp catastrophe, fold-points lie along the bifurcation set.

The sudden, discontinuous transition at a fold-point occurs when approaching the bifurcation

set laterally, starting from a high point along the top sheet or low point along the bottom sheet.
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Figure 12: Coalescence points defined by ΓO are points dividing NESE or NESP from monos-
tability. (a): Force-response curve just below a ΓO point. The response is NESE. The two
hysteresis loops are nearly touching. (b): Force-response curve just above a ΓO point. The
response is monostable.

The nucleation curve ΓN divides monostability from inaccessible bistability/apparent monos-

tability. The logic in explaining why ΓN uses the above set of conditions is identical to the logic

in explaining why ΓO uses them. A point of monostability, which has one solution of equilibrium

satisfying only g1 and g2, shifts to a destabilization point such that now satisfies g3 in addition

to g1 and g2. Mathematically, a secondary solution bifurcates from this destabilization point

although it cannot be accessed under physical loading. In other words, when crossing over ΓN

an inaccessible hysteresis loop develops. The inaccessible bistability is readily observed on the

stability diagram. A comparison bewteen the stability and phase diagrams is shown in Figure 13.

The peak of the top blue curve at the dashed line corresponds exactly to a point of ΓN . The

stability diagram is misleading because right below the dashed line is a region of inaccessible
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bistability. As a is decreased, physical bistability occurs at ΓO. A point of ΓO is associated

with the peak of the second, lower blue curve Γb. Bistability becomes accessible below this

second peak. This particular stability diagram does not reveal a point of ΓM , which divides

NESE from SE. This is because ΓM is different from the ΓO and ΓN fold-type bifurcations that

separate monostability from bistability. Instead, ΓM alters the nature of the already existing

bistable response causing it to become pinched. A deeper discussion of the inaccessible region

of bistability between ΓN and ΓO is based on the interaction between the internal and external

degrees of freedom. This is not discussed.

5.3.4 Superelastic strain intensity contours

The superelastic intensity of the forward transformation A→ B defined as the strain after

the transformation ε2 minus the critical strain at the onset of the transformation ε1 normalized

by the critical strain ε1.

ISE =
ε2 − ε1
ε1

(5.19)

The Green strain phase diagram inset (Figure 8) shows the NESE response with definition of the

strain intensity contours. A larger positive ISE means the discontinuous elongation is relatively

more intense—i.e., it is associated with a sooner onset (lower critical strain ε1) and a larger

positive strain change ∆ε over the transformation. The strain intensity ISE is negative in the

NESE and NESP regions because the forward transformation is a contraction. Approaching ΓO

and moving into the NESP region, the negative strain intensity ISE will increase in magnitude.

That is, the intensity of the negative extension increases for increasing b and decreasing a within
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Figure 13: Relationships between the phase diagram (Left) and stability diagram (Right)
for r = 0.10, s = 0. The stability diagram is at a constant b = 5.21, which corresponds to
the vertical line on the phase diagram. In the stability diagram, the peak of the top blue
curve corresponds to a point of ΓN and the onset of a hysteresis loop. The hysteresis loop is
inaccessible so below this point is inaccessible bistability. Bistability becomes accessible when
reaching the second peak corresponding to a point of ΓO. ΓM is not defined in the stability
diagram because ΓM only changes the nature of an already existing hysteretic response causing
it to become pinched. When traversing to lower a, a point of ΓS is reached which marks the
onset of a hysteresis loop. Below this point there is only 1 loop. However, if a is decreased to
around 0.008, the secondary loop is generated again but at high, nonphysical critical forces fc.
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the NESE and NESP regions. At the intersection of ΓE and ΓO is where most negative ISE

occurs while still being NESE. This intersection point is referred to as the ‘triple point.’ The

NESP response will be capable of achieving the most negative ISE .

The strain intensity contours are related to the boundary ΓM . For ΓM the condition x2 = x1

defines zero net change in strain over the transformation. If the Equation 5.19 is solved for x2,

then the transformation can be defined by a pre-defined change in strain over the transformation:

x2 = x1(1 + ISE) (5.20)

The conditions are written as

ISE : g1(x1, y1, fc1, a, b) = 0 (5.21)

g2(x1, y1, fc1, a, b) = 0 (5.22)

g3(x1, y1, fc1, a, b) = 0 (5.23)

g1(x2 = x1(1 + ISE), y2, fc2 = fc1, a, b) = 0 (5.24)

g2(x2 = x1(1 + ISE), y2, fc2 = fc1, a, b) = 0 (5.25)

Usually, a or b is used as a running variable. The value of ISE is fixed at the beginning of

the program. It represents an added constraint reducing the number of unknowns. The five

equations are sufficient to solve for the five unknowns: x1, y1, y2, fc and either a or b.
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5.3.5 Force ratio contours

The force ratio contours are defined as the critical force for the reverse transformation

fB→A = f2 divided by the critical force for the forward transformation fA→B = f1.

φ =
f2
f1

(5.26)

The subscripts 1 and 2 in this case do not correspond to a destabilization and re-stabilization

point at a constant critical load like they do for ΓM , ΓN and ΓO. Instead, the subscripts corre-

spond to two separate critical destabilization points at the reverse and forward transformations.

The reason the definition uses f1 in the denominator is that it will always be larger than zero.

In contrast, f2 at the reverse transformation may shift to zero at ΓE and then negative for

superplastic responses. Positive φ means the response is superelastic. Approaching φ = 1 the

SE hysteresis loop shrinks in width. At φ = 1 this is the same condition as ΓS , when f2 = f1.

At φ = 0 this is when f2 = 0 reducing the φ conditions to ΓE . Negative φ are superplastic.

As φ goes from 1 to 0 to negative values the load difference between the forward and reverse

transformation increases. The most negative φ are the widest hysteresis loops.

The conditions for φ are related to ΓS . Equation 5.26 is rearranged

f2 = φf1 (5.27)
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The conditions for the for force ratio contours are then

φ : g1(x1, y1, fc1, a, b) = 0 (5.28)

g2(x1, y1, fc1, a, b) = 0 (5.29)

g3(x1, y1, fc1, a, b) = 0 (5.30)

g1(x2, y2, fc2 = φfc1, a, b) = 0 (5.31)

g2(x2, y2, fc2 = φfc1, a, b) = 0 (5.32)

g3(x2, y2, fc2 = φfc1, a, b) = 0 (5.33)

The system parameters a and b are the phase diagram axes. They are frequently used as

running variables. A value of φ is fixed at the beginning of the program reducing the number

of unknowns. The six equations are sufficient to solve for the six unknowns: x1, x2, y1, y2, fc1

and either a or b.

5.4 Engineering potential phase diagrams

Complete phase diagrams for the engineering potential are created

1. r = 0.10, s = 0

2. r = 0.25, s = 0

3. r = 0.25, s = 0.25

4. r = 0.30, s = 0.5

The Green strain phase diagram is drawn with the same scale as the first three diagrams (8b

across and 0.10a tall). The diagram for r = 0.30, s = 0.5 shows significant stretching of the
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NESE region so it is plotted with a different scale. The geometry of the unit-cell at s = 0.5 has

nice symmetry since all the bars are of the same length. Negative skewness is possible for a

single unit-cell. It may be difficult to structure multiple negative skewness cells into a periodic

lattice. Positive skewness and zero skewness unit-cells are more readily fabricated into periodic

lattices or materials.
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Figure 14: Phase diagram for r = 0.10, s = 0. The unit-cell is drawn to scale above. The
bistability region is taller compared with the Green strain phase diagram. The boundary for the
onset of the secondary tensile loop, the dotted ΓS , goes to the origin. The maximal intensity
of the contraction in the NESE region, which occurs at the triple point PEO, is now less than
the Green strain value due to nonzero aspect ratio r. For this unit-cell, at the triple point
(INESE)max = −0.02897.
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Figure 15: Phase diagram for r = 0.25, s = 0. The unit-cell is drawn to scale above.
Qualitatively, it appears similar to the r = 0.10 case. The bistability region is even taller. The
maximal intensity of INESE at PEO is even less. For this unit-cell, (INESE)max = −0.02462.
Related to this effect is that the ISE = −0.02 contour is shifted lower on the ΓO curve.
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Figure 17: Phase diagram for r = 0.30, s = 0.50. The axes a and b are different from the
previous four phase diagrams. The unit-cell is drawn to scale above. The three bars are all the
same length using a skewness of 0.5. For this unit-cell, (INESE)max = −0.015076.
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5.4.1 Design example

To illustrate how to use the phase diagrams for the design of a unit-cell the following problem

statement is given:

Design a unit-cell that has

• aspect ratio r = 0.25, skewness s = 0.25

• contraction of 5 mm with an intensity ISE = −0.01,

• force ratio φ = f2/f1 = 0.2 at a critical load F1 = 1000 N

The intersection of ISE = −0.01 and φ = 0.2 could be calculated exactly using combined

conditions for φ and ISE . In the interest of time, each contour was least-squares fit to a

polynomial only taking into account points near to the intersection. The intersection point of

the two polynomials was calculated as b = 8.78415, a = 0.078507. This agrees with φ = 0.2

and ISE = −0.01 to 3 significant figures. Also at this point, f1 = 1.2371, ε1 = 2.0219 and

ε2 = 2.00169.

dimensional system parameters : k1, k2, k3, H, h, L, F1, u1, u2 (9 total)
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known quantities : r = 0.25 (5.34)

s = 0.25 (5.35)

a = 0.0.078507 (5.36)

b = 8.78415 (5.37)

F1 = 1000 N (5.38)

f1 = 1.2371 (5.39)

ε1 = 2.0219 (5.40)

ε2 = 2.0016 (5.41)

∆u = 5 mm (5.42)
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Equations:

r =
H

L
= 0.25 (5.43)

s =
h

H
= 0.25 (5.44)

a =
k2
4k3

H2

L2
= 0.078507 (5.45)

b =
2k1
k3

H2

H2 + L2
= 8.78415 (5.46)

f1 =
F1

k3H
= 1.2371 (5.47)

F = 1000 N (5.48)

∆u = u1 − u2 = 0.005 m (5.49)

ε1 =
u1
H

= 2.0219 (5.50)

ε2 =
u2
H

= 2.0016 (5.51)

The system is fully determined. There are 9 equations to solve for the 9 dimensional quantities.

Solution

Solving for u1

u1 = 0.005 m + u2 (5.52)

Substitute for u1 and solve for u2 and H

0.005 m + u2
H

= 2.0219 (5.53)

u2
H

= 2.0016 (5.54)
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Displacement after the contraction u2

u2 = 0.4930 m (5.55)

Height H

H = 0.2463 m (5.56)

Displacement before the contraction u1

u1 = 2.0219H (5.57)

= 0.4980 m (5.58)

Length L

L =
H

r
(5.59)

=
0.2463 m

0.25
(5.60)

= 0.9852 m (5.61)

Skew offset h

h = sH (5.62)

= 0.25 · 0.2463 m (5.63)

= 0.061575 m (5.64)
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Spring stiffness k3

k3 =
F1

1.2371H
(5.65)

=
1000 N

1.2371 · 0.2463 m
(5.66)

= 3281.94 N/m (5.67)

Middle bar stiffness k1

k1 = 8.78415 · k3
2
· H

2 + L2

H2
(5.68)

= 8.78415 · 3281.94 N/m

2
· (0.2463 m)2 + (0.9852 m)2

(0.2463 m)2
(5.69)

= 245, 047 N/m (5.70)

Top and bottom bar stiffness k2

k2 = 0.078507 · 4k3L
2

H2
(5.71)

= 0.078507 · 4(3281.94 N/m)(0.9852 m)2

(0.2463 m)2
(5.72)

= 16, 490 N/m (5.73)

The requirements: r = 0.25, skewness s = 0.25, ∆u = 5 mm, ISE = −0.01, φ = 0.2 and

F1 = 1000 N are realized with the following unit-cell properties:

H = 0.2463 m, L = 0.9852 m, h = 0.061575 m,

k1 = 245, 047 N/m, k2 = 16, 490 N/m, k3 = 3281.94 N/m
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5.4.2 Triple point

The phase diagrams possess a singular point, which will be defined as the ‘triple point.’

The triple point PEO marks the intersection of ΓE and ΓO. The coalescence curve ΓO divides

monostability from NESE or NESP. The superelasticity-superplasticity curve ΓE divides NESP

from NESE (or SP from SE). At the triple point the structure holds conditions for NESE, NESP

and MS. To arrive mathematically at the triple point, a system of equations is set up using the

three ΓE conditions and the five ΓO conditions. The system parameters a and b are the same

across all equations. The point PEO has an a and b that satisfy the conditions:

PEO

ΓO : g1(x1, y1, fc1, a, b) = 0 (5.74)

g2(x1, y1, fc1, a, b) = 0 (5.75)

g3(x1, y1, fc1, a, b) = 0 (5.76)

g1(x2 = x1, y2, fc2 = fc1, a, b) = 0 (5.77)

g2(x2 = x1, y2, fc2 = fc1, a, b) = 0 (5.78)

ΓE : g1(xE , yE , fE = 0, a, b) = 0 (5.79)

g2(xE , yE , fE = 0, a, b) = 0 (5.80)

g3(xE , yE , fE = 0, a, b) = 0 (5.81)

A force-response curve approaching this point from the NESE region is graphed in Figure 18

(a). Approaching PEO, the intensity of the superelastic contraction is a maximum when con-
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Figure 18: Triple point force-response curves for r = 0.10, s = 0. (a): Negative extensibility
response is achieved when subtracting 1e−9 from design parameters a and b at the triple point,
PEO = (a = 0.06749, b = 5.195). The triple point is the maximal intensity for the superelastic
contraction in the NESE region (INESE)max. (b): Monostable response is achieved if the design
parameters a and b at the triple point are each increased by 1e−9.

sidering only the NESE response. More intense contractions are possible for NESP, especially

when close to ΓO with decreasing a. INESE is the same definition as ISE . The subscript implies

that only force-response curves in the NESE region are considered.

at PEO : INESE = (INESE)max (5.82)

The maximum intensity of INESE is used as a metric for comparing phase diagrams of different

aspect ratio and skewness. Table 3 shows when s = 0, the Green strain case r → 0 has the

greatest magnitude INESE at the triple point. Using the Green strain approximation leads to a

structure with small height compared to length. This flat structure is impractical. Nevertheless,

it is useful as the theoretical limit by which to compare other unit-cell arrangements.
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TABLE 3: INESE at PEO

r s INESE at triple point

→0 0 −0.0297439

0.0035 0 −0.0297430

0.01 0 −0.0297363

0.025 0 −0.0296963

0.05 0 −0.0295527

0.1 0 −0.0289693

0.25 0 −0.0246221

0.5 0 −0.0103181

0.7 0 −0.0013443

The effect of varying aspect ratio and skewness on

INESE at the triple point is visualized in Figure 19. For

skewness around s = 0, the maximum INESE is achieved

as aspect ratio approaches zero. The plane curves in

Figure 19 (left) are cross-sections of the three-dimensional

r-s-INESE surface (right). Negative skewness alters the

behavior at the triple point. The maximum intensity (a

minimum in the plane curves) is achieved at an aspect

ratio greater than zero.

The generation of the plane curves and the three-

dimensional surface requires calculating the triple point

as s and r are varied. Converged variables for the triple point define a critical load and a

displacement. However, they will not show a difference between displacements x1 and x2 since

x1 = x2 in the ΓO conditions. Monostability merges with bistability at this fold-point. The

exact triple point is not a NESE response. Moving infinitesimally towards the NESE region

from the triple point there will be the maximum INESE effect. To get INESE at PEO, a fraction

1e−9 is subtracted off of PEO design parameters a and b. A partial force-response curve is then

generated near the critical load fc,A→B at an extremely small step size ∆f . The difference in

the strain ∆εA→B is then stored so as to calculate INESE . The entire process of calculating the

s-r-INESE surface requires extreme attention to detail. The triple point conditions are highly
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Figure 19: Intensity of superelastic strain INESE at triple point PEO varying aspect ratio and
skewness. (Left): plane curves of constant skewness showing how INESE changes with aspect
ratio. (Right): Three-dimensional s-r-INESE surface. Unit-cells with skewness around s = 0
and low aspect ratio see the most pronounced INESE .

accurate. However, the values of INESE are calculated at a point extremely close to PEO rather

than the true converged triple point.

5.4.3 NESE region

The NESE region is defined by the boundaries ΓO, ΓM and ΓE . At the branching region,

ΓM actually forms an extremely fine parabola, changes slope from negative to positive and then

merges with ΓS and ΓO. The coalescence curve ΓO is continuous with the NESE boundary ΓM .

Three intersection points are defined: the triple point PEO, the simultaneous onset of NESE,

NESP from SE, SP—the point PEM , and the simultaneous formation and critical collapse of a

NESE hysteresis loop—the point POS . In some phase diagrams, ΓM intersects with the dotted

ΓS towards the top part of the NESE region. In these diagrams there exists a small region

of NESE where there is a single NESE hysteresis loop with two-fold A → B → A switching.
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Figure 20: The NESE region is tracked by varying s. (Left): The change in the three points
PEM , PEO and POS as s goes from 0 to 0.25 at constant r = 0.25. Complete phase diagrams
are shown at each extreme. (Right): Change in the NESE region as s is increased from 0 to
0.5. A complete phase diagram is given for the skewed structure. Skewness causes significant
distortion of the NESE region. [Both graphs use the same axes ratio].

However, for the skewed unit-cells the secondary hysteresis loop is always is present alongside

pinched hysteresis. Therefore, only the three points are used to track the NESE region.

Conditions to calculate PEM are identical to PEO. Whether PEM or PEO is reached depends

on the initial guess for the unknowns. The conditions for POS are combined conditions for ΓO

(5 equations) and ΓS (6 equations). The parameters a and b are the same across all equations.
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POS

ΓO : g1(x1, y1, fc1, a, b) = 0 (5.83)

g2(x1, y1, fc1, a, b) = 0 (5.84)

g3(x1, y1, fc1, a, b) = 0 (5.85)

g1(x2 = x1, y2, fc2 = fc1, a, b) = 0 (5.86)

g2(x2 = x1, y2, fc2 = fc1, a, b) = 0 (5.87)

ΓS : g1(x1S , y1S , f1S , a, b) = 0 (5.88)

g2(x1S , y1S , f1S , a, b) = 0 (5.89)

g3(x1S , y1S , f1S , a, b) = 0 (5.90)

g1(x2S , y2S , f2S = f1S , a, b) = 0 (5.91)

g2(x2S , y2S , f2S = f1S , a, b) = 0 (5.92)

g3(x2S , y2S , f2S = f1S , a, b) = 0 (5.93)

Once a solution is found for an intersection point there is less trial and error if the same

type of intersection point is desired for different r and s. An iterative program was constructed

to gradually increment r and s using the converged solutions from the previous iteration as

the initial guess for a new r and s. Using this technique, the evolution of the NESE region

with changing r and s is possible to track. The drift of the NESE region as a function of s at
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constant r is shown in Figure 20. The effect of negative skewness and the effect changing r at

constant s are shown in Figure 21.
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Figure 21: Drift of the NESE region. (Left): Effect of negative skewness on the NESE region
at constant r = 0.10. (Right): Change in the NESE region as r is increased from 0 to 0.5. The
effect of aspect ratio is a vertical shift and thinning of the NESE region. [Both graphs use the
same axes ratio, 8b:0.1a].



CHAPTER 6

MATERIALS

Two- and three-dimensional arrays of elastic elements are now being referred to as materials

[46,142]. Advances in rapid prototyping allow for the fabrication of elastic structures composed of

spring and bar elements. In general, the term ‘material’ is used as a way of denoting a structure

with specific mechanical properties derived from its unit-cell structure [143]. The negative

extensibility unit-cell structure can be organized into a periodic array. Periodic (Born–von

Karmon) boundary conditions are to be applied. The unit-cell response is defined by the system

parameters a, b, r and s. A periodic structure composed of multiple unit-cell structures is shown

to exhibit a similar response as its unit-cell constituent.

6.0.1 Two unit-cell structure

In lattice mechanics, the convention is adopted where the nodal column index i = 1, 2 . . .M

and the nodal row index j = 1, 2 . . . N . Nodes are labeled i.j where i is the column and j is

the row index. Figure 22 is a two unit-cell structure with periodic boundary conditions applied.

Independent displacement degrees of freedom are shown below. There is a new translational

degree of freedom u21, which was not present in the single unit-cell. This type of horizontal degree

of freedom will be more prevalent in larger structures. It may be problematic to achieving a

uniform NESE effect. As discussed by Lakes [94], there must be sufficient constraint to facilitate

negative incremental stiffness in foam cells and rubber tubes. When multiple cells are taken

76
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Figure 22: Two unit-cells M = 3 nodal columns, N = 2 nodal rows. Periodic boundary
conditions are applied.

together the constraint becomes insufficient. A similar phenomenon may occur for large arrays

of negative extensibility unit-cells.

For the two unit-cell structure, the response is similar to its constituent r = 0.25, s = 0

unit-cell. Figure 23 is the force-response curve of the two-unit cell structure when inputting

parameters a and b near to the triple point for its constituent unit-cell. In other words, elastic

member stiffness and geometry for the structure are defined based on the unit-cell phase diagram.

The force-response curve is fully dimensional. The strain ε, which is a function of the external

degrees of freedom, is normalized so that it is comparable to a single unit-cell. Since there are

3 nodal columns M = 3 strain is ε = 2(v12 + v22)/(3H).
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Figure 23: Force-response curve for the two unit-cell structure. The response is the same
as the constituent unit-cell. System parameters are r = 0.25, s = 0, a = aPEO − 1e−7 and
b = bPEO − 1e−3. A fraction is subtracted from each of the triple point system parameters. This
is below and to the left of the triple point in the r = 0.25, s = 0 phase diagram. The point is
inside the NESE region.
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When using the dimensional quantities there are free variables to be fixed. The length was

taken to be L = 1 m and the middle bar stiffness k1 = 1e7 N/m. All other parameters are then

defined based on r = 0.25, s = 0, a and b. The strain energy stored each of the elements are

defined

PA =
k1
2

(√
(L+ u21)2 + (H + v12 − v21)2 −

√
L2 +H2

)2
(6.1)

PB =
k2
2

(√
(L+ u21)2 + (v21)2 − L

)2
(6.2)

PC =
k2
2

(√
L2 + (v22 − v12)2 − L

)2
(6.3)

PD = k3(v12)
2 (6.4)

PE =
k1
2

(√
(L− u21)2 + (H + v32 − v21)2 −

√
L2 +H2

)2
(6.5)

PF =
k2
2

(√
(L− u21)2 + (v21)2 − L

)2
(6.6)

PG =
k2
2

(√
L2 + (v32 − v22)2 − L

)2
(6.7)

PH = k3

(√
(u21)2 + (H + v22 − v21)2 −H

)2
(6.8)

Finally, the total potential takes into account the strain energy less the energy of the external

load

Π = PA + PB + PC + PD + PE + PF + PG + PH − 2Fv22 (6.9)

The degrees of freedom are defined component-wise. At node 2.1, there is a vertical and

horizontal degree of freedom v21 and u21. There are two more independent vertical displacements,

v22 and v12. The degree of freedom v32 = v12 as a result of the periodic boundary requirement.
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�2
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2

�q
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�2

PC =
k2

2

�q

(L + +1,j+1 − ,j+1)2 + (v+1,j+1 − v,j+1)2 − L
�2

PD = k3
�q

(,j+1 − ,j)2 + (H + v,j+1 − v,j)2 − H
�2

PE =
k1

2

�q
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p
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�q
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�2

PH = k3
�q

(+1,j+1 − +1,j)2 + (H + v+1,j+1 − v+1,j)2 − H
�2

In total, there are 8 unit cells with potentials A–H and the potential energy due to external forces V = −6Fv1,8

 = U − V

1

(b)

Figure 24: Array M = 5 nodal columns across and N = 8 nodal rows tall. There are 16
unit-cell structures. (a): Force boundary conditions applied on either end of the material. (b):
Periodic boundary conditions. Rigid connections are between unit-cells layers.
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6.0.2 Potential for periodic array

The two-unit cell potential and boundary conditions can be derived from more general

statements which apply to periodic arrays with an odd number of column indices, M = odd.

From the larger periodic array M = 5, N = 8 in Figure 24, the potentials A–H of eight elastic

members are defined component-by-component

PA =
k1
2

(√
(L+ ui+1,j − ui,j+1)2 + (H + vi,j+1 − vi+1,j)2 −

√
L2 +H2

)2

PB =
k2
2

(√
(L+ ui+1,j − ui,j)2 + (vi+1,j − vi,j)2 − L

)2

PC =
k2
2

(√
(L+ ui+1,j+1 − ui,j+1)2 + (vi+1,j+1 − vi,j+1)2 − L

)2

PD = k3

(√
(ui,j+1 − ui,j)2 + (H + vi,j+1 − vi,j)2 −H

)2

PE =
k1
2

(√
(L+ ui+2,j+1 − ui+1,j)2 + (H + vi+2,j+1 − vi+1,j)2 −

√
L2 +H2

)2

PF =
k2
2

(√
(L+ ui+2,j − ui+1,j)2 + (vi+2,j − vi+1,j)2 − L

)2

PG =
k2
2

(√
(L+ ui+2,j+1 − ui+1,j+1)2 + (vi+2,j+1 − vi+1,j+1)2 − L

)2

PH = k3

(√
(ui+1,j+1 − ui+1,j)2 + (H + vi+1,j+1 − vi+1,j)2 −H

)2

The potential energy due to external forces for this set of eight strain energy functions is

V = −6Fv1,8 (6.10)

The total potential will be

Π = U − V
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6.0.3 Periodic boundary conditions

The following periodic boundary conditions work for an odd number of columns M = odd.

1. Fixed degrees of freedom

• left and right columns vertical rollers

• bottom row, odd columns are pinned

• top row, odd columns vertical rollers

2. The leftmost and rightmost columns have equal displacements for a given row

3. Nodes at rigid connections have identical displacements

4. Nodes with applied external forces all have equal vertical displacements

For M = 5 columns and N = 8 rows the following boundary conditions are generated

0 u2,8 0 u4,8 0

0 u2,6 u3,7 u4,6 0

0 u2,6 u3,6 u4,6 0

0 u2,5 u3,4 u4,5 0

0 u2,4 u3,4 u4,4 0

0 u2,2 u3,3 u4,2 0

0 u2,2 u3,2 u4,2 0

0 u2,1 0 u4,1 0





v1,8 v2,8 v1,8 v4,8 v1,8

v1,7 v2,6 v3,7 v4,6 v1,7

v1,6 v2,6 v3,6 v4,6 v1,6

v1,4 v2,5 v3,4 v4,5 v1,4

v1,4 v2,4 v3,4 v4,4 v1,4

v1,3 v2,2 v3,3 v4,2 v1,3

v1,2 v2,2 v3,2 v4,2 v1,2

0 v2,1 0 v4,1 0


In the future, a program will be developed to set up independent degrees of freedom, boundary

conditions and the necessary equations based on an arbitrary number of rows and columns of

nodes.
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6.1 Conclusion

Fabrication of materials that retain the property of negative extension may be impractical due

to several factors. There will always be imperfections and variations in materials. Variability or

imperfection may suppress the energetic driving force for the contraction. A large NESE region

may be able to compensate for some degree of variation in elastic member properties. A major

factor that would hinder the NESE response in a periodic structure is the loss of constraint.

Stacking more and more unit-cells vertically and horizontally adds additional, undesirable

degrees of freedom that are not associated with a contraction. Additional translational degrees

of freedom and possibly other modes in real materials like bending or twisting may render the

concept physically unattainable. The goal is to have all constituent units in the structure move

in a concerted fashion. This seems unlikely. An expected outcome is that some of the unit-cells

may destabilize and contract prematurely while others may destabilize and re-equilibrate too

late. The contraction would behave in a step-like pattern.

Acknowledging potential shortcomings, there are certainly many upsides. Many of the

analytical techniques developed here are transferable to other mechanical, material, structural

and thermodynamic systems. The principles discussed here are integral to dynamic, nonlinear

systems, especially those systems with multiple stable states [144, 145]. Dynamic analysis

including the effect of damping, switching wave propagation, relaxation transients, and the effect

of boundary conditions on the unit-cell may be a worthwhile pursuit. The ability to isolate

regions of monostability from those of bistability is applicable to many situations. Catastrophe

theory is a powerful predictive tool. In the unit-cell structure, the transition to bistability
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may be smooth. A smooth transition from the region of monostability to bistability occurs

when crossing over ΓS . With increasing b, the hysteresis loop starts off from a point and grows

wider. Similarly, the transition across ΓM from the SE bistable region and into the NESE region

is smooth. Approaching ΓM from the SE region, the intensity of the superelastic strain ISE

at the forward transformation A → B gradually decreases to zero and then goes increasingly

negative once inside the NESE region. The hysteresis loop slowly pinches in on itself. However,

when crossing over ΓO from the NESE or NESP regions, the response switches suddenly to

monostability. This a catastrophic change in the equilibrium response.

A significant result is the visualization of the mechanical response of the structure in the form

of a phase diagram. The development of physical relationships based on dimensionless quantities

is widespread across engineering [146]. The Buckingham π theorem provides a systematic way

of computing dimensionless parameters. An example is given in Appendix B. Later studies will

apply the methods developed here to other mechanical and material systems. Tetragonal or

diamond-shaped structures are strong candidates for unit-cell structures capable of exhibiting

a contraction. Previous work on tetragonal networks of beams showed negative compressibility

in certain dimensions [100,147]. Cubic crystal structures in general have the most exotic effects

such as the most negative and the most positive Poisson’s effects [21,118].
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Appendix A

NON-DIMENSIONALIZATION OF THE ENGINEERING (TRUE)

POTENTIAL

A.1 Strain energy of each element

Bar 1

l0 =
√
L2 + (H − h)2

lf =
√
L2 + (H − h− 2v)2

∆l1 =
√
L2 + (H − h− 2v)2 −

√
L2 + (H − h)2

π1 =
1

2
k1∆l

2
1 =

1

2
k1

(√
L2 + (H − h− 2v)2 −

√
L2 + (H − h)2

)2
(A.1)

Bar 2

l0 =
√
L2 + h2

lf =
√
L2 + (h+ u+ v)2

∆l2 =
√
L2 + (h+ u+ v)2 −

√
L2 + h2

π2 =
1

2
k2∆l

2
2 =

1

2
k2

(√
L2 + (h+ u+ v)2 −

√
L2 + h2

)2
(A.2)
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Appendix A (Continued)

Spring 3

l0 = H

lf = H + u− v

∆l3 = u− v

π3 =
1

2
k3∆l

2
3 =

1

2
k3 (u− v)2 (A.3)

The stored strain energy in the bars k1 and k2 and the spring k3

π1 =
1

2
k1

(√
L2 + (H − h− 2v)2 −

√
L2 + (H − h)2

)2
(A.4)

π2 =
1

2
k2

(√
L2 + (h+ u+ v)2 −

√
L2 + h2

)2
(A.5)

π3 =
1

2
k3 (u− v)2 (A.6)

A.2 Balance of energy

Fully dimensional potential

Π = U − V = π1 + 2(π2 + π3 − Fu) (A.7)

Π =
1

2
k1

(√
L2 + (H − h− 2v)2 −

√
L2 + (H − h)2

)2
+ k2

(√
L2 + (h+ u+ v)2 −

√
L2 + h2

)2
+ k3 (u− v)2 − 2Fu

(A.8)
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Appendix A (Continued)

A.3 Non-dimensionalization

The following dimensionless parameters are used

system (design) parameters: a =
k2
4k3

H2

L2 +H2
, b =

2k1
k3

H2

L2 + (H − h)2
,

r =
H

L
, s =

h

H

independent state parameters: x =
u

H
, y =

v

H

control parameter: f =
F

k3H

dimensionless potential: U=
Π

k3H2
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Non-dimensionalize the first term corresponding to π1

π1 =
1

2
k1

(√
L2 + (H − h− 2v)2 −

√
L2 + (H − h)2

)2
(A.9)

φ1 =
π1
k3H2

(A.10)

=
1

2

k1
k3H2

(√
L2 + (H − h− 2v)2 −

√
L2 + (H − h)2

)2
(A.11)

=
k1

2k3H2

√H2
L2

H2
+H2

(
H

H
− h

H
− 2

v

H

)2

−

√
H2

L2

H2
+H2

(
H

H
− h

H

)2
2

(A.12)

=
k1H

2

2k3H2

√ L2

H2
+

(
1− h

H
− 2

v

H

)2

−

√
L2

H2
+

(
1− h

H

)2
2

(A.13)

=
k1
2k3

(
4H2

4H2

)(
L2 + (H − h)2

L2 + (H − h)2

)

×

√ L2

H2
+

(
1− h

H
− 2

v

H

)2

−

√
L2

H2
+

(
1− h

H

)2
2 (A.14)

=

(
2k1
k3

H2

(L2 + (H − h)2

)(
L2 + (H − h)2

4H2

)

×

√ L2

H2
+

(
1− h

H
− 2

v

H

)2

−

√
L2

H2
+

(
1− h

H

)2
2 (A.15)

=

(
2k1
k3

H2

(L2 + (H − h)2

)
1

4

(
h2

H2
− 2

h

H
+
L2

H2
+ 1

)

×

√ L2

H2
+

(
1− h

H
− 2

v

H

)2

−

√
L2

H2
+

(
1− h

H

)2
2 (A.16)

Substitute the dimensionless parameters

φ1 =
b

4

(
s2 − 2s+

1

r2
+ 1

)(√
1

r2
+ (1− s− 2y)2 −

√
1

r2
+ (1− s)2

)2

(A.17)

which is equivalent to

φ1 =
b

4r2

(
s2 − 2s+

1

r2
+ 1

)(√
1 + (r − sr − 2ry)2 −

√
1 + (r − sr)2

)2

(A.18)
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Non-dimensionalize the second term corresponding to π2

2π2 = k2

(√
L2 + (h+ u+ v)2 −

√
L2 + h2

)2
(A.19)

φ2 =
2π2
k3H2

(A.20)

=
k2

k3H2

√H2
L2

H2
+H2

(
h

H
+
u

H
+

v

H

)2

−
√
H2

L2

H2
+H2

h2

H2

2

(A.21)

=
k2H

2

k3H2

√ L2

H2
+

(
h

H
+
u

H
+

v

H

)2

−
√
L2

H2
+
h2

H2

2

(A.22)

=
k2
k3

(
4H2

4H2

)(
L2 + h2

L2 + h2

)√ L2

H2
+

(
h

H
+
u

H
+

v

H

)2

−
√
L2

H2
+
h2

H2

2

(A.23)

=

(
k2
4k3

H2

L2 + h2

)(
4
(
L2 + h2

)
H2

)√ L2

H2
+

(
h

H
+
u

H
+

v

H

)2

−
√
L2

H2
+
h2

H2

2

(A.24)

= 4

(
k2
4k3

H2

L2 + h2

)(
h2

H2
+
L2

H2

)√ L2

H2
+

(
h

H
+
u

H
+

v

H

)2

−
√
L2

H2
+
h2

H2

2

(A.25)

Substitute dimensionless parameters

φ2 = 4a

(
s2 +

1

r2

)(√
1

r2
+ (s+ x+ y)2 −

√
1

r2
+ s2

)2

(A.26)

which is equivalent to

φ2 =
4a

r2

(
s2 +

1

r2

)(√
1 + (sr + xr + yr)2 −

√
1 + s2r2

)2

(A.27)

Non-dimensionalize the second term corresponding to π3

2π3 = k3 (u− v)2 (A.28)

φ3 =
2π3
k3H2

(A.29)

=
k3H

2

k3H2

( u
H
− v

H

)2
(A.30)



91

Appendix A (Continued)

Substitute dimensionless parameters

φ3 = (x− y)2 (A.31)

Non-dimensionalize the fourth term corresponding to the control parameter f

2Fu = 2F
u

H
H (A.32)

φ4 = 2
F

k3H

u

H
(A.33)

Substitute dimensionless parameters

φ4 = 2fx (A.34)

The dimensionless terms are

φ1 =
b

4

(
s2 − 2s+

1

r2
+ 1

)(√
1

r2
+ (1− s− 2y)2 −

√
1

r2
+ (1− s)2

)2

(A.35)

=
b

4r2

(
s2 − 2s+

1

r2
+ 1

)(√
1 + (r − sr − 2ry)2 −

√
1 + (r − sr)2

)2

(A.36)

φ2 = 4a

(
s2 +

1

r2

)(√
1

r2
+ (s+ x+ y)2 −

√
1

r2
+ s2

)2

(A.37)

=
4a

r2

(
s2 +

1

r2

)(√
1 + (sr + xr + yr)2 −

√
1 + s2r2

)2

(A.38)

φ3 = (x− y)2 (A.39)

φ4 = 2fx (A.40)
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A.4 Dimensionless Balance of energy

U = 4a

(
s2 +

1

r2

)(√
1

r2
+ (s+ x+ y)2 −

√
1

r2
+ s2

)2

+
b

4

(
s2 − 2s+

1

r2
+ 1

)(√
1

r2
+ (1− s− 2y)2 −

√
1

r2
+ (1− s)2

)2

+ (x− y)2 − 2fx

(A.41)

Compared to the dimensional balance of energy below

Π =
1

2
k1

(√
L2 + (H − h− 2v)2 −

√
L2 + (H − h)2

)2
+ k2

(√
L2 + (h+ u+ v)2 −

√
L2 + h2

)2
+ k3 (u− v)2 − 2Fu

(A.42)
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DIMENSIONAL ANALYSIS

B.1 Buckingham Pi Theorem

B.1.1 Definitions and problem statement

Balance of energy:

Π = U − V

= π1 + 2(π2 + π3 − Fu)

=
1

2
k1

(√
L2 + (H − h− 2v)2 −

√
L2 + (H − h)2

)2
+ k2

(√
L2 + (h+ u+ v)2 −

√
L2 + h2

)2
+ k3 (u− v)2 − 2Fu

(B.1)

The total potential Π can be expressed as

Π = φ1(k1, k2, k3, L,H, h, u, v, F )

or

0 = φ(Π, k1, k2, k3, L,H, h, u, v, F )

(B.2)

There are 10 variables of interest in the problem. The dimensions in the problem are mass,

length and time (M, L and T) or alternatively force, length and time (F, L and T) can be used.
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Energy, Π

[
kg ·m2

s2

]
, ML2T−2 or FL

Stiffness, k

[
kg

s2

]
, MT−2 or FL−1

Distance, H,L, h, u, v [m] , L

Force, F

[
kg ·m

s2

]
, MLT−2 or F

1st π theorem:

The m variables in the problem can be redefined in terms of m−n dimensionless parameters

or π groups. The quantity n is the set of SI base units (such as mass, length and time) needed

to express the m variables.

2nd π theorem:

The dimensionless groups π are functions of both the n repeating or governing variables and

the original variables n.

B.1.2 Determination of repeating variables

Rules are as follows:

1. There can be n repeating variables.

2. In combination, the repeating variables consist of all SI base units (MLT or FLT). Individual

repeating variables do not have to contain all dimensions.

3. The repeating variables when combined cannot form a dimensionless group.

4. Repeating variables are not required to show up in each π group.



95

Appendix B (Continued)

5. Repeating variables represent essential design parameters and should be measurable through

experiment.

B.1.3 Pi groups in the problem

The balance of energy

0 = φ(Π, k1, k2, k3, L,H, h, u, v, F )

Only force F and length L, n = 2, are taken as the dimensions needed to reproduce the repeating

variables. Time (or mass) does not show up explicitly in the potential because the analysis is

quasistatic. The number of dimensional variables is m = 10 so there are m−n = 8 π groups.

φ(π1, π2, π3, π4, π5, π6, π7, π8) = 0 (B.3)

Choose stiffness k3 and height H as the repeating variables. Seven groups are formed

π1 = ka1

3 H
b1Π (B.4)

π2 = ka2

3 H
b2k1 (B.5)

π3 = ka3

3 H
b3k2 (B.6)

π4 = ka4

3 H
b4L (B.7)

π5 = ka5

3 H
b5u (B.8)

π6 = ka6

3 H
b6v (B.9)

π7 = ka7

3 H
b7F (B.10)

π8 = ka8

3 H
b8h (B.11)

All π groups are dimensionless F 0L0. π group dimensions are related using the principal of

dimensional homogeneity.
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Below is an example for developing the first π group

π1

π1 = ka1

3 H
b1Π

SI units

1 =
(
N ·m−1

)a1
(m)b1 (N ·m)

in terms of dimensions

F 0L0 =
(
FL−1

)a1
(L)b1 (FL)

for F : 0 = a1 + 1

for L : 0 = −a1 + b1 + 1

a1 = −1, b1 = −2

The first π group is

π1 = k−13 H−2Π =
Π

k3H2
(B.12)



97

Appendix B (Continued)

Overall, the π groups are defined as

π1 =
Π

k3H2
(B.13)

π2 =
2k1
k3

H2

L2 + (H − h)2
(B.14)

π3 =
k2
4k3

H2

L2 +H2
(B.15)

π4 =
L

H
(B.16)

π5 =
u

H
(B.17)

π6 =
v

H
(B.18)

π7 =
F

k3H
(B.19)

π8 =
h

H
(B.20)

The original expression can be written in terms of the 7 dimensionless π groups

0 = φ(Π, k1, k2, k3, L,H, u, v, F, h) (B.21)

0 = φ(π1, π2, π3, π4, π5, π6, π7, π8) (B.22)

0 = φ

(
Π

k3H2
,
2k1
k3

H2

L2 + (H − h)2
,
k2
4k3

H2

L2 +H2
,
H

L
,
u

H
,
v

H
,
F

k3H
,
h

H

)
(B.23)

Assigning π groups to variables

0 = φ (U, b, a, r, x, y, f, s) (B.24)
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The π groups are

U = π1 =
Π

k3H2

b = π2 =
k2
4k3

H2

L2 +H2

a = π3 =
2k1
k3

H2

L2 + (H − h)2

r = π4 =
H

L

x = π5 =
u

H

y = π6 =
v

H

f = π7 =
F

k3H

s = π8 =
h

H

(B.25)

Since there are m= 10 dimensional variables and n= 8 π groups, two dimensional quantities

must be fixed before the system is fully dimensional. In the design example, the critical force

f1 = 1000 N and the change in strain ∆εc = 1 mm were fixed. A similar situation was

encountered when using the fully dimensional potential for the two unit-cell structure. Here the

length L = 1 m and the stiffness k1 = 1e7 N/m were fixed before generating the force-response

curve.
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[169] Johan Christensen and F Javier Garćıa de Abajo. Anisotropic metamaterials for full
control of acoustic waves. Physical review letters, 108(12):124301, 2012.

[170] Winston E Kock. Metallic delay lenses. Bell Labs Technical Journal, 27(1):58–82, 1948.

[171] John D Busch and Alfred D Johnson. Shape-memory alloy micro-actuator, October 29
1991. US Patent 5,061,914.

[172] Remco Leine and Henk Nijmeijer. Dynamics and bifurcations of non-smooth mechanical
systems, volume 18. Springer Science & Business Media, 2013.

[173] JMT Thompson. Stability predictions through a succession of folds. Philosophical Trans-
actions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 292(1386):1–23, 1979.



114



115

VITA

John Klein
2610 Walnut Ave. – Evanston, IL – 60201

T +1 (847) 345 3770 | B jklein27@uic.edu

Summary
Applying for the PhD program in Materials Engineering at UIC for next semester, Fall 2017. Seeking further special-
ization in computational research related to materials science and mechanics.

Education
University of Illinois at Chicago Chicago, IL
MS Materials Engineering, 4.00 graduate GPA 2016–present
Expected date of master’s thesis defense: July 2017

University of Colorado Boulder Boulder, CO
BA Molecular, Cellular and Developmental Biology 2009–2013

Research Experience
UIC Chicago, IL
Master’s thesis research 2017
• Work in Professor Karpov’s lab as a computer programmer
• Write code to study the behavior of mechanical metamaterials
• Develop numerical algorithms used in nonlinear analysis and computational mechanics
• Create journal-quality figures and graphs for the visualization of scientific data

Argonne National Laboratory Lemont, IL
Guest Graduate Researcher Summer 2016
• Interned with the Environmental Science Group led by Dr. William L. Ebert
• Electrochemical testing of stainless steels and zirconium alloys
• Interpreted electrochemical impedance spectroscopy (EIS) and potentiodynamic (PD) data

Computer Skills
Matlab: Working knowledge
ANSYS: Working knowledge
Python: Working knowledge
Java: Working knowledge
Fortran: Working knowledge
MS Excel: Working knowledge
LATEX: Working knowledge
SolidWorks: Working knowledge
HTML, CSS, Javascript: Designed websites

Achievements
• Dean’s List for College of Engineering Fall 2014, Spring 2015, Spring 2016
• Tau Beta Pi Engineering Honors Society Fall 2015
• UIC Honors College Merit Tuition Award Spring 2014
• UIC Honors College essay contest winner Spring 2014
• CU-Boulder Dean’s List Fall 2011, Spring 2012, Fall 2012, Spring 2013
• CU-Boulder Chancellor’s Achievement Scholarship 2009-2013

Interests
• Accomplished pianist and music producer
• Fitness, waterskiing, wakeboarding, snowboarding, tennis, rowing, running, biking and nutrition


