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SUMMARY

This dissertation provides an affirmative answer to the well-known half century old en-

gineering question raised by Office of Naval Research: How can one solve nonlinear filtering

(NLF) problems in real time without memory, if enough computational resources are provided?

Instead of the prestigious Kalman filter (KF) and its derivatives to estimate the mean and

the covariance matrix of the states, we resort to solving the Duncan-Mortensen-Zakai (DMZ)

equation, which is satisfied by the un-normalized probability density function of the states. In

this dissertation, we develop a novel algorithm, which is applicable to the most general settings

of the NLF problems and keeps two of the most important properties of KF: real-time and

memory-less.

Briefly speaking, in our algorithm, we split the approximation of the conditional density

function into two parts: one part could be pre-computed before any on-line experiments ran

(so-called off-line computation); the other part has to be sychronized the real-time data with the

pre-computed data (so-called on- line computation). More precisely, the off-line computation

solves a forward Kolmogorov equation (FKE) with the initial conditions, which are chosen to be

a complete base functions in square-integrable function space, while the on-line part computes

the projection of the conditional density function at each time step onto the basis, and then

synchronize them with the off-line data to obtain the conditional density function at the next

time step.
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SUMMARY (Continued)

First, we validate our algorithm theoretically, by estimating the convergence rate with re-

spect to the sampling frequency. Second, we tackle some difficulties in the implementation of

our algorithm and apply it to some 1-D benchmark NLF problems. Compared with the two

most widely used methods nowadays, extended Kalman filter and particle filters, our algorithm

surpasses both of them in the real-time manner with comparable accuracy. Last, when we

investigate the application of our algorithm to the high-dimensional state NLF problems, we

combine the sparse grid algorithm with the Hermite spectral method to serve as the off-line

solver of FKE. The convergence rate is investigated both theoretically and numerically.

xi



CHAPTER 1

INTRODUCTION

Tracing back to 1960s, two most influential mathematics papers (36), (34) have been pub-

lished in ASME’s Journal of Basic Engineering. These are so-called Kalman filter (KF) and

Kalman-Bucy filter. They addressed a significant question: How does one get accurate esti-

mate from noisy data? The applications of KF are endless, from seismology to bioengineering

to econometrics. The KF surpasses the other existing filtering in, at least, the following two

aspects:

• The KF uses each new obervation to update the state of the system without refering back

to any earlier observations. This is so-called “memory-less” or “without memory”.

• The KF makes the decisions of the state instantaneously, while the observation data keep

coming in. This property is called “real-time”.

Despite its success in many real applications, the limitations on the nonlinearity and Gaus-

sian assumption of the initial probability density of the KF pushed mathematicians and engi-

neers to seek the optimal nonlinear filtering (NLF). One direction is to adapt the KF to the

nonlinearities. The researchers developed extended Kalman filter (EKF), unscented Kalman

filter, ensemble Kalman filter, etc., which could be used to handle weak nonlinearities (say, the

almost linear ones). But for serious nonlinearities, they may completely fail.

1
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Another direction, and also the most popular method nowadays, are the particle filters (PF),

refer to as (1), (2) and reference therein. They are developed from sequential Monte Carlo

methods. On the one hand, the PF are applicable to the nonlinear, non-Gaussian scenarios. As

the number of particles goes to infinity, the PF become asymptotically optimal. On the other

hand, they are hard to implement as a real-time application, due to its essence of Monte Carlo

simulations.

Besides the two widely used methods above, the partial differential equations (PDE) meth-

ods are introduced to the NLF in 1960s. These methods are based on the fact that the un-

normalized conditional density of the states is the solution of Duncan-Mortensen-Zakai (DMZ)

equation, refer to as (15), (41) and (60). Yet, the main drawback of the PDE methods are the

intensive computation. It is almost impossible to achieve the “real-time” performance. To over-

come this shortcoming, the splitting-up algorithm is introduced to move the heavy computation

off-line. It is like the Trotter product formula from semigroup theory. This operator-splitting

algorithm is proposed for the DMZ equation by Bensoussan, Glowinski, and Rascanu (10).

More research articles which follow this direction are (28), (42) and (31), etc. In 1990s, Lotot-

sky, Mikulevicius and Rozovskii (38) developed a new algorithm (so-called S3-algorithm) based

on the Cameron-Martin version of Wiener chaos expansion. Unfortunately, it is pointed out in

(10) that the soundness of these algorithms are verified only to the filtering with bounded drift

and observation terms (i.e., f and h in Equation 2.1). In 2008, Yau and Yau (59) developed

a novel algorithm to solve the “pathwise-robust” DMZ equation (see Equation 2.6), where the

boundedness conditions are weakened to some mild growth conditions on f and h. The two nice
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properties of the KF have also been kept in this algorithm: “memory-less” and “real-time”.

But their algorithm has only been rigorously proved in theory, when the drift term, the ob-

servation term (f , h in Equation 2.1) are not explicitly time-dependent, the variance of the

noises (G in Equation 2.1) is the identity matrix, and the noises are standard Brownian motion

processes (S = Ir×r, Q = Im×m in Equation 2.1) . Let us refer to the case studied in (59) as

the “time-invariant” one in this dissertation.

The first task of this dissertation is to extend the algorithm in (59) to the most general

settings of NLF problems, in the sense that the drift term, the observation term could explicitly

depend on time, the variance of the noises S, Q are also time-dependent, and G could be a

matrix of functions of both time and the states. We shall validate our algorithm under very mild

growth conditions on f , h and G, for example Equation 3.30, Equation 4.2 and Equation 3.45,

etc. These are essentially time-dependent analogue of those in (59). First of all, this extension

is absolutely necessary. Many real applications have explicit time-dependence in their models,

say the target orientation angle estimation for target position/velocity in constant turn model,

where the angular velocities are piecewise constant functions in time, see (46). Second, this

extension is nontrivial from the mathematical point of view. A trickier analysis of the PDE is

required. For instance, we need to take care of the more general elliptic operator D2
w, see the

definition in Equation 2.7, rather than the Laplacian.

The second task in this dissertation is to implement our algorithm with 1-D state to achieve

the “real-time” and “memory-less” manner. In the implementation, we shall solve the forward

Kolmogorov equation (FKE) Equation 2.13 with the Hermite spectral method (HSM). There
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are two reasons that we choose HSM: on the one hand, HSM is particularly suitable for functions

defined on the unbounded domain which decays exponentially at infinity; on the other hand,

HSM could be easily patched with the numerical solution obtained in the previous time step

while the moving-window technique is in use in the on-line experiments.

The HSM itself is also a rich research field, which could be traced back to 1970s. In (21),

Gottlieb et. al. gave the example sinx to illustrate the poor resolution of Hermite polynomials.

To resolve M wavelength of sinx, it requires nearly M2 Hermite polynomials. Due to this fact,

they doubted the usefulness of Hermite polynomials as basis. The Hermite functions inherit

the same deficiency from the polynomials. Moreover, it is lack of fast Hermite transform (some

analogue of fast Fourier transform). Despite of all these drawbacks, the HSM has its inherent

strength. Many physical models need to solve a differential equation on an unbounded domain,

and the solution decays exponentially at infinity. From the computational point of view, it is

hard to describe the rate of decay at infinity numerically or to impose some artificial boundary

condition cleverly on some faraway “boundary”. Therefore the Chebyshev or Fourier spectral

methods are not so useful in this situation. As to the HSM, dealing with the behavior at infinity

is not necessary. Recent applications of the HSM can be found in (17), (19), (27), (48), (57),

etc.

To overcome the poor resolution, a scaling factor is necessary to be introduced into the

Hermite functions, refer to (6), (7). It is shown in (7) that the scaling factor should be chosen

according to the truncated modes N and the asymptotical behavior of the function f(x), as

|x| → ∞. Some efforts have been made in seeking the suitable scaling factor, see (7), (55), (48),
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etc. To optimize the scaling factor is still an open problem, even in the case that f(x) is given

explicitly, to say nothing of the exact solution to a differential equation, which is generally

unknown a-priori. Although some investigations about the scaling factor have been made

theoretically, as far as we know, there are no practical guidelines of choosing a suitable scaling

factor. Nearly all the scaling factors in the papers with the application of HSM are obtained

by the trial-and-error method. Thus, we believe it is necessary and useful to give a practical

strategy to pick an appropriate scaling factor and the corresponding truncated mode for at least

the most commonly used types of functions, i.e. the Gaussian type and the super-Gaussian type

functions. The strategy we shall give in section 5.2.2 only depends on the asymptotic behavior

of the function. In the scenario where the solution of some differential equation needs to be

approximated (the exact solution is unknown), we could use asymptotical analysis to obtain its

asymptotic behavior. Thus, our strategy of picking the suitable scaling factor is still applicable.

Let us draw our attention back to the implementation of our algorithm to NLF problems.

Through our study of HSM to FKE, the off-line data could be well prepared. However, when

synchronizing the off-line data with the on-line experiments, to be more specifically, updating

the initial data on-line, another difficulty arises due to the drifting of the conditional density

function. The untranslated Hermite functions with limited truncation modes could only resolve

the function well, if it is concentrated in the neighborhood of the origin. Let us call this

neighborhood as a “window”. Unfortunately, the density function will probably drift out of the

current “window”. The numerical evidence is displayed in Figure 6. To efficiently solve this

problem, we for the first time introduce the translating factor to the Hermite functions and
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the moving-window technique for the on-line implementation. The translating factor helps the

moving-window technique to be implemented more neatly and easily. The idea of the moving-

window technique is to shift the windows back and forth according to the “support” of the

density function, by tuning the translating factor. Three NLF problems are solved numerically

by our algorithm and compared with either EKF or PF. It is verified numerically that our

algorithm is superior to both of them in the “real-time” manner.

The last task of this dissertation is to investigate our algorithm with high-dimensional state.

That is, we need to solve the FKE in Rd, where d > 1 is the dimension of the state. Among

the existing literature, the Hermite and Laguerre spectral methods are the commonly used

approaches to solve the PDE based on orthogonal polynomials in infinite interval, referring to

(19), (57). Although the Hermite spectral method (HSM) appears to be a natural choice, it is

not as widely used as the Chebyshev and Fourier spectral methods, due to its poor resolution

(21) and the lack of fast algorithm for the transformation (8). However, it is shown in (6)

that an appropriately chosen scaling factor could greatly improve the resolution. Moreover, we

present practical guidelines of choosing the suitable scaling factors for Gaussian/super-Gaussian

functions (39).

Nevertheless, the main difficulty comes from the so-called “curse of dimensionality”. Take

the target tracking problem in 3-dim as example, there are at least six states involved in this sys-

tem (three for position, three for velocity). That is, we need to solve a linear parabolic PDE in

R6. Naively, if we implement the spectral method with tensor product formulation and assume

that N modes need to be computed in each direction, then the total amount of the computation
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is N6. Even with moderately small N , it is still not within the reasonable computing capacity.

An efficient tool to reduce this effect is the sparse grids approximations from Smolyak’s algo-

rithm (54), which is based on a hierarchy of one-dimensional quadrature. It has a potential

to obtain higher rates of convergence than many existing methods, under certain regularity

conditions. For example, the convergence rate of Monte Carlo simulations are O(N−
1
2 ) with N

sample points, while the sparse grids from (54) achieves O(N−r(logN)(d−1)(r+1)), provided that

the function has bounded mixed derivatives of order r. The studies of sparse grids start from

the basis functions in the physical spaces: piecewise linear multiscale bases (13), wavelets (13),

(49). In the recent decade, the hyperbolic cross (HC) approximation in the frequency space

has also been investigated with various basis functions: Fourier series (22), (24), polynomial

approximations generated from the Chebyshev-Gauss-Lobatto points (4), Jacobi polynomials

(51).

Although the regular hyperbolic cross (RHC) approximation reduce the effect of the “curse

of dimensionality” in some degree, the convergence rate still deteriorates slowly with the dimen-

sion increasing (noting the term (logN)(d−1)(r+1) in the previous paragraph). To completely

break the “curse of dimensionality”, the optimized hyperbolic cross (OHC) approximation is

introduced in (24). It has been shown in (36) that the convergence rate of the OHC approxi-

mation with γ ∈ (0, 1) (see definition in Equation 6.40) with Fourier series is of O(N−r) in our

notation, where the dimension enters the big-O. We shall first establish the error estimate for

the HC approximations with properly scaled Hermite functions in the weighted Korobov spaces

Kmα,β(Rd), see Equation 6.28. Next, we shall study the application of the Galerkin-type HSM



8

with the HC approximation to high-dimensional linear parabolic PDEs. The error estimates in

appropriate weighted Korobov spaces are investigated under various conditions (cf. conditions

(C1)-(C6) in Chapter 6). There also exists a rich literature on the applications of sparse grids

algorithms. It has already been successfully applied to problems from the integral equations

(26), to interpolation and approximation (35), to the stochastic differential equations (50), (43),

to high dimensional integration problems from physics and finance (20), and to the solutions

to elliptic PDEs, (61), (52). As to the parabolic PDEs, they are treated with a wavelet-based

sparse grid discretization in (56). Besides the finite element approaches, they are also handled

wth finite differences on sparse grids (23) and finite volume schemes (29). Griebel and Oeltz

(25) proposed a space-time sparse grid technique, where the tensor product of one-dimensional

multilevel basis in time and a proper multilevel basis in space have been employed. To our best

knowledge, it is the first time in this paper that the Galerkin HSM with sparse grids algorithm

is applied to parabolic PDEs, and the error estimates are obtained in the appropriate spaces.



CHAPTER 2

MODEL AND ALGORITHM

The model we are considering is the signal observation model with explicit time-dependence

in the drift term, observation term and the variance of the noises:





dxt = f(xt, t)dt+G(xt, t)dvt,

dyt = h(xt, t)dt+ dwt,

(2.1)

where xt and f are n-vectors, G is an n × r matrix, and vt is an r-vector Brownian motion

process with E[dvtdv
T
t ] = Q(t)dt, yt and h are m-vectors and wt is an m-vector Brownian

motion process with E[dwtdw
T
t ] = S(t)dt and S(t) > 0. We refer to xt as the state of the

system at time t with some initial state x0 (not necessarily obeying Gaussian distribution) and

yt as the observation at time t with y0 = 0. We assume that {vt, t ≥ 0}, {wt, t ≥ 0} and x0 are

independent. For the sake of convenience, let us call this system with explicit time-dependence

in f , h and G the “time-varying” case, while the one without explicit time-dependence the

“time-invariant” as those studied in (59).

Let us assume throughout the dissertation that f , h and G are smooth, say C2 in space

and C1 in time. However, some growth conditions on f , h and G will be specified later in the

study of “pathwise-robust” DMZ equation.

9
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The unnormalized density function σ(x, t) of xt conditioned on the observation history

Yt = {ys : 0 ≤ s ≤ t} satisfies the DMZ equation (for the detailed formulation, see (15), (41)

and (60)) 



dσ(x, t) = Lσ(x, t)dt+ σ(x, t)hT (x, t)S−1(t)dyt

σ(x, 0) = σ0(x),

(2.2)

where σ0(x) is the probability density of the initial state x0, and

L(∗) ≡ 1

2

n∑

i,j=1

∂2

∂xi∂xj

[(
GQGT

)
ij
∗
]
−

n∑

i=1

∂(fi∗)
∂xi

, (2.3)

where (GQGT )ij is the (i, j)th entry of the matrix and fi is the ith component of f .

We won’t solve the DMZ equation directly, due to the following two reasons. On the one

hand, the DMZ equation, i.e. Equation 2.2, is a stochastic partial differential equation due to

the term dyt. There is no easy way to derive a recursive algorithm to solve this equation. On

the other hand, in real applications, one may be more interested in constructing robust state

estimators from each observation path, instead of having certain statistical data of thousands

of repeated experiments. Here, the robustness means our state esitmator is not sensitive to

the observation path. This property is important, since in most of the real applications, the

observation arrives and is processed at discrete moments in time. The state estimator is still

expected to perform well based on the linear interpolation of the discrete observations, without

the knowledge of the real continuous observation path.
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For each “given” observation, making an invertible exponential transformation as in (47)

σ(x, t) = exp [hT (x, t)S−1(t)yt]ρ(x, t), (2.4)

the DMZ equation is transformed into a deterministic partial differential equation (PDE) with

stochastic coefficients, which we will refer as the “pathwise-robust” DMZ equation





∂ρ

∂t
(x, t) +

∂

∂t
(hTS−1)T ytρ(x, t) = exp (−hTS−1yt)

[
L− 1

2
hTS−1h

]
· [exp (hTS−1yt)ρ(x, t)]

ρ(x, 0) =σ0(x).

(2.5)

Or equivalently,





∂ρ

∂t
(x, t) =

1

2
D2
wρ(x, t) + F (x, t) · ∇ρ(x, t) + J(x, t)ρ(x, t)

ρ(x, 0) = σ0(x),

(2.6)

where

D2
w =

n∑

i,j=1

(GQGT )ij
∂2

∂xi∂xj
, (2.7)

F (x, t) =




n∑

j=1

∂

∂xj

(
GQGT

)
ij

+

n∑

j=1

(GQGT )ij
∂K

∂xj
− fi



n

i=1

, (2.8)

J(x, t) =− ∂

∂t
(hTS−1)T yt +

1

2

n∑

i,j=1

∂2

∂xi∂xj

(
GQGT

)
ij

+

n∑

i,j=1

∂

∂xi

(
GQGT

)
ij

∂K

∂xj

+
1

2

n∑

i,j=1

(GQGT )ij

[
∂2K

∂xi∂xj
+
∂K

∂xi

∂K

∂xj

]
−

n∑

i=1

∂fi
∂xi
−

n∑

i=1

fi
∂K

∂xi
− 1

2
(hTS−1h), (2.9)
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in which

K(x, t) = hT (x, t)S−1(t)yt. (2.10)

The existence and uniqueness of the “pathwise-robust” DMZ equation under certain con-

ditions has been investigated by Pardoux (44), (45), Fleming-Mitter (16), Baras-Blankenship-

Hopkins (3) and Yau-Yau (58), (59). The well-posedness is shown in (44), when the drift term

f ∈ C1 and the observation term h ∈ C2 are bounded. Later, in (45) Pardoux extended his re-

sult to where f , h have at most linear growth. Fleming and Mitter treated the case where f and

∇f are bounded. Baras, Blankenship and Hopkins (3) obtained the well-posedness result on the

“pathwise-robust” DMZ equation with a class of unbounded coefficients only when the state is

of 1-D. In the appendices of (59), Yau and Yau obtained the existence and uniqueness results in

the weighted Sobolev space, where f and h satisfy some mild growth condition. However, there

is a gap in their proof of existence (Theorem A.4, (59)). In Chapter 3 of this dissertation, we

shall circumvent the gap by a more delicate analysis to give a time-dependent analogous well-

posedness result to the “pathwise-robust” DMZ equation under some mild growth conditions

on f , h and G.

2.1 Approximation in our algorithm

Let us assume that we know apriori the observation time sequence Pk := {τ0 < τ1 < · · · <

τk = T}. But the observation data {yτi} at each sampling time τi, i = 0, · · · , k are unknown

until the on-line experiment runs. We call the computation “off-line”, if it can be performed
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without any on-line experimental data (or say pre-computed); otherwise, it is called “on-line”

computations. One only concerns the computational complexity of the on-line computations,

since the “real-time” property hinges on it.

Let ρi be the solution of the “pathwise-robust” DMZ equation with yt = yτi−1 on the interval

τi−1 ≤ t ≤ τi, i = 1, 2, · · · , k,





∂ρi
∂t

(x, t)+
∂

∂t

(
hTS−1

)T
yτi−1ρi(x, t)

= exp
(
−hTS−1yτi−1

) [
L− 1

2
hTS−1h

]
·
[
exp

(
hTS−1yτi−1

)
ρi(x, t)

]
, x ∈ Rn

ρ1(x, 0) =σ0(x),

and

ρi(x, τi−1) =ρi−1(x, τi−1), for i = 2, 3, · · · , k.
(2.11)

That is, we freeze the observation data on the time interval τi−1 ≤ t < τi to be yτi−1 . Define

the norm of Pk to be |Pk| = sup1≤i≤k(τi − τi−1). Intuitively, as |Pk| → 0, we have

k∑

i=1

χ[τi−1,τi](t)ρi(x, t)→ ρ(x, t)

in some sense, for all 0 ≤ t ≤ T , where ρ(x, t) is the exact solution of Equation 2.5. That is to

say, intuitively, the denser the sampling time sequence is, the more accurate the approximate

solution should be. This is the only approximation in our algorithm. Its convergence will be

shown rigorously, and its convergence rate will be estimated, in Chapter 4.
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2.2 Design of the algorithm

Remember that our aim is to develop a practical algorithm to solve NLF problems. Even

though the convergence in our algorithm is shown rigorously, it is impractical to solve Equa-

tion 2.11 in the “real-time” manner, since the “on-line” data {yτi}, i = 1, · · · , k, are contained

in the coefficients of Equation 2.11. Therefore, we have to numerically solve the time-consuming

PDE on-line, every time after the new observation data coming in. Yet, the proposition below

helps to move the heavy computations off-line. This is the key ingredient of the algorithm in

(59), and in ours.

Proposition 2.1. For each τi−1 ≤ t < τi, i = 1, 2, · · · , k, ρi(x, t) satisfies Equation 2.11 if and

only if

ui(x, t) = exp
[
hT (x, t)S−1(t)yτi−1

]
ρi(x, t), (2.12)

satisfies the forward Kolmogorov equation (FKE)

∂ui
∂t

(x, t) =

(
L− 1

2
hTS−1h

)
ui(x, t), (2.13)

where L is defined in Equation 2.3.

It is clear that Equation 2.13 is independent of the observation path {yτi}ki=0. So Equa-

tion 2.13 could be numerically solved beforehand. Let us denote the operator
(
L− 1

2h
TS−1h

)

as U(t) for short. As to the “time-varying” case, our algorithm still maintain the “real-time”

property. {U(t)}t∈[0,T ] forms a family of strong elliptic operators. Furthermore, the operator

U(t) : D(U(t)) ⊂ L2(Rn) → L2(Rn) is the infinitesimal generator of the two-parameter semi-
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groups U(t, τ), for t ≥ τ . In particular, with the known observation time sequence {τi}ki=1, we

obtain a sequence of two-parameter semigroup {U(t, τi−1)}ki=1, for τi−1 ≤ t < τi. Let us take

the initial conditions of FKE Equation 2.13 at t = τi to be one member of a set of complete

orthonormal base in L2(Rn), say {φl(x)}∞l=1. We pre-compute the solutions of Equation 2.13

at time t = τi+1, denoted as {U(τi+1, τi)φl}∞l=1. These data should be stored in preparation of

the on-line computations. The only price to pay is that the “time-varying” case requires more

storage capacity, since {U(τi+1, τi)φl}∞l=1 differs from each τi, i = 1, · · · , k, and all of them need

to be stored. In general, the longer the simulation time is, the more storage it requires in the

“time-varying” case. While the storage of the data is independent of the simulation time in the

“time-invariant” case. Nevertheless, it won’t affect the off-line virture of our algorithm.

The on-line computation in our algorithm consists of two parts at each time step τi−1,

i = 1, · · · , k, as described below.

• Project the initial condition ui(x, τi−1) ∈ L2(Rn) at t = τi−1 onto the base {φl(x)}∞l=1,

i.e., ui(x, τi−1) =
∑∞

l=1 ûi,lφl(x). Hence, the solution to Equation 2.13 at t = τi can be

expressed as

ui(x, τi) = U(τi, τi−1)ui(x, τi−1) =
∞∑

l=1

ûi,l [U(τi, τi−1)φl(x)] , (2.14)

where {U(τi, τi−1)φl(x)}∞l=1 have already been computed off-line.

• Update the initial condition of Equation 2.13 at τi with the new observation yτi . Let

us specify the observation updates (the initial condition of Equation 2.13) for each time
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step. For 0 ≤ t ≤ τ1, the initial condition is u1(x, 0) = σ0(x). At time t = τ1, when the

observation yτ1 is available,

u2(x, τ1) = exp [hT (x, τ1)S−1(τ1)yτ1 ]ρ2(x, τ1) = exp [hT (x, τ1)S−1(τ1)yτ1 ]u1(x, τ1),

in view of the fact that y0 = 0, by Equation 2.12 and Equation 2.11. Here,

u1(x, τ1) =
∑∞

l=1 û1,l [U(τ1, 0)φl(x)], where {û1,l}∞l=1 is computed in the previous step,

and {U(τ1, 0)φl(x)}∞l=1 are prepared by off-line computations. Hence, we obtain the ini-

tial condition u2(x, τ1) of Equation 2.13 for the next time interval τ1 ≤ t ≤ τ2. Recursively,

the initial condition of Equation 2.13 for τi−1 ≤ t ≤ τi is

ui(x, τi−1) = exp [hT (x, τi−1)S−1(τi−1)(yτi−1 − yτi−2)] · ui−1(x, τi−1), (2.15)

for i = 2, 3, · · · , k, where ui−1(x, τi−1) =
∑∞

l=1 ûi−2,l [U(τi−1, τi−2)φl(x)].

The approximation of ρ(x, t), denoted as ρ̂(x, t), is obtained

ρ̂(x, t) =
k∑

i=1

χ[τi−1,τi](t)ρi(x, t), (2.16)

where ρi(x, t) is obtained from ui(x, t) by Equation 2.12. Then σ(x, t) can be recovered from

Equation 2.4.



CHAPTER 3

STUDY OF THE “PATHWISE-ROBUST” DMZ EQUATION

3.1 Notations

Let QT = Rn × [0, T ]. Let H1(Rn) be the Sobolev space, equipped with the norm

||u(x)||21 =

∫

Rn
(u2 + |∇xu|2)dx.

And let H1;1(QT ) be the functional space of both t and x, with the norm

||v(x, t)||21;1 =

∫

QT
(v2 + |∇xv|2 + |∂tv|2)dxdt.

Let H1;1
0 (QT ) denote the subspace of H1;1(QT ) consisting of functions v(x, t) which have com-

pact support in Rn for any t.

Definition 3.1. The function u(x, t) in H1;1
0 (QT ) is called a weak solution of the initial value

problem





n∑

i,j=1

∂

∂xi

(
Aij(x, t)

∂u

∂xj

)
+

n∑

i=1

Bi(x, t)
∂u

∂xi
+ C(x, t)u =

∂u

∂t
,

u(x, 0) = u0(x)

17
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if for any function Φ(x, t) ∈ H1;1
0 (QT ) the following relation holds:

∫ ∫

QT




n∑

i,j=1

Aij
∂u

∂xi

∂Φ

∂xj
−
(

n∑

i=1

Bi
∂u

∂xi
+ Cu+

∂u

∂t

)
Φ


 dxdt = 0

and u(x, 0) = u0(x).

We assume that the following conditions hold throughout the dissertation:

Condition 1. The operator L defined in Equation 2.3 is a strong elliptic operator and it is

bounded from above on QT . That is, there exists a constant λ > 0 such that

λ|ξ|2 ≤
n∑

i,j=1

(GQGT )ijξiξj ,

for any (x, t) ∈ QT , for any ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn. And

||GQGT ||∞ = sup
(x,t)∈QT

|GQGT |∞ <∞,

where | · |∞ is the sup-norm of the matrix.

Condition 2. The initial density function σ0(x) ∈ H1(Rn) decays fast enough. To be more

specific, we require that
∫

Rn
e
√

1+|x|2σ0(x)dx <∞.
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3.2 Well-posedness of the “pathwise-robust” DMZ equation

Before we show the existence of the weak solution, we shall give a priori estimations of

up to the first order derivative of the solution to the “pathwise-robust” DMZ equation on

QR := BR × [0, T ], where BR = {x ∈ Rn : |x| ≤ R} is a ball of radius R.

Theorem 3.1. Let ρR be the solution to the “pathwise-robust” DMZ equation on QR, i.e.





∂ρR
∂t

(x, t) =
1

2
D2
wρR(x, t) + F (x, t)∇ρR(x, t) + J(x, t)ρR(x, t), x ∈ BR

ρR(x, 0) =σ0,BR(x)

ρR(x, t) =0 for (x, t) ∈ ∂BR × [0, T ],

(3.1)

where D2
w, F (x, t) and J(x, t) are defined in Equation 2.7, Equation 2.8 and Equation 2.9,

respectively, and σ0,Ω is defined as

σ0,Ω(x) =





σ0(x), x ∈ Ωε

smooth, x ∈ Ω \ Ωε

0, x ∈ Rn \ Ω,

(3.2)

in which Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε} and here Ω = BR. Assume that

∥∥∥∥
∂

∂t
(GQGT )

∥∥∥∥
∞
<∞, (3.3)

for all t ∈ [0, T ]. Suppose there exists a positive function g(x) on Rn such that for all t ∈ [0, T ],

g and g̃ , g + log |DwJ | satisfy



20

1.
∣∣Dwg + 1

2∇(GQGT )− F
∣∣2 + 2λ1J ≤ C, (3)

2. D2
wg + 2Dwg · ∇g + 2[∇(GQGT )− F ] · ∇g + 1

2∇2(GQGT )− divF + J ≤ C, (4)

3. D2
wg̃ + 2Dwg̃ · ∇g̃ + 2[∇(GQGT )− F ] · ∇g̃ + 1

2∇2(GQGT )− divF + J ≤ C, (5)

4.
∫
Rn e

2g̃σ2
0(x) ≤ C and

∫
Rn e

2gDwσ0 · ∇σ0 ≤ C, (6)

where C is a generic constant, which may differ from line to line, and ∇(∗) =
[∑n

i=1
∂(∗)ij
∂xi

]n
j=1

,

∇2(∗) =
∑n

i,j=1
∂2(∗)ij
∂xi∂xj

. Then, for 0 ≤ t ≤ T ,

∫

BR

e2gρ2
R(x, t)dx ≤ eCt

∫

BR

e2gσ2
0(x)dx, (3.4)

∫

BR

e2gDwρR(x, t) · ∇ρR(x, t)dx ≤ eCt
∫

BR

e2gDwσ0(x) · ∇σ0(x)dx+ CeCt
∫

BR

e2g̃σ2
0(x)dx,

(3.5)

where

Dw∗ =




n∑

j=1

(
GQGT

)
ij

(x, t)
∂(∗)
∂xj



n

i=1

, (3.6)

F (x, t) and J(x, t) are defined in Equation 2.8 and Equation 2.9, respectively.

Remark 3.1. The conditions in Theorem 3.1 could be easily checked, if the drift terms h(x)

and f(x) are at most polynomial growth in r = |x| and Q = Ir×r. However, in general, the

choice of such g in Theorem 3.1 is not clear.
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Proof. Let g be some positive function on Rn.

d

dt

∫

BR

e2gρ2
R =

∫

BR

e2gρRD
2
wρR + 2

∫

BR

e2gρR(F · ρR) + 2

∫

BR

e2gJρ2
R , I + II + III. (3.7)

Applying integration by parts to I and II in Equation 3.7 yields

I =− 2

∫

BR

ρRe
2gDwg · ∇ρR −

∫

BR

e2gDwρR · ∇ρR −
∫

BR

e2gρR∇(GQGT ) · ∇ρR

≤− 2

∫

BR

ρRe
2gDwg · ∇ρR −

∫

BR

e2gρR∇(GQGT ) · ∇ρR , I1 + I2.

Integrating by parts further, we have

I1 =4

∫

BR

e2gρ2
RDwg · ∇g + 2

∫

BR

e2gρRDwg · ∇ρR

+ 2

∫

BR

e2gρ2
R∇(GQGT ) · ∇g + 2

∫

BR

e2gρ2
RD

2
wg. (3.8)

Noting that the second term of the right-hand side of Equation 3.8 is −I1, we have

I1 =2

∫

BR

e2gρ2
RDwg · ∇g +

∫

BR

e2gρ2
R[∇(GQGT ) · ∇g +D2

wg]. (3.9)

The similar argument applied to I2 gives us

I2 =

∫

BR

e2gρ2
R∇(GQGT ) · ∇g +

1

2

∫

BR

e2gρ2
R∇2(GQGT ). (3.10)
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Thus,

I ≤
∫

BR

e2gρ2
R

[
D2
wg + 2Dwg · ∇g + 2∇(GQGT ) · ∇g +

1

2
∇2(GQGT )

]
. (3.11)

The same trick of I1 applies to II in Equation 3.7, we obtain

II = −
∫

BR

e2gρ2
R[2F · ∇g + divF ]. (3.12)

Substitute Equation 3.11 and Equation 3.12 back to Equation 3.7, one gets

d

dt

∫

BR

e2gρ2
R ≤

∫

BR

e2gρ2
R

{
D2
wg + 2Dwg · ∇g + 2[∇(GQGT )− F ] · ∇g

+
1

2
∇2(GQGT )− divF + J

}

≤C
∫

BR

e2gρ2
R,

by Condition (4). Equation 3.4 follows directly from Gronwall’s inequality. To show Equa-

tion 3.5, we consider

d

dt

∫

BR

e2gDwρR · ∇ρR

=

∫

BR

e2g
n∑

i,j=1

∂

∂t
(GQGT )ij

∂ρR
∂xi

∂ρR
∂xj

+ 2

∫

BR

e2g
n∑

i,j=1

(GQGT )ij
∂

∂xi

(
∂ρR
∂t

)
∂ρR
∂xj

,IV + V. (3.13)
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Due to Equation 3.3, IV in Equation 3.13 turns out to be

IV ≤1

2

∥∥∥∥
∂

∂t
(GQGT )

∥∥∥∥
∞

∫

BR

e2g
n∑

i,j=1

[(
∂ρR
∂xi

)2

+

(
∂ρR
∂xj

)2
]

= n

∥∥∥∥
∂

∂t
(GQGT )

∥∥∥∥
∞

∫

BR

e2g|∇ρR|2

≤ n

λ1

∥∥∥∥
∂

∂t
(GQGT )

∥∥∥∥
∞

∫

BR

e2gDwρR · ∇ρR, (3.14)

since DwρR · ∇ρR ≥ λ1|∇ρR|2. Next, V in Equation 3.13 is

V =− 2

∫

BR

e2g[(2Dwg +∇(GQGT )) · ∇ρR +D2
wρR] ·

(
1

2
D2
wρR + F · ∇ρR + JρR

)

=−
∫

BR

e2g

{
D2
wρR +

[
Dwg +

1

2
∇(GQGT ) + F

]
· ∇ρR

}2

+

∫

BR

e2g

[
Dwg +

1

2
∇(GQGT )− F

]2

|∇ρR|2

− 2

∫

BR

e2g[D2
wρR + (2Dwg +∇(GQGT )) · ∇ρR]JρR

≤
∫

BR

e2g

[
Dwg +

1

2
∇(GQGT )− F

]2

|∇ρR|2

− 2

∫

BR

e2g[D2
wρR + (2Dwg +∇(GQGT )) · ∇ρR]JρR. (3.15)

Notice that

∫

BR

e2gD2
wρRJρR =−

∫

BR

e2g [2(Dwg · ∇ρR)JρR + JDwρR · ∇ρR

+(DwρR · ∇J)ρR +∇(GQGT ) · ∇ρRJρR
]
. (3.16)
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Taking Equation 3.16 into account, V becomes

V ≤
∫

BR

e2g ·
{

1

λ1

{[
Dwg +

1

2
∇(GQGT )− F

]2

+ 1

}
+ 2J

}
DwρR · ∇ρR +

∫

BR

e2g|DwJ |2ρ2
R.

(3.17)

Combining Equation 3.14 and Equation 3.17, we have

d

dt

∫

BR

e2gDwρR · ∇ρR

≤
∫

BR

e2g

{
1

λ1

{
n

∥∥∥∥
∂

∂t
(GQGT )

∥∥∥∥
∞

+

[
Dwg +

1

2
∇(GQGT )− F

]2

+ 1

}
+ 2J

}
DwρR · ∇ρR

+

∫

BR

e2g|DwJ |2ρ2
R. (3.18)

By Conditions (3) - (6), Equation 3.5 follows immediately.

Theorem 3.2 (Existence). Under the conditions 1 - 2, Equation 3.3 and Condition (3) - (6) in

Theorem 3.1, the “pathwise-robust” DMZ equation on QT with the initial value σ0 ∈ H1(Rn)

admits a non-negative weak solution ρ ∈ H1;1(QT ).

Proof. Let Rk be a sequence of positive numbers such that limk→∞Rk = ∞. Let ρk(x, t) be

the solution of the “pathwise-robust” DMZ equation on QRk , i.e. Equation 3.1 with R = Rk.

In view of Theorem 3.1, the sequence {ρk} is a bounded set in H1;1
0 (QRk). Thus, there exists

a subsequence {ρk′} which is weakly convergent to ρ. Moreover, ρ has the weak derivative
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∂ρ
∂xi
∈ L2(QRk), and

∂ρk′
∂xi

weakly tends to it. Now we claim that the weak derivative ∂ρ
∂t exists.

To see this, let Φ(x, t) ∈ H1;1
0 (QRk), then

∫∫

QRk

1

2

n∑

i,j=1

(GQGT )ij
∂Φ

∂xj

∂ρ

∂xi
+




n∑

i=1




n∑

j=1

∂(GQGT )ij
∂xj

− Fi


 ∂ρ

∂xi
− Jρ


Φ

= lim
k′→∞

∫∫

QRk

1

2

n∑

i,j=1

(GQGT )ij
∂Φ

∂xj

∂ρk′

∂xi
+




n∑

i=1




n∑

j=1

∂(GQGT )ij
∂xj

− Fi


 ∂ρk′

∂xi
− Jρk′


Φ

=− lim
k′→∞

∫∫

QRk

∂ρk′

∂t
Φ = lim

k′→∞

∫∫

QRk
ρk′

∂Φ

∂t
=

∫∫

QRk
ρ
∂Φ

∂t
.

Clearly, ρ(x, 0) = limk′→∞ ρk′(x, 0) = σ0(x).

Theorem 3.3 (Uniqueness). Assume further that for some c > 0,

sup
0≤t≤T

∫

Rn
ecrρ2(x, t)dx <∞, (3.19)

and

∫

QT
|∇ρ(x, t)|2dxdt <∞, (3.20)

where r = |x|. Suppose that there exists a finite number α > 0 such that

2J(x, t)− 1

4λ1
[cDwr − (F (x, t) + F̃ (x, t))]2 ≤ α, (3.21)
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for all (x, t) ∈ QT , where λ1 is the smallest eigenvalue of the matrix (GQGT ),

F̃ (x, t) =


1

2

n∑

j=1

(GQGT )ij +
n∑

j=1

(GQGT )ij
∂K

∂xj
− fi



n

i=1

, (3.22)

F (x, t), J(x, t) and K are defined as in Equation 2.8, Equation 2.9 and Equation 2.10, respec-

tively. Then the non-negative weak solution ρ(x, t) of the “pathwise-robust” DMZ equation on

QT is unique.

Proof. To show the uniqueness of the solution, we only need to show that ρ(x, t) = 0 on QT if

ρ(x, 0) = 0. Let αT < 1. For any test function ψ(x, t) = ecrΦ(x, t), where r = |x|, c is some

constant and Φ(x, t) ∈ H1;1
0 (QT ), ρ(x, t) satisfies

∫

Rn
ρ(x, T )Φ(x, T )ecrdx−

∫ T

0

∫

Rn
ρ(x, t)

∂Φ

∂t
(x, t)ecrdxdt

=

∫

QT
−1

2
ecr∇Φ(x, t) ·Dwρ(x, t)− c

2
ecrΦ(x, t)∇r ·Dwρ(x, t) + F̃ (x, t) · ∇ρ(x, t)Φ(x, t)ecr

+ J(x, t)ρ(x, t)Φ(x, t)ecrdxdt. (3.23)
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where F̃ is defined in Equation 3.22. Approximating ρ(x, t) by Φ(x, t) in the H1;1(QT )-norm,

we get

∫

Rn
ρ2(x, T )ecrdx

=

∫

QT
ecr
[
−Dwρ(x, t) · ∇ρ(x, t)− cρ(x, t)∇r ·Dwρ(x, t) + (F̃ (x, t) + F (x, t)) · ∇ρ(x, t)ρ(x, t)

+2J(x, t)ρ2(x, t)
]
dxdt

≤
∫

QT
ecr[−λ1|∇ρ(x, t)|2 − cρ(x, t)Dwr · ∇ρ(x, t) + (F (x, t) + F̃ (x, t)) · ∇ρ(x, t)ρ(x, t)

+ 2J(x, t)ρ2(x, t)]dxdt.

=− λ1

∫

QT
ecr
{

1

2λ1
[cDwr − (F (x, t) + F̃ (x, t))]ρ(x, t) + |∇ρ(x, t)|

}2

dxdt

+

∫

QT
ecr
{

2J(x, t)− 1

4λ1
[cDwr − (F (x, t) + F̃ (x, t))]2

}
ρ2(x, t)dxdt

≤
∫

QT
ecr
{

2J(x, t)− 1

4λ1
[cDwr − (F (x, t) + F̃ (x, t))]2

}
ρ2(x, t)dxdt, (3.24)

due to the positive definiteness of (GQGT ). By Equation 3.21, we have

∫

Rn
ecrρ2(x, T )dx ≤ α

∫

QT
ecrρ2(x, t)dxdt. (3.25)

According to the mean value theorem, there exists T1 ∈ (0, T ) such that

∫

QT
ecrρ2(x, t)dxdt =

∫ T

0

∫

Rn
ecrρ2(x, t)dxdt = T

∫

Rn
ecrρ2(x, T1)dx. (3.26)
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Apply Equation 3.25 and Equation 3.26 recursively, there exists Tm ∈ (0, T ) such that

∫

Rn
ecrρ2(x, T )dx ≤ (αT )m

∫

Rn
ecrρ2(x, Tm)dx.

Since αT < 1, we conclude that ρ(x, t) ≡ 0 for a.e (x, t) ∈ QT .

3.3 Properties of the solution

Let us first state a very useful lemma, which will be used repeatedly in this section and

Chapter 4.

Lemma 3.1. Assume that ρΩ satisfies the “pathwise-robust” DMZ equation on QΩ := Ω×[0, T ],

where Ω ⊂ Rn is some bounded domain. Then, for any test function ψ(x) ∈ C∞(Ω), we have

d

dt

∫

Ω
ψρΩ =

1

2

∫

Ω
D2
wψρΩ +

∫

Ω
(f −DwK) · ∇ψρΩ +

∫

Ω
ψρΩN +

1

2

∫

∂Ω
ψ (DwρΩ · ν)

− 1

2

∫

∂Ω
ρΩ (Dwψ · ν) +

1

2

∫

∂Ω
ψρΩ

n∑

i,j=1

∂

∂xi

(
GQGT

)
ij
νj +

∫

∂Ω
ψρΩ (DwK · ν)

−
∫

∂Ω
ψρΩ(f · ν), (3.27)

where ν = (ν1, ν2, · · · , νn) is the exterior normal vector of Ω,

N(x, t) ≡− ∂

∂t

(
hTS−1

)
yt −

1

2
D2
wK +

1

2
DwK · ∇K − f · ∇K −

1

2

(
hTS−1h

)
, (3.28)

and D2
w, K and Dw are defined in Equation 2.7, Equation 2.10 and Equation 3.6, respectively.
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Sketch of the proof. Multiply ψ(x) on both sides of Equation 2.6 and integrate over the domain

Ω, which yields

d

dt

∫

Ω
ψρΩ =

∫

Ω
ψ

[
1

2
D2
wρΩ + F (x, t) · ∇ρΩ + J(x, t)ρΩ

]
, (3.29)

where F (x, t) and J(x, t) are defined in Equation 2.8 and Equation 2.9, respectively. After

applying integration by parts to the first two terms on the right-hand side of Equation 3.29,

Equation 3.27 is obtained by written in short notations.

3.3.1 Density function in a large ball

We show an interesting proposition, which reflects how the density function in the large ball

changes with respect to time. It will also be an important ingredient of the error estimate in

Theorem 4.1.

Proposition 3.1. For any T > 0, let ρR(x, t) be a solution of the “pathwise-robust” DMZ

equation on QR, i.e. Equation 3.1. Assume that

N(x, t) +
3

2
n
∣∣∣∣GQGT

∣∣∣∣
∞ + |f −DwK| ≤ C, (3.30)

Then
∫

BR

e
√

1+|x|2ρR(x, t) ≤ eCt
∫

Rn
e
√

1+|x|2σ0(x). (3.31)
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Proof. Letting the test function ψ in Lemma 3.1 be ψ = eφ1 , where φ1 ∈ C∞(BR), gives

d

dt

∫

BR

eφ1ρR =

∫

BR

eφ1ρR

[
1

2

(
D2
wφ1 +Dwφ1 · ∇φ1

)
+ (f −DwK) · ∇φ1 +N

]

+
1

2

∫

∂BR

eφ1(DwρR · ν). (3.32)

All the boundary integrals in Equation 3.27 vanish, except the first term, since ρR|∂Ω = 0.

Moreover, recall that ρR ≥ 0 in BR and vanishes on ∂BR which implies that ∂ρR
∂ν |∂BR ≤ 0.

Hence, on ∂BR,

(DwρR · ν) =

n∑

i=1




n∑

j=1

(GQGT )ij
∂ρR
∂r

∂r

∂xj


 νi =

∂ρR
∂r




n∑

i,j=1

(GQGT )ij
xj
r

xi
r


 ≤ 0,

by the positive definite assumption of (GQGT ). Thus, Equation 3.32 can be reduced further to

d

dt

∫

BR

eφ1ρR ≤
∫

BR

eφ1ρR

[
1

2

(
D2
wφ1 +Dwφ1 · ∇φ1

)
+ (f −DwK) · ∇φ1 +N

]
. (3.33)

Choose φ1(x) =
√

1 + |x|2 and estimate the terms containing φ1 on the right-hand side of

Equation 3.33 one by one:

D2
wφ1 =

n∑

i=1

(
GQGT

)
ii

1√
1 + |x|2

−
n∑

i,j=1

(
GQGT

)
ij

xixj

(1 + |x|2)
3
2

≤
∣∣∣∣GQGT

∣∣∣∣
∞

[
n√

1 + |x|2
+

n|x|2

(1 + |x|2)
3
2

]
≤ 2n

∣∣∣∣GQGT
∣∣∣∣
∞ , (3.34)

Dwφ1 · ∇φ1 =

n∑

i,j=1

(
GQGT

)
ij

xixj
1 + |x|2 ≤

∣∣∣∣GQGT
∣∣∣∣
∞

∑n
i,j=1 xixj

1 + |x|2 ≤ n
∣∣∣∣GQGT

∣∣∣∣
∞ , (3.35)
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and

|(f −DwK) · ∇φ1| ≤ |f −DwK| ·
|x|√

1 + |x|2
≤ |f −DwK|, (3.36)

where | · | is the Euclidean norm. Substituting the estimates in Equation 3.34 - Equation 3.36

back into Equation 3.33, we get

d

dt

∫

BR

eφ1ρR ≤
∫

BR

eφ1ρR

[
3

2
n
∣∣∣∣GQGT

∣∣∣∣
∞ + |f −DwK|+N

]
≤ C

∫

BR

eφ1ρR,

by Equation 3.30. Hence,

∫

BR

eφ1ρR(x, t) ≤ eCt
∫

BR

eφ1ρR(x, 0) ≤ eCt
∫

Rn
eφ1ρ(x, 0) = eCt

∫

Rn
eφ1σ0(x),

for 0 ≤ t ≤ T .

3.3.2 Concentration of the density function

The following theorem asserts that ρ, the solution to the “pathwise-robust” DMZ equation

in QT , captures almost all the density in a large ball. And we give a precise estimate of the

density outside the large ball.

Theorem 3.4. Let ρ(x, t) be a solution of the “pathwise-robust” DMZ equation, i.e. Equa-

tion 2.6, on QT . Assume that Equation 3.30 and

e−
1
2

√
1+|x|2 [16n

∣∣∣∣GQGT
∣∣∣∣
∞ + 4 |f −DwK|

]
≤ C (3.37)
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are satisfied for all (x, t) ∈ QT . Then

∫

|x|≥R
ρ(x, T ) ≤ Ce− 1

2

√
1+R2

∫

Rn
e
√

1+|x|2σ0(x), (3.38)

where C is a generic constant, which depends on T .

Proof. Let v = ρ − ρR. By the maximum principle, we have that v ≥ 0 for all (x, t) ∈ QR.

Choose the test function ψ in Lemma 3.1 as

Φ(x) = γ(x)%(x),

where γ(x) = e
1
2
φ1(x), φ1(x) =

√
1 + |x|2 is defined in the proof of Proposition 3.1, %(x) =

e−φ2(x) − e−R, φ2 is a radially symmetric function such that φ2(x)|∂BR = R, ∇φ2(x)|∂BR = 0

and φ2(x) is increasing in |x|. It follows directly that Φ|∂BR = ∇xΦ|∂BR = 0, by the fact that

%|∂BR = ∇%|∂BR = 0. Applying Lemma 3.1, with v taking the place of ρΩ and with the test

function Φ, we have

d

dt

∫

BR

Φv =
1

2

∫

BR

D2
wΦv +

∫

BR

(f −DwK) · Φv +

∫

BR

ΦNv

=
1

2

∫

BR

(D2
wγ%+ 2Dwγ · ∇%+ γD2

w%)v +

∫

BR

(f −DwK) · (∇γ%+ γ∇%)v

+

∫

BR

γ%Nv. (3.39)
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Substituting γ(x) = e
1
2
φ1(x) and %(x) = e−φ2(x) − e−R into Equation 3.39 yields

d

dt

∫

BR

Φv =
1

2

∫

BR

[
1

2
e

1
2
φ1

(
D2
wφ1 +

1

2
Dwφ1 · ∇φ1

)
%− e 1

2
φ1Dwφ1 · e−φ2∇φ2

+γe−φ2
(
Dwφ2 · ∇φ2 −D2

wφ2

)]
v

+

∫

BR

(f −DwK) ·
(

1

2
e

1
2
φ1∇φ1%− γe−φ2∇φ2

)
v +

∫

BR

γ%Nv

=

∫

BR

Φv

[
1

4

(
D2
wφ1 +

1

2
Dwφ1 · ∇φ1

)
− 1

2
Dwφ1 · ∇φ2

+
1

2

(
Dwφ2 · ∇φ2 −D2

wφ2

)
+ (f −DwK) · (1

2
∇φ1 −∇φ2) +N

]

+ e−R
∫

BR

γv

[
−1

2
Dwφ1 · ∇φ2 +

1

2

(
Dwφ2 · ∇φ2 −D2

wφ2

)
− (f −DwK) · ∇φ2

]

,
∫

BR

Φv[VI] + e−R
∫

BR

γv[VII],

Let us choose φ2(x) in %(x) to be φ2(x) = Rϑ( |x|
2

R2 ), where ϑ(x) = 1 − (1 − x)2. It is easy to

check that φ2(x) satisfies all the conditions we mentioned before. Direct computations yield,

for any x ∈ BR, R >> 1,

∣∣D2
wφ2

∣∣ =

∣∣∣∣∣∣

n∑

i,j=1

(
GQGT

)
ij

(
−8xixj

R3

)
+

n∑

i=1

(
GQGT

)
ii

4

R

(
1− |x|

2

R2

)∣∣∣∣∣∣

≤
∣∣∣∣GQGT

∣∣∣∣
∞

(
8n|x|2
R3

+
4n

R

)
≤ 12n

∣∣∣∣GQGT
∣∣∣∣
∞ , (3.40)

|Dwφ2 · ∇φ2| =

∣∣∣∣∣∣

(
1− |x|

2

R2

)2 n∑

i,j=1

(
GQGT

)
ij

4xi
R

4xj
R

∣∣∣∣∣∣
≤ 16n

∣∣∣∣GQGT
∣∣∣∣
∞ , (3.41)
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and

|(f −DwK) · ∇φ2| =
∣∣∣∣(f −DwK)

4x

R

(
1− |x|

2

R2

)∣∣∣∣ ≤ 4 |f −DwK| . (3.42)

It follows that

sup
BR

|VI| ≤ 17n
∣∣∣∣GQGT

∣∣∣∣
∞ + 5|f −DwK|+N,

sup
BR

|VII| ≤ 16n
∣∣∣∣GQGT

∣∣∣∣
∞ + 4|f −DwK|.

by Equation 3.34 - Equation 3.36 and Equation 3.40 - Equation 3.42. Hence,

d

dt

∫

BR

Φv ≤C
∫

BR

Φv + e−RC̃

∫

BR

eφ1v ≤ C
∫

BR

Φv + e−RC̃

∫

BR

eφ1ρ

≤C
∫

BR

Φv + C̃e−R+Ct

∫

BR

eφ1σ0(x) ≤ C
∫

BR

Φv + C̃e−R+Ct

∫

Rn
eφ1σ0(x),

by Equation 3.30, Equation 3.37 and Equation 3.31. By Gronwall’s inequality, we have

∫

BR

Φv(x, T ) ≤ Ce−R
∫

Rn
e
√

1+|x|2σ0(x), (3.43)

where C is a generic constant, which depends on T . Recall that Φ(x) = γ(x)%(x) and %(x) =

e−R[−(|x|2/R2−1)2+1] − e−R, which implies that

∫

BR

Φv(x, T ) ≥ 1

2
e−

7
16
R

∫

BR
2

γv(x, T ). (3.44)
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Combining Equation 3.43 and Equation 3.44, we obtain

∫

BR
2

γv(x, T ) ≤ Ce− 9
16
R

∫

Rn
e
√

1+|x|2σ0(x).

This implies that

∫

BR
2

γρ(x, T ) ≤
∫

BR
2

γρR(x, T ) + Ce−
9
16
R

∫

Rn
e
√

1+|x|2σ0(x) ≤ C(1 + e−
9
16
R)

∫

Rn
e
√

1+|x|2σ0(x),

by Equation 3.31. Letting R→∞, yields

∫

Rn
γρ(x, T ) ≤ C

∫

Rn
e
√

1+|x|2σ0(x).

Consider the integration outside the large ball BR,

e
1
2

√
1+R2

∫

|x|≥R
ρ(x, T ) ≤

∫

|x|≥R
γρ(x, T ) ≤ C

∫

Rn
e
√

1+|x|2σ0(x).

Therefore, we reach the conclusion that

∫

|x|≥R
ρ(x, T ) ≤ Ce− 1

2

√
1+|R|2

∫

Rn
e
√

1+|x|2σ0(x).
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3.3.3 Lower bound estimate of density function

It is well-known that solving the “pathwise-robust” DMZ equation numerically is not easy

because it is easily vanishing. We are also interested in whether a lower bound for the density

function could be derived in the case where the drift term f and the observation term h are of

at most polynomial growth. The theorem below gives this lower bound:

Theorem 3.5. Let ρR be the solution of the “pathwise-robust” DMZ equation on QR, i.e.

Equation 3.1. Assume that

N(x, t) ≤ C, (3.45)

and

1. f(x, t) and h(x, t) have at most polynomial growth in |x|, for all t ∈ [0, T ];

2. For any 0 ≤ t ≤ T , there exists positive integer m and positive constants C ′ and C ′′

independent of R such that the following two conditions hold:

(a)
|x|m−2

2

[
nm(m− 2)

∣∣∣∣GQGT
∣∣∣∣
∞ +mTr

(
GQGT

)]
−m|x|m−2(f −DwK) · x

+N(x, t) ≥ −C ′; (3.46)

(b)

∣∣∣∣n
∣∣∣∣GQGT

∣∣∣∣
∞

(
1

2
m2|x|2m−2 −m

(
1

2
m− 1

)
|x|m−2

)
− 1

2
mTr

(
GQGT

)
|x|m−2

−m(f −DwK) · x|x|m−2
∣∣

≤1

2
nm(m+ 1)

∣∣∣∣GQGT
∣∣∣∣
∞ |x|

2m−2 + C ′′, (3.47)
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where Tr(∗) is the trace of ∗.

Then for any R0 < R,

∫

BR0

ζρR(x, T ) ≥e
(C−C′)T−Rm0

C ′

(
1

2
nm(m+ 1)

∣∣∣∣GQGT
∣∣∣∣
∞R

2m−2
0 + C ′′

)

·
(

1− eC′T
)∫

BR

σ0,R(x) + e−C
′T

∫

BR0

ζσ0,R(x),

where ζ(x) = e−ξ(x) − e−ξ(R0), ξ(x) = |x|m.

In particular, the solution ρ of the “pathwise-robust” DMZ equation, i.e. Equation 2.5, on

QT has the estimate
∫

Rn
e−|x|

m
ρ(x, T ) ≥ e−C′T

∫

Rn
e−|x|

m
σ0(x).

Proof. Apply Lemma 3.1 to ρR with the test function ψ to be ζ = e−ξ(x) − e−ξ(R0), where ξ(x)

is an increasing function in |x|. Then we have

d

dt

∫

BR0

ζρR =

∫

BR0

ρR

[
1

2
D2
wζ + (f −DwK) · ∇ζ + ζN

]
.
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All the boundary integrals vanish, since ζ|∂BR = ρR|∂BR = 0. Direct computations yield

d

dt

∫

BR0

ζρR

=

∫

BR0

ρRe
−ξ(R0)





1

2

ξ′2(r)

r2

n∑

i,j=1

(
GQGT

)
ij
xixj −

ξ′(r)

r
(f −DwK) · x

−1

2

n∑

i,j=1

(
GQGT

)
ij

[(
ξ′′(r)− ξ′(r)

r

)
xixj
r2

]
− 1

2
Tr
(
GQGT

) ξ′(r)
r





+

∫

BR0

ζρR

[
1

2
Dwξ · ∇ξ −

1

2
D2
wξ − (f −DwK) · ∇ξ +N

]

,VIII +

∫

BR0

ζρR[IX]. (3.48)

Let ξ(r) = rm, where r = |x|, m is some positive integer sufficiently large. Through elementary

computations, we get

IX =
1

2

ξ′2(r)

r2

n∑

i,j=1

(
GQGT

)
ij
xixj

− 1

2


m(m− 2)rm−4

n∑

i,j=1

(
GQGT

)
ij
xixj +mrm−2Tr

(
GQGT

)



−mrm−2(f −DwK) · x+N

≥− 1

2

[
nm(m− 2)

∣∣∣∣GQGT
∣∣∣∣
∞ +mTr

(
GQGT

)]
rm−2 −mrm−2(f −DwK) · x+N ≥ C ′,

(3.49)
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where C ′ is a positive constant independent of R0, by Equation 3.46. For large enough m, we

have

|VIII| ≤ e−Rm0
∫

BR

∣∣∣∣n
∣∣∣∣GQGT

∣∣∣∣
∞

[
1

2
m2r2m−2 −m

(
1

2
m− 1

)
rm−2

]
− 1

2
mTr

(
GQGT

)
rm−2

−m(f −DwK) · xrm−2
∣∣ ρR

≤ e−Rm0
(

1

2
nm(m+ 1)

∣∣∣∣GQGT
∣∣∣∣
∞R

2m−2
0 + C ′′

)∫

BR

ρR

≤
(

1

2
nm(m+ 1)

∣∣∣∣GQGT
∣∣∣∣
∞R

2m−2
0 + C ′′

)
eCT−R

m
0

∫

BR

σ0,R , η(R0). (3.50)

The last inequality follows from the fact that d
dt

∫
BR

ρ ≤
∫
BR

ρN ≤ C
∫
BR

ρ, where Lemma 3.1

with ψ = 1 is applied to Equation 2.6. Hence, combining Equation 3.48 - Equation 3.50, we get

d

dt

∫

BR0

ζρR ≥ −η(R0)− C ′
∫

BR0

ζρR.

This implies that

∫

BR0

ζρR(x, T ) ≥ e−C′T
∫

BR0

ζσ0,R(x) +
γ(R0)

C ′

(
e−C

′T − 1
)

≥e−C′T
∫

BR0

ζσ0,R(x)

+

(
1

2
nm(m+ 1)

∣∣∣∣GQGT
∣∣∣∣
∞R

2m−2
0 + C ′′

)
· e

(C−C′)T−Rm0

C ′

(
1− eC′T

)∫

BR

σ0,R(x). (3.51)



40

In particular, letting R0 →∞, we have

∫

Rn
e−|x|

m
ρ(x, T ) ≥ e−C′T

∫

Rn
e−|x|

m
σ0(x).



CHAPTER 4

CONVERGENCE ANALYSIS OF OUR ALGORITHM

In Chapter 2, we described our algorithm in detail, where yt in Equation 2.11 is approxi-

mated by yτi−1 on [τi−1, τi). This is the only approximation in our algorithm. In this chapter,

we shall show the convergence of our algorithm rigorously.

We first show that the solution ρ to the “pathwise-robust” DMZ equation, i.e. Equation 2.5,

is well approximated by ρR as R → ∞, for any t ∈ [0, T ], where ρR is the solution to the

“pathwise-robust” DMZ equation on QR, i.e. Equation 3.1. Next, we shall show that ρi,R → ρR

in some sense, as |Pk| → 0, where ρi,R is the solution to Equation 2.11 on QR, which we rewrite

below





∂ρi,R
∂t

(x, t)+
∂

∂t

(
hTS−1

)T
yτi−1ρi,R(x, t)

= exp
(
−hTS−1yτi−1

) [
L− 1

2
hTS−1h

]
·
[
exp

(
hTS−1yτi−1

)
ρi,R(x, t)

]
, x ∈ BR

ρi,R(x, t) =0, (x, t) ∈ ∂BR × [0, T ],

ρ1,R(x, 0) =σ0,R(x),

and

ρi,R(x, τi−1) =ρi−1,R(x, τi−1), for i = 2, 3, · · · , k.
(4.1)
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4.1 Reduction to the bounded domain case

Theorem 4.1. For any T > 0, let ρ(x, t) be a solution of the “pathwise-robust” DMZ equation

Equation 2.6 in Rn × [0, T ]. Let R � 1 and ρR be the solution to Equation 3.1. Assume that

Equation 3.30 and the bound

e−
√

1+|x|2 [14n
∣∣∣∣GQGT

∣∣∣∣
∞ + 4 |f −DwK|

]
≤ C̃, (4.2)

are satisfied for all (x, t) ∈ QR, where N , Dw and K are defined in Equation 3.28, Equation 3.6

and Equation 2.10, respectively, and C, C̃ are constants possibly depending on T . Let v = ρ−ρR,

then v ≥ 0 for all (x, t) ∈ QR and

∫

BR
2

v(x, T ) ≤ C̄e− 9
16
R

∫

Rn
e
√

1+|x|2σ0(x), (4.3)

where C̄ is some constant, which may depend on T .

Proof of Theorem 4.1. By the maximum principle (cf. Theorem 1, (18)), we have v = ρ−ρR ≥ 0

for (x, t) ∈ QR, since v|∂BR ≥ 0 for 0 ≤ t ≤ T . Let us choose ψ in Lemma 3.1 to be %(x)

%(x) = e−φ2(x) − e−R,
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where φ2 is a radial symmetric function such that φ2(x)|∂BR = R, ∇φ2|∂BR = 0 and φ2 is

increasing in |x|. Hence, %|∂BR = 0 and ∇%|∂BR = 0. Apply Lemma 3.1 to v, not ρΩ in

Equation 3.27, with the test function ψ = %, we have

d

dt

∫

BR

%v =

∫

BR

v

[
1

2
D2
w%+ (f −DwK) · ∇%+ %N

]

=

∫

BR

v

{
1

2
e−φ2

(
Dwφ2 · ∇φ2 −D2

wφ2

)
− e−φ2 (f −DwK) · ∇φ2 + %N

}

=

∫

BR

v%

[
−1

2
D2
wφ2 +

1

2
Dwφ2 · ∇φ2 − (f −DwK) · ∇φ2 +N

]

+ e−R
∫

BR

e
√

1+|x|2v

[
e−
√

1+|x|2
(
−1

2
D2
wφ2 +

1

2
Dwφ2 · ∇φ2 − (f −DwK) · ∇φ2

)]

,
∫

BR

v%X + e−R
∫

BR

e
√

1+|x|2vXI.

Estimating X and XI as in the proof of Theorem 6.3, we have

sup
BR

|X| ≤ 14n
∣∣∣∣GQGT

∣∣∣∣
∞ + 4 |f −DwK|+N ≤ C,

by Equation 3.30. Similarly,

sup
BR

|XI| ≤ sup
BR

[
e−
√

1+|x|2 (14n
∣∣∣∣GQGT

∣∣∣∣
∞ + 4 |f −DwK|

)]
≤ C̃,

by Equation 4.2. In the view of Proposition 3.1, one gets

d

dt

∫

BR

%v ≤ C
∫

BR

%v + e−RC̃

∫

BR

e
√

1+|x|2ρ ≤ C
∫

BR

%v + e−R+ĈT C̃

∫

Rn
e
√

1+|x|2σ0(x). (4.4)
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Multiplying both sides of Equation 4.4 by e−Ct yields

d

dt

[
e−Ct

∫

BR

%v

]
≤ e−R+ĈT−CtC̃

∫

Rn
e
√

1+|x|2σ0(x).

Integrate from 0 to T and multiply eCT on both sides gives us

∫

BR

%v(x, T ) ≤ ||v(x, 0)||∞eCT
∫

BR

%dx+
eCT − 1

C
e−R+ĈT C̃

∫

Rn
e
√

1+|x|2σ0(x),

where v(x, 0) = σ0−σ0,R. Recalling that %(x) = e
−R

[
−(|x|2/R2−1)

2
+1

]
− e−R, |x| ≤ R, we arrive

the following estimates:

∫

BR

% ≤
∫

BR

(
1− e−R

)
≤ CRn

and

∫

BR

%v(x, T ) ≥
∫

BR
2

(
e
−R

[
−(|x|2/R2−1)

2
+1

]
− e−R

)
v(x, T ) ≥ 1

2
e−

7
16
R

∫

BR
2

v(x, T ).

It is easy to see that ||v(x, 0)||∞
∫
BR

% ≤ C(n)εRn is arbitrarily small, since ε is independent of

R. It follows that

∫

BR
2

v(x, T ) ≤ Ce− 9
16
R

∫

Rn
e
√

1+|x|2σ0(x), (1.28)

where C is a generic constant, depending on T .
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4.2 L1 convergence of ρi,R

For any 0 < τ ≤ T , let us denote the partition Pτk = {0 = τ0 < τ1 < · · · < τk = τ}. We shall

show ρk,R(x, τ)→ ρR(x, t) in L1 sense, as |Pτk | → 0, where ρk,R is the solution of Equation 4.1

(or equivalently, Equation 4.7 with Ω = BR) and ρR is the solution to Equation 3.1.

Theorem 4.2. Let Ω be a bounded domain in Rn. Assume that Equation 3.45 is satisfied and

there exists some α ∈ (0, 1), such that

|N(x, t)−N(x, t; t̄)| ≤ C̃|t− t̄|α, (4.5)

for all (x, t) ∈ Ω × [0, T ], t̄ ∈ [0, T ], where N(x, t) is in Equation 3.28, and N(x, t; t̄) denotes

N(x, t) with the observation yt = yt̄. Let ρΩ(x, t) be the solution of Equation 2.6 on Ω× [0, T ]

with 0−Dirichlet boundary condition:





∂ρΩ

∂t
(x, t) =

1

2
D2
wρΩ(x, t) + F (x, t) · ∇ρΩ(x, t) + J(x, t)ρΩ(x, t)

ρΩ(x, 0) =σ0,Ω(x)

ρΩ(x, t)|∂Ω =0,

(4.6)

where D2
w, F (x, t) and J(x, t) are defined in Equation 2.7, Equation 2.8 and Equation 2.9, and

σ0,Ω is defined in Equation 3.2. For any 0 ≤ τ ≤ T , let Pτk = {0 = τ0 < τ1 < τ2 < · · · <
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τk = τ} be a partition of [0, τ ], where τi = iτ
k . Let ρi,Ω(x, t) be the solution to Equation 4.1 on

Ω× [τi−1, τi]. Equivalently, ρi,Ω is the solution on Ω× [τi−1, τi] of the equation





∂ρi,Ω
∂t

(x, t) =
1

2
D2
wρi,Ω(x, t) + F (x, t; τi−1) · ∇ρi,Ω(x, t) + J(x, t; τi−1)ρi,Ω(x, t)

ρi,Ω(x, τi−1) =ρi−1,Ω(x, τi−1)

ρi,Ω(x, t)|∂Ω =0,

(4.7)

for i = 1, 2, · · · , k, with the convention that ρ1,Ω(x, 0) = σ0,Ω(x). Here, F (x, t; τi−1) and

J(x, t; τi−1) denote F (x, t) and J(x, t) with the observation yt = yτi−1, respectively. Then

ρΩ(x, τ) = lim
k→∞

ρk,Ω(x, τ),

in the L1 sense in space and the following estimate holds:

∫

Ω
|ρΩ − ρk,Ω|(x, τ) ≤ C̄

kα
, (4.8)

where C̄ is a generic constant, depending on T and
∫

Ω σ0,Ω. The right-hand side of Equation 4.8

tends to zero as k →∞.

For clarity, we state the technique will be used in the proof of Theorem 4.2 as a lemma

below.
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Lemma 4.1. (Lemma 4.1, (59)) Let Ω be a bounded domain in Rn and let v : Ω× [0, T ]→ R be

a C1 function. Assume that v(x, t) = 0 for (x, t) ∈ ∂Ω× [0, T ]. Let Ω+
t = {x ∈ Ω : v(x, t) ≥ 0}.

Then

d

dt

∫

Ω+
t

v(x, t) =

∫

Ω+
t

∂v

∂t
(x, t),

for almost all t ∈ [0, T ].

Proof of Theorem 4.2. For convenience, we omit the subscript Ω in ρΩ and ρi,Ω in this proof.

Let Ω+
t = {x ∈ Ω : ρ(x, t) − ρi(x, t) ≥ 0}. Applying Lemma 3.1, with (ρ − ρi) taking place of

ρΩ in Equation 3.27, and with the test function ψ ≡ 1, we have

d

dt

∫

Ω+
t

(ρ− ρi) ≤
∫

Ω+
t

(ρ− ρi)N(·, t) +

∫

Ω+
t

ρi[N(·, t)−N(·, t; τi−1)], (4.9)

by Lemma 4.1. All the boundary integrals vanish, except
∫
∂Ω+

t
Dw(ρ−ρi)·ν, since (ρ−ρi)|∂Ω+

t
=

0. Moreover,
∫
∂Ω+

t
Dw(ρ − ρi) · ν ≤ 0, due to the similar argument for

∫
∂BR

Dwρ · ν ≤ 0 in

Proposition 3.1. Combining Equation 3.45 and Equation 4.5, Equation 4.9 can be estimated as

d

dt

∫

Ω+
t

(ρ− ρi) ≤ C
∫

Ω+
t

(ρ− ρi) + C̃(t− τi−1)α
∫

Ω
ρ. (4.10)

To estimate
∫

Ω ρ, we apply Lemma 3.1 to ρ, with the test function ψ ≡ 1, to get

d

dt

∫

Ω
ρ ≤

∫

Ω
ρN ≤ C

∫

Ω
ρ,
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which implies that

∫

Ω
ρ ≤ C

∫

Ω
σ0,Ω, (4.11)

where C is a generic constant, depending on T , for all 0 ≤ t ≤ T . Thus,

d

dt

∫

Ω+
t

(ρ− ρi) ≤ C
∫

Ω+
t

(ρ− ρi) + C̃(t− τi−1)α
∫

Ω
σ0,Ω.

Multiplying e−C̃(t−τi−1) on both sides and integrating from τi−1 to t, we get

∫

Ω+
t

(ρ− ρi)(x, t) ≤ eC̃(t−τi−1)

∫

Ω+
τi−1

(ρ− ρi)(x, τi−1) + C
(t− τi−1)1+α

1 + α
eC̃(t−τi−1),

where C is a constant, which depends on T and
∫

Ω σ0,Ω. Similarly, we also find for Ω−t = {x ∈

Ω : ρ(x, t)− ρi(x, t) < 0}, that

∫

Ω−t

(ρi − ρ)(x, t) ≤ eC̃(t−τi−1)

∫

Ω−τi−1

(ρi − ρ)(x, τi−1) + C
(t− τi−1)1+α

1 + α
eC̃(t−τi−1).

Consequently, we have

∫

Ω
|ρ− ρi|(x, t) ≤eC̃(t−τi−1)

[∫

Ω
|ρ− ρi|(x, τi−1) + C

(t− τi−1)1+α

1 + α

]

≤eC̃(t−τi−1)

[∫

Ω
|ρ− ρi−1|(x, τi−1) + C

(t− τi−1)1+α

1 + α

]
, (4.12)
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since ρi(x, τi−1) = ρi−1(x, τi−1), for i = 1, 2, · · · , k. Applying Equation 4.12 recursively, we

obtain

∫

Ω
|ρ− ρk|(x, τk) ≤ eC̃(τk−τk−1)

[∫

Ω
|ρ− ρk−1|(x, τk−1) + C

(τk − τk−1)1+α

1 + α

]

≤eC̃T
∫

Ω
|ρ− ρ0|(x, 0) +

C

1 + α

[
(τk − τk−1)1+αeC̃(τk−τk−1) + (τk−1 − τk−2)1+αeC̃(τk−τk−2)

+ · · ·+ (τ1 − τ0)1+αeC̃(τk−τ0)
]

=
C

1 + α

T 1+α

k1+α

(
eC̃

T
k + eC̃

2T
k + · · ·+ eC̃

kT
k

)
≤ C

kα
,

where C is a constant, which depends on α, T and
∫

Ω σ0,Ω. It is then clear that
∫

Ω |ρ−ρk| → 0,

as k →∞.



CHAPTER 5

IMPLEMENTATION OF OUR ALGORITHM WITH 1-D STATE

In this chapter, we shall discuss the difficulties in the implementation of our algorithm. As

discussed in Chapter 2, when we pre-compute the FKE Equation 2.13, we shall choose the

orthogonal basis function {φn}∞n=0 to be the generalized Hermite functions Hα,β
n (x).

5.1 Generalized Hermite functions and orthogonal projection

Let L2(R) be the Lebesgue space, equipped with the norm || · || = (
∫
R | · |2dx)

1
2 and

the scalar product 〈·, ·〉. Let Hn(x) be the physical Hermite polynomials given by Hn(x) =

(−1)nex
2
∂nxe

−x2 , n ∈ Z and n ≥ 0. The three-term recurrence

H0(x) ≡ 1, H1(x) = 2x and Hn+1(x) = 2xHn(x)− 2nHn−1(x) (5.1)

will be used in our implementations. One of the well-known and useful facts of Hermite polyno-

mials is that they are mutually orthogonal with respect to the weight w(x) = e−x
2
. We define

our generalized Hermite functions as

Hα,β
n (x) =

1√
2nn!

Hn(α(x− β))e−
1
2
α2(x−β)2 , (5.2)

50
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for n ∈ Z and n ≥ 0, where α > 0, β ∈ R are constants, namely the scaling factor and the

translating factor, respectively. It is easy to derive the following properties for the generalized

Hermite functions:

1. The {Hα,β
n }∞n=0 forms an orthogonal basis of L2(R), i.e.

∫

R
Hα,β
n (x)Hα,β

m (x)dx =

√
π

α
δnm, (5.3)

where δnm is the Kronecker function.

2. Hα,β
n (x) is the nth eigenfunction of the following Strum-Liouville problem

e
1
2
α2(x−β)2∂x(e−α

2(x−β)2∂x(e
1
2
α2(x−β)2u(x))) + λnu(x) = 0, (5.4)

with the corresponding eigenvalue λn = 2α2n.

3. By convention, Hα,β
n ≡ 0, for n < 0. For n ∈ Z and n ≥ 0, the following three-term

recurrence holds:

2α(x− β)Hα,β
n (x) =

√
2nHα,β

n−1(x) +
√

2(n+ 1)Hα,β
n+1(x);

or 2α2(x− β)Hα,β
n (x) =

√
λnH

α,β
n−1(x) +

√
λn+1H

α,β
n+1(x). (5.5)
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4. The derivative of Hα,β
n (x) is a linear combination of Hα,β

n−1(x) and Hα,β
n+1(x):

∂xH
α,β
n (x) =

1

2

√
λnH

α,β
n−1(x)− 1

2

√
λn+1H

α,β
n+1(x) =

√
n

2
αHα,β

n−1(x)−
√
n+ 1

2
αHα,β

n+1(x).

(5.6)

5. Properties 1) and 4) yield the “orthogonality” of {∂xHα,β
n (x)}∞n=0:

∫

R
∂xH

α,β
n (x)∂xH

α,β
m (x)dx =





√
πα(n+

1

2
) =

√
π

4α
(λn + λn+1), if m = n;

− α

2

√
π(l + 1)(l + 2) = −

√
π

4α

√
λl+1λl+2,

l = min{n,m}, if |n−m| = 2;

0, otherwise.

(5.7)

The generalized Hermite functions form a complete orthogonal basis in L2(R). That is, any

function u ∈ L2(R) can be written in the form

u(x) =

∞∑

n=0

ûnH
α,β
n (x),

where {ûn}∞n=0 are the Fourier-Hermite coefficients, given by

ûn =
α√
π

∫

R
u(x)Hα,β

n (x)dx. (5.8)
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Let us denote the subspace spanned by the first N + 1 generalized Hermite functions as RN :

RN = span
{
Hα,β

0 (x), · · · , Hα,β
N (x)

}
. (5.9)

We follow the convection in the asymptotic analysis that a ∼ b means that there exists some

constants C1, C2 > 0 such that C1a ≤ b ≤ C2a; a . b means that there exists some constant

C3 > 0 such that a ≤ C3b.

It is shown in (57) that for α > 0, β = 0 the difference between an arbitrary function and

its orthogonal projection onto RN in some suitable function space could be precisely estimated

in terms of the scaling factor α and the truncation mode N . Let us first introduce the function

space W r
α,β(R), for any integer r ≥ 0,

W r
α,β(R) :=

{
u ∈ L2(R) : ||u||r,α,β <∞, ||u||2r,α,β :=

∞∑

k=0

λrk+1û
2
k

}
, (5.10)

where λk is in Equation 6.3 and ûk is the Fourier-Hermite coefficient in Equation 5.8. We shall

denote the space by W r(R) for short, hoping that no confusion will arise. Also, the norms will

be denoted briefly as || · ||r. The larger r is, the smaller the space W r(R) is, and the smoother

the functions in W r(R) are. The index r can be viewed as the indicator of the regularity of the

functions.

Let us define the L2−orthogonal projection Pα,βN : L2(R)→ RN , of a given v ∈ L2(R), by

〈v − Pα,βN v, φ〉 = 0, ∀φ ∈ RN . (5.11)



54

The superscript α, β will be dropped in Pα,βN in the sequel, since no confusion should arise.

More precisely,

PNv(x) :=
N∑

n=0

v̂nH
α,β
n (x),

where v̂n are the Fourier-Hermite coefficients defined in Equation 5.8. The truncated error

||u − PNu||r, for any integer r ≥ 0, has been essentially estimated in Theorem 2.3 in (27), for

α = 1, β = 0, and in Theorem 2.1 in (57), for arbitrary α > 0 and β = 0. For arbitrary α > 0

and β 6= 0, the estimate still holds.

Theorem 5.1. For any u ∈W r(R) and any integer 0 ≤ µ ≤ r, we have

|u− PNu|µ . αµ−r−
1
2N

µ−r
2 ||u||r, (5.12)

where |u|µ := ||∂µxu|| are the seminorms, if N � 1.

Proof. The proof is extremely similar to those in (27) and (57). We use induction, and first

establish it for µ = 0. For any integer r ≥ 0,

||u− PNu||2 =

√
π

α

∞∑

n=N+1

û2
n =

√
π

α

∞∑

n=N+1

λ−rn+1λ
r
n+1û

2
n . α−2r−1N−r||u||2r . (5.13)
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Suppose that for 1 ≤ µ ≤ r, Equation 5.12 holds for µ−1. We need to show that Equation 5.12

is also valid for µ. It is clear that

|u− PNu|µ ≤ |∂xu− PN∂xu|µ−1 + |PN∂xu− ∂xPNu|µ−1. (5.14)

On the one hand, due to the assumption for µ − 1, we apply Equation 5.12 to ∂xu and

replace µ and r with µ− 1 and r − 1, respectively:

|∂xu− PN∂xu|µ−1 ≤ αµ−r−
1
2N

µ−r
2 ||∂xu||r−1 . αµ−r−

1
2N

µ−r
2 ||u||r, (5.15)

where the last inequality holds because of the observation, that

||∂xu||2r−1 =
∞∑

n=0

λr−1
n+1(̂∂xu)

2

n

and

(̂∂xu)n =
α√
π

∫

R
∂xuH

α,β
n (x)dx = − α√

π

∫

R
u∂xH

α,β
n (x)dx

=
α
√
λn+1

2
√
π

∫

R
uHα,β

n+1(x)dx− α
√
λn

2
√
π

∫

R
uHα,β

n−1(x)dx

=

√
λn+1

2
ûn+1 −

√
λn
2

ûn−1.
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Here we used integration by parts and Equation 5.6. On the other hand, by virtue of Equa-

tion 5.6

PN∂xu− ∂xPNu =PN

∞∑

n=0

ûn∂xH
α,β
n (x)−

N∑

n=0

ûn∂xH
α,β
n (x)

=− 1

2

N−1∑

n=0

√
λn+1ûnH

α,β
n+1(x) +

1

2

N+1∑

n=0

√
λnûnH

α,β
n−1(x)

−
[
−1

2

N∑

n=0

√
λn+1ûnH

α,β
n+1(x) +

1

2

N∑

n=0

√
λnûnH

α,β
n−1

]

=
1

2

√
λN+1

[
ûNH

α,β
N+1(x) + ûN+1H

α,β
N (x)

]
.

This yields that

|PN∂xu− ∂xPNu|2µ−1 . λN+1

(
û2
N |Hα,β

N+1(x)|2µ−1 + û2
N+1|Hα,β

N (x)|2µ−1

)
, (5.16)

due to the property of seminorms. Moreover, we estimate û2
k and |Hα,β

k (x)|2µ−1, for k = N,N+1:

û2
N ≤

∞∑

n=N

û2
n ≤

α√
π
||u− PN−1u||2 . α−2rN−r||u||2r , (5.17)

by Equation 5.13. Similarly, û2
N+1 . α−2rN−r||u||2r . And

|Hα,β
N |2µ−1 = ||∂µ−1

x Hα,β
N (x)||2 . α−1||Hα,β

N (x)||2µ−1 = α−1λµ−1
N ≤ α−1λµ−1

N+1, (5.18)



57

by Lemma 5.2, since (̂Hα,β
N )k = δkN , for k ∈ Z+. Similarly, |Hα,β

N+1|2µ−1 . α−1λµ−1
N+1. Substitut-

ing Equation 5.17 and Equation 5.18 into Equation 5.16, we get

|PN∂xu− ∂xPNu|2µ−1 . α−2r−1N−rλµN+1||u||2r . α2µ−2r−1Nµ−r||u||2r , (5.19)

by the fact that λN = 2Nα2. The conclusion follows immediately from Equation 5.14, Equa-

tion 5.15 and Equation 5.19.

5.2 Hermite spectral method to 1D forward Kolmogorov equation (FKE)

The general 1D FKE is in the form





ut(x, t) = p(x, t)uxx(x, t) + q(x, t)ux(x, t) + r(x, t)u(x, t), for (x, t) ∈ R× R+

u(x, 0) = σ0(x).

(5.20)

The well-posedness of 1D FKE has been investigated in (5). We state its key result here.

Lemma 5.1 (Besala, (5)). Let p(x, t), q(x, t), r(x, t) (real valued) together with px, pxx, qx be

locally Hölder continuous in D = (t0, t1)× R. Assume that

1. p(x, t) ≥ λ > 0, ∀ (x, t) ∈ D, for some constant λ;

2. r(x, t) ≤ 0, ∀ (x, t) ∈ D;

3. (r − qx + pxx)(x, t) ≤ 0, ∀ (x, t) ∈ D.
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Then the Cauchy problem Equation 5.20 with the initial condition u(x, t0) = u0(x) has a fun-

damental solution Γ(x, t; z, s) which satisfies

0 ≤ Γ(x, t; z, s) ≤ c(t− s)− 1
2

for some constant c and

∫ ∞

−∞
Γ(x, t; z, s)dz ≤ 1;

∫ ∞

−∞
Γ(x, t; z, s)dx ≤ 1.

Moreover, if u0(x) is continuous and bounded, then

u(x, t) =

∫ ∞

−∞
Γ(x, t; z, t0)u0(z)dz

is a bounded solution of Equation 5.20.

Through the transformation

w(x, t) = e
1
2

∫ x
−∞ q̃(s,t)dsu

(∫ x

−∞
p

1
2 (s, t)ds, t

)
, (5.21)

where

q̃(x, t) = p−
1
2 (x, t)

[
q(x, t)− 1

2
p−

1
2 px(x, t) +

1

2

∫ x

−∞
p−

1
2 pt(s, t)ds

]
, (5.22)
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Equation 5.20 can be simplified to the following FKE, with the diffusion coefficient equal to 1

and without a convection term:





wt(x, t) = wxx(x, t) + V (x, t)w(x, t), for R× R+

w(x, 0) = w0(x),

(5.23)

where

V (x, t) =

[
−1

4
q̃2(x, t)− 1

2
q̃x(x, t) +

1

2

∫ x

−∞
q̃t(s, t)ds+ r(x, t)

]
. (5.24)

Remark 5.1. From the computational point of view, the form in Equation 5.23 is superior to

the original form in Equation 5.20 in general, when implementing with the HSM.

(i) If both the potential V (x, t) and the initial data w(x, 0) are even functions in x, so is the

solution to Equation 5.23. With the fact that the odd modes of the Fourier-Hermite coefficients

of the even functions are identically zeros, it requires half amount of computations to resolve

the even functions.

(ii) Even when V (x, t) and w(x, 0) are not even, it is still wise to get rid of the convection

term, since this term will drive the states to left and right, and probably out of the current

“window”. Shifting of the windows frequently by the moving-window technique will definitely

affect the computational efficiency.
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5.2.1 Formulation and convergence analysis

Let us consider the FKE Equation 5.23 with some source term F (x, t). Let us use u instead

of w in Equation 5.23. The weak formulation of HSM is to find uN (x, t) ∈ RN such that





〈∂tuN (x, t), ϕ〉 =− 〈∂xuN (x, t), ϕx〉+ 〈V (x, t)uN (x, t), ϕ〉+ 〈F (x, t), ϕ〉,

uN (x, 0) =PNu0(x),

(5.25)

for all ϕ ∈ RN . The convergence rate is stated below:

Theorem 5.2. Assume

−(1 + |x|2)γ . V (x, t) ≤ C,

for all (x, t) ∈ R × (0, T ), for some γ > 0 and some constant C. If u0 ∈ W r(R) and u

is the solution to Equation 5.23 with source term F (x, t), then for u ∈ L∞(0, T ;W r(R)) ∩

L2(0, T ;W r(R)) with r > 2γ and

N � max
{
α

4γ−2r+2
2γ−1 max {(αβ)4γ , 1}

1
1−2γ , α

2− r
γ max {(αβ)4γ , 1}−

1
2γ

}
,

we have

||u− uN ||2(t) . c∗α−4γ−1 max {(αβ)4γ , 1}N2γ−r, (5.26)

where c∗ depends only on T , ||u||L∞(0,T ;W r(R)) and ||u||L2(0,T ;W r(R)).
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Before we prove Theorem 5.2, we need some estimate on ||xr1∂r2x u(x)||2, for any integers

r1, r2 ≥ 0:

Lemma 5.2. For any function u ∈W r1+r2(R), with some integers r1, r2 ≥ 0, we have

||xr1∂r2x u||2 . α−2r1−1 max {(αβ)2r1 , 1}||u||2r1+r2 . (5.27)

Proof. For any integers r1, r2 ≥ 0,

||xr1∂r2x u||2 =

∣∣∣∣∣

∣∣∣∣∣
∞∑

n=0

ûnx
r1∂r2x H

α,β
n (x)

∣∣∣∣∣

∣∣∣∣∣

2

∼

∣∣∣∣∣∣

∣∣∣∣∣∣
1

α2r1

∞∑

n=0

ûn

r2+r1∑

k=−r2−r1

an,kH
α,β
n+k(x)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

,

by Equation 5.5 and Equation 5.6, where for each n fixed, an,k is a product of 2(r1 + r2) factors

of α2β or
√
λn+j , with −r2 − r1 ≤ j ≤ r2 + r1. Let n∗ ≥ 0 such that α2β ∼

√
λn∗+1. And

notice that λn+j ∼ λn+1 for n+ j ≥ 0 and Hα,β
n+j(x) ≡ 0 for n+ j < 0. Hence, we have

||xr1∂r2x u(x)||2 . α−1β2r1

n∗∑

n=0

λr2+r1
n+1 û2

n + α−2r1−1
∞∑

n=n∗+1

λr2+r1
n+1 û2

n

≤ α−2r1−1 max {(αβ)2r1 , 1}||u||2r1+r2 ,

for any integers r1, r2 ≥ 0, by Equation 5.3.
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Proof of Theorem 5.2. Denote UN = PNu for simplicity. By Equation 5.23 with source term

F (x, t) and the definition of UN , we obtain that

0 = 〈∂t(u− UN ), ϕ〉 = −〈ux, ϕx〉+ 〈V (x, t)u, ϕ〉+ 〈F (x, t), ϕ〉 − 〈∂tUN , ϕ〉

⇒ 〈∂tUN , ϕ〉 = −〈ux, ϕx〉+ 〈V (x, t)u, ϕ〉+ 〈F (x, t), ϕ〉, (5.28)

for all ϕ ∈ RN . Combining the above with Equation 5.25, yields that

〈∂t(uN − UN ), ϕ〉 = −〈∂x(uN − u), ϕx〉+ 〈V (x, t)(uN − u), ϕ〉,

for all ϕ ∈ RN . Set %N = uN − UN . Choosing the function ϕ = 2%N , we have

∂t||%N ||2 = −2||∂x%N ||2 − 2〈∂x(UN − u), ∂x%N 〉+ 2〈V (x, t)%N , %N 〉+ 2〈V (x, t)(UN − u), %N 〉.

(5.29)

It follows from Young’s inequality that

|〈∂x(UN − u), ∂x%N 〉| ≤
1

4
||∂x(UN − u)||2 + ||∂x%N ||2. (5.30)

The assumption V (x, t) ≤ C for (x, t) ∈ R× (0, T ) then yields

〈V (x, t)%N , %N 〉 ≤ C||%N ||2, (5.31)
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for (x, t) ∈ R× (0, T ). Moreover, we have

|〈V (x, t)(UN − u), %N 〉| ≤
1

2
||V (UN − u)||2 +

1

2
||%N ||2, (5.32)

by the Cauchy-Schwartz inequality. Substituting Equation 5.30 - Equation 5.32 into Equa-

tion 5.29, we obtain

∂t||%N ||2 − (C + 1) ||%N ||2 ≤ ||V (UN − u)||2 +
1

2
||∂x(UN − u)||2. (5.33)

Notice that V & −(1 + |x|2)γ , for some γ > 0. By the estimate in Lemma 5.2, we have

||V (UN − u)||2 . ||(1 + |x|2)γ(UN − u)||2 . ||(x2γ + 1)(UN − u)||2

. α−4γ−1 max {(αβ)4γ , 1}
∞∑

n=N+1

λ2γ
n+1û

2
n + ||UN − u||2

. α−4γ−1 max {(αβ)4γ , 1}N2γ−r||u||2r + α−2r−1N−r||u||2r . (5.34)

The estimate of the second term on the right-hand side of Equation 5.34 follows from Theorem

5.1. Again by Theorem 5.1, we obtain

||∂x(UN − u)||2 = |UN − u|21 . α−2r+1N1−r||u||2r . (5.35)
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Substituting Equation 5.34 and Equation 5.35 into Equation 5.33, we obtain

∂t||%N ||2 − (C + 1)||%N ||2 . α−4γ−1 max {(αβ)4γ , 1}N2γ−r||u||2r ,

provided that

N � max
{
α

4γ−2r+2
2γ−1 max {(αβ)4γ , 1}

1
1−2γ , α

2− r
γ max {(αβ)4γ , 1}−

1
2γ

}
.

Therefore, we have

||%N ||2(t) . α−4γ−1 max {(αβ)4γ , 1}N2γ−r
∫ t

0
e−(C+1)(t−s)||u||2r(s)ds.

By the triangle inequality and Theorem 5.1,

||u− uN ||2(t) ≤ ||%N ||2 + ||u− UN ||2

. α−4γ−1N2γ−r
[
||u||2r + max {(αβ)4γ , 1}

∫ t

0
e−(C+1)(t−s)||u||2r(s)ds

]

. c∗α−4γ−1 max {(αβ)4γ , 1}N2γ−r,

where c∗ is a constant depending on ||u||L∞(0,T ;W r(R)), ||u||L2(0,T ;W r(R)) and T .

5.2.2 Guidelines of the scaling factor

From Theorem 5.1, it is known for sure that any function in W r(R) could be approximated

well by the generalized Hermite functions, provided that the truncation N is large enough.
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However, in practice, “sufficiently” large N challenges the computer capacity. To improve

the resolution of Hermite functions with reasonably large N , we need the scaling factor α, as

pointed out in (7). Many efforts have been made along this direction, refer to (6), (7), (55), etc.

However, the optimal choice of α (with respect to the truncation error) is still an open problem.

In this subsection, we give a practical guideline to choose an appropriate scaling factor for the

Gaussian type and super-Gaussian type functions.

It is well known that, for smooth functions f(x) =
∑∞

n=0 f̂nH
α,β
n (x), the exponential decay of

the Fourier-Hermite coefficients
∣∣∣f̂n
∣∣∣ with respect to n implies that the infinite sum is dominated

by the first N terms, that is,

∣∣∣∣∣f(x)−
N∑

n=0

f̂nH
α,β
n (x)

∣∣∣∣∣ ≈ O
(
f̂N+1

)
,

for N � 1. Thus, the suitable scaling factor is proposed to get the Fourier-Hermite coefficients

decaying as fast as possible. Once the coefficient approaching the machine error (say 10−16),

many other factors such as the roundoff error will come into play. Hence, it is wise to truncate

the series here. Therefore, we need some guidelines for choosing not only the suitable scaling

factor α but also the corresponding truncation mode N .

Suppose the function f(x) peaks in the neighborhood of the origin and behaves asymptoti-

cally as e−p|x|
k

with some p > 0 and k ≥ 2, as |x| → +∞. Our guidelines are motivated by the

following observations:
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1. The function f decays exponentially fast, as |x| → ∞, so that f̂n ≈
∫ L
−L f(x)Hα,β

n (x)dx,

provided L is large enough, due to Equation 5.8.

2. For the exact Gaussian function e−px
2
, p > 0, the optimal α is naturally to be

√
2p

with the truncated mode N = 1. In fact, with this choice, e−px
2

= Hα,0
0 (x), e−px

2
is

orthogonal to all the rest of Hα,0
n , n > 0. That is, ̂(e−px2)0 6= 0 and ̂(e−px2)n ≡ 0, n ≥ 1.

This suggests that the closer the asymptotical behavior of f is to e−
1
2
α2x2 , the faster the

Fourier-Hermite coefficients decays, and the smaller the truncation mode N is.

3. It is natural to adopt the Gaussian-Hermite quadrature method to compute the Fourier-

Hermite coefficients by Equation 5.8. The truncation mode N has to be chosen such that

the roots of Hermite polynomial HN+1 cover the domain [−αL,αL] where the integral

Equation 5.8 is contributed most from both f and Hα,0
n , n = 0, · · · , N .

We describe our guidelines for the Gaussian type and the super-Gaussian type functions

separately as follows.

Case I. Gaussian type, i.e. f(x) ∼ e−px2 , p > 0, as |x| → +∞.

1. e−px
2 ∼ e− 1

2
α2x2 as |x| → +∞, which yields α ≈ √2p;

2. The integrand in Equation 5.8 is approximately e−2px2 . Using the machine error 10−16

to decide the domain of interest L, i.e. e−2pL2 ≈ 10−16, it yields that L ≈
√

8p−1 ln 10;

3. Determine the truncation mode N such that the roots of Hermite polynomial HN+1 covers

approximately (−αL,αL), where αL ≈ 4
√

ln 10.

Case II. Super-Gaussian type, i.e. f(x) ∼ e−pxk , as |x| → +∞ for some k > 2, p > 0.
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Figure 1. The truncation error v.s. the truncation mode for f(x) = cos
(
x
10

)
e−5x2 is plotted,

with β = 0 and α = 4, 3.1 or 1.

1. Notice that e−
1
2
α2x2 � e−px

k
, when x� 1. Thus, we require that e−

1
2
α2x2 ≈ 10−16, which

implies that αL ≈
√

32 ln 10;

2. We match e−px
k ≈ e−

1
2
α2x2 near x = ±L yields that α ≈ √2pL

k
2
−1. Hence, L ≈

(16p−1 ln 10)
1
k , α ≈ 2

5
2
− 4
k p

1
k (ln 10)

1
2
− 1
k ;

3. Determine the truncation mode N such that the roots of the Hermite polynomial HN+1

cover approximately (−αL,αL).

To examine the feasibility of our guidelines, we explore the Gaussian type f(x) = e−5x2 cos ( x10).

According to the strategy in Case I, we choose the scaling factor α ≈
√

10 ≈ 3.1, L ≈
√

8 ln 10
5 ≈
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1.9194 and N ≈ 24. As shown in Figure 1, the truncation error with α = 3.1 decays the most

rapidly with respect to the truncation mode N , and approaches the machine error near the 20th

mode. Meanwhile, the decay of the truncation error with α = 4 and α = 1 are much slower.

Moreover, the truncation mode N = 24 is appropriate in the sense that the next few coefficients

start to grow, due to the roundoff error.

Remark 5.2. 1) These guidelines are very practical. However, it is not the optimal scaling

factor α. For example, if f(x) = e−
1
2
x2, then the optimal scaling factor α = 1 and N = 0, while

N = 24 is chosen according to our guidelines.

2) Although the scaling factor helps to resolve the function concentrated in the neighborhood

of the origin, it helps little if the function is peaked away from the origin. The numerical evidence

could be found in Table I. This is the exact reason why we need to introduce the translating

factor to the generalized Hermite functions when applying to the NLF problems.

5.2.3 Numerical verification of the convergence rate

To verify the convergence rate of HSM shown in Theorem 5.2, we explore a 1D FKE with

some source F (x, t). The exact solution could be found explicitly and is served as our bench-

mark. We consider the 1D FKE





ut = uxx − x2u+ (sin t+ cos t+ 3x)e−
1
2
x2

u(x, 0) = xe−
1
2
x2 ,

(5.36)

for (x, t) ∈ R× [0, T ]. It is easy to verify that u(x, t) = (x+ sin t)e−
1
2
x2 is the exact solution.
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Notice that the initial data, the potential and the source in Equation 5.36 are all concen-

trated around the origin. So, we set the translating factor β = 0. For notational convenience,

we drop β in this example. As to the suitable scaling factor α, from our strategy in section

5.2.2, we know that it is better to let α = 1. However, if we do so, the first two modes will give

us an extremely good approximation. Hence, the error v.s. the truncation mode won’t be seen

clearly. Due to this consideration, we pick α = 1.4 (a little bit away from 1, but not too far

away so that it won’t affect the resolution too much). The weak formulation (Equation 5.25)

yields

〈∂tuN , ϕ〉 = −〈∂xuN , ∂xϕ〉 − 〈xuN , xϕ〉+ 〈F (x, t), ϕ〉, (5.37)

for all ϕ ∈ RN . Take the test functions ϕ = Hα
n (x), n = 0, 1, · · · , N , in Equation 5.37. Since

uN ∈ RN , it can be written in the form

uN (x, t) =
N∑

n=0

an(t)Hα
n (x).

The matrix form of Equation 5.37 follows from Equation 5.5 and Equation 5.7:

d

dt
~a(t) = A~a(t) + ~f(t), (5.38)
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where ~a(t) = (a0(t), a1(t), · · · , aN (t))T , ~f(t) =
(
f̂0(t), f̂1(t), · · · , f̂N (t)

)T
are column vectors

with N + 1 entries, f̂i(t), i = 0, 1, · · · , N , are the Fourier-Hermite coefficients of F (x, t) and A

is a penta-diagonal (N + 1)× (N + 1) constant matrix, where A = −A1 −A2, with

A1(i, j) =





− α2

2

√
(k + 1)(k + 2), k = min {i, j}, |i− j| = 2,

α2

(
i+

1

2

)
, i = j,

0, otherwise,

and

A2(i, j) =





√
(k + 1)(k + 2)

2α2
, k = min {i, j}, |i− j| = 2,

(2i+ 1)

2α2
, i = j,

0, otherwise.

The L2 errors v.s. the truncation mode N at time T = 0.1 is plotted in Figure 2. The

ODE Equation 5.38 is numerically solved by central difference scheme in time with the time

step dt = 10−5. It indeed illustrates the spectral accuracy of HSM.

5.3 Application to nonlinear filtering problems

Recalling the brief description of our algorithm in Chapter 2, the off-line computation is to

numerically solve the FKE Equation 2.13 repeatedly on each interval [τi, τi+1]. Equation 2.13

is in the form of Equation 5.20 with

p(x, t) =
1

2
Qg2; q(x, t) = Q(g2)x − fx; r(x, t) = −1

2
h2/S +Q(g2

x + ggxx)− fx,
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Figure 2. The L2-errors of the HSM to FKE Equation 5.36 v.s. the truncation mode
N = 5, 15, 25, 35 and 45 is plotted, with α = 1.4, β = 0 and the time step dt = 10−5.

where Q, S, f , g and h are in Equation 2.1.

5.3.1 Existence and uniqueness of the solution to 1D FKE

We interpret the well-posedness theorem, i.e. Lemma 5.1, for general 1D FKE in the

framework of the NLF problems.

Proposition 5.1 (Existence). Let f , g, h in Equation 2.1 be Hölder continuous functions in

D := R× (t0, t1). Also, assume that gx, gxx and fx exist and are also Hölder continuous in D.

Assume further that

1. Qg2 ≥ λ > 0, for some λ > 0;
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2. S > 0;

3. −1
2h

2/S − fx +Q(g2
x + ggxx) ≤ C, for some constant C,

for (x, t) ∈ D. Then there exists a bounded solution u(x, t) to Equation 5.20, if the initial

condition u0(x) is continuous and bounded.

Proof. Conditions 1)-3) in Lemma 5.1 are directly translated into conditions 1)-3) in this propo-

sition with C ≤ 0. For C > 0, let v(x, t) = e−C(t−t0)u(x, t), then v satisfies

vt(x, t) = p(x, t)vxx(x, t) + q(x, t)vx(x, t) + (r(x, t)− C)v(x, t), (5.39)

for (x, t) ∈ D, with the initial condition v(x, t0) = u0(x). The coefficients in Equation 5.39

satisfy the conditions in Lemma 5.1. Thus, we apply Lemma 5.1 directly to Equation 5.39. The

existence of the solution to Equation 5.20 follows immediately.

Remark 5.3. In practice, the initial data of the conditional density function has either com-

pact support or exponentially decay as |x| → +∞. So, the assumption on the initial data in

Proposition 5.1 always holds.

For simplicity, we establish the uniqueness for Equation 5.23, instead of Equation 5.20. They

can be easily transformed into each other, due to the bijective transformation Equation 5.21.

Proposition 5.2 (Uniqueness). There exists a unique solution to Equation 5.23 in the class that

{u : lim|x|→∞ uux = 0} if V (x, t) is bounded from above in D.
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Proof. Case I: Assume V (x, t) ≤ 0 in D. Suppose there exist two distinct solutions to Equa-

tion 5.23, say u1 and u2. Denote η := u1 − u2, and then η satisfies

ηt = ηxx + V (x, t)η, (5.40)

in D with the initial condition η(x, t0) = 0. Using the standard energy estimate, i.e. multiplying

Equation 5.40 with η and integrating with respect to x in R:

1

2
||η||2t = −||ηx||2 +

∫

R
V (x, t)η2dx ≤ −||ηx||2 ≤ 0,

by integration by parts, and the facts that lim|x|→∞ ηηx = 0 and V (x, t) ≤ 0 in D. This yields

that

||η||2(t) ≤ ||η||2(t0),

for t ∈ (t0, t1). With the fact that η(x, t0) = 0, we conclude that η ≡ 0 in D, i.e. u1 ≡ u2.

Case II: Assume V (x, t) ≤ C, for some C > 0. We use the strategy in the proof of

Proposition 5.1. Let v(x, t) = e−C(t−t0)u(x, t), then v satisfies Equation 5.23 with the potential

V (x, t)− C ≤ 0 in D. By case I, we conclude the uniqueness of v, and thus that of u.

Remark 5.4. Similar conditions as in Proposition 5.1 were used to guarantee the well-posedness

of the “pathwise-robust” DMZ equation (see Chapter 3) and to establish the convergence of our

algorithm (see Chapter 4). They essentially require that h has to grow faster than f . They
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are not restrictive in the sense that most of the polynomial sensors are included. For example,

f(x) = f0x
j, g(x) = g0(1 + x2)k and h(x) = h0x

l, with S,Q > 0, f0, g0 and h0 are constants,

j, k, l ∈ N, provided l > max
{
j−1

2 , 2k − 1
}

.

5.3.2 Translating factor β and moving-window technique

As we mentioned before, the untranslated Hermite functions with suitable scaling factor

could resolve functions concentrated in the neighborhood of the origin accurately and effectively.

However, the states of the NLF problems could be driven to left and right during the on-line

experiments. It is not hard to imagine that the “peaking” area of the density function escapes

from the current “window”. As numerical evidence, Figure 6 is the plot of the normalized

density function of the cubic sensor.

The idea of the translating factor is that, under the circumstance that the function is peaking

far away from the “window” covered by the current Hermite functions, we translate the current

Hermite functions to the “support” of the function, by letting the translating factor β be near

the “peaking” area of the function.

In Table I, we list the truncation error of the Gaussian function f(x) = e−
1
2

(x−p0)2 with

various p0 = −1, 0, · · · , 4 and different translating factors β = 0 or 3. The truncation errors

with different translating factor β is denoted as errorβ, which is defined as ||f −∑N
n=0 f̂nH

α,β
n ||.

According to the guidelines in section 5.2.2, the scaling factor is α = 1 and the truncation

mode is N = 24. As shown in Table I, the further the function is peaking away from the origin,

the larger the error is with untranslated Hermite functions. But with appropriate translating
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p0 error0 error3

−1 3.3× 10−13 1.1× 10−3

0 8.2× 10−15 7.7× 10−6

1 1.6× 10−13 1.8× 10−9

2 1.8× 10−9 3.3× 10−13

3 7.7× 10−6 8.2× 10−15

4 1.1× 10−3 1.6× 10−13

TABLE I

TRUNCTION ERROR V.S. THE “PEAKING” P0 OF THE GAUSSIAN FUNCTION
F (X) = E−

1
2

(X−P0)2 .

factor, the function could be resolved very well with the same scaling factor, for example,

error3 ≈ 10−16 for f(x) = e−
1
2

(x−3)2 .

Indeed, this fact motivates the idea of a moving-window technique. The suitable width of

the window could be pre-determined if the trunction error of the density function v.s. various

“peaking” p0 is investigated beforehand. To be more precise, suppose we know the asymptotic

behavior of the density function of the NLF problem from the asymptotical analysis, say ∼

e−px
k
, with some p > 0, k ≥ 2. According to the guidelines in section 5.2.2, the suitable scaling

factor α and the truncation mode N with β = 0 could be chosen. With these parameters, a

table similar to Table I could be obtained, i.e. the truncation error (error0) of the function

e−p(x−p0)k v.s. various p0. If the error tolerance is given, then the appropriate width of the

window is obtained according to the table. Let us take Table I as an example. If the asymptotic

behavior of the density function is e−
1
2
x2 , then the scaling factor α = 1 and the truncation mode
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N = 24. Suppose we set the error tolerance to be 10−5, then the suitable width of the window

would be 3 + 3 = 6, from the first two columns of Table I. The window, that covers the origin,

would be [−3, 3].

Our algorithm with the moving-window technique is illustrated in the flowchart Figure 3.

It reads as follows. Without loss of generality, assume that the expectation of the initial

distribution of the state is near 0. During the experimental time, say [0, T ], the state remains

inside some bounded interval [−L,L], for some L > 0. We first cover the neighborhood of

0 by the untranslated Hermite functions {Hα,0
n }Nn=0, where α, N can be chosen according

to the guidelines in section 5.2.2. With the given error tolerance, the suitable width of the

window could be pre-defined, denoted as Lw. If [−L,L] ⊂ [−Lw, Lw], then no moving-window

technique is needed. Hence, the on-line experiment runs always within the left half loop in

Figure 3. Otherwise, {βj}Jj=0, for some J > 0, need to be prepared beforehand, such that

[−L,L] ⊂ ∪Jj=0 (−Lw + βj , βj + Lw). The off-line data corresponding to different intervals

(−Lw + βj , βj + Lw) have to be pre-computed and stored ahead of time. During the on-line

experiment, if the expectation of the state E[xt] moves across the boundary of the current

“window” (the condition in the rhombic box in Figure 3 is satisfied), the current “window” is

shifted to the nearby window, into which E[xt] falls. That is, the right half loop in Figure 3 is

performed once.

Let us analyze the computational cost of our algorithm. Notice that only the storage

capacity of the off-line data and the number of the flops for on-line performance need to be

taken into consideration in our algorithm. Without loss of generality, let us assume, as before,
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that E[x](0) is near 0 and our state is inside [−L,L] ⊂ ∪Jj=0 (−Lw + βj , βj + Lw). For simplicity

and clarity, let us first assume further that

1. The operator
(
L− 1

2h
TS−1h

)
is not explicitly time-dependent;

2. The time steps are the same, i.e. τi+1 − τi = 4t.

The storage of the off-line data, on each interval (−Lw + βj , βj + Lw), requires storing (N+1)2

floating point numbers. Hence, the (J + 1) intervals requires to store (J + 1)(N + 1)2 floating

point numbers. As to the number of the flops in the on-line computations, if no moving-

window technique is adopted during the experiment, for each time step, it requires O((N +1)2)

flops. The number of the flops to complete the experiment during [0, T ] = ∪k−1
i=0 [τi, τi+1] is

O(k(N + 1)2). Suppose the number of window shifts during [0, T ] is P , then the total number

of flops is O
(
(k + P )(N + 1)2

)
.

Remark 5.5. Even if either assumption 1) or 2) is not satisfied, the real-time manner of our

algorithm won’t be affected. This is because the number of the flops in the on-line experiment

remains the same. But the off-line data will take more storage as the trade-off. To be more

specific, on each interval (−Lw + βj , βj + Lw), it requires to store k × (N + 1)2 floating point

numbers, where k is the total number of time steps. Therefore, the total storage is k(J+1)(N+

1)2 floating point numbers.

5.4 Numerical simulations

In this subsection, we shall validate our algorithm by solving three NLF problems: two

“time-invariant” cases and one “time-varying” case. Our algorithm is compared with either the
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extended Kalman filter (EKF) or the particle filters (PF). The particle filters are implemented

based on the algorithm described in (1), and systematic resampling is adopted if the effective

sample size drops below 50% of the total number of particles. As we shall see, to achieve similar

accuracy our algorithm surpasses both the EKF and the PF in the real-time manner.

5.4.1 “time-invariant” case: 1D almost linear filter

The signal observation model we are considering here is





dxt = dvt

dyt = xt(1 + 0.25 cosxt)dt+ dwt,

where xt, yt ∈ R, vt, wt are scalar Brownian motion processes with E[dvTt dvt] = 1 and

E[dwTt dwt] = 1. Suppose the signal at the beginning is somewhere near the origin.

The corresponding FKE Equation 2.13 in this case is

ut =
1

2
uxx −

1

2
x2(1 + cosx)2u (5.41)

Assume further that the initial distribution of x0 is u0(x) = e
−x2
2 . This assumption is not

crucial at all. The non-Gaussian ones, for example u0(x) = e
−x4
2 , will give the similar results

as the Gaussian one.

It is easy to see that the asymptotic behavior of the solution to Equation 5.41 is e−
x2

2 . With

the guidelines, we choose α = 1, β = 0 and N = 25 for the starting interval. We shall run the

experiment for the total time T = 50. Thus, we expect the density function probably will move
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out of the starting interval. Table I suggests that the appropriate width of the window should

be 3, if the error tolerance is set to be 10−5. We shall overlap the adjacent windows a little

bit to prevent frequent shifting of windows. Let us take the width of the overlaped region to

be 0.5. Therefore, as the preparation for the moving-window technique, we shall prepare the

off-line data for [−19.5,−13.5], [−14,−8], [−8.5,−2.5], [−3, 3], [2.5, 8.5], [8, 14] and [13.5, 19.5].

The correpsonding β′s are −16.5,−11,−5.5, 0, 5.5, 11 and 16.5. The barrier in the rhombic box

in the flowchart Figure 3 should be 3 (the width of the “window”).

Our algorithm is compared with the PF with 10 or 50 particles in Figure 4 for the total

experimental time T = 50. The time step is 4t = 0.01. All three filters show acceptable

experimental results. It is clear (between time 10 to 30) that the PF with 50 particles gives

closer estimation to our algorithm than that with 10 particles. But as to the efficiency, our

algorithm is superior to the PF, since the CPU times of PF with 10 and 50 particles are 5.00s

and 35.75s respectively, while that of our algorithm is only 2.62s. As to the storage, the size of

the binary file to keep the off-line data is only 35.5kB. During this particular on-line experiment,

the window has been shifted 13 times, which can’t be seen from the figure at all. It also seems

that the moving-window technique doesn’t affect the efficiency of our algorithm.

5.4.2 “time-invariant” case: cubic sensor in the channel

We consider cubic sensor in the channel xt ∈ [−3, 3]:





dxt = dvt

dyt = x3
tdt+ dwt,

(5.42)
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where xt, yt ∈ R, vt, wt are scalar Brownian motion processes with E[dvTt dvt] = 1, E[dwTt dwt] =

1. Assume the initial state is somewhere near 0.

The FKE Equation 2.13 is

ut =
1

2
uxx −

1

2
x6u. (5.43)

Furthermore, we assume the initial distribution is u0(x) = e−x
4/4. We set our translating factor

β = 0 and the moving-window technique won’t be used. According to the guidelines in section

5.2.2, we choose the scaling factor α ≈ 2
3
2

(
ln 10

4

) 1
4 ≈ 2.4637, and the truncated mode N ≈ 45.

In Figure 5, we compare our algorithm with the PF with 50 particles for T = 50. The

observation data come in every 0.01. Figure 5 reads that both filters work very well. The result

of our algorithm nearly overlaps with that of the particle filter, for all times. However, the

CPU time of our algorithm is 4.90s, while that of PF is 37.17s. With our algorithm, the on-line

computational time for every estimation of the state is around 0.001s, which is 10 times less

than the update time 0.01s. This indicates that our algorithm is indeed a real-time solver. The

normalized density functions, which is defined as u(x,t)
maxx∈R u(x,t) , have been plotted every other 1s

in Figure 6.
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5.4.3 “time-varying” case: the 1D almost linear sensor

The 1D almost linear “time-varying” sensor we are considering is





dxt =[1 + 0.1 cos (20πt)]dvt

dyt =xt[1 + 0.25 cos (xt)]dt+ dwt,

(5.44)

where xt, yt ∈ R, vt, wt are scalar Brownian motion processes with E[dvTt dvt] = E[dwTt dwt] = 1.

The FKE Equation 2.13 in this example is

ut =
1

2
[1 + 0.1 cos (20πt)]2uxx −

1

2
x2[1 + 0.25 cos (x)]2u,

with the initial data u0(x) = e−x
2/2 and the updated initial data

ui(x, τi) = ex
2[1+0.25 cos (x)]·dytui−1(x, τi),

i = 1, 2, · · · , k. In Figure 7, our algorithm tracks the state’s expectation at least as well as the

EKF. The total simulation time is T = 60, and the update time step is dt = τi+1− τi = 0.01. It

costs our algorithm only around 3.17s to complete the simulation, i.e. the on-line computational

time is less than 5× 10−4s, which is around 20 times shorter than the updated time.
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coefficient {ûi,n(τi)}Nn=0

under the shifted

bases
{
Hα,β′
n (x)

}N
n=0

Let β = β′

Evaluate ui(x, τi+1)

at
{
xn

α + β
}N
n=0

Synchronized with
the corresponding
part of the off-line

data, i.e. the values of{
U(τi+1, τi)H

α,β
n (x)

}N
n=0

at
{
xn

α + β
}N
n=0

Output E[x](τi+1)

τi+1 ≤ T

Stop

Let i = i+ 1

Update, i.e. evaluate

ui(x, τi) at
{
xn

α + β
}N
n=0

Compute the Her-
mite coefficient
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Figure 3. The flowchart of our algorithm, where β′ ∈ {βj}Jj=0.
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Figure 4. Almost linear filter is investigated with our algorithm and the particle filter with 10
and 50 particles. The total experimental time is T = 50s. And the update time is 4t = 0.01.
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Figure 5. Cubic sensor in the channel is experimented for T = 50, with the time step
4t = 0.01s, by both particle filter and our algorithm.
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Figure 6. The normalized density functions are plotted every other 1s for the cubic sensor in
the channel.
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Black: real state; Green: extended Kalman filter; Red: our algorithm.



CHAPTER 6

OUR ALGORITHM IN HIGHER DIMENSIONS

In the design of our algorithm, it is central to solve the FKE accurately and update rapidly

the initial data at the beginning of each interval. The main difficulty on applying our algorithm

to high-dimensional NLF problems is the so-called “curse of dimensionality”. As mentioned in

Chapter 1, we shall resort to the HSM, combined with the sparse grids algorithms.

6.1 Hyperbolic cross (HC) approximation with generalized Hermite functions

6.1.1 Notations

Let us first clarify the notations to be used in this chapter.

� Let R(resp., N) denote all the real numbers (resp., natural numbers), and let N0 = N∪{0}.

� For any d ∈ N, we use boldface lowercase letters to denote d-dimensional multi-indices

and vectors, e.g., k = (k1, k2, . . . , kd) ∈ Nd0 and α = (α1, α2, . . . , αd) ∈ Rd.

� Let 1 = (1, 1, . . . , 1) ∈ Nd, and let ei = (0, . . . , 1 . . . , 0) be the ith unit vector in Rd. For

any scalar s ∈ R, we define the componentwise operations:

α± k =(α1 ± k1, . . . , αd ± kd), α± s := α± s1 = (α1 ± s, . . . , αd ± s),

1

α
=

(
1

α1
, . . . ,

1

αd

)
, αk = αk11 · · ·αkdd ,

85
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and

α ≥ k⇔ αj ≥ kj , ∀ 1 ≤ j ≤ d; α ≥ s⇔ αj ≥ s, ∀ 1 ≤ j ≤ d.

� The frequently used norms are denoted as

|k|1 =
d∑

j=1

kj ; |k|∞ = max
1≤j≤d

kj ; |k|mix =
d∏

j=1

k̄j ,

where k̄j = max{1, kj}.

� Given a multivariate function u(x), we denote, the kth mixed partial derivative by

∂kxu =
∂|k|1u

∂xk11 · · · ∂xkdd
= ∂k1x1 · · · ∂kdxdu.

In particular, we denote ∂sxu = ∂s1x u = ∂
(s,s,...,s)
x u.

� Let L2(Rd) be the Lebesgue space in Rd, equipped with the norm || · || =
(∫

Rd | · |2dx
) 1

2

and the scalar product 〈·, ·〉.

� We follow the convention in the asymptotic analysis, a ∼ b means that there exists some

constants C1, C2 > 0 such that C1a ≤ b ≤ C2a; a . b means that there exists some

constant C3 > 0 such that a ≤ C3b.

� We denote C as some generic positive constant, which may vary from line to line.
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6.1.2 Generalized Hermite functions and its properties

For the convenience of analysis in this chapter, we define the generalized Hermite functions

slightly different from those in Chapter 5. Let us define the univariate generalized Hermite

functions as

Hα,βn (x) =

(
α

2nn!
√
π

) 1
2

Hn(α(x− β))e−
1
2
α2(x−β)2 , (6.1)

for n ≥ 0, where α > 0 is the scaling factor,β ∈ R is the translating factor, and {Hn(x)}n∈N0

is the physical Hermite polynomials as introduction in Chapter 5. It is readily to derive the

following properties for {Hα,βn (x)}n∈N0 :

� The {Hα,βn }n∈N0 forms an orthonormal basis of L2(R), i.e.

∫

R
Hα,βn (x)Hα,βm (x)dx = δnm, (6.2)

where δnm is the Kronecker function.

� Hα,βn (x) is the nth eigenfunction of the following Strum-Liouville problem

e
1
2
α2(x−β)2∂x(e−α

2(x−β)2∂x(e
1
2
α2(x−β)2u(x))) + λnu(x) = 0, (6.3)

with the corresponding eigenvalue λn = 2α2n.
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� By convention, Hα,βn ≡ 0, for n < 0. For n ≥ 0, the three-term recurrence is inherited

from the Hermite polynomials:

2α2(x− β)Hα,βn (x) =
√
λnHα,βn−1(x) +

√
λn+1Hα,βn+1(x). (6.4)

� The derivative of Hα,βn (x) is explicitly expressed, namely

∂xHα,βn (x) =
1

2

√
λnHα,βn−1(x)− 1

2

√
λn+1Hα,βn+1(x). (6.5)

� Let Dx = ∂x + α2(x− β). Then

DkxHα,βn (x) =
√
µn,kHα,βn−k(x), ∀n ≥ k ≥ 1, (6.6)

where

µn,k =

k−1∏

j=0

λn−j =
2kα2kn!

(n− k)!
, for n ≥ k ≥ 1. (6.7)

� The orthogonality of {DkxHα,βn (x)}n∈N0 holds, i.e.,

∫

R
DkxHα,βn (x)DkxHα,βm (x)dx = µn,kδnm. (6.8)
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For notational convenience, we extend µn,k for all n, k ≥ 0.

µn,k =





1, if k = 0, n ≥ 0,

0, if k > n ≥ 0.

(6.9)

Now we define the d-dimensional generalized Hermite functions by

Hα,β
n (x) =

d∏

j=1

Hαj ,βjnj (xj),

for α > 0, β ∈ Rd and x ∈ Rd. It verifies readily that the properties Equation 6.6 - Equation 6.8

can be extended correspondingly to multivariate generalized Hermite functions. Let Dk
x =

Dk1x1 · · · Dkdxd , then

Dk
xHα,β

n =
√
µn,kHα,β

n−k; (6.10)

and

∫

Rd
Dk
xHα,β

n (x)Dk
xHα,β

m (x)dx = µn,kδnm, (6.11)

for α > 0, β ∈ Rd, where

µn,k =

d∏

j=1

µnj ,kj and δnm =

d∏

j=1

δnjmj . (6.12)
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Here, µ·,· is defined in Equation 6.7 and Equation 6.9, and δnm is the tensorial Kronecker

function.

The generalized Hermite functions {Hα,β
n (x)}n∈Nd0 form an orthonormal basis of L2(Rd).

That is, for any function u ∈ L2(Rd) can be written in the form

u(x) =
∑

n≥0

ûα,βn Hα,βn (x), with ûα,βn =

∫

Rd
u(x)Hα,βn (x)dx. (6.13)

Hence, we have Dk
xu(x) =

∑
n≥k û

α,β
n Dk

xHα,βn (x). Furthermore,

||Dk
xu||2 =

∑

n≥k
µn,k|ûα,βn |2 =

∑

n∈Nd0

µn,k|ûα,βn |2, (6.14)

by Equation 6.9.

6.1.3 Multivariate orthogonal projection and approximations

In this subsection, we aim to arrive at some typical error esitmates of the form

inf
UN∈XN

||u− UN ||l . N−c(l,r)||u||r,

where c(l, r) is some positive constant depending on l and r, || · ||l is the norm of some function

space, l indicates the regularity of the function in some sense, and XN is an approximation

space. In the sequel, XN is defined as

Xα,β
N = span{Hα,β

n : n ∈ ΩN}, (6.15)
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where ΩN ⊂ Nd0 is some index set. With different choices of ΩN , we arrive at different approxi-

mations, including the full grid, regular hyperbolic cross (RHC) and optimized hyperbolic cross

(OHC), etc.

Let us denote the orthogonal projection operator Pα,βN : L2(Rd) → Xα,β
N , i.e., for any

u ∈ L2(Rd),

〈(u− Pα,βN u), v〉 = 0, ∀ v ∈ Xα,β
N ,

or, equivalently,

Pα,βN u(x) =
∑

n∈ΩN

ûα,βN Hα,β
n (x). (6.16)

We shall estimate how close the projected function Pα,βN u is to u, with respect to various

index sets ΩN and norms.

6.1.3.1 Appoximations on the full grid

The index set ΩN corresponding to the d-dimensional full tensor grid is

ΩN = {n ∈ Nd0 : |n|∞ ≤ N}.

And Xα,β
N is defined in Equation 6.15. Let us define the Sobolev-type space as

Wm
α,β(Rd) = {u : Dk

xu ∈ L2(Rd), 0 ≤ |k|1 ≤ m}, ∀m ∈ N0, (6.17)
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equipped with the norm

||u||Wm
α,β(Rd) =


 ∑

0≤|k|1≤m

∣∣∣
∣∣∣Dk

xu
∣∣∣
∣∣∣
2




1
2

, (6.18)

and seminorm

|u|Wm
α,β(Rd) =




d∑

j=1

∣∣∣
∣∣∣Dmxju

∣∣∣
∣∣∣
2




1
2

. (6.19)

It is clear that W0
α,β(Rd) = L2(Rd), and

|u|2Wm
α,β(Rd) =

d∑

j=1

∑

n∈Nd0

µnj ,m

∣∣∣ûα,βn
∣∣∣
2
, (6.20)

by Equation 6.14.

Theorem 6.1. Given u ∈ Wm
α,β(Rd), we have for any 0 ≤ l < m,

∣∣∣Pα,βN u− u
∣∣∣
Wl
α,β(Rd)

. |α|l−m∞ N
l−m
2 |u|Wm

α,β(Rd), (6.21)

for N � 1. Furthermore,

∣∣∣
∣∣∣Pα,βN u− u

∣∣∣
∣∣∣
Wl
α,β(Rd)

. Cα,l,mN
l−m
2 |u|Wm

α,β(Rd),

where Cα,l,m is some constant depending on α, l and m.
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Proof. The argument is similar to that in (51). Let Ωc
N = {n ∈ Nd0 : |n|∞ > N}. By

Equation 6.16, Equation 6.19 and Equation 6.20,

∣∣∣Pα,βN u− u
∣∣∣
2

Wl
α,β(Rd)

=

d∑

j=1

∑

n∈Ωc
N

µnj ,l

∣∣∣ûα,βn
∣∣∣
2
. (6.22)

For any 1 ≤ j ≤ d,

∑

n∈Ωc
N

µnj ,l

∣∣∣ûα,βn
∣∣∣
2

=
∑

n∈Λ1,j
N

µnj ,l

∣∣∣ûα,βn
∣∣∣
2

+
∑

n∈Λ2,j
N

µnj ,l

∣∣∣ûα,βn
∣∣∣
2

:= XII + XIII, (6.23)

where Λ1,j
N = {n ∈ Ωc

N : nj > N} and Λ2,j
N = {n ∈ Ωc

N : nj ≤ N}. For XII:

XII ≤ max
n∈Λ1,j

N

{
µnj ,l

µnj ,m

} ∑

n∈Λ1,j
N

µnj ,m

∣∣∣ûα,βn
∣∣∣
2
. |α|2(l−m)

∞ N l−m|u|2Wm
α,β(Rd). (6.24)

In fact,

max
n∈Λ1,j

N

{
µnj ,l

µnj ,m

}
= max
n∈Λ1,j

N

{
2l−mα

2(l−m)
j

(nj − l)(nj − l − 1) · · · (nj −m+ 1)

}

≤2l−m|α|2(l−m)
∞ (N −m+ 1)l−m.

For XIII, if n ∈ Λ2,j
N , there exists some k 6= j, such that nk > N .

XIII ≤ max
n∈Λ2,j

N

{
µnj ,l

µnk,m

} ∑

n∈Λ2,j
N

µnk,m

∣∣∣ûα,βn
∣∣∣
2
. |α|2l∞

∣∣∣∣
1

α

∣∣∣∣
2m

∞
N l−m−2|u|2Wm

α,β(Rd), (6.25)
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since

max
n∈Λ2,j

N

{
µnj ,l

µnk,m

}
= max
n∈Λ2,j

N



2l−m

α2l
j

α2m
k

nj !
(nj−l)!
nk!

(nk−m)!



 ≤ 2l−m|α|2l∞

∣∣∣∣
1

α

∣∣∣∣
2m

∞

N !
(N−l)!
(N+1)!

(N+1−m)!

=2l−m|α|2l∞
∣∣∣∣

1

α

∣∣∣∣
2m

∞

1

N + 1

1

(N − l)(N − l − 1) · · · (N −m)

≤2l−m|α|2l∞
∣∣∣∣

1

α

∣∣∣∣
2m

∞
(N −m)l−m−2.

Combining Equation 6.22 - Equation 6.25, we obtain the result. Furthermore, the mixed deriva-

tives of order equal to or less than m can be bounded by the seminorm |u|Wm
α,β(Rd).

Remark 6.1. It is clear that the convergence rate deteriorates rapidly with respect to the

cardinality of the full grid. That is,

∣∣∣
∣∣∣Pα,βN u− u

∣∣∣
∣∣∣
Wl
α,β(Rd)

. Cα,l,mM
l−m
2d |u|Wm

α,β(Rd),

where M = card(ΩN ) = Nd.

6.1.3.2 Regular hyperbolic cross (RHC) approximation

As we mentioned in Chapter 1, the HC approximation is an efficient tool to overcome

the “curse of dimensionality” in some degree. The index set of the RHC approximation is

ΩN = {n ∈ Nd0 : |n|mix ≤ N}. It is known that the cardinality of ΩN is O(N(lnN)d−1), see

(24). Correspondingly, the finite dimensional subspace Xα,β
N is

Xα,β
N = span{Hα,β

n : |n|mix ≤ N}. (6.26)
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Let the orthogonal projection operator Pα,βN : L2(Rd) → Xα,β
N be defined as before. Denote

the k−complement of ΩN by

Ωc
N,k := {n ∈ Nd0 : |n|mix > N and n ≥ k}, ∀k ∈ Nd0. (6.27)

We define the Koborov-type space as

Krα,β(Rd) = {u : Dkxu ∈ L2(Rd), 0 ≤ |k|∞ ≤ r}, ∀m ∈ Nd0, (6.28)

equipped with the norm

||u||Krα,β(Rd) =


 ∑

0≤|k|∞≤r

∣∣∣
∣∣∣Dkxu

∣∣∣
∣∣∣
2




1
2

, (6.29)

and seminorm

|u|Krα,β(Rd) =


 ∑

|k|∞=r

∣∣∣
∣∣∣Dkxu

∣∣∣
∣∣∣
2




1
2

. (6.30)

Remark 6.2. It is easy to see from the definitions that K0
α,β(Rd) = L2(Rd) and Wdl

α,β(Rd) ⊂

Klα,β(Rd) ⊂ W l
α,β(Rd).

Theorem 6.2. Given u ∈ Kmα,β(Rd), for 0 ≤ l < m, we have

∣∣∣
∣∣∣Dlx

(
Pα,βN u− u

)∣∣∣
∣∣∣ ≤ Cα,l,m,dN

|l|∞−m
2 |u|Kmα,β(Rd),
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where Cα,l,m,d is some constant depending on α, l, m and d, for N � 1. In particular, if

α = 1, then

C1,l,m,d = 2|l|∞−mm(2d−1)m−|l|1−(d−1)|l|∞ .

Proof. From Equation 6.16 and Equation 6.14, we have

∣∣∣
∣∣∣Dlx(Pα,βN u− u)

∣∣∣
∣∣∣
2

=
∑

n∈Ωc
N

µn,l

∣∣∣ûα,βn
∣∣∣
2

=
∑

n∈Ωc
N,m

µn,l

∣∣∣ûα,βn
∣∣∣
2

+
∑

n∈Ωc
N,l\Ω

c
N,m

µn,l

∣∣∣ûα,βn
∣∣∣
2

:=XIV + XV.

For XIV:

XIV ≤ max
n∈Ωc

N,m

{
µn,l
µn,m

} ∑

n∈Ωc
N,m

µn,m

∣∣∣ûα,βn
∣∣∣
2
.

Using the facts that

µn,l
µn,m

=2|l|1−dm
d∏

j=1

α
2(lj−m)
j

d∏

j=1

1

(nj − lj) · · · (nj −m+ 1)

=2|l|1−dm
d∏

j=1

α
2(lj−m)
j

d∏

j=1

n
lj−m
j

d∏

j=1

(
1− lj

nj

)−1

· · ·
(

1− m− 1

nj

)−1

≤2|l|1−dm
d∏

j=1

α
2(lj−m)
j N |l|∞−m

d∏

j=1

(
1− lj

nj

)−1

· · ·
(

1− m− 1

nj

)−1

, (6.31)
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by Equation 6.27, and

max
n∈Ωc

N,m





d∏

j=1

(
1− lj

nj

)−1

· · ·
(

1− m− 1

nj

)−1


 ≤ max

n∈Ωc
N,m





d∏

j=1

(
1− m− 1

nj

)lj−m




≤
d∏

j=1

mm−lj = mdm−|l|1 , (6.32)

we find that

XIV ≤
(m

2

)dm−|l|1 d∏

j=1

α
2(lj−m)
j N |l|∞−m

∣∣∣∣Dm·1x u
∣∣∣∣2 . (6.33)

For XV: The index set Ωc
N,l \Ωc

N,m is

Ωc
N,l \Ωc

N,m = {n ∈ Nd0 : |n|mix > N and n ≥ l, ∃ j, such that nj < m}.

Let us divide the index 1 ≤ j ≤ d into two parts

N := {j : lj ≤ nj < m, 1 ≤ j ≤ d}, N c := {j : nj ≥ m, 1 ≤ j ≤ d}. (6.34)

It is easy to see that neither N nor N c is the empty set. We denote

µ̃n,l,m =


∏

j∈N
µnj ,lj



(∏

i∈N c
µni,m

)
:= µn,k, (6.35)
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where k is a d-dimensional index consisting of lj for j ∈ N and m for j ∈ N c. Now, we estimate

XV as

XV ≤ max
n∈Ωc

N,l\Ω
c
N,m

{
µn,l
µn,k

} ∑

n∈Ωc
N,l\Ω

c
N,m

µn,k

∣∣∣ûα,βn
∣∣∣
2
≤ max
n∈Ωc

N,l\Ω
c
N,m

{
µn,l
µn,k

}
|u|2Kmα,β(Rd),

(6.36)

since |k|∞ = m, where the first inequality follows from Equation 6.35. It remains to estimate

the maximum in Equation 6.36:

µn,l
µn,k

=2|l|1−|k|1
∏

j∈N c
α

2(lj−m)
j

1

(nj − lj) · · · (nj −m+ 1)

=2|l|1−|k|1
∏

j∈N c
α

2(lj−m)
j

∏

j∈N c
n
lj−m
j

∏

j∈N c

(
1− lj

nj

)−1

· · ·
(

1− m− 1

nj

)−1

. (6.37)

Observe that j ∈ N c implies that nj ≥ m > l ≥ 0. That is, nj ≥ 1. Hence, n̄j = nj , for all

j = 1, · · · , d. In view of |n|mix > N , we deduce that

∏

j∈N c
n̄j >

N∏
j∈N n̄j

>
N∏
j∈N m

.

With the same estimate as in Equation 6.32 and the fact that

2|l|1−|k|1 = 2
∑
j∈Nc (lj−m) ≤ 2|l|∞−m, (6.38)
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we find that

max
n∈Ωc

N,l\Ω
c
N,m

{
µn,l
µn,k

}
≤ Cα,l,m2|l|∞−mm(2d−1)m−|l|1−(d−1)|l|∞N |l|∞−m, (6.39)

where Cα,l,m denotes some constant depending on α, l and m. The desired result follows

immediately from Equation 6.33, Equation 6.36 and Equation 6.39.

Corollary 6.1.

∣∣∣
∣∣∣Pα,βN u− u

∣∣∣
∣∣∣
Klα,β(Rd)

≤ Cα,l,m,dN
l−m
2 |u|Kmα,β(Rd), ∀ 0 ≤ l < m,

where Cα,l,m,d is some constant depending on α, l, m and d.

Remark 6.3. Recall that M = card(ΩN ) = O(N(lnN)d−1) ≤ CN1+ε(d−1), for arbitrarily

small ε > 0. Then

∣∣∣
∣∣∣Pα,βN u− u

∣∣∣
∣∣∣
Klα,β(Rd)

≤ Cα,l,m,dM
l−m

2(1+ε(d−1)) |u|Kmα,β(Rd), ∀ 0 ≤ l < m,

where Cα,l,m,d is some constant depending on α, l, m and d. It is clear to see that the conver-

gence rate deteriorates slightly with increasing d.
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6.1.3.3 Optimized hyperbolic cross (OHC) approximation

In order to completely break the curse of dimensionality, we consider the index set introduced

in (24)

ΩN,γ := {n ∈ Nd0 : |n|mix|n|−γ∞ ≤ N1−γ}, −∞ ≤ γ < 1. (6.40)

The cardinality of ΩN,γ is O(N), for γ ∈ (0, 1), where the dependence of dimension is in the

big-O, see (24). The family of spaces are defined as

Xα,β
N,γ := span{Hα,β

n : n ∈ ΩN,γ}. (6.41)

Remark 6.4. In particular, we have Xα,β
N,0 = Xα,β

N in RHC, see Equation 6.26, and Xα,β
N,−∞ =

span{Hα,βn : |n|∞ ≤ N}, i.e., the full grid.

We denote the projection operator as Pα,βN,γ : L2(Rd)→ Xα,β
N,γ . In this case, the k−complement

of index set of ΩN,γ is

Ωc
N,γ,k = {n ∈ Nd0 : n ∈ Ωc

N,γ and n ≥ k}, ∀k ∈ Nd0. (6.42)

Although (51) obtains a similar result for Jacobi polynomials as Theorem 6.3 below, we

believe that there is a gap in their error analysis of OHC, namely in Theorem 2.3 in (51). We

circumvent it here with a more delicate analysis.
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Theorem 6.3. For any u ∈ Kmα,β(Rd), d ≥ 2, and 0 ≤ |l|1 < m,

∣∣∣
∣∣∣Dl

x

(
Pα,βN,γ u− u

)∣∣∣
∣∣∣ ≤ Cα,l,m,d,γ |u|Kmα,β(Rd)





N
|l|1−m

2 , if 0 < γ ≤ |l|1
m

N
(1−γ)[|l|1−(d−1)m]

d−1−γ , if
|l|1
m
≤ γ < 1,

(6.43)

where Cα,l,m,d,γ is some constant depending on α, l, m, d and γ. In particular, if α = 1, then

C1,l,m,d,γ = mdm−|l|1





2|l|∞−mm
(d−1)(γm−|l|1)

1−γ , if 0 < γ ≤ |l|1
m

2|l|1−dm, if
|l|1
m
≤ γ < 1.

Proof. As argued in the proof of Theorem 6.2, we arrive at

∣∣∣
∣∣∣Dl

x

(
Pα,βN,γ u− u

)∣∣∣
∣∣∣
2
≤ max
n∈Ωc

N,γ,m

{
µn,l
µn,m

} ∑

n∈Ωc
N,γ,m

µn,m

∣∣∣ûα,βn
∣∣∣
2

+ max
n∈Ωc

N,γ,l\Ω
c
N,γ,m

{
µn,l
µ̃n,l,m

} ∑

n∈Ωc
N,γ,l\Ω

c
N,γ,m

µ̃n,l,m

∣∣∣ûα,βn
∣∣∣
2

:=XVI + XVII, (6.44)

where µ̃n,l,m is defined as in Equation 6.35. To estimate XVI, like in Equation 6.31, we have

µn,l
µn,m

=2|l|1−dm
d∏

j=1

α
2(lj−m)
j

d∏

j=1

(
1− lj

nj

)−1

· · ·
(

1− m− 1

nj

)−1 d∏

j=1

n
lj−m
j

:=D1

d∏

j=1

n
lj−m
j . (6.45)
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The estimate of maxn∈Ωc
N,γ,m

D1 follows by a similar argument as in Equation 6.32, i.e.,

max
n∈Ωc

N,γ,m

D1 ≤
(m

2

)dm−|l|1 d∏

j=1

α
2(lj−m)
j . (6.46)

Notice that for any n ∈ Ωc
N,γ ,

|n|mix|n|−γ∞ > N1−γ ⇒
( |n|γ∞
|n|mix

) 1
1−γ

<
1

N
(6.47)

and furthermore, if n ∈ Ωc
N,γ,m,

|n|∞
|n|mix

≤ 1

md−1
. (6.48)

Moreover,

|n|d−γ∞ ≥ |n|mix|n|−γ∞ > N1−γ ⇒ |n|∞ > N
1−γ
d−γ . (6.49)

Let us estimate the product in the right-hand side of Equation 6.45:

d∏

j=1

n
lj−m
j =




d∏

j=1

n
lj
j






d∏

j=1

nj



−m

≤




d∏

j=1

|n|lj∞


 |n|−mmix = |n||l|1∞ |n|−mmix. (6.50)
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If 0 < γ ≤ |l|1m , then

max
n∈Ωc

N,γ,m

d∏

j=1

n
lj−m
j ≤ max

n∈Ωc
N,γ,m





( |n|γ∞
|n|mix

)m−|l|1
1−γ

( |n|∞
|n|mix

) |l|1−γm
1−γ





< m
(d−1)(γm−|l|1)

1−γ N |l|1−m, (6.51)

by Equation 6.50, Equation 6.47 and Equation 6.48. Otherwise, if |l|1m ≤ γ < 1, then

max
n∈Ωc

N,γ,m

d∏

j=1

n
lj−m
j ≤ max

n∈Ωc
N,γ,m

{( |n|γ∞
|n|mix

)m
|n||l|1−γm∞

}
≤ N

1−γ
d−γ (|l|1−γm)−(1−γ)m

, (6.52)

by Equation 6.50, Equation 6.47 and Equation 6.49. Combining Equation 6.46, Equation 6.51

and Equation 6.52, the first term on the right-hand side of Equation 6.44 has the upper bound

XVI ≤
(m

2

)dm−|l|1 d∏

j=1

α
2(lj−m)
j

∣∣∣∣Dm·1
x u

∣∣∣∣2





m
(d−1)(γm−|l|1)

1−γ N |l|1−m, if 0 < γ ≤ |l|1
m

N
1−γ
d−γ (|l|1−γm)−(1−γ)m

, if
|l|1
m
≤ γ < 1.

(6.53)

Next, we consider XVII. Define N and N c as in Equation 6.34. As in Equation 6.36, we obtain

that

XVII ≤ max
n∈Ωc

N,γ,l\Ω
c
N,γ,m

{
µn,l
µn,k

}
|u|2Kmα,β(Rd). (6.54)
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We then estimate the maximum similarly as in Equation 6.38:

µn,l
µn,k

=2|l|1−|k|1
∏

j∈N c
α

2(lj−m)
j

∏

j∈N c
n
lj−m
j

∏

j∈N c

(
1− lj

nj

)−1

· · ·
(

1− m− 1

nj

)−1

:=D2

∏

j∈N c
n
lj−m
j . (6.55)

Similar arguments as in Equation 6.32 yields

max
n∈Ωc

N,γ,l\Ω
c
N,γ,m

D2 ≤ 2|l|1−|k|1
∏

j∈N c
α

2(lj−m)
j mdm−|l̃|

1 , (6.56)

where

l̃ = (l1, · · · , ld) =





lj , if j ∈ N c

0, otherwise.

(6.57)

Then we verify that

∏

j∈N c
n
lj−m
j ≤


 ∏

j∈N c
|ñ|lj∞




 ∏

j∈N c
nj



−m

= |ñ||l̃|1∞ |ñ|−mmix ≤ |ñ||l|1∞ |ñ|−mmix, (6.58)

where ñ is defined similarly as l̃ in Equation 6.57. With a similar argument as in Equation 6.47,

we deduce that for any n ∈ Ωc
N,γ ,

N1−γ < |n|mix|n|−γ∞ ≤ md−1|ñ|mix|ñ|−γ∞ ⇒
( |ñ|γ∞
|ñ|mix

) 1
1−γ

< m
d−1
1−γN−1. (6.59)
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Similarly as in Equation 6.48, we have for any n ∈ Ωc
N,γ,m,

|ñ|∞
|ñ|mix

≤ 1

md−2
, (6.60)

and

N1−γ < md−1|ñ|mix|ñ|−γ∞ ≤ md−1|ñ|d−1−γ
∞ ⇒ |ñ|∞ >

(
N1−γ

md−1

) 1
d−1−γ

, (6.61)

by Equation 6.60. If 0 < γ ≤ |l|1m , then

max
n∈Ωc

N,γ,l\Ω
c
N,γ,m

∏

j∈N c
n
lj−m
j < max

n∈Ωc
N,γ,l\Ω

c
N,γ,m





( |ñ|γ∞
|ñ|mix

)m−|l|1
1−γ

( |ñ|∞
|ñ|mix

) |l|1−γm
1−γ





≤ m
1

1−γ {[(γ+1)d−(2γ+1)]m−(2d−3)|l|1}N |l|1−m, (6.62)

by Equation 6.58 - Equation 6.60. Otherwise, if |l|1m ≤ γ < 1, then

max
n∈Ωc

N,γ,l\Ω
c
N,γ,m

∏

j∈N c
n
lj−m
j < max

n∈Ωc
N,γ,l\Ω

c
N,γ,m

{( |ñ|γ∞
|ñ|mix

)m
|ñ||l|1−γm∞

}

≤ m(d−1)
[
m− |l|1−γm

d−1−γ

]
N

(1−γ)[|l|1−(d−1)m]
d−1−γ , (6.63)
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by Equation 6.58, Equation 6.59 and Equation 6.61. Combining Equation 6.38, Equation 6.54,

Equation 6.56, Equation 6.62 and Equation 6.63, we arrive at

XVII ≤2|l|∞−m
∏

j∈N c
α

2(lj−m)
j mdm−|l|1 |u|2Kmα,β(Rd) (6.64)





m
1

1−γ {[(γ+1)d−(2γ+1)]m−(2d−3)|l|1}N |l|1−m, if 0 < γ ≤ |l|1
m

m
(d−1)

[
m− |l|1−γm

d−1−γ

]
N

(1−γ)[|l|1−(d−1)m]
d−1−γ , if

|l|1
m
≤ γ < 1.

Therefore, the desired result follows immediately from Equation 6.53 and Equation 6.64.

Corollary 6.2. For any u ∈ Kmα,β(Rd), 0 ≤ l < m, and 0 < γ ≤ l
m ,

∣∣∣
∣∣∣Pα,βN,γ u− u

∣∣∣
∣∣∣
Wl
α,β(Rd)

≤ Cα,l,m,d,γN
l−m
2 |u|Kmα,β(Rd).

where Cα,l,m,d,γ is some constant depending on α, l, m, d and γ.

Remark 6.5. Due to the fact that M = card(ΩN,γ) = O(N) ≤ CN , we obtain

∣∣∣
∣∣∣Pα,βN,γ u− u

∣∣∣
∣∣∣
Wl
α,β(Rd)

≤ Cα,l,m,d,γM
l−m
2 |u|Kmα,β(Rd).

where Cα,l,m,d,γ is some constant depending on α, l, m, d and γ. We see that the convergence

rate no longer deteriorates with respect to d. The effect of the dimension goes into the constant

in front.
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6.1.3.4 Dimensional adaptive approximation

The standard sparse grids are isotropic, treating all of the dimensions equally. Many prob-

lems vary rapidly in only some dimensions, remaining less variable in other dimensions. In

some situations, the highly changing dimensions can be recognized apriori. Consequently it

is advantageous to treat them accordingly. Without loss of generality, we assume the first d1

dimensions are the rapidly variable ones, and we wish to use the full grid. Meanwhile, the OHC

approximation will be used in the remaining d2 := d− d1 dimensions.

Let us set n := n1
⊕
n2, where n1 = (n1, · · · , nd1) and n2 = (nd1+1, · · · , nd). The index

set is

ΩN1,N2,γ :=
{
n ∈ Nd0 : |n1|∞ ≤ N1, |n2|mix|n2|−γ∞ ≤ N1−γ

2

}
, ∀ −∞ < γ < 1. (6.65)

The complement of the index set is

Ωc
N1,N2,γ :=

{
n ∈ Nd0 : |n1|∞ > N1 or |n2|mix|n2|−γ∞ > N1−γ

2

}
,

and the k−complement of ΩN1,N2,γ is defined similarly as in Equation 6.42:

Ωc
N1,N2,γ,k :=

{
n ∈ Ωc

N1,N2,γ : n ≥ k
}
, ∀k ∈ Nd0.
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The subspace Xα,β
N1,N2

is defined accordingly, i.e.,

Xα,β
N1,N2

:= span{Hα,β
n (x) : n ∈ ΩN1,N2,γ}, (6.66)

and so is the projection operator Pα,βN1,N2,γ
: L2(Rd)→ Xα,β

N1,N2
.

Theorem 6.4. For any u ∈ Kmα,β(Rd), for 0 < l ≤ m, we have

∣∣∣Pα,βN1,N2,γ
u− u

∣∣∣
W l
α,β(Rd)

. |α|l−m∞
(
N l−m

1 +N
1−γ

d−d1−γ
(l−m)

2

) 1
2

|u|Kmα,β(Rd).

Proof. Before we proceed to prove the theorem, we divide the index set Ωc
N1,N2,γ

into two

subsets:

Γ1 :={n ∈ Ωc
N1,N2,γ : |n1|∞ > N1},

Γ2 :={n ∈ Ωc
N1,N2,γ : |n1|∞ ≤ N1 and |n2|mix|n2|−γ∞ > N1−γ

2 }.

Our proof mainly follows the proof of Theorem 6.1:

∣∣∣Pα,βN1,N2,γ
u− u

∣∣∣
2

Wl
α,β(Rd)

=
d∑

j=1

∑

n∈Ωc
N1,N2,γ

µnj ,l

∣∣∣ûα,βn
∣∣∣
2

=

d∑

j=1

∑

n∈Γ1

µnj ,l

∣∣∣ûα,βn
∣∣∣
2

+

d∑

j=1

∑

n∈Γ2

µnj ,l

∣∣∣ûα,βn
∣∣∣
2

:= XVIII + XIX,

(6.67)
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by Equation 6.20. For XVIII, for any 1 ≤ j ≤ d,

XVIII =
∑

n∈Λ1,j
N1

µnj ,l

∣∣∣ûα,βn
∣∣∣
2

+
∑

n∈Λ2,j
N1

µnj ,l

∣∣∣ûα,βn
∣∣∣
2

:= XVIII1 + XVIII2,

where

Λ1,j
N1

:= {n ∈ Γ1 : nj > N1}, Λ2,j
N1

:= {n ∈ Γ1 : nj ≤ N1}.

For XVIII1:

XVIII1 ≤ max
n∈Λ1,j

N1

{
µnj ,l

µnj ,m

} ∑

n∈Λ1,j
N1

µnj ,m

∣∣∣ûα,βn
∣∣∣
2
≤ 2l−m|α|2(l−m)

∞ (N1 −m+ 1)l−m|u|2Kmα,β(Rd),

(6.68)

by Equation 6.24. For XVIII2, since n ∈ Γ1, there exists some j0 ∈ {1, · · · , d1} such that

nj0 > N1. Then

XVIII2 ≤ max
n∈Λ2,j

N1

{
µnj ,l

µnj0 ,m

} ∑

n∈Λ2,j
N1

µnj0 ,m

∣∣∣ûα,βn
∣∣∣
2
≤ 2l−m|α|2l∞

∣∣∣∣
1

α

∣∣∣∣
2m

∞
(N1 −m)l−m−2|u|Kmα,β(Rd),

(6.69)

by Equation 6.25. Hence, combining Equation 6.68 and Equation 6.69, we have

XVIII . |α|2(l−m)
∞ N l−m

1 |u|2Kmα,β(Rd). (6.70)
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For XIX, we deduce, as in Equation 6.49, that

|n2|mix|n2|−γ∞ > N1−γ
2 ⇒ |n2|∞ > N

1−γ
d−d1−γ

2 . (6.71)

With the similar argument for XVIII, we write

XIX =
∑

n∈Λ1,j
N2

µnj ,l

∣∣∣ûα,βn
∣∣∣
2

+
∑

n∈Λ2,j
N2

µnj ,l

∣∣∣ûα,βn
∣∣∣
2

:= XIX1 + XIX2,

where

Λ1,j
N2

:=

{
n ∈ Γ2 : nj > N

1−γ
d−d1−γ

2

}
, Λ2,j

N2
:=

{
n ∈ Γ2 : nj ≤ N

1−γ
d−d1−γ

2

}
.

Thus,

XIX1 ≤ max
n∈Λ1,j

N2

{
µnj ,l

µnj ,m

} ∑

n∈Λ1,j
N2

µnj ,m

∣∣∣ûα,βn
∣∣∣
2
≤ 2l−m|α|2(l−m)

∞ (N
1−γ

d−d1−γ
2 −m+ 1)l−m|u|2Kmα,β(Rd),

(6.72)

by Equation 6.71. There exists some j0 ∈ {d1 + 1, · · · , d} such that nj0 > N
1−γ

d−d1−γ
2 , then

XIX2 ≤ max
n∈Λ2,j

N2

{
µnj ,l

µnj0 ,m

} ∑

n∈Λ2,j
N2

µnj0 ,m

∣∣∣ûα,βn
∣∣∣
2

≤2l−m|α|2l∞
∣∣∣∣

1

α

∣∣∣∣
2m

∞

(
bN

1−γ
d−d1−γ

2 c −m
)l−m−2

|u|2Kmα,β(Rd), (6.73)
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where b·c denotes the largest integer smaller or equal to ·. The estimate of XIX follows imme-

diately from Equation 6.72 and Equation 6.73:

XIX . |α|2(l−m)
∞ N

1−γ
d−d1−γ

(l−m)

2 |u|2Kmα,β(Rd). (6.74)

The desired result follows from Equation 6.70 and Equation 6.74.

6.2 Application to linear parabolic PDE

In this section, we shall study the Galerkin HSM with the HC approximation applied to

higher dimensional linear parabolic PDEs. Let us consider a linear parabolic PDE of the general

form:





∂tu(x, t) + Lu(x, t) =f(x, t), x ∈ Rd, t ∈ [0, T ]

u(x, 0) =u0(x),

(6.75)

where

Lu = −∇ · (A∇u) + b · ∇u+ cu, (6.76)

with A = (aij)
d
i,j=1 : Rd 7→ Rd×d, b = (bi)

d
i=1 : Rd 7→ Rd and c : Rd 7→ R. The aim of HSM is

to find uN ∈ X, such that

〈∂tuN , ϕ〉 − A(uN , ϕ) = 〈f, ϕ〉, ∀ϕ ∈ X, (6.77)
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where X is some approximate space, and A(u, v) is a bilinear form given by

A(u, v) =

∫

Rd
(∇u)TA∇v + vb · ∇u+ cuv dx. (6.78)

In our context, X could be chosen as Xα,β
N or Xα,β

N,γ in the previous section.

To guarantee the existence and regularity of the solution to Equation 6.75, we assume that

(C1) The bilinear form is continuous, i.e., there is a constant C > 0 such that

|A(u, v)| ≤ C||u||H1
0 (Rd)||v||H1

0 (Rd), ∀u, v ∈ H1
0 (Rd). (6.79)

(C2) The bilinear form is coercive, i.e., there exists some c > 0 such that

A(u, u) ≥ c||u||2H1
0 (Rd), ∀u ∈ H1

0 (Rd). (6.80)

(C3) The coefficients aij , bi and c are smooth.

Here, H1
0 (Rd) denotes the normal Sobolev space with the functions decaying to zero at infinity.

More generally, Hm
0 (Rd) is defined as, for any u ∈ Hm(Rd), it satisfies |u| → 0, as |x| → ∞ and

||u||2Hm(Rd) =
∑

0≤|k|1≤m

∣∣∣
∣∣∣∂kxu

∣∣∣
∣∣∣
2
<∞. (6.81)

Let us first show some relationships between the Sobolev-type space W l
α,β(Rd) (see Equa-

tion 6.17) and the normal Sobolev space H l(Rd).
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Lemma 6.1. For u ∈ W |k|1+|r|1
α,β (Rd), for any r,k ∈ Nd0, we have

∣∣∣
∣∣∣xr∂kxu

∣∣∣
∣∣∣ .

(
d∏

i=1

α−rii

)
|k + r|

1
2
mix · ||u||W|k|1+|r|1α,β (Rd)

.

Proof. For clarity, we show it holds for d = 1 in detail. We have

∣∣∣
∣∣∣xr∂kxu

∣∣∣
∣∣∣
2

=

∣∣∣∣∣

∣∣∣∣∣
∞∑

n=0

ûα,βn xr∂kxHα,βn (x)

∣∣∣∣∣

∣∣∣∣∣

2

= α−2r

∣∣∣∣∣∣

∣∣∣∣∣∣

∞∑

n=0

ûα,βn

k+r∑

i=−(k+r)

ηn,iHα,βn+i(x)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

, (6.82)

by Equation 6.4 and Equation 6.5, where, for each n, ηn,i is a product of k + r factors of
(
±
√
λn+i
2

)
or β

2 with −(k + r) ≤ i ≤ k + r. Notice that

λn+i ∼ λn+j , (6.83)

provided that λn+i, λn+j 6= 0, for all −(k + r) ≤ i, j ≤ k + r. In fact, it is equivalent to show

that λn ∼ λn+l, for all 0 ≤ l ≤ 2(k + r). By convention, λn = 0, if n ≤ 0. Notice that

λn
λn+l

=
n

n+ l
≤ 1 and

n

n+ l
≥ 1

1 + l
≥ 1

1 + 2(k + r)
, ∀n ≥ 1.
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Meanwhile limn→∞
n
n+l = 1, for all 0 ≤ l ≤ 2(k + r). Therefore, λn

λn+l
∼ 1. Hence, ηn,j .

√
µn,k+r, by Equation 6.7 and Equation 6.83. Thus,

∣∣∣
∣∣∣xr∂kxu

∣∣∣
∣∣∣
2
∼α−2r

∣∣∣∣∣∣

∣∣∣∣∣∣

∞∑

n=0

ûα,βn
√
µn,k+r

k+r∑

i=−(k+r)

Hα,βn+i(x)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

=α−2r
∞∑

n=0

ûα,βn
√
µn,k+r

k+r∑

i=−(k+r)

∞∑

l=0

ûα,βl
√
µl,k+r

〈
Hα,βn+i(x),

k+r∑

j=−(k+r)

Hα,βl+j(x)

〉
,

(6.84)

by Equation 6.82. It is clear that the scalar product in Equation 6.84 is nonzero only if

l = n + i − j. Also µn,k+r ∼ µn+i−j,k+r, for all −(k + r) ≤ i, j ≤ k + r, which can be verified

by Equation 6.7 and Equation 6.83. Therefore,

∣∣∣
∣∣∣xr∂kxu

∣∣∣
∣∣∣
2
∼α−2r

∞∑

n=0

µn,k+rû
α,β
n

2(k+r)∑

l̃=−2(k+r)

ûα,β
n+l̃
≤ α−2r

∞∑

n=0

µn,k+r

2(k+r)∑

l̃=−2(k+r)

∣∣∣ûα,βn
∣∣∣
∣∣∣ûα,β
n+l̃

∣∣∣

≤α−2r
∞∑

n=0

µn,k+r
1

2

2(k+r)∑

l̃=−2(k+r)

(∣∣∣ûα,βn
∣∣∣
2

+
∣∣∣ûα,β
n+l̃

∣∣∣
2
)

=α−2r
∞∑

n=0

µn,k+r


2(k + r)

∣∣∣ûα,βn
∣∣∣
2

+
1

2

2(k+r)∑

l̃=−2(k+r)

∣∣∣ûα,β
n+l̃

∣∣∣
2




=2(k + r)α−2r
∞∑

n=0

µn,k+r

∣∣∣ûα,βn
∣∣∣
2

+
1

2
α−2r

∞∑

ñ=0

2(k+r)∑

l̃=−2(k+r)

µñ−l̃,k+r

∣∣∣ûα,βñ
∣∣∣
2

∼α−2r4(k + r)
∞∑

n=0

µn,k+r

∣∣∣ûα,βn
∣∣∣
2
. α−2r(k + r)||u||2Wk+r

α,β (R)
,
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where the first inequality is followed by Equation 6.84. Until now, we have shown that Equa-

tion 6.85 holds for d = 1. For d ≥ 2, we shall proceed similarly as for d = 1. Then

∣∣∣
∣∣∣xr∂kxu

∣∣∣
∣∣∣
2

=




d∏

ĩ=1

α
−2rĩ
ĩ



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

n∈Nd0

ûα,βn
∑

−(k+r)≤i≤k+r

ηn,iHα,β
n+i(x)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

∼




d∏

ĩ=1

α
−2rĩ
ĩ



∣∣∣∣∣∣

∣∣∣∣∣∣
∑

n∈Nd0

ûα,βn
√
µn,k+r

∑

−(k+r)≤i≤(k+r)

Hα,β
n+i(x)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

.




d∏

ĩ=1

α
−2rĩ
ĩ


 ∑

n∈Nd0

µn,k+r

∑

−2(k+r)≤l̃≤2(k+r)

(∣∣∣ûα,βn
∣∣∣
2

+
∣∣∣ûα,β
n+l̃

∣∣∣
2
)

∼




d∏

ĩ=1

α
−2rĩ
ĩ


 |k + r|mix

∑

n∈Nd0

µn,k+r

∣∣∣ûα,βn
∣∣∣
2

.




d∏

ĩ=1

α
−2rĩ
ĩ


 |k + r|mix · ||u||2W|k|1+|r|1α,β (Rd)

.

Therefore, we obtain the desired result.

Corollary 6.3. For u ∈ Wm
α,β(Rd), we have ||u||Hm(Rd) . ||u||Wm

α,β(Rd), for all m ≥ 0.

Proof. From the definitions of Wm
α,β(Rd) and Hm(Rd) in Equation 6.18 and Equation 6.81,

respectively, we need to show that

∣∣∣
∣∣∣∂kxu

∣∣∣
∣∣∣
2
.
∣∣∣
∣∣∣Dk

xu
∣∣∣
∣∣∣
2

=
∑

n∈Nd0

µn,k

∣∣∣ûα,βn
∣∣∣
2
, (6.85)
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for all 0 ≤ |k|1 ≤ m, by Equation 6.14. The desired results follows immediately from Lemma

6.1 by letting r = 0, i.e.,

∣∣∣
∣∣∣∂kxu

∣∣∣
∣∣∣
2
. |k|mix ·

∣∣∣
∣∣∣Dk

xu
∣∣∣
∣∣∣
2
.

The convergence rate of the HSM with the HC approximation under the assumptions (C1)-

(C3) is given below.

Theorem 6.5. Assume that conditions (C1)-(C3) are satisfied, and the solution

u ∈ L∞(0, T ;Kmα,β(Rd)) ∩ L2(0, T ;Kmα,β(Rd)), for m > 1. Let uN is the approximate solu-

tion obtained by HSM, i.e., the solution to Equation 6.77. Then

||u− uN ||(t) . c∗N
1−m

2 ,

where c∗ depends on α and the norms of L2(0, T ;Kmα,β(Rd)) and L∞(0, T ;Kmα,β(Rd)).

Proof. For notational convenience, we denote UN = Pα,βN u. It is readily verified that

〈∂t(u− UN ), ϕ〉 = 0 ⇒ 〈∂tUN , ϕ〉 = 〈−Lu+ f, ϕ〉, ∀ϕ ∈ Xα,β
N . (6.86)
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Combining with the formulation of HSM, i.e., Equation 6.77, we have

〈∂t(UN − uN ), ϕ〉 =〈−Lu+ f, ϕ〉+A(uN , ϕ) + 〈f, ϕ〉 = A(uN − u, ϕ)

=−A(u− UN , ϕ)−A(UN − uN , ϕ), ∀ϕ ∈ Xα,β
N .

Take ϕ = 2(UN − uN ) ∈ Xα,β
N , then

∂t||UN − uN ||2 =− 2A(u− UN , UN − uN )− 2A(UN − uN , UN − uN )

≤2C||u− UN ||H1
0 (Rd)||UN − uN ||H1

0 (Rd) − 2c||UN − uN ||2H1
0 (Rd)

.||u− UN ||2H1
0 (Rd),

by Equation 6.79, Equation 6.80 and Young’s inequality. With Corollary 6.3 and Corollary 6.2

(if the OHC approximation is considered), we have

∂t||UN − uN ||2 . ||u− UN ||2W1
α,β(Rd) . N1−m|u|2Kmα,β(Rd)

⇒ ||UN − uN ||2(t) . N
1−m

2

[∫ t

0
|u|2Kmα,β(Rd)(s)ds

] 1
2

.
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The same estimate holds for the RHC approximation with Corollary 6.2 replaced by Corollary

6.1. Then, we have

||u− uN ||(t) ≤||u− UN ||(t) + ||UN − uN ||(t)

.N−
m
2 |u|Kmα,β(Rd)(t) +N

1−m
2

[∫ t

0
|u|2Kmα,β(Rd)(s)ds

] 1
2

. c∗N
1−m

2 ,

where c∗ depends on α, the norms of L2(0, T ;Kmα,β(Rd)) and L∞(0, T ;Kmα,β(Rd)).

However, the assumptions (C1) and (C2) are not easy to verify. In the sequel, we make

assumptions on the operator L and the convergence rate of the HSM is investigated under the

conditions below. Assume that:

(C4) The operator L (c.f. Equation 6.76) is strongly elliptic and uniformly bounded, i.e.,

d∑

i,j=1

aij(x)ξiξj ≥ θ|ξ|2, ∀ξ ∈ Rd, and ||A||∞ = max
i,j=1,··· ,d

||aij ||∞ <∞,

for x ∈ Rd, where θ > 0.

(C5) There exists some constant C > 0, such that

c(x)− 1

2
∇ · b(x) ≥ −C,

for all x ∈ Rd.
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(C6) There exist some integer indices γ, δ ∈ Nd0, such that

c(x) . 1 + x2γ and bi(x) . 1 + x2δ, ∀ i = 1, 2, · · · , d,

for all x ∈ Rd.

Theorem 6.6. Assume that conditions (C3)-(C6) are satisfied. The solution to Equation 6.75

is u ∈ L2(0, T ;Kmα,β(Rd)), for some integer m > max{|γ|1, |δ|1 + 1}. Now let uN be the

approximate solution obtained by HSM, i.e., Equation 6.77, then

||u− uN ||(t) . c]N
max{|γ|1,|δ|1+1}−m

2 ,

where c] depends on α, T and the norm of L2(0, T ;Kmα,β(Rd)).

Proof. Similarly as we argued in the proof of Theorem 6.5, denote UN = Pα,βN u for convenience,

and let ϕ = 2(UN − uN ) ∈ Xα,β
N , then

∂t||UN − uN ||2 = −2A(u− UN , UN − uN )− 2A(UN − uN , UN − uN ) := XX + XXI, (6.87)
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where A is defined in Equation 6.78. For XXI,

−1

2
XXI =

∫

Rd
(∇(UN − uN ))TA(∇(UN − uN )) +

∫

Rd
(UN − uN )b · ∇(UN − uN )

+

∫

Rd
c(UN − uN )2

=

∫

Rd
(∇(UN − uN ))TA(∇(UN − uN )) +

∫

Rd

(
c− 1

2
∇ · b

)
(UN − uN )2

≥θ||∇(UN − uN )||2 − C||UN − uN ||2, (6.88)

by (C4) and (C5). Meanwhile, for XX,

|XX| =2

[∫

Rd
(∇(u− UN ))TA(∇(UN − uN )) +

∫

Rd
(UN − uN )b · ∇(u− UN )

+

∫

Rd
c(u− UN )(UN − uN )

]

≤2[||A||∞||∇(u− UN )|| · ||∇(UN − uN )||+ ||b · ∇(u− UN )|| · ||UN − uN ||

+ ||c(u− UN )|| · ||UN − uN ||]

.C||A||∞,θ||∇(u− UN )||2 + 2θ||∇(UN − uN )||2 + ||b · ∇(u− UN )||2 + ||c(u− UN )||2

+ ||UN − uN ||2. (6.89)

On the right-hand side of Equation 6.89, the third and forth terms are to be estimated. Firstly,

||c(u− UN )||2 . ||(1 + x2γ)(u− UN )||2 . ||u− UN ||2 + ||x2γ(u− UN )||2

. ||u− UN ||2 +

(
d∏

i=1

α−4γi
i

)
|γ|mix · ||u− UN ||2W|γ|1α,β (Rd)

, (6.90)
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by (C6) and Lemma 6.1. Similarly, from (C6) again, we deduce that

||b · ∇(u− UN )||2 ≤
d∑

i=1

||bi(x)∂xi(u− UN )||2 .
d∑

i=1

∣∣∣
∣∣∣(1 + x2δ)∂xi(u− UN )

∣∣∣
∣∣∣
2

≤
d∑

i=1

||∂xi(u− UN )||2 +
d∑

i=1

∣∣∣
∣∣∣x2δ∂xi(u− UN )

∣∣∣
∣∣∣
2

.||u− UN ||2W1
α,β(Rd) +

d∑

i=1

(
d∏

i=1

α−4δi
i

)
|δ + ei|mix · ||u− UN ||2W|δ|1+1

α,β (Rd)

.||u− UN ||2W1
α,β(Rd) + d

(
d∏

i=1

α−4δi
i

)
|δ + 1|mix · ||u− UN ||2W|δ|1+1

α,β (Rd)
.

(6.91)

Combining Equation 6.87 - Equation 6.89, we have

∂t||uN − UN ||2 . ||∇(u− UN )||2 + ||b · ∇(u− UN )||2 + ||c(u− UN )||2 + C||uN − UN ||2

.||∇(u− UN )||2 + C||uN − UN ||2 + ||u− UN ||2W1
α,β(Rd)

+ ||u− UN ||2W|δ|1+1
α,β (Rd)

+ ||u− UN ||2W|γ|1α,β (Rd)

.C||uN − UN ||2 +Nmax{|γ|1,|δ|1+1}−m|u|2Kmα,β(Rd),

by Equation 6.90, Equation 6.91 and Corollary 6.1 or Corollary 6.2. Hence,

||uN − UN ||2(t) ≤eCt||uN − UN ||2(0) +Nmax{|γ|1,|δ|1+1}−meCt
∫ t

0
e−Cs|u|2Kmα,β(Rd)(s)ds

≤Nmax{|γ|1,|δ|1+1}−m
∫ t

0
eC(t−s)|u|2Kmα,β(Rd)(s)ds.
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dim 2 3 4 5

# of indices in RHC 176 712 2485 7922

# of indices in OHC (γ = 0.5) 136 440 1264 3392

TABLE II

THE NUMBER OF INDICES FOR N = 31 WITH DIMENSION RANGING FROM 2 TO 5.

Therefore,

||u− uN ||2(t) ≤||u− UN ||2(t) + ||uN − UN ||2(t)

.N1−m|u|2Kmα,β(Rd)(t) +Nmax{|γ|1,|δ|1+1}−m
∫ t

0
eC(t−s)|u|2Kmα,β(Rd)(s)ds

.Nmax{|γ|1,|δ|1+1}−m
∫ T

0
|u|2Kmα,β(Rd)(s)ds.

The desired result is obtained.

6.3 Numerical results

6.3.1 HC approximations with Hermite functions

In Figure 8, we display the indices of RHC and OHC (with γ = 0.5) in dimension 2 with

N = 31. It is clear to see that the indices of OHC is a subset of RHC. Furthermore, we list in

Table II the number of indices for N = 31 with dimension ranging from 2 to 5.

It is well-known that the abscissas of Hermite polynomials are non-nested, except the origin.

It will lead to a larger number of points than those nested quadratures, such as Chebyshev
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Figure 8. For d = 2, N = 31. Left: the index set ΩN of RHC. Right: the index set ΩN,γ of
OHC with γ = 0.5.

polynomials. However, the number is still dramatically reduced, compared to the full grids.

We list in Table III the abscissas of RHC, OHC and full grid for N = 31 with the dimension

ranging from 2 to 4. It is clear that the abscissas in RHC/OHC are much fewer than thoses in

the full grid.

6.3.2 HSM with sparse grid

Although the HC approximation is theoretically feasible, it is not suitable for practical

implementations, due to the unclear “combining effecting” of the product rules, i.e., how to

determine the weights from different combinations of 1-D Gauss-Hermite quadratures. Thus,
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dim 2 3 4

# of abscissas in OHC (γ = 0.5) 108 3348 28944

# of abscissas in RHC 298 6612 82704

# of abscissas in full grid 961 29791 923521

TABLE III

THE NUMBER OF ABSCISSAS OF RHC, OHC AND FULL GRID OF N = 31 WITH THE
DIMENSION RANGING FROM 2 TO 4.

in this subsection, we use the Smolyak’s algorithm (54) to test the accuracy of high-dimensional

HSM applied to linear parabolic PDEs.

Let us recall that Smolyak’s algorithm is given by

I(L, d) =
∑

L−d+1≤|i|1≤L

(−1)L−|i|1
(
d− 1

L− |i|1

)
(U i1 ⊗ · · · ⊗ U id),

where U i is an indexed family of 1D quadrature, i is the 1D level; i = (i1, · · · , id) is the level

vector, L is the max level. The sparse grid is formed by weighted combinations of those product

rules whose product level |i|1 falls between L− d+ 1 and L.

In Figure 9, we display the abscissas of the Hermite functions and the index set with level

L ranging from 2 to 4 in d = 2.
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Figure 9. In d = 2, level L ranging from 2 to 4. Left: the abscissas of Hermite functions.
Right: the indices in the index set. The larger the dot is, the lower the level.

Let us test the accuracy with the following linear parabolic PDE





∂tu = 4u−
d∑

i=1

x2
iu+ f(x, t)

u(x, 0) =

(
d∑

i=1

xi

)
e−

1
2

(x21+···+x2d)

,

where 4 is the Laplacian operator, and

f(x, t) =

[
cos t+ d sin t+ (d+ 2)

d∑

i=1

xi

]
e−

1
2

(x21+···x2d).
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By direct computations, the exact solution to this PDE is

u(x, t) =

(
d∑

i=1

xi + sin t

)
e−

1
2

(x21+···+x2d).

It is known from (39) that the best scaling factor is α = 1 in this case, since the first two Hermite

functions will resolve the exact solution perfectly only with the round-off errors (around 10−16

on my computer). To make the convergence rate observable with respect to the level L, we

shall choose the scaling factor α to be 1.01× 1.

The corresponding spectral scheme (cf. Equation 6.77, Equation 6.78) is as follows:





〈∂tuN (t), ϕ〉 = −〈∇uN ,∇ϕ〉 −
d∑

i=1

〈x2
iuN , ϕ〉+ 〈f, ϕ〉

uN (0) = PNu0,

(6.92)

for all ϕ ∈ XN . Here, we choose XN = Xα,β
N = span{Hα,βn : ΩN}, from Smolyak (54). Thus,

we can write the numerical solution as

uN (x, t) =
∑

n∈ΩN

an(t)Hα,βn (x),
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Taking ϕ(x) = Hα,βn (x) in Equation 6.92, and due to Equation 6.5, Equation 6.4 and Equa-

tion 6.13, we arrive at the ODEs





d

dt
an = Aan + f̂n

an(0) = (û0)n .

(6.93)

Here f̂n (resp. (û0)n) is the Hermite coefficients of f (resp. u0) and the matrix A comes from

the Laplacian operator and the potential. In Figure 10, we display the nonzero entries of the

matrix A for dimension 3 and 4 with level= 4.

We use a central difference scheme to solve Equation 6.93 with T = 0.1, dt = 10−5, α =

1.01×1 and β = 0. Figure 11 shows the L2−norm of (uN − uexact) with respect to the level in

dimensions ranging from 2 to 4. It is exactly what we expect, as in the semi-log plot the error

goes down almost along a straight line, which indicates that the convergence rate is nearly

exponential. However, when the dimension grows, the error becomes slightly larger. This

reveals that the convergence rate still slightly deteriorates with increasing dimension.
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Figure 10. The nonzero entries in the matrix A (cf. Equation 6.93) are displayed with
level= 4. Left: d = 3, Right: d = 4.

level/dim 2 3 4

2 2.24E-03 7.99E-03 n/a

3 3.99E-04 544E-03 2.10E-02

4 4.75E-06 1.93E-03 1.14E-02

5 2.72E-07 2.66E-04 4.11E-03
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Figure 11. The L2 error of uN with respect to the level in d = 2, 3 and 4 is drawn.
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1. Hermite Spetral Method with Hyperbolic Cross Approximations to High-Dimensional Parabolic

PDEs (with S. S.-T. Yau), 23 pp. in ms., accepted for publication by SIAM J. Numer.

Anal., 2013. arXiv:1306.3207

2. Hermite Spectral Method to 1D Forward Kolmogorov Equation and its Application to

Nonlinear Filtering Problems (with S. S.-T. Yau), 13 pp. in ms., accepted for publication

by IEEE Trans. Automat. Control., 2013. arXiv:1301.1403

3. A Sharp Estimate of Dickman-De Bruijin Function and a Sharp Polynomial Estimate

of Positive Integral Points in 4-dimensional Tetrahedron (with S. S.-T. Yau and H. Zuo),

20 pp. in ms., accepted for publication by Math. Nachr., 2013.

4. Complete Real Time Solution of the General Nonlinear Filtering Problem without Memory

(with S. S.-T. Yau),15 pp. in ms., accepted for publication by IEEE Trans. Automat.

Control., 2013. arXiv:1208.0962
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5. On Number Theoretic Conjecture of Positive Integral Points in 5-Dimension Tetrahedron

and a Sharp Estimate of Dickman-De Bruijn Function (with K.-P. Lin, S. S.-T. Yau and

H. Zuo), 33 pp. in ms., accepted for publication by J. Eur. Math. Soc., 2013.

6. A Novel Algorithm to Solve the Robust DMZ Equation in Real Time (with S. S.-T. Yau),

Proceedings of the 51st IEEE Conference on Decision and Control, Dec 2012, pp. 606-611.

7. Regularity of the Extremal Solution for Some Elliptic Problems with Singular Nonlinearity

and Advection (with D. Ye and F. Zhou), J. Differential Equations, Vol. 251, No. 8, 2011,

pp. 2082-2099. arXiv:1004.3956

8. Uniqueness of Weak Extremal Solution to Biharmonic Equation with Logarithmically Con-

vex Nonlinearitie, J. Partial Differential Equations, Vol. 23, No. 4, 2010, pp. 315-329.

9. Parameters of Two Special Toric Surface Codes (with P. Zhang and H. Zuo), Chinese

Ann. Math. Ser. A 31, No. 5, 2010, pp. 517-524.

10. Asymptotic Behavior of Oscillating Radial Solutions to Certain Nonlinear Equations, Part

II (with C. Gui and F. Zhou), Methods and Applications of Analysis, Vol. 16, No. 4,

2009, pp. 459-468.

11. New suboptimal filter for polynomial filtering problems, (with Y. Jiao, S. S.-T. Yau and

W.-L. Chiou), submitted to IEEE Trans. Automat. Control., 2013.

12. The quenching behavior of MEMS with fringing field, in preparation.

13. Homogeneous solutions for the Euler equation of ideal fluid, (with R. Shvydkoy), in prepa-

ration.
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14. The Dynamics of a Kinetic Activator-Inhibitor System with Positive Production Rate(with

W.-M. Ni and X. Xiang), 25 pp. in ms., preprint.

15. On Classification of Toric Surface Codes of Low Dimension(with S. S.-T. Yau and H.

Zuo), 20 pp. in ms., preprint.

PROFESSIONAL ACTIVITIES

Member of AMS, SIAM.

Referee for IEEE Trans. Automat. Control., Internat. J. Systems Sci.

EXPERIENCES

Research assistant, UIC 2012-2013

– Supported by Prof. Roman Shvydkoy, NSF grant DMS-1210896

Graduate teaching assistant, UIC 2010-2012

– Holding the discussion and recitation sections for Finite Mathematics for Business, Pre-

calculus, Calculus III and Calculus for Business.

– Grader for Introduction to Proofs.

SKILLS

Languages Mandarin (mother tongue)

English (fluent)

French, Japanese (capable of reading academic papers)

Software Matlab, LATEX, HTML, C
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