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SUMMARY

This thesis provides a comprehensive nonparametric study of volatility jumps and the

leverage effect by examining high-frequency data on the VIX and S&P 500 from 1992 to 2010. It

is found that the VIX data prior to 1998 are too noisy to provide a reliable inference. After 1999,

the dataset is cleaner but still controversial. More specifically, the high-frequency dynamics of

the VIX jumps challenges the assumptions of commonly used stochastic volatility jump-diffusion

models. I explain this phenomenon by hypothesizing that most jump-like movements in the

VIX are “pseudo-jumps,” i.e., these jumps are large but temporary deviations from fundamental

values.
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CHAPTER 1

INTRODUCTION

The volatility index (VIX) has attracted a lot of attention from both industry and academia

due to a number of outstanding features. The VIX incorporates the market’s expectation of

stock market volatility over the next 30 calendar days. The Chicago Board Options Exchange

(CBOE) disseminates the VIX every 15 seconds in real time. Since its introduction in 1993,

the VIX has been one of the most commonly used estimates of the latent volatility process.

The most remarkable and widely recognized fact is that the changes in the VIX are strongly

negatively correlated with the corresponding changes in the underlying S&P 500 index. This

strong negative correlation is even more pronounced in down markets, which makes derivatives

on the VIX highly attractive instruments for portfolio diversification and risk management (see

(1), (2) among others). The VIX has been so successful that its methodology has become an

industry standard for many financial and commodity markets worldwide. In academia, the VIX

has contributed to volatility forecasting, variance pricing, and other volatility related studies.

Because of this popularity, it is important that researchers and practitioners gain a precise

understanding of the VIX dynamics.

This study is also motivated by the necessity of nonparametric information about volatility

jumps. The correct interpretation of jumps has important implications for volatility modeling,

developing hedging strategies, and specification of risk premia. References (3), (4), and (5)

are among the first who have substantiated the inclusion of volatility jumps in option pricing

1
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models. Further empirical justification has been obtained through the estimation of structural

models in (6), (7), (8), (9), and (10) among others. However, such evidence is inconclusive since

the results largely depend on assumptions about other parameters of the model.

I analyze the data within the theoretical framework of a classical jump-diffusion stochastic

volatility model while remaining completely nonparametric about jumps and leverage effect

dynamics. I consider the model in a very general form: independent and dependent jumps

in price and volatility along with the leverage effect1 specified through diffusive and jump

components. I detect jumps using a nonparametric test similar to the test of Lee and Mykland

(12). Thus, I define jumps as unusually large (relative to the current volatility level) changes

in the level of a financial instrument over a short time interval. The data used comprise

high-frequency records of S&P 500 futures and spot VIX from January 1992 to June 2010.

Also I employ daily data on the VIX: open/close/min/max.

I find that the first part of the data (1992 - 1998) is too noisy to be used for inference because

of the monotonic time trend in several features, such as the leverage effect, annual occurrence

of jumps, and microstructure noise. This time trend is independent of market conditions but

is consistent with the overall improvement in the quality of the option data.

The most important part of my contribution comes from the second, stationary part of

the dataset (1999 - 2010), where I observe that the high-frequency dynamics of VIX jumps

1Negative correlation between return and volatility innovations has been well documented in the
literature and is often referred to as the leverage effect (e.g., (11)). In this study, I use both terms
interchangeably.
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challenges standard stochastic volatility models. First, such jumps rarely correspond to any

economic event. Second, the time series of these jumps has a strong negative autocorrelation,

which seems to be a characteristic of noise. Moreover, the smaller the time period between

such jumps the stronger is the negative autocorrelation. Third, these jumps are not followed

by the change in the spot volatility. Interestingly, the more counterintuitive are the properties

of these jumps the less strong is the leverage effect transferred by these types of movements.

Noteworthy, such controversial features belong only to the independent volatility jumps, while

the dependent volatility jumps seem to agree with the model.

These controversial features of extreme movements in the VIX coupled with the overall

lower quality of the dataset lead me to the hypothesis of “pseudo-jumps” in the VIX. These

are jumps, which take place in the observable VIX but do not represent real movements in its

fundamental value. In other words, pseudo-jumps are not a feature of the true volatility or

the true VIX but rather a peculiarity of the VIX estimate, which is a time series of numbers

computed by the CBOE.

One example of many days with such suspicious movements is shown on Figure 1. From the

beginning of the day until roughly 10:30 a.m., the VIX undergoes five abrupt changes in the

level as large as 8.3%. Two of the changes reverse almost immediately while the remaining three

movements will be identified as jumps by almost any jump estimation procedure. However, all

these movements are more likely to be pseudo-jumps because they bring the level of the VIX

outside of the daily minimum and maximum also reported by the CBOE.



4

9 10 11 12 13 14 15
10.5

11

11.5

12

12.5

13
VIX,  13−Sep−2006

 

 VIX
Open
Close
Min and Max

9 10 11 12 13 14 15
1322

1324

1326

1328

1330

1332
S&P Futures Intraday

Time

 

 

Figure 1. An example of potential pseudo-jumps in the VIX.

In the upper panel, the solid line shows the intraday level of the VIX from the high-frequency
dataset, while the dashed lines mark daily max/min levels from the daily dataset. The “o” and
“x” correspond to the opening and closing values. The opening price and intraday variations
from the high-frequency dataset are inconsistent with the daily open/close/max/min price series
also provided by the CBOE.

My results confirm the existing critique of the VIX. Reference (13) show that the CBOE

computation procedure might sometimes provide an incorrect estimate of the VIX due to

approximation errors. Reference (14) recompute the VIX from options quotes and discover

“spurious breaks or artificial jumps” in its level due to regimes switching in the computation

method of the CBOE. My contribution is to infer the presence of errors in the VIX from
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historical data only without revising the computation method, which is extremely time-consuming

and data-extensive. Thus, my approach allows examination of all available data on the VIX,

while reference (14) considers only two years.

This study also contributes to the literature on volatility behavior by providing evidence on

volatility jumps and their relationship with jumps in the underlying price process. It is found

that the distribution of jumps in volatility appears to be symmetric, i.e. negative jumps in

volatility are as common as positive jumps. Furthermore, the volatility of volatility changes

significantly after the arrival of a jump. In addition, the leverage effect is channeled by both

extreme and diffusive types of movements. Finally, I find the evidence that only simultaneous

jumps in price and volatility are possible. In the literature, these jumps are also referred as

co-jumps.

The rest of the dissertation is organized as follows. Chapter 2 provides general information

about the VIX. Chapter 3 describes data. Chapter 4 undertakes comparative study of the

S&P and VIX. Chapter 5 introduces methodology and hypotheses to test. Chapter 6 reports

the estimation results. Chapter 7 discusses these results with respect to the hypothesis of

pseudo-jumps and provides a robustness check. Chapter 8 concludes.



CHAPTER 2

LITERATURE REVIEW

2.1 The VIX: Background and critique

The computation of the VIX is based on the concept of model-free implied volatility.1 The

theoretical formula contains integrals over continuous strike values from zero to infinity (18):

σ2T =
2erfT

T

[∫ F0

0

P (T,K)

K2
dK +

∫ ∞
F0

C(T,K)

K2
dK

]
=

2erfT

T

[∫ ∞
0

Q(T,K)

K2
dK

]
(2.1)

Q(T,K) = min{C(T,K), P (T,K)} (2.2)

where rf is the risk-free interest rate, T is time-to-maturity, F0 denotes the forward price at

maturity T , P (T,K) and C(T,K) are the mid-quotes for European put and call options with

strike K and time to maturity T , and Q(T,K) denotes the out-of-the money option (call or

put) at strike K. In practice, the CBOE replaces the continuous integration with the following

finite sum:

σ̂2T = V IX2 =
2erfT

T

Iu∑
i=Il

∆Ki

K2
i

Q(Ki)︸ ︷︷ ︸
DiscreteApproximation

− 1

T

[
F0

K0
− 1

]2
︸ ︷︷ ︸
CorrectionTerm

(2.3)

1The fact that “the fair value of total variance” is given by the value of infinite strip of European
options in a model-free way has been originally noted by (15) and then by (16). For a more complete
literature list please see (17) and (13).

6
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where KIi and KIu denote the minimum and maximum strikes included in the computation,

K0 is the first strike price available below the forward price F0, and the second term in

(Equation 2.3) reflects a correction for the discrepancy between K0 and this forward price.

The CBOE introduced the above method on September 22, 2003. This has been a break-through

improvement over the old VIX (now cited as VXO), which was based on the Black- Scholes-Merton

model1 and mimicked the implied volatility of at-the-money one-month option on the OEX

index. Instead, the new VIX incorporates information from the entire volatility skew with no

reliance on any model as long as the underlying process is a diffusion. In addition, the new

VIX is based on the S&P 500 index (SPX) which has become much more popular than the

OEX index. The purpose of the CBOE was to “provide a more precise and robust measure

of expected market volatility and to create a viable underlying index for tradable volatility

products” (18).

In spite of apparent advantages of the new VIX, the CBOE approximation formula has been

criticized in the literature. Reference (13) is the first to point out a number of implementation

flaws in the CBOE computation procedure arising from

(i) truncation errors, due to minimum and maximum strike prices being far

removed from zero and infinity in (Equation 2.3); (ii) discretization errors, due to

the lack of numerical integration in (Equation 2.3); (iii) expansion errors, due to

the Taylor series approximation of the log function used by the CBOE in defining

1See (19) and (20).
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the correction term in (Equation 2.3); and (iv) interpolation errors, caused by the

interpolation of maturities.

According to (13), these errors are economically significant and can be as large as 198 index

basis points.

Further, reference (14) finds that the truncation errors are highly important because they

often cause a substantial bias in the VIX, and, worse, abrupt shifts in it. Specifically, the CBOE

uses a certain rule to truncate these “tails” to obtain the effective range of options (KIl −KIu)

to be used in (Equation 2.3). These authors reveal occasional and abrupt changes in the

effective range provided the CBOE’s rule is followed and claim that the “regime switching in a

computation procedure may induce spurious breaks or artificial jumps” in the level of the VIX

index. They offer an improvement to the existing routine, a novel Corridor Implied Volatility

index (CX), based on an economically invariant strike range (21). They recommend using

the CX instead of the VIX to analyze frequency of jumps in the implied volatility and the

high-frequency leverage effect.

I complement the above critique by inferring the existence of errors in the VIX from

statistical properties of the data, without revising the computation method. Recomputing the

VIX is a complicated time-consuming and data-extensive procedure, which requires high-frequency

data on options of all quoted strikes. My advantage is that I can analyze a much longer time

period: all available data since the introduction of the VIX as opposed to two years in (14).
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Similar to (14), I also find large unexplainable moves in the data, some of which are shown

on Figure 1 and Figure 19. However, the proof of the exact correspondence is beyond the scope

of my study.



CHAPTER 3

DATA

3.1 Data description and preliminary modification

The VIX index is obtained from the CBOE (January 1992 - June 2010) at a one minute

frequency. The transaction data on the Standard and Poor’s 500 (S&P 500) composite stock

index futures contracts (January 1992 - June 2010) are obtained from the Chicago Mercantile

Exchange (CME).

I consider only the days when both indices have been reported. Thus, the total period

consists of 4629 trading days. The time series of daily closing values for both indices are

presented on Figure 2. I ignore the price changes between trading days (overnight and over-

weekend returns) and focus on the transactions that occur during the normal trading hours.

Descriptive statistics are presented in Table XII and Table XIII, Appendix B.

There are two issues with the VIX data that should not be ignored. These problems differ

for two parts of the dataset, which also are not similar by construction. Prior to September

22, 2003, the VIX has been back-filled from option historical records. Since then, the VIX is

computed and recorded in real time. The first problem is that the recomputed VIX is always

constant before 9 a.m. and after 3 p.m. These pieces of constant values are incompatible

with other data and often cause jump-like returns around 9 a.m. and 3 p.m. The second

problem is that the intraday data obtained in real time are often inconsistent with the daily

10
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Figure 2. Daily closing values for the S&P 500 futures and the VIX.
The VIX is reported in the annualized percentage form.

min/max/open/close, which can be downloaded from the CBOE web-site, as illustrated, for

instance, in Figure 1. More details are provided in Appendix B.

To address the aforementioned shortcomings I undertake the following steps. I consider only

the time window between 9:01 a.m. and 3:00 p.m. Central Time, which also helps avoid issues

with the beginning and closing of trading. Further, I pre-filter data by omitting prices outside of

daily min/max. Though the number of thus removed one-minute price records is relatively small

124 (0.0074% of all data analyzed), this correction seems to eliminate a significant number of

large movements in the VIX, because the total amount of detected jumps in the VIX decreases

by about 23%. This effect can be also illustrated by the substantial fall of the kurtosis. For
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example, in year 2004, the VIX kurtosis falls from 3760 to 200. One can see this effect by

comparing descriptive statistics before and after pre-filtering in Table XIII and Table XV,

Appendix B.



CHAPTER 4

COMPARATIVE QUALITY STUDY OF THE VIX AND S&P 500

DATASETS

The previous chapter has revealed certain problems with the VIX data. The present chapter

investigates how the data quality affects the inference from the data. This chapter also compares

the data quality of two datasets and shows that certain properties of the VIX cast doubt on the

reliability of this dataset. It is justified that the S&P 500 futures data are trustworthier and

can be used to filter the information from the VIX, for example, using the stochastic volatility

jump diffusion model in Section 5.1. Besides, several important practical choices are justified

here as well, such as the use of a 5-minute sampling frequency.

4.1 Two ways of measuring of the return-volatility relationship

The primary concern of this section is whether the data allow to measure the leverage

effect using high-frequency observations on the VIX and S&P. This section considers the

return-volatility relationship (leverage effect) for all returns while Section 6.4 is devoted to

the correlation of jumps. The main messages of the current section are: 1) the leverage effect

monotonically increases in years; 2) the VIX seems to have a lot of large erroneous movements

that distort the measurement of the leverage effect. I focus only on the contemporaneous

relationship between the VIX and S&P, because it is much stronger than any lagged dependence

as shown by the following cross-correlation analysis.

13
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Figure 3. Sample crosscorrelations of the VIX and the S&P.
Sampling frequency is five minutes. The standard error is 0.0018.

Figure 3 provides sample cross-correlations between the VIX and the S&P at a 5-min

sampling frequency. This plot shows that the series are concurrently correlated and the contemporaneous

dependence is the strongest one. Also the changes in the VIX (∆VIX) are correlated with several

past values of changes in the S&P (∆S&P). The first lead of the ∆S&P also has statistically

significant correlation with contemporaneous value of ∆VIX, but the value itself is so small that

hardly could be considered practically important. Thus, at this sampling frequency, the leverage

effect appears to be almost instantaneous. My results are in line with the nonparametric study

of (22) who documents that at a 5-minute frequency the “contemporaneous return is the most

important factor that determines changes in current implied volatility” and “several lagged

values of the return are also significant.”
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It is widely acknowledged that the strength of relationship between the VIX and S&P

depends on the magnitude of returns. For example, reference (22) distribute S&P returns

into sub-samples based on their size, compute correlation with the contemporaneous changes

in the VIX and report that “the return-implied volatility relation is dominated by extreme

return situations.”1 I repeat their result and make one important extension: I also compute

correlation when returns are grouped based on the size of the VIX returns. This exercise is very

illustrative of problems with the VIX, because it gives quite different estimates of the leverage

effect. Details are as follows.

The procedure of computing correlations for sub-samples of the S&P is as follows. First,

I normalize intraday changes in both indices using intraday periodicity volatility “factors”2

following the approach of (14). I further normalize intraday changes in both indices by their

respective daily standard deviations determined as in Section 5.4. Thus, I effectively make all

changes comparable by measuring them in multiples of daily standard deviations or “sigmas.”

I discard all VIX changes greater than 10 sigmas in absolute value to avoid the influence of

extreme observations. For each year, I divide a sample of the normalized S&P returns into

negative and positive parts and then segregate each part into thirds of equal counts. Thus,

I obtain six groups of returns for each year: large, medium, and small positive, and negative

1Similar effect is observed with uni-variate high-frequency volatility estimation. (24) states that “large
(absolute) returns are inherently more informative of the underlying volatility than small returns.”

2This accounts for a varying trading activity during a day.



16

1995 2000 2005 2010

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1
Sorted by S&P

1995 2000 2005 2010

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1
Sorted by VIX

 

 

Large Negative

Medium Negative

Small Negative

Small Positive

Medium Positive

Large Positive

Figure 4. Annual sample correlations by size of returns.

The left panel presents correlations when pairs of returns are sorted by the size of the S&P
returns. The right panel refers to the case when pairs of returns are sorted by the size of the
VIX returns. Time window is from 9:30 a.m. to 3 p.m.

returns. Finally, I calculate the annual correlation coefficients between these S&P groups and

concurrent VIX changes.

Specifically, to compute correlation ρLNs for group “Large Negative S&P returns” I choose

pairs of VIX and S&P returns: (si, vi) such that si ∈ (Large Negative S&P returns). Thus, I

obtain six correlation coefficients for each year: ρLNs , ρMN
s , ρSNs , ρSPs , ρMP

s , and ρLPs , where

subscript s means that correlations is computed based on sorting by the S&P returns.

The correlations when pairs of changes are sorted by the S&P. Annual estimates of

these coefficients are presented in the left panel of Figure 4. The correlation seems to increase
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in absolute value starting from -0.1-0.2 in 1992 and reaching the values below -0.5 or -0.6 in

2010. As expected, large positive and negative returns appear to have a larger correlation.

The correlations when pairs of changes are sorted by the VIX. I repeat the same

exercise for the VIX. For example, to compute ρLNv for group ”Large Negative VIX returns”

I choose pairs of VIX and S&P returns: (si, vi) such that vi ∈ (Large Negative VIX returns).

Again I obtain six correlation coefficients for each year: ρLNv , ρMN
v , ρSNv , ρSPv , ρMP

v and ρLPv .

The right panel of Figure 4 represents yearly dynamics of these correlations. Surprisingly, the

correlations for the larger in absolute value changes in the VIX are not the strongest in contrast

to those measured based on the S&P grouping:

ρLNv < ρLNs and ρLPv < ρLPs .

Moreover, the correlations for medium and small positive and negative returns seem to be

slightly larger:

ρMN
v > ρMN

s , ρMP
v > ρMP

s , ρSNv > ρSNs and ρPNv > ρPNs .

What could be so different for the VIX? Perhaps, the VIX data may have errors distorting

the ordering of returns. For example, a moderate VIX return with a moderate correlation by

mistake is recorded as a large return or even a return with a different sign. This explains

why the strength of correlation is lower when it is measured based on ordering of the VIX

returns. Apparently, the magnitude of these errors should be large because both extreme thirds

are affected as well. Similar information can be obtained from Table I, which reports the
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TABLE I

LEVERAGE EFFECT FOR LARGE MOVEMENTS, BY SIGN AND ABSOLUTE VALUE

Sorted Size of change, Correlationsa Count
by sigma Negative Positive Negative Positive

VIX

(5,6) 0.09 0.13 685 934
(6,7) 0.08 0.11 442 631
(7,8) 0.09 0.07 261 399

(8,∞)b 0.12 0.03 184 302

S&P

(5,6) -0.15 -0.47 113 69
(6,7) -0.24 -0.6 45 28
(7,8) -0.27 -0.6 22 12

(8,∞)b -0.46 -0.6 19 12

a Subcolumns of column “Correlations” refer to the signs of movements (positive and negative).
Correlation means the same as the leverage effect.

b The correlation for the returns exceeding 8 sigmas in absolute value may be unreliable because
of small sample sizes.

distribution of correlations across size and sign of returns. The larger the returns on the

S&P the higher their correlation (in absolute value) with the contemporaneous returns in the

VIX. In contrast, large movements in the VIX have weak correlation with simultaneous returns

in the S&P.

In conclusion, this section indirectly shows that there might be a lot of VIX jumps that do

not coincide in time with jumps in the S&P, which is later demonstrated in Section 6.4.

4.2 Microstructure noise in the VIX is higher than in the S&P 500

It is a commonly accepted fact that high-frequency data are contaminated with microstructure

noise, which distort the inference. For this study, it is important that, apart from microstructure



19

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

S&P, 1992−1997

0 5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

1.2
VIX, 1992−1997

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2
S&P, 1998−2010

0 5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

1.2
VIX, 1998−2010

Figure 5. Signature plots of annualized volatility.

The triangles denote
√
BPV and the asterisks mark

√
RV .

effects (market imperfections) common in most financial data such as bid-ask spread and price

discreteness, the VIX has extra complications:

1. The size of the bid-ask spread varies across option strikes and can be quite wide for illiquid

strikes. In such cases, the quote midpoint used for the VIX computation is not reliable.

2. Market makers do not always update all option prices at the same frequency. Less liquid

options are updated less often.

3. Mislabeling (for example, wrong maturity) and other recording errors are also possible.
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Figure 6. Ratio of BPV computed on data sampled at a one and five minute frequencies.

The solid line refers to the VIX while the dotted line with asterisks represents the S&P.

To analyze the level of microstructure noise, I create signature plots for each index. As

shown on Figure 5, the S&P and VIX differ much. The S&P signature plot is flat within

considered sampling frequencies and reports average values of annualized volatility of roughly

10% in 1992-1997 and around 18% in 1998-2010. The jump component of variance (excess

of realized variance (RV) over the bipower variation (BPV)) is negligible. In contrast, the

VIX shows an increase in volatility at higher sampling frequencies during both subperiods. In

the earlier, noisier, period, this augmentation is higher. The jump component of variance is

substantial for the VIX, especially in the earlier period. For these data on the VIX, before 1998,

the highest appropriate sampling frequency is ten minutes and five minutes since 1999, while

one-minute data on the S&P are clean enough during the whole period under investigation. In
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this study, I use a five-minute sampling frequency for the entire period for both time series.

The same idea comes from the time series of the ratio of BPV calculated at one and five minute

sampling frequencies. On Figure 6, this ratio for the VIX is monotonically decreasing from

1992 to roughly 1999. In contrast, this metric for the S&P exhibits no time trend.

4.3 The S&P 500 futures dataset is more reliable than the VIX dataset

Table II compares the quality of the S&P 500 futures and VIX datasets. First of all, the

S&P 500 futures data come as transaction records from the world’s most liquid stock market,

while the VIX data arrive from the less liquid option market through a complicated formula

with influential implementation challenges.

Besides, several properties of the VIX, in contrast to the S&P, have a pronounced monotonic

time trend. First, the number of extreme returns or jumps in the VIX is monotonically

decreasing over time while the number of extreme returns or jumps in the S&P is roughly

constant during the same period (see Section 6). Second, Section 4.2 demonstrates that the

level of microstructure noise in the VIX is decreasing over years while in the S&P such trend

is not present, at least at the same sampling frequency.

Noteworthy, periods with different market conditions such as bull/bear market and financial

crises, which involve volatile and quiet periods, appear to not affect this monotonic pattern.

Thus, this time trend can be explained by a gradual improvement of the VIX data. Indeed, the

option market becomes more liquid (more strikes are available, spreads are smaller, quotes are

updated more frequently) and constant technology improvement reduce data errors. Of course,
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TABLE II

COMPARISON OF THE S&P AND THE VIX DATASETS

Type of information S&P 500 Futures VIX

Facts

Data origin Transactions from the Computed from a large number of
world’s most liquid market. quotes using a complex formula.

Less liquid market
Data source CME CBOE

Empirical findings of this study
1. Properties of jumps

Frequency of jumps Rare (4.9 per year) Very frequent (40-90 per year)
Matching of jumps in time Usually correspond Most jumps correspond

to large changes in the VIX to nothing substantial in the S&P 500

2. Time trend at a 5-min sampling frequency

Microstructure noise Almost constant Monotonically decreasing
Number of jumps Almost constant Monotonically decreasing

the S&P microstructure has been also improving, but at a five-minute sampling frequency this

effect is not noticeable.

The increasing quality of the VIX data might also be responsible for the similar time trend in

the leverage effect. This is illustrated in Section 4.1, which shows that the negative correlation

between the VIX and the S&P 500 is relatively moderate at the beginning of the period but

becomes more pronounced in the second half of the period.



CHAPTER 5

METHODOLOGY

This chapter provides the methodological framework: a standard option pricing model with

dependent and independent jumps in price and volatility (Section 5.1) and a nonparametric

jump test (Section 5.5). However, the classical model describes the spot volatility, which is not

the same as the VIX. That is why, Section 5.2 gives the short summary of the literature on the

link between the VIX and the spot volatility and discusses to what extent the predictions of

different models can be applied to the analysis of the VIX.

5.1 The standard option pricing model. Hypotheses to test

I analyze the data within the theoretical framework of a classical jump-diffusion stochastic

volatility model, while being completely nonparametric about jumps and the leverage effect

dynamics:

d(log pt) = µtdt+
√
Vt

[
ρtdW

1
t +

√
1− ρ2tdW 2

t

]
+ ξtdJ

p
t + ξctdJ

c
t (5.1)

d(Vt) = κ(θ − Vt)dt+ σvt
√
VtdW

1
t + ψtdJ

v
t + ψctdJ

c
t , (5.2)

where pt is a stock price at time t; Vt is a spot variance; W t = {W 1
t ,W

2
t } is a bivariate

standard Brownian motion vector; J t = {Jpt , Jvt , Jct } is an independent (of W t) trivariate

23
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vector of mutually independent Poisson processes with finite1 positive intensities λpt , λ
v
t , λ

c
t ; ξt

and ξct are jump sizes in price; and ψt and ψct are jump sizes in volatility. The superscript c

refers to the jumps that arrive simultaneously to the price and volatility.

This specification incorporates several popular stochastic volatility models for option pricing

(see (26), (7)). It is very flexible in treatments of jumps and correlations between shocks to

price and shocks to volatility (the leverage effect).

Models with constant coefficients:

• SV: Heston’s (1993) model λpt = λvt = λct = 0.

• SVIJ: model with independent jumps in price and volatility λct = 0.

• SVCJ: model with contemporaneous jumps λpt = λvt = 0 and correlated jump sizes ξc |

ψc ∼ N(µξ + ρJψc, σ2ξ ).

• SVICJ: model with independent jumps and correlated contemporaneous jumps. The same

as above but λpt > 0 and λvt > 0.

Models with time-varying coefficients:

• (10) use SVICJ but treat intensities and sizes of jumps, correlation, and volatility of

volatility σvt as functions of the spot variance level.

In all above models, the leverage effect is described by coefficient ρt (further: diffusive

correlation) before the diffusion terms in Equation 5.1. Besides, the SVICJ and SVCJ models

1This is not the only known approach to model volatility jumps. For example, (25) have shown that
the volatility is a jump process of infinite activity. Such kind of jumps is outside of my scope and might
be addressed in future research.
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allow for the additional channel for the leverage effect through correlation ρJ between jumps

in price and volatility (further: jump correlation).

To test whether the data agree with the predictions of the classical model, let us consider

the following hypotheses:

Hypothesis I: The spot volatility changes significantly after a jump in volatility.

This follows from the model. For example, a positive jumps in Equation 5.2 increases the

level of Vt, the square root of which is the factor before the diffusion term in Equation 5.1.

Hypothesis II: Jumps are independent in time. This also follows from the model.

Hypothesis III: Independent jumps in price and volatility do exist, i.e., λpt > 0 and λvt > 0.

Hypothesis IV: Jumps correspond to news arrivals. This does not follow from the model but

it is a widely accepted stylized fact.

Hypothesis V. Null hypothesis: The high-frequency VIX dataset is contaminated with

noise or pseudo-jumps. Alternative hypothesis: The standard options pricing model should

be reconsidered with respect to the specification of volatility jumps.

Definition. Pseudo-jumps are jumps, which take place in the observable VIX but do not

represent real movements in its fundamental value.

Hypothesis V cannot be formally tested. I assume that the evidence in its favor can be build

upon the rejection of Hypotheses I, II, III, and IV combined with additional considerations such

as overall poor data quality and the critique of the VIX in the literature.
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5.2 The link between the VIX and spot volatility

To be able to use insights from the model in Section 5.1, I need to verify that inferences

obtained from the high-frequency VIX can be extended to the properties of the unobservable

spot volatility, or vice versa. As illustrated below, these processes are not equivalent, but the

information about distribution of jumps, especially jump times, and the leverage effect is similar

for both processes. This section provides only basic ideas along with references to sources where

formal proofs can be found.

By definition, the VIX squared is an option implied estimate1 of a value of a forward contract

on the total quadratic variation of the logarithmic price of the underlying asset over the next

30 calendar days:

VIX2
t ≈

1

T
EQ
t ([S, S]T ) , (5.3)

where Q - the risk neutral probability measure, and [S, S] is the quadratic variation process

associated with St = log pt. Since (27), it is a common practice to consider the quadratic

variation as consisting of continuous and discontinuous parts:

[S, S]T =

∫ t+T

t
Vudu+

NJ∑
i=1

(ξi)
2 +

Nc
J∑

i=1

(ξci )
2, (5.4)

whereNJ - number of independent price jumps andN c
J - number of price jumps, contemporaneous

to volatility jumps, over period T . The first term represents the integrated variance, which

1The VIX valuation formula based on options is provided in Section 2.1.
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includes volatility jumps along with other path-wise features of volatility. The second and third

term relate the contribution of the price jumps. Thus, the relationship between the VIX and

spot volatility is highly complex and, as shown further, varies for different models.

Affine models. For the affine models, (28) show that the link between the VIX and spot

volatility can be expressed in a linear form:

VIX2
t = aVt + b, (5.5)

where a > 0 and b > 0 are functions of model parameters. Thus, within this class of models,

jumps in the VIX and volatility arrive at the same time with spot volatility jumps and in the

same direction. Sizes of movements might be different, but fortunately, due to the linearity, the

movements in the VIX should yield the same strength of the leverage effect as do the movements

in unobservable volatility.

Non-affine models.The relationship between the VIX and spot volatility is much more

complicated for this class of models. Papers (25) and (29) derive this relationship for non-affine

exponential stochastic volatility models. Particularly, by Theorem 1 of (25), the jump times

should coincide for both the VIX and spot volatility. This conjecture also includes models

that accommodate the long-memory property of volatility through a fractionally integrated

Brownian motion.

In conclusion, most available models allow for the univocal relationship between the VIX

and the unobservable spot volatility. Specifically, the nondecreasing and monotonic nature of
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this relationship allows to assume that bigger movements in the spot volatility should always

correspond to bigger movements in the VIX. In other words, an extreme movement in the spot

volatility should also correspond to an extreme movement in the VIX. In addition, jump times

are the same for both the VIX and spot volatility.

5.3 Classification of jumps

In this section, I suggest the classification of realized jumps, according to the standard

option pricing model in Equation 5.1 and Equation 5.2. The model has three independent

compound Poisson processes, and I classify jump into three groups.

Classification rule. Isolate all movements in the S&P and the VIX based on whether

they are contemporaneous to jumps in the other time series. Thus, I obtain three categories of

jumps and the fourth category for diffusive movements as shown on Table III:

Type I. Matched jumps (ξctdJ
c and ψctdJ

c). These jumps arrive simultaneously to both the

S&P and VIX.

Type II. Unmatched jumps in the S&P (ξtdJ
p). The S&P jumps, but the VIX does not jump

during the same time interval.

Type III. Unmatched jumps in the VIX (ψtdJ
v). The VIX jumps, but the S&P does not

jump during the same time interval.

Type IV. Non-jump returns. Diffusion terms in Equation 5.1 and Equation 5.2. Neither the

S&P nor the VIX jumps.
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TABLE III

CLASSIFICATION OF JUMPS IN FINANCIAL VARIABLES

Finite activity jumps

Volatility jumps ≈ jumps in the VIX Price jumps = jumps in the S&P

Unmatched jumps Matched jumps Matched jumps Unmatched jumps
Type IIIa Type I Type I Type II

Pseudo-jumpsb Real jumps

a The classification suggested in this study is marked in bold.

b The pseudo-jumps are introduced according to Hypothesis V in Section 5.1. As shown further,
they are most likely belong to Type III jumps.

In the literature, unmatched jumps are also referred as “independent” jumps or “idiosyncratic”

(10) and matched as “contemporaneous” or “co-jumps.”

5.4 Volatility measures

Let assume that the logarithmic price process St is observed at N + 1 discrete equidistant

points in time 0 ≤ t0 < t1 < ... < tN < 1 over a given period (for example, trading day). Then

∆Si = Sti − Sti−1 is a logarithmic rate of return over time interval ∆ti = ti − ti−1, i = 1, ..., N .

This study uses three well-known high-frequency measures of volatility:

• A realized variance (RV) of (30):

σ2(t0, tN ) = RV1,N =
N∑
i=1

(∆Si)
2
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• The bipower variation (BPV) of (31):

σ2(t0, tN ) = BPV1,N =
π

2

(
N

N − 1

)N−1∑
i=1

|∆Si||∆Si+1|

• The robust volatility of returns based on quantiles of the normal distribution:

σ̂robust(t0, tN ) =
Q̂1−p/2 − Q̂p/2
2F−1(1− p/2)

, (5.6)

where Q̂p is a pth sample percentile, which is determined from a sample of returns. In

this study p = 20%. F−1 is the inverse gaussian cumulative distribution function. This

volatility measure is robust to extreme returns but, for smaller returns, remains dependent

on the normality assumption as it assumes that the returns below a specified percentile

are normally distributed.

5.5 Nonparametric jump detection

With the recent availability of high-frequency data, a number of statistical tests for jumps

has been developed. I have applied five tests described in (32), (33), (34), (12), (35), and (24).

Overall, all tests detect more jumps in the VIX than in the S&P and agree on the presence of

the monotonic time trend in the number and magnitude of the VIX jumps.

In this study, I report only the results of the jump detection technique similar to the Lee

and Mykland jump test described in (12). This test has a valuable advantage because unlike

other jump tests it conveys the exact time of a jump up to the smallest available sampling
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interval (five minutes in this study), jump size and direction. I define jumps as large moves

relative to the current volatility level:

L(i) =
|∆Si|

σ̂robustd /
√
N
> Ccrit, (5.7)

where σ̂robustd is the volatility estimate on day d, computed according to Equation 5.6 in

Section 5.4, and N is the number of intraday returns. I use only returns from the same day

to determine the volatility. Thus, I use all data available during the day, before and after a

jump. I scale all returns to allow for the intraday periodicity of volatility estimated as in (14). I

choose the critical value Ccrit = 6 as a commonly used empirical cut-off for unusual movements

in financial variables.



CHAPTER 6

ESTIMATION RESULTS

This section reports estimation results of parameters relating to jumps in the most general

model presented in Section 5.1 - SVICJ and compares them to the literature in Table V. I

estimate all parameters nonparametrically and independently from each other. The jumps are

detected with the test described in Section 5.5, and as such they are essentially all five-minute

returns in absolute value greater than the threshold of the test, which is six sigma.1 This section

also evaluates plausibility of hypotheses stated in Section 5.1.

6.1 Distribution and time series of jumps

The realized jumps along with their annual occurrence are reported by Figure 7. Table XI

from the Appendix provides exact quantities of jumps detected every year. Descriptive statistics

and histograms of jumps are given by Table IV and Figure 8.

Structural break in data. Similar to the analysis of the leverage effect and microstructure

noise in Chapter 4, I observe two rather distinct time periods: from 1992 to 1998 (Period 1) and

1999 - 2010 (Period 2). Again during Period 1, the data show a substantial nonstantionarity,

but only for the VIX. According to Figure 7, the number of jumps in the VIX is monotonically

decreasing until roughly 1998 and then levels off. In 1992, the test reports 268 jumps in the

1The sigma is an estimate of a daily volatility (see Section 5.4) divided by the square root of N ,
which is the number of observations per day.

32
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Figure 7. Realized jumps in both indices over time.

The top panel shows jumps in the S&P while the middle panel refers to jumps in the VIX.
Jumps are detected with the jump test described in Section 5.5. Jump size is measured in
multiples of standard deviations of five-minute logarithmic returns from the same day.
Bottom panel: The asterisks represent the number of jumps in the VIX divided by 10. The
“boxes” refer to the number of jumps in the S&P. The “circles” show the number of jumps that
happen in both indices at the same time. The number of jumps reported in 2010 is the double
of what is measured in the first half of the year because the data are available only until June
30, 2010.
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VIX and 58 in 2009 while the number of jumps in the S&P is only 5 and 6 in respective years.

Noteworthy, such monotonic time pattern in Period 1 is found in other features of the VIX and

is likely to be attributed to the poor quality of the VIX dataset. This conjecture is supported

in Section 4 with several empirical observations. Specifically, I observe the substantial decrease

in the level of the microstructure noise with the commensurate and pronounced strengthening

of the leverage effect. So, all further analysis focuses on Period 2 while Period 1 is sometimes

mentioned for completeness.

Descriptive statistics. The descriptive statistics of jumps by their type is presented in

Table IV. It seems that the unmatched jumps in the VIX (Type III) are more frequent and

larger, especially in the first period. The size of Type III jumps is from -34.0 to 58.9 sigmas

while other types of jumps are in range of (-23.2; 25.7) at most. It is interesting that both

series have a lot of negative and positive jumps as shown on Figure 8 with very little skewness.

This finding is not surprising for the S&P but contradicts popular specifications of stochastic

volatility models, which allow only for positive jumps in volatility. This result is consistent

with (14) who use much shorter period. The distribution of jumps in the S&P appears to be

slightly positively skewed. For the VIX: the distribution of Type I jumps is slightly negatively

skewed while the skewness of Type III jumps is not significantly different from zero.

Frequency of jumps. Volatility jumps occur 5-10 times more frequently compared to

parametric models, due to the much higher number of Type III jumps. Table IV reports the

total number of jumps in Period 2 for the S&P 29+31= 60 and for the VIX 31+454 = 485,

which corresponds to 5.2 and 42.2 jumps per year. Thus, about 94% of jumps in the VIX are
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Figure 8. Histogram of jumps, by type.

Jump size is measured in multiples of five-minute daily standard deviations of logarithmic
returns.

Type III jumps. As shown in Table V, my estimates of price jumps intensity resemble those

in the literature while the intensity of volatility jumps is much higher. Though (10) report a

greater annual number of unmatched1 volatility jumps 13, it is still quite far from observed in

my analysis 454/11.5 years ≈ 39.

In conclusion, the distribution of all types of jumps is roughly symmetric. The frequency

of Type I and II jumps agrees with the literature. In contrast, Type III jumps are much

more frequent. Such discrepancy in frequency of jumps between the S&P and VIX might

not be a problem because it can be explained by the high kurtosis of the VIX at intraday

1(10) use term “idiosyncratic.”
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TABLE IV

DESCRIPTIVE STATISTICS OF JUMPS

Type of jumpsa Count Mean Std.Dev. Median Min Max Skew

Period 1 (1992-1998)
Type I. Matched Jumps in the S&P 4 0.1 16.7 -7.3 -10.0 25.1 1.1
Type II.Unmatched Jumps in the S&P 35 -2.3 7.1 -6.5 -11.7 11.6 0.7
Type I. Matched Jumps in the VIX 4 6.5 15.5 6.4 -12.3 25.7 0.0
Type III. Unmatched Jumps in the VIX 1309 3.5 10.9 6.9 -34.0 58.9 0.1

Period 2 (1999 - 2010)
Type I. Matched Jumps in the S&P 29 0.5 9.4 -6.1 -10.9 18.5 0.5
Type II.Unmatched Jumps in the S&P 31 -0.5 7.7 -6.2 -11.1 9.1 0.0
Type I. Matched Jumps in the VIX 29 -0.4 10.2 6.5 -23.2 12.5 -0.5
Type III. Unmatched Jumps in the VIX 454 0.5 8.7 6.1 -21.2 31.8 -0.0

a Jump size is measured in multiples of five-minute daily standard deviations of logarithmic
returns.

sampling frequencies. What seems to be suspicious is that (as shown later) all these “heavy

tail” movements differ in their properties: the leverage effect, volatility change and serial

independence.

6.2 Hypothesis I. Change of volatility after a jump

To test Hypothesis I about the change of volatility after a jump, I use two versions of the

homogeneity of variance test: (39) and (40). I consider only days with a single jump and with

enough data before and after a jump to perform the test. The tests are applied to returns

scaled according to the intraday pattern of volatility estimated as in (14).

The stylized fact that the volatility should change after a jump agrees with the literature

((17) and (41) among others). Besides, a visual inspection of intraday plots also confirms this

idea. Figure 1 and Figure 11 show examples of matched and unmatched jumps. On Figure 11,
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TABLE V

COMPARISON OF PROPERTIES OF JUMPS OBTAINED IN THIS STUDY WITH
THOSE FROM THE LITERATURE

Source Data Period λp λv λc ρ ρJ Models

Structural models

“The Impact of Jumps...” S&P 1980- 1.5 -0.48 - 0.60 SVCJ
(7) daily 1999

“An empirical investigation...” S&P 1980- 4.83 -0.39- SVJ
(36) daily 1996 -0.32

“Price and Volatility Co-Jumps” S&P 04.1982- 0.86 13 0.89 depends -1 SVICJ
(10) daily, 02.2009 on vola-

5-min tility

“VIX Dynamics...” VIX 1990- 2.26 SVJ
(37) daily 2010

Nonparametric

“Cross-section of jumps...” US stocksa 1971- 3.19
(38) daily 2007

“Volatility Jumps” VIX, 09.2003- -0.7
(25) S&P 2008

5-min

“...Corridor fix for the VIX” VIX, 06.2008- -0.50 -0.53
(14) S&P 06.2010

1-min

This study, Jumps of Type I VIX 1999- – – 2.5 – -0.95 SVICJ
Jumps of Type II S&P 06.2010 2.8 – – – -0.87
Jumps of Type III 5-min – 39.4 – – -0.41
Type IV, diffusion – – – -0.66 –

λp and λv- annual number of independent jumps in price and volatility, respectively.
λc - annual number of contemporaneous jumps in price and volatility.
ρ - correlation between diffusive changes in price and volatility.
ρJ - correlation between jumps in price and volatility.
SVJ - the stochastic volatility model with jumps only in price.
SVCJ - the stochastic volatility model with contemporaneous jumps in price and volatility.
SVICJ - the stochastic volatility model with independent and contemporaneous jumps in price and volatility.

a Average across 25,666 firms listed in US.



38

the price trajectory seems to become more erratical after the jump; in contrast, the unmatched

jumps on Figure 1 are not followed by a visible change in the variability of the price.

To the best of my knowledge, the only nonparametric test for the change of volatility relating

to the jump occurrence have been developed by (41). These authors document that a jump in

the S&P is followed by the change in the volatility, using one minute S&P 500 index futures

(1997-06.2007). My study differs in following aspects. First, the period under my study is

longer, from January 1992 to June 2010. Second, I check the change of the volatility for each

jump separately while their test detects whether, in a certain time interval (a trading week),

there are common arrivals of jumps to both jumps and volatility. In addition, I study the

behavior of “volatility of volatility” after a jump arrival, that is, I investigate the change of

the VIX volatility following a jump arrival in the VIX. So far, nonparametric evidence on this

phenomenon has never been reported. Finally, I do not use the data normality assumption,

which seems to be crucial for these data because the Jarque-Bera test rejects normality for

76.4% of day-long samples of the VIX at a 5% significance.

The test results are provided in Table VI. It reports the fraction of jumps, for which the

volatility change is significant at α = 0.05. This table refers to the volatility of the S&P and the

volatility of the VIX, which is essentially the “volatility of volatility.” Both tests report that

jumps of Type III have a lower fraction of jumps, which are followed by statistically significant

changes in volatility. For example, according to Bartlett’s test, after 58% of Type I and only

after 20% of Type III jumps in the VIX, the volatility of the VIX changes significantly. The

tests for the difference in proportions between Type I and III jumps, and between Type II and
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TABLE VI

CHANGE OF VOLATILITY AFTER A JUMP

Type of Jumps Count Bartlett’s testa Levene’s testa

S&P VIX S&P VIX
1992-1998
Type I. Matched Jumps in the S&P 2 1.00 1.00 1.00 1.00
Type II.Unmatched Jumps in the S&P 32 0.59 0.47b 0.44 0.22b

Type III. Unmatched Jumps in the VIX 290 0.18b 0.34 0.10b 0.15
1999-2010
Type I. Matched Jumps in the S&P 24 0.58 0.75 0.50 0.50
Type II.Unmatched Jumps in the S&P 20 0.55 0.65b 0.35 0.25b

Type III. Unmatched Jumps in the VIX 215 0.20b 0.31 0.15b 0.14

a Proportion of jumps followed by significant changes (p-value < 5%) in volatility based on the
homogeneity of variances test results.

b According to the classification, the indices are not supposed to have jumps here; however, test statistics
of volatility change are statistically significant.

III jumps are highly significant with p-values less than 10−4. The numbers for Type I and II

are almost similar for the S&P.

The Levene’s test is more conservative because it is robust to deviations from normality. It

reports smaller proportions of significant changes for all categories of movements. Moreover,

for the less normal VIX, the drop in the number of significant volatility changes is higher. For

example, the first row of Table VI shows that Type I movements in the S&P lose only 0.08

(from 0.58 to 0.50) while the movements in the VIX of the same type have the proportion

reduced by 0.25 (from 0.75 to 0.50). Further, I report only results of Levene’s test.
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The percentage of statistically significant volatility change is relatively low from what is

expected because the change of volatility is hard to detect. Indeed, the change of volatility can

be detected only if it exceeds the confidence bounds of the volatility estimator. Therefore, the

accuracy of such tests is always inferior to the accuracy of the volatility estimator. Apparently,

due to the same reason, the test performed by (41) does not show a higher percentage of

significant cases. They find that “(i) in approximately 40% of the weeks there is strong evidence

for common price and volatility jumps, (ii) in around 20% of the weeks there is evidence for

disjoint jumps, and (iii) for the rest of the weeks the tests are inconclusive.”

I summarize this as follows. Hypothesis I, which states that the volatility should change

after a jump, appears to hold for much higher percentage of Type I and II jumps than for Type

III jumps.

6.3 Hypothesis II. Serial correlation of jumps

The standard option model assumes no serial correlation of jumps. More complicated models

introduce self-excited jumps corresponding to the hypothesis that jumps tend to appear in

clusters. For example, (42) allow the jump intensity to escalate in periods of crises in response

to major market shocks.

To investigate the serial dependence of jumps, I plot autocorrelation functions on Figure 9.

Type I and II jumps do not show significant serial dependence. In contrast, Type III jumps have

autocorrelation of roughly -0.25 at the first lag. Moreover, Table VII shows that the smaller the

time period between these jumps, the stronger is the negative autocorrelation. Specifically, for

multiple jumps per day the autocorrelation is -0.64 and for jumps following each other within
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Figure 9. Autocorrelation of jumps of types I, II, and III. Period 2 (1999-2010).

Dashed lines show 95% confidence intervals. Only autocorrelation of Type III jump is
significantly different from zero and equal to -0.25 with standard error 0.047.

one week the autocorrelation becomes weaker -0.18. The autocorrelation becomes insignificant

when a jump occurs later than one week from the previous one.

In conclusion, Hypothesis II, which states that jumps are serially independent, holds for

Type I and II jumps but is rejected for Type III jumps. Specifically, jumps of Type III have

statistically significant negative autocorrelation with preceding jumps, and this autocorrelation

is much stronger for multiple jumps per day. Such fast mean-reversion of jumps contradicts to
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TABLE VII

PROPERTIES OF TYPE III JUMPS DEPENDING ON THE TIME SINCE THE
PREVIOUS JUMP

Time spana < day week month > month
Median time 0.01 2.95 11.17 36.03
Count 155 100 147 51
Autocorrelation -0.64 -0.18 -0.01 -0.06
SE 0.06 0.08 0.08 0.08
Leverage effectb -0.24 -0.45 -0.54 -0.33
SE 0.08 0.07 0.07 0.08

a To compute the time between jumps, the pairs of jumps were formed. Every jump, except the first
one and the last one, is a member of two pairs. For example, three jumps: # 1: Feb 01 at 9:30 am; #
2: Feb 01 at 1:30 pm; # 3: Feb 10 at 12 pm, form two pairs: (# 1, #2) and (# 2, #3) with time spans:
5.24 days and 9.10 days.

b The leverage effect is computed with the simultanuous changes in the S&P.

the common perception of volatility as a persistent process and more likely to be an evidence

of noise in the VIX.

6.4 Hypothesis III and the leverage effect

Along with testing Hypothesis III, this section also provides a nonparametric estimate of

the diffusive correlation ρ and the jump correlation ρJ in the model described in Section 5.1.

Based on this model, ρ is the correlation of Type IV movements with simultaneous changes in

other time series while ρJ is the correlation for Type I jumps. Noteworthy, the model assumes

no correlation for jumps of Type II and III.

Figure 10 presents scatterplots for each type of jumps with least squares regression lines

superimposed. Jumps of Type I have the strongest correlation of -0.95 (left upper panel).
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Type II jumps have also large in absolute value correlation of -0.87 (left bottom panel). The

difference between these two values of correlation is not statistically significant. This might be

the evidence that Type II jumps are misclassified Type I jumps and all jumps in price should

be modeled as strongly negatively correlated with simultaneous changes in volatility. In our

model, it means that the intensity of independent or unmatched price jumps vanishes: λp = 0

and Hypothesis III does not hold for price jumps. In contrast, the weakest correlation of jumps

of Type III (right bottom panel) of -0.41 is significantly different from correlations of other

types of movements and may be the evidence that the unmatched jumps in the VIX should be

accounted in the model λv > 0.

The above decomposition of the leverage effect by categories of stock changes is important

because the literature has not agreed yet on the relative contribution of jumps and diffusive

components. On the one hand, the recent non-parametric study in (25) argues that “jumps

are an important channel for generating leverage effect.” This claim is consistent with models

generating dynamic leverage effect through jumps, for example, (43) and (44), in which “a

negative price jump leads to an increase in the future volatility.” On the other hand, (45) argue

that “the leverage effect, or asymmetry between returns and volatility, works primarily through

the continuous volatility component.” Parametric and nonparametric models in Table V, suggest

that the jump dependence is slightly stronger than that of diffusive returns, which corresponds

to all my results except Type III jumps.

Thus, Type III jumps is the only type of movements in the VIX, which seem to contribute

little or diminish the leverage effect. In itself, correlation of -0.41 is not very small in absolute
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Figure 10. Scatterplots by types of movements in the VIX and S&P 500 (1999-2010).

A least-squares line is superimposed on each plot.
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value. But let us consider what constitutes this estimate. First, this group contains jumps,

which fail to pass the threshold of the jump test only by a little bit (see Figure 16). These

jumps are highly correlated with simultaneous returns and should increase the strength of

the correlation for Type III jumps. Second, in our model each return always has a diffusive

component which has correlation of -0.61 as mentioned before. This fact will also push up the

absolute value of the correlation. Therefore, to obtain correlation of -0.41, we should expect a

significant amount of Type III jumps which have zero correlation with the simultaneous changes

in the S&P, i.e., λv > 0.

Now let us consider whether unmatched jumps in the VIX are possible. On the one hand,

the value of the leverage effect for Type III jumps disagrees with the empirical knowledge about

the VIX. The strong negative correlation of the changes in the VIX with the returns on the

S&P is the most famous and important property of the VIX, the reason why it is called a “fear

gauge.” This argument has been widely used for portfolio hedging and explains the popularity

of VIX derivatives. The CBOE website provides annual estimates of the sample correlation

between the two time series in the (-0.85;-0.75) range computed from daily observations during

2004-2009. All literature sources in Table V provide correlation of jumps from -1.0 to -0.53.

According to my results, Type I, II and IV are consistent with these estimates.

On the other hand, the literature on parametric models does not completely reject the

possibility of independent or unmatched jumps in volatility (hence - not correlated with returns),

though some preference is given to simultaneous jumps. Following the model of (26), references

(6), (7), (8), (9), and (10) among others, have accounted for the matched jumps in price and
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volatility along with unmatched jumps. Particularly, using daily settlement prices, reference

(8) has shown that the model with correlated jumps in stock prices and stock price volatility is

“better in fitting options and returns data simultaneously.”

Thus, the literature does not refute the existence of Type III jumps, i.e., it is possible

that λv > 0. However, deeper analysis of Type III jumps certainly gives more insight against

the plausibility of such extreme and uncorrelated movements. Particularly, it is found that if

Hypothesis I and II do not hold for some movements, then the leverage effect is also weaker for

those movements. For example, as shown in Table VII, more frequent jumps are characterized

by the significantly weaker leverage effect. Multiple jumps per day have the weakest leverage

effect of -0.24 while jumps which are one week to one month apart from each other have the

leverage effect of -0.54. Therefore, if it is assumed that multiple jumps per day are likely to

be noise, then it follows that the strong leverage effect is a property of a real jump. Similar

argument also applies to the volatility change after a jump. According to Table VIII, Type

III jumps with the significant change of volatility also have a very strong leverage effect (-0.73;

-0.67), while the average value of the leverage effect is for Type III jumps is -0.41 (Figure 10).

And this correlation is not stronger because these jumps are larger. Conversely, the upper panel

of this table shows that their standard deviation of 8.3 is somewhat smaller than 8.7, the metric

for all Type III jumps.

In conclusion, Type I and II jumps are characterized by the strong and similar leverage

effect. This appears to be the evidence that Hypothesis III does not hold for price jumps and

they should be modeled as matched with volatility jumps. The diffusive leverage effect is also
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TABLE VIII

DESCRIPTIVE STATISTICS OF TYPE III JUMPS THAT WERE FOLLOWED BY THE
SIGNIFICANT CHANGE OF VOLATILITY

Type of jumpsa,b Count Mean Std.Dev. Median Min Max Skew Corrd

A. All Type IIIc 454 0.5 8.7 6.1 -21.2 31.8 -0.0 -0.41
B. Including Type III with Signif. Vol. Changee

Type III. SP (volatility change) 33 -0.1 3.1 0 -5.4 5.5 0.15 -0.73
Type III. VIX (volatility change) 33 1.4 7.5 6.2 -13.5 10.8 -0.5 -0.73

Type III. SP (vol of vol change)f 31 0.13 3.2 0 -5.9 5.5 -0.01 -0.67

Type III. VIX (vol of vol change)f 31 -0.7 8.3 -6.1 -16.0 10.8 -0.1 -0.67

a Period 2: 1999-2010.

b Jump size is measured in multiples of five-minute daily standard deviations of logarithmic
returns.

c Panel A: Descriptive statistics for all Type III jumps in Period 2.

d “Corr” refers to the leverage effect.

e Panel B: Only jumps for which the significant change of volatility after a jump is observed.

f “Vol of vol” means “volatility of volatility.”

very strong -0.66 and very close to that estimated on daily data (-0.85, 0.75). Only Type III

have the weakest leverage effect of -0.41. Moreover, the less counterintuitive are the properties

of these jumps the weaker the leverage effect is. This might work against the plausibility of

Type III jumps, i.e., it is highly probable that Hypothesis III does not hold for volatility jumps

too.
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6.5 Hypothesis IV. Do jumps correspond to news announcements?

This section analyzes whether detected jumps correspond to important events and provides

the most representative examples of jumps on intraday plots. Table IX shows an attempt

to match 10 largest jumps of each type with news announcements, using the Google search

engine. Similarly to previous sections, only Type I and II have more reasonable behavior, i.e.

it is possible to relate them to news releases. In contrast, jumps of Type III, though very

large, seem to happen with no apparent reason. This table also provides time of jumps, which

shows that interest rate related announcements usually reach the market around 1:10-1:30 PM

Central Time (CT). More detailed description of some days with jumps and related events is

given below.

Type I jumps. Figure 11 depicts jumps of opposite sign in both the S&P and VIX at

about 12:40 p.m. CT on September 29, 2008. These abrupt movements correspond to a major

economic event - the vote of the Congress against Lehman-Brothers’ bailout, which has been

elaborated on the day before. On Figure 12, the negative jump in the VIX at 12:15 p.m. CT on

January 03, 2001 corresponds to the positive jump in the S&P. At about this time the market

has been surprised by the unexpected news about the interest rate cut (CNNMoney.com). This

day is also indicative because of a negative jump in the VIX, which apparently corresponds to

the calming effect of this news. Negative volatility jumps are not specified in commonly used

option pricing models; however, this one is a good evidence for models to be less restrictive on

the direction of big volatility movements.
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TABLE IX

TEN LARGEST JUMPS OF EACH TYPE

Date S&P, VIX, S&P, VIX, P-v.a Event
sigma sigma % %

Jumps of Type Ib

Dec. 11, 2007 1:15 PM -10.9 8.8 -1.0 5.7 FOMCc: decrease target rate
May. 18, 1999 1:10 PM -9.4 8.6 -0.8 2.7 FOMC: asymmetric directive toward tightening
Dec. 11, 2007 1:20 PM -8.7 9.3 -0.8 6.0 FOMC: decrease target rate
Sep. 29, 2008 12:40 PM -8.1 12.5 -3.0 9.2 0.0 House voted against Lehman-Brothers bailout
Nov. 06, 2002 1:30 PM -7.6 10.2 -1.1 3.5 0.1 Fed Res: interest rate cut
Dec. 21, 1999 1:10 PM 8.7 -10.6 0.9 -3.4 0.0 FOMC: meeting
Sep. 18, 2007 1:15 PM 15.2 -14.0 1.2 -8.8 0.0 Fed Res: interest rate cut
Jan. 03, 2001 12:15 PM 16.1 -23.2 3.7 -11.6 0.3 Fed Res: interest rate cut
Jun. 30, 1999 1:15 PM 16.1 -14.1 1.5 -4.1 0.0 FOMC: symmetrical directive.
Apr. 18, 2001 9:55 AM 18.5 -8.2 2.6 -3.6 0.4 Fed Res: rate cut

Jumps of Type IIb

May. 06, 2010 1:40 PM -11.1 4.5 -2.6 9.1 “Flash Crash”
Aug. 08, 2006 1:20 PM -10.6 5.5 -0.7 2.0 0.2 Fed skips interest-rate increase
Jun. 25, 2003 1:20 PM -9.2 1.9 -0.8 0.5 0.0 FOMC: interest rate cut
Nov. 26, 1999 11:50 AM -9.0 5.5 -0.4 1.4 –
Nov. 16, 1999 1:20 PM -8.9 5.5 -0.8 2.1 0.0 FOMC: meeting
Mar. 18, 2009 1:20 PM 7.7 -4.9 1.7 -2.0 0.0 FOMC: press release
Jan. 30, 2008 1:15 PM 7.7 0.0 1.0 0.0 0.0 Fed Res: interest rate cut
May. 06, 2010 1:50 PM 8.1 -0.1 1.9 -0.2 “Flash Crash”
Nov. 23, 2007 11:55 AM 8.5 -6.0 0.4 -1.6 Fed Res Statistical Release H.4.1d

Apr. 18, 2002 11:20 AM 9.1 -1.9 0.9 -1.0 Fed Res Statistical Release H.4.1d

Jumps of Type IIIb

Sep. 14, 2009 1:25 PM 4.1 -21.2 0.3 -4.3 –
Nov. 09, 2009 12:20 PM 0.0 -21.1 0.0 -4.9 –
Nov. 15, 1999 11:05 AM 0.0 -20.7 0.0 -5.3 –
Dec. 24, 2001 12:10 PM 2.6 -20.3 0.1 -2.5 –
Sep. 15, 2006 2:00 PM 0.3 -20.0 0.0 -6.1 –
Nov. 09, 2009 12:35 PM 2.6 17.7 0.2 4.3 –
Nov. 12, 2007 2:05 PM 0.2 18.3 0.0 16.3 –
Sep. 15, 2006 1:55 PM 0.0 19.5 0.0 6.3 –
Apr. 12, 1999 9:25 AM 1.6 22.1 0.2 9.7 0.4 –
Nov. 15, 1999 11:00 AM -0.4 31.8 -0.0 8.8 –

a P-value for the test of volatility change after a jump (see Section 6.2).

b Each type of jumps is represented by 10 largest in absolute value jumps measured in sigma.

c FOMC: Federal Open Market Committee.

d Factors affecting reserve balances of depository institutions and condition statement of federal reserve
banks.
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Type II jumps. Figure 13 shows the infamous May 6, 2010 Flash Crash, during which a

large drop at around 1:40 p.m. CT is followed by almost immediate recovery 10 minutes later.

Figure 14 depicts drop in the S&P at approximately 1:20 p.m. on August 8, 2008 when the

news comes that the Federal Reserve would skip the interest rate increase anticipated by the

market.

Type III jumps. Figure 1 from Section 1 reports an intraday plot for September 13, 2006.

The VIX makes five large moves before 11 a.m. while nothing similar happens in the S&P. The

jump test must detect three1 jumps in the VIX and no jumps in the S&P. The Google search

engine provides no information on any event on this day, which can be associated with such

movements. Fortunately, on this particular day, the fact that these movements bring the level

outside of the daily range as defined by daily min/max reported by the CBOE helps filter these

movements out as discussed in Section 3.1 and Appendix B. However, such noise filtering does

not help to avoid all mistakes in the data. Another example of unmatched jump in the VIX is

depicted by Figure 15. On May 08, 2005 at 11:45 p.m. the VIX suddenly increases from 12.0

to 12.4 but remain in daily bounds (not shown here). In fact, such unmatched jumps which

cannot be eliminated based on daily bounds appear quite often especially in the first half of

the dataset.

Misclassified jumps. The random nature of the jump test will always produce some

misclassification. Figure 16 presents one example of it. The jump in the VIX on February 27,

1Only three jumps, because the drop, which is followed by the almmost immediate “recovery” to
almost the same level, might not be detected at a 5-minute sampling frequency.
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Figure 11. Type I jump on an intraday plot. Matched jumps in the S&P and VIX. September
29, 2008.

The two upper panels refer to the level of the S&P and its 5-min logarithmic returns. The two
lower panels represent the same for the VIX. The red bar marks a detected jump. The S&P
drops and the VIX raises around 12:40 p.m. These rapid movements appear to correspond to
the news arrival that the House has voted against the Lehman-Brothers bailout elaborated by
the Congress on the day before.
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Figure 12. Type I jump on an intraday plot. Matched jumps in the S&P and the VIX.
January 03, 2001.

The two upper panels refer to the level of the S&P and its 5-min logarithmic returns. The two lower
panels represent the same for the VIX. The red bar marks a detected jump. The negative jump in
the VIX at 12:15 p.m. CT corresponds to the positive jump in the S&P. The Federal Reserve made a
surprise announcement about the interest rate cut (CNNMoney.com).
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Figure 13. Type II jump on an intraday plot. Unmatched jumps in the S&P. The May 6, 2010
Flash Crash.

The two upper panels refer to the level of the S&P and its 5-min logarithmic returns. The two
lower panels represent the same for the VIX. The red bar marks a detected jump.
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Figure 14. Type II jump on an intraday plot. Unmatched jumps in the S&P on August 8,
2008.

The two upper panels refer to the level of the S&P and its 5-min logarithmic returns. The two
lower panels represent the same for the VIX. The red bar marks a detected jump.
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Figure 15. Type III jump on an intraday plot. Unmatched jump in the VIX). March 08, 2005.

The two upper panels refer to the level of the S&P and its 5-min logarithmic returns. The two
lower panels represent the same for the VIX. The red bar marks a detected jump.
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Figure 16. A jump of Type III, which can be classified as Type I. February 27, 2007.

A downward correction in the stock market after a nearly eight-month rally, which pushed the
Dow Jones to record highs and and S&P 500 to more than six-year highs. The two upper panels
refer to the level of the S&P and its 5-min logarithmic returns. The two lower panels represent
the same for the VIX. The red bar marks a detected jump.
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2007 has been classified as a Type III jump but could also belong to Type I for the smaller

thresholds of the jump test. Indeed, around 2:00 p.m. CT both VIX and S&P move in opposite

direction. For the Dow Jones industrial average it was the seventh biggest one-day point drop

ever. This massive selling has been triggered by “a big decline in Chinese stocks, weakness in

some key readings on the U.S. economy and news that Vice President Dick Cheney was the

apparent target in a Taliban suicide bombing attack in Afghanistan” (CNNMoney.com).

In conclusion, jumps of Type I and II can be associated with events, while most Type III

jumps cannot. Noteworthy, it seems that if Type III jumps nevertheless can be traced to events,

they could be also classified as Type I jumps with the lower threshold of the jump test, as was

discussed in the last example about February 27, 2007.



CHAPTER 7

DISCUSSION AND ROBUSTNESS CHECK

7.1 Hypothesis V. Are there pseudo-jumps in the VIX?

Table X summarizes the most important findings of the previous section. It is shown that

Type I and II jumps, i.e., both matched and unmatched jumps in the S&P, appear to agree

with predictions from the standard option pricing model in their frequency, leverage effect,

volatility change and serial independence. In contrast, Type III jumps (unmatched jumps

in the VIX) challenge the model. Specifically, Hypothesis I (Volatility should change after a

volatility jump) and Hypothesis II (Jumps are serially independent) are rejected for Type III

jumps. Furthermore, Section 6.5 shows that Type III jumps unlike other types of jumps seem do

not correspond to events which are commonly considered to strongly influence the stock market.

Besides, the VIX has been criticized in the literature as shown in Section 2.1. Importantly, (14)

also report large unexplainable moves in the VIX. In addition, Chapter 4 demonstrates overall

inferior quality of the VIX data. Therefore, I suggest that Hypothesis V is true, i.e., Type III

jumps contain a large amount of pseudo-jumps.

Alternatively, one can still assume that Hypothesis V is false and all movements in the

high-frequency VIX are reliable. Then one should include in the model the unmatched volatility

jumps with following properties. First, these jumps are at least eight times more frequent than

price jumps. Second, these jumps have strong negative autocorrelation, which is even more
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negative if the time between jumps is smaller, especially within one day. Finally, the spot

volatility does not change after these volatility jumps.

7.2 Robustness check

The characteristics of jumps documented in preceding sections are qualitatively robust under

different test designs as shown in Table X.

First, I relax the critical values of the jump test. The need for this adjustment can be

justified by examining Figure 16. All jumps in the VIX shown on this figure are classified as

Type III jumps because the counterpart in the S&P is not large enough to be selected as a

jump, but would be selected for smaller test thresholds. Thus, in Table X “Test threshold =

6/5” means that the matched jumps (Type I) include all following pairs of movements:

• The S&P has a jump > six sigmas in absolute value and the VIX has a simultaneous

movement > five sigmas.

• Similarly, the VIX has a jump > six sigmas in absolute value and the S&P has a

simultaneous movement > five sigmas.

Panels C, D, and E of Table X reveal that Type III jumps remain different from other types

of movements. Overall, relaxing the test threshold brings in more jumps of smaller sizes and

decreases the percentage of jumps followed by the volatility change.

Second, I use a different volatility measure, the “trimmed” RV1. Panel F of the same table

shows the substantial increase of the total number of all jumps in comparison to the standard

1Several extreme returns are discarded from the RV estimation. Then RV is augmented as if the tails
are cut from a normal distribution.
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TABLE X

SUMMARY OF RESULTS FOR DIFFERENT TEST SETTINGS. PROPERTIES OF 5-MIN
LOG CHANGES IN THE VIX AND S&P BY TYPES OF MOVEMENTS

Type S&P VIX Count St. deviation Leverage Effect Volatility changea Autocorr Time

S&P VIX (SE)b S&P VIX (SE) trend

A. Period 1.c Test threshold = 6/6

I Jd J 4 16.69 15.52 -0.80 (0.43) 1.00 1.00 0.00 (0.00) No
II J NJe 35 7.10 3.05 -0.72 (0.12) 0.44 0.22 -0.09 (0.10) No
III NJ J 1309 1.31 10.93 -0.11 (0.03) 0.10 0.15 -0.18 (0.03) Yes
IV NJ NJ 125732 1.05 1.20 -0.24 (0.003)

B. Period 2. Test threshold = 6/6
I J J 29 9.40 10.16 -0.95 (0.06) 0.50 0.50 0.28 (0.18) No
II J NJ 31 7.73 4.23 -0.87 (0.09) 0.35 0.25 0.01 (0.19) No
III NJ J 454 2.13 8.66 -0.41 (0.04) 0.15 0.14 -0.25 (0.05) No
IV NJ NJ 205694 1.03 1.15 -0.66 (0.002)

C. Period 2. Test thresholdf = 6/5
I J J 58 7.94 8.53 -0.95 (0.04) 0.40 0.38 0.21 (0.13) No
II J NJ 23 7.53 3.62 -0.83 (0.12) 0.31 0.25 0.15 (0.13) No
III NJ J 433 1.83 8.74 -0.38 (0.04) 0.14 0.13 -0.32 (0.05) No
IV NJ NJ 205694 1.03 1.15 -0.66 (0.002)

D. Period 2. Test threshold = 6/4
I J J 89 7.21 8.22 -0.90 (0.05) 0.33 0.26 0.18 (0.11) No
II J NJ 13 7.61 2.44 -0.72 (0.21) 0.27 0.45 0.08 (0.30) No
III NJ J 412 1.57 8.74 -0.35 (0.05) 0.15 0.14 -0.31 (0.05) No
IV NJ NJ 205694 1.03 1.15 -0.66 (0.002)

E. Period 2. Test threshold = 5/5
I J J 68 7.64 8.17 -0.95 (0.04) 0.38 0.38 0.40 (0.11) No
II J NJ 68 6.06 3.39 -0.86 (0.06) 0.31 0.24 -0.09 (0.12) No
III NJ J 828 2.00 7.35 -0.47 (0.03) 0.10 0.09 -0.22 (0.03) No
IV NJ NJ 205244 1.02 1.12 -0.67 (0.00)

F. Period 2. Trimmed RV. Test threshold = 6/6
I J J 57 9.57 10.47 -0.90 (0.06) 0.45 0.40 0.25 (0.13) No
II J NJ 48 7.33 3.79 -0.83 (0.08) 0.38 0.32 0.03 (0.15) No
III NJ J 723 2.29 8.96 -0.45 (0.03) 0.13 0.13 -0.27 (0.04) No
IV NJ NJ 205380 1.08 1.24 -0.66 (0.00)

a Fraction of jumps for which the change in volatility is statistically significant at 5%.

b SE - standard error.

c Period 1: from Jan 01, 1992 to Dec 31, 1998. Period 2: from Jan 01, 1999 to Jun 30, 2010.

d J - this return is selected as a jump by a jump test.

e NJ - this return is not selected as a jump by a jump test.

f Test threshold = 6/5 means that, a jump is of Type I if its size >= 6 sigma while its counterpart >=
5 sigma.
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test setting in Panel B. Nevertheless, the statistical properties of Type III jumps are still stand

out against other types of jumps.



CHAPTER 8

CONCLUSION

Using a long sample of high-frequency data, I conduct a comprehensive study of jumps in

the VIX and document their statistical properties. I find that 94% of jumps in the VIX exhibit

a number of puzzling characteristics, which challenge assumptions of canonical option pricing

models. Particularly, the time series of these jumps has a strong negative autocorrelation, which

seems to be a characteristic of noise. Moreover, the smaller the time period between such jumps

the stronger is the negative autocorrelation. In addition, these jumps do not correspond to the

change in the spot volatility. Furthermore, these jumps unlike other types of jumps seem to not

correspond to events which are commonly considered to strongly influence the stock market.

I run various diagnostic tests and consider alternative explanations for my findings. I

conclude that the most plausible explanation is that many unmatched jumps in the VIX

are measurement errors, or pseudo-jumps, which might stem from flaws in calculation of VIX

reported in the literature. The presence of these highly influential outliers might considerably

distort the inference about volatility dynamics. For example, the jumpiness of volatility might

be overstated while the leverage effect might be understated. As a result, high-frequency studies

of VIX might benefit from preliminary data cleaning. I leave developing such procedure for

future research. This task is very important because would allow to use the complete dataset.

This study has one important limitation, which could be addressed in the future. The

methodological framework assumes that the behavior of the VIX is completely determined by
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the dynamics of the underlying process under the physical probability measure. Such approach

assumes that jumps in the unobserved spot volatility and the VIX should happen at the same

time and their sizes are related through a nondecreasing function. Furthermore, I assume that

properties of volatility jumps are similar to those of VIX jumps. However, according to some

recent studies such as (46), option prices may bear an extra risk factor relating to changes, for

example, in the market risk aversion. In theory, this factor may cause more complex dynamics

of the VIX resulting particularly in jumps only in the VIX with no relation to the spot volatility.

Nevertheless, to reject the hypothesis of pseudo-jumps these extra jumps in the VIX should

bear all strange properties of pseudo-jumps - occur several times per day, have the negative

autocorrelation, and do not associate with news arrivals. Importantly, these unmatched jumps

should be inhomogeneous with respect to these properties. For example, the autocorrelation

should be more negative if the jumps are closer to each other.
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Appendix A

ANNUAL NUMBER OF JUMPS

TABLE XI

ANNUAL NUMBER OF JUMPS

Common S&Pa VIX
Year S&P VIX jumps 6-9 9-12 >12 6-9 9-12 >12
1992 5 268 1 5 0 0 140 48 80
1993 4 330 0 4 0 0 181 69 80
1994 5 238 0 5 0 0 127 48 63
1995 5 231 1 4 1 0 124 59 48
1996 9 113 1 7 2 0 67 20 26
1997 5 80 0 5 0 0 55 15 10
1998 3 59 1 1 1 1 40 11 8
1999 9 57 5 7 1 1 44 6 7
2000 3 51 3 3 0 0 42 8 1
2001 4 28 3 2 0 2 16 7 5
2002 5 24 2 4 1 0 20 4 0
2003 5 27 0 4 1 0 21 6 0
2004 3 41 1 3 0 0 34 5 2
2005 6 65 3 6 0 0 51 10 4
2006 6 45 3 5 1 0 34 8 3
2007 9 30 5 7 1 1 16 7 7
2008 3 31 1 3 0 0 24 4 3
2009 6 58 2 6 0 0 45 5 8
2010 2 15 0 1 1 0 13 2 0
Total 97b 1791 32 82 10 5 1094 342 355

a Number of jumps of different sizes measured in multiples of robust standard deviation.

bThis small amount of jumps in the S&P seems to agree with structural models which reveal rare jumps
(∼ 5.1 per year).
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Appendix B

DATA ISSUES. AGREEMENT WITH THE CBOE DAILY DATA

I compare the high-frequency VIX (henceforth: HF VIX) to daily min/max/open/close downloaded

from the CBOE web-site (henceforth: Daily VIX). The HF VIX has 32 days less than the Daily VIX.

Though the CBOE guarantees no accuracy of the Daily VIX data, it seems that most times this

information helps detect erroneous observations in the HF VIX data set. I find that both VIX data

sets agree until the start of the computation of the VIX in real time on September 22, 2003. Apparently,

the early Daily VIX is extracted from the HF VIX, which is in turn computed from historical option

prices. However, in a “real-time era” the Daily VIX and HF VIX are quite often inconsistent. Moreover,

I discover that omitting the HF VIX data values outside the daily range records of the Daily VIX is

quite reasonable because most of such values disagree with adjacent data and market events. As a

result of this procedure the VIX kurtosis lowers significantly from 3760 to 200 in year 2004, for example.

Tables Table XIV and Table XV report the descriptive statistics for the raw data while tables Table XII

and Table XIII report the same for the data pre-filtered as described below:

1. Omit open prices of the VIX, which are incorrect quite often.

2. Omit the first 30 minutes of all trades before September 22, 2003.

3. Omit values outside the daily range.

I observe following issues with the data:

1. From the beginning of my sample period through September 19, 2003 (inclusive) the VIX has

strange pieces of constant values before 9 a.m. and after 3 p.m. An example of this behavior is

demonstrated on Figure 17. These flats are often inconsistent with other data, i.e. the sample
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Appendix B (Continued)

path is far from being smooth at exactly 9 a.m. and 3 p.m. Such peculiarity of data may induce

spurious jumps.

2. Since September 19, 2003 the VIX is available before 9 a.m. but this start of the day period has

a lot of erratic movements which make the intraday jumps indistinguishable.

3. The movements in the first 30 minutes are so erratic that they disagree with data in adjacent time

periods. For example, see Figure 1 and Figure 19. As shown on Figure 19 we sometimes can avoid

errors in the VIX as large as 250% of its daily value.

4. The lack of the VIX data after 3 p.m. is persistent through the whole data set, even after it starts

to be computed in real time on September 22, 2003.

Several exemplary days are shown on Figure 17. The lower panel of this figure represents intraday

evolution of the S&P futures and the VIX from the HF VIX. On October, 28, 1997 the VIX stays flat

at the level of 45% within first 30 minutes after opening and around 9 a.m. makes an abrupt upward

movement to almost 50. It appears that the S&P follows relatively smooth path during this time,

without flats and nothing noteworthy at 9 a.m. For these four days, open and closing prices of the VIX

correspond to those downloaded from the CBOE website as well as daily bounds.

Figure 18 gives an example of a day when open and closing prices are inconsistent. Specifically, the

open price of the VIX on October 24, 2008 is equal to the closing price on the day before which disagrees

with the HF VIX. In this case, the HF VIX looks more reasonable because the S&P makes an overnight

drop and, therefore, the VIX should increase overnight as well. Further, the lower bound on October 24,

2008 is derived from the wrong open price. On October 27, 2011 the intraday VIX values reach neither

the lower nor upper bounds downloaded from the CBOE website. I make no changes to my data in this

case.
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Appendix B (Continued)

Total number of cases when the HF VIX is outside the daily range from Daily VIX is 70. Such

instances are observed starting from 21-Jan-2004 to the end of the dataset. Most of these cases resemble

the one shown on Figure 19. It is suspicious that the VIX reaches 34% on July 25, 2005 immediately

after opening while the S&P slowly fluctuates between 1230 and 1240 within less than 1% of its level.

Moreover, the plots on Figure 19 show that the VIX is around 10-12 all other days. Thus such deviations

of the VIX up to 34% are suspicious. There are a lot of days when only the opening price is outside the

range. Most of such cases happen in the first 15 min of the trading day though some are in the middle

of the day. But middle day instances always look like the one on Figure 20 (lower panel).

In conclusion, omitting the intraday VIX values outside the daily range provided on the CBOE

website seems to be quite reasonable.
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TABLE XII

DESCRIPTIVE STATISTICS AFTER PRE-FILTERING. LEVEL

S&P 500 futures, 30 seca VIX, 1 mina

Year Mean St.Dev. Min Max Mean St.Dev. Min Max
1992 416 8.55 390 444 15.5 2.14 10.3 25.1
1993 452 10.2 427 473 12.7 1.31 8.89 18.3
1994 461 9.59 435 483 13.9 2.1 9.59 28.3
1995 544 46.4 460 630 12.4 1.01 10.1 17
1996 673 38.5 598 767 16.4 1.91 11.1 27.1
1997 878 76.9 733 992 22.4 4.16 16.4 48.6
1998 1091 67.7 918 1257 25.7 6.95 16.1 49.5
1999 1335 58.5 1210 1490 24.4 2.87 17.1 33.7
2000 1440 57.6 1271 1574 23.4 3.43 16.3 34.3
2001 1198 88.5 939 1390 25.9 4.88 18.7 49.4
2002 994 115 768 1178 27.4 6.95 17 48.5
2003 960 77.4 788 1111 22.2 5.27 15.5 35.7
2004 1130 32.2 1060 1220 15.5 1.89 11.1 22.6
2005 1210 30.3 1137 1284 12.8 1.42 9.89 18.6
2006 1316 51.6 1230 1444 12.8 2.18 9.39 23.8
2007 1483 45.3 1372 1586 17.5 5.36 9.71 37.4
2008 1230 188 740 1480 31.9 15.9 15.8 87.8
2009 945 115 666 1126 31.6 9.1 19.3 57.4
2010 1126 44.5 1024 1216 23.2 6.45 15.2 48.2

a Sampling interval.
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Appendix B (Continued)
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Figure 17. VIX. An example of a “flat” price in the morning.

The first 30 minutes of the VIX are almost always flat (from 8:30 to 9:00 a.m.). The same
applies to the last 15 minutes (from 3:00 to 3:15 p.m.) This problem persists until September
19, 2003 (the last day before the change of the VIX valuation method) and often after.
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Appendix B (Continued)
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Figure 18. VIX. An example of disagreements of the CBOE data.

Upper panel: On most volatile days the CBOE daily Open/Close/Min/Max disagree with the
high-frequency dataset on the VIX.
Lower panel: the S&P 500 futures.
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Appendix B (Continued)
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Figure 19. VIX. Example of a large strange movement.

The morning spike on July 25, 2005 appears to be suspicious.
The upper panel shows how the intraday trajectory of the VIX on July 25 compares with the
days before and after. The middle panes shows only July 25. The lower panel reports the S&P
500 futures.
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Appendix B (Continued)
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Figure 20. VIX. Minima are below than those reported by the CBOE in the daily dataset.

Upper panel: Minima in the HF VIX data on October 10, 2008 and August 25, 2009 are below
those in the Daily VIX data. Lower panel: The downward spike of the HF VIX data on August
25, 2009 is outside of the range of the Daily VIX data.
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Appendix B (Continued)

TABLE XIV

DESCRIPTIVE STATISTICS BEFORE PRE-FILTERING. LEVEL

S&P 500 futures,a 30 secb VIX,a 1 minb

Year Mean St.Dev. Min Max Mean St.Dev. Min Max

1992 416 8.55 390 444 15.5 2.14 10.3 25.1
1993 452 10.2 427 473 12.7 1.31 8.89 18.3
1994 461 9.59 435 483 13.9 2.1 9.59 28.3
1995 544 46.4 460 630 12.4 1.01 10.1 17
1996 673 38.5 598 767 16.4 1.91 11.1 27.1
1997 878 76.9 733 992 22.4 4.16 16.4 48.6
1998 1091 67.7 918 1257 25.7 6.95 16.1 49.5
1999 1335 58.5 1210 1490 24.4 2.87 17.1 33.7
2000 1440 57.6 1271 1574 23.4 3.43 16.3 34.3
2001 1198 88.5 939 1390 25.9 4.88 18.7 49.4
2002 994 115 768 1178 27.4 6.95 17 48.5
2003 960 77.4 788 1111 22.2 5.27 15.5 35.7
2004 1130 32.2 1060 1220 15.5 1.91 2.85 36.5
2005 1210 30.3 1137 1284 12.8 1.44 9.89 33.8
2006 1316 51.6 1230 1444 12.8 2.18 8.6 41.6
2007 1483 45.3 1372 1586 17.5 5.36 9.71 37.4
2008 1230 188 740 1480 31.9 15.9 15.8 87.8
2009 945 115 666 1126 31.6 9.1 18.5 57.4
2010 1126 44.5 1024 1216 23.2 6.45 15.2 48.2

a Only records within first 30 min of every day are removed before Sept 22, 2003.

b Sampling interval.
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