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SUMMARY

This thesis presents a variational computational framework for nanomechanics and electronic

structure calculations of semiconductors. In order to predict the properties of semiconductor

devices involving coupling between mechanical and electronic properties like flexible electronics,

a scalable computational framework is the need of the time. The thesis provides the first

step towards carrying out such computations by providing a real space method for electronic

computations and computationally efficient nanomechanics framework. However further study

is required to combine mechanical and electronic computational framework.

A multiscale computational framework using finite element method is presented for nanome-

chanics problems that combines fully coupled discrete models like molecular structural me-

chanics models at small scales and quasi-continuum mechanics models at larger scales. The

quasi-continuum models use material moduli defined via internal variables which are functions

of local atomic configuration, while the molecular mechanics model incorporates interatomic

potentials into its discrete model to derive nanoscale based material moduli. Point defects like

vacancy perturb the local atomic configuration and induce forces locally. A homogenization

scheme is used to evaluate the equivalent material moduli around the defect area by evaluation

of defect formation energy and incorporating it into molecular structural mechanics model. The

hierarchical multiscale finite element framework seamlessly combines both discrete and quasi-
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SUMMARY (Continued)

continuum models at each integration point and evaluates stress strain response and material

properties for defective and non-defective material. Representative examples are provided.

For electronic structure calculations the thesis starts with a study of stabilized formulation

of Schrödinger wave equation and numerical studies are conducted with Lagrange basis func-

tions for tetrahedral and hexahedral elements for three dimensional Kronig-Penney problem. It

is followed by presentation of B-splines and NURBS based finite element formulation for linear

Schrödinger wave equation and non-linear, non-local Kohn-Sham equations. The higher order

continuity and variation diminishing property of B-splines and NURBS basis functions offer sig-

nificant advantage over C0 Lagrange basis functions for representing high gradient solutions with

higher precision. In addition NURBS functions accurately represent geometries including conic

sections with minimum parameters thus avoiding errors due to boundary conditions and/or

geometries in electronic structure calculations. Self-consistent Kohn-Sham equations consist-

ing of Schrödinger wave equation and Poisson equations are solved. Representative examples

are provided for bulk gallium Arsenide, silicon and graphene and compared with planewave

solutions.
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1 INTRODUCTION

This thesis provides a computational framework for multiscale nanomechanics problems and

also a real space finite element framework for ab initio electronic structure calculations. The

thesis consists of two parts. The first part deals with a computational framework to seamlessly

combine quasi-continuum models and discrete models, like molecular mechanics or ab initio

calculations, in order to predict mechanical response and mechanical properties of nanoscale

materials with presence of defects or other local configuration changes at atomic level. The

section on nanomechanics gives a detailed background.

In order to efficiently combine discrete models like molecular-mechanics or ab initio elec-

tronic structure calculations with quasi continuum models and to evaluate the coupled mechan-

ical and electronic properties of materials like flexible electronic devices, a robust and scalable

computational model for electronic structure calculations is the need of the day. Particularly

computational models for electronic structure calculations based on real space methods like

finite element methods is an active area of research. This thesis is preliminary step to towards

this direction. The section on electronic structure calculations details the present scenario and

significant developments in our work.

1
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1.1 Nanomechanics

This section of thesis demonstrates the computational framework in the context of defective

and non-defective Carbon nanotubes (CNTs). CNTs are cylindrical molecules composed of

carbon atoms in a periodic hexagonal arrangement. From a nanostructure viewpoint CNTs can

be regarded as graphene sheets, i.e., 2-D array of carbon atoms in a hexagonal pattern, rolled

up in a way as to form seamless cylinders [5]. Nanotubes possess remarkable mechanical and

electronic properties that make them promising candidates for application in nanotechnology

[6,7]. Modeling of these nanomaterials involves phenomena with multiple spatial and temporal

scales and this has attracted considerable attention from the research community. In general

two approaches have been adopted by various researchers to describe material properties at

small and large length scales: (i) the bottom up approach that is based on quantum/molecular

mechanics, and (ii) the top down approach that is based on continuum mechanics. A good

account of the modeling issues in CNTs and an overview of the various methods proposed in

the literature is presented in Liu and coworkers [8, 9], Belytschko et al. [10–12], Yakobson and

coworkers [13,14], and references therein.

The availability of accurate interatomic potentials makes classical MD simulations a promi-

nent tool for modeling nanotubes [15–19]. However single scale methods such as ab initio

quantum mechanical methods or molecular dynamics (MD) methods have difficulty in analyz-

ing hybrid structures due to the limitations in terms of the time and the length scales that these

methods are confined to [9,11]. Qian et al. [8] indicate that despite the increase in the computa-

tional power and improvement in algorithms, classical molecular dynamics simulation is limited
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to 106-108 atoms for a few nanoseconds. On the other hand pure continuum based models for

nanomechanics are not sensitive to the changes in the local atomic configurations and therefore

cannot account for the nanoscale effects. One numerical approach that has been applied to

many problems is to use MD only in localized regions in which the atomic-scale dynamics are

important, while using a continuum simulation method everywhere else [11, 20–22]. The issue

of disparate time scales in the two regions has been addressed and some simplified treatments of

the interface between the atomistic and continuum regimes have been proposed [9]. Huang and

coworkers have proposed a nanoscale based continuum theory [23, 24], and Gao and coworkers

have developed stick-spiral models for CNTs and graphene sheet [3]. In the present era of nan-

otechnology, it has become increasingly important to model phenomena at microscopic length

scales that lie between the mesoscopic scales and the nanoscales. However a microscopic model

can involve up to a scale of several microns consisting of billions of atoms, which is outside

the range of MD simulations to date [8]. In view of these technical difficulties, new multiscale

approaches are required to successfully address the class of problems where molecular scales

interact with microscales [25]. For some successful multiscale approaches that provide a link

between quantum/molecular and continuum descriptions of the material properties, the inter-

ested reader is referred to the works of Belytschko and coworkers [11], Liu and coworkers [8,9],

and Huang and coworkers [26] (and references therein).

This part of thesis presents a mathematically consistent multiscale computational frame-

work for bridging the gap between molecular mechanics and qausi-continuum mechanics in

the modeling of carbon nanotubes. Contrary to the computational nesting of information from

smaller scales into the larger ones, we propose a novel mathematical nesting of scales that yields



4

the hierarchical multiscale method. We employ two overlapping domains: a quasi-continuum

domain for the defect free graphene sheets and nanotubes, and an atomistic domain that over-

lays the region containing point defects and models the localized fields around defects. For the

modeling of the quasi-continuum domain, interatomic potentials [15,19] are incorporated in the

stick-spiral model of Chang and Gao [3] that yields nanoscale based mechanical material moduli

via a set of analytical equations. These material moduli are functions of internal variables of

changes in bond lengths and bond angles, and are then used in the quasi-continuum modeling

of the defect free nanostructures. In the atomistic calculations around the point defects, the

formation energy of vacancy (section 2.3.1) [27, 28] is evaluated and employed in conjunction

with the stick-spiral model [3] to account for the local changes in the atomic structure and to

generate the localized force fields. These localized nanoscale force fields are then used in the

variational multiscale method to model the localized displacements in the vicinity of vacancies

and defects.

An outline of the chapter 2 is as follows. In section 2.1 we present the general variational

multiscale framework that underlies the proposed computational nanomechanics method. Sec-

tion 2.2 presents the stick-spiral molecular mechanics model of Chang and Gao [3] embedded

with interatomic potentials [15, 19] to extract scale dependent material properties of continu-

ously deforming CNTs. Section 2.3 presents the formation energy of vacancy that is employed to

extract the localized material properties in the vicinity of the defects, and a method to extract

the driving forces for the modeling of mechanical fields around the point defects. Numerical

results are presented in Section 2.4.
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1.2 Electronic Structure Calculations

This section of thesis consists of two parts.

1.2.1 Stabilized variational formulation

The first part deals with numerical study of linear SWE with Lagrange basis functions.

The time-independent Schrödinger equation, termed as the Schrödinger wave equation (SWE)

is used to determine the electronic structure of periodic solids. SWE has a differential form

that involves continuous functions of continuous variables, and is therefore suitable for the

application of variational methods to the study of electronic properties of periodic materials.

The eigen-solutions of SWE correspond to different quantum states of the system. Various

numerical approaches have been adopted for the solution of SWE that include finite element

[2, 29–31] and finite difference methods [32, 33]. The advantages and utility of finite element

method over ab-initio methods is discussed in detail in [29].

In this section we explore two variational formulations for SWE. Our objective is to study

the convergence properties of the finite element methods based on the proposed variational

formulations where we have employed lower-order standard Lagrange interpolation functions.

We are motivated by the notion of subgrid scale methods [34,35] which in the present context can

help in an accurate calculation of higher eigenvalues in the system. Stabilized methods based

on variational multiscale ideas, when applied to a number of physical phenomena [36–40] have

shown higher accuracy on cruder discretizations as compared to the corresponding standard

Galerkin formulations.
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An outline of chapter 3 is as follows. Section 3.1 presents the Schrödinger wave equation and

its standard Galerkin form. Section 3.2 presents the Galerkin/Least-Squares (GLS) formulation

for SWE. Section 3.3 develops a stabilized formulation that is motivated by the variational

multiscale ideas. Section 3.4 presents results that demonstrate the accuracy and convergence

properties of the methods for a model problem (Kronig-Penney problem) for which analytical

results are available.

1.2.2 B-spline and NURBS based finite element methods for full electronic struc-

ture calculations

First-principles (ab-initio) computational techniques like density functional theory (DFT)

[41, 42] has provided important insight into the electronic and chemical properties of real ma-

terials, namely those containing defects, impurities, surfaces etc., without the need to have

any experimental data as input. In DFT, Schrdinger wave equation and Poisson equation are

solved self-consistently until convergence is achieved. Traditional numerical techniques in this

field use plane-wave (PW) basis functions [43, 44], which are not local in real space. This (a.)

seriously limits the size of the problem that can be solved as global basis functions like PW

leads to O(N3) system where N refers to the number of PW basis functions in the system; (b.)

introduces inefficiencies in parallel implementation of code due to communication between pro-

cessors for evaluation of non-local terms; (c.) PW basis have the same resolution everywhere in

real space and thus is inefficient for problems with local inhomogeneities or where local electron

states are important; (d.) In addition PW basis functions are limited to periodic boundary con-

dition, which is disadvantageous with respect to cluster and surface calculations; (e.) Fourier
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transform, which is inefficient for parallel computing, is required for PW method. As an at-

tempt to overcome these inefficiencies of PW method, a finite element variational framework is

suggested. In finite element framework basis functions have local support, thus minimizes com-

munication in parallel codes. In addition algorithms can be designed to lead to a linear scaling

system because of local support of basis functions, which is highly advantageous for solving

large scale problems. Finite element framework allows implementation of Dirichlet, Neumann,

mixed in addition to periodic boundary conditions and thus useful for cluster and surface cal-

culations. For more detailed discussion on this topic please refer Pask et al. [1]. Recently Pask

et al. [1, 2] has used C0 Lagrange basis functions for DFT calculations in finite element frame-

work limited to pseudopotential formulation [45]. In this paper we use higher order formulation

using B-spline and NURBS basis functions in finite element framework. Hughes et al. [46] have

demonstrated the use of B-spline and NURBS basis functions in the context of solid mechanics

and finite element framework. The advantage of B-spline and NURBS basis functions with

respect to Lagrange basis functions are (a.) B-splines and NURBS provide Cp or Cp−k basis

functions, where p is the order of B-spline or NURBS basis function and k refers to multiplicity

of knot values in knot vector. This will be explained in detail in the section 4.2. Higher order

basis functions can represent high gradient functions as atomic potentials more accurately. (b.)

In addition, unlike Lagrange basis functions display Gibbs phenomenon for higher order polyno-

mials, B-spline and NURBS functions have variation diminishing property [46]. This property

again is useful in representing high gradients in solution more accurately. (c.) NURBS func-

tions can represent geometries with conic sections, like cylinders or spheres, accurately with
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minimum parameters, unlike Lagrange basis function where geometry has to be approximated.

This is useful in accurately applying boundary conditions, thus avoiding errors in computation.

In section 4.1, we review the solution of Kohn-Sham equations in finite element framework.

Then we give an introduction to B-spline and NURBS basis functions and their relevant proper-

ties in section 4.2. In section 4.3, we discuss the some numerical results for both self-consistent

and non-self-consistent solution of Schrdinger wave equation.



2 NANOMECHANICS

2.1 A Multiscale Computational Framework

A mathematically consistent multiscale framework for bridging the gap between molecular

mechanics (fine scales) and quasi-continuum mechanics (microscales) is presented here for the

modeling of micro- and nanostructures. A hierarchical multiscale variational framework based

on the work of Masud et al. [47, 48], and Masud and Franca [35], the key ideas underlying the

proposed multiscale method for computational micro- and nanomechanics is illustrated.

2.1.1 Two-level scale separation

Let Ω ⊂ Rnsd be an open bounded region with piecewise smooth boundary Γ. In general the

number of space dimensions nsd is equal to 3, however for planar nanomaterials like graphene

sheets or unwrapped nanotubes nsd is equal to 2. Boundary Γ admits a unique decomposition

Γ = Γg
⋃

Γh, where Γg and Γh are parts of the boundary with prescribed Dirichlet and Neu-

mann conditions, respectively. Let L be the operator of the equation governing the deformation

of the nanostructure. Abstract form of the governing equation is:

Lu = f in Ω (2.1)

9
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where u is the unknown field, and f is the forcing function. Without loss of generality we

consider Dirichlet type boundary conditions u = g on Γg. The standard variational form can

be expressed as:

(w, Lu) = (w, f) (2.2)

where w represents the appropriate test functions, and (·, ·) =
∫
Ω (·) dΩ is the L2 (Ω) - inner

product. We consider discretization of the domain into non overlapping subregions/elements.

The sum over the interiors of these subregions is indicated as Ω′ and is defined as Ω′ =⋃numel
e=1 (int) Ωe, where numel is the total number of elements in the computational grid. The

sum over element boundaries is indicated as Γ′ and is defined as Γ′ =
⋃numel
e=1 Γe.

We assume an overlapping additive decomposition of the total solution into coarse scales ũ (i.e.,

meso-to-micro scales) and fine scales u′ (i.e., micro-to nano scales), represented as

u = ũ + u′ (2.3)

Likewise we assume an overlapping sum decomposition of the weighting function

w = w̃ +w′, (2.4)

where w̃ are the weighting functions for the coarse scales and w′ are the weighting functions

for the fine scales. To keep the presentation simple and without loss of generality, we assume

that the fine scales vanish at the inter-element boundaries Γ′.

We also assume a unique additive decomposition of the forcing function into coarse scales f̃

(meso-to-micro) and fine scales f ′ (micro-to-nano) components, represented as

f = f̃ + f ′ (2.5)
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Substituting the additively decomposed u, wand f in (2.2) we get(
w̃ +w′, L

(
ũ+ u′

))
=
(
w̃ +w′, f̃ + f ′

)
(2.6)

The proposed decomposition of the forcing function gives rise to a further decomposition of the

coarse and fine scale solutions such that

ũ = ũf̃ + ũf ′ (2.7)

u′ = u′
f̃

+ u′f ′ (2.8)

wherein ũf̃ and u′
f̃

are the coarse and fine scale components of the solution that arise because

of meso-to-micro force terms f̃ . Similarly, ũf ′ and u′
f ′ are the coarse and fine scale components

of the solution that arise because of micro-to-nano force terms f ′. Substituting (2.7) and (2.8)

in (2.6) we get

(
w̃ +w′, L

((
ũf̃ + ũf ′

)
+
(
u′
f̃

+ u′f ′

)))
=
(
w̃ +w′, f̃ + f ′

)
(2.9)

Equation (2.9) yields a fully coupled system for the coarse and fine solution fields that arise

because of the meso-micro forcing functions f̃and the micro-nano forcing function f ′. Assuming

a unique additive decomposition of f into f̃ and f ′, we can split (2.9) into two sub-problems.

Meso-Micro Scale Problem:

(
w̃ +w′, L

(
ũf̃ + u′

f̃

))
=
(
w̃ +w′, ,f̃

)
(2.10)
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Micro-Nano Scale Problem:

(
w̃ +w′, L

(
ũf ′ + u′f ′

))
=
(
w̃ +w′,f ′

)
(2.11)

Remark 2.1: In this framework f̃ represents the quasi-continuum forcing functions while

f ′ represents the point forces associated with the point defects. These point forces are obtained

via inter-atomic potentials as explained in section 2.3.

Remark 2.2: The mathematical conditions on the split of (2.9) into (2.10) and (2.11) for

the case where the underlying equation (2.1) is nonlinear are discussed in Masud and Franca

[35].

It is important to note that if we sum (2.10) and (2.11), we recover equation (2.9). Equation

(2.10) is driven by the meso-to-micro force terms f̃ and it yields solution fields ũf̃ and u′
f̃

.

Likewise, equation (2.11) is driven by micro-to-nano force terms f ′ and it yields the solution

fields ũf ′ and u′
f ′ that are meso-to-micro and micro-to-nano fields, respectively. We now split

the meso-micro scale problem and the micro-nano scale problem into sub-system 1 and sub-

system 2, respectively.

Sub-system 1: Employing the linearity of the weighting function slot in (2.10) and (2.11) we get

the following two problems for the coarse or the meso-to-micro scales:(
w̃, L

(
ũf ′ + u′f ′

))
=
(
w̃, f̃

)
(2.12)

(
w̃, L

(
ũf ′ + u′f ′

))
=
(
w̃, f ′

)
(2.13)



13

Sub-system 2: Similarly, form (2.10) and (2.11) we get two problems for the fine or the micro-

to-nano scales: (
w′, L

(
ũf̃ + u′

f̃

))
=
(
w′, f̃

)
(2.14)

(
w′, L

(
ũf ′ + u′f ′

))
=
(
w′, f ′

)
(2.15)

The key idea at this point is to solve the sub-system 2 locally so as to extract the fine scale

solution components u′
f̃

and u′
f ′ . These components can then be substituted in the sub-system

1, thereby eliminating the fine scales, yet retaining their effects. As presented in Masud and

Franca [35], the solution of (2.14) when substituted in (2.12) leads to the following multiscale

form of the variational problem where the fine-scale solution induced by the fine-scale forcing

function is mathematically embedded in the corresponding coarse-scale problem.(
w̃, Lũf̃

)
+
(
L∗w̃, −τ1Lũf̃

)
=
(
w̃, f̃

)
−
(
L∗ w̃, τ1f̃

)
(2.16)

where L∗ is the adjoint operator. The boundary term is annihilated due to the assumption

of fine-scales becoming zero at the inter-element boundaries, i.e., u′
f̃

= 0 on Γ′. The second

term on the left hand side in (2.16) is the multiscale/stabilization term and is a function of the

residual of the resolvable scales, i.e., function of the residual of coarse scales. Consequently,

equation (2.16) gives rise to a stabilized form for the subproblem which is driven by the meso-

to-micro force terms f̃ , and it will be used to model the defect free nanostructures.

Likewise we can take equation (2.15), which is the fine-scale problem driven by the fine-scale

forcing functions and extract u′
f ′ via analytical or numerical methods. The functional form of

u′
f ′ can then be substituted in the corresponding coarse-scale problem given by equation (2.13).
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This results in the following variational form that is driven by the micro-to-nano force terms

f ′, and it will be used to model the fine scale fields around the defects in nanostructures.(
w̃, Lũf ′

)
+
(
L∗w̃ − τ2Lũf ′

)
=
(
w̃, f ′

)
−
(
L∗w̃, τ2f

′) (2.17)

It is important to realize that the solution of (2.17) gives ũf ′ which is the coarse scale component

of the solution field that arises because of the micro-to-nano force terms f ′.

Remark 2.3: Equations (2.16) and (2.17) present a system of two equations that yield the

scale dependent solutions to the governing equation that is driven by scale dependent forcing

functions, respectively.

Remark 2.4: The proposed method provides a framework for bridging the scales in compu-

tational micro- and nanomechanics. In this context u′
f̃

and ũf ′ are the bridging scales as they

transfer information from one scale level to the other.

2.1.2 Main points of the multiscale framework

This section summarizes the important aspects of the proposed framework for computational

micro- and nanomechanics.

1. From (2.14) we obtain u′
f̃

which when substituted in (2.12) gives rise to the variational

equation (2.16) that yields a multiscale/stabilized form for ũf̃ . This equation furnishes

the solution ũf̃ where the effects of the bridging scale u′
f̃

that arises because of meso-to-

micro force terms f̃ are mathematically embedded.

2. From (2.15) we obtain u′
f ′ which is the fine scale solution induced by the fine scale forcing

functions. Substituting u′
f ′ in (2.13) gives rise to a multiscale/stabilized form for ũf ′ .
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This component of the unknown field arises because of micro-to-nano force terms f ′, and

plays the role of bridging scales in our framework.

3. The total solution to the problem is obtained via the principal of superposition.

ũ = ũf̃ + ũf ′ (2.18)

For the case of nonlinear problems one can employ the Lagrange multiplier method for over-

lapping solutions, proposed by Belytschko et al. [11].

Remark 2.5: Problem described by equation (2.17) can be solved over a smaller sub-domain

Ωsub⊆Ω by defining a representative domain or unit cell with periodic Neumann boundary

conditions. Consequently, the cost of solving (2.17) around the point defects can be reduced

substantially.

2.2 Atomic Scale Parameter Dependent Material Properties of Nanotubes

In the quasi-continuum modeling of defect-free nanostructures (2.16), interatomic interac-

tions are incorporated into nanoscale based material moduli. These moduli are defined through

internal variables that are functions of changes in bond lengths and bond angles and therefore

depend on the local atomic configurations.

2.2.1 Molecular mechanics model

In general materials are modeled either via phenomenological/continuum models or quan-

tum/molecular mechanics models. The latter includes classical molecular dynamics and ab

initio methods. From a computational viewpoint, molecular mechanics and/or quantum me-
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chanics models are expensive to be carried out on nanotubes where length is of the order of

micrometers. On the other hand continuum mechanics models do not take into account changes

in structure at the molecular level of the materials and therefore cannot precisely model vacancy

defects or Stone-Wales transformations.

From molecular mechanics perspective, the nanosystem energy can be written as

U = Uρ + Uθ + Uϕ + UΩ + Uvdw + Ues (2.19)

where Uρ is the bond stretch energy, Uθ is the energy due to bond angle bending, Uϕ is the

inversion energy, UΩ is the torsional energy, Uvdw represents the Van der Waals energy, and Ues

is the electrostatic energy. For the axial deformations in graphene sheets and carbon nanotubes

a stick-spiral model wherein the system energy is based on nuclear positions has been presented

by Chang and Gao [3]. We follow [3] and consider the bond stretch energy Uρ and bond angle

bending energy Uθin the molecular mechanics model, and ignore the other energy contributions.

Consequently, (2.19) is reduced to the following equation.

U (∆r ,∆θ) = Uρ (∆r) + Uθ (∆θ) (2.20)

The functional forms of the bond stretch energy and bond angle rotation energy that are

considered in this work are given by the modified Morse potentials presented in [10] and are

written as follows:

Uρ (∆r) = De

{[
1− e−β∆r

]2
− 1

}
(2.21)

Uθ (∆θ) =
1

2
Kθ (∆θ)2

[
1 +Ksextic (∆θ)4

]
(2.22)



17

where ∆ r and ∆θ are the changes in the bond-length and the bond-angle, respectively. The

various constants in equations (2.21) and (2.22) are given in [10]: De = 0.6031 nN.nm, Ksextic =

0.754 rad−4, β = 26.25 nm−1, Kθ = 1.42 nN.nm/rad2.

By differentiating the energy equations (2.21) and (2.22) with respect to ∆r and ∆θ, one obtains

the force-stretch and moment angle-variation relations, respectively.

F (∆r) = 2βDe

(
1− e−β∆r

)
e−β∆r (2.23)

M (∆θ) = kθ∆θ
[
1 + 3ksextic (∆θ)4

]
(2.24)

Remark 2.6: One can consider other functional forms of the bond stretch energy and bond

angle rotation energy (see e.g., [15–19]) in the stick-spiral model that is used in conjunction

with the multiscale framework proposed here.

2.2.2 The stick-spiral model

This section describes the stick spiral model by Chang and Gao [3] that is derived based

on the molecular mechanics model for carbon nanotubes. Employing kinematic considerations,

this model provides relations between axial force f , axial-strain ε, and lateral strain ε′ in terms

of the changes in bond-lengths and bond-angles. We have employed this model to extract

bond-length and bond-angle dependent mechanical material properties, where the changes in

the bond lengths and bond angles are obtained from the converged strain fields during nonlinear

calculations of mechanically deforming nanotubes. For clarity of presentation, we briefly outline
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the salient features of the stick-spiral model, followed by the procedure how these nanoscale

based mechanical properties are employed in the proposed multiscale computational framework.

Figure 1 presents four carbon atoms that are connected via three interatomic bonds i.e., a

typical unit that repeats itself to yield hexagonal patterns in carbon nanotubes and produces

graphene sheets in a planar configuration. From a kinematic viewpoint, an externally applied

axial forcefresults in changes in the bond lengths and bond angles till the new stretched con-

figuration comes in a state of self equilibrium. Our objective is to find these equilibrated bond

lengths and angles, and we use the stick-spiral model of [3] that provides a set of analytical

equations that relate axial force with axial and lateral strain via the changes in bond-lengths

and bond-angles.

Figure 1. Schematic force and moment balance diagram for a typical pattern of four carbon

atoms connected via three bond lengths. Localized strains are supposed to be homogeneous at

a given point though they may change from point to point in the domain (see [3] for details).
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2.2.2.1 Equilibrium relations

As shown in Figure 1, for any pair of carbon atoms, a component of force f acts along the

line connecting the two atoms and a component is orthogonal to it. The force component that

acts along the bond length results in stretching the bond and the component that is orthogonal

results in changing the bond angle. Based on these kinematic considerations, Chang and Gao [3]

present a stick-sprial model that gives force-equilibrium relations and the moment-equilibrium

relations for the armchair nanotubes (n,n) and zigzag nanotubes (n,0). For sake of completeness

of discussion, these relations are listed as follows:

Armchair nanotubes (n,n):

f sin(α/2) = F (∆ r) (Force equilibrium) (2.25)

f(r/2) cos(α/2) = M(∆α) +M(∆β) cos(φ) (Moment equilibrium) (2.26)

Zigzag nanotubes (n,0):

f cos (π − α) = F (∆r) (Force equilibrium) (2.27)

f(r/2) sin(π − α) = M(∆α) +M(∆β) cos(φ) (Moment equilibrium) (2.28)

2.2.2.2 Kinematic relations

From the stick spiral model for armchair and zigzag nanotubes the changes in bond-length

and bond-angle are related to the axial strain via the following expressions.
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Armchair nanotubes (n,n):

ε = [∆r sin(α/2) + (r/2) cos(α/2)∆α] / [r sin(α/2)] (2.29)

where α = 2π/3 and β = π − arc cos[0.5 cos(π/(2n))].

Zigzag nanotubes (n,0):

ε = [2∆r/ cos(π − α) + ∆r cos(π − α) + r sin(π − α)∆α] / [r [1 + cos(π − α)]] (2.30)

where α = 2π/3 and β = π − arc cos [0.5 cos(π/(2n))].

2.2.3 Extracting the quasi-continuum mechanical properties for CNTs

Substituting the force-stretch relation (2.23) and moment angle-variation relation (2.24)

in the force equilibrium and moment equilibrium relations from section 2.2.2.1 we get two

equations in terms of axial force f . Substituting for f from one into the other gives rise to one

nonlinear equation in terms of the changes in bond-length ∆ r and bond-angle ∆θ, which are

still unknowns. In order to solve the two unknowns ∆ r and ∆θ, we need one more equation.

This equation is provided by the kinematic relations in the stick-spiral model in terms of the

given applied axial strain εand the kinematic quantities ∆ r and ∆θ, as presented for the

armchair and the zigzag nanotubes in section 2.2.2.2. Now solving the two equations in a self

consistent fashion yields the equilibrated values for ∆ r and ∆θ. These values are then used to

extract the quasi-continuum properties of the defect-free nanotubes as follows:

Armchair nanotubes (n,n):
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Using ∆r in the force-equilibrium relation (2.25) we get axial force f that yields axial stress

σ defined as

σ = f/ (r t [1 + cos(α/2)]) (2.31)

where t = 0.34 nm is the interlayer spacing in graphite. The lateral strain ε′ for the armchair

CNTs is given by the stick-spiral model as:

ε′ = (∆r cos(α/2)− r/2 sin(α/2)∆α) / (r [1 + cos(α/2)]) (2.32)

Zigzag nanotubes (n,0):

Using ∆r in the force-equilibrium relation (2.27) we get axial force f that yields axial stress

σ defined as

σ = f/ (r t sin(π − α)) (2.33)

The lateral strain ε′ for the zigzag CNTs is given by the stick-spiral model as:

ε′ = (∆r sin(π − α)− r cos(π − α)∆α) / (r sin(π − α)) (2.34)

Once the stress and lateral strain are evaluated via the stick-spiral model, the scale-dependent

mechanical material properties of Young’s modulus and Poisson’s ratio are obtained as:

Young′s Modulus : E = σ/ε (2.35)

Poisson′s Ratio : ν = −ε′
/
ε (2.36)
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Remark 2.7: The procedure presented above is repeated at every step and for every inte-

gration point in an element, and it results in continuous updating of the mechanical parameters

that are then used in the quasi-continuum model given in equation (2.16).

2.2.3.1 Procedural outline for extracting nanoscale dependent properties

This section provides a summary of the procedure described in Sections 2.2.1-2.2.3 Once the

converged displacement field is attained that yields converged strains, the next step is to ex-

tract the changes in bond-lengths and bond-angles corresponding to the new equilibrated state.

The stick spiral model of Chang and Gao [3] provides moment equilibrium and force equilib-

rium equations, and based on kinematic considerations it also provides a relation between the

longitudinal strain and the changes in bond-lengths and bond-angles. We employ interatomic

potentials in these equations and find the equilibrated bond-lengths and bond-angles. This is

done as follows (say for the armchair nanotubes):

1. Substituting the force-stretch relation (2.23) and the moment-angle variation relation

(2.24) in the force equilibrium relation (2.25) and the moment equilibrium relation (2.26)

yields two equations in terms of axial-force/bond f . Eliminating f via substitution from

one of these equations into another yields a nonlinear relation between ∆r and ∆α.

2. Kinematic considerations of the stick-spiral model of Chang and Gao [3] yield a relation

between longitudinal strain ε, ∆r and ∆α as describe in Section 2.2.2

3. Given the converged longitudinal strain obtained from the converged displacement fields

in the non-linear calculations, one can solve the two equations in a self-consistent fashion

and obtain the values of changes in bond-lengths ∆r and bond-angles ∆α.
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4. Once ∆r and ∆α are evaluated numerically, equations (2.31) through (2.36) present the

procedure to evaluate nanoscale dependent mechanical properties of nanomaterials.

5. To economize the computations, the nanoscale based elastic constants are evaluated only

at the beginning of each load step because at that time level a converged strain field is

available from previous load step.

Remark 2.8: The case of graphene sheet is attained in the limit as n → ∞ and the an-

gles are α = β = 2π/3. We follow the procedure outlined above to extract the scale dependent

mechanical material properties that are then used in the quasi-continuum modeling of the con-

tinuously deforming graphene sheets.

2.3 A Framework for Modeling Point Defects in Nanotubes

This section provides physical meanings to the additive split of the forcing function f that

was introduced in Section 2.1. We consider f̃ as the force field for the quasi-continuum model

used for the defect free nanotubes and graphene sheets where the modulus of elasticity E and

the Poisson’s ratio ν are calculated based on nanoscale parameters presented in Section 2.2.

In order to apply the multiscale framework to the modeling of point defects in nanotubes and

graphene sheets, we need to provide physical meanings to the term f ′ and then describe a

method to derive f ′.

Localized defects appear in the form of pentagons or heptagons embedded in regular hexag-

onal pattern in CNTs and graphene sheets. The local bond lengths and bond angles around

defects are therefore different from that in the defect free region in its ground state. Conse-

quently, the localized energy around the defects is higher as compared to the energy in the



24

defect free region. In our multiscale framework presented in (2.9), f ′ represents the force field

corresponding to the excess localized energy around the defect that helps maintain the sur-

rounding atoms in their new equilibrated state with associated bond lengths and bond angles.

This fine scale force field f ′ is employed in equation (2.11) to model the mechanical fields in

the vicinity of the defects.

2.3.1 Formation energy of vacancy

This section presents procedure for evaluation of formation energy of defect. Figure 2

shows a schematic diagram of atoms and the bonds affected by the presence of vacancy. In our

calculations we have assumed that only immediate neighboring atoms, as indicated in blue color

in Figure 2, are affected by the presence of divacancy. We have employed second generation

Brenner potentials for calculations of defect formation energy [19]. The assumption of using

only the immediate neighboring atoms in the evolution of formation energy is reasonable when

one observes that Brenner potential has a cut off of 0.2 nm, while the bond-length is 0.142

nm for unstrained nanotube. This defines the patch of atoms that contribute to the formation

energy of vacancy. The size of the computational cell, which in the context of the finite element

method is the element that contains the defect, can be of the order of five to ten times the

patch size. Suppose there are ‘N ’ carbon atoms in the non-defective patch. We can evaluate

the average stretch energy stored in a carbon-carbon bond of this system as described below.

The total energy of perfect lattice as shown in Figure 2(a) is evaluated as follows.

Enon−defective =
1

2

N∑
i,j(i 6=j)

[
V R(rij)− bij V A(rij)

]
(2.37)
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The functions V R(rij) and V A(rij) represent all interatomic repulsions and attractions from

valence electrons respectively, and are defined in Brenner et al. [19]. N is the number of atoms

in the perfect lattice.

(a) (b) (c)

Figure 2. Relaxation of atoms around the defect. (a) Hexagonal pattern without defect,

divacancy sites shown in red (b) Configuration of atoms with divacancy and dangling bonds.

Immediate neighboring atoms, shown in blue are allowed to relax. (c) Relaxation and

reconfiguration of atoms around divacancy.

The total energy of the lattice with divacancy is evaluated by allowing neighboring atoms around

vacancy to relax. This is achieved through minimization of energy of this lattice with respect

to varying lattice positions of immediate neighboring atoms. Figures 2(b) and 2(c) show the

relaxation and reconfiguration of atoms around divacancy.

The formation energy is defined as follows.

Eformationvacancy = Erelaxeddefective −
N − 2

N
Enon−defective (2.38)
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where Erelaxeddefective is the total energy of the defective lattice after allowing relaxation of neighbor-

ing atoms. The average stretch energy in defective lattice is obtained as

Udefectiveρ = Unon−defectiveρ (∆r) +
Eformationvacancy

M
(2.39)

where M is the total number of bonds in the defective lattice.

We reconsider (2.20) and modify the stretch energy of the defect free material with the energy

given by (2.39). Taking derivative with respect to the change in bond length ∆r we get an

expression for the homogenized force-stretch relation:

F (∆b)defective = ∂Udefectiveρ

/
∂∆r

= F (∆r) +
Fformation

M

(2.40)

where

Fformation = ∂Eformationvacancy

/
∂∆r

= ∂Erelaxeddefective

/
∂∆r − (N−2)

N (∂Enon−defective/∂∆r)

(2.41)

Once the updated force-stretch relation is obtained via (2.40), we employ the procedure outlined

in Section 2.2 to extract the nanoscale based quasi-continuum mechanical material properties

around the point defects in the nanotubes. These material parameters are then used in the

variational problem driven by f ′.

Remark 2.9: In order to keep the model and associated calculations simple the defect is

assumed to be frozen during the course of deformation of CNTs, i.e., further interatomic bonds

do not appear nor do the existing bonds break at or around the current defect.
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Remark 2.10: It is important to note that the scale dependent nanomechanical material

properties are evaluated based on the new equilibrated bond lengths and bond angles around the

point defect. These values are different from the equilibrated bond lengths and angles away from

the defect.

Remark 2.11: Similar computations can be made for defects like Stone-Wales transforma-

tions. Zhou et al. [27] gives a simple empirical formula to evaluate Stone-Wales formation

energy in case of carbon nanotubes. Li et al. [28] have computed formation energies of Stone-

Wales defect through first principle methods in case of graphite. The computed formation energy

can be used to extract material properties as outlined in the procedure described above.

2.3.2 Evaluation of the force component f ′

In the multiscale framework presented in equation (2.9), f ′ represents the force field corre-

sponding to the excess localized energy around the defect that maintains the surrounding atoms

in their new equilibrated state with new bond lengths and bond angles as shown in Figure 2.

We write the minimization problem of the relative energy in a weak form and the fine scale

force field f ′ is extracted by solving a linearized variational equation at each load step.(
wi, f

′
i

)
=
(
wi,j , σ

defective
ij

)
−
(
wi,j , σ

non−defective
ij

)
(2.42)

where σdefective represents the stress field of the defective patch and σnon−defective represents

the stress field associated with the non-defective patch. Figure 3 shows the schematic diagram

of the finite element mesh indicating the coarse element that contains the defect. A sub-mesh

is generated over this coarse mesh as shown in Fig. 3 and the sub intervals of this refined mesh

are termed as computational cells.
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Figure 3. Schematic diagram of finite element mesh indicating the element that possesses the

defective patch. Computational cell is defined as a subinterval of the refined mesh that

overlays the element containing defect. In this context element of the coarse mesh that

contains defect becomes a super-element. Point defect in the cell is indicated by the dot.

Weak solution to equation (2.42) in the computational cell containing defect yields f ′. The

contribution to f ′ from other cells in the sub-mesh is zero because these cells do not contain

the defect. It is reasonable to assume that the effect of f ′ is localized around the point defect.

Consequently equation (2.17) is solved on the refined sub-mesh that is generated over the

element of the coarse mesh containing the point defect, and is termed as the super-element (see

Figure 3).

2.3.3 Salient features of the formulation for modeling defects in nanostructures

1. The quasi-continuum model has nano length-scales built in it because of the dependence

of the modulus of elasticity E (r , θ) and the Poisson’s ratio ν (r , θ) on the inter-atomic

bond lengths r and bond angles θ.

2. The local defects in the graphene sheet induce an atomic-scale (fine scale) force field

which is indicated by f ′. This atomic-scale force field is obtained through equation (2.42)
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where formation energy of the vacancy embedded with interatomic potentials for defective

and non-defective nanostructure has been employed to define σdefective and σnon−defective.

This fine scale force field drives the problem for the localized displacement field around

defects in the nanostructure.

3. The case where problems driven by f̃ and f ′ given in equations (2.16) and (2.17) respec-

tively are linear problems, the total solution around defects can be obtained via principle

of superposition as

ũ=ũf̃+ũf ′ (2.43)

4. The case where problems driven by f̃ and f ′are nonlinear, Lagrange multiplier methods

for overlapping solutions can be employed as presented in Belytschko et al. [11].

5. The case where body force f̃ = 0, the problem for the defect free nanostructure (graphene

sheet or nanotubes) is driven by edge traction and/or the prescribed edge displacement

fields.

6. The defective inter-atomic bond lengths are on the order of nano-meters (see Figure 2).

The defective patch of atoms that contains the point defect and is used to evaluate energy

associated with f ′ via (2.39) – (2.41) is typically spread over six to eight bond diameters.

The size of the computational cell (i.e., sub-interval of the sub mesh) can be taken equal

to five to ten times the patch size (see Fig. 3). Employing a refined sub-mesh, the super-

element that contains the cells can be one to two orders of magnitude larger than the

representative computational cell that contains the point defect. Depending on the size

of the global mesh, which can be another one to two orders of magnitude larger than
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the element on which the refined sub-mesh is created, one can scale up from the nano-

meter 10−9m range to a specimen size that lies between micro-scale 10−6m and meso-scale

10−4m.

7. Defects in the nanostructure are explicitly represented via the interatomic potentials. For

the case when there are no defects in the lattice, f ′ = 0 and the solution given by ũf̃

is the total solution for the defect-free nanostructure. This is a very important attribute

of the proposed computational framework and ensures that the proposed method is a

self-consistent method.

2.4 Numerical Results

The multiscale framework presented in Section 2.1 leads to a hierarchical finite element

method that has been implemented using four-node isoparametric elements [47, 48]. As pre-

sented in Section 2.2, the mechanical material properties are evaluated at the integration points

via a set of internal variables that are functions of interatomic potentials. These interatomic

potentials are functions of the changes in the bond lengths and bond angles that occur because

of the local state of deformation. The underlying idea is based on internal variable formalism

for the nanoscale based mechanical material properties and a consistent updating of material

properties concurrently feeds information from the molecular scales into the quasi-continuum

equations. The resulting nonlinear finite element method is used for studying the mechanical

response of defect-free and defective carbon nanotubes.
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2.4.1 Mechanical response of defect-free nanotubes

This section presents the simulated mechanical material properties of zigzag and armchair

tubes. Two types of interatomic potentials have been investigated by incorporating them in the

nano-structural model: modified Morse potential [10] and the Tersoff-Brenner potential [19].

Figure 4 presents the Young’s modulus for the nanotubes as a function of the changes

in the tube diameter. Open symbols represent the response of armchair nanotubes and solid

symbols represent the response of zigzag nanotubes. Both modified Morse as well as the Brenner

potentials have been employed to extract the modulus of elasticity of CNTs. The value of

Young’s modulus as predicted by using Brenner potential is approximately 5% higher than that

predicted by Morse potential. For each of these cases the simulated Young’s modulus is slightly

higher for the armchair CNTs than that for the zigzag CNTs of the same diameter.

Computed results are also compared with published literature where results from Goze et

al. [20] are an upper bound and results from Popov et al. [21] are a lower bound to the present

calculations. The predicted mechanical response lies in the general range of the expected

mechanical material properties for the various types of CNTs [49, 50]. Figure 5 presents the

Poisson’s ratio for the two types of nanotubes as a function of change in the tube diameter.

Once again modified Morse as well as the Brenner potentials have been employed and a good

agreement has been attained with the published results.



32

Figure 4. Young’s modulus for non-defective nanotubes

Figure 5. Poisson’s ratio for non-defective nanotubes
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2.4.2 Mechanical response of nanotubes with topographical defects

The proposed multiscale framework is also applied to the modeling of mechanical response of

carbon nanotubes with topographical defects such as vacancies (see eg. [10,27,51]). We consider

that the defects arise because of missing atoms that result in a change in the hexagonal pattern

in graphene sheets and nanotubes.

Figure 6. A schematic diagram of frozen divacancy defect

These defects stay frozen during the mechanical loading of the CNT, i.e., further defects

do not appear as a function of deformation. Figure 6 shows a schematic diagram of a defect

due to divacancy that is assumed to exist in the initial configuration of the CNT and this

defect persists through the deformation process. Figures 7 and 8 present the stress-strain

plots for the non-defective and defective (5,5) armchair tubes, respectively. Once again results
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are compared with various theoretical models presented in [51], primarily based on quantum

mechanical and molecular dynamic models. The present model predicts the nano-stress-strain

relation with great accuracy. It is important to note that these results have been obtained on a

single processor desktop computer at a fraction of the computational effort as compared with

the quantum mechanical and molecular dynamical models.

Figures 9 and 10 present Young’s modulus as a function of increasing deformation repre-

sented in the form of increasing strain for the non-defective and defective (5,5) armchair CNTs.

These calculations were also carried out on a single processor desktop computer. Once again

the multiscale model predicts mechanical properties within the envelope provided by the DFT

and the PM3 models reported in [51].
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Figure 7. Stress strain response for non-defective nanotube

Figure 8. Stress strain response of defective nanotube
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Figure 9. Young’s modulus as function of strain for non-defective nanotubes

Figure 10. Young’s modulus as function of strain for defective nanotubes



3 STABILIZED FINITE ELEMENT METHOD FOR SWE

3.1 The Schrödinger Wave Equation

Let Ω ⊂ Rnsd be an open bounded region with piece wise smooth boundary Γ. The number

of space dimensions nsd = 3. The Schrödinger wave equation can be written as

−κ∆v (x)− i2κk • ∇v (x) + κk2v (x) + V (x) v (x) = ε (k) v (x) in Ω (3.1)

Solution of the SWE satisfies Bloch’s theorem of periodicity of the wave function. From the

periodicity condition, the boundary conditions are taken to be of the form.

v (x) = v (x+R) on Γ (3.2)

n · ∇v (x) = n · ∇v (x+R) on Γ (3.3)

where v (x) is the complex valued cell periodic function or the unknown complex scalar field,

namely the wave function (or the eigenfunction), x represents position vector, n represents

outward unit normal vector to the boundary Γ of a unit cell, V (x) is the electronic potential or

the potential energy of an electron in a charge density ρ (x) at the position x and is considered

periodic over a unit cell, and i is the imaginary unit. ε (k) is the eigen-energy associated with

37



38

the particle as a function of wavevector (position vector in reciprocal space) k. R refers to the

lattice vectors of the unit cell, and κ = –h2
2m and –h = h

2π are constants, where h is the Planck’s

constant and m is the effective mass of electron.

Remark 3.1: The values of V (x) and v (x) in a periodic solid are completely determined

by their values in a single unit cell. Therefore solutions of the Schrödinger equation in a

periodic solid can be reduced to their solutions in a single unit cell, subject to periodic boundary

conditions consistent with Equations. (2) and (3), respectively.

3.1.1 The Standard weak form

Let V ⊂ H 1(Ωnsd) ∩ C 0(Ωnsd) denote the space of trial solutions and weighting functions

for the unknown scalar field where periodicity of the boundary condition is embedded in the

admissible space.

V =
{

v |v ∈ H 1(Ωnsd), v(x) = v(x+R) ∀x ∈ Γ
}

(3.4)

The standard weak form for the complex valued problem is

− (w , i2κk • ∇v) + (∇w , κ∇v) +
(
w ,
(
κ k2 + V

)
v
)

= (w , ε v) (3.5)

where w is the weighting function for v , and (•, •) =
∫
Ω (•) dΩ i.e., L2 product of the indicated

arguments over domain Ω. Discretization of the standard weak form gives rise to a generalized

eigenvalue problem for the complex valued cell periodic function or the eigen-function v (x) and

the associated eigen-energy ε (k).
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Remark 3.2: Galerkin method seems to work for the present problem, however typical ap-

plications in the literature have been presented in the context of Hermite cubic functions [2,29].

Employing lower order Lagrange shape functions in the standard Galerkin formulation results

in reduced accuracy in the evaluation of higher eigenvalues in the system.

Remark 3.3: Our objective in this work is to explore numerical methods that can provide

higher accuracy in the estimation of higher eigenvalues, while using lower order Lagrange shape

functions on computational domains that are less dense than the grids employed for the corre-

sponding Galerkin method.

3.2 The Galerkin/Least-Square Stabilized Form

This section presents the Galerkin Least/Squares (GLS) form for the Schrödinger wave

equation. GLS stabilization is a standard technique employed in computational fluid dynamics

to enhance the stability of the underlying Galerkin variational formulations, that also manifests

itself in terms of improved accuracy on relatively cruder discretizations. Basic idea of stabilized

methods is to add a least squares form of the Euler-Lagrange equations to the standard Galerkin

form presented in equation (3.5), thus strengthening the variational structure of the problem.

(∇w , κ∇v)− (w , i2κk • ∇v) +
(
w ,
(
κk2 + V − ε

)
v
)

+
(
−κ∆− i2κk • ∇+ κk2 + V

)
w ,

τGLS
[(
−κ∆− i2κk • ∇+ κk2 + V − ε

)
v
]
 = 0

(3.6)

In equation (3.6) we have used the idea of Petrov-Galerkin methods and have dropped the ε

term in the weighting function slot of the additional stabilization term. This helps in reducing
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the order of the resulting eigenvalue problem from quadratic to linear. In (3.6) τGLS is the

stabilization parameter that will be defined later.

Remark 3.4: The GLS method is shown to yield higher accuracy for many physical prob-

lems [34, 52] and in the present case it sets the stage for exploring the variational multiscale

ideas for application to SWE.

3.3 The Variational Multiscale Method

This section develops and explores the properties of another stabilized method that finds its

roots in the Variational Multiscale method proposed by Hughes [34], and is termed as the HVM

form. A basic premise of multiscale approach is to acknowledge the presence of the fine scales

that may not be resolved by a given spatial discretization. We consider the bounded domain

Ω to be discretized into non-overlapping regions Ωe (element domains) with boundaries Γe,

e = 1 , 2 . . . . . . .numel such that Ω =
⋃numel
e=1 Ω̄

e
. We denote the union of element interiors and

element boundaries by Ω′ and Γ′ respectively, i.e. Ω′ =
⋃numel
e=1 (int)Ωe (element interiors) and

Γ′ =
⋃numel
e=1 Γe (element boundaries). We assume an overlapping sum decomposition of the

scalar field v (x) into coarse- or resolvable-scales and fine- or the subgrid-scales.

v (x) = v̄ (x) + v ′ (x) (3.7)

Likewise, we assume an overlapping sum decomposition of the weighting function into the

coarse- and the fine-scale components, respectively.

w (x) = w̄ (x) + w ′ (x) (3.8)
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We further make an assumption that the subgrid scales although non-zero within the ele-

ments, vanish identically over the element boundaries, i.e. v ′ = w ′ = 0 on Γ′.

We now introduce the appropriate spaces of functions for the coarse- and fine-scale fields

and specify direct sum decomposition on these spaces, i.e. v = v̄ ⊕ v ′ where v̄ is the space

of trial solutions and weighting functions for the coarse-scale field and is identified with the

standard finite element space, while v ′ is the space of fine-scale functions. These spaces are

subject to the restriction imposed by the stability of the formulation that requires v̄ and v ′ to

be linearly independent.

3.3.1 The multiscale variational problem

We now substitute the trial solutions (3.7) and the weighting functions (3.8) in the standard

variational form (3.5), which yields

− (w̄ + w ′, i2κk • ∇ (v̄ + v ′)) + (∇(w̄ + w ′), κ∇ (v̄ + v ′))

+
(
w̄ + w ′,

(
κk2 + V

)
(v̄ + v ′)

)
= (w̄ + w ′, ε (v̄ + v ′))

(3.9)

With suitable assumptions on the fine scale field (i.e., fine-scales vanish at the inter element

boundaries) and employing the linearity of the weighting function slot, we can split the problem

into coarse- and fine-scale parts, indicated as w̄ and w ′, respectively.

Coarse-scale Problem w̄

− (w̄ , i2κk • ∇ (v̄ + v ′)) + (∇w̄ , κ∇ (v̄ + v ′))

+
(
w̄ ,
(
κk2 + V

)
(v̄ + v ′)

)
= (w̄ , ε (v̄ + v ′))

(3.10)



42

Fine-scale Problem w ′

− (w′, i2κk • ∇ (v̄ + v ′)) + (∇w′, κ∇ (v̄ + v ′))

+
(
w′,
(
κk2 + V

)
(v̄ + v ′)

)
= (w′, ε (v̄ + v ′))

(3.11)

The underlying idea at this point is to solve the fine-scale problem (3.11), which is defined

over the sum of element interiors, to obtain the fine scale solution v ′. This solution is then

substituted in the coarse-scale problem given by (3.10), thereby eliminating the fine scales, yet

retaining their effect.

3.3.2 Solution of the fine scale problem (w ′)

Employing linearity of the solution slot in equation (3.11), applying integration by parts,

and rearranging terms, the fine scale problem reduces to

− (w′, i2κk • ∇v ′)Ω′ + (∇w′, κ∇v ′)Ω′ +
(
w′,
(
κk2 + V

)
v ′
)
Ω′

− (w′, εv ′)Ω′ =
(
w′, i2κk • ∇v̄+κ∆v̄ −

(
κk2 + V

)
v̄+εv̄

)
Ω′

(3.12)

From (3.12) one can see that the fine scale problem is driven by the residual of Euler-Lagrange

equations of the coarse scales defined over the sum of element interiors. Without loss of general-

ity, we assume that the fine scales v ′ and w ′ are represented via bubbles over element domains.

i.e.,

v ′
∣∣
Ωe = be

1 v ′e on Ωe (3.13)

w ′
∣∣
Ωe = be

2w ′e on Ωe (3.14)
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where be
1 and be

2 represent the bubble shape functions, and v ′e and w ′e represent the coefficients

for the fine-scale trial solutions and weighting functions, respectively. Substituting (3.13) and

(3.14) in the fine-scale problem (3.12) we get

− (be2w ′e , i2κk • ∇be1v ′e)Ω′ + (∇be2w ′e , κ∇be1v ′e)Ω′ +
(
be2w ′e ,

(
κk2 + V

)
be1v ′e

)
Ω′

− (be2w ′e , εb
e
1v ′e)Ω′ =

(
be2w ′e , i2κk • ∇v̄+κ∆v̄−

(
κk2 + V

)
v̄+εv̄

)
Ω′

(3.15)

Taking the constant coefficients w ′e and v ′e out of the integral expressions and employing arbi-

trariness of w ′e , we can solve for the fine-scale coefficients v ′e

v ′e =
−1
(
be2,
(
−κ∆− i2κk • ∇+ κk2 + V − ε

)
v̄
)
Ω′[

(∇be2, κ∇be1)Ω′ + (be2, (−i2κk • ∇+ κk2 + V − ε) be1)Ω′
] (3.16)

We can now reconstruct the fine scale field via recourse to (3.13). In order to keep the presen-

tation simple, and for the case where the residual of the coarse scales over element interiors can

be considered constant, we can simplify fine scales v ′(x ) as follows:

v ′(x ) = −τ
[(
−κ∆− i2κk • ∇+ κk2 + V − ε

)
v̄
]

(3.17)

Within the context of stabilized methods τ is defined as the stability parameter. In the deriva-

tion presented above τ has an explicit form

τ = be
1

∫
Ωe

be
2 dΩ

[
(∇be2, κ∇be1)Ω′ +

(
be2,
(
−i2κk • ∇+ κk2 + V − ε

)
be1
)
Ω′
]−1

(3.18)
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Remark 3.5: In our numerical calculations we have simplified the definition of τ by setting

ε = 0 in equation (3.18).

Remark 3.6: The definition of the bubble functions completely resides in the definition of

the stability parameter τHVM . Consequently, a choice of specific bubbles only affects the value

of τHVM . Stabilization parameters that are based on element-level matrices and element-level

vectors have also been used in SUPG and GLS methods [52]

3.3.3 The coarse scale problem (w̄)

Employing linearity of the solution slot in the coarse-scale sub-problem (3.10) and applying

integration by parts, one can combine v ′ terms as

− (w̄ , i2κk • ∇v̄) + (∇w̄ , κ∇v̄) +
(
w̄ ,
(
κk2 + V − ε

)
v̄
)

+
((
i2κk • ∇ − κ∆ + κk2 + V − ε

)
w̄ , v ′

)
= 0

(3.19)

Substituting v ′ from (3.17) in (3.19) yields the resulting stabilized formulation.

(∇w̄ , κ∇v̄)− (w̄ , i2κk • ∇v̄) +
(
w̄ ,
(
κk2 + V − ε

)
v̄
)
−

(
−κ∆ + i2κk • ∇+ κk2 + V − ε

)
w̄ ,

τ
[(
−κ∆− i2κk • ∇+ κk2 + V − ε

)
v̄
]
 = 0

(3.20)
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3.3.4 The HVM stabilized form

The HVM stabilized form (3.20) is completely expressed in terms of the coarse or resolvable

scales. Therefore, in order to keep the notation simple we drop the superposed bars and we

write the resulting form as

(∇w , κ∇v)− (w , i2κk • ∇v) +
(
w ,
(
κk2 + V − ε

)
v
)

−


(
−κ∆ + i2κk • ∇+ κk2 + V − ε

)
w ,

τ
[(
−κ∆− i2κk • ∇+ κk2 + V − ε

)
v
]
 = 0

(3.21)

Remark 3.7: The first three terms in (3.21) are the standard Galerkin terms. Fourth term

has appeared due to the assumption of the existence of fine scales. This term is not present in

the standard Galerkin formulation.

Remark 3.8: The sub-grid scales are proportional to the residual of the coarse scales as

shown in (3.12) and (3.17), i.e., it is a residual based method and therefore satisfies consistency

ab initio.

Remark 3.9: When compared with the standard Galerkin method, the multiscale approach

involves additional integrals that are evaluated element wise and represent the effects of the

sub-grid scales that are modeled in terms of the residuals of the coarse scales of the problem.

Remark 3.10: For numerical solution of the variational problem where the periodic Dirich-

let and Neumann boundary conditions presented in equations (3.1) and (3.2) are already em-

bedded in (3.21), we employ the procedure outlined in Pask et al. [2,29,30] and modify element

connectivity to produce value-periodic basis functions.
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3.3.5 Quadratic eigenvalue problem for the HVM form

The solution procedure for HVM form (3.21) involves a quadratic eigenvalue problem de-

scribed as follows. (
ε2M + εC + k

)
x = 0 (3.22)

where M , C , and k are n × n matrices, ε is the scalar eigenvalue and x is eigenvector. In

order to solve this problem one has to linearize it as follows.

Az = εBz (3.23)

where

A =

 0 I

−K −C

 ,B =

 I 0

0 M

 , and z =

 x

εx

 (3.24)

Remark 3.11: The HVM eigenvalue problem increases the size of matrices from n × n

to 2n × 2n, which also increases the cost of computation.

3.4 Numerical Examples

Figure 11 shows a family of 3-D elements that consist of 4 and 10-node tetrahedra and 8

and 27-node brick elements for the numerical solution of the problem. In the numerical tests

presented in this section, the functional form of τGLS is taken to be the same as that of τGLS

which is defined in equation (3.18). The bubble functions employed for the evaluation of τ are

at least one order higher than the functions employed for the complex valued wavefunction.

Accordingly, quadratic and cubic bubble functions were used for the 8-node and 27-node brick
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elements, respectively. In the case of both linear and quadratic tetrahedral elements, quadratic

bubbles were used as this bubble function enriches the space of functions in both the cases.

We present the convergence study for the 3D generalized Kronig-Penney problem. The

domain under consideration is a cube with electronic potential V (x) given by

V (x) = V1D (x ) + V1D (y) + V1D (z ) in Ω (3.25)

where

V1D (s) =


0 0 ≤ s < 2 a.u.

6.5 Ry 2 ≤ s < 3 a.u.

 (3.26)

Figures 12 to 19 present convergence rates for the fractional error in the first, fifth and

seventh eigenvalues for the Galerkin, GLS, and HVM methods with linear and quadratic shape

functions at a selected, but otherwise arbitrary k point. Theoretical convergence rate for the

eigenvalues for linear and quadratic elements is k+1 , where k is the order for the interpolation

of the complex valued wavefunction v . Computed rates corroborate the theoretical predictions

[53]. In each of the test cases the L2 error in the computed eigenvalues is smallest for the first

eigenvalue and it successively increases for the higher eigenvalues. In these test cases Galerkin

solution is the least accurate for any given mesh.
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Figure 11. A family of 3-D linear and quadratic elements.

3.4.1 Convergence rate results for the GLS stabilized formulation

Figures 12-15 show convergence properties for the GLS method. Meshes employed for the

linear elements are composed of 43, 83 and 123, while meshes employed for quadratic elements

are composed of 23, 43 and 63 elements. Figures 12 and 13 show a quadratic convergence

rate for the computed eigenvalues for linear elements, while cubic convergence rate is attained

for the quadratic elements as shown in Figures 14 and 15. In all the cases although there is

no increase in convergence rates for the GLS stabilized method as compared to the standard

Galerkin method, the results clearly show that the GLS eigenvalues are more accurate than

those obtained via the standard Galerkin method.
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Figure 12. Convergence rates for eigenvalues using linear brick elements.

Figure 13. Convergence rates for eigenvalues using linear tetrahedral elements.
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Figure 14. Convergence rates for eigenvalues using quadratic brick elements.

Figure 15. Convergence rates for eigenvalues using quadratic tetrahedral elements.
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3.4.2 Convergence rate results for the HVM formulation

Figures 16-19 show convergence rates for the HVM method. Meshes employed for the linear

elements are composed of 6 × 6 × 6, 9 × 9 × 9 and 12 × 12 × 12 elements, while meshes

employed for quadratic elements are composed of 2 × 2 × 2, 4 × 4 × 4 and 6 × 6 × 6 elements.

Once again optimal convergence rates are attained in all the test cases.

Figure 16. Convergence rates for eigenvalues using linear brick elements.
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Figure 17. Convergence rates for eigenvalues using linear tetrahedral elements.

Figure 18. Convergence rates for eigenvalues using quadratic brick elements.
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Figure 19. Convergence rate for eigenvalues using quadratic tetrahedral elements.

3.4.3 Energy band diagram

Figures 20 and 21 show the eigenvalues computed via the GLS and the HVM formulations

for the 4 × 4 × 4 quadratic brick mesh. Solid lines show the analytical solution and the

circles correspond to the computed values. Interested reader is referred to chapter 2 and 3 of

Pierrat [54] for a description of the band diagram and the Brillouin zone. In case of Kronig-

Penney problem, the first Brillouin zone is a cube of length 2π/3. In Figure 20 Γ represents the

centre of the first Brillouin zone and X represents the centre of the face of the first Brillouin

zone with unit normal vector <1,0,0>.
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Figure 20. Energy band diagram for the GLS formulation.

Figure 21. Energy band diagram for the HVM formulation.
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3.4.4 Convergence rate for a high value of the electronic potential

The range of values for the pseudopotential typically lies between -60 Ry to -10 Ry units.

Therefore tests were carried out to see the effects of higher values of the potentials. Figures 22-

29 show convergence of the fractional error in the eigenvalues for V = 60.5 Ry. Meshes employed

for the present study are same as the ones used in sections 3.4.1 and 3.4.2. Once again optimal

rates in the norms considered are attained for the various test cases. The normalized error for

Galerkin method is higher even for first few eigenvalues as compared to the GLS and the HVM

methods.

Figure 22. Convergence rates for eigenvalues using linear brick elements (GLS).
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Figure 23. Convergence rates for eigenvalues using linear tetrahedral elements (GLS).

Figure 24. Convergence rates for eigenvalues using quadratic brick elements (GLS).
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Figure 25. Convergence rates for eigenvalues using quadratic tetrahedral elements (GLS).

Figure 26. Convergence rates for eigenvalues using linear brick elements (HVM).
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Figure 27. Convergence rates for eigenvalues using linear tetrahedral elements (HVM).

Figure 28. Convergence rates for eigenvalues using quadratic brick elements (HVM).



59

Figure 29. Convergence rates for eigenvalues using quadratic tetrahedral elements (HVM).



4 B-SPLINES AND NURBS FINITE ELEMENT METHODS FOR

ELECTRONIC STRUCTURE CALCULATIONS

4.1 Kohn-Sham Equations

Kohn-Sham framework replaces an original many-body interacting particle problem in an

external potential with a non-interacting particle problem moving in an effective potential. The

Kohn-Sham equations of DFT [1,41,42] are given as follows:

−1

2
∇2φi(x) + Veffφi(x) = εiφi(x) (4.1)

where φi(x) and εi are Kohn-Sham eigenfunctions and eigenvalues respectively, and Veff is the

effective electronic potential defined as follows.

Veff = V L + V nL + VH + VXC (4.2)

V L =
∑
a

V L
a (x) (4.3)

V nL =
∑
a

∫
V nL
a (x,x′) φ(x′) dx′ (4.4)

VH =

∫
ρe(x

′)

|x− x′|
dx′ (4.5)

60
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VXC = VXC(x; ρe) (4.6)

ρe =
∑
i

fi |φi(x)|2 (4.7)

V L
a and V nL

a are the local and non-local terms in the pseudo-potential approximation [45]

for an atom denoted by subscript a. VXC is the exchange correlation potential, VH is the

Hartree potential. The form of exchange-correlation potential is determined by the choice of

pseudo-potential. ρe is the electron charge density, fi is the occupation number associated with

eigenstate i. The integrals extend over all space, with summation extending over all atoms.

The Hartree potential (VH) contains 1/~r term. Due to this term the total number of terms

in the summation of integrand, which extends over all space, is quite large, and therefore

computationally inefficient. Accordingly the Hartree term is usually computed by solving an

equivalent Poisson problem, instead of actually evaluating the integral given in equation (4.5).

By converting the integral into an equivalent Poisson problem, the potential can be computed

efficiently. A similar method is used to convert the long range local pseudo-potential into short

range densities to achieve computational efficiency.

∇2VH =

∫
∇2 ρe(x

′)

|x− x′|
dx′ =

∫
−4πδ(x− x′) ρe(x′) dx′ = −4πρe(x) (4.8)

∇2V L =
∑
a

∇2V L
a (x) =

∑
a

4πρLa (x) (4.9)
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The Hartree term and the local pseudo-potential term are combined into a single Poisson

problem, by evaluating the equivalent density of local pseudo-potential as discussed in Pask et

al. [1, 2].

∇2VC = ∇2VH +∇2V L =
∑
a

4πρLa (x)− 4πρe(x) = f(x), x ∈ Ω (4.10)

where VC is the total Coulomb potential.

Due to the nonlinearity engendered by Veff , the set of equations (4.1) through (4.7) are

solved self-consistently until convergence is attained between the newly calculated density and

the computed density from the previous iteration. The newly calculated density modifies the

effective potential Veff , especially Hartree and exchange correlation terms. We use Pulay mixing

scheme [55] and a history of five calculated densities from previous iterations to evaluate the

new density.

Remark 4.1: Different resolution meshes have been employed for the solution of the Pois-

son problem and the Schrödinger wave equation (SWE). The number of elements for Poisson

problem is fixed at 20 for each direction, while that of SWE is varied systematically to determine

numerical convergence rates. Since different resolution meshes are used for the coupled Pois-

son problem and the SWE, the solution from the Poisson/SWE problem is projected on to the

mesh of SWE/Poisson problem by finding equivalent integration point through Newton-Raphson

method.

Remark 4.2: Since the B-spline shape function coefficients (control variables) do not have

interpolation property, except for at the boundaries, a third mesh is created to find the electron
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charge density values at the nodal points. Electron charge density at any other physical point is

determined through Lagrange interpolation functions of the same order as the B-spline functions.

The density of this mesh is taken as four times the density of SWE in each direction.

Remark 4.3: Mesh refinement was carried out according to the knot insertion rule as dis-

cussed in section 4.2.4. This ensures a structured mesh wherein mesh refinement helps conduct

convergence rate study.

4.1.1 Solution of periodic systems

The electronic potential for a perfect crystal is periodic.

V (x) = V (x+R) (4.11)

Bloch’s theorem further states that the solution of Schrödinger wave equation (4.1) satisfies the

following equations.

φ (x) =v (x) eik•x (4.12)

where k is wavevector (position vector in reciprocal space) and v (x) = v (x+R) is a complex-

valued cell periodic function that satisfies the periodic property for all lattice vectors R.

4.1.2 Schrödinger wave equation

Let Ω ⊂ Rnsd be an open bounded region with piece wise smooth boundary Γ. The number

of space dimensions, nsd = 3. Applying Bloch’s theorem to the Schrödinger equation (4.1) we

get
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−1

2
∆v(x)− ik • ∇v(x)+

1

2
k2v(x) + V (x)v(x) = ε(k)v(x), x ∈ Ω (4.13)

v(x) = v(x+R), x ∈ Γ (4.14)

n • ∇v(x) = n • ∇v(x+R) x ∈ Γ (4.15)

where v(x) is the complex valued cell periodic function or the unknown complex scalar field,

namely the wave function (eigenfunction), i is the imaginary unit, x represents the position

vector, n represents outward unit normal vector to the boundary Γ of a unit cell, V (x) is the

electronic potential or the potential energy of an electron in a charge density ρe (x) at the

position x and is considered periodic over a unit cell. ε(k) is the eigen-energy associated with

the particle as a function of wavevector (position vector in reciprocal space) k. R refers to the

lattice vectors of the unit cell.

In the context of pseudo-potential approximation [45] and Kohn-Sham framework, the all-

electron potential V (x) is replaced by Veff (see equation (2)).

−1
2∆v(x)− ik • ∇v(x)+1

2k
2v(x) +

(
V L + VH + VXC

)
v(x)

+e−ik•xV nLeik•xv(x) = ε(k) v(x)

(4.16)

The Schrödinger wave equation (4.13) is solved in a periodic and finite domain. However the

non-local term V nL involves integration over entire space and over all atoms. Therefore, this

term needs further consideration. Pask et al. [1] uses the following procedure to reduce the
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non-local term integrated over all space to an integral form defined over a unit cell. A fully

separable pseudo-potential [45] for an atom a usually has the following form.

V nL
a (x,x′) =

∑
l,m

χalm(x) hal χ
a
lm(x′) (4.17)

Using equations (4.4) and (4.17), the non-local term e−ik•x V nL eik•x v(x) then becomes

e−ik•x
∑

n,a

∫
V nL
a (x− τ a −Rn,x

′ − τ a −Rn) v(x′) eik•x
′
dx′

=e−ik•x
∑

n,a,l,m χalm(x− τ a −Rn) hal
∫
χalm(x′ − τ a −Rn) v(x′) eik•x

′
dx′

(4.18)

where the integral is over all space centered around an atom located at τ a in a unit cell with

origin Rn, n runs over all lattice vectors Rn, and a runs over all atoms in a unit cell. The

integral centered on an atom a can be written as sum of integrals over unit cells surrounding

the atom, which can be further reduced to integral over a unit cell as follows.

∫
χalm(x′ − τ a −Rn) v(x′) eik•x

′
dx′

=
∑

n′
∫

Ωn′
χalm(x′ − τ a −Rn) v(x′) eik•x

′
dx′

=
∑

n′
∫

Ω χ
a
lm(x′ − τ a −Rn −Rn′) v(x′ −Rn′) eik•(x

′−Rn′ ) dx′

(4.19)

Replacing x′ −Rn by x′and using v (x) = v (x+R) we have

∫
χalm(x′ − τ a −Rn) v(x′) eik•x

′
dx′

=
∑

n′
∫

Ω χ
a
lm(x′ − τ a−Rn′) v(x′) eik•x

′
eik•Rn e−ik•Rn′dx′

(4.20)
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The non-local term e−ik•x V nL eik•x v (x) reduces to

∑
a,l,m


e−ik•x

∑
n

[
eik•Rn χalm(x− τ a −Rn)

]
× hal ×∫

Ω

(
eik•x

′∑
n′
[
e−ik•Rn′ χalm(x′ − τ a −Rn′)

]
v(x′) dx′

)
 (4.21)

4.1.3 The standard weak form

Let V ⊂ H 1(Ωnsd) ∩ C 0(Ωnsd) denote the space of trial solutions and weighting functions

for the unknown scalar field.

V =
{

v |v ∈ H 1(Ωnsd), v(x) = v(x+R) ∀x ∈ Γ
}

(4.22)

The standard weak form is

− (w , ik • ∇v) +
1

2
(∇w ,∇v) +

1

2

(
w, k2v

)
+ (w, Veffv) = (w , ε v) (4.23)

where w is the weighting function for v , and (•, •) =
∫

Ω (•) dΩ i.e., L2 product of the indicated

arguments over domain Ω.

Remark 4.4: The non-local term in Veff requires to be handled differently from the con-

ventional element based local evaluation of the finite element matrices and vectors. This is

presented explicitly in Appendix A.

Remark 4.5: Effective potential, Veff , is non-linear because of the presence of the terms

VH and VXC (equation (4.2)) that are in turn functions of the electronic charge density (equa-
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tions (4.5) and (4.6)). Electronic density (ρe) is calculated from eigenfunctions as shown in

equation (4.7).

Remark 4.6: Our objective in this work is to explore the higher order smoothness facilitated

by the B-splines and NURBS basis functions in the context of the finite element methods as

applied to electronic structure calculations.

Remark 4.7: B-spline control variables have interpolatory property only at the boundary of

the domain due to the repeated knot values at the ends of the knot vectors. Periodic boundary

condition is applied by repeating the same control variables at the corresponding boundaries.

Let V h ⊂ V denote the finite-dimensional approximation of space of the trial solutions and

weighting functions for the unknown scalar field.

−
(

wh, ik • ∇vh
)

+
1

2

(
∇wh,∇vh

)
+

1

2

(
wh, k2vh

)
+
(
wh, Veffv

h
)

=
(

wh, ε vh
)

(4.24)

Let vh =
∑n

i=1 ciNi and wh =
∑n

i=1 diNi, where ci, di are complex coefficients associated with

corresponding shape functions for the trial solution and weighting functions respectively. Since

the shape functions have local support, the discrete equation takes the following form.

∑
j

Kijcj = ε
∑
j

Mijcj (4.25)

where

Kij =
numel
A
e=1

Ke
ij ; Mij =

numel
A
e=1

M e
ij (4.26)
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Ke
ij =

∫
Ωe

(
1

2
∇Ni • ∇Nj − ik •Ni∇Nj +

1

2
k2NiNj + VeffNiNj

)
dx (4.27)

M e
ij =

∫
Ωe

NiNjdx (4.28)

where A stands for assembly operation,
∫

Ωe stands for integration over an element domain Ωe

of finite element mesh, and numel stands for the total number of elements in the finite element

mesh.

4.1.4 The Poisson problem

Let Ω ⊂ Rnsdbe an open bounded region with piecewise smooth boundary Γ. The number

of space dimensions, nsd = 3.

∇2VC = f (x) , x ∈ Ω (4.29)

VC (x) = VC (x+R) , x ∈ Γ (4.30)

n · ∇VC (x) = n · ∇VC (x+R) , x ∈ Γ (4.31)

where VC = VH + V L, and f (x) =
∑

a 4πρLa (x) − 4πρe(x) as shown in equation (4.10). n

represents outward unit normal vector to the boundary Γ of a unit cell Ω.

Remark 4.8: The charge densities that are consistent with a derivative periodic smoothly

varying function are the ones that are net neutral in the unit cell, as given in the following

equation.
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∫
Ω f (x) dΩ =

∫
Ω ∆VC (x) dΩ =

∫
Γn · ∇VC (x) dΓ

=
∫

Γ (n · ∇VC (x)− n · ∇VC (x+R)) dΓ = 0

(4.32)

Remark 4.9: The local pseudopotential term is converted into equivalent density term as

shown in equation (4.9). These density terms for each nuclei position are then superimposed

at a location x in order to obtain the total density. See section 4 of Pask et al. [1] for more

details as well as Appendix B. In addition the density term f(x), also includes the electron

charge density as shown in equations (4.7) and (4.10). Thus the solution of Poisson equation

includes the effects of local pseudopotential term as well as the Hartree potential.

4.1.5 The standard weak form for the Poisson problem

Let S ⊂ H 1(Ωnsd)∩C 0(Ωnsd) denote the space of trial solutions and weighting functions for

the unknown scalar field.

S =
{

VC |V C ∈ H 1(Ωnsd), VC (x) = VC (x+R) ∀x ∈ Γ
}

(4.33)

The standard weak form is

− (∇w ,∇VC) = (w , f (x)) (4.34)

where w is the weighting function for VC , and (•, •) =
∫

Ω (•) dΩ is the L2 product of the

indicated arguments over domain Ω.

Let Sh ⊂ S denote the finite-dimensional approximation of space of trial solutions and

weighting functions for the unknown scalar field. The discretized weak form is:
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−
(
∇wh,∇V h

C

)
=
(

wh, f (x)
)

(4.35)

4.2 B-splines and NURBS

NURBS (Non-uniform rational B-splines) are parametric functions of rational polynomials

that are typically employed in computer aided design (CAD) to accurately represent complex

geometrical shapes with as few parameters as possible. In a series of landmark papers Hughes

and coworkers [46] have introduced the notion of Isogeometric Analysis (IGA) wherein B-

splines and NURBS are employed for the modeling and analysis of engineering problems. IGA

has been successfully applied to fluid mechanics [56, 57] as well as solid/structural mechanics

[58, 59]. Amongst the main attributes of the B-splines and NURBS based methodology is

the geometrically exact description of the domain of computation, higher order regularity of

the method due to the notion of k -refinement [46], and an efficient integration of the analysis

framework with the CAD based geometric modeling framework.

In electronic structure modeling, the unit cell (computational domain) can possess hollow

cylindrical configuration like that of the carbon nanotubes (CNTs), solid cylindrical configu-

ration like silicon nanowires, or geometries with conic sections for the deformed nanotubes or

nanowires. Because of the (i) exact geometric description of the unit cells in the physical space

for various material types, (ii) periodicity of non-linear potentials, and (iii) symmetric and peri-

odic boundary conditions applied on the corresponding surfaces of the unit cell, NURBS based

technology offers definite advantage as compared to C0 framework with reduced regularity and

Lagrange interpolation functions. We discuss salient features of B-splines and NURBS in one-
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dimensional context, followed by procedure to build multi-dimensional B-spline basis functions

in the context of finite elements and conclude with procedure to build NURBS functions out

of B-spline functions for one dimensional and multi-dimensional cases. For details interested

reader is directed to Piegl and Tiller [60], and Hughes et al. [46] for further details.

4.2.1 Knot vectors

Knot vectors define the parametric space for the B-spline functions. They are composed of

a sequence of non-decreasing real numbers, Ξ = {ξi}n+p+1
i=1 , where ξi ≤ ξi+1 ∈ R, i is the knot

index, ξi is the ith knot, n is the total number of basis functions, and pis the polynomial order

or polynomial degree. The interval between two consequent knots, called knot span [ξi, ξi+1) in

a knot vector represents an element of the finite element mesh in the parametric space.

Remark 4.10: Once the degree of polynomial is chosen, the knot vector determines com-

pletely all the basis functions. Unlike the Lagrange functions, B-spline basis functions are

defined in parametric space and not in physical or integration domain.

Remark 4.11: Unlike the Lagrange functions, B-spline functions do not possess interpo-

lation property corresponding to any knot value. B-splines possess interpolation property on

internal knots if they are repeated p times, and at first and last knots if first and last knots are

repeated p + 1 times.

Remark 4.12: For any interior knot, a B-spline basis function of order p is p − k times

continuously differentiable, where k is the multiplicity of the knot. Increasing multiplicity of

knots decreases continuity of B-spline basis functions.
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Remark 4.13: When the first and last knots are repeated p + 1 times, then the knot vector

is called as non-periodic or open or clamped knot vectors. This ensures B-splines have inter-

polation property at the corresponding extreme points and application of Dirichlet or periodic

boundary conditions become easier. Periodic boundary conditions can also be applied by making

first and last knot values equal, but in this paper we limit our discussion to open knot vectors

as defined above.

Remark 4.14: If the knots are equally spaced then they are uniform knot vector, else they

are non-uniform knot vectors. The selection of uniform or non-uniform knot vectors is depen-

dent on the physical problem. If a non-uniform mesh can capture the solution more efficiently,

then a non-uniform knot vector may be preferred. Non-uniform meshes can be generated by

changing other mesh parameters also. This will be discussed in subsequent section (see section

4.2.3).

4.2.2 Definition and properties of B-splines

There are many definitions of B-spline functions in the literature [46,60,61]. The following

definition is based on recurrence formula that Hughes et al. [46] have employed in the finite

element context. For knot sequence Ξ = {ξi}n+p+1
i=1 as defined in section 4.2.1, B-spline functions

of degree zero, i.e. p = 0 is defined as

Ni,0 (ξ) =


1 if ξi ≤ ξ < ξi+1,

0 otherwise.

(4.36)
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and for p ≥ 1

Ni,p (ξ) = ωi,p (ξ)Ni,p−1 (ξ) + (1− ωi+1,p (ξ))Ni+1,p−1 (ξ) (4.37)

where

ωi,p (ξ) =


(ξ − ξi) / (ξi+p − ξi) if ξi 6= ξi+p

0 otherwise.

(4.38)

Remark 4.15: Ni,p (ξ) = 0 if ξ is outside the interval [ξi, ξi+p+1), i.e. the B-spline functions

have local support property. This also shows that B-spline basis functions span over couple of

elements of finite element mesh, as knot span [ξi, ξi+1) represents an element of a finite element

mesh in the parametric space.

Remark 4.16: In any given knot span, at the most p+ 1 B-spline basis functions are non-

zero.

Remark 4.17: Ni,p (ξ) ≥ 0 for al i, p and ξ (non-negativity).

Remark 4.18:
∑i

j=i−pNj,p (ξ) = 1 ∀ξ ∈ [ξi, ξi+1) (partition of unity).

4.2.3 Curves as B-spline parametric functions

A curve in Rnsd is represented by linear combination of B-spline basis functions.

C (ξ) =

n∑
i=1

BiNi,p (ξ) (4.39)

where n is the number of basis functions, Bi ∈ Rnsd , i = 1, 2, ..., n are the coefficients of B-spline

basis functions Ni,p (ξ) and are called the control points. As discussed in remark 13, B-splines do

not possess interpolation property where knot values are not repeated. Hence, control points are
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not nodal co-ordinates of the physical mesh at these knot values unlike coefficients of Lagrange

basis functions. As discussed in remark 14, repetition of knots decreases the continuity of

B-spline basis functions, which in turn reduces the continuity of B-spline curves.

Remark 4.19: Equally spaced control points create a non-uniform mesh. By varying control

points one can control the geometric shape of the curve and/or the length of mesh elements.

4.2.4 h-refinement, p-refinement and k-refinement

In order to perform convergence tests with B-spline basis functions, a h-refinement and

a p-refinement process is required. The following procedures employed by Hughes et al. [46]

ensures a uniform mesh for convergence analysis. In addition this process should ensure that

the curve does not change geometrically or parametrically.

h-refinement is carried out through knot insertion. Let Ξ = {ξi}n+p+1
i=1 be a knot vector with

the properties mentioned in section 4.2.1. Let {Bi}ni=1 be the control points associated with a

curve for the knot vector Ξ = {ξi}n+p+1
i=1 . If ξ̄ ∈ [ξk, ξk+1) is the new knot value to be inserted,

then the new knot vector is ≡ =
{
ξ1, ξ2, ...., ξk, ξ̄, ξk+1, ..., ξn+p+1

}
. The corresponding

{
B̄i

}n+1

i=1

control points are defined as follows. +

B̄i = αiBi + (1− αi) Bi−1 (4.40)

where

αi =



1, 1 ≤ i ≤ k − p,

ξ̄−ξi
ξi+p−ξi , k − p+ 1 ≤ i ≤ k,

0, k + 1 ≤ i ≤ n+ p+ 2.

(4.41)
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Remark 4.20: Mesh refinement for each geometry in numerical results section, was carried

out beginning with the lowest possible mesh resolution. In case of cubic domains, the lowest

mesh resolution is single element in physical domain and the corresponding knot vector in each

direction is

0, 0, .., 0︸ ︷︷ ︸
p+1

, ...., 1, ..., 1, 1︸ ︷︷ ︸
p+1

.

Degree elevation or p-refinement is carried out by a three step process.

1. Convert each segment of B-spline curve, defined by [ξk, ξk+1), into Bezier segments by

repeating the interior knot values p times, i.e. by knot insertion and finding the new

control points.

2. Degree elevate each of these Bezier segments by repeating the knot values of the segment

one more time. If {Bi}pi=0 represents the control points of order p Bezier segment and

{Qi}p+1
i=0 the control points of order elevated segment, i.e. corresponding p+1 order Bezier

segment, then

Qi = (1− αi) Bi + αiBi−1 (4.42)

where

αi =
i

p+ 1
, i = 0, ..., p+ 1 (4.43)

3. Remove the unnecessary knot values inserted in step (i) and find the new control points.

This gives the control points for the degree elevated or p-refined mesh.

The above process is to be repeated for each segment consecutively. A detailed description

of the procedure for degree elevation can be obtained from Piegl and Tiller [60].
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Remark 4.21: In degree elevation process, say from p to p + 1 knot values in the interior

of knot vectors corresponding to order p, must be repeated at the least one more time. This

reduces the number of continuous derivatives for the basis functions, and consequently that of

the curve to p − 1 , even after the degree of the curve is elevated to p + 1 .

In order to overcome the disadvantage stated in remark 21, Hughes et al. [46] suggested

an alternative to p-refinement, which is termed as k -refinement. In this process, we degree

elevate the curve with the lowest possible mesh resolution and then apply h-refinement process

as discussed in this section. In most cases, the lowest possible mesh resolution for a curve

is already in the form of Bezier segments, and thus the degree elevation process reduces to

only step (2.) of p-refinement process discussed above. This greatly simplifies the algorithmic

process. In all convergence studies involving degree elevation, k -refinement is used.

4.2.5 Higher dimensional B-splines

Higher dimensional B-splines in Rnsd are obtained by tensor product of single dimensional B-

splines. Here we show how three-dimensional basis functions are used to create volumes or solids,

which is relevant to physical problems. Just as control points used in defining one-dimensional

curves, we use control nets to define solids or surfaces. Given a control net {Bi,j,k}, where

i = 1, 2, ..., n, j = 1, 2, ...,m, k = 1, 2, ..., l, and n, m, l, are the number of basis functions in each

of the parametric directions corresponding to knot vectors as Ξ = {ξi}n+p+1
i=1 , H = {ηi}m+q+1

i=1 ,

L = {ζi}l+r+1
i=1 , where p, q, r, are the degrees of one dimensional B-spline basis functions of

corresponding parametric directions, the B-spline solid is defined as follows.
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S (ξ, η, ζ) =
n∑
i=1

m∑
j=1

l∑
k=1

Bi,j,kNi,p (ξ)Mj,q (η)Lk,r (ζ) (4.44)

4.2.6 Rational B-splines

Rational B-splines are rational B-spline polynomial functions. Quadratic rational B-spline

functions can be used to define exactly geometries from conic sections with as few parameters

as possible. A rational B-spline curve in Rnsd is defined as follows.

C (ξ) =
n∑
i=1

BiRi,p (ξ) (4.45)

where

Ri,p (ξ) =
Ni,p (ξ)wi∑n
j=1Nj,p (ξ)wj

(4.46)

is the ith rational B-spline basis function of degree p corresponding to control point Bi ∈ Rnsd

and weight wi for a knot vector Ξ = {ξi}n+p+1
i=1 . Equations (4.40) through (4.43) for h-refinement

or p-refinement should be applied to weighted control points defined as follows.

Bw
i =

(
wiB

1
i , wiB

2
i , .., wiB

nsd
i , wi

)
, i = 1, 2, ..., n (4.47)

where the superscript j in Bj
i denotes the components of the vector Bi. When rational B-splines

are defined in a knot vector that is non-uniform and open, then it is called as non-uniform

rational B-splines (NURBS). Higher dimensional NURBS are defined by taking tensor product

of one-dimensional NURBS similar to section 4.2.5. For a detailed description on how to obtain

control points and control net for different geometries please refer Hughes et al. [46] and Piegl

and Tiller [60].
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Remark 4.22: All the properties applicable to B-splines discussed in section 4.2 are also

applicable for NURBS.

Remark 4.23: The unknown degrees of freedom are called as control variables and have the

same properties as that of control points or control net depending on the dimension of physical

domain.

Remark 4.24: B-splines are a special case of NURBS functions where the weights are unity.

4.3 Numerical Results

4.3.1 Kronig-Penney problem (3D case)

We present the convergence study for the 3D generalized Kronig-Penney problem. The

domain under consideration is a cube with electronic potential given by

V (x) = V1D (x ) +V1D (y) +V1D (z ) in Ω (4.48)

where

V1D (s) =


0 0 ≤ s < 2 a.u.

6.5 Ry 2 ≤ s < 3 a.u.


For the three meshes employed for the convergence rate study, the knot vectors and weights

for NURBS functions are given as follows. The control points are chosen in such a way that

a uniform mesh is created in the physical domain, and the element boundaries are exactly

conforming at 2 a.u. in all three directions.
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Figure 30. Convergence rates for second order NURBS

Figure 31. Convergence plots for second order B-Splines
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1. 43 mesh: Spline order p=2, uknot=(0,0,0,1,2,3,4,4,4) [same for other two directions] and

weights of (1,1,1,2.365, 2.365, 2.365) for X-direction,

2. 83 mesh: Spline order p=2, uknot=(0,0,0,1,2,3,4,5,6,7,8,8,8) [same for other two direc-

tions] and weights of (1,1,1,1,1, 2.365, 2.365, 2.365, 2.365, 2.365) for X-direction,

3. 123 mesh: Spline order p=2, uknot=(0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,12,12) [same for

other two directions] and weights of (1,1,1,1,1,1,1, 2.365, 2.365, 2.365, 2.365, 2.365,

2.365,2.365) for X-direction,

For the case of B-splines, the weights are all unity, while the knot vectors are chosen to

be same as above. For cubic NURBS, knot vectors and weights are chosen in an analogous

fashion as described above. Figures 30 and 31 present convergence rates for the fractional

error in the first, third and seventh eigenvalues for the Galerkin method with quadratic NURBS

and quadratic B-spline basis functions. The results are compared to quadratic Lagrange basis

functions. Theoretical convergence rates for the eigenvalues in the L2 type norm for linear and

quadratic elements is p + 1 , where p is the order for the interpolation of the complex valued

wavefunction v(x). Computed rates corroborate the theoretical predictions [54] for NURBS,

B-spline and Lagrange basis functions. In each of the test cases the normalized error in the

computed eigenvalues is smallest for the first eigenvalue and it successively increases for the

higher eigenvalues. However it is important to note that the absolute error for the B-splines

and NURBS is consistently lower than that of the corresponding Lagrange basis functions [62].

This is attributed to the C1 continuity of the B-spline and NURBS basis functions as opposed

to C0 continuity of Lagrange functions. Figure 32 represents the energy band diagram for
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quadratic B-spline function of 83 mesh resolution. Computed eigenvalues are plotted against

exact eigenvalues computed from a non-linear analytical function [54].

Figure 32. Energy band diagram for quadratic B-splines with mesh 83 mesh

4.3.2 Poisson problem

4.3.2.1 Test problem

In this problem we study the Poisson problem for a given analytical potential for various

order B-splines. The analytical potential is given by

V = sin (2πx) sin (2πy) sin (2πz) (4.49)

The corresponding forcing function, f (x, y, z), is given by the Laplacian of the potential as

shown in (4.50).
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f (x, y, z) = −12π2 sin (2πx) sin (2πy) sin (2πz) (4.50)

The domain under consideration is a unit cube, where periodic boundary condition is applied

on corresponding surfaces. Four uniform meshes composed of 43, 63, 83 and 123 elements for

B-spline order 2, 3 and 4 are considered. In the legend, the numbers in brackets denote the

number of degrees of freedom per direction along the three lattice vectors for the corresponding

meshes and polynomial orders. Figures 33 (a-c) are plots of the potential along body diagonal

for p = 2, 3, 4.

The plots of error in potential along body diagonal are shown in Figures 34 (a-c). Even for

the crudest mesh, it can be seen that there is one order reduction in error for one order increase

in polynomial order. Figure 35 shows the normalized L2 norm of the error in the computed

potential as a function of mesh refinement. Here normalization is with respect to the L2 norm

of the analytical potential in equation (4.49). We obtain optimal convergence rates in each of

the cases.

Remark 4.25: As discussed in section 4.2.4, the h-refinement process was carried out

according to equations (4.40), (4.41) for each polynomial order to obtain uniform mesh. k-

refinement is utilized for increasing the polynomial order.
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(a)

(b)

(c)

Figure 33. Plot of the potential along the body diagonal (a) p = 2, (b) p = 3, (c) p = 4
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(a)

(b)

(c)

Figure 34. Error in the potential along the body diagonal (a) p = 2, (b) p = 3, (c) p = 4
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Figure 35. Convergence rates for the Poisson problem with analytical potential,

V = sin (2πx) sin (2πy) sin (2πz)

4.3.2.2 Triclinic model

Here we show the results for model triclinic charge density. The domain or unit cell is

defined by the following primitive lattice vectors.

a1 = (1.0, 0.0, 0.0) ,a2 = (0.1, 1.0, 0.0) ,a3 = (0.2, 0.3, 1.0) (4.51)

and the source term is defined as

f =
∑
G

G2 (aG cosG • x+ bG sinG • x) , (4.52)

with the reciprocal lattice vectors G and constants aG and bG being defined as shown in Table

I. The corresponding analytical solution is

V =
∑
G

aG cosG • x+ bG sinG • x (4.53)
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G aG bG

(1, 0, 0) 0.5 0.90

(0, 1, 0) 0.45 0.85

(0, 0, 1) 0.40 0.80

(1, 1, 0) 0.35 0.75

(0, 1, 1) 0.30 0.70

(1, 0, 1) 0.25 0.65

(1, 1, 1) 0.20 0.60

(2, 1, 0) 0.15 0.55

(0, 2, 1) 0.10 0.50

(1, 0, 2) 0.05 0.45

TABLE I

SOURCE PASK ET AL. [1]. THE RECIPROCAL LATTICE VECTOR G IS DEFINED IN

TERMS OF PRIMITIVE RECIPROCAL LATTICE VECTORS B1, B2 AND B3

Mesh refinement (i.e. h-refinement) and degree elevation (i.e. k -refinement) are done the

same way as discussed for the previous problem and according to discussions in section 4.2.4.

In the present problem the solution changes more rapidly with spatial co-ordinates. So the

results accordingly vary for h-refinement and k -refinement. Figures 36 (a-c) show the plots of

potential along body diagonal, for orders p = 2, 3, 4 respectively. Figures 37 (a-c) show the

plots of error in potential for different order B-spline basis functions.
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(a)

(b)

(c)

Figure 36. Plot of the potential along the body diagonal for triclinic model (a) p=2, (b) p=3,

(c) p=4
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(a)

(b)

(c)

Figure 37. Error in the potential along the body diagonal for triclinic model (a) p=2, (b)

p=3, (c) p=4
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Figure 38. Convergence rates for the triclinic model

Convergence rates are plotted in Figure 38, where normalized L2 norm of the error in the

computed potential is plotted as a function of mesh refinement. Here too normalization is with

respect to the L2 norm of the analytical potential in equation (4.50). We see a reduction in

error by one order only for meshes 83 or higher with the increasing polynomial order. In Table

I, the reciprocal lattice vector G is defined in terms of primitive lattice vectors b1, b2 and b3.

For example (1, 0, 2) implies G =b1 + 2b3. The reciprocal lattice vectors are defined as follows.

b1 = 2π (a2 × a3) / (a1 • (a2 × a3)) = (2π, −0.2π, −0.34π) (4.54)

b2 = 2π (a3 × a1) / (a2 • (a3 × a1)) = (0, 2π, −0.6π) (4.55)

b3 = 2π (a1 × a2) / (a3 • (a1 × a2)) = (0, 0, 2π) (4.56)
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4.3.2.3 Silicon empirical pseudopotential

Silicon empirical pseudo-potential of Cohen and Bergstresser [63] is based on FCC unit cell.

Here we show the results for model silicon charge density. The domain or unit cell is defined

by the following primitive lattice vectors.

a1 = (0, a/2, a/2) ,a2 = (a/2, 0, a/2) ,a3 = (a/2, a/2, 0) (4.57)

where lattice constant a = 10.261 a.u. and the source term is defined as

f =
∑
G

G2SGVGe
−iG•x (4.58)

with the reciprocal lattice vectors G being defined as shown in Table II. The constants SG

and VG are defined as follows.

SG = cosG • τ (4.59)

τ = (1, 1, 1)
a

8
(4.60)

VG =



−0.21, |G|2 = 3(2π/a)2

+0.04, |G|2 = 8(2π/a)2

+0.08, |G|2 = 11(2π/a)2

0, otherwise


(4.61)

The corresponding analytical solution is

V =
∑
G

SGVGe
−iG•x (4.62)

In the present problem the solution changes more rapidly (than in the two previous prob-

lems) with spatial co-ordinates. So the results accordingly vary for h-refinement and k -refinement
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as the number of control variables required to capture solution with precision is more. Figures

39 (a-c) show the plots of potential along body diagonal, for orders p = 2, 3, 4 respectively.

Figures 40 (a-c) show the plots of error in potential for different order B-spline basis functions.

(-2, -2, -1) (-2, -1, -2) (-2, -1, -1) (-2, -1, 0)

(-2, 0, -1) (-1, -2, -2) (-1, -2, -1) (-1, -2, 0)

(-1, -1, -2) (-1, -1, -1) (-1, -1, 1) (-1, 0, -2)

(-1, 0, 0) (-1, 0, 1) (-1, 1, -1) (-1, 1, 0)

(-1, 1, 1) (0, -2, -1) (0, -1, -2) (0, -1, 0)

(0, -1, 1) (0, 0, -1) (0, 0, 1) (0, 1, -1)

(0, 1, 0) (0, 1, 2) (0, 2, 1) (1, -1, -1)

(1, -1, 0) (1, -1, 1) (1, 0, -1) (1, 0, 0)

(1, 0, 2) (1, 1, -1) (1, 1, 1) (1, 1, 2)

(1, 2, 0) (1, 2, 1) (1, 2, 2) (2, 0, 1)

(2, 1, 0) (2, 1, 1) (2, 1, 2) (2, 2, 1)

TABLE II

THE RECIPROCAL LATTICE VECTOR G IS DEFINED IN TERMS OF PRIMITIVE

RECIPROCAL LATTICE VECTORS B1, B2 AND B3 [2]
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(a)

(b)

(c)

Figure 39. Plot of the potential along the body diagonal for silicon empirical pseudo-potential

(a) p = 2, (b) p = 3, (c) p = 4
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(a)

(b)

(c)

Figure 40. Error in the potential along the body diagonal for silicon empirical

pseudo-potential (a) p = 2, (b) p = 3, (c) p = 4
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Figure 41. Convergence rates for the silicon empirical pseudo-potential

Convergence rates are plotted in Figure 41, where normalized L2 norm of the error in the

computed potential is plotted as a function of mesh refinement. Here normalization is done

with respect to the L2 norm of the analytical potential in equation (4.59). We see a reduction

in the error by one order only for meshes 63 or higher with the increase in the polynomial order.

In Table II, the reciprocal lattice vector G is defined in terms of primitive lattice vectors

b1, b2 and b3. For example (-2, -2, -1) implies G = − 2b1 − 2b2 − b3. The reciprocal lattice

vectors are defined as follows.

b1 = 2π (a2 × a3) / (a1 • (a2 × a3)) = (−0.1949π, 0.1949π, 0.1949π) (4.63)

b2 = 2π (a3 × a1) / (a2 • (a3 × a1)) = (0.1949π, −0.1949π, 0.1949π) (4.64)

b3 = 2π (a1 × a2) / (a3 • (a1 × a2)) = (0.1949π, 0.1949π, −0.1949π) (4.65)
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4.3.3 Schrödinger equation: Silicon empirical pseudopotential

This test case is a continuation of test case in section 4.3.2.3. The primitive unit cell

is defined in equation (4.57). The solution of Poisson problem corresponding to 203 mesh

with the forcing function in equation (4.58) is employed to compute the analytical pseudo-

potential in equation (4.62) to drive the SWE. We used the numerical solution from Poisson

problem to simulate the self-consistent method, where Poisson problem and SWE are solved

self-consistently, instead of using directly the pseudo-potential in equation (4.62). Four meshes

with 43, 63, 83 and 123 are employed for the mesh sensitivity study and the convergence rate

study. We used quadratic and cubic B-splines for this study. In each study the underlying

Poisson problem employed the corresponding order B-splines with the 203 mesh.

Figure 42. Convergence rates for the first five eigenvalues at a given k point.
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(a)

(b)

Figure 43. Band structure for silicon pseudo-potential (a) p = 2, (b) p = 3
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Accordingly, the solution from higher density mesh of the Poisson problem is projected onto

lower density mesh of the SWE problem. Figures 43 (a-b) show the band structure for silicon

pseudo-potential. In Figure 43 (a) it can be seen that as the mesh is refined the computed

solution converges to the reference plane-wave solution [1]. 123 mesh gives almost the same

solution as that of plane-wave case. A similar trend is observed for cubic B-splines in Figure 43

(b), where rapid convergence is observed with 83 mesh resulting in almost matching solution

as compared to the plane-wave case. Figure 42 shows the convergence rates for first five eigen-

values at a given k point for quadratic B-splines. We get optimal convergence rates for the

solution.

4.3.4 Self-consistent study

We begin this study with one-dimensional case of isolated Indium atom. Then we discuss

three-dimensional cases of bulk silicon, gallium Arsenide (GaAs) and graphene. Band diagram

for bulk silicon and infinite graphene sheet are obtained by self-consistent solution procedure

described in section 4.1 applied to periodic systems. HGH pseudopotential [4] is employed in

both cases. As noted in section 4.1, we employ Pulay mixing scheme [55] and a history of

five calculated densities from previous iterations to evaluate the new density. This procedure

ensures convergence for fixed point iteration. Monkhorst-Pack algorithm [64] is employed for

Brillouin zone integration.

Three different resolution meshes are used in the same domain, varying mesh resolution

for Schrödinger equation, a fixed higher resolution mesh for Poisson problem and a equally

spaced mesh for electron charge density, which is four times denser than the corresponding
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mesh for Schrödinger equation. The electron charge densities are calculated at nodal points

and interpolated at other spatial coordinates using equal order Lagrange basis functions. The

solution from each mesh is projected onto other meshes at integration points in self-consistent

procedure. Initial electron charge density can be obtained by superposition of electron charge

densities of isolated atoms. This ensures faster convergence for bulk material.

4.3.4.1 Indium atom with all electron potential (1D case)

In this case we used all electron potential of Indium atom . The following are the Kohn-

Sham equations [61] that must be solved for this problem in a radial domain defined by interval

[0, ξ]. Since this is a one-dimensional problem for an isolated atom we will be solving radial

Schrödinger equation and Poisson problem in spherical coordinates with only the radial term.

[
−1

2

d2

dr2
+
l (l + 1)

2r2
+ V (r)

]
Rn,l (r) = εn,l Rn,l (r) (4.66)

lim
r→0

Rn,l (r) = lim
r→∞

Rn,l (r) = 0 (4.67)

V (r) = Vn + VH + VXC = −49

r
+ VH + VXC (4.68)

VH (r) =

∫
ρe (r′)

|r − r′|
dr′ = 4π

∫ ∞
r′=0

r′2
ρe (r′)

|r − r′|
dr′ (4.69)

VXC = VXC (r; ρe) (4.70)

ρe (r) =
1

2π

∑
n,l

(2l + 1) fn,l
R2
n,l (r)

r2
(4.71)
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where Rn,l (r) is the radial wave-function, l stands for orbital angular momentum quantum

number, n stands for principal quantum number, εn,l stands for eigenvalues, VH for Hartree

potential, VXC for exchange-correlation potential and fn,l for occupation number.

Since the electron charge density and Hartree terms are functions of radial co-ordinates

only, the corresponding Poisson problem to be solved for obtaining the Hartree term is

d2U (r)

dr2
= −4πrρe (4.72)

where U (r) = rVH (r) and boundary conditions are zero Dirichlet boundary conditions.

U (r)|r=0 = 0; U (r)|r→∞ = 0 (4.73)

We use Vosko-Wilk-Nusair (VWN) for obtaining correlation terms [65]. A logarithmic mesh

is created along the radial direction by varying the control points as follows.

rmax = 20; δ =
10rmax

(10 + (6− rmax)) 200
(4.74)

rp =
rmax

eδ(numel+p−1) − 1
; Bi = rp

(
e(i−1)δ − 1

)
(4.75)

where numel stands for the number of elements along radial direction, Bi stands for the ith

control point and p stands for the B-spline order.

Once the electron charge density is calculated, the total energy Et (ρ) can be calculated as

follows [61].

Et (ρ) = Ek (ρ) + En (ρ) + EH (ρ) + EXC (ρ) =
∑
i

fiεi +

∫
Ṽ (r) ρ (r) dr (4.76)
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where Ek (ρ) is the kinetic energy, En (ρ) is the energy of electrostatic interaction with nuclei,

EH (ρ) is the Hartree energy and EXC (ρ) is the exchange-correlation energy. The integrals

extend over all space in three dimensions. These terms in summation are calculated as follows.

Ek (ρ) =
∑
i

fi

∫
ψ∗i (r)

(
−1

2
∇2

)
ψi (r) dr =

∑
i

fiεi −
∫
V (r) ρ (r) dr (4.77)

where ψi (r) = ψn,l,m (r) = 1
rRn,l (r)Yl,m (θ, φ) and Yl,m (θ, φ) is spherical harmonics. Here

r represents position vector in three dimensional space and r represents radial distance from

nucleus of an atom.

En (ρ) =

∫
Vn (r) ρ (r) dr (4.78)

EH (ρ) =
1

2

∫
ρ (r) ρ (r′)

|r − r′|
drdr′ =

1

2

∫
VH (r) ρ (r) dr (4.79)

EXC (ρ) =

∫
εXC [ρ (r)] ρ (r) dr (4.80)

Ṽ (r) = εXC − VXC −
1

2
VH (r) (4.81)

Numerical results are given in Table III and Figures 44 through 48. The calculated values

are compared with NIST values [61, 66–68] for Indium atom. B-splines of order 4 and order

6 were used with meshes varying from 50 elements to 400 elements. The various meshes are

listed in Figure 44.

Table III shows the total energy calculated for fourth order B-spline basis functions with

200 and 400 elements as a function of ξ, where ξ defines the radial domain [0, ξ]. As the domain

length increases and approaches 20 atomic units, the computed value for total energy, Et (ρ),

approaches NIST value.
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ξ numel = 200 numel = 400

6 -5737.256830 -5737.259150

8 -5737.301165 -5737.302151

10 -5737.307346 -5737.307900

12 -5737.308460 -5737.308833

14 -5737.308716 -5737.308999

20 -5737.308860 -5737.309046

NIST -5737.309064 -5737.309064

TABLE III

TOTAL ENERGY FOR INDIUM ATOM FOR B-SPLINE ORDER K=4 AND MESH

RESOLUTIONS N=200 AND N=400. IN COLUMN NIST REFERENCE VALUES ARE

PROVIDED. ALL VALUES ARE IN HARTREE

Figures 45 and 46 show the convergence for total energy, Et (ρ), energy due to electron-nuclei

interaction, En (ρ), kinetic energy, Ek (ρ), Hartree energy, EH (ρ), and exchange correlation

energy, EXC (ρ), as a function of ξ. Figure 45 gives plots for fourth order B-spline with 200

element mesh, while Figure 46 presents plots for fourth order B-spline with 400 element mesh.

We see errors in these energies, Error −→ 0 as ξ −→ 20. Figures 47 and 48 are plots for total

energy of individual orbitals of Indium atom as a function of ξ for fourth order B-splines with

200 and 400 element meshes respectively. Again we find convergence of energy values as ξ −→ 20.
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Figure 44. Convergence plot for Et (ρ) as a function of numel

Figure 45. Convergence plot for energies (equations 74-78) as a function of radial domain

length, ξ for B-spline order p = 4 and 200 elements
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Figure 46. Convergence plot for energies (equations 74-78) as a function of radial domain

length, ξ for B-spline order p = 4 and 400 elements

Figure 47. Convergence plot for total energies of each orbital as a function of radial domain

length, ξ for B-spline order p = 4 and 200 elements
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Figure 48. Convergence plot for total energies of each orbital as a function of radial domain

length, ξ for B-spline order p = 4 and 400 elements

Higher resolution mesh consistently gives better precision in computed values. This study

presents data on number of B-splines basis functions required for single atom all-electron density

functional theory calculations for required precision in results.

4.3.4.2 Bulk silicon and self-consistent procedure

The primitive unit cell (FCC cubic structure) for bulk silicon is defined in section 4.3.2.3.

A typical conventional unit cell and primitive unit cell is shown in Figure 49, while Figure 50

shows first Brillouin zone (reciprocal space) and its irreducible wedge for the corresponding

primitive unit cell. The atomic positions are shown with each primitive cell containing two

silicon atoms at positions (0, 0, 0) and (a/4, a/4, a/4).

The high symmetry points of Brillouin zone are defined below.
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Γ = (0, 0, 0) ;L = 2π
a

(
1
2 ,

1
2 ,

1
2

)
;K = 2π

a

(
3
4 ,

3
4 , 0
)

;

X = 2π
a (1, 0, 0) ;W = 2π

a

(
1, 1

2 , 0
)

;U = 2π
a

(
1, 1

4 ,
1
4

)

Figure 49. Conventional unit cell and Primitive unit cell.

Figure 50. First Brillouin zone and irreducible wedge
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Figure 51. Band diagram for Bulk silicon and B-spline order p = 2

Figure 52. Band diagram for Bulk silicon and B-spline order p = 3
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Since the eigenfunctions are functions of wavevector k after application of Bloch’s theorem

(section 4.1.1) the electronic charge density has to be evaluated by integrating in Brillouin zone.

Equation (4.7) in section 4.1 transforms as follows.

nk(x) =
∑

i,εi,k<εF
fi,k |φi,k(x)|2

ρe(x) = 1
ΩBZ

∫
ΩBZ

nk(x)dk =
∑

k ωknk(x)

where ΩBZ is the volume of the first Brillouin zone. Monkhorst-Pack algorithm [64] is used

to numerically integrate the electron charge density in Brillouin zone. In the case of silicon, 44

k points in irreducible Brillouin zone were used to obtain electron charge density.

Figures 51 and 52 show the band diagram plots for second and third order B-spline ba-

sis functions along the symmetry points in Brillouin zone and the results are compared to

fourth order B-spline solutions. HGH pseudopotentials [4] and Perdew-Zunger [69] exchange-

correlation potential were used for the calculations. Optimal convergence rates are obtained

as shown below. Experimentally silicon has 1.13 eV band gap. However the DFT method

underestimates band gap below 0.6 eV. This is well known artifact of DFT calculations with

LDA exchange-correlation functional.

4.3.4.3 Gallium arsenide (GaAs)

GaAs has FCC cubic structure similar to Bulk silicon (Si). The primitive unit cell and

Brillouin zone for GaAs is defined in a similar manner to bulk silicon. However in this case

gallium atom is located at (0, 0, 0), while Arsenic atom is located at (a/4, a/4, a/4). The lattice

constant for GaAs is a = 10.6831 a.u. Brillouin zone integration was carried out with 44

integration points in irreducible part.
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Figure 53. Band diagram for gallium arsenide (GaAs) and B-spline order p = 2

Figure 54. Band diagram for gallium arsenide (GaAs) and B-spline order p = 3
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Figure 55. Convergence rates for gallium arsenide (GaAs) and B-spline order p = 2

HGH pseudopotentials [4] and Perdew-Zunger exchange-correlation potential [69] were used

in this case of finite element calculations. Planewave solutions were obtained from Pask et

al. [1]. Figures 53-54 plot the band diagrams along high-symmetry lines of first Brillouin zone.

PW method predicts a band gap of 0.0173 Hartree atomic units. Optimum convergence rates

are obtained for eigenvalues and super-convergence for total energies (because of higher order

inter-element continuity of B-spline basis functions) as shown above in Figure 55.
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4.3.4.4 Graphene (3D case)

The domain or unit cell is defined by the following primitive lattice vectors.

a1 = (a, 0, 0) ,a2 =
(

a/2,
√

3/2a, 0
)
,a3 = (0, 0, 3a) (4.82)

where a =
√

3aCC . The lattice parameter aCC = 2.6834 a.u. is shown in Figure 56.

Figure 56 shows the 2D primitive unit cell and first Brillouin zone for a graphene sheet.

However, for computations in 3D we consider the length in third dimension as thrice the lattice

parameter aCC (with carbon atoms located in a plane that is exactly in the middle of third

dimension) and periodic boundary conditions are assumed on the surfaces in all three directions.

The irreducible Brillouin zone of graphene is 1
/

12th of the part of first Brillouin zone and 110

k points were considered in irreducible part for electron charge density integration. Figure 57

shows the band diagram plot along high symmetry points. Both the σ and π bands are captured

as shown above.
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Figure 56. Primitive unit cell and First Brillouin zone with high-symmetry points

Figure 57. Band diagram for graphene and B-spline order p = 2



5 CONCLUDING REMARKS AND FUTURE WORK

The thesis presents a finite element multiscale variational framework for analysis of materials

involving coupled mechanical and electronic properties. The framework can be extended to

include thermal and other effects.

In Chapter 2, we have presented a hierarchical multiscale computational framework for

bridging the gap between molecular mechanics at nanoscales and quasi-continuum mechanics

at microscales in the modeling of CNTs. The proposed two-level scale separation results in

a coupled self-consistent system of equations which is then systematically decoupled to yield

a set of equations for modeling defect-free CNTs, and a second set for modeling the defects

in CNTs. The ensuing finite element method also furnishes two level statement of the prob-

lem, with level-one providing a method for modeling defect free nanostructure, and level-two

providing a method for modeling defects in the nanostructure. In the quasi-continuum model

interatomic interactions are incorporated via nanoscale material moduli that are based on in-

teratomic potentials which are in turn functions of the local state of deformation. Two types

of interatomic potentials, i.e., modified Morse potentials and the Tersoff-Brenner potentials are

employed in the evaluation of nanoscale material moduli. The concept of formation energy of

vacancy is employed to extract the fine scale force fields that are then used in the level-two

finite element discretization to model defects. Point defects that arise because of vacancies and
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affect atomic structure locally are discretely modeled. Representative numerical examples are

shown to validate the model and demonstrate its range of applicability.

In Chapter 3, we presented two finite element formulations for the solution of the Schrödinger

wave equation, (a) GLS formulation, and (b) HVM formulation. The GLS formulation when

reduced to the standard eigenvalue problem, yields solution at a computational cost that is

comparable to that of the Galerkin method, however with higher accuracy in the evaluation

of the higher eigenvalues as compared to the Galerkin method. The HVM formulation also

yields optimal convergence rates, however it leads to a quadratic eigenvalue problem that adds

to the cost of computation. The numerical convergence rates of the methods are investigated

via the Kronig-Penney problem that serves as a benchmark test case for investigating the

mathematical properties of the methods. The quadratic elements show a substantial gain in

accuracy as compared to the 3D linear elements. Amongst the quadratic elements, quadratic

bricks show better accuracy as compared to the quadratic tetrahedral element.

In Chapter 4, We have presented here a real-space variational finite element framework

for self-consistent solution of periodic Kohn-Sham equations. Lagrange basis functions has C0

continuity between elements. We have employed B-splines and NURBS basis functions, which

provides higher order inter-element continuity. Higher order Lagrange basis functions oscillate

around the solution. This is called as Gibbs phenomenon. Higher order B-splines and NURBS

have variation diminishing property [46] and do not display Gibb’s phenomenon. This is es-

pecially useful in representing high gradient functions using higher order B-spline and NURBS

basis functions. In addition NURBS functions can exactly represent geometries that includes

conic sections (cylinders, spheres etc.), where boundary conditions can be imposed exactly and
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thus avoid errors due to approximation of geometries. Since B-Splines and NURBS provide

local support they provide significant advantages over planewave basis functions in parallel

implementation by minimizing communication between processors. Thus some of the short-

comings addressed in [70] with respect to geometry of domain and lower order of polynomials

have been addressed here. In addition real space formulations enables all types of boundary

conditions to be implemented with ease. Since different meshes are employed for Poisson and

Schrödinger wave equation (SWE), it is trivial to implement solution in different size domains

for non-periodic systems where Poisson problem need to be solved in a larger domain while

SWE in a smaller domain.

Having established the method by comparison to PW ab-initio methods, as part of future

work, parallelization of code is underway to study large scale coupled problems involving elec-

tronic/mechanical/thermal properties and defects presently. Some of the applications include

flexible electronics in biomedical applications, thermoelectric devices, and generally any silicon

based electronic devices.
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A THE NON-LOCAL TERM

The non-local term embedded within Veff requires further explanation. The non-local term

can be expanded as follows using equation (4.23).

∫
Ωe

(
e−ik•x Ni V

nL eik•x Nj

)
dx =

∑
a,l,m


∫

Ωe

(
e−ik•x

∑
n

[
eik•Rnχalm (x− τ a −Rn)

]
Ni (x) dx

)
× hal ×∫

Ω

(
eik•x

′∑
n′
[
e−ik•Rn′χalm (x′ − τ a −Rn′)

]
Nj (x′) dx′

)


(A.1)

where
∫

Ωestands for integration over an element domain Ωe of finite element mesh, while
∫

Ωe

stands for integration over the entire domain Ω or the unit cell. Hence this non-local term leads

to fully populated stiffness matrixas shown below by expanding the terms in matrix form.

Remark A.1: The blue term in equation (A.2) is localized since the integral is over an

element domain Ωe and the shape functions have local support, i.e. only a few shape functions

have non-zero values. This implies that the element level non-local term occupies only rows

associated with the element e of the global stiffness matrix.

Remark A.2: The red term in equations (A.2) and (A.3) is nonlocal, since the integral is

defined over the entire domain or unit cell, Ω, despite the shape functions having local support.

This implies that all shape functions in this term necessarily have non-zero values. As a result

of this term the element stiffness matrix occupies all the columns of global stiffness matrix.
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Appendix A (Continued)

∫
Ωe

(
w (x) e−ik•xV nLeik•xv (x)

)
dx =

∑
a,l,m

∫
Ωe

(
e−ik•x

∑
n

[
eik•Rnχalm (x− τ a −Rn)

]
w (x) dx

)
× hal

×
∫

Ω

(
eik•x

′∑
n′
[
e−ik•Rn′χalm (x′ − τ a −Rn′)

]
v (x′) dx′

)
 =

∑
a,l,m





d1

d2

.

.

.

dn



T

∫
Ωe





N1 (x)

N2 (x)

.

.

.

Nn (x)



e−ik•x×

∑
n

[
eik•Rnχalm (x− τ a −Rn)

]



dx× hal ×

∫
Ω

 eik•x
′∑

n′
[
e−ik•Rn′χalm (x′ − τ a −Rn′)

]
×[

N1 (x) N2 (x) . . . Nn (x)

]
 dx′

[
c1 c2 . . . cn

]T



(A.2)

where

∫
Ω

 eik•x
′∑

n′
[
e−ik•Rn′χalm (x′ − τ a −Rn′)

]
×[

N1 (x) N2 (x) N3 (x) N4 (x) .... Nn (x)

]
 dx′ =

∑numel
e=1

∫
Ωe

 eik•x
′∑

n′
[
e−ik•Rn′χalm (x′ − τ a −Rn′)

]
×[

N1 (x) N2 (x) N3 (x) N4 (x) .... Nn (x)

]
 dx′

(A.3)
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B PSEUDOPOTENTIAL

The local pseudopotential term for HGH pseudopotential [4] is converted into its equivalent

density as follows. The plots of potential as well as density terms are shown to give a comparison

of long range behavior of local pseudopotential term to short range behavior of density. The

advantage of using the density is that one need not consider large number of atoms to achieve

accuracy in numerical calculation at a location x.

Figure 58. Silicon Local pseudopotential [2, 4] and its corresponding charge density
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